* elflink.c (_bfd_elf_merge_symbol): Allow type changes for
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
8d67f500
NC
242
243/* Return if no cpu was selected on command-line. */
244static bfd_boolean
245no_cpu_selected (void)
246{
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249}
250
7cc69913 251#ifdef OBJ_ELF
deeaaff8
DJ
252# ifdef EABI_DEFAULT
253static int meabi_flags = EABI_DEFAULT;
254# else
d507cf36 255static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 256# endif
e1da3f5b 257
ee3c0378
AS
258static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
e1da3f5b 260bfd_boolean
5f4273c7 261arm_is_eabi (void)
e1da3f5b
PB
262{
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264}
7cc69913 265#endif
b99bd4ef 266
b99bd4ef 267#ifdef OBJ_ELF
c19d1205 268/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
269symbolS * GOT_symbol;
270#endif
271
b99bd4ef
NC
272/* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276static int thumb_mode = 0;
8dc2430f
NC
277/* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280#define MODE_RECORDED (1 << 4)
b99bd4ef 281
e07e6e58
NC
282/* Specifies the intrinsic IT insn behavior mode. */
283enum implicit_it_mode
284{
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289};
290static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
c19d1205
ZW
292/* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315static bfd_boolean unified_syntax = FALSE;
b99bd4ef 316
5287ad62
JB
317enum neon_el_type
318{
dcbf9037 319 NT_invtype,
5287ad62
JB
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
dcbf9037 325 NT_unsigned
5287ad62
JB
326};
327
328struct neon_type_el
329{
330 enum neon_el_type type;
331 unsigned size;
332};
333
334#define NEON_MAX_TYPE_ELS 4
335
336struct neon_type
337{
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340};
341
e07e6e58
NC
342enum it_instruction_type
343{
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352};
353
b99bd4ef
NC
354struct arm_it
355{
c19d1205 356 const char * error;
b99bd4ef 357 unsigned long instruction;
c19d1205
ZW
358 int size;
359 int size_req;
360 int cond;
037e8744
JB
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
5287ad62 365 struct neon_type vectype;
88714cb8
DG
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
0110f2b8
PB
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
b99bd4ef
NC
372 struct
373 {
374 bfd_reloc_code_real_type type;
c19d1205
ZW
375 expressionS exp;
376 int pc_rel;
b99bd4ef 377 } reloc;
b99bd4ef 378
e07e6e58
NC
379 enum it_instruction_type it_insn_type;
380
c19d1205
ZW
381 struct
382 {
383 unsigned reg;
ca3f61f7 384 signed int imm;
dcbf9037 385 struct neon_type_el vectype;
ca3f61f7
NC
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 405 } operands[6];
b99bd4ef
NC
406};
407
c19d1205 408static struct arm_it inst;
b99bd4ef
NC
409
410#define NUM_FLOAT_VALS 8
411
05d2d07e 412const char * fp_const[] =
b99bd4ef
NC
413{
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415};
416
c19d1205 417/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
418#define MAX_LITTLENUMS 6
419
420LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422#define FAIL (-1)
423#define SUCCESS (0)
424
425#define SUFF_S 1
426#define SUFF_D 2
427#define SUFF_E 3
428#define SUFF_P 4
429
c19d1205
ZW
430#define CP_T_X 0x00008000
431#define CP_T_Y 0x00400000
b99bd4ef 432
c19d1205
ZW
433#define CONDS_BIT 0x00100000
434#define LOAD_BIT 0x00100000
b99bd4ef
NC
435
436#define DOUBLE_LOAD_FLAG 0x00000001
437
438struct asm_cond
439{
d3ce72d0 440 const char * template_name;
c921be7d 441 unsigned long value;
b99bd4ef
NC
442};
443
c19d1205 444#define COND_ALWAYS 0xE
b99bd4ef 445
b99bd4ef
NC
446struct asm_psr
447{
d3ce72d0 448 const char * template_name;
c921be7d 449 unsigned long field;
b99bd4ef
NC
450};
451
62b3e311
PB
452struct asm_barrier_opt
453{
d3ce72d0 454 const char * template_name;
c921be7d 455 unsigned long value;
62b3e311
PB
456};
457
2d2255b5 458/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
459#define SPSR_BIT (1 << 22)
460
c19d1205
ZW
461/* The individual PSR flag bits. */
462#define PSR_c (1 << 16)
463#define PSR_x (1 << 17)
464#define PSR_s (1 << 18)
465#define PSR_f (1 << 19)
b99bd4ef 466
c19d1205 467struct reloc_entry
bfae80f2 468{
c921be7d
NC
469 char * name;
470 bfd_reloc_code_real_type reloc;
bfae80f2
RE
471};
472
5287ad62 473enum vfp_reg_pos
bfae80f2 474{
5287ad62
JB
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
477};
478
479enum vfp_ldstm_type
480{
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482};
483
dcbf9037
JB
484/* Bits for DEFINED field in neon_typed_alias. */
485#define NTA_HASTYPE 1
486#define NTA_HASINDEX 2
487
488struct neon_typed_alias
489{
c921be7d
NC
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
dcbf9037
JB
493};
494
c19d1205
ZW
495/* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497enum arm_reg_type
bfae80f2 498{
c19d1205
ZW
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
5287ad62 505 REG_TYPE_NQ,
037e8744 506 REG_TYPE_VFSD,
5287ad62 507 REG_TYPE_NDQ,
037e8744 508 REG_TYPE_NSDQ,
c19d1205
ZW
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
90ec0d68 520 REG_TYPE_RNB
bfae80f2
RE
521};
522
dcbf9037
JB
523/* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
527struct reg_entry
528{
c921be7d 529 const char * name;
90ec0d68 530 unsigned int number;
c921be7d
NC
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
6c43fab6
RE
534};
535
c19d1205 536/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 537const char * const reg_expected_msgs[] =
c19d1205
ZW
538{
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
5287ad62
JB
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
037e8744 546 N_("VFP single or double precision register expected"),
5287ad62 547 N_("Neon double or quad precision register expected"),
037e8744 548 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
6c43fab6
RE
560};
561
c19d1205
ZW
562/* Some well known registers that we refer to directly elsewhere. */
563#define REG_SP 13
564#define REG_LR 14
565#define REG_PC 15
404ff6b5 566
b99bd4ef
NC
567/* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
c19d1205 569#define INSN_SIZE 4
b99bd4ef
NC
570
571struct asm_opcode
572{
573 /* Basic string to match. */
d3ce72d0 574 const char * template_name;
c19d1205
ZW
575
576 /* Parameters to instruction. */
5be8be5d 577 unsigned int operands[8];
c19d1205
ZW
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
b99bd4ef
NC
581
582 /* Basic instruction code. */
c19d1205 583 unsigned int avalue : 28;
b99bd4ef 584
c19d1205
ZW
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
b99bd4ef 587
90e4755a 588 /* Which architecture variant provides this instruction. */
c921be7d
NC
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
c19d1205
ZW
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
b99bd4ef 594
c19d1205
ZW
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
b99bd4ef
NC
597};
598
a737bd4d
NC
599/* Defines for various bits that we will want to toggle. */
600#define INST_IMMEDIATE 0x02000000
601#define OFFSET_REG 0x02000000
c19d1205 602#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
603#define SHIFT_BY_REG 0x00000010
604#define PRE_INDEX 0x01000000
605#define INDEX_UP 0x00800000
606#define WRITE_BACK 0x00200000
607#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 608#define CPSI_MMOD 0x00020000
90e4755a 609
a737bd4d
NC
610#define LITERAL_MASK 0xf000f000
611#define OPCODE_MASK 0xfe1fffff
612#define V4_STR_BIT 0x00000020
90e4755a 613
efd81785
PB
614#define T2_SUBS_PC_LR 0xf3de8f00
615
a737bd4d 616#define DATA_OP_SHIFT 21
90e4755a 617
ef8d22e6
PB
618#define T2_OPCODE_MASK 0xfe1fffff
619#define T2_DATA_OP_SHIFT 21
620
a737bd4d
NC
621/* Codes to distinguish the arithmetic instructions. */
622#define OPCODE_AND 0
623#define OPCODE_EOR 1
624#define OPCODE_SUB 2
625#define OPCODE_RSB 3
626#define OPCODE_ADD 4
627#define OPCODE_ADC 5
628#define OPCODE_SBC 6
629#define OPCODE_RSC 7
630#define OPCODE_TST 8
631#define OPCODE_TEQ 9
632#define OPCODE_CMP 10
633#define OPCODE_CMN 11
634#define OPCODE_ORR 12
635#define OPCODE_MOV 13
636#define OPCODE_BIC 14
637#define OPCODE_MVN 15
90e4755a 638
ef8d22e6
PB
639#define T2_OPCODE_AND 0
640#define T2_OPCODE_BIC 1
641#define T2_OPCODE_ORR 2
642#define T2_OPCODE_ORN 3
643#define T2_OPCODE_EOR 4
644#define T2_OPCODE_ADD 8
645#define T2_OPCODE_ADC 10
646#define T2_OPCODE_SBC 11
647#define T2_OPCODE_SUB 13
648#define T2_OPCODE_RSB 14
649
a737bd4d
NC
650#define T_OPCODE_MUL 0x4340
651#define T_OPCODE_TST 0x4200
652#define T_OPCODE_CMN 0x42c0
653#define T_OPCODE_NEG 0x4240
654#define T_OPCODE_MVN 0x43c0
90e4755a 655
a737bd4d
NC
656#define T_OPCODE_ADD_R3 0x1800
657#define T_OPCODE_SUB_R3 0x1a00
658#define T_OPCODE_ADD_HI 0x4400
659#define T_OPCODE_ADD_ST 0xb000
660#define T_OPCODE_SUB_ST 0xb080
661#define T_OPCODE_ADD_SP 0xa800
662#define T_OPCODE_ADD_PC 0xa000
663#define T_OPCODE_ADD_I8 0x3000
664#define T_OPCODE_SUB_I8 0x3800
665#define T_OPCODE_ADD_I3 0x1c00
666#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 667
a737bd4d
NC
668#define T_OPCODE_ASR_R 0x4100
669#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
670#define T_OPCODE_LSR_R 0x40c0
671#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
672#define T_OPCODE_ASR_I 0x1000
673#define T_OPCODE_LSL_I 0x0000
674#define T_OPCODE_LSR_I 0x0800
b99bd4ef 675
a737bd4d
NC
676#define T_OPCODE_MOV_I8 0x2000
677#define T_OPCODE_CMP_I8 0x2800
678#define T_OPCODE_CMP_LR 0x4280
679#define T_OPCODE_MOV_HR 0x4600
680#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 681
a737bd4d
NC
682#define T_OPCODE_LDR_PC 0x4800
683#define T_OPCODE_LDR_SP 0x9800
684#define T_OPCODE_STR_SP 0x9000
685#define T_OPCODE_LDR_IW 0x6800
686#define T_OPCODE_STR_IW 0x6000
687#define T_OPCODE_LDR_IH 0x8800
688#define T_OPCODE_STR_IH 0x8000
689#define T_OPCODE_LDR_IB 0x7800
690#define T_OPCODE_STR_IB 0x7000
691#define T_OPCODE_LDR_RW 0x5800
692#define T_OPCODE_STR_RW 0x5000
693#define T_OPCODE_LDR_RH 0x5a00
694#define T_OPCODE_STR_RH 0x5200
695#define T_OPCODE_LDR_RB 0x5c00
696#define T_OPCODE_STR_RB 0x5400
c9b604bd 697
a737bd4d
NC
698#define T_OPCODE_PUSH 0xb400
699#define T_OPCODE_POP 0xbc00
b99bd4ef 700
2fc8bdac 701#define T_OPCODE_BRANCH 0xe000
b99bd4ef 702
a737bd4d 703#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 704#define THUMB_PP_PC_LR 0x0100
c19d1205 705#define THUMB_LOAD_BIT 0x0800
53365c0d 706#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
707
708#define BAD_ARGS _("bad arguments to instruction")
fdfde340 709#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
710#define BAD_PC _("r15 not allowed here")
711#define BAD_COND _("instruction cannot be conditional")
712#define BAD_OVERLAP _("registers may not be the same")
713#define BAD_HIREG _("lo register required")
714#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 715#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
716#define BAD_BRANCH _("branch must be last instruction in IT block")
717#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 718#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
719#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720#define BAD_IT_COND _("incorrect condition in IT block")
721#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 722#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
723#define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725#define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
c19d1205 727
c921be7d
NC
728static struct hash_control * arm_ops_hsh;
729static struct hash_control * arm_cond_hsh;
730static struct hash_control * arm_shift_hsh;
731static struct hash_control * arm_psr_hsh;
732static struct hash_control * arm_v7m_psr_hsh;
733static struct hash_control * arm_reg_hsh;
734static struct hash_control * arm_reloc_hsh;
735static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 736
b99bd4ef
NC
737/* Stuff needed to resolve the label ambiguity
738 As:
739 ...
740 label: <insn>
741 may differ from:
742 ...
743 label:
5f4273c7 744 <insn> */
b99bd4ef
NC
745
746symbolS * last_label_seen;
b34976b6 747static int label_is_thumb_function_name = FALSE;
e07e6e58 748
3d0c9500
NC
749/* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
a737bd4d 751
c19d1205 752#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 753typedef struct literal_pool
b99bd4ef 754{
c921be7d
NC
755 expressionS literals [MAX_LITERAL_POOL_SIZE];
756 unsigned int next_free_entry;
757 unsigned int id;
758 symbolS * symbol;
759 segT section;
760 subsegT sub_section;
761 struct literal_pool * next;
3d0c9500 762} literal_pool;
b99bd4ef 763
3d0c9500
NC
764/* Pointer to a linked list of literal pools. */
765literal_pool * list_of_pools = NULL;
e27ec89e 766
e07e6e58
NC
767#ifdef OBJ_ELF
768# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
769#else
770static struct current_it now_it;
771#endif
772
773static inline int
774now_it_compatible (int cond)
775{
776 return (cond & ~1) == (now_it.cc & ~1);
777}
778
779static inline int
780conditional_insn (void)
781{
782 return inst.cond != COND_ALWAYS;
783}
784
785static int in_it_block (void);
786
787static int handle_it_state (void);
788
789static void force_automatic_it_block_close (void);
790
c921be7d
NC
791static void it_fsm_post_encode (void);
792
e07e6e58
NC
793#define set_it_insn_type(type) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return; \
799 } \
800 while (0)
801
c921be7d
NC
802#define set_it_insn_type_nonvoid(type, failret) \
803 do \
804 { \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
807 return failret; \
808 } \
809 while(0)
810
e07e6e58
NC
811#define set_it_insn_type_last() \
812 do \
813 { \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
816 else \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
818 } \
819 while (0)
820
c19d1205 821/* Pure syntax. */
b99bd4ef 822
c19d1205
ZW
823/* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825const char comment_chars[] = "@";
3d0c9500 826
c19d1205
ZW
827/* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830/* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833/* Also note that comments like this one will always work. */
834const char line_comment_chars[] = "#";
3d0c9500 835
c19d1205 836const char line_separator_chars[] = ";";
b99bd4ef 837
c19d1205
ZW
838/* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840const char EXP_CHARS[] = "eE";
3d0c9500 841
c19d1205
ZW
842/* Chars that mean this number is a floating point constant. */
843/* As in 0f12.456 */
844/* or 0d1.2345e12 */
b99bd4ef 845
c19d1205 846const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 847
c19d1205
ZW
848/* Prefix characters that indicate the start of an immediate
849 value. */
850#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 851
c19d1205
ZW
852/* Separator character handling. */
853
854#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
855
856static inline int
857skip_past_char (char ** str, char c)
858{
859 if (**str == c)
860 {
861 (*str)++;
862 return SUCCESS;
3d0c9500 863 }
c19d1205
ZW
864 else
865 return FAIL;
866}
c921be7d 867
c19d1205 868#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 869
c19d1205
ZW
870/* Arithmetic expressions (possibly involving symbols). */
871
872/* Return TRUE if anything in the expression is a bignum. */
873
874static int
875walk_no_bignums (symbolS * sp)
876{
877 if (symbol_get_value_expression (sp)->X_op == O_big)
878 return 1;
879
880 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 881 {
c19d1205
ZW
882 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
883 || (symbol_get_value_expression (sp)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
885 }
886
c19d1205 887 return 0;
3d0c9500
NC
888}
889
c19d1205
ZW
890static int in_my_get_expression = 0;
891
892/* Third argument to my_get_expression. */
893#define GE_NO_PREFIX 0
894#define GE_IMM_PREFIX 1
895#define GE_OPT_PREFIX 2
5287ad62
JB
896/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898#define GE_OPT_PREFIX_BIG 3
a737bd4d 899
b99bd4ef 900static int
c19d1205 901my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 902{
c19d1205
ZW
903 char * save_in;
904 segT seg;
b99bd4ef 905
c19d1205
ZW
906 /* In unified syntax, all prefixes are optional. */
907 if (unified_syntax)
5287ad62
JB
908 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
909 : GE_OPT_PREFIX;
b99bd4ef 910
c19d1205 911 switch (prefix_mode)
b99bd4ef 912 {
c19d1205
ZW
913 case GE_NO_PREFIX: break;
914 case GE_IMM_PREFIX:
915 if (!is_immediate_prefix (**str))
916 {
917 inst.error = _("immediate expression requires a # prefix");
918 return FAIL;
919 }
920 (*str)++;
921 break;
922 case GE_OPT_PREFIX:
5287ad62 923 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
924 if (is_immediate_prefix (**str))
925 (*str)++;
926 break;
927 default: abort ();
928 }
b99bd4ef 929
c19d1205 930 memset (ep, 0, sizeof (expressionS));
b99bd4ef 931
c19d1205
ZW
932 save_in = input_line_pointer;
933 input_line_pointer = *str;
934 in_my_get_expression = 1;
935 seg = expression (ep);
936 in_my_get_expression = 0;
937
f86adc07 938 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 939 {
f86adc07 940 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 if (inst.error == NULL)
f86adc07
NS
944 inst.error = (ep->X_op == O_absent
945 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
946 return 1;
947 }
b99bd4ef 948
c19d1205
ZW
949#ifdef OBJ_AOUT
950 if (seg != absolute_section
951 && seg != text_section
952 && seg != data_section
953 && seg != bss_section
954 && seg != undefined_section)
955 {
956 inst.error = _("bad segment");
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 1;
b99bd4ef 960 }
87975d2a
AM
961#else
962 (void) seg;
c19d1205 963#endif
b99bd4ef 964
c19d1205
ZW
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
5287ad62
JB
968 if (prefix_mode != GE_OPT_PREFIX_BIG
969 && (ep->X_op == O_big
970 || (ep->X_add_symbol
971 && (walk_no_bignums (ep->X_add_symbol)
972 || (ep->X_op_symbol
973 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
974 {
975 inst.error = _("invalid constant");
976 *str = input_line_pointer;
977 input_line_pointer = save_in;
978 return 1;
979 }
b99bd4ef 980
c19d1205
ZW
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 0;
b99bd4ef
NC
984}
985
c19d1205
ZW
986/* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
b99bd4ef 990
c19d1205
ZW
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 997
c19d1205 998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 999
c19d1205
ZW
1000char *
1001md_atof (int type, char * litP, int * sizeP)
1002{
1003 int prec;
1004 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1005 char *t;
1006 int i;
b99bd4ef 1007
c19d1205
ZW
1008 switch (type)
1009 {
1010 case 'f':
1011 case 'F':
1012 case 's':
1013 case 'S':
1014 prec = 2;
1015 break;
b99bd4ef 1016
c19d1205
ZW
1017 case 'd':
1018 case 'D':
1019 case 'r':
1020 case 'R':
1021 prec = 4;
1022 break;
b99bd4ef 1023
c19d1205
ZW
1024 case 'x':
1025 case 'X':
499ac353 1026 prec = 5;
c19d1205 1027 break;
b99bd4ef 1028
c19d1205
ZW
1029 case 'p':
1030 case 'P':
499ac353 1031 prec = 5;
c19d1205 1032 break;
a737bd4d 1033
c19d1205
ZW
1034 default:
1035 *sizeP = 0;
499ac353 1036 return _("Unrecognized or unsupported floating point constant");
c19d1205 1037 }
b99bd4ef 1038
c19d1205
ZW
1039 t = atof_ieee (input_line_pointer, type, words);
1040 if (t)
1041 input_line_pointer = t;
499ac353 1042 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1043
c19d1205
ZW
1044 if (target_big_endian)
1045 {
1046 for (i = 0; i < prec; i++)
1047 {
499ac353
NC
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1050 }
1051 }
1052 else
1053 {
e74cfd16 1054 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1055 for (i = prec - 1; i >= 0; i--)
1056 {
499ac353
NC
1057 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1058 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1059 }
1060 else
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i = 0; i < prec; i += 2)
1064 {
499ac353
NC
1065 md_number_to_chars (litP, (valueT) words[i + 1],
1066 sizeof (LITTLENUM_TYPE));
1067 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1068 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1069 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1070 }
1071 }
b99bd4ef 1072
499ac353 1073 return NULL;
c19d1205 1074}
b99bd4ef 1075
c19d1205
ZW
1076/* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1078void
91d6fa6a 1079md_operand (expressionS * exp)
c19d1205
ZW
1080{
1081 if (in_my_get_expression)
91d6fa6a 1082 exp->X_op = O_illegal;
b99bd4ef
NC
1083}
1084
c19d1205 1085/* Immediate values. */
b99bd4ef 1086
c19d1205
ZW
1087/* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1090#ifdef OBJ_ELF
1091static int
1092immediate_for_directive (int *val)
b99bd4ef 1093{
c19d1205
ZW
1094 expressionS exp;
1095 exp.X_op = O_illegal;
b99bd4ef 1096
c19d1205
ZW
1097 if (is_immediate_prefix (*input_line_pointer))
1098 {
1099 input_line_pointer++;
1100 expression (&exp);
1101 }
b99bd4ef 1102
c19d1205
ZW
1103 if (exp.X_op != O_constant)
1104 {
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1107 return FAIL;
1108 }
1109 *val = exp.X_add_number;
1110 return SUCCESS;
b99bd4ef 1111}
c19d1205 1112#endif
b99bd4ef 1113
c19d1205 1114/* Register parsing. */
b99bd4ef 1115
c19d1205
ZW
1116/* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1120
1121static struct reg_entry *
1122arm_reg_parse_multi (char **ccp)
b99bd4ef 1123{
c19d1205
ZW
1124 char *start = *ccp;
1125 char *p;
1126 struct reg_entry *reg;
b99bd4ef 1127
c19d1205
ZW
1128#ifdef REGISTER_PREFIX
1129 if (*start != REGISTER_PREFIX)
01cfc07f 1130 return NULL;
c19d1205
ZW
1131 start++;
1132#endif
1133#ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start == OPTIONAL_REGISTER_PREFIX)
1135 start++;
1136#endif
b99bd4ef 1137
c19d1205
ZW
1138 p = start;
1139 if (!ISALPHA (*p) || !is_name_beginner (*p))
1140 return NULL;
b99bd4ef 1141
c19d1205
ZW
1142 do
1143 p++;
1144 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1145
1146 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1147
1148 if (!reg)
1149 return NULL;
1150
1151 *ccp = p;
1152 return reg;
b99bd4ef
NC
1153}
1154
1155static int
dcbf9037
JB
1156arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1157 enum arm_reg_type type)
b99bd4ef 1158{
c19d1205
ZW
1159 /* Alternative syntaxes are accepted for a few register classes. */
1160 switch (type)
1161 {
1162 case REG_TYPE_MVF:
1163 case REG_TYPE_MVD:
1164 case REG_TYPE_MVFX:
1165 case REG_TYPE_MVDX:
1166 /* Generic coprocessor register names are allowed for these. */
79134647 1167 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1168 return reg->number;
1169 break;
69b97547 1170
c19d1205
ZW
1171 case REG_TYPE_CP:
1172 /* For backward compatibility, a bare number is valid here. */
1173 {
1174 unsigned long processor = strtoul (start, ccp, 10);
1175 if (*ccp != start && processor <= 15)
1176 return processor;
1177 }
6057a28f 1178
c19d1205
ZW
1179 case REG_TYPE_MMXWC:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
79134647 1182 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1183 return reg->number;
6057a28f 1184 break;
c19d1205 1185
6057a28f 1186 default:
c19d1205 1187 break;
6057a28f
NC
1188 }
1189
dcbf9037
JB
1190 return FAIL;
1191}
1192
1193/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1195
1196static int
1197arm_reg_parse (char **ccp, enum arm_reg_type type)
1198{
1199 char *start = *ccp;
1200 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1201 int ret;
1202
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1205 return FAIL;
1206
1207 if (reg && reg->type == type)
1208 return reg->number;
1209
1210 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1211 return ret;
1212
c19d1205
ZW
1213 *ccp = start;
1214 return FAIL;
1215}
69b97547 1216
dcbf9037
JB
1217/* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1219 properly. E.g.,
1220
1221 .i32.i32.s16
1222 .s32.f32
1223 .u16
1224
1225 Can all be legally parsed by this function.
1226
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1230
1231static int
1232parse_neon_type (struct neon_type *type, char **str)
1233{
1234 char *ptr = *str;
1235
1236 if (type)
1237 type->elems = 0;
1238
1239 while (type->elems < NEON_MAX_TYPE_ELS)
1240 {
1241 enum neon_el_type thistype = NT_untyped;
1242 unsigned thissize = -1u;
1243
1244 if (*ptr != '.')
1245 break;
1246
1247 ptr++;
1248
1249 /* Just a size without an explicit type. */
1250 if (ISDIGIT (*ptr))
1251 goto parsesize;
1252
1253 switch (TOLOWER (*ptr))
1254 {
1255 case 'i': thistype = NT_integer; break;
1256 case 'f': thistype = NT_float; break;
1257 case 'p': thistype = NT_poly; break;
1258 case 's': thistype = NT_signed; break;
1259 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1260 case 'd':
1261 thistype = NT_float;
1262 thissize = 64;
1263 ptr++;
1264 goto done;
dcbf9037
JB
1265 default:
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1267 return FAIL;
1268 }
1269
1270 ptr++;
1271
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype == NT_float && !ISDIGIT (*ptr))
1274 thissize = 32;
1275 else
1276 {
1277 parsesize:
1278 thissize = strtoul (ptr, &ptr, 10);
1279
1280 if (thissize != 8 && thissize != 16 && thissize != 32
1281 && thissize != 64)
1282 {
1283 as_bad (_("bad size %d in type specifier"), thissize);
1284 return FAIL;
1285 }
1286 }
1287
037e8744 1288 done:
dcbf9037
JB
1289 if (type)
1290 {
1291 type->el[type->elems].type = thistype;
1292 type->el[type->elems].size = thissize;
1293 type->elems++;
1294 }
1295 }
1296
1297 /* Empty/missing type is not a successful parse. */
1298 if (type->elems == 0)
1299 return FAIL;
1300
1301 *str = ptr;
1302
1303 return SUCCESS;
1304}
1305
1306/* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1310
1311static void
1312first_error (const char *err)
1313{
1314 if (!inst.error)
1315 inst.error = err;
1316}
1317
1318/* Parse a single type, e.g. ".s32", leading period included. */
1319static int
1320parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1321{
1322 char *str = *ccp;
1323 struct neon_type optype;
1324
1325 if (*str == '.')
1326 {
1327 if (parse_neon_type (&optype, &str) == SUCCESS)
1328 {
1329 if (optype.elems == 1)
1330 *vectype = optype.el[0];
1331 else
1332 {
1333 first_error (_("only one type should be specified for operand"));
1334 return FAIL;
1335 }
1336 }
1337 else
1338 {
1339 first_error (_("vector type expected"));
1340 return FAIL;
1341 }
1342 }
1343 else
1344 return FAIL;
5f4273c7 1345
dcbf9037 1346 *ccp = str;
5f4273c7 1347
dcbf9037
JB
1348 return SUCCESS;
1349}
1350
1351/* Special meanings for indices (which have a range of 0-7), which will fit into
1352 a 4-bit integer. */
1353
1354#define NEON_ALL_LANES 15
1355#define NEON_INTERLEAVE_LANES 14
1356
1357/* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1361
1362static int
1363parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1364 enum arm_reg_type *rtype,
1365 struct neon_typed_alias *typeinfo)
1366{
1367 char *str = *ccp;
1368 struct reg_entry *reg = arm_reg_parse_multi (&str);
1369 struct neon_typed_alias atype;
1370 struct neon_type_el parsetype;
1371
1372 atype.defined = 0;
1373 atype.index = -1;
1374 atype.eltype.type = NT_invtype;
1375 atype.eltype.size = -1;
1376
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1379 if (reg == NULL)
1380 {
1381 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1382 if (altreg != FAIL)
1383 *ccp = str;
1384 if (typeinfo)
1385 *typeinfo = atype;
1386 return altreg;
1387 }
1388
037e8744
JB
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type == REG_TYPE_NDQ
1391 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1392 || (type == REG_TYPE_VFSD
1393 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1394 || (type == REG_TYPE_NSDQ
1395 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1396 || reg->type == REG_TYPE_NQ))
1397 || (type == REG_TYPE_MMXWC
1398 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1399 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1400
1401 if (type != reg->type)
1402 return FAIL;
1403
1404 if (reg->neon)
1405 atype = *reg->neon;
5f4273c7 1406
dcbf9037
JB
1407 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1408 {
1409 if ((atype.defined & NTA_HASTYPE) != 0)
1410 {
1411 first_error (_("can't redefine type for operand"));
1412 return FAIL;
1413 }
1414 atype.defined |= NTA_HASTYPE;
1415 atype.eltype = parsetype;
1416 }
5f4273c7 1417
dcbf9037
JB
1418 if (skip_past_char (&str, '[') == SUCCESS)
1419 {
1420 if (type != REG_TYPE_VFD)
1421 {
1422 first_error (_("only D registers may be indexed"));
1423 return FAIL;
1424 }
5f4273c7 1425
dcbf9037
JB
1426 if ((atype.defined & NTA_HASINDEX) != 0)
1427 {
1428 first_error (_("can't change index for operand"));
1429 return FAIL;
1430 }
1431
1432 atype.defined |= NTA_HASINDEX;
1433
1434 if (skip_past_char (&str, ']') == SUCCESS)
1435 atype.index = NEON_ALL_LANES;
1436 else
1437 {
1438 expressionS exp;
1439
1440 my_get_expression (&exp, &str, GE_NO_PREFIX);
1441
1442 if (exp.X_op != O_constant)
1443 {
1444 first_error (_("constant expression required"));
1445 return FAIL;
1446 }
1447
1448 if (skip_past_char (&str, ']') == FAIL)
1449 return FAIL;
1450
1451 atype.index = exp.X_add_number;
1452 }
1453 }
5f4273c7 1454
dcbf9037
JB
1455 if (typeinfo)
1456 *typeinfo = atype;
5f4273c7 1457
dcbf9037
JB
1458 if (rtype)
1459 *rtype = type;
5f4273c7 1460
dcbf9037 1461 *ccp = str;
5f4273c7 1462
dcbf9037
JB
1463 return reg->number;
1464}
1465
1466/* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1471 This function will fault on encountering a scalar. */
dcbf9037
JB
1472
1473static int
1474arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1475 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1476{
1477 struct neon_typed_alias atype;
1478 char *str = *ccp;
1479 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1480
1481 if (reg == FAIL)
1482 return FAIL;
1483
0855e32b
NS
1484 /* Do not allow regname(... to parse as a register. */
1485 if (*str == '(')
1486 return FAIL;
1487
dcbf9037
JB
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype.defined & NTA_HASINDEX) != 0)
1490 {
1491 first_error (_("register operand expected, but got scalar"));
1492 return FAIL;
1493 }
1494
1495 if (vectype)
1496 *vectype = atype.eltype;
1497
1498 *ccp = str;
1499
1500 return reg;
1501}
1502
1503#define NEON_SCALAR_REG(X) ((X) >> 4)
1504#define NEON_SCALAR_INDEX(X) ((X) & 15)
1505
5287ad62
JB
1506/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1509
1510static int
dcbf9037 1511parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1512{
dcbf9037 1513 int reg;
5287ad62 1514 char *str = *ccp;
dcbf9037 1515 struct neon_typed_alias atype;
5f4273c7 1516
dcbf9037 1517 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1518
dcbf9037 1519 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1520 return FAIL;
5f4273c7 1521
dcbf9037 1522 if (atype.index == NEON_ALL_LANES)
5287ad62 1523 {
dcbf9037 1524 first_error (_("scalar must have an index"));
5287ad62
JB
1525 return FAIL;
1526 }
dcbf9037 1527 else if (atype.index >= 64 / elsize)
5287ad62 1528 {
dcbf9037 1529 first_error (_("scalar index out of range"));
5287ad62
JB
1530 return FAIL;
1531 }
5f4273c7 1532
dcbf9037
JB
1533 if (type)
1534 *type = atype.eltype;
5f4273c7 1535
5287ad62 1536 *ccp = str;
5f4273c7 1537
dcbf9037 1538 return reg * 16 + atype.index;
5287ad62
JB
1539}
1540
c19d1205 1541/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1542
c19d1205
ZW
1543static long
1544parse_reg_list (char ** strp)
1545{
1546 char * str = * strp;
1547 long range = 0;
1548 int another_range;
a737bd4d 1549
c19d1205
ZW
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1551 do
6057a28f 1552 {
c19d1205 1553 another_range = 0;
a737bd4d 1554
c19d1205
ZW
1555 if (*str == '{')
1556 {
1557 int in_range = 0;
1558 int cur_reg = -1;
a737bd4d 1559
c19d1205
ZW
1560 str++;
1561 do
1562 {
1563 int reg;
6057a28f 1564
dcbf9037 1565 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1566 {
dcbf9037 1567 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1568 return FAIL;
1569 }
a737bd4d 1570
c19d1205
ZW
1571 if (in_range)
1572 {
1573 int i;
a737bd4d 1574
c19d1205
ZW
1575 if (reg <= cur_reg)
1576 {
dcbf9037 1577 first_error (_("bad range in register list"));
c19d1205
ZW
1578 return FAIL;
1579 }
40a18ebd 1580
c19d1205
ZW
1581 for (i = cur_reg + 1; i < reg; i++)
1582 {
1583 if (range & (1 << i))
1584 as_tsktsk
1585 (_("Warning: duplicated register (r%d) in register list"),
1586 i);
1587 else
1588 range |= 1 << i;
1589 }
1590 in_range = 0;
1591 }
a737bd4d 1592
c19d1205
ZW
1593 if (range & (1 << reg))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1595 reg);
1596 else if (reg <= cur_reg)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1598
c19d1205
ZW
1599 range |= 1 << reg;
1600 cur_reg = reg;
1601 }
1602 while (skip_past_comma (&str) != FAIL
1603 || (in_range = 1, *str++ == '-'));
1604 str--;
a737bd4d 1605
c19d1205
ZW
1606 if (*str++ != '}')
1607 {
dcbf9037 1608 first_error (_("missing `}'"));
c19d1205
ZW
1609 return FAIL;
1610 }
1611 }
1612 else
1613 {
91d6fa6a 1614 expressionS exp;
40a18ebd 1615
91d6fa6a 1616 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1617 return FAIL;
40a18ebd 1618
91d6fa6a 1619 if (exp.X_op == O_constant)
c19d1205 1620 {
91d6fa6a
NC
1621 if (exp.X_add_number
1622 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1623 {
1624 inst.error = _("invalid register mask");
1625 return FAIL;
1626 }
a737bd4d 1627
91d6fa6a 1628 if ((range & exp.X_add_number) != 0)
c19d1205 1629 {
91d6fa6a 1630 int regno = range & exp.X_add_number;
a737bd4d 1631
c19d1205
ZW
1632 regno &= -regno;
1633 regno = (1 << regno) - 1;
1634 as_tsktsk
1635 (_("Warning: duplicated register (r%d) in register list"),
1636 regno);
1637 }
a737bd4d 1638
91d6fa6a 1639 range |= exp.X_add_number;
c19d1205
ZW
1640 }
1641 else
1642 {
1643 if (inst.reloc.type != 0)
1644 {
1645 inst.error = _("expression too complex");
1646 return FAIL;
1647 }
a737bd4d 1648
91d6fa6a 1649 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1650 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1651 inst.reloc.pc_rel = 0;
1652 }
1653 }
a737bd4d 1654
c19d1205
ZW
1655 if (*str == '|' || *str == '+')
1656 {
1657 str++;
1658 another_range = 1;
1659 }
a737bd4d 1660 }
c19d1205 1661 while (another_range);
a737bd4d 1662
c19d1205
ZW
1663 *strp = str;
1664 return range;
a737bd4d
NC
1665}
1666
5287ad62
JB
1667/* Types of registers in a list. */
1668
1669enum reg_list_els
1670{
1671 REGLIST_VFP_S,
1672 REGLIST_VFP_D,
1673 REGLIST_NEON_D
1674};
1675
c19d1205
ZW
1676/* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1683 some cases, e.g.:
1684 vtbl.8 d3,d4,d5
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
dcbf9037
JB
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1689 bug. */
6057a28f 1690
c19d1205 1691static int
037e8744 1692parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1693{
037e8744 1694 char *str = *ccp;
c19d1205
ZW
1695 int base_reg;
1696 int new_base;
21d799b5 1697 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1698 int max_regs = 0;
c19d1205
ZW
1699 int count = 0;
1700 int warned = 0;
1701 unsigned long mask = 0;
a737bd4d 1702 int i;
6057a28f 1703
037e8744 1704 if (*str != '{')
5287ad62
JB
1705 {
1706 inst.error = _("expecting {");
1707 return FAIL;
1708 }
6057a28f 1709
037e8744 1710 str++;
6057a28f 1711
5287ad62 1712 switch (etype)
c19d1205 1713 {
5287ad62 1714 case REGLIST_VFP_S:
c19d1205
ZW
1715 regtype = REG_TYPE_VFS;
1716 max_regs = 32;
5287ad62 1717 break;
5f4273c7 1718
5287ad62
JB
1719 case REGLIST_VFP_D:
1720 regtype = REG_TYPE_VFD;
b7fc2769 1721 break;
5f4273c7 1722
b7fc2769
JB
1723 case REGLIST_NEON_D:
1724 regtype = REG_TYPE_NDQ;
1725 break;
1726 }
1727
1728 if (etype != REGLIST_VFP_S)
1729 {
b1cc4aeb
PB
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1732 {
1733 max_regs = 32;
1734 if (thumb_mode)
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1736 fpu_vfp_ext_d32);
5287ad62
JB
1737 else
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1739 fpu_vfp_ext_d32);
5287ad62
JB
1740 }
1741 else
1742 max_regs = 16;
c19d1205 1743 }
6057a28f 1744
c19d1205 1745 base_reg = max_regs;
a737bd4d 1746
c19d1205
ZW
1747 do
1748 {
5287ad62 1749 int setmask = 1, addregs = 1;
dcbf9037 1750
037e8744 1751 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1752
c19d1205 1753 if (new_base == FAIL)
a737bd4d 1754 {
dcbf9037 1755 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1756 return FAIL;
1757 }
5f4273c7 1758
b7fc2769
JB
1759 if (new_base >= max_regs)
1760 {
1761 first_error (_("register out of range in list"));
1762 return FAIL;
1763 }
5f4273c7 1764
5287ad62
JB
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype == REG_TYPE_NQ)
1767 {
1768 setmask = 3;
1769 addregs = 2;
1770 }
1771
c19d1205
ZW
1772 if (new_base < base_reg)
1773 base_reg = new_base;
a737bd4d 1774
5287ad62 1775 if (mask & (setmask << new_base))
c19d1205 1776 {
dcbf9037 1777 first_error (_("invalid register list"));
c19d1205 1778 return FAIL;
a737bd4d 1779 }
a737bd4d 1780
c19d1205
ZW
1781 if ((mask >> new_base) != 0 && ! warned)
1782 {
1783 as_tsktsk (_("register list not in ascending order"));
1784 warned = 1;
1785 }
0bbf2aa4 1786
5287ad62
JB
1787 mask |= setmask << new_base;
1788 count += addregs;
0bbf2aa4 1789
037e8744 1790 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1791 {
1792 int high_range;
0bbf2aa4 1793
037e8744 1794 str++;
0bbf2aa4 1795
037e8744 1796 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1797 == FAIL)
c19d1205
ZW
1798 {
1799 inst.error = gettext (reg_expected_msgs[regtype]);
1800 return FAIL;
1801 }
0bbf2aa4 1802
b7fc2769
JB
1803 if (high_range >= max_regs)
1804 {
1805 first_error (_("register out of range in list"));
1806 return FAIL;
1807 }
1808
5287ad62
JB
1809 if (regtype == REG_TYPE_NQ)
1810 high_range = high_range + 1;
1811
c19d1205
ZW
1812 if (high_range <= new_base)
1813 {
1814 inst.error = _("register range not in ascending order");
1815 return FAIL;
1816 }
0bbf2aa4 1817
5287ad62 1818 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1819 {
5287ad62 1820 if (mask & (setmask << new_base))
0bbf2aa4 1821 {
c19d1205
ZW
1822 inst.error = _("invalid register list");
1823 return FAIL;
0bbf2aa4 1824 }
c19d1205 1825
5287ad62
JB
1826 mask |= setmask << new_base;
1827 count += addregs;
0bbf2aa4 1828 }
0bbf2aa4 1829 }
0bbf2aa4 1830 }
037e8744 1831 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1832
037e8744 1833 str++;
0bbf2aa4 1834
c19d1205
ZW
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count == 0 || count > max_regs)
1837 abort ();
1838
1839 *pbase = base_reg;
1840
1841 /* Final test -- the registers must be consecutive. */
1842 mask >>= base_reg;
1843 for (i = 0; i < count; i++)
1844 {
1845 if ((mask & (1u << i)) == 0)
1846 {
1847 inst.error = _("non-contiguous register range");
1848 return FAIL;
1849 }
1850 }
1851
037e8744
JB
1852 *ccp = str;
1853
c19d1205 1854 return count;
b99bd4ef
NC
1855}
1856
dcbf9037
JB
1857/* True if two alias types are the same. */
1858
c921be7d 1859static bfd_boolean
dcbf9037
JB
1860neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1861{
1862 if (!a && !b)
c921be7d 1863 return TRUE;
5f4273c7 1864
dcbf9037 1865 if (!a || !b)
c921be7d 1866 return FALSE;
dcbf9037
JB
1867
1868 if (a->defined != b->defined)
c921be7d 1869 return FALSE;
5f4273c7 1870
dcbf9037
JB
1871 if ((a->defined & NTA_HASTYPE) != 0
1872 && (a->eltype.type != b->eltype.type
1873 || a->eltype.size != b->eltype.size))
c921be7d 1874 return FALSE;
dcbf9037
JB
1875
1876 if ((a->defined & NTA_HASINDEX) != 0
1877 && (a->index != b->index))
c921be7d 1878 return FALSE;
5f4273c7 1879
c921be7d 1880 return TRUE;
dcbf9037
JB
1881}
1882
5287ad62
JB
1883/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
dcbf9037 1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1886 the return value.
1887 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1890
5287ad62 1891#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1892#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1893#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1894
1895static int
dcbf9037
JB
1896parse_neon_el_struct_list (char **str, unsigned *pbase,
1897 struct neon_type_el *eltype)
5287ad62
JB
1898{
1899 char *ptr = *str;
1900 int base_reg = -1;
1901 int reg_incr = -1;
1902 int count = 0;
1903 int lane = -1;
1904 int leading_brace = 0;
1905 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1906 const char *const incr_error = _("register stride must be 1 or 2");
1907 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1908 struct neon_typed_alias firsttype;
5f4273c7 1909
5287ad62
JB
1910 if (skip_past_char (&ptr, '{') == SUCCESS)
1911 leading_brace = 1;
5f4273c7 1912
5287ad62
JB
1913 do
1914 {
dcbf9037
JB
1915 struct neon_typed_alias atype;
1916 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1917
5287ad62
JB
1918 if (getreg == FAIL)
1919 {
dcbf9037 1920 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1921 return FAIL;
1922 }
5f4273c7 1923
5287ad62
JB
1924 if (base_reg == -1)
1925 {
1926 base_reg = getreg;
1927 if (rtype == REG_TYPE_NQ)
1928 {
1929 reg_incr = 1;
5287ad62 1930 }
dcbf9037 1931 firsttype = atype;
5287ad62
JB
1932 }
1933 else if (reg_incr == -1)
1934 {
1935 reg_incr = getreg - base_reg;
1936 if (reg_incr < 1 || reg_incr > 2)
1937 {
dcbf9037 1938 first_error (_(incr_error));
5287ad62
JB
1939 return FAIL;
1940 }
1941 }
1942 else if (getreg != base_reg + reg_incr * count)
1943 {
dcbf9037
JB
1944 first_error (_(incr_error));
1945 return FAIL;
1946 }
1947
c921be7d 1948 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1949 {
1950 first_error (_(type_error));
5287ad62
JB
1951 return FAIL;
1952 }
5f4273c7 1953
5287ad62
JB
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1955 modes. */
1956 if (ptr[0] == '-')
1957 {
dcbf9037 1958 struct neon_typed_alias htype;
5287ad62
JB
1959 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1960 if (lane == -1)
1961 lane = NEON_INTERLEAVE_LANES;
1962 else if (lane != NEON_INTERLEAVE_LANES)
1963 {
dcbf9037 1964 first_error (_(type_error));
5287ad62
JB
1965 return FAIL;
1966 }
1967 if (reg_incr == -1)
1968 reg_incr = 1;
1969 else if (reg_incr != 1)
1970 {
dcbf9037 1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1972 return FAIL;
1973 }
1974 ptr++;
dcbf9037 1975 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1976 if (hireg == FAIL)
1977 {
dcbf9037
JB
1978 first_error (_(reg_expected_msgs[rtype]));
1979 return FAIL;
1980 }
c921be7d 1981 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1982 {
1983 first_error (_(type_error));
5287ad62
JB
1984 return FAIL;
1985 }
1986 count += hireg + dregs - getreg;
1987 continue;
1988 }
5f4273c7 1989
5287ad62
JB
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype == REG_TYPE_NQ)
1992 {
1993 count += 2;
1994 continue;
1995 }
5f4273c7 1996
dcbf9037 1997 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1998 {
dcbf9037
JB
1999 if (lane == -1)
2000 lane = atype.index;
2001 else if (lane != atype.index)
5287ad62 2002 {
dcbf9037
JB
2003 first_error (_(type_error));
2004 return FAIL;
5287ad62
JB
2005 }
2006 }
2007 else if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
dcbf9037 2011 first_error (_(type_error));
5287ad62
JB
2012 return FAIL;
2013 }
2014 count++;
2015 }
2016 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2017
5287ad62
JB
2018 /* No lane set by [x]. We must be interleaving structures. */
2019 if (lane == -1)
2020 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2021
5287ad62
JB
2022 /* Sanity check. */
2023 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2024 || (count > 1 && reg_incr == -1))
2025 {
dcbf9037 2026 first_error (_("error parsing element/structure list"));
5287ad62
JB
2027 return FAIL;
2028 }
2029
2030 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2031 {
dcbf9037 2032 first_error (_("expected }"));
5287ad62
JB
2033 return FAIL;
2034 }
5f4273c7 2035
5287ad62
JB
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038
dcbf9037
JB
2039 if (eltype)
2040 *eltype = firsttype.eltype;
2041
5287ad62
JB
2042 *pbase = base_reg;
2043 *str = ptr;
5f4273c7 2044
5287ad62
JB
2045 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2046}
2047
c19d1205
ZW
2048/* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2053static int
2054parse_reloc (char **str)
b99bd4ef 2055{
c19d1205
ZW
2056 struct reloc_entry *r;
2057 char *p, *q;
b99bd4ef 2058
c19d1205
ZW
2059 if (**str != '(')
2060 return BFD_RELOC_UNUSED;
b99bd4ef 2061
c19d1205
ZW
2062 p = *str + 1;
2063 q = p;
2064
2065 while (*q && *q != ')' && *q != ',')
2066 q++;
2067 if (*q != ')')
2068 return -1;
2069
21d799b5
NC
2070 if ((r = (struct reloc_entry *)
2071 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2072 return -1;
2073
2074 *str = q + 1;
2075 return r->reloc;
b99bd4ef
NC
2076}
2077
c19d1205
ZW
2078/* Directives: register aliases. */
2079
dcbf9037 2080static struct reg_entry *
90ec0d68 2081insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2082{
d3ce72d0 2083 struct reg_entry *new_reg;
c19d1205 2084 const char *name;
b99bd4ef 2085
d3ce72d0 2086 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2087 {
d3ce72d0 2088 if (new_reg->builtin)
c19d1205 2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2090
c19d1205
ZW
2091 /* Only warn about a redefinition if it's not defined as the
2092 same register. */
d3ce72d0 2093 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2094 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2095
d929913e 2096 return NULL;
c19d1205 2097 }
b99bd4ef 2098
c19d1205 2099 name = xstrdup (str);
d3ce72d0 2100 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2101
d3ce72d0
NC
2102 new_reg->name = name;
2103 new_reg->number = number;
2104 new_reg->type = type;
2105 new_reg->builtin = FALSE;
2106 new_reg->neon = NULL;
b99bd4ef 2107
d3ce72d0 2108 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2109 abort ();
5f4273c7 2110
d3ce72d0 2111 return new_reg;
dcbf9037
JB
2112}
2113
2114static void
2115insert_neon_reg_alias (char *str, int number, int type,
2116 struct neon_typed_alias *atype)
2117{
2118 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2119
dcbf9037
JB
2120 if (!reg)
2121 {
2122 first_error (_("attempt to redefine typed alias"));
2123 return;
2124 }
5f4273c7 2125
dcbf9037
JB
2126 if (atype)
2127 {
21d799b5
NC
2128 reg->neon = (struct neon_typed_alias *)
2129 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2130 *reg->neon = *atype;
2131 }
c19d1205 2132}
b99bd4ef 2133
c19d1205 2134/* Look for the .req directive. This is of the form:
b99bd4ef 2135
c19d1205 2136 new_register_name .req existing_register_name
b99bd4ef 2137
c19d1205 2138 If we find one, or if it looks sufficiently like one that we want to
d929913e 2139 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2140
d929913e 2141static bfd_boolean
c19d1205
ZW
2142create_register_alias (char * newname, char *p)
2143{
2144 struct reg_entry *old;
2145 char *oldname, *nbuf;
2146 size_t nlen;
b99bd4ef 2147
c19d1205
ZW
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2150 oldname = p;
2151 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2152 return FALSE;
b99bd4ef 2153
c19d1205
ZW
2154 oldname += 6;
2155 if (*oldname == '\0')
d929913e 2156 return FALSE;
b99bd4ef 2157
21d799b5 2158 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2159 if (!old)
b99bd4ef 2160 {
c19d1205 2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2162 return TRUE;
b99bd4ef
NC
2163 }
2164
c19d1205
ZW
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168#ifdef TC_CASE_SENSITIVE
2169 nlen = p - newname;
2170#else
2171 newname = original_case_string;
2172 nlen = strlen (newname);
2173#endif
b99bd4ef 2174
21d799b5 2175 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2176 memcpy (nbuf, newname, nlen);
2177 nbuf[nlen] = '\0';
b99bd4ef 2178
c19d1205
ZW
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2181 name. */
d929913e
NC
2182 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2183 {
2184 for (p = nbuf; *p; p++)
2185 *p = TOUPPER (*p);
c19d1205 2186
d929913e
NC
2187 if (strncmp (nbuf, newname, nlen))
2188 {
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2193 foo .req r0
2194 Foo .req r1
2195 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2196 the artificial FOO alias because it has already been created by the
d929913e
NC
2197 first .req. */
2198 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2199 return TRUE;
2200 }
c19d1205 2201
d929913e
NC
2202 for (p = nbuf; *p; p++)
2203 *p = TOLOWER (*p);
c19d1205 2204
d929913e
NC
2205 if (strncmp (nbuf, newname, nlen))
2206 insert_reg_alias (nbuf, old->number, old->type);
2207 }
c19d1205 2208
d929913e 2209 return TRUE;
b99bd4ef
NC
2210}
2211
dcbf9037
JB
2212/* Create a Neon typed/indexed register alias using directives, e.g.:
2213 X .dn d5.s32[1]
2214 Y .qn 6.s16
2215 Z .dn d7
2216 T .dn Z[0]
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
5f4273c7 2220 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2221
c921be7d 2222static bfd_boolean
dcbf9037
JB
2223create_neon_reg_alias (char *newname, char *p)
2224{
2225 enum arm_reg_type basetype;
2226 struct reg_entry *basereg;
2227 struct reg_entry mybasereg;
2228 struct neon_type ntype;
2229 struct neon_typed_alias typeinfo;
12d6b0b7 2230 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2231 int namelen;
5f4273c7 2232
dcbf9037
JB
2233 typeinfo.defined = 0;
2234 typeinfo.eltype.type = NT_invtype;
2235 typeinfo.eltype.size = -1;
2236 typeinfo.index = -1;
5f4273c7 2237
dcbf9037 2238 nameend = p;
5f4273c7 2239
dcbf9037
JB
2240 if (strncmp (p, " .dn ", 5) == 0)
2241 basetype = REG_TYPE_VFD;
2242 else if (strncmp (p, " .qn ", 5) == 0)
2243 basetype = REG_TYPE_NQ;
2244 else
c921be7d 2245 return FALSE;
5f4273c7 2246
dcbf9037 2247 p += 5;
5f4273c7 2248
dcbf9037 2249 if (*p == '\0')
c921be7d 2250 return FALSE;
5f4273c7 2251
dcbf9037
JB
2252 basereg = arm_reg_parse_multi (&p);
2253
2254 if (basereg && basereg->type != basetype)
2255 {
2256 as_bad (_("bad type for register"));
c921be7d 2257 return FALSE;
dcbf9037
JB
2258 }
2259
2260 if (basereg == NULL)
2261 {
2262 expressionS exp;
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp, &p, GE_NO_PREFIX);
2265 if (exp.X_op != O_constant)
2266 {
2267 as_bad (_("expression must be constant"));
c921be7d 2268 return FALSE;
dcbf9037
JB
2269 }
2270 basereg = &mybasereg;
2271 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2272 : exp.X_add_number;
2273 basereg->neon = 0;
2274 }
2275
2276 if (basereg->neon)
2277 typeinfo = *basereg->neon;
2278
2279 if (parse_neon_type (&ntype, &p) == SUCCESS)
2280 {
2281 /* We got a type. */
2282 if (typeinfo.defined & NTA_HASTYPE)
2283 {
2284 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037
JB
2288 typeinfo.defined |= NTA_HASTYPE;
2289 if (ntype.elems != 1)
2290 {
2291 as_bad (_("you must specify a single type only"));
c921be7d 2292 return FALSE;
dcbf9037
JB
2293 }
2294 typeinfo.eltype = ntype.el[0];
2295 }
5f4273c7 2296
dcbf9037
JB
2297 if (skip_past_char (&p, '[') == SUCCESS)
2298 {
2299 expressionS exp;
2300 /* We got a scalar index. */
5f4273c7 2301
dcbf9037
JB
2302 if (typeinfo.defined & NTA_HASINDEX)
2303 {
2304 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2305 return FALSE;
dcbf9037 2306 }
5f4273c7 2307
dcbf9037 2308 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2309
dcbf9037
JB
2310 if (exp.X_op != O_constant)
2311 {
2312 as_bad (_("scalar index must be constant"));
c921be7d 2313 return FALSE;
dcbf9037 2314 }
5f4273c7 2315
dcbf9037
JB
2316 typeinfo.defined |= NTA_HASINDEX;
2317 typeinfo.index = exp.X_add_number;
5f4273c7 2318
dcbf9037
JB
2319 if (skip_past_char (&p, ']') == FAIL)
2320 {
2321 as_bad (_("expecting ]"));
c921be7d 2322 return FALSE;
dcbf9037
JB
2323 }
2324 }
2325
15735687
NS
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329#ifdef TC_CASE_SENSITIVE
dcbf9037 2330 namelen = nameend - newname;
15735687
NS
2331#else
2332 newname = original_case_string;
2333 namelen = strlen (newname);
2334#endif
2335
21d799b5 2336 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2337 strncpy (namebuf, newname, namelen);
2338 namebuf[namelen] = '\0';
5f4273c7 2339
dcbf9037
JB
2340 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2341 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2342
dcbf9037
JB
2343 /* Insert name in all uppercase. */
2344 for (p = namebuf; *p; p++)
2345 *p = TOUPPER (*p);
5f4273c7 2346
dcbf9037
JB
2347 if (strncmp (namebuf, newname, namelen))
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2350
dcbf9037
JB
2351 /* Insert name in all lowercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOLOWER (*p);
5f4273c7 2354
dcbf9037
JB
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2358
c921be7d 2359 return TRUE;
dcbf9037
JB
2360}
2361
c19d1205
ZW
2362/* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
c921be7d 2364
b99bd4ef 2365static void
c19d1205 2366s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2367{
c19d1205
ZW
2368 as_bad (_("invalid syntax for .req directive"));
2369}
b99bd4ef 2370
dcbf9037
JB
2371static void
2372s_dn (int a ATTRIBUTE_UNUSED)
2373{
2374 as_bad (_("invalid syntax for .dn directive"));
2375}
2376
2377static void
2378s_qn (int a ATTRIBUTE_UNUSED)
2379{
2380 as_bad (_("invalid syntax for .qn directive"));
2381}
2382
c19d1205
ZW
2383/* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
b99bd4ef 2385
c19d1205
ZW
2386 my_alias .req r11
2387 .unreq my_alias */
b99bd4ef
NC
2388
2389static void
c19d1205 2390s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2391{
c19d1205
ZW
2392 char * name;
2393 char saved_char;
b99bd4ef 2394
c19d1205
ZW
2395 name = input_line_pointer;
2396
2397 while (*input_line_pointer != 0
2398 && *input_line_pointer != ' '
2399 && *input_line_pointer != '\n')
2400 ++input_line_pointer;
2401
2402 saved_char = *input_line_pointer;
2403 *input_line_pointer = 0;
2404
2405 if (!*name)
2406 as_bad (_("invalid syntax for .unreq directive"));
2407 else
2408 {
21d799b5
NC
2409 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2410 name);
c19d1205
ZW
2411
2412 if (!reg)
2413 as_bad (_("unknown register alias '%s'"), name);
2414 else if (reg->builtin)
a1727c1a 2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2416 name);
2417 else
2418 {
d929913e
NC
2419 char * p;
2420 char * nbuf;
2421
db0bc284 2422 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2423 free ((char *) reg->name);
dcbf9037
JB
2424 if (reg->neon)
2425 free (reg->neon);
c19d1205 2426 free (reg);
d929913e
NC
2427
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
5f4273c7 2431
d929913e
NC
2432 nbuf = strdup (name);
2433 for (p = nbuf; *p; p++)
2434 *p = TOUPPER (*p);
21d799b5 2435 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2436 if (reg)
2437 {
db0bc284 2438 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2439 free ((char *) reg->name);
2440 if (reg->neon)
2441 free (reg->neon);
2442 free (reg);
2443 }
2444
2445 for (p = nbuf; *p; p++)
2446 *p = TOLOWER (*p);
21d799b5 2447 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2448 if (reg)
2449 {
db0bc284 2450 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2451 free ((char *) reg->name);
2452 if (reg->neon)
2453 free (reg->neon);
2454 free (reg);
2455 }
2456
2457 free (nbuf);
c19d1205
ZW
2458 }
2459 }
b99bd4ef 2460
c19d1205 2461 *input_line_pointer = saved_char;
b99bd4ef
NC
2462 demand_empty_rest_of_line ();
2463}
2464
c19d1205
ZW
2465/* Directives: Instruction set selection. */
2466
2467#ifdef OBJ_ELF
2468/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2472
cd000bff
DJ
2473/* Create a new mapping symbol for the transition to STATE. */
2474
2475static void
2476make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2477{
a737bd4d 2478 symbolS * symbolP;
c19d1205
ZW
2479 const char * symname;
2480 int type;
b99bd4ef 2481
c19d1205 2482 switch (state)
b99bd4ef 2483 {
c19d1205
ZW
2484 case MAP_DATA:
2485 symname = "$d";
2486 type = BSF_NO_FLAGS;
2487 break;
2488 case MAP_ARM:
2489 symname = "$a";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_THUMB:
2493 symname = "$t";
2494 type = BSF_NO_FLAGS;
2495 break;
c19d1205
ZW
2496 default:
2497 abort ();
2498 }
2499
cd000bff 2500 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2501 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2502
2503 switch (state)
2504 {
2505 case MAP_ARM:
2506 THUMB_SET_FUNC (symbolP, 0);
2507 ARM_SET_THUMB (symbolP, 0);
2508 ARM_SET_INTERWORK (symbolP, support_interwork);
2509 break;
2510
2511 case MAP_THUMB:
2512 THUMB_SET_FUNC (symbolP, 1);
2513 ARM_SET_THUMB (symbolP, 1);
2514 ARM_SET_INTERWORK (symbolP, support_interwork);
2515 break;
2516
2517 case MAP_DATA:
2518 default:
cd000bff
DJ
2519 break;
2520 }
2521
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2de7820f
JZ
2525 check_mapping_symbols.
2526
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2531 if (value == 0)
2532 {
2de7820f
JZ
2533 if (frag->tc_frag_data.first_map != NULL)
2534 {
2535 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2536 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2537 }
cd000bff
DJ
2538 frag->tc_frag_data.first_map = symbolP;
2539 }
2540 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2541 {
2542 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2543 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2544 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2545 }
cd000bff
DJ
2546 frag->tc_frag_data.last_map = symbolP;
2547}
2548
2549/* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2552
2553static void
2554insert_data_mapping_symbol (enum mstate state,
2555 valueT value, fragS *frag, offsetT bytes)
2556{
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag->tc_frag_data.last_map != NULL
2559 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2560 {
2561 symbolS *symp = frag->tc_frag_data.last_map;
2562
2563 if (value == 0)
2564 {
2565 know (frag->tc_frag_data.first_map == symp);
2566 frag->tc_frag_data.first_map = NULL;
2567 }
2568 frag->tc_frag_data.last_map = NULL;
2569 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2570 }
cd000bff
DJ
2571
2572 make_mapping_symbol (MAP_DATA, value, frag);
2573 make_mapping_symbol (state, value + bytes, frag);
2574}
2575
2576static void mapping_state_2 (enum mstate state, int max_chars);
2577
2578/* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2580
2581void
2582mapping_state (enum mstate state)
2583{
940b5ce0
DJ
2584 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2585
cd000bff
DJ
2586#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2587
2588 if (mapstate == state)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2591 return;
2592 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2593 /* This case will be evaluated later in the next else. */
2594 return;
2595 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2596 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2597 {
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2603 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2604
2605 if (add_symbol)
2606 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2607 }
2608
2609 mapping_state_2 (state, 0);
2610#undef TRANSITION
2611}
2612
2613/* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2615
2616static void
2617mapping_state_2 (enum mstate state, int max_chars)
2618{
940b5ce0
DJ
2619 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2620
2621 if (!SEG_NORMAL (now_seg))
2622 return;
2623
cd000bff
DJ
2624 if (mapstate == state)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2627 return;
2628
cd000bff
DJ
2629 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2630 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2631}
2632#else
d3106081
NS
2633#define mapping_state(x) ((void)0)
2634#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2635#endif
2636
2637/* Find the real, Thumb encoded start of a Thumb function. */
2638
4343666d 2639#ifdef OBJ_COFF
c19d1205
ZW
2640static symbolS *
2641find_real_start (symbolS * symbolP)
2642{
2643 char * real_start;
2644 const char * name = S_GET_NAME (symbolP);
2645 symbolS * new_target;
2646
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648#define STUB_NAME ".real_start_of"
2649
2650 if (name == NULL)
2651 abort ();
2652
37f6032b
ZW
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2659 return symbolP;
2660
37f6032b 2661 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2662 new_target = symbol_find (real_start);
2663
2664 if (new_target == NULL)
2665 {
bd3ba5d1 2666 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2667 new_target = symbolP;
2668 }
2669
c19d1205
ZW
2670 return new_target;
2671}
4343666d 2672#endif
c19d1205
ZW
2673
2674static void
2675opcode_select (int width)
2676{
2677 switch (width)
2678 {
2679 case 16:
2680 if (! thumb_mode)
2681 {
e74cfd16 2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2684
2685 thumb_mode = 1;
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg, 1);
2689 }
c19d1205
ZW
2690 break;
2691
2692 case 32:
2693 if (thumb_mode)
2694 {
e74cfd16 2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2696 as_bad (_("selected processor does not support ARM opcodes"));
2697
2698 thumb_mode = 0;
2699
2700 if (!need_pass_2)
2701 frag_align (2, 0, 0);
2702
2703 record_alignment (now_seg, 1);
2704 }
c19d1205
ZW
2705 break;
2706
2707 default:
2708 as_bad (_("invalid instruction size selected (%d)"), width);
2709 }
2710}
2711
2712static void
2713s_arm (int ignore ATTRIBUTE_UNUSED)
2714{
2715 opcode_select (32);
2716 demand_empty_rest_of_line ();
2717}
2718
2719static void
2720s_thumb (int ignore ATTRIBUTE_UNUSED)
2721{
2722 opcode_select (16);
2723 demand_empty_rest_of_line ();
2724}
2725
2726static void
2727s_code (int unused ATTRIBUTE_UNUSED)
2728{
2729 int temp;
2730
2731 temp = get_absolute_expression ();
2732 switch (temp)
2733 {
2734 case 16:
2735 case 32:
2736 opcode_select (temp);
2737 break;
2738
2739 default:
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2741 }
2742}
2743
2744static void
2745s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2746{
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2752 if (! thumb_mode)
2753 {
2754 thumb_mode = 2;
2755 record_alignment (now_seg, 1);
2756 }
2757
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2763{
2764 s_thumb (0);
2765
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name = TRUE;
2769}
2770
2771/* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2773
2774static void
2775s_thumb_set (int equiv)
2776{
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2779 is created. */
2780 char * name;
2781 char delim;
2782 char * end_name;
2783 symbolS * symbolP;
2784
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2787 Dean - in haste. */
2788 name = input_line_pointer;
2789 delim = get_symbol_end ();
2790 end_name = input_line_pointer;
2791 *end_name = delim;
2792
2793 if (*input_line_pointer != ',')
2794 {
2795 *end_name = 0;
2796 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2797 *end_name = delim;
2798 ignore_rest_of_line ();
2799 return;
2800 }
2801
2802 input_line_pointer++;
2803 *end_name = 0;
2804
2805 if (name[0] == '.' && name[1] == '\0')
2806 {
2807 /* XXX - this should not happen to .thumb_set. */
2808 abort ();
2809 }
2810
2811 if ((symbolP = symbol_find (name)) == NULL
2812 && (symbolP = md_undefined_symbol (name)) == NULL)
2813 {
2814#ifndef NO_LISTING
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
c19d1205 2817 for this symbol. */
b99bd4ef
NC
2818 if (listing & LISTING_SYMBOLS)
2819 {
2820 extern struct list_info_struct * listing_tail;
21d799b5 2821 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2822
2823 memset (dummy_frag, 0, sizeof (fragS));
2824 dummy_frag->fr_type = rs_fill;
2825 dummy_frag->line = listing_tail;
2826 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2827 dummy_frag->fr_symbol = symbolP;
2828 }
2829 else
2830#endif
2831 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2832
2833#ifdef OBJ_COFF
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP);
2836#endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2838
2839 symbol_table_insert (symbolP);
2840
2841 * end_name = delim;
2842
2843 if (equiv
2844 && S_IS_DEFINED (symbolP)
2845 && S_GET_SEGMENT (symbolP) != reg_section)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2847
2848 pseudo_set (symbolP);
2849
2850 demand_empty_rest_of_line ();
2851
c19d1205 2852 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2853
2854 THUMB_SET_FUNC (symbolP, 1);
2855 ARM_SET_THUMB (symbolP, 1);
2856#if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP, support_interwork);
2858#endif
2859}
2860
c19d1205 2861/* Directives: Mode selection. */
b99bd4ef 2862
c19d1205
ZW
2863/* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2866static void
c19d1205 2867s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2868{
c19d1205
ZW
2869 char *name, delim;
2870
2871 name = input_line_pointer;
2872 delim = get_symbol_end ();
2873
2874 if (!strcasecmp (name, "unified"))
2875 unified_syntax = TRUE;
2876 else if (!strcasecmp (name, "divided"))
2877 unified_syntax = FALSE;
2878 else
2879 {
2880 as_bad (_("unrecognized syntax mode \"%s\""), name);
2881 return;
2882 }
2883 *input_line_pointer = delim;
b99bd4ef
NC
2884 demand_empty_rest_of_line ();
2885}
2886
c19d1205
ZW
2887/* Directives: sectioning and alignment. */
2888
2889/* Same as s_align_ptwo but align 0 => align 2. */
2890
b99bd4ef 2891static void
c19d1205 2892s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2893{
a737bd4d 2894 int temp;
dce323d1 2895 bfd_boolean fill_p;
c19d1205
ZW
2896 long temp_fill;
2897 long max_alignment = 15;
b99bd4ef
NC
2898
2899 temp = get_absolute_expression ();
c19d1205
ZW
2900 if (temp > max_alignment)
2901 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2902 else if (temp < 0)
b99bd4ef 2903 {
c19d1205
ZW
2904 as_bad (_("alignment negative. 0 assumed."));
2905 temp = 0;
2906 }
b99bd4ef 2907
c19d1205
ZW
2908 if (*input_line_pointer == ',')
2909 {
2910 input_line_pointer++;
2911 temp_fill = get_absolute_expression ();
dce323d1 2912 fill_p = TRUE;
b99bd4ef 2913 }
c19d1205 2914 else
dce323d1
PB
2915 {
2916 fill_p = FALSE;
2917 temp_fill = 0;
2918 }
b99bd4ef 2919
c19d1205
ZW
2920 if (!temp)
2921 temp = 2;
b99bd4ef 2922
c19d1205
ZW
2923 /* Only make a frag if we HAVE to. */
2924 if (temp && !need_pass_2)
dce323d1
PB
2925 {
2926 if (!fill_p && subseg_text_p (now_seg))
2927 frag_align_code (temp, 0);
2928 else
2929 frag_align (temp, (int) temp_fill, 0);
2930 }
c19d1205
ZW
2931 demand_empty_rest_of_line ();
2932
2933 record_alignment (now_seg, temp);
b99bd4ef
NC
2934}
2935
c19d1205
ZW
2936static void
2937s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2938{
c19d1205
ZW
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section, 0);
2942 demand_empty_rest_of_line ();
cd000bff
DJ
2943
2944#ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2946#endif
c19d1205 2947}
b99bd4ef 2948
c19d1205
ZW
2949static void
2950s_even (int ignore ATTRIBUTE_UNUSED)
2951{
2952 /* Never make frag if expect extra pass. */
2953 if (!need_pass_2)
2954 frag_align (1, 0, 0);
b99bd4ef 2955
c19d1205 2956 record_alignment (now_seg, 1);
b99bd4ef 2957
c19d1205 2958 demand_empty_rest_of_line ();
b99bd4ef
NC
2959}
2960
c19d1205 2961/* Directives: Literal pools. */
a737bd4d 2962
c19d1205
ZW
2963static literal_pool *
2964find_literal_pool (void)
a737bd4d 2965{
c19d1205 2966 literal_pool * pool;
a737bd4d 2967
c19d1205 2968 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2969 {
c19d1205
ZW
2970 if (pool->section == now_seg
2971 && pool->sub_section == now_subseg)
2972 break;
a737bd4d
NC
2973 }
2974
c19d1205 2975 return pool;
a737bd4d
NC
2976}
2977
c19d1205
ZW
2978static literal_pool *
2979find_or_make_literal_pool (void)
a737bd4d 2980{
c19d1205
ZW
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num = 1;
2983 literal_pool * pool;
a737bd4d 2984
c19d1205 2985 pool = find_literal_pool ();
a737bd4d 2986
c19d1205 2987 if (pool == NULL)
a737bd4d 2988 {
c19d1205 2989 /* Create a new pool. */
21d799b5 2990 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2991 if (! pool)
2992 return NULL;
a737bd4d 2993
c19d1205
ZW
2994 pool->next_free_entry = 0;
2995 pool->section = now_seg;
2996 pool->sub_section = now_subseg;
2997 pool->next = list_of_pools;
2998 pool->symbol = NULL;
2999
3000 /* Add it to the list. */
3001 list_of_pools = pool;
a737bd4d 3002 }
a737bd4d 3003
c19d1205
ZW
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool->symbol == NULL)
a737bd4d 3006 {
c19d1205
ZW
3007 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3008 (valueT) 0, &zero_address_frag);
3009 pool->id = latest_pool_num ++;
a737bd4d
NC
3010 }
3011
c19d1205
ZW
3012 /* Done. */
3013 return pool;
a737bd4d
NC
3014}
3015
c19d1205 3016/* Add the literal in the global 'inst'
5f4273c7 3017 structure to the relevant literal pool. */
b99bd4ef
NC
3018
3019static int
c19d1205 3020add_to_lit_pool (void)
b99bd4ef 3021{
c19d1205
ZW
3022 literal_pool * pool;
3023 unsigned int entry;
b99bd4ef 3024
c19d1205
ZW
3025 pool = find_or_make_literal_pool ();
3026
3027 /* Check if this literal value is already in the pool. */
3028 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3029 {
c19d1205
ZW
3030 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3031 && (inst.reloc.exp.X_op == O_constant)
3032 && (pool->literals[entry].X_add_number
3033 == inst.reloc.exp.X_add_number)
3034 && (pool->literals[entry].X_unsigned
3035 == inst.reloc.exp.X_unsigned))
3036 break;
3037
3038 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3039 && (inst.reloc.exp.X_op == O_symbol)
3040 && (pool->literals[entry].X_add_number
3041 == inst.reloc.exp.X_add_number)
3042 && (pool->literals[entry].X_add_symbol
3043 == inst.reloc.exp.X_add_symbol)
3044 && (pool->literals[entry].X_op_symbol
3045 == inst.reloc.exp.X_op_symbol))
3046 break;
b99bd4ef
NC
3047 }
3048
c19d1205
ZW
3049 /* Do we need to create a new entry? */
3050 if (entry == pool->next_free_entry)
3051 {
3052 if (entry >= MAX_LITERAL_POOL_SIZE)
3053 {
3054 inst.error = _("literal pool overflow");
3055 return FAIL;
3056 }
3057
3058 pool->literals[entry] = inst.reloc.exp;
3059 pool->next_free_entry += 1;
3060 }
b99bd4ef 3061
c19d1205
ZW
3062 inst.reloc.exp.X_op = O_symbol;
3063 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3064 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3065
c19d1205 3066 return SUCCESS;
b99bd4ef
NC
3067}
3068
c19d1205
ZW
3069/* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
e16bb312 3071
c19d1205
ZW
3072static void
3073symbol_locate (symbolS * symbolP,
3074 const char * name, /* It is copied, the caller can modify. */
3075 segT segment, /* Segment identifier (SEG_<something>). */
3076 valueT valu, /* Symbol value. */
3077 fragS * frag) /* Associated fragment. */
3078{
3079 unsigned int name_length;
3080 char * preserved_copy_of_name;
e16bb312 3081
c19d1205
ZW
3082 name_length = strlen (name) + 1; /* +1 for \0. */
3083 obstack_grow (&notes, name, name_length);
21d799b5 3084 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3085
c19d1205
ZW
3086#ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name =
3088 tc_canonicalize_symbol_name (preserved_copy_of_name);
3089#endif
b99bd4ef 3090
c19d1205 3091 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3092
c19d1205
ZW
3093 S_SET_SEGMENT (symbolP, segment);
3094 S_SET_VALUE (symbolP, valu);
3095 symbol_clear_list_pointers (symbolP);
b99bd4ef 3096
c19d1205 3097 symbol_set_frag (symbolP, frag);
b99bd4ef 3098
c19d1205
ZW
3099 /* Link to end of symbol chain. */
3100 {
3101 extern int symbol_table_frozen;
b99bd4ef 3102
c19d1205
ZW
3103 if (symbol_table_frozen)
3104 abort ();
3105 }
b99bd4ef 3106
c19d1205 3107 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3108
c19d1205 3109 obj_symbol_new_hook (symbolP);
b99bd4ef 3110
c19d1205
ZW
3111#ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP);
3113#endif
3114
3115#ifdef DEBUG_SYMS
3116 verify_symbol_chain (symbol_rootP, symbol_lastP);
3117#endif /* DEBUG_SYMS */
b99bd4ef
NC
3118}
3119
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3123{
c19d1205
ZW
3124 unsigned int entry;
3125 literal_pool * pool;
3126 char sym_name[20];
b99bd4ef 3127
c19d1205
ZW
3128 pool = find_literal_pool ();
3129 if (pool == NULL
3130 || pool->symbol == NULL
3131 || pool->next_free_entry == 0)
3132 return;
b99bd4ef 3133
c19d1205 3134 mapping_state (MAP_DATA);
b99bd4ef 3135
c19d1205
ZW
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3138 if (!need_pass_2)
3139 frag_align (2, 0, 0);
b99bd4ef 3140
c19d1205 3141 record_alignment (now_seg, 2);
b99bd4ef 3142
c19d1205 3143 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3144
c19d1205
ZW
3145 symbol_locate (pool->symbol, sym_name, now_seg,
3146 (valueT) frag_now_fix (), frag_now);
3147 symbol_table_insert (pool->symbol);
b99bd4ef 3148
c19d1205 3149 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3150
c19d1205
ZW
3151#if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3153#endif
6c43fab6 3154
c19d1205
ZW
3155 for (entry = 0; entry < pool->next_free_entry; entry ++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3158
c19d1205
ZW
3159 /* Mark the pool as empty. */
3160 pool->next_free_entry = 0;
3161 pool->symbol = NULL;
b99bd4ef
NC
3162}
3163
c19d1205
ZW
3164#ifdef OBJ_ELF
3165/* Forward declarations for functions below, in the MD interface
3166 section. */
3167static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3168static valueT create_unwind_entry (int);
3169static void start_unwind_section (const segT, int);
3170static void add_unwind_opcode (valueT, int);
3171static void flush_pending_unwind (void);
b99bd4ef 3172
c19d1205 3173/* Directives: Data. */
b99bd4ef 3174
c19d1205
ZW
3175static void
3176s_arm_elf_cons (int nbytes)
3177{
3178 expressionS exp;
b99bd4ef 3179
c19d1205
ZW
3180#ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3182#endif
b99bd4ef 3183
c19d1205 3184 if (is_it_end_of_statement ())
b99bd4ef 3185 {
c19d1205
ZW
3186 demand_empty_rest_of_line ();
3187 return;
b99bd4ef
NC
3188 }
3189
c19d1205
ZW
3190#ifdef md_cons_align
3191 md_cons_align (nbytes);
3192#endif
b99bd4ef 3193
c19d1205
ZW
3194 mapping_state (MAP_DATA);
3195 do
b99bd4ef 3196 {
c19d1205
ZW
3197 int reloc;
3198 char *base = input_line_pointer;
b99bd4ef 3199
c19d1205 3200 expression (& exp);
b99bd4ef 3201
c19d1205
ZW
3202 if (exp.X_op != O_symbol)
3203 emit_expr (&exp, (unsigned int) nbytes);
3204 else
3205 {
3206 char *before_reloc = input_line_pointer;
3207 reloc = parse_reloc (&input_line_pointer);
3208 if (reloc == -1)
3209 {
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3212 return;
3213 }
3214 else if (reloc == BFD_RELOC_UNUSED)
3215 emit_expr (&exp, (unsigned int) nbytes);
3216 else
3217 {
21d799b5
NC
3218 reloc_howto_type *howto = (reloc_howto_type *)
3219 bfd_reloc_type_lookup (stdoutput,
3220 (bfd_reloc_code_real_type) reloc);
c19d1205 3221 int size = bfd_get_reloc_size (howto);
b99bd4ef 3222
2fc8bdac
ZW
3223 if (reloc == BFD_RELOC_ARM_PLT32)
3224 {
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc = BFD_RELOC_UNUSED;
3227 size = 0;
3228 }
3229
c19d1205 3230 if (size > nbytes)
2fc8bdac 3231 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3232 howto->name, nbytes);
3233 else
3234 {
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p = input_line_pointer;
3240 int offset;
21d799b5 3241 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3242 memcpy (save_buf, base, input_line_pointer - base);
3243 memmove (base + (input_line_pointer - before_reloc),
3244 base, before_reloc - base);
3245
3246 input_line_pointer = base + (input_line_pointer-before_reloc);
3247 expression (&exp);
3248 memcpy (base, save_buf, p - base);
3249
3250 offset = nbytes - size;
3251 p = frag_more ((int) nbytes);
3252 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3253 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3254 }
3255 }
3256 }
b99bd4ef 3257 }
c19d1205 3258 while (*input_line_pointer++ == ',');
b99bd4ef 3259
c19d1205
ZW
3260 /* Put terminator back into stream. */
3261 input_line_pointer --;
3262 demand_empty_rest_of_line ();
b99bd4ef
NC
3263}
3264
c921be7d
NC
3265/* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3267
3268static void
3269emit_thumb32_expr (expressionS * exp)
3270{
3271 expressionS exp_high = *exp;
3272
3273 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3274 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3275 exp->X_add_number &= 0xffff;
3276 emit_expr (exp, (unsigned int) THUMB_SIZE);
3277}
3278
3279/* Guess the instruction size based on the opcode. */
3280
3281static int
3282thumb_insn_size (int opcode)
3283{
3284 if ((unsigned int) opcode < 0xe800u)
3285 return 2;
3286 else if ((unsigned int) opcode >= 0xe8000000u)
3287 return 4;
3288 else
3289 return 0;
3290}
3291
3292static bfd_boolean
3293emit_insn (expressionS *exp, int nbytes)
3294{
3295 int size = 0;
3296
3297 if (exp->X_op == O_constant)
3298 {
3299 size = nbytes;
3300
3301 if (size == 0)
3302 size = thumb_insn_size (exp->X_add_number);
3303
3304 if (size != 0)
3305 {
3306 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3307 {
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3310 size = 0;
3311 }
3312 else
3313 {
3314 if (now_it.state == AUTOMATIC_IT_BLOCK)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3316 else
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3318
3319 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3320 emit_thumb32_expr (exp);
3321 else
3322 emit_expr (exp, (unsigned int) size);
3323
3324 it_fsm_post_encode ();
3325 }
3326 }
3327 else
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3330 }
3331 else
3332 as_bad (_("constant expression required"));
3333
3334 return (size != 0);
3335}
3336
3337/* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3339
3340static void
3341s_arm_elf_inst (int nbytes)
3342{
3343 if (is_it_end_of_statement ())
3344 {
3345 demand_empty_rest_of_line ();
3346 return;
3347 }
3348
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3351
3352 if (thumb_mode)
3353 mapping_state (MAP_THUMB);
3354 else
3355 {
3356 if (nbytes != 0)
3357 {
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3360 return;
3361 }
3362
3363 nbytes = 4;
3364
3365 mapping_state (MAP_ARM);
3366 }
3367
3368 do
3369 {
3370 expressionS exp;
3371
3372 expression (& exp);
3373
3374 if (! emit_insn (& exp, nbytes))
3375 {
3376 ignore_rest_of_line ();
3377 return;
3378 }
3379 }
3380 while (*input_line_pointer++ == ',');
3381
3382 /* Put terminator back into stream. */
3383 input_line_pointer --;
3384 demand_empty_rest_of_line ();
3385}
b99bd4ef 3386
c19d1205 3387/* Parse a .rel31 directive. */
b99bd4ef 3388
c19d1205
ZW
3389static void
3390s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3391{
3392 expressionS exp;
3393 char *p;
3394 valueT highbit;
b99bd4ef 3395
c19d1205
ZW
3396 highbit = 0;
3397 if (*input_line_pointer == '1')
3398 highbit = 0x80000000;
3399 else if (*input_line_pointer != '0')
3400 as_bad (_("expected 0 or 1"));
b99bd4ef 3401
c19d1205
ZW
3402 input_line_pointer++;
3403 if (*input_line_pointer != ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer++;
b99bd4ef 3406
c19d1205
ZW
3407#ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3409#endif
b99bd4ef 3410
c19d1205
ZW
3411#ifdef md_cons_align
3412 md_cons_align (4);
3413#endif
b99bd4ef 3414
c19d1205 3415 mapping_state (MAP_DATA);
b99bd4ef 3416
c19d1205 3417 expression (&exp);
b99bd4ef 3418
c19d1205
ZW
3419 p = frag_more (4);
3420 md_number_to_chars (p, highbit, 4);
3421 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3422 BFD_RELOC_ARM_PREL31);
b99bd4ef 3423
c19d1205 3424 demand_empty_rest_of_line ();
b99bd4ef
NC
3425}
3426
c19d1205 3427/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3428
c19d1205 3429/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3430
c19d1205
ZW
3431static void
3432s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3433{
3434 demand_empty_rest_of_line ();
921e5f0a
PB
3435 if (unwind.proc_start)
3436 {
c921be7d 3437 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3438 return;
3439 }
3440
c19d1205
ZW
3441 /* Mark the start of the function. */
3442 unwind.proc_start = expr_build_dot ();
b99bd4ef 3443
c19d1205
ZW
3444 /* Reset the rest of the unwind info. */
3445 unwind.opcode_count = 0;
3446 unwind.table_entry = NULL;
3447 unwind.personality_routine = NULL;
3448 unwind.personality_index = -1;
3449 unwind.frame_size = 0;
3450 unwind.fp_offset = 0;
fdfde340 3451 unwind.fp_reg = REG_SP;
c19d1205
ZW
3452 unwind.fp_used = 0;
3453 unwind.sp_restored = 0;
3454}
b99bd4ef 3455
b99bd4ef 3456
c19d1205
ZW
3457/* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
b99bd4ef 3459
c19d1205
ZW
3460static void
3461s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3462{
3463 demand_empty_rest_of_line ();
921e5f0a 3464 if (!unwind.proc_start)
c921be7d 3465 as_bad (MISSING_FNSTART);
921e5f0a 3466
c19d1205 3467 if (unwind.table_entry)
6decc662 3468 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3469
c19d1205
ZW
3470 create_unwind_entry (1);
3471}
a737bd4d 3472
c19d1205 3473/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3474
c19d1205
ZW
3475static void
3476s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3477{
3478 long where;
3479 char *ptr;
3480 valueT val;
940b5ce0 3481 unsigned int marked_pr_dependency;
f02232aa 3482
c19d1205 3483 demand_empty_rest_of_line ();
f02232aa 3484
921e5f0a
PB
3485 if (!unwind.proc_start)
3486 {
c921be7d 3487 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3488 return;
3489 }
3490
c19d1205
ZW
3491 /* Add eh table entry. */
3492 if (unwind.table_entry == NULL)
3493 val = create_unwind_entry (0);
3494 else
3495 val = 0;
f02232aa 3496
c19d1205
ZW
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind.saved_seg, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg, 2);
b99bd4ef 3501
c19d1205
ZW
3502 ptr = frag_more (8);
3503 where = frag_now_fix () - 8;
f02232aa 3504
c19d1205
ZW
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3507 BFD_RELOC_ARM_PREL31);
f02232aa 3508
c19d1205
ZW
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
940b5ce0
DJ
3511 marked_pr_dependency
3512 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3513 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3514 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3515 {
5f4273c7
NC
3516 static const char *const name[] =
3517 {
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3521 };
c19d1205
ZW
3522 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3523 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3524 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3525 |= 1 << unwind.personality_index;
c19d1205 3526 }
f02232aa 3527
c19d1205
ZW
3528 if (val)
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr + 4, val, 4);
3531 else
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3534 BFD_RELOC_ARM_PREL31);
f02232aa 3535
c19d1205
ZW
3536 /* Restore the original section. */
3537 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3538
3539 unwind.proc_start = NULL;
c19d1205 3540}
f02232aa 3541
f02232aa 3542
c19d1205 3543/* Parse an unwind_cantunwind directive. */
b99bd4ef 3544
c19d1205
ZW
3545static void
3546s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3547{
3548 demand_empty_rest_of_line ();
921e5f0a 3549 if (!unwind.proc_start)
c921be7d 3550 as_bad (MISSING_FNSTART);
921e5f0a 3551
c19d1205
ZW
3552 if (unwind.personality_routine || unwind.personality_index != -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3554
c19d1205
ZW
3555 unwind.personality_index = -2;
3556}
b99bd4ef 3557
b99bd4ef 3558
c19d1205 3559/* Parse a personalityindex directive. */
b99bd4ef 3560
c19d1205
ZW
3561static void
3562s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3563{
3564 expressionS exp;
b99bd4ef 3565
921e5f0a 3566 if (!unwind.proc_start)
c921be7d 3567 as_bad (MISSING_FNSTART);
921e5f0a 3568
c19d1205
ZW
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3571
c19d1205 3572 expression (&exp);
b99bd4ef 3573
c19d1205
ZW
3574 if (exp.X_op != O_constant
3575 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3576 {
c19d1205
ZW
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3579 return;
b99bd4ef
NC
3580 }
3581
c19d1205 3582 unwind.personality_index = exp.X_add_number;
b99bd4ef 3583
c19d1205
ZW
3584 demand_empty_rest_of_line ();
3585}
e16bb312 3586
e16bb312 3587
c19d1205 3588/* Parse a personality directive. */
e16bb312 3589
c19d1205
ZW
3590static void
3591s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3592{
3593 char *name, *p, c;
a737bd4d 3594
921e5f0a 3595 if (!unwind.proc_start)
c921be7d 3596 as_bad (MISSING_FNSTART);
921e5f0a 3597
c19d1205
ZW
3598 if (unwind.personality_routine || unwind.personality_index != -1)
3599 as_bad (_("duplicate .personality directive"));
a737bd4d 3600
c19d1205
ZW
3601 name = input_line_pointer;
3602 c = get_symbol_end ();
3603 p = input_line_pointer;
3604 unwind.personality_routine = symbol_find_or_make (name);
3605 *p = c;
3606 demand_empty_rest_of_line ();
3607}
e16bb312 3608
e16bb312 3609
c19d1205 3610/* Parse a directive saving core registers. */
e16bb312 3611
c19d1205
ZW
3612static void
3613s_arm_unwind_save_core (void)
e16bb312 3614{
c19d1205
ZW
3615 valueT op;
3616 long range;
3617 int n;
e16bb312 3618
c19d1205
ZW
3619 range = parse_reg_list (&input_line_pointer);
3620 if (range == FAIL)
e16bb312 3621 {
c19d1205
ZW
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3624 return;
3625 }
e16bb312 3626
c19d1205 3627 demand_empty_rest_of_line ();
e16bb312 3628
c19d1205
ZW
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind.sp_restored && unwind.fp_reg == 12
3633 && (range & 0x3000) == 0x1000)
3634 {
3635 unwind.opcode_count--;
3636 unwind.sp_restored = 0;
3637 range = (range | 0x2000) & ~0x1000;
3638 unwind.pending_offset = 0;
3639 }
e16bb312 3640
01ae4198
DJ
3641 /* Pop r4-r15. */
3642 if (range & 0xfff0)
c19d1205 3643 {
01ae4198
DJ
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n = 0; n < 8; n++)
3647 {
3648 /* Break at the first non-saved register. */
3649 if ((range & (1 << (n + 4))) == 0)
3650 break;
3651 }
3652 /* See if there are any other bits set. */
3653 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3654 {
3655 /* Use the long form. */
3656 op = 0x8000 | ((range >> 4) & 0xfff);
3657 add_unwind_opcode (op, 2);
3658 }
0dd132b6 3659 else
01ae4198
DJ
3660 {
3661 /* Use the short form. */
3662 if (range & 0x4000)
3663 op = 0xa8; /* Pop r14. */
3664 else
3665 op = 0xa0; /* Do not pop r14. */
3666 op |= (n - 1);
3667 add_unwind_opcode (op, 1);
3668 }
c19d1205 3669 }
0dd132b6 3670
c19d1205
ZW
3671 /* Pop r0-r3. */
3672 if (range & 0xf)
3673 {
3674 op = 0xb100 | (range & 0xf);
3675 add_unwind_opcode (op, 2);
0dd132b6
NC
3676 }
3677
c19d1205
ZW
3678 /* Record the number of bytes pushed. */
3679 for (n = 0; n < 16; n++)
3680 {
3681 if (range & (1 << n))
3682 unwind.frame_size += 4;
3683 }
0dd132b6
NC
3684}
3685
c19d1205
ZW
3686
3687/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3688
3689static void
c19d1205 3690s_arm_unwind_save_fpa (int reg)
b99bd4ef 3691{
c19d1205
ZW
3692 expressionS exp;
3693 int num_regs;
3694 valueT op;
b99bd4ef 3695
c19d1205
ZW
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer) != FAIL)
3698 expression (&exp);
3699 else
3700 exp.X_op = O_illegal;
b99bd4ef 3701
c19d1205 3702 if (exp.X_op != O_constant)
b99bd4ef 3703 {
c19d1205
ZW
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
b99bd4ef
NC
3706 return;
3707 }
3708
c19d1205
ZW
3709 num_regs = exp.X_add_number;
3710
3711 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3712 {
c19d1205
ZW
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
b99bd4ef
NC
3715 return;
3716 }
3717
c19d1205 3718 demand_empty_rest_of_line ();
b99bd4ef 3719
c19d1205
ZW
3720 if (reg == 4)
3721 {
3722 /* Short form. */
3723 op = 0xb4 | (num_regs - 1);
3724 add_unwind_opcode (op, 1);
3725 }
b99bd4ef
NC
3726 else
3727 {
c19d1205
ZW
3728 /* Long form. */
3729 op = 0xc800 | (reg << 4) | (num_regs - 1);
3730 add_unwind_opcode (op, 2);
b99bd4ef 3731 }
c19d1205 3732 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3733}
3734
c19d1205 3735
fa073d69
MS
3736/* Parse a directive saving VFP registers for ARMv6 and above. */
3737
3738static void
3739s_arm_unwind_save_vfp_armv6 (void)
3740{
3741 int count;
3742 unsigned int start;
3743 valueT op;
3744 int num_vfpv3_regs = 0;
3745 int num_regs_below_16;
3746
3747 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3748 if (count == FAIL)
3749 {
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3753 }
3754
3755 demand_empty_rest_of_line ();
3756
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3759
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3761 if (start >= 16)
3762 num_vfpv3_regs = count;
3763 else if (start + count > 16)
3764 num_vfpv3_regs = start + count - 16;
3765
3766 if (num_vfpv3_regs > 0)
3767 {
3768 int start_offset = start > 16 ? start - 16 : 0;
3769 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3775 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3776 if (num_regs_below_16 > 0)
3777 {
3778 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3779 add_unwind_opcode (op, 2);
3780 }
3781
3782 unwind.frame_size += count * 8;
3783}
3784
3785
3786/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3787
3788static void
c19d1205 3789s_arm_unwind_save_vfp (void)
b99bd4ef 3790{
c19d1205 3791 int count;
ca3f61f7 3792 unsigned int reg;
c19d1205 3793 valueT op;
b99bd4ef 3794
5287ad62 3795 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3796 if (count == FAIL)
b99bd4ef 3797 {
c19d1205
ZW
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
b99bd4ef
NC
3800 return;
3801 }
3802
c19d1205 3803 demand_empty_rest_of_line ();
b99bd4ef 3804
c19d1205 3805 if (reg == 8)
b99bd4ef 3806 {
c19d1205
ZW
3807 /* Short form. */
3808 op = 0xb8 | (count - 1);
3809 add_unwind_opcode (op, 1);
b99bd4ef 3810 }
c19d1205 3811 else
b99bd4ef 3812 {
c19d1205
ZW
3813 /* Long form. */
3814 op = 0xb300 | (reg << 4) | (count - 1);
3815 add_unwind_opcode (op, 2);
b99bd4ef 3816 }
c19d1205
ZW
3817 unwind.frame_size += count * 8 + 4;
3818}
b99bd4ef 3819
b99bd4ef 3820
c19d1205
ZW
3821/* Parse a directive saving iWMMXt data registers. */
3822
3823static void
3824s_arm_unwind_save_mmxwr (void)
3825{
3826 int reg;
3827 int hi_reg;
3828 int i;
3829 unsigned mask = 0;
3830 valueT op;
b99bd4ef 3831
c19d1205
ZW
3832 if (*input_line_pointer == '{')
3833 input_line_pointer++;
b99bd4ef 3834
c19d1205 3835 do
b99bd4ef 3836 {
dcbf9037 3837 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3838
c19d1205 3839 if (reg == FAIL)
b99bd4ef 3840 {
9b7132d3 3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3842 goto error;
b99bd4ef
NC
3843 }
3844
c19d1205
ZW
3845 if (mask >> reg)
3846 as_tsktsk (_("register list not in ascending order"));
3847 mask |= 1 << reg;
b99bd4ef 3848
c19d1205
ZW
3849 if (*input_line_pointer == '-')
3850 {
3851 input_line_pointer++;
dcbf9037 3852 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3853 if (hi_reg == FAIL)
3854 {
9b7132d3 3855 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3856 goto error;
3857 }
3858 else if (reg >= hi_reg)
3859 {
3860 as_bad (_("bad register range"));
3861 goto error;
3862 }
3863 for (; reg < hi_reg; reg++)
3864 mask |= 1 << reg;
3865 }
3866 }
3867 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3868
c19d1205
ZW
3869 if (*input_line_pointer == '}')
3870 input_line_pointer++;
b99bd4ef 3871
c19d1205 3872 demand_empty_rest_of_line ();
b99bd4ef 3873
708587a4 3874 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3875 the list. */
3876 flush_pending_unwind ();
b99bd4ef 3877
c19d1205 3878 for (i = 0; i < 16; i++)
b99bd4ef 3879 {
c19d1205
ZW
3880 if (mask & (1 << i))
3881 unwind.frame_size += 8;
b99bd4ef
NC
3882 }
3883
c19d1205
ZW
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3886 registers. */
3887 if (unwind.opcode_count > 0)
b99bd4ef 3888 {
c19d1205
ZW
3889 i = unwind.opcodes[unwind.opcode_count - 1];
3890 if ((i & 0xf8) == 0xc0)
3891 {
3892 i &= 7;
3893 /* Only merge if the blocks are contiguous. */
3894 if (i < 6)
3895 {
3896 if ((mask & 0xfe00) == (1 << 9))
3897 {
3898 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3899 unwind.opcode_count--;
3900 }
3901 }
3902 else if (i == 6 && unwind.opcode_count >= 2)
3903 {
3904 i = unwind.opcodes[unwind.opcode_count - 2];
3905 reg = i >> 4;
3906 i &= 0xf;
b99bd4ef 3907
c19d1205
ZW
3908 op = 0xffff << (reg - 1);
3909 if (reg > 0
87a1fd79 3910 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3911 {
3912 op = (1 << (reg + i + 1)) - 1;
3913 op &= ~((1 << reg) - 1);
3914 mask |= op;
3915 unwind.opcode_count -= 2;
3916 }
3917 }
3918 }
b99bd4ef
NC
3919 }
3920
c19d1205
ZW
3921 hi_reg = 15;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3925 {
c19d1205
ZW
3926 /* Save registers in blocks. */
3927 if (reg < 0
3928 || !(mask & (1 << reg)))
3929 {
3930 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3931 preceding block. */
c19d1205
ZW
3932 if (reg != hi_reg)
3933 {
3934 if (reg == 9)
3935 {
3936 /* Short form. */
3937 op = 0xc0 | (hi_reg - 10);
3938 add_unwind_opcode (op, 1);
3939 }
3940 else
3941 {
3942 /* Long form. */
3943 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3944 add_unwind_opcode (op, 2);
3945 }
3946 }
3947 hi_reg = reg - 1;
3948 }
b99bd4ef
NC
3949 }
3950
c19d1205
ZW
3951 return;
3952error:
3953 ignore_rest_of_line ();
b99bd4ef
NC
3954}
3955
3956static void
c19d1205 3957s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3958{
c19d1205
ZW
3959 int reg;
3960 int hi_reg;
3961 unsigned mask = 0;
3962 valueT op;
b99bd4ef 3963
c19d1205
ZW
3964 if (*input_line_pointer == '{')
3965 input_line_pointer++;
b99bd4ef 3966
c19d1205 3967 do
b99bd4ef 3968 {
dcbf9037 3969 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3970
c19d1205
ZW
3971 if (reg == FAIL)
3972 {
9b7132d3 3973 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3974 goto error;
3975 }
b99bd4ef 3976
c19d1205
ZW
3977 reg -= 8;
3978 if (mask >> reg)
3979 as_tsktsk (_("register list not in ascending order"));
3980 mask |= 1 << reg;
b99bd4ef 3981
c19d1205
ZW
3982 if (*input_line_pointer == '-')
3983 {
3984 input_line_pointer++;
dcbf9037 3985 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3986 if (hi_reg == FAIL)
3987 {
9b7132d3 3988 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3989 goto error;
3990 }
3991 else if (reg >= hi_reg)
3992 {
3993 as_bad (_("bad register range"));
3994 goto error;
3995 }
3996 for (; reg < hi_reg; reg++)
3997 mask |= 1 << reg;
3998 }
b99bd4ef 3999 }
c19d1205 4000 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4001
c19d1205
ZW
4002 if (*input_line_pointer == '}')
4003 input_line_pointer++;
b99bd4ef 4004
c19d1205
ZW
4005 demand_empty_rest_of_line ();
4006
708587a4 4007 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4008 the list. */
4009 flush_pending_unwind ();
b99bd4ef 4010
c19d1205 4011 for (reg = 0; reg < 16; reg++)
b99bd4ef 4012 {
c19d1205
ZW
4013 if (mask & (1 << reg))
4014 unwind.frame_size += 4;
b99bd4ef 4015 }
c19d1205
ZW
4016 op = 0xc700 | mask;
4017 add_unwind_opcode (op, 2);
4018 return;
4019error:
4020 ignore_rest_of_line ();
b99bd4ef
NC
4021}
4022
c19d1205 4023
fa073d69
MS
4024/* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4026
b99bd4ef 4027static void
fa073d69 4028s_arm_unwind_save (int arch_v6)
b99bd4ef 4029{
c19d1205
ZW
4030 char *peek;
4031 struct reg_entry *reg;
4032 bfd_boolean had_brace = FALSE;
b99bd4ef 4033
921e5f0a 4034 if (!unwind.proc_start)
c921be7d 4035 as_bad (MISSING_FNSTART);
921e5f0a 4036
c19d1205
ZW
4037 /* Figure out what sort of save we have. */
4038 peek = input_line_pointer;
b99bd4ef 4039
c19d1205 4040 if (*peek == '{')
b99bd4ef 4041 {
c19d1205
ZW
4042 had_brace = TRUE;
4043 peek++;
b99bd4ef
NC
4044 }
4045
c19d1205 4046 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4047
c19d1205 4048 if (!reg)
b99bd4ef 4049 {
c19d1205
ZW
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
b99bd4ef
NC
4052 return;
4053 }
4054
c19d1205 4055 switch (reg->type)
b99bd4ef 4056 {
c19d1205
ZW
4057 case REG_TYPE_FN:
4058 if (had_brace)
4059 {
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4062 return;
4063 }
93ac2687 4064 input_line_pointer = peek;
c19d1205 4065 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4066 return;
c19d1205
ZW
4067
4068 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4069 case REG_TYPE_VFD:
4070 if (arch_v6)
4071 s_arm_unwind_save_vfp_armv6 ();
4072 else
4073 s_arm_unwind_save_vfp ();
4074 return;
c19d1205
ZW
4075 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4077
4078 default:
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
b99bd4ef 4081 }
c19d1205 4082}
b99bd4ef 4083
b99bd4ef 4084
c19d1205
ZW
4085/* Parse an unwind_movsp directive. */
4086
4087static void
4088s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4089{
4090 int reg;
4091 valueT op;
4fa3602b 4092 int offset;
c19d1205 4093
921e5f0a 4094 if (!unwind.proc_start)
c921be7d 4095 as_bad (MISSING_FNSTART);
921e5f0a 4096
dcbf9037 4097 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4098 if (reg == FAIL)
b99bd4ef 4099 {
9b7132d3 4100 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4101 ignore_rest_of_line ();
b99bd4ef
NC
4102 return;
4103 }
4fa3602b
PB
4104
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer) != FAIL)
4107 {
4108 if (immediate_for_directive (&offset) == FAIL)
4109 return;
4110 }
4111 else
4112 offset = 0;
4113
c19d1205 4114 demand_empty_rest_of_line ();
b99bd4ef 4115
c19d1205 4116 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4117 {
c19d1205 4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4119 return;
4120 }
4121
c19d1205
ZW
4122 if (unwind.fp_reg != REG_SP)
4123 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4124
c19d1205
ZW
4125 /* Generate opcode to restore the value. */
4126 op = 0x90 | reg;
4127 add_unwind_opcode (op, 1);
4128
4129 /* Record the information for later. */
4130 unwind.fp_reg = reg;
4fa3602b 4131 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4132 unwind.sp_restored = 1;
b05fe5cf
ZW
4133}
4134
c19d1205
ZW
4135/* Parse an unwind_pad directive. */
4136
b05fe5cf 4137static void
c19d1205 4138s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4139{
c19d1205 4140 int offset;
b05fe5cf 4141
921e5f0a 4142 if (!unwind.proc_start)
c921be7d 4143 as_bad (MISSING_FNSTART);
921e5f0a 4144
c19d1205
ZW
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
b99bd4ef 4147
c19d1205
ZW
4148 if (offset & 3)
4149 {
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
b99bd4ef 4154
c19d1205
ZW
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind.frame_size += offset;
4157 unwind.pending_offset += offset;
4158
4159 demand_empty_rest_of_line ();
4160}
4161
4162/* Parse an unwind_setfp directive. */
4163
4164static void
4165s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4166{
c19d1205
ZW
4167 int sp_reg;
4168 int fp_reg;
4169 int offset;
4170
921e5f0a 4171 if (!unwind.proc_start)
c921be7d 4172 as_bad (MISSING_FNSTART);
921e5f0a 4173
dcbf9037 4174 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4175 if (skip_past_comma (&input_line_pointer) == FAIL)
4176 sp_reg = FAIL;
4177 else
dcbf9037 4178 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4179
c19d1205
ZW
4180 if (fp_reg == FAIL || sp_reg == FAIL)
4181 {
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4184 return;
4185 }
b99bd4ef 4186
c19d1205
ZW
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer) != FAIL)
4189 {
4190 if (immediate_for_directive (&offset) == FAIL)
4191 return;
4192 }
4193 else
4194 offset = 0;
a737bd4d 4195
c19d1205 4196 demand_empty_rest_of_line ();
a737bd4d 4197
fdfde340 4198 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4199 {
c19d1205
ZW
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4202 return;
a737bd4d
NC
4203 }
4204
c19d1205
ZW
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind.fp_reg = fp_reg;
4207 unwind.fp_used = 1;
fdfde340 4208 if (sp_reg == REG_SP)
c19d1205
ZW
4209 unwind.fp_offset = unwind.frame_size - offset;
4210 else
4211 unwind.fp_offset -= offset;
a737bd4d
NC
4212}
4213
c19d1205
ZW
4214/* Parse an unwind_raw directive. */
4215
4216static void
4217s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4218{
c19d1205 4219 expressionS exp;
708587a4 4220 /* This is an arbitrary limit. */
c19d1205
ZW
4221 unsigned char op[16];
4222 int count;
a737bd4d 4223
921e5f0a 4224 if (!unwind.proc_start)
c921be7d 4225 as_bad (MISSING_FNSTART);
921e5f0a 4226
c19d1205
ZW
4227 expression (&exp);
4228 if (exp.X_op == O_constant
4229 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4230 {
c19d1205
ZW
4231 unwind.frame_size += exp.X_add_number;
4232 expression (&exp);
4233 }
4234 else
4235 exp.X_op = O_illegal;
a737bd4d 4236
c19d1205
ZW
4237 if (exp.X_op != O_constant)
4238 {
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
a737bd4d 4243
c19d1205 4244 count = 0;
a737bd4d 4245
c19d1205
ZW
4246 /* Parse the opcode. */
4247 for (;;)
4248 {
4249 if (count >= 16)
4250 {
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
a737bd4d 4253 }
c19d1205 4254 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4255 {
c19d1205
ZW
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4258 return;
a737bd4d 4259 }
c19d1205 4260 op[count++] = exp.X_add_number;
a737bd4d 4261
c19d1205
ZW
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer) == FAIL)
4264 break;
a737bd4d 4265
c19d1205
ZW
4266 expression (&exp);
4267 }
b99bd4ef 4268
c19d1205
ZW
4269 /* Add the opcode bytes in reverse order. */
4270 while (count--)
4271 add_unwind_opcode (op[count], 1);
b99bd4ef 4272
c19d1205 4273 demand_empty_rest_of_line ();
b99bd4ef 4274}
ee065d83
PB
4275
4276
4277/* Parse a .eabi_attribute directive. */
4278
4279static void
4280s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4281{
ee3c0378
AS
4282 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4283
4284 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4285 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4286}
4287
0855e32b
NS
4288/* Emit a tls fix for the symbol. */
4289
4290static void
4291s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4292{
4293 char *p;
4294 expressionS exp;
4295#ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4297#endif
4298
4299#ifdef md_cons_align
4300 md_cons_align (4);
4301#endif
4302
4303 /* Since we're just labelling the code, there's no need to define a
4304 mapping symbol. */
4305 expression (&exp);
4306 p = obstack_next_free (&frchain_now->frch_obstack);
4307 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4308 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ);
4310}
cdf9ccec 4311#endif /* OBJ_ELF */
0855e32b 4312
ee065d83 4313static void s_arm_arch (int);
7a1d4c38 4314static void s_arm_object_arch (int);
ee065d83
PB
4315static void s_arm_cpu (int);
4316static void s_arm_fpu (int);
69133863 4317static void s_arm_arch_extension (int);
b99bd4ef 4318
f0927246
NC
4319#ifdef TE_PE
4320
4321static void
5f4273c7 4322pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4323{
4324 expressionS exp;
4325
4326 do
4327 {
4328 expression (&exp);
4329 if (exp.X_op == O_symbol)
4330 exp.X_op = O_secrel;
4331
4332 emit_expr (&exp, 4);
4333 }
4334 while (*input_line_pointer++ == ',');
4335
4336 input_line_pointer--;
4337 demand_empty_rest_of_line ();
4338}
4339#endif /* TE_PE */
4340
c19d1205
ZW
4341/* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
b99bd4ef 4346
c19d1205 4347const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4348{
c19d1205
ZW
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req, 0 },
dcbf9037
JB
4351 /* Following two are likewise never called. */
4352 { "dn", s_dn, 0 },
4353 { "qn", s_qn, 0 },
c19d1205
ZW
4354 { "unreq", s_unreq, 0 },
4355 { "bss", s_bss, 0 },
4356 { "align", s_align, 0 },
4357 { "arm", s_arm, 0 },
4358 { "thumb", s_thumb, 0 },
4359 { "code", s_code, 0 },
4360 { "force_thumb", s_force_thumb, 0 },
4361 { "thumb_func", s_thumb_func, 0 },
4362 { "thumb_set", s_thumb_set, 0 },
4363 { "even", s_even, 0 },
4364 { "ltorg", s_ltorg, 0 },
4365 { "pool", s_ltorg, 0 },
4366 { "syntax", s_syntax, 0 },
8463be01
PB
4367 { "cpu", s_arm_cpu, 0 },
4368 { "arch", s_arm_arch, 0 },
7a1d4c38 4369 { "object_arch", s_arm_object_arch, 0 },
8463be01 4370 { "fpu", s_arm_fpu, 0 },
69133863 4371 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4372#ifdef OBJ_ELF
c921be7d
NC
4373 { "word", s_arm_elf_cons, 4 },
4374 { "long", s_arm_elf_cons, 4 },
4375 { "inst.n", s_arm_elf_inst, 2 },
4376 { "inst.w", s_arm_elf_inst, 4 },
4377 { "inst", s_arm_elf_inst, 0 },
4378 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4379 { "fnstart", s_arm_unwind_fnstart, 0 },
4380 { "fnend", s_arm_unwind_fnend, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4382 { "personality", s_arm_unwind_personality, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4385 { "save", s_arm_unwind_save, 0 },
fa073d69 4386 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4387 { "movsp", s_arm_unwind_movsp, 0 },
4388 { "pad", s_arm_unwind_pad, 0 },
4389 { "setfp", s_arm_unwind_setfp, 0 },
4390 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4391 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4392 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4393#else
4394 { "word", cons, 4},
f0927246
NC
4395
4396 /* These are used for dwarf. */
4397 {"2byte", cons, 2},
4398 {"4byte", cons, 4},
4399 {"8byte", cons, 8},
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4402 { "loc", dwarf2_directive_loc, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4404#endif
4405 { "extend", float_cons, 'x' },
4406 { "ldouble", float_cons, 'x' },
4407 { "packed", float_cons, 'p' },
f0927246
NC
4408#ifdef TE_PE
4409 {"secrel32", pe_directive_secrel, 0},
4410#endif
c19d1205
ZW
4411 { 0, 0, 0 }
4412};
4413\f
4414/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4415
c19d1205
ZW
4416/* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4420 optional. */
b99bd4ef 4421
c19d1205
ZW
4422static int
4423parse_immediate (char **str, int *val, int min, int max,
4424 bfd_boolean prefix_opt)
4425{
4426 expressionS exp;
4427 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4428 if (exp.X_op != O_constant)
b99bd4ef 4429 {
c19d1205
ZW
4430 inst.error = _("constant expression required");
4431 return FAIL;
4432 }
b99bd4ef 4433
c19d1205
ZW
4434 if (exp.X_add_number < min || exp.X_add_number > max)
4435 {
4436 inst.error = _("immediate value out of range");
4437 return FAIL;
4438 }
b99bd4ef 4439
c19d1205
ZW
4440 *val = exp.X_add_number;
4441 return SUCCESS;
4442}
b99bd4ef 4443
5287ad62 4444/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4446 instructions. Puts the result directly in inst.operands[i]. */
4447
4448static int
4449parse_big_immediate (char **str, int i)
4450{
4451 expressionS exp;
4452 char *ptr = *str;
4453
4454 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4455
4456 if (exp.X_op == O_constant)
036dc3f7
PB
4457 {
4458 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
58ad575f 4462 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4463 {
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4466 inst.operands[i].regisimm = 1;
4467 }
4468 }
5287ad62 4469 else if (exp.X_op == O_big
95b75c01 4470 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4471 {
4472 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4473
5287ad62
JB
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4477 gas_assert (parts != 0);
95b75c01
NC
4478
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4484 {
4485 LITTLENUM_TYPE m = -1;
4486
4487 if (generic_bignum[parts * 2] != 0
4488 && generic_bignum[parts * 2] != m)
4489 return FAIL;
4490
4491 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4492 if (generic_bignum[j] != generic_bignum[j-1])
4493 return FAIL;
4494 }
4495
5287ad62
JB
4496 inst.operands[i].imm = 0;
4497 for (j = 0; j < parts; j++, idx++)
4498 inst.operands[i].imm |= generic_bignum[idx]
4499 << (LITTLENUM_NUMBER_OF_BITS * j);
4500 inst.operands[i].reg = 0;
4501 for (j = 0; j < parts; j++, idx++)
4502 inst.operands[i].reg |= generic_bignum[idx]
4503 << (LITTLENUM_NUMBER_OF_BITS * j);
4504 inst.operands[i].regisimm = 1;
4505 }
4506 else
4507 return FAIL;
5f4273c7 4508
5287ad62
JB
4509 *str = ptr;
4510
4511 return SUCCESS;
4512}
4513
c19d1205
ZW
4514/* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
b99bd4ef 4516
c19d1205
ZW
4517static int
4518parse_fpa_immediate (char ** str)
4519{
4520 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4521 char * save_in;
4522 expressionS exp;
4523 int i;
4524 int j;
b99bd4ef 4525
c19d1205
ZW
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
b99bd4ef 4528
c19d1205
ZW
4529 for (i = 0; fp_const[i]; i++)
4530 {
4531 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4532 {
c19d1205 4533 char *start = *str;
b99bd4ef 4534
c19d1205
ZW
4535 *str += strlen (fp_const[i]);
4536 if (is_end_of_line[(unsigned char) **str])
4537 return i + 8;
4538 *str = start;
4539 }
4540 }
b99bd4ef 4541
c19d1205
ZW
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
b99bd4ef 4546
c19d1205 4547 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4548
c19d1205
ZW
4549 /* Look for a raw floating point number. */
4550 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4551 && is_end_of_line[(unsigned char) *save_in])
4552 {
4553 for (i = 0; i < NUM_FLOAT_VALS; i++)
4554 {
4555 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4556 {
c19d1205
ZW
4557 if (words[j] != fp_values[i][j])
4558 break;
b99bd4ef
NC
4559 }
4560
c19d1205 4561 if (j == MAX_LITTLENUMS)
b99bd4ef 4562 {
c19d1205
ZW
4563 *str = save_in;
4564 return i + 8;
b99bd4ef
NC
4565 }
4566 }
4567 }
b99bd4ef 4568
c19d1205
ZW
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in = input_line_pointer;
4572 input_line_pointer = *str;
4573 if (expression (&exp) == absolute_section
4574 && exp.X_op == O_big
4575 && exp.X_add_number < 0)
4576 {
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4578 Ditto for 15. */
4579 if (gen_to_words (words, 5, (long) 15) == 0)
4580 {
4581 for (i = 0; i < NUM_FLOAT_VALS; i++)
4582 {
4583 for (j = 0; j < MAX_LITTLENUMS; j++)
4584 {
4585 if (words[j] != fp_values[i][j])
4586 break;
4587 }
b99bd4ef 4588
c19d1205
ZW
4589 if (j == MAX_LITTLENUMS)
4590 {
4591 *str = input_line_pointer;
4592 input_line_pointer = save_in;
4593 return i + 8;
4594 }
4595 }
4596 }
b99bd4ef
NC
4597 }
4598
c19d1205
ZW
4599 *str = input_line_pointer;
4600 input_line_pointer = save_in;
4601 inst.error = _("invalid FPA immediate expression");
4602 return FAIL;
b99bd4ef
NC
4603}
4604
136da414
JB
4605/* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4607
4608static int
4609is_quarter_float (unsigned imm)
4610{
4611 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4613}
4614
4615/* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
136da414
JB
4620
4621static unsigned
4622parse_qfloat_immediate (char **ccp, int *immed)
4623{
4624 char *str = *ccp;
c96612cc 4625 char *fpnum;
136da414 4626 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4627 int found_fpchar = 0;
5f4273c7 4628
136da414 4629 skip_past_char (&str, '#');
5f4273c7 4630
c96612cc
JB
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4636 fpnum = str;
4637 skip_whitespace (fpnum);
4638
4639 if (strncmp (fpnum, "0x", 2) == 0)
4640 return FAIL;
4641 else
4642 {
4643 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4644 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4645 {
4646 found_fpchar = 1;
4647 break;
4648 }
4649
4650 if (!found_fpchar)
4651 return FAIL;
4652 }
5f4273c7 4653
136da414
JB
4654 if ((str = atof_ieee (str, 's', words)) != NULL)
4655 {
4656 unsigned fpword = 0;
4657 int i;
5f4273c7 4658
136da414
JB
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4661 {
4662 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4663 fpword |= words[i];
4664 }
5f4273c7 4665
c96612cc 4666 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4667 *immed = fpword;
4668 else
4669 return FAIL;
4670
4671 *ccp = str;
5f4273c7 4672
136da414
JB
4673 return SUCCESS;
4674 }
5f4273c7 4675
136da414
JB
4676 return FAIL;
4677}
4678
c19d1205
ZW
4679/* Shift operands. */
4680enum shift_kind
b99bd4ef 4681{
c19d1205
ZW
4682 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4683};
b99bd4ef 4684
c19d1205
ZW
4685struct asm_shift_name
4686{
4687 const char *name;
4688 enum shift_kind kind;
4689};
b99bd4ef 4690
c19d1205
ZW
4691/* Third argument to parse_shift. */
4692enum parse_shift_mode
4693{
4694 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4699};
b99bd4ef 4700
c19d1205
ZW
4701/* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
b99bd4ef 4703
c19d1205
ZW
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4706 RRX
b99bd4ef 4707
c19d1205
ZW
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4710
c19d1205
ZW
4711static int
4712parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4713{
c19d1205
ZW
4714 const struct asm_shift_name *shift_name;
4715 enum shift_kind shift;
4716 char *s = *str;
4717 char *p = s;
4718 int reg;
b99bd4ef 4719
c19d1205
ZW
4720 for (p = *str; ISALPHA (*p); p++)
4721 ;
b99bd4ef 4722
c19d1205 4723 if (p == *str)
b99bd4ef 4724 {
c19d1205
ZW
4725 inst.error = _("shift expression expected");
4726 return FAIL;
b99bd4ef
NC
4727 }
4728
21d799b5
NC
4729 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4730 p - *str);
c19d1205
ZW
4731
4732 if (shift_name == NULL)
b99bd4ef 4733 {
c19d1205
ZW
4734 inst.error = _("shift expression expected");
4735 return FAIL;
b99bd4ef
NC
4736 }
4737
c19d1205 4738 shift = shift_name->kind;
b99bd4ef 4739
c19d1205
ZW
4740 switch (mode)
4741 {
4742 case NO_SHIFT_RESTRICT:
4743 case SHIFT_IMMEDIATE: break;
b99bd4ef 4744
c19d1205
ZW
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4746 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4747 {
4748 inst.error = _("'LSL' or 'ASR' required");
4749 return FAIL;
4750 }
4751 break;
b99bd4ef 4752
c19d1205
ZW
4753 case SHIFT_LSL_IMMEDIATE:
4754 if (shift != SHIFT_LSL)
4755 {
4756 inst.error = _("'LSL' required");
4757 return FAIL;
4758 }
4759 break;
b99bd4ef 4760
c19d1205
ZW
4761 case SHIFT_ASR_IMMEDIATE:
4762 if (shift != SHIFT_ASR)
4763 {
4764 inst.error = _("'ASR' required");
4765 return FAIL;
4766 }
4767 break;
b99bd4ef 4768
c19d1205
ZW
4769 default: abort ();
4770 }
b99bd4ef 4771
c19d1205
ZW
4772 if (shift != SHIFT_RRX)
4773 {
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p);
b99bd4ef 4776
c19d1205 4777 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4778 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4779 {
4780 inst.operands[i].imm = reg;
4781 inst.operands[i].immisreg = 1;
4782 }
4783 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4784 return FAIL;
4785 }
4786 inst.operands[i].shift_kind = shift;
4787 inst.operands[i].shifted = 1;
4788 *str = p;
4789 return SUCCESS;
b99bd4ef
NC
4790}
4791
c19d1205 4792/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4793
c19d1205
ZW
4794 #<immediate>
4795 #<immediate>, <rotate>
4796 <Rm>
4797 <Rm>, <shift>
b99bd4ef 4798
c19d1205
ZW
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4801 is deferred to md_apply_fix. */
b99bd4ef 4802
c19d1205
ZW
4803static int
4804parse_shifter_operand (char **str, int i)
4805{
4806 int value;
91d6fa6a 4807 expressionS exp;
b99bd4ef 4808
dcbf9037 4809 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4810 {
4811 inst.operands[i].reg = value;
4812 inst.operands[i].isreg = 1;
b99bd4ef 4813
c19d1205
ZW
4814 /* parse_shift will override this if appropriate */
4815 inst.reloc.exp.X_op = O_constant;
4816 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4817
c19d1205
ZW
4818 if (skip_past_comma (str) == FAIL)
4819 return SUCCESS;
b99bd4ef 4820
c19d1205
ZW
4821 /* Shift operation on register. */
4822 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4823 }
4824
c19d1205
ZW
4825 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4826 return FAIL;
b99bd4ef 4827
c19d1205 4828 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4829 {
c19d1205 4830 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4831 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4832 return FAIL;
b99bd4ef 4833
91d6fa6a 4834 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4835 {
4836 inst.error = _("constant expression expected");
4837 return FAIL;
4838 }
b99bd4ef 4839
91d6fa6a 4840 value = exp.X_add_number;
c19d1205
ZW
4841 if (value < 0 || value > 30 || value % 2 != 0)
4842 {
4843 inst.error = _("invalid rotation");
4844 return FAIL;
4845 }
4846 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4847 {
4848 inst.error = _("invalid constant");
4849 return FAIL;
4850 }
09d92015 4851
55cf6793 4852 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4853 inst.reloc.exp.X_add_number
4854 = (((inst.reloc.exp.X_add_number << (32 - value))
4855 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4856 }
4857
c19d1205
ZW
4858 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4859 inst.reloc.pc_rel = 0;
4860 return SUCCESS;
09d92015
MM
4861}
4862
4962c51a
MS
4863/* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4869
4870struct group_reloc_table_entry
4871{
4872 const char *name;
4873 int alu_code;
4874 int ldr_code;
4875 int ldrs_code;
4876 int ldc_code;
4877};
4878
4879typedef enum
4880{
4881 /* Varieties of non-ALU group relocation. */
4882
4883 GROUP_LDR,
4884 GROUP_LDRS,
4885 GROUP_LDC
4886} group_reloc_type;
4887
4888static struct group_reloc_table_entry group_reloc_table[] =
4889 { /* Program counter relative: */
4890 { "pc_g0_nc",
4891 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4892 0, /* LDR */
4893 0, /* LDRS */
4894 0 }, /* LDC */
4895 { "pc_g0",
4896 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4900 { "pc_g1_nc",
4901 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4902 0, /* LDR */
4903 0, /* LDRS */
4904 0 }, /* LDC */
4905 { "pc_g1",
4906 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4910 { "pc_g2",
4911 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4915 /* Section base relative */
4916 { "sb_g0_nc",
4917 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4918 0, /* LDR */
4919 0, /* LDRS */
4920 0 }, /* LDC */
4921 { "sb_g0",
4922 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4926 { "sb_g1_nc",
4927 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4928 0, /* LDR */
4929 0, /* LDRS */
4930 0 }, /* LDC */
4931 { "sb_g1",
4932 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4936 { "sb_g2",
4937 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4941
4942/* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4948
4949static int
4950find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4951{
4952 unsigned int i;
4953 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4954 {
4955 int length = strlen (group_reloc_table[i].name);
4956
5f4273c7
NC
4957 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4958 && (*str)[length] == ':')
4962c51a
MS
4959 {
4960 *out = &group_reloc_table[i];
4961 *str += (length + 1);
4962 return SUCCESS;
4963 }
4964 }
4965
4966 return FAIL;
4967}
4968
4969/* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4971
4972 #<immediate>
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4975 <Rm>
4976 <Rm>, <shift>
4977
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4980
4981 Everything else is as for parse_shifter_operand. */
4982
4983static parse_operand_result
4984parse_shifter_operand_group_reloc (char **str, int i)
4985{
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4989
4990 if (((*str)[0] == '#' && (*str)[1] == ':')
4991 || (*str)[0] == ':')
4992 {
4993 struct group_reloc_table_entry *entry;
4994
4995 if ((*str)[0] == '#')
4996 (*str) += 2;
4997 else
4998 (*str)++;
4999
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5002 {
5003 inst.error = _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5005 }
5006
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5011
5012 /* Record the relocation type (always the ALU variant here). */
21d799b5 5013 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5014 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5015
5016 return PARSE_OPERAND_SUCCESS;
5017 }
5018 else
5019 return parse_shifter_operand (str, i) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5021
5022 /* Never reached. */
5023}
5024
8e560766
MGD
5025/* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5027
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029static parse_operand_result
5030parse_neon_alignment (char **str, int i)
5031{
5032 char *p = *str;
5033 expressionS exp;
5034
5035 my_get_expression (&exp, &p, GE_NO_PREFIX);
5036
5037 if (exp.X_op != O_constant)
5038 {
5039 inst.error = _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL;
5041 }
5042
5043 inst.operands[i].imm = exp.X_add_number << 8;
5044 inst.operands[i].immisalign = 1;
5045 /* Alignments are not pre-indexes. */
5046 inst.operands[i].preind = 0;
5047
5048 *str = p;
5049 return PARSE_OPERAND_SUCCESS;
5050}
5051
c19d1205
ZW
5052/* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
09d92015 5054
c19d1205 5055 Preindexed addressing (.preind=1):
09d92015 5056
c19d1205
ZW
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5061
c19d1205 5062 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5063
c19d1205 5064 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5065
c19d1205
ZW
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5070
c19d1205 5071 Unindexed addressing (.preind=0, .postind=0):
09d92015 5072
c19d1205 5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5074
c19d1205 5075 Other:
09d92015 5076
c19d1205
ZW
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5080
c19d1205
ZW
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5083
4962c51a
MS
5084static parse_operand_result
5085parse_address_main (char **str, int i, int group_relocations,
5086 group_reloc_type group_type)
09d92015 5087{
c19d1205
ZW
5088 char *p = *str;
5089 int reg;
09d92015 5090
c19d1205 5091 if (skip_past_char (&p, '[') == FAIL)
09d92015 5092 {
c19d1205
ZW
5093 if (skip_past_char (&p, '=') == FAIL)
5094 {
974da60d 5095 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5096 inst.reloc.pc_rel = 1;
5097 inst.operands[i].reg = REG_PC;
5098 inst.operands[i].isreg = 1;
5099 inst.operands[i].preind = 1;
5100 }
974da60d 5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5102
c19d1205 5103 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5104 return PARSE_OPERAND_FAIL;
09d92015 5105
c19d1205 5106 *str = p;
4962c51a 5107 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5108 }
5109
dcbf9037 5110 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5111 {
c19d1205 5112 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5113 return PARSE_OPERAND_FAIL;
09d92015 5114 }
c19d1205
ZW
5115 inst.operands[i].reg = reg;
5116 inst.operands[i].isreg = 1;
09d92015 5117
c19d1205 5118 if (skip_past_comma (&p) == SUCCESS)
09d92015 5119 {
c19d1205 5120 inst.operands[i].preind = 1;
09d92015 5121
c19d1205
ZW
5122 if (*p == '+') p++;
5123 else if (*p == '-') p++, inst.operands[i].negative = 1;
5124
dcbf9037 5125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5126 {
c19d1205
ZW
5127 inst.operands[i].imm = reg;
5128 inst.operands[i].immisreg = 1;
5129
5130 if (skip_past_comma (&p) == SUCCESS)
5131 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5132 return PARSE_OPERAND_FAIL;
c19d1205 5133 }
5287ad62 5134 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5135 {
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5138 change. */
5139 parse_operand_result result = parse_neon_alignment (&p, i);
5140
5141 if (result != PARSE_OPERAND_SUCCESS)
5142 return result;
5143 }
c19d1205
ZW
5144 else
5145 {
5146 if (inst.operands[i].negative)
5147 {
5148 inst.operands[i].negative = 0;
5149 p--;
5150 }
4962c51a 5151
5f4273c7
NC
5152 if (group_relocations
5153 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5154 {
5155 struct group_reloc_table_entry *entry;
5156
5157 /* Skip over the #: or : sequence. */
5158 if (*p == '#')
5159 p += 2;
5160 else
5161 p++;
5162
5163 /* Try to parse a group relocation. Anything else is an
5164 error. */
5165 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5166 {
5167 inst.error = _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5169 }
5170
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5173 expression. */
5174 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5176
5177 /* Record the relocation type. */
5178 switch (group_type)
5179 {
5180 case GROUP_LDR:
21d799b5 5181 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5182 break;
5183
5184 case GROUP_LDRS:
21d799b5 5185 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5186 break;
5187
5188 case GROUP_LDC:
21d799b5 5189 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5190 break;
5191
5192 default:
9c2799c2 5193 gas_assert (0);
4962c51a
MS
5194 }
5195
5196 if (inst.reloc.type == 0)
5197 {
5198 inst.error = _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5200 }
5201 }
5202 else
26d97720
NS
5203 {
5204 char *q = p;
5205 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5206 return PARSE_OPERAND_FAIL;
5207 /* If the offset is 0, find out if it's a +0 or -0. */
5208 if (inst.reloc.exp.X_op == O_constant
5209 && inst.reloc.exp.X_add_number == 0)
5210 {
5211 skip_whitespace (q);
5212 if (*q == '#')
5213 {
5214 q++;
5215 skip_whitespace (q);
5216 }
5217 if (*q == '-')
5218 inst.operands[i].negative = 1;
5219 }
5220 }
09d92015
MM
5221 }
5222 }
8e560766
MGD
5223 else if (skip_past_char (&p, ':') == SUCCESS)
5224 {
5225 /* FIXME: '@' should be used here, but it's filtered out by generic code
5226 before we get to see it here. This may be subject to change. */
5227 parse_operand_result result = parse_neon_alignment (&p, i);
5228
5229 if (result != PARSE_OPERAND_SUCCESS)
5230 return result;
5231 }
09d92015 5232
c19d1205 5233 if (skip_past_char (&p, ']') == FAIL)
09d92015 5234 {
c19d1205 5235 inst.error = _("']' expected");
4962c51a 5236 return PARSE_OPERAND_FAIL;
09d92015
MM
5237 }
5238
c19d1205
ZW
5239 if (skip_past_char (&p, '!') == SUCCESS)
5240 inst.operands[i].writeback = 1;
09d92015 5241
c19d1205 5242 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5243 {
c19d1205
ZW
5244 if (skip_past_char (&p, '{') == SUCCESS)
5245 {
5246 /* [Rn], {expr} - unindexed, with option */
5247 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5248 0, 255, TRUE) == FAIL)
4962c51a 5249 return PARSE_OPERAND_FAIL;
09d92015 5250
c19d1205
ZW
5251 if (skip_past_char (&p, '}') == FAIL)
5252 {
5253 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5254 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5255 }
5256 if (inst.operands[i].preind)
5257 {
5258 inst.error = _("cannot combine index with option");
4962c51a 5259 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5260 }
5261 *str = p;
4962c51a 5262 return PARSE_OPERAND_SUCCESS;
09d92015 5263 }
c19d1205
ZW
5264 else
5265 {
5266 inst.operands[i].postind = 1;
5267 inst.operands[i].writeback = 1;
09d92015 5268
c19d1205
ZW
5269 if (inst.operands[i].preind)
5270 {
5271 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5272 return PARSE_OPERAND_FAIL;
c19d1205 5273 }
09d92015 5274
c19d1205
ZW
5275 if (*p == '+') p++;
5276 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5277
dcbf9037 5278 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5279 {
5287ad62
JB
5280 /* We might be using the immediate for alignment already. If we
5281 are, OR the register number into the low-order bits. */
5282 if (inst.operands[i].immisalign)
5283 inst.operands[i].imm |= reg;
5284 else
5285 inst.operands[i].imm = reg;
c19d1205 5286 inst.operands[i].immisreg = 1;
a737bd4d 5287
c19d1205
ZW
5288 if (skip_past_comma (&p) == SUCCESS)
5289 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5290 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5291 }
5292 else
5293 {
26d97720 5294 char *q = p;
c19d1205
ZW
5295 if (inst.operands[i].negative)
5296 {
5297 inst.operands[i].negative = 0;
5298 p--;
5299 }
5300 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5301 return PARSE_OPERAND_FAIL;
26d97720
NS
5302 /* If the offset is 0, find out if it's a +0 or -0. */
5303 if (inst.reloc.exp.X_op == O_constant
5304 && inst.reloc.exp.X_add_number == 0)
5305 {
5306 skip_whitespace (q);
5307 if (*q == '#')
5308 {
5309 q++;
5310 skip_whitespace (q);
5311 }
5312 if (*q == '-')
5313 inst.operands[i].negative = 1;
5314 }
c19d1205
ZW
5315 }
5316 }
a737bd4d
NC
5317 }
5318
c19d1205
ZW
5319 /* If at this point neither .preind nor .postind is set, we have a
5320 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5321 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5322 {
5323 inst.operands[i].preind = 1;
5324 inst.reloc.exp.X_op = O_constant;
5325 inst.reloc.exp.X_add_number = 0;
5326 }
5327 *str = p;
4962c51a
MS
5328 return PARSE_OPERAND_SUCCESS;
5329}
5330
5331static int
5332parse_address (char **str, int i)
5333{
21d799b5 5334 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5335 ? SUCCESS : FAIL;
5336}
5337
5338static parse_operand_result
5339parse_address_group_reloc (char **str, int i, group_reloc_type type)
5340{
5341 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5342}
5343
b6895b4f
PB
5344/* Parse an operand for a MOVW or MOVT instruction. */
5345static int
5346parse_half (char **str)
5347{
5348 char * p;
5f4273c7 5349
b6895b4f
PB
5350 p = *str;
5351 skip_past_char (&p, '#');
5f4273c7 5352 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5353 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5354 else if (strncasecmp (p, ":upper16:", 9) == 0)
5355 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5356
5357 if (inst.reloc.type != BFD_RELOC_UNUSED)
5358 {
5359 p += 9;
5f4273c7 5360 skip_whitespace (p);
b6895b4f
PB
5361 }
5362
5363 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5364 return FAIL;
5365
5366 if (inst.reloc.type == BFD_RELOC_UNUSED)
5367 {
5368 if (inst.reloc.exp.X_op != O_constant)
5369 {
5370 inst.error = _("constant expression expected");
5371 return FAIL;
5372 }
5373 if (inst.reloc.exp.X_add_number < 0
5374 || inst.reloc.exp.X_add_number > 0xffff)
5375 {
5376 inst.error = _("immediate value out of range");
5377 return FAIL;
5378 }
5379 }
5380 *str = p;
5381 return SUCCESS;
5382}
5383
c19d1205 5384/* Miscellaneous. */
a737bd4d 5385
c19d1205
ZW
5386/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5387 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5388static int
d2cd1205 5389parse_psr (char **str, bfd_boolean lhs)
09d92015 5390{
c19d1205
ZW
5391 char *p;
5392 unsigned long psr_field;
62b3e311
PB
5393 const struct asm_psr *psr;
5394 char *start;
d2cd1205 5395 bfd_boolean is_apsr = FALSE;
ac7f631b 5396 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5397
a4482bb6
NC
5398 /* PR gas/12698: If the user has specified -march=all then m_profile will
5399 be TRUE, but we want to ignore it in this case as we are building for any
5400 CPU type, including non-m variants. */
5401 if (selected_cpu.core == arm_arch_any.core)
5402 m_profile = FALSE;
5403
c19d1205
ZW
5404 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5405 feature for ease of use and backwards compatibility. */
5406 p = *str;
62b3e311 5407 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5408 {
5409 if (m_profile)
5410 goto unsupported_psr;
5411
5412 psr_field = SPSR_BIT;
5413 }
5414 else if (strncasecmp (p, "CPSR", 4) == 0)
5415 {
5416 if (m_profile)
5417 goto unsupported_psr;
5418
5419 psr_field = 0;
5420 }
5421 else if (strncasecmp (p, "APSR", 4) == 0)
5422 {
5423 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5424 and ARMv7-R architecture CPUs. */
5425 is_apsr = TRUE;
5426 psr_field = 0;
5427 }
5428 else if (m_profile)
62b3e311
PB
5429 {
5430 start = p;
5431 do
5432 p++;
5433 while (ISALNUM (*p) || *p == '_');
5434
d2cd1205
JB
5435 if (strncasecmp (start, "iapsr", 5) == 0
5436 || strncasecmp (start, "eapsr", 5) == 0
5437 || strncasecmp (start, "xpsr", 4) == 0
5438 || strncasecmp (start, "psr", 3) == 0)
5439 p = start + strcspn (start, "rR") + 1;
5440
21d799b5
NC
5441 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5442 p - start);
d2cd1205 5443
62b3e311
PB
5444 if (!psr)
5445 return FAIL;
09d92015 5446
d2cd1205
JB
5447 /* If APSR is being written, a bitfield may be specified. Note that
5448 APSR itself is handled above. */
5449 if (psr->field <= 3)
5450 {
5451 psr_field = psr->field;
5452 is_apsr = TRUE;
5453 goto check_suffix;
5454 }
5455
62b3e311 5456 *str = p;
d2cd1205
JB
5457 /* M-profile MSR instructions have the mask field set to "10", except
5458 *PSR variants which modify APSR, which may use a different mask (and
5459 have been handled already). Do that by setting the PSR_f field
5460 here. */
5461 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5462 }
d2cd1205
JB
5463 else
5464 goto unsupported_psr;
09d92015 5465
62b3e311 5466 p += 4;
d2cd1205 5467check_suffix:
c19d1205
ZW
5468 if (*p == '_')
5469 {
5470 /* A suffix follows. */
c19d1205
ZW
5471 p++;
5472 start = p;
a737bd4d 5473
c19d1205
ZW
5474 do
5475 p++;
5476 while (ISALNUM (*p) || *p == '_');
a737bd4d 5477
d2cd1205
JB
5478 if (is_apsr)
5479 {
5480 /* APSR uses a notation for bits, rather than fields. */
5481 unsigned int nzcvq_bits = 0;
5482 unsigned int g_bit = 0;
5483 char *bit;
5484
5485 for (bit = start; bit != p; bit++)
5486 {
5487 switch (TOLOWER (*bit))
5488 {
5489 case 'n':
5490 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5491 break;
5492
5493 case 'z':
5494 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5495 break;
5496
5497 case 'c':
5498 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5499 break;
5500
5501 case 'v':
5502 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5503 break;
5504
5505 case 'q':
5506 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5507 break;
5508
5509 case 'g':
5510 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5511 break;
5512
5513 default:
5514 inst.error = _("unexpected bit specified after APSR");
5515 return FAIL;
5516 }
5517 }
5518
5519 if (nzcvq_bits == 0x1f)
5520 psr_field |= PSR_f;
5521
5522 if (g_bit == 0x1)
5523 {
5524 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5525 {
5526 inst.error = _("selected processor does not "
5527 "support DSP extension");
5528 return FAIL;
5529 }
5530
5531 psr_field |= PSR_s;
5532 }
5533
5534 if ((nzcvq_bits & 0x20) != 0
5535 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5536 || (g_bit & 0x2) != 0)
5537 {
5538 inst.error = _("bad bitmask specified after APSR");
5539 return FAIL;
5540 }
5541 }
5542 else
5543 {
5544 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5545 p - start);
5546 if (!psr)
5547 goto error;
a737bd4d 5548
d2cd1205
JB
5549 psr_field |= psr->field;
5550 }
a737bd4d 5551 }
c19d1205 5552 else
a737bd4d 5553 {
c19d1205
ZW
5554 if (ISALNUM (*p))
5555 goto error; /* Garbage after "[CS]PSR". */
5556
d2cd1205
JB
5557 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5558 is deprecated, but allow it anyway. */
5559 if (is_apsr && lhs)
5560 {
5561 psr_field |= PSR_f;
5562 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5563 "deprecated"));
5564 }
5565 else if (!m_profile)
5566 /* These bits are never right for M-profile devices: don't set them
5567 (only code paths which read/write APSR reach here). */
5568 psr_field |= (PSR_c | PSR_f);
a737bd4d 5569 }
c19d1205
ZW
5570 *str = p;
5571 return psr_field;
a737bd4d 5572
d2cd1205
JB
5573 unsupported_psr:
5574 inst.error = _("selected processor does not support requested special "
5575 "purpose register");
5576 return FAIL;
5577
c19d1205
ZW
5578 error:
5579 inst.error = _("flag for {c}psr instruction expected");
5580 return FAIL;
a737bd4d
NC
5581}
5582
c19d1205
ZW
5583/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5584 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5585
c19d1205
ZW
5586static int
5587parse_cps_flags (char **str)
a737bd4d 5588{
c19d1205
ZW
5589 int val = 0;
5590 int saw_a_flag = 0;
5591 char *s = *str;
a737bd4d 5592
c19d1205
ZW
5593 for (;;)
5594 switch (*s++)
5595 {
5596 case '\0': case ',':
5597 goto done;
a737bd4d 5598
c19d1205
ZW
5599 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5600 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5601 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5602
c19d1205
ZW
5603 default:
5604 inst.error = _("unrecognized CPS flag");
5605 return FAIL;
5606 }
a737bd4d 5607
c19d1205
ZW
5608 done:
5609 if (saw_a_flag == 0)
a737bd4d 5610 {
c19d1205
ZW
5611 inst.error = _("missing CPS flags");
5612 return FAIL;
a737bd4d 5613 }
a737bd4d 5614
c19d1205
ZW
5615 *str = s - 1;
5616 return val;
a737bd4d
NC
5617}
5618
c19d1205
ZW
5619/* Parse an endian specifier ("BE" or "LE", case insensitive);
5620 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5621
5622static int
c19d1205 5623parse_endian_specifier (char **str)
a737bd4d 5624{
c19d1205
ZW
5625 int little_endian;
5626 char *s = *str;
a737bd4d 5627
c19d1205
ZW
5628 if (strncasecmp (s, "BE", 2))
5629 little_endian = 0;
5630 else if (strncasecmp (s, "LE", 2))
5631 little_endian = 1;
5632 else
a737bd4d 5633 {
c19d1205 5634 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5635 return FAIL;
5636 }
5637
c19d1205 5638 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5639 {
c19d1205 5640 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5641 return FAIL;
5642 }
5643
c19d1205
ZW
5644 *str = s + 2;
5645 return little_endian;
5646}
a737bd4d 5647
c19d1205
ZW
5648/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5649 value suitable for poking into the rotate field of an sxt or sxta
5650 instruction, or FAIL on error. */
5651
5652static int
5653parse_ror (char **str)
5654{
5655 int rot;
5656 char *s = *str;
5657
5658 if (strncasecmp (s, "ROR", 3) == 0)
5659 s += 3;
5660 else
a737bd4d 5661 {
c19d1205 5662 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5663 return FAIL;
5664 }
c19d1205
ZW
5665
5666 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5667 return FAIL;
5668
5669 switch (rot)
a737bd4d 5670 {
c19d1205
ZW
5671 case 0: *str = s; return 0x0;
5672 case 8: *str = s; return 0x1;
5673 case 16: *str = s; return 0x2;
5674 case 24: *str = s; return 0x3;
5675
5676 default:
5677 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5678 return FAIL;
5679 }
c19d1205 5680}
a737bd4d 5681
c19d1205
ZW
5682/* Parse a conditional code (from conds[] below). The value returned is in the
5683 range 0 .. 14, or FAIL. */
5684static int
5685parse_cond (char **str)
5686{
c462b453 5687 char *q;
c19d1205 5688 const struct asm_cond *c;
c462b453
PB
5689 int n;
5690 /* Condition codes are always 2 characters, so matching up to
5691 3 characters is sufficient. */
5692 char cond[3];
a737bd4d 5693
c462b453
PB
5694 q = *str;
5695 n = 0;
5696 while (ISALPHA (*q) && n < 3)
5697 {
e07e6e58 5698 cond[n] = TOLOWER (*q);
c462b453
PB
5699 q++;
5700 n++;
5701 }
a737bd4d 5702
21d799b5 5703 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5704 if (!c)
a737bd4d 5705 {
c19d1205 5706 inst.error = _("condition required");
a737bd4d
NC
5707 return FAIL;
5708 }
5709
c19d1205
ZW
5710 *str = q;
5711 return c->value;
5712}
5713
62b3e311
PB
5714/* Parse an option for a barrier instruction. Returns the encoding for the
5715 option, or FAIL. */
5716static int
5717parse_barrier (char **str)
5718{
5719 char *p, *q;
5720 const struct asm_barrier_opt *o;
5721
5722 p = q = *str;
5723 while (ISALPHA (*q))
5724 q++;
5725
21d799b5
NC
5726 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5727 q - p);
62b3e311
PB
5728 if (!o)
5729 return FAIL;
5730
5731 *str = q;
5732 return o->value;
5733}
5734
92e90b6e
PB
5735/* Parse the operands of a table branch instruction. Similar to a memory
5736 operand. */
5737static int
5738parse_tb (char **str)
5739{
5740 char * p = *str;
5741 int reg;
5742
5743 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5744 {
5745 inst.error = _("'[' expected");
5746 return FAIL;
5747 }
92e90b6e 5748
dcbf9037 5749 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5750 {
5751 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5752 return FAIL;
5753 }
5754 inst.operands[0].reg = reg;
5755
5756 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5757 {
5758 inst.error = _("',' expected");
5759 return FAIL;
5760 }
5f4273c7 5761
dcbf9037 5762 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5763 {
5764 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5765 return FAIL;
5766 }
5767 inst.operands[0].imm = reg;
5768
5769 if (skip_past_comma (&p) == SUCCESS)
5770 {
5771 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5772 return FAIL;
5773 if (inst.reloc.exp.X_add_number != 1)
5774 {
5775 inst.error = _("invalid shift");
5776 return FAIL;
5777 }
5778 inst.operands[0].shifted = 1;
5779 }
5780
5781 if (skip_past_char (&p, ']') == FAIL)
5782 {
5783 inst.error = _("']' expected");
5784 return FAIL;
5785 }
5786 *str = p;
5787 return SUCCESS;
5788}
5789
5287ad62
JB
5790/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5791 information on the types the operands can take and how they are encoded.
037e8744
JB
5792 Up to four operands may be read; this function handles setting the
5793 ".present" field for each read operand itself.
5287ad62
JB
5794 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5795 else returns FAIL. */
5796
5797static int
5798parse_neon_mov (char **str, int *which_operand)
5799{
5800 int i = *which_operand, val;
5801 enum arm_reg_type rtype;
5802 char *ptr = *str;
dcbf9037 5803 struct neon_type_el optype;
5f4273c7 5804
dcbf9037 5805 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5806 {
5807 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5808 inst.operands[i].reg = val;
5809 inst.operands[i].isscalar = 1;
dcbf9037 5810 inst.operands[i].vectype = optype;
5287ad62
JB
5811 inst.operands[i++].present = 1;
5812
5813 if (skip_past_comma (&ptr) == FAIL)
5814 goto wanted_comma;
5f4273c7 5815
dcbf9037 5816 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5817 goto wanted_arm;
5f4273c7 5818
5287ad62
JB
5819 inst.operands[i].reg = val;
5820 inst.operands[i].isreg = 1;
5821 inst.operands[i].present = 1;
5822 }
037e8744 5823 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5824 != FAIL)
5287ad62
JB
5825 {
5826 /* Cases 0, 1, 2, 3, 5 (D only). */
5827 if (skip_past_comma (&ptr) == FAIL)
5828 goto wanted_comma;
5f4273c7 5829
5287ad62
JB
5830 inst.operands[i].reg = val;
5831 inst.operands[i].isreg = 1;
5832 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5833 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5834 inst.operands[i].isvec = 1;
dcbf9037 5835 inst.operands[i].vectype = optype;
5287ad62
JB
5836 inst.operands[i++].present = 1;
5837
dcbf9037 5838 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5839 {
037e8744
JB
5840 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5841 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5842 inst.operands[i].reg = val;
5843 inst.operands[i].isreg = 1;
037e8744 5844 inst.operands[i].present = 1;
5287ad62
JB
5845
5846 if (rtype == REG_TYPE_NQ)
5847 {
dcbf9037 5848 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5849 return FAIL;
5850 }
037e8744
JB
5851 else if (rtype != REG_TYPE_VFS)
5852 {
5853 i++;
5854 if (skip_past_comma (&ptr) == FAIL)
5855 goto wanted_comma;
5856 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5857 goto wanted_arm;
5858 inst.operands[i].reg = val;
5859 inst.operands[i].isreg = 1;
5860 inst.operands[i].present = 1;
5861 }
5287ad62 5862 }
037e8744
JB
5863 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5864 &optype)) != FAIL)
5287ad62
JB
5865 {
5866 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5867 Case 1: VMOV<c><q> <Dd>, <Dm>
5868 Case 8: VMOV.F32 <Sd>, <Sm>
5869 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5870
5871 inst.operands[i].reg = val;
5872 inst.operands[i].isreg = 1;
5873 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5874 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5875 inst.operands[i].isvec = 1;
dcbf9037 5876 inst.operands[i].vectype = optype;
5287ad62 5877 inst.operands[i].present = 1;
5f4273c7 5878
037e8744
JB
5879 if (skip_past_comma (&ptr) == SUCCESS)
5880 {
5881 /* Case 15. */
5882 i++;
5883
5884 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5885 goto wanted_arm;
5886
5887 inst.operands[i].reg = val;
5888 inst.operands[i].isreg = 1;
5889 inst.operands[i++].present = 1;
5f4273c7 5890
037e8744
JB
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
037e8744
JB
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5f4273c7 5896
037e8744
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i++].present = 1;
5900 }
5287ad62 5901 }
4641781c
PB
5902 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5903 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5904 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5905 Case 10: VMOV.F32 <Sd>, #<imm>
5906 Case 11: VMOV.F64 <Dd>, #<imm> */
5907 inst.operands[i].immisfloat = 1;
5908 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5909 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5910 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5911 ;
5287ad62
JB
5912 else
5913 {
dcbf9037 5914 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5915 return FAIL;
5916 }
5917 }
dcbf9037 5918 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5919 {
5920 /* Cases 6, 7. */
5921 inst.operands[i].reg = val;
5922 inst.operands[i].isreg = 1;
5923 inst.operands[i++].present = 1;
5f4273c7 5924
5287ad62
JB
5925 if (skip_past_comma (&ptr) == FAIL)
5926 goto wanted_comma;
5f4273c7 5927
dcbf9037 5928 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5929 {
5930 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5931 inst.operands[i].reg = val;
5932 inst.operands[i].isscalar = 1;
5933 inst.operands[i].present = 1;
dcbf9037 5934 inst.operands[i].vectype = optype;
5287ad62 5935 }
dcbf9037 5936 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5937 {
5938 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5939 inst.operands[i].reg = val;
5940 inst.operands[i].isreg = 1;
5941 inst.operands[i++].present = 1;
5f4273c7 5942
5287ad62
JB
5943 if (skip_past_comma (&ptr) == FAIL)
5944 goto wanted_comma;
5f4273c7 5945
037e8744 5946 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5947 == FAIL)
5287ad62 5948 {
037e8744 5949 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5950 return FAIL;
5951 }
5952
5953 inst.operands[i].reg = val;
5954 inst.operands[i].isreg = 1;
037e8744
JB
5955 inst.operands[i].isvec = 1;
5956 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5957 inst.operands[i].vectype = optype;
5287ad62 5958 inst.operands[i].present = 1;
5f4273c7 5959
037e8744
JB
5960 if (rtype == REG_TYPE_VFS)
5961 {
5962 /* Case 14. */
5963 i++;
5964 if (skip_past_comma (&ptr) == FAIL)
5965 goto wanted_comma;
5966 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5967 &optype)) == FAIL)
5968 {
5969 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5970 return FAIL;
5971 }
5972 inst.operands[i].reg = val;
5973 inst.operands[i].isreg = 1;
5974 inst.operands[i].isvec = 1;
5975 inst.operands[i].issingle = 1;
5976 inst.operands[i].vectype = optype;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5981 != FAIL)
5982 {
5983 /* Case 13. */
5984 inst.operands[i].reg = val;
5985 inst.operands[i].isreg = 1;
5986 inst.operands[i].isvec = 1;
5987 inst.operands[i].issingle = 1;
5988 inst.operands[i].vectype = optype;
5989 inst.operands[i++].present = 1;
5287ad62
JB
5990 }
5991 }
5992 else
5993 {
dcbf9037 5994 first_error (_("parse error"));
5287ad62
JB
5995 return FAIL;
5996 }
5997
5998 /* Successfully parsed the operands. Update args. */
5999 *which_operand = i;
6000 *str = ptr;
6001 return SUCCESS;
6002
5f4273c7 6003 wanted_comma:
dcbf9037 6004 first_error (_("expected comma"));
5287ad62 6005 return FAIL;
5f4273c7
NC
6006
6007 wanted_arm:
dcbf9037 6008 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6009 return FAIL;
5287ad62
JB
6010}
6011
5be8be5d
DG
6012/* Use this macro when the operand constraints are different
6013 for ARM and THUMB (e.g. ldrd). */
6014#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6015 ((arm_operand) | ((thumb_operand) << 16))
6016
c19d1205
ZW
6017/* Matcher codes for parse_operands. */
6018enum operand_parse_code
6019{
6020 OP_stop, /* end of line */
6021
6022 OP_RR, /* ARM register */
6023 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6024 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6025 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
6026 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6027 optional trailing ! */
c19d1205
ZW
6028 OP_RRw, /* ARM register, not r15, optional trailing ! */
6029 OP_RCP, /* Coprocessor number */
6030 OP_RCN, /* Coprocessor register */
6031 OP_RF, /* FPA register */
6032 OP_RVS, /* VFP single precision register */
5287ad62
JB
6033 OP_RVD, /* VFP double precision register (0..15) */
6034 OP_RND, /* Neon double precision register (0..31) */
6035 OP_RNQ, /* Neon quad precision register */
037e8744 6036 OP_RVSD, /* VFP single or double precision register */
5287ad62 6037 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6038 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6039 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6040 OP_RVC, /* VFP control register */
6041 OP_RMF, /* Maverick F register */
6042 OP_RMD, /* Maverick D register */
6043 OP_RMFX, /* Maverick FX register */
6044 OP_RMDX, /* Maverick DX register */
6045 OP_RMAX, /* Maverick AX register */
6046 OP_RMDS, /* Maverick DSPSC register */
6047 OP_RIWR, /* iWMMXt wR register */
6048 OP_RIWC, /* iWMMXt wC register */
6049 OP_RIWG, /* iWMMXt wCG register */
6050 OP_RXA, /* XScale accumulator register */
6051
6052 OP_REGLST, /* ARM register list */
6053 OP_VRSLST, /* VFP single-precision register list */
6054 OP_VRDLST, /* VFP double-precision register list */
037e8744 6055 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6056 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6057 OP_NSTRLST, /* Neon element/structure list */
6058
5287ad62 6059 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6060 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6061 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6062 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6063 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6064 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6065 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6066 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6067 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6068 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6069
6070 OP_I0, /* immediate zero */
c19d1205
ZW
6071 OP_I7, /* immediate value 0 .. 7 */
6072 OP_I15, /* 0 .. 15 */
6073 OP_I16, /* 1 .. 16 */
5287ad62 6074 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6075 OP_I31, /* 0 .. 31 */
6076 OP_I31w, /* 0 .. 31, optional trailing ! */
6077 OP_I32, /* 1 .. 32 */
5287ad62
JB
6078 OP_I32z, /* 0 .. 32 */
6079 OP_I63, /* 0 .. 63 */
c19d1205 6080 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6081 OP_I64, /* 1 .. 64 */
6082 OP_I64z, /* 0 .. 64 */
c19d1205 6083 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6084
6085 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6086 OP_I7b, /* 0 .. 7 */
6087 OP_I15b, /* 0 .. 15 */
6088 OP_I31b, /* 0 .. 31 */
6089
6090 OP_SH, /* shifter operand */
4962c51a 6091 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6092 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6093 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6094 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6095 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6096 OP_EXP, /* arbitrary expression */
6097 OP_EXPi, /* same, with optional immediate prefix */
6098 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6099 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6100
6101 OP_CPSF, /* CPS flags */
6102 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6103 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6104 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6105 OP_COND, /* conditional code */
92e90b6e 6106 OP_TB, /* Table branch. */
c19d1205 6107
037e8744
JB
6108 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6109
c19d1205
ZW
6110 OP_RRnpc_I0, /* ARM register or literal 0 */
6111 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6112 OP_RR_EXi, /* ARM register or expression with imm prefix */
6113 OP_RF_IF, /* FPA register or immediate */
6114 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6115 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6116
6117 /* Optional operands. */
6118 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6119 OP_oI31b, /* 0 .. 31 */
5287ad62 6120 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
6121 OP_oIffffb, /* 0 .. 65535 */
6122 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6123
6124 OP_oRR, /* ARM register */
6125 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6126 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6127 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6128 OP_oRND, /* Optional Neon double precision register */
6129 OP_oRNQ, /* Optional Neon quad precision register */
6130 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6131 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6132 OP_oSHll, /* LSL immediate */
6133 OP_oSHar, /* ASR immediate */
6134 OP_oSHllar, /* LSL or ASR immediate */
6135 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6136 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6137
5be8be5d
DG
6138 /* Some pre-defined mixed (ARM/THUMB) operands. */
6139 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6140 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6141 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6142
c19d1205
ZW
6143 OP_FIRST_OPTIONAL = OP_oI7b
6144};
a737bd4d 6145
c19d1205
ZW
6146/* Generic instruction operand parser. This does no encoding and no
6147 semantic validation; it merely squirrels values away in the inst
6148 structure. Returns SUCCESS or FAIL depending on whether the
6149 specified grammar matched. */
6150static int
5be8be5d 6151parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6152{
5be8be5d 6153 unsigned const int *upat = pattern;
c19d1205
ZW
6154 char *backtrack_pos = 0;
6155 const char *backtrack_error = 0;
6156 int i, val, backtrack_index = 0;
5287ad62 6157 enum arm_reg_type rtype;
4962c51a 6158 parse_operand_result result;
5be8be5d 6159 unsigned int op_parse_code;
c19d1205 6160
e07e6e58
NC
6161#define po_char_or_fail(chr) \
6162 do \
6163 { \
6164 if (skip_past_char (&str, chr) == FAIL) \
6165 goto bad_args; \
6166 } \
6167 while (0)
c19d1205 6168
e07e6e58
NC
6169#define po_reg_or_fail(regtype) \
6170 do \
dcbf9037 6171 { \
e07e6e58
NC
6172 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6173 & inst.operands[i].vectype); \
6174 if (val == FAIL) \
6175 { \
6176 first_error (_(reg_expected_msgs[regtype])); \
6177 goto failure; \
6178 } \
6179 inst.operands[i].reg = val; \
6180 inst.operands[i].isreg = 1; \
6181 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6182 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6183 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6184 || rtype == REG_TYPE_VFD \
6185 || rtype == REG_TYPE_NQ); \
dcbf9037 6186 } \
e07e6e58
NC
6187 while (0)
6188
6189#define po_reg_or_goto(regtype, label) \
6190 do \
6191 { \
6192 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6193 & inst.operands[i].vectype); \
6194 if (val == FAIL) \
6195 goto label; \
dcbf9037 6196 \
e07e6e58
NC
6197 inst.operands[i].reg = val; \
6198 inst.operands[i].isreg = 1; \
6199 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6200 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6201 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6202 || rtype == REG_TYPE_VFD \
6203 || rtype == REG_TYPE_NQ); \
6204 } \
6205 while (0)
6206
6207#define po_imm_or_fail(min, max, popt) \
6208 do \
6209 { \
6210 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6211 goto failure; \
6212 inst.operands[i].imm = val; \
6213 } \
6214 while (0)
6215
6216#define po_scalar_or_goto(elsz, label) \
6217 do \
6218 { \
6219 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6220 if (val == FAIL) \
6221 goto label; \
6222 inst.operands[i].reg = val; \
6223 inst.operands[i].isscalar = 1; \
6224 } \
6225 while (0)
6226
6227#define po_misc_or_fail(expr) \
6228 do \
6229 { \
6230 if (expr) \
6231 goto failure; \
6232 } \
6233 while (0)
6234
6235#define po_misc_or_fail_no_backtrack(expr) \
6236 do \
6237 { \
6238 result = expr; \
6239 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6240 backtrack_pos = 0; \
6241 if (result != PARSE_OPERAND_SUCCESS) \
6242 goto failure; \
6243 } \
6244 while (0)
4962c51a 6245
52e7f43d
RE
6246#define po_barrier_or_imm(str) \
6247 do \
6248 { \
6249 val = parse_barrier (&str); \
6250 if (val == FAIL) \
6251 { \
6252 if (ISALPHA (*str)) \
6253 goto failure; \
6254 else \
6255 goto immediate; \
6256 } \
6257 else \
6258 { \
6259 if ((inst.instruction & 0xf0) == 0x60 \
6260 && val != 0xf) \
6261 { \
6262 /* ISB can only take SY as an option. */ \
6263 inst.error = _("invalid barrier type"); \
6264 goto failure; \
6265 } \
6266 } \
6267 } \
6268 while (0)
6269
c19d1205
ZW
6270 skip_whitespace (str);
6271
6272 for (i = 0; upat[i] != OP_stop; i++)
6273 {
5be8be5d
DG
6274 op_parse_code = upat[i];
6275 if (op_parse_code >= 1<<16)
6276 op_parse_code = thumb ? (op_parse_code >> 16)
6277 : (op_parse_code & ((1<<16)-1));
6278
6279 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6280 {
6281 /* Remember where we are in case we need to backtrack. */
9c2799c2 6282 gas_assert (!backtrack_pos);
c19d1205
ZW
6283 backtrack_pos = str;
6284 backtrack_error = inst.error;
6285 backtrack_index = i;
6286 }
6287
b6702015 6288 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6289 po_char_or_fail (',');
6290
5be8be5d 6291 switch (op_parse_code)
c19d1205
ZW
6292 {
6293 /* Registers */
6294 case OP_oRRnpc:
5be8be5d 6295 case OP_oRRnpcsp:
c19d1205 6296 case OP_RRnpc:
5be8be5d 6297 case OP_RRnpcsp:
c19d1205
ZW
6298 case OP_oRR:
6299 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6300 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6301 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6302 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6303 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6304 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6305 case OP_oRND:
6306 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6307 case OP_RVC:
6308 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6309 break;
6310 /* Also accept generic coprocessor regs for unknown registers. */
6311 coproc_reg:
6312 po_reg_or_fail (REG_TYPE_CN);
6313 break;
c19d1205
ZW
6314 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6315 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6316 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6317 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6318 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6319 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6320 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6321 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6322 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6323 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6324 case OP_oRNQ:
6325 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6326 case OP_oRNDQ:
6327 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6328 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6329 case OP_oRNSDQ:
6330 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6331
6332 /* Neon scalar. Using an element size of 8 means that some invalid
6333 scalars are accepted here, so deal with those in later code. */
6334 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6335
5287ad62
JB
6336 case OP_RNDQ_I0:
6337 {
6338 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6339 break;
6340 try_imm0:
6341 po_imm_or_fail (0, 0, TRUE);
6342 }
6343 break;
6344
037e8744
JB
6345 case OP_RVSD_I0:
6346 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6347 break;
6348
5287ad62
JB
6349 case OP_RR_RNSC:
6350 {
6351 po_scalar_or_goto (8, try_rr);
6352 break;
6353 try_rr:
6354 po_reg_or_fail (REG_TYPE_RN);
6355 }
6356 break;
6357
037e8744
JB
6358 case OP_RNSDQ_RNSC:
6359 {
6360 po_scalar_or_goto (8, try_nsdq);
6361 break;
6362 try_nsdq:
6363 po_reg_or_fail (REG_TYPE_NSDQ);
6364 }
6365 break;
6366
5287ad62
JB
6367 case OP_RNDQ_RNSC:
6368 {
6369 po_scalar_or_goto (8, try_ndq);
6370 break;
6371 try_ndq:
6372 po_reg_or_fail (REG_TYPE_NDQ);
6373 }
6374 break;
6375
6376 case OP_RND_RNSC:
6377 {
6378 po_scalar_or_goto (8, try_vfd);
6379 break;
6380 try_vfd:
6381 po_reg_or_fail (REG_TYPE_VFD);
6382 }
6383 break;
6384
6385 case OP_VMOV:
6386 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6387 not careful then bad things might happen. */
6388 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6389 break;
6390
4316f0d2 6391 case OP_RNDQ_Ibig:
5287ad62 6392 {
4316f0d2 6393 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6394 break;
4316f0d2 6395 try_immbig:
5287ad62
JB
6396 /* There's a possibility of getting a 64-bit immediate here, so
6397 we need special handling. */
6398 if (parse_big_immediate (&str, i) == FAIL)
6399 {
6400 inst.error = _("immediate value is out of range");
6401 goto failure;
6402 }
6403 }
6404 break;
6405
6406 case OP_RNDQ_I63b:
6407 {
6408 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6409 break;
6410 try_shimm:
6411 po_imm_or_fail (0, 63, TRUE);
6412 }
6413 break;
c19d1205
ZW
6414
6415 case OP_RRnpcb:
6416 po_char_or_fail ('[');
6417 po_reg_or_fail (REG_TYPE_RN);
6418 po_char_or_fail (']');
6419 break;
a737bd4d 6420
55881a11 6421 case OP_RRnpctw:
c19d1205 6422 case OP_RRw:
b6702015 6423 case OP_oRRw:
c19d1205
ZW
6424 po_reg_or_fail (REG_TYPE_RN);
6425 if (skip_past_char (&str, '!') == SUCCESS)
6426 inst.operands[i].writeback = 1;
6427 break;
6428
6429 /* Immediates */
6430 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6431 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6432 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6433 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6434 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6435 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6436 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6437 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6438 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6439 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6440 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6441 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6442
6443 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6444 case OP_oI7b:
6445 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6446 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6447 case OP_oI31b:
6448 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6449 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6450 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6451
6452 /* Immediate variants */
6453 case OP_oI255c:
6454 po_char_or_fail ('{');
6455 po_imm_or_fail (0, 255, TRUE);
6456 po_char_or_fail ('}');
6457 break;
6458
6459 case OP_I31w:
6460 /* The expression parser chokes on a trailing !, so we have
6461 to find it first and zap it. */
6462 {
6463 char *s = str;
6464 while (*s && *s != ',')
6465 s++;
6466 if (s[-1] == '!')
6467 {
6468 s[-1] = '\0';
6469 inst.operands[i].writeback = 1;
6470 }
6471 po_imm_or_fail (0, 31, TRUE);
6472 if (str == s - 1)
6473 str = s;
6474 }
6475 break;
6476
6477 /* Expressions */
6478 case OP_EXPi: EXPi:
6479 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6480 GE_OPT_PREFIX));
6481 break;
6482
6483 case OP_EXP:
6484 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6485 GE_NO_PREFIX));
6486 break;
6487
6488 case OP_EXPr: EXPr:
6489 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6490 GE_NO_PREFIX));
6491 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6492 {
c19d1205
ZW
6493 val = parse_reloc (&str);
6494 if (val == -1)
6495 {
6496 inst.error = _("unrecognized relocation suffix");
6497 goto failure;
6498 }
6499 else if (val != BFD_RELOC_UNUSED)
6500 {
6501 inst.operands[i].imm = val;
6502 inst.operands[i].hasreloc = 1;
6503 }
a737bd4d 6504 }
c19d1205 6505 break;
a737bd4d 6506
b6895b4f
PB
6507 /* Operand for MOVW or MOVT. */
6508 case OP_HALF:
6509 po_misc_or_fail (parse_half (&str));
6510 break;
6511
e07e6e58 6512 /* Register or expression. */
c19d1205
ZW
6513 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6514 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6515
e07e6e58 6516 /* Register or immediate. */
c19d1205
ZW
6517 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6518 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6519
c19d1205
ZW
6520 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6521 IF:
6522 if (!is_immediate_prefix (*str))
6523 goto bad_args;
6524 str++;
6525 val = parse_fpa_immediate (&str);
6526 if (val == FAIL)
6527 goto failure;
6528 /* FPA immediates are encoded as registers 8-15.
6529 parse_fpa_immediate has already applied the offset. */
6530 inst.operands[i].reg = val;
6531 inst.operands[i].isreg = 1;
6532 break;
09d92015 6533
2d447fca
JM
6534 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6535 I32z: po_imm_or_fail (0, 32, FALSE); break;
6536
e07e6e58 6537 /* Two kinds of register. */
c19d1205
ZW
6538 case OP_RIWR_RIWC:
6539 {
6540 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6541 if (!rege
6542 || (rege->type != REG_TYPE_MMXWR
6543 && rege->type != REG_TYPE_MMXWC
6544 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6545 {
6546 inst.error = _("iWMMXt data or control register expected");
6547 goto failure;
6548 }
6549 inst.operands[i].reg = rege->number;
6550 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6551 }
6552 break;
09d92015 6553
41adaa5c
JM
6554 case OP_RIWC_RIWG:
6555 {
6556 struct reg_entry *rege = arm_reg_parse_multi (&str);
6557 if (!rege
6558 || (rege->type != REG_TYPE_MMXWC
6559 && rege->type != REG_TYPE_MMXWCG))
6560 {
6561 inst.error = _("iWMMXt control register expected");
6562 goto failure;
6563 }
6564 inst.operands[i].reg = rege->number;
6565 inst.operands[i].isreg = 1;
6566 }
6567 break;
6568
c19d1205
ZW
6569 /* Misc */
6570 case OP_CPSF: val = parse_cps_flags (&str); break;
6571 case OP_ENDI: val = parse_endian_specifier (&str); break;
6572 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6573 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6574 case OP_oBARRIER_I15:
6575 po_barrier_or_imm (str); break;
6576 immediate:
6577 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6578 goto failure;
6579 break;
c19d1205 6580
d2cd1205
JB
6581 case OP_wPSR:
6582 case OP_rPSR:
90ec0d68
MGD
6583 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6584 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6585 {
6586 inst.error = _("Banked registers are not available with this "
6587 "architecture.");
6588 goto failure;
6589 }
6590 break;
d2cd1205
JB
6591 try_psr:
6592 val = parse_psr (&str, op_parse_code == OP_wPSR);
6593 break;
037e8744
JB
6594
6595 case OP_APSR_RR:
6596 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6597 break;
6598 try_apsr:
6599 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6600 instruction). */
6601 if (strncasecmp (str, "APSR_", 5) == 0)
6602 {
6603 unsigned found = 0;
6604 str += 5;
6605 while (found < 15)
6606 switch (*str++)
6607 {
6608 case 'c': found = (found & 1) ? 16 : found | 1; break;
6609 case 'n': found = (found & 2) ? 16 : found | 2; break;
6610 case 'z': found = (found & 4) ? 16 : found | 4; break;
6611 case 'v': found = (found & 8) ? 16 : found | 8; break;
6612 default: found = 16;
6613 }
6614 if (found != 15)
6615 goto failure;
6616 inst.operands[i].isvec = 1;
f7c21dc7
NC
6617 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6618 inst.operands[i].reg = REG_PC;
037e8744
JB
6619 }
6620 else
6621 goto failure;
6622 break;
6623
92e90b6e
PB
6624 case OP_TB:
6625 po_misc_or_fail (parse_tb (&str));
6626 break;
6627
e07e6e58 6628 /* Register lists. */
c19d1205
ZW
6629 case OP_REGLST:
6630 val = parse_reg_list (&str);
6631 if (*str == '^')
6632 {
6633 inst.operands[1].writeback = 1;
6634 str++;
6635 }
6636 break;
09d92015 6637
c19d1205 6638 case OP_VRSLST:
5287ad62 6639 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6640 break;
09d92015 6641
c19d1205 6642 case OP_VRDLST:
5287ad62 6643 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6644 break;
a737bd4d 6645
037e8744
JB
6646 case OP_VRSDLST:
6647 /* Allow Q registers too. */
6648 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6649 REGLIST_NEON_D);
6650 if (val == FAIL)
6651 {
6652 inst.error = NULL;
6653 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6654 REGLIST_VFP_S);
6655 inst.operands[i].issingle = 1;
6656 }
6657 break;
6658
5287ad62
JB
6659 case OP_NRDLST:
6660 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6661 REGLIST_NEON_D);
6662 break;
6663
6664 case OP_NSTRLST:
dcbf9037
JB
6665 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6666 &inst.operands[i].vectype);
5287ad62
JB
6667 break;
6668
c19d1205
ZW
6669 /* Addressing modes */
6670 case OP_ADDR:
6671 po_misc_or_fail (parse_address (&str, i));
6672 break;
09d92015 6673
4962c51a
MS
6674 case OP_ADDRGLDR:
6675 po_misc_or_fail_no_backtrack (
6676 parse_address_group_reloc (&str, i, GROUP_LDR));
6677 break;
6678
6679 case OP_ADDRGLDRS:
6680 po_misc_or_fail_no_backtrack (
6681 parse_address_group_reloc (&str, i, GROUP_LDRS));
6682 break;
6683
6684 case OP_ADDRGLDC:
6685 po_misc_or_fail_no_backtrack (
6686 parse_address_group_reloc (&str, i, GROUP_LDC));
6687 break;
6688
c19d1205
ZW
6689 case OP_SH:
6690 po_misc_or_fail (parse_shifter_operand (&str, i));
6691 break;
09d92015 6692
4962c51a
MS
6693 case OP_SHG:
6694 po_misc_or_fail_no_backtrack (
6695 parse_shifter_operand_group_reloc (&str, i));
6696 break;
6697
c19d1205
ZW
6698 case OP_oSHll:
6699 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6700 break;
09d92015 6701
c19d1205
ZW
6702 case OP_oSHar:
6703 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6704 break;
09d92015 6705
c19d1205
ZW
6706 case OP_oSHllar:
6707 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6708 break;
09d92015 6709
c19d1205 6710 default:
5be8be5d 6711 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6712 }
09d92015 6713
c19d1205
ZW
6714 /* Various value-based sanity checks and shared operations. We
6715 do not signal immediate failures for the register constraints;
6716 this allows a syntax error to take precedence. */
5be8be5d 6717 switch (op_parse_code)
c19d1205
ZW
6718 {
6719 case OP_oRRnpc:
6720 case OP_RRnpc:
6721 case OP_RRnpcb:
6722 case OP_RRw:
b6702015 6723 case OP_oRRw:
c19d1205
ZW
6724 case OP_RRnpc_I0:
6725 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6726 inst.error = BAD_PC;
6727 break;
09d92015 6728
5be8be5d
DG
6729 case OP_oRRnpcsp:
6730 case OP_RRnpcsp:
6731 if (inst.operands[i].isreg)
6732 {
6733 if (inst.operands[i].reg == REG_PC)
6734 inst.error = BAD_PC;
6735 else if (inst.operands[i].reg == REG_SP)
6736 inst.error = BAD_SP;
6737 }
6738 break;
6739
55881a11
MGD
6740 case OP_RRnpctw:
6741 if (inst.operands[i].isreg
6742 && inst.operands[i].reg == REG_PC
6743 && (inst.operands[i].writeback || thumb))
6744 inst.error = BAD_PC;
6745 break;
6746
c19d1205
ZW
6747 case OP_CPSF:
6748 case OP_ENDI:
6749 case OP_oROR:
d2cd1205
JB
6750 case OP_wPSR:
6751 case OP_rPSR:
c19d1205 6752 case OP_COND:
52e7f43d 6753 case OP_oBARRIER_I15:
c19d1205
ZW
6754 case OP_REGLST:
6755 case OP_VRSLST:
6756 case OP_VRDLST:
037e8744 6757 case OP_VRSDLST:
5287ad62
JB
6758 case OP_NRDLST:
6759 case OP_NSTRLST:
c19d1205
ZW
6760 if (val == FAIL)
6761 goto failure;
6762 inst.operands[i].imm = val;
6763 break;
a737bd4d 6764
c19d1205
ZW
6765 default:
6766 break;
6767 }
09d92015 6768
c19d1205
ZW
6769 /* If we get here, this operand was successfully parsed. */
6770 inst.operands[i].present = 1;
6771 continue;
09d92015 6772
c19d1205 6773 bad_args:
09d92015 6774 inst.error = BAD_ARGS;
c19d1205
ZW
6775
6776 failure:
6777 if (!backtrack_pos)
d252fdde
PB
6778 {
6779 /* The parse routine should already have set inst.error, but set a
5f4273c7 6780 default here just in case. */
d252fdde
PB
6781 if (!inst.error)
6782 inst.error = _("syntax error");
6783 return FAIL;
6784 }
c19d1205
ZW
6785
6786 /* Do not backtrack over a trailing optional argument that
6787 absorbed some text. We will only fail again, with the
6788 'garbage following instruction' error message, which is
6789 probably less helpful than the current one. */
6790 if (backtrack_index == i && backtrack_pos != str
6791 && upat[i+1] == OP_stop)
d252fdde
PB
6792 {
6793 if (!inst.error)
6794 inst.error = _("syntax error");
6795 return FAIL;
6796 }
c19d1205
ZW
6797
6798 /* Try again, skipping the optional argument at backtrack_pos. */
6799 str = backtrack_pos;
6800 inst.error = backtrack_error;
6801 inst.operands[backtrack_index].present = 0;
6802 i = backtrack_index;
6803 backtrack_pos = 0;
09d92015 6804 }
09d92015 6805
c19d1205
ZW
6806 /* Check that we have parsed all the arguments. */
6807 if (*str != '\0' && !inst.error)
6808 inst.error = _("garbage following instruction");
09d92015 6809
c19d1205 6810 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6811}
6812
c19d1205
ZW
6813#undef po_char_or_fail
6814#undef po_reg_or_fail
6815#undef po_reg_or_goto
6816#undef po_imm_or_fail
5287ad62 6817#undef po_scalar_or_fail
52e7f43d 6818#undef po_barrier_or_imm
e07e6e58 6819
c19d1205 6820/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6821#define constraint(expr, err) \
6822 do \
c19d1205 6823 { \
e07e6e58
NC
6824 if (expr) \
6825 { \
6826 inst.error = err; \
6827 return; \
6828 } \
c19d1205 6829 } \
e07e6e58 6830 while (0)
c19d1205 6831
fdfde340
JM
6832/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6833 instructions are unpredictable if these registers are used. This
6834 is the BadReg predicate in ARM's Thumb-2 documentation. */
6835#define reject_bad_reg(reg) \
6836 do \
6837 if (reg == REG_SP || reg == REG_PC) \
6838 { \
6839 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6840 return; \
6841 } \
6842 while (0)
6843
94206790
MM
6844/* If REG is R13 (the stack pointer), warn that its use is
6845 deprecated. */
6846#define warn_deprecated_sp(reg) \
6847 do \
6848 if (warn_on_deprecated && reg == REG_SP) \
6849 as_warn (_("use of r13 is deprecated")); \
6850 while (0)
6851
c19d1205
ZW
6852/* Functions for operand encoding. ARM, then Thumb. */
6853
6854#define rotate_left(v, n) (v << n | v >> (32 - n))
6855
6856/* If VAL can be encoded in the immediate field of an ARM instruction,
6857 return the encoded form. Otherwise, return FAIL. */
6858
6859static unsigned int
6860encode_arm_immediate (unsigned int val)
09d92015 6861{
c19d1205
ZW
6862 unsigned int a, i;
6863
6864 for (i = 0; i < 32; i += 2)
6865 if ((a = rotate_left (val, i)) <= 0xff)
6866 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6867
6868 return FAIL;
09d92015
MM
6869}
6870
c19d1205
ZW
6871/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6872 return the encoded form. Otherwise, return FAIL. */
6873static unsigned int
6874encode_thumb32_immediate (unsigned int val)
09d92015 6875{
c19d1205 6876 unsigned int a, i;
09d92015 6877
9c3c69f2 6878 if (val <= 0xff)
c19d1205 6879 return val;
a737bd4d 6880
9c3c69f2 6881 for (i = 1; i <= 24; i++)
09d92015 6882 {
9c3c69f2
PB
6883 a = val >> i;
6884 if ((val & ~(0xff << i)) == 0)
6885 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6886 }
a737bd4d 6887
c19d1205
ZW
6888 a = val & 0xff;
6889 if (val == ((a << 16) | a))
6890 return 0x100 | a;
6891 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6892 return 0x300 | a;
09d92015 6893
c19d1205
ZW
6894 a = val & 0xff00;
6895 if (val == ((a << 16) | a))
6896 return 0x200 | (a >> 8);
a737bd4d 6897
c19d1205 6898 return FAIL;
09d92015 6899}
5287ad62 6900/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6901
6902static void
5287ad62
JB
6903encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6904{
6905 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6906 && reg > 15)
6907 {
b1cc4aeb 6908 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6909 {
6910 if (thumb_mode)
6911 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6912 fpu_vfp_ext_d32);
5287ad62
JB
6913 else
6914 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6915 fpu_vfp_ext_d32);
5287ad62
JB
6916 }
6917 else
6918 {
dcbf9037 6919 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6920 return;
6921 }
6922 }
6923
c19d1205 6924 switch (pos)
09d92015 6925 {
c19d1205
ZW
6926 case VFP_REG_Sd:
6927 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6928 break;
6929
6930 case VFP_REG_Sn:
6931 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6932 break;
6933
6934 case VFP_REG_Sm:
6935 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6936 break;
6937
5287ad62
JB
6938 case VFP_REG_Dd:
6939 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6940 break;
5f4273c7 6941
5287ad62
JB
6942 case VFP_REG_Dn:
6943 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6944 break;
5f4273c7 6945
5287ad62
JB
6946 case VFP_REG_Dm:
6947 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6948 break;
6949
c19d1205
ZW
6950 default:
6951 abort ();
09d92015 6952 }
09d92015
MM
6953}
6954
c19d1205 6955/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6956 if any, is handled by md_apply_fix. */
09d92015 6957static void
c19d1205 6958encode_arm_shift (int i)
09d92015 6959{
c19d1205
ZW
6960 if (inst.operands[i].shift_kind == SHIFT_RRX)
6961 inst.instruction |= SHIFT_ROR << 5;
6962 else
09d92015 6963 {
c19d1205
ZW
6964 inst.instruction |= inst.operands[i].shift_kind << 5;
6965 if (inst.operands[i].immisreg)
6966 {
6967 inst.instruction |= SHIFT_BY_REG;
6968 inst.instruction |= inst.operands[i].imm << 8;
6969 }
6970 else
6971 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6972 }
c19d1205 6973}
09d92015 6974
c19d1205
ZW
6975static void
6976encode_arm_shifter_operand (int i)
6977{
6978 if (inst.operands[i].isreg)
09d92015 6979 {
c19d1205
ZW
6980 inst.instruction |= inst.operands[i].reg;
6981 encode_arm_shift (i);
09d92015 6982 }
c19d1205
ZW
6983 else
6984 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6985}
6986
c19d1205 6987/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6988static void
c19d1205 6989encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6990{
9c2799c2 6991 gas_assert (inst.operands[i].isreg);
c19d1205 6992 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6993
c19d1205 6994 if (inst.operands[i].preind)
09d92015 6995 {
c19d1205
ZW
6996 if (is_t)
6997 {
6998 inst.error = _("instruction does not accept preindexed addressing");
6999 return;
7000 }
7001 inst.instruction |= PRE_INDEX;
7002 if (inst.operands[i].writeback)
7003 inst.instruction |= WRITE_BACK;
09d92015 7004
c19d1205
ZW
7005 }
7006 else if (inst.operands[i].postind)
7007 {
9c2799c2 7008 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7009 if (is_t)
7010 inst.instruction |= WRITE_BACK;
7011 }
7012 else /* unindexed - only for coprocessor */
09d92015 7013 {
c19d1205 7014 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7015 return;
7016 }
7017
c19d1205
ZW
7018 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7019 && (((inst.instruction & 0x000f0000) >> 16)
7020 == ((inst.instruction & 0x0000f000) >> 12)))
7021 as_warn ((inst.instruction & LOAD_BIT)
7022 ? _("destination register same as write-back base")
7023 : _("source register same as write-back base"));
09d92015
MM
7024}
7025
c19d1205
ZW
7026/* inst.operands[i] was set up by parse_address. Encode it into an
7027 ARM-format mode 2 load or store instruction. If is_t is true,
7028 reject forms that cannot be used with a T instruction (i.e. not
7029 post-indexed). */
a737bd4d 7030static void
c19d1205 7031encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7032{
5be8be5d
DG
7033 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7034
c19d1205 7035 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7036
c19d1205 7037 if (inst.operands[i].immisreg)
09d92015 7038 {
5be8be5d
DG
7039 constraint ((inst.operands[i].imm == REG_PC
7040 || (is_pc && inst.operands[i].writeback)),
7041 BAD_PC_ADDRESSING);
c19d1205
ZW
7042 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7043 inst.instruction |= inst.operands[i].imm;
7044 if (!inst.operands[i].negative)
7045 inst.instruction |= INDEX_UP;
7046 if (inst.operands[i].shifted)
7047 {
7048 if (inst.operands[i].shift_kind == SHIFT_RRX)
7049 inst.instruction |= SHIFT_ROR << 5;
7050 else
7051 {
7052 inst.instruction |= inst.operands[i].shift_kind << 5;
7053 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7054 }
7055 }
09d92015 7056 }
c19d1205 7057 else /* immediate offset in inst.reloc */
09d92015 7058 {
5be8be5d
DG
7059 if (is_pc && !inst.reloc.pc_rel)
7060 {
7061 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7062
7063 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7064 cannot use PC in addressing.
7065 PC cannot be used in writeback addressing, either. */
7066 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7067 BAD_PC_ADDRESSING);
23a10334 7068
dc5ec521 7069 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7070 if (warn_on_deprecated
7071 && !is_load
7072 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7073 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7074 }
7075
c19d1205 7076 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7077 {
7078 /* Prefer + for zero encoded value. */
7079 if (!inst.operands[i].negative)
7080 inst.instruction |= INDEX_UP;
7081 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7082 }
09d92015 7083 }
09d92015
MM
7084}
7085
c19d1205
ZW
7086/* inst.operands[i] was set up by parse_address. Encode it into an
7087 ARM-format mode 3 load or store instruction. Reject forms that
7088 cannot be used with such instructions. If is_t is true, reject
7089 forms that cannot be used with a T instruction (i.e. not
7090 post-indexed). */
7091static void
7092encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7093{
c19d1205 7094 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7095 {
c19d1205
ZW
7096 inst.error = _("instruction does not accept scaled register index");
7097 return;
09d92015 7098 }
a737bd4d 7099
c19d1205 7100 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7101
c19d1205
ZW
7102 if (inst.operands[i].immisreg)
7103 {
5be8be5d
DG
7104 constraint ((inst.operands[i].imm == REG_PC
7105 || inst.operands[i].reg == REG_PC),
7106 BAD_PC_ADDRESSING);
c19d1205
ZW
7107 inst.instruction |= inst.operands[i].imm;
7108 if (!inst.operands[i].negative)
7109 inst.instruction |= INDEX_UP;
7110 }
7111 else /* immediate offset in inst.reloc */
7112 {
5be8be5d
DG
7113 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7114 && inst.operands[i].writeback),
7115 BAD_PC_WRITEBACK);
c19d1205
ZW
7116 inst.instruction |= HWOFFSET_IMM;
7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122
7123 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7124 }
c19d1205 7125 }
a737bd4d
NC
7126}
7127
c19d1205
ZW
7128/* inst.operands[i] was set up by parse_address. Encode it into an
7129 ARM-format instruction. Reject all forms which cannot be encoded
7130 into a coprocessor load/store instruction. If wb_ok is false,
7131 reject use of writeback; if unind_ok is false, reject use of
7132 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7133 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7134 (in which case it is preserved). */
09d92015 7135
c19d1205
ZW
7136static int
7137encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7138{
c19d1205 7139 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7140
9c2799c2 7141 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7142
c19d1205 7143 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7144 {
9c2799c2 7145 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7146 if (!unind_ok)
7147 {
7148 inst.error = _("instruction does not support unindexed addressing");
7149 return FAIL;
7150 }
7151 inst.instruction |= inst.operands[i].imm;
7152 inst.instruction |= INDEX_UP;
7153 return SUCCESS;
09d92015 7154 }
a737bd4d 7155
c19d1205
ZW
7156 if (inst.operands[i].preind)
7157 inst.instruction |= PRE_INDEX;
a737bd4d 7158
c19d1205 7159 if (inst.operands[i].writeback)
09d92015 7160 {
c19d1205
ZW
7161 if (inst.operands[i].reg == REG_PC)
7162 {
7163 inst.error = _("pc may not be used with write-back");
7164 return FAIL;
7165 }
7166 if (!wb_ok)
7167 {
7168 inst.error = _("instruction does not support writeback");
7169 return FAIL;
7170 }
7171 inst.instruction |= WRITE_BACK;
09d92015 7172 }
a737bd4d 7173
c19d1205 7174 if (reloc_override)
21d799b5 7175 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7176 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7177 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7178 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7179 {
7180 if (thumb_mode)
7181 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7182 else
7183 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7184 }
7185
26d97720
NS
7186 /* Prefer + for zero encoded value. */
7187 if (!inst.operands[i].negative)
7188 inst.instruction |= INDEX_UP;
7189
c19d1205
ZW
7190 return SUCCESS;
7191}
a737bd4d 7192
c19d1205
ZW
7193/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7194 Determine whether it can be performed with a move instruction; if
7195 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7196 return TRUE; if it can't, convert inst.instruction to a literal-pool
7197 load and return FALSE. If this is not a valid thing to do in the
7198 current context, set inst.error and return TRUE.
a737bd4d 7199
c19d1205
ZW
7200 inst.operands[i] describes the destination register. */
7201
c921be7d 7202static bfd_boolean
c19d1205
ZW
7203move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7204{
53365c0d
PB
7205 unsigned long tbit;
7206
7207 if (thumb_p)
7208 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7209 else
7210 tbit = LOAD_BIT;
7211
7212 if ((inst.instruction & tbit) == 0)
09d92015 7213 {
c19d1205 7214 inst.error = _("invalid pseudo operation");
c921be7d 7215 return TRUE;
09d92015 7216 }
c19d1205 7217 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7218 {
7219 inst.error = _("constant expression expected");
c921be7d 7220 return TRUE;
09d92015 7221 }
c19d1205 7222 if (inst.reloc.exp.X_op == O_constant)
09d92015 7223 {
c19d1205
ZW
7224 if (thumb_p)
7225 {
53365c0d 7226 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7227 {
7228 /* This can be done with a mov(1) instruction. */
7229 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7230 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7231 return TRUE;
c19d1205
ZW
7232 }
7233 }
7234 else
7235 {
7236 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7237 if (value != FAIL)
7238 {
7239 /* This can be done with a mov instruction. */
7240 inst.instruction &= LITERAL_MASK;
7241 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7242 inst.instruction |= value & 0xfff;
c921be7d 7243 return TRUE;
c19d1205 7244 }
09d92015 7245
c19d1205
ZW
7246 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7247 if (value != FAIL)
7248 {
7249 /* This can be done with a mvn instruction. */
7250 inst.instruction &= LITERAL_MASK;
7251 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7252 inst.instruction |= value & 0xfff;
c921be7d 7253 return TRUE;
c19d1205
ZW
7254 }
7255 }
09d92015
MM
7256 }
7257
c19d1205
ZW
7258 if (add_to_lit_pool () == FAIL)
7259 {
7260 inst.error = _("literal pool insertion failed");
c921be7d 7261 return TRUE;
c19d1205
ZW
7262 }
7263 inst.operands[1].reg = REG_PC;
7264 inst.operands[1].isreg = 1;
7265 inst.operands[1].preind = 1;
7266 inst.reloc.pc_rel = 1;
7267 inst.reloc.type = (thumb_p
7268 ? BFD_RELOC_ARM_THUMB_OFFSET
7269 : (mode_3
7270 ? BFD_RELOC_ARM_HWLITERAL
7271 : BFD_RELOC_ARM_LITERAL));
c921be7d 7272 return FALSE;
09d92015
MM
7273}
7274
5f4273c7 7275/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7276 First some generics; their names are taken from the conventional
7277 bit positions for register arguments in ARM format instructions. */
09d92015 7278
a737bd4d 7279static void
c19d1205 7280do_noargs (void)
09d92015 7281{
c19d1205 7282}
a737bd4d 7283
c19d1205
ZW
7284static void
7285do_rd (void)
7286{
7287 inst.instruction |= inst.operands[0].reg << 12;
7288}
a737bd4d 7289
c19d1205
ZW
7290static void
7291do_rd_rm (void)
7292{
7293 inst.instruction |= inst.operands[0].reg << 12;
7294 inst.instruction |= inst.operands[1].reg;
7295}
09d92015 7296
c19d1205
ZW
7297static void
7298do_rd_rn (void)
7299{
7300 inst.instruction |= inst.operands[0].reg << 12;
7301 inst.instruction |= inst.operands[1].reg << 16;
7302}
a737bd4d 7303
c19d1205
ZW
7304static void
7305do_rn_rd (void)
7306{
7307 inst.instruction |= inst.operands[0].reg << 16;
7308 inst.instruction |= inst.operands[1].reg << 12;
7309}
09d92015 7310
c19d1205
ZW
7311static void
7312do_rd_rm_rn (void)
7313{
9a64e435 7314 unsigned Rn = inst.operands[2].reg;
708587a4 7315 /* Enforce restrictions on SWP instruction. */
9a64e435 7316 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7317 {
7318 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7319 _("Rn must not overlap other operands"));
7320
7321 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7322 if (warn_on_deprecated
7323 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7324 as_warn (_("swp{b} use is deprecated for this architecture"));
7325
7326 }
c19d1205
ZW
7327 inst.instruction |= inst.operands[0].reg << 12;
7328 inst.instruction |= inst.operands[1].reg;
9a64e435 7329 inst.instruction |= Rn << 16;
c19d1205 7330}
09d92015 7331
c19d1205
ZW
7332static void
7333do_rd_rn_rm (void)
7334{
7335 inst.instruction |= inst.operands[0].reg << 12;
7336 inst.instruction |= inst.operands[1].reg << 16;
7337 inst.instruction |= inst.operands[2].reg;
7338}
a737bd4d 7339
c19d1205
ZW
7340static void
7341do_rm_rd_rn (void)
7342{
5be8be5d
DG
7343 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7344 constraint (((inst.reloc.exp.X_op != O_constant
7345 && inst.reloc.exp.X_op != O_illegal)
7346 || inst.reloc.exp.X_add_number != 0),
7347 BAD_ADDR_MODE);
c19d1205
ZW
7348 inst.instruction |= inst.operands[0].reg;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350 inst.instruction |= inst.operands[2].reg << 16;
7351}
09d92015 7352
c19d1205
ZW
7353static void
7354do_imm0 (void)
7355{
7356 inst.instruction |= inst.operands[0].imm;
7357}
09d92015 7358
c19d1205
ZW
7359static void
7360do_rd_cpaddr (void)
7361{
7362 inst.instruction |= inst.operands[0].reg << 12;
7363 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7364}
a737bd4d 7365
c19d1205
ZW
7366/* ARM instructions, in alphabetical order by function name (except
7367 that wrapper functions appear immediately after the function they
7368 wrap). */
09d92015 7369
c19d1205
ZW
7370/* This is a pseudo-op of the form "adr rd, label" to be converted
7371 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7372
7373static void
c19d1205 7374do_adr (void)
09d92015 7375{
c19d1205 7376 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7377
c19d1205
ZW
7378 /* Frag hacking will turn this into a sub instruction if the offset turns
7379 out to be negative. */
7380 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7381 inst.reloc.pc_rel = 1;
2fc8bdac 7382 inst.reloc.exp.X_add_number -= 8;
c19d1205 7383}
b99bd4ef 7384
c19d1205
ZW
7385/* This is a pseudo-op of the form "adrl rd, label" to be converted
7386 into a relative address of the form:
7387 add rd, pc, #low(label-.-8)"
7388 add rd, rd, #high(label-.-8)" */
b99bd4ef 7389
c19d1205
ZW
7390static void
7391do_adrl (void)
7392{
7393 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7394
c19d1205
ZW
7395 /* Frag hacking will turn this into a sub instruction if the offset turns
7396 out to be negative. */
7397 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7398 inst.reloc.pc_rel = 1;
7399 inst.size = INSN_SIZE * 2;
2fc8bdac 7400 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7401}
7402
b99bd4ef 7403static void
c19d1205 7404do_arit (void)
b99bd4ef 7405{
c19d1205
ZW
7406 if (!inst.operands[1].present)
7407 inst.operands[1].reg = inst.operands[0].reg;
7408 inst.instruction |= inst.operands[0].reg << 12;
7409 inst.instruction |= inst.operands[1].reg << 16;
7410 encode_arm_shifter_operand (2);
7411}
b99bd4ef 7412
62b3e311
PB
7413static void
7414do_barrier (void)
7415{
7416 if (inst.operands[0].present)
7417 {
7418 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7419 && inst.operands[0].imm > 0xf
7420 && inst.operands[0].imm < 0x0,
bd3ba5d1 7421 _("bad barrier type"));
62b3e311
PB
7422 inst.instruction |= inst.operands[0].imm;
7423 }
7424 else
7425 inst.instruction |= 0xf;
7426}
7427
c19d1205
ZW
7428static void
7429do_bfc (void)
7430{
7431 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7432 constraint (msb > 32, _("bit-field extends past end of register"));
7433 /* The instruction encoding stores the LSB and MSB,
7434 not the LSB and width. */
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].imm << 7;
7437 inst.instruction |= (msb - 1) << 16;
7438}
b99bd4ef 7439
c19d1205
ZW
7440static void
7441do_bfi (void)
7442{
7443 unsigned int msb;
b99bd4ef 7444
c19d1205
ZW
7445 /* #0 in second position is alternative syntax for bfc, which is
7446 the same instruction but with REG_PC in the Rm field. */
7447 if (!inst.operands[1].isreg)
7448 inst.operands[1].reg = REG_PC;
b99bd4ef 7449
c19d1205
ZW
7450 msb = inst.operands[2].imm + inst.operands[3].imm;
7451 constraint (msb > 32, _("bit-field extends past end of register"));
7452 /* The instruction encoding stores the LSB and MSB,
7453 not the LSB and width. */
7454 inst.instruction |= inst.operands[0].reg << 12;
7455 inst.instruction |= inst.operands[1].reg;
7456 inst.instruction |= inst.operands[2].imm << 7;
7457 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7458}
7459
b99bd4ef 7460static void
c19d1205 7461do_bfx (void)
b99bd4ef 7462{
c19d1205
ZW
7463 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7464 _("bit-field extends past end of register"));
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 inst.instruction |= inst.operands[1].reg;
7467 inst.instruction |= inst.operands[2].imm << 7;
7468 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7469}
09d92015 7470
c19d1205
ZW
7471/* ARM V5 breakpoint instruction (argument parse)
7472 BKPT <16 bit unsigned immediate>
7473 Instruction is not conditional.
7474 The bit pattern given in insns[] has the COND_ALWAYS condition,
7475 and it is an error if the caller tried to override that. */
b99bd4ef 7476
c19d1205
ZW
7477static void
7478do_bkpt (void)
7479{
7480 /* Top 12 of 16 bits to bits 19:8. */
7481 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7482
c19d1205
ZW
7483 /* Bottom 4 of 16 bits to bits 3:0. */
7484 inst.instruction |= inst.operands[0].imm & 0xf;
7485}
09d92015 7486
c19d1205
ZW
7487static void
7488encode_branch (int default_reloc)
7489{
7490 if (inst.operands[0].hasreloc)
7491 {
0855e32b
NS
7492 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7493 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7494 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7495 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7496 ? BFD_RELOC_ARM_PLT32
7497 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7498 }
b99bd4ef 7499 else
9ae92b05 7500 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7501 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7502}
7503
b99bd4ef 7504static void
c19d1205 7505do_branch (void)
b99bd4ef 7506{
39b41c9c
PB
7507#ifdef OBJ_ELF
7508 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7509 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7510 else
7511#endif
7512 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7513}
7514
7515static void
7516do_bl (void)
7517{
7518#ifdef OBJ_ELF
7519 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7520 {
7521 if (inst.cond == COND_ALWAYS)
7522 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7523 else
7524 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7525 }
7526 else
7527#endif
7528 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7529}
b99bd4ef 7530
c19d1205
ZW
7531/* ARM V5 branch-link-exchange instruction (argument parse)
7532 BLX <target_addr> ie BLX(1)
7533 BLX{<condition>} <Rm> ie BLX(2)
7534 Unfortunately, there are two different opcodes for this mnemonic.
7535 So, the insns[].value is not used, and the code here zaps values
7536 into inst.instruction.
7537 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7538
c19d1205
ZW
7539static void
7540do_blx (void)
7541{
7542 if (inst.operands[0].isreg)
b99bd4ef 7543 {
c19d1205
ZW
7544 /* Arg is a register; the opcode provided by insns[] is correct.
7545 It is not illegal to do "blx pc", just useless. */
7546 if (inst.operands[0].reg == REG_PC)
7547 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7548
c19d1205
ZW
7549 inst.instruction |= inst.operands[0].reg;
7550 }
7551 else
b99bd4ef 7552 {
c19d1205 7553 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7554 conditionally, and the opcode must be adjusted.
7555 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7556 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7557 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7558 inst.instruction = 0xfa000000;
267bf995 7559 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7560 }
c19d1205
ZW
7561}
7562
7563static void
7564do_bx (void)
7565{
845b51d6
PB
7566 bfd_boolean want_reloc;
7567
c19d1205
ZW
7568 if (inst.operands[0].reg == REG_PC)
7569 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7570
c19d1205 7571 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7572 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7573 it is for ARMv4t or earlier. */
7574 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7575 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7576 want_reloc = TRUE;
7577
5ad34203 7578#ifdef OBJ_ELF
845b51d6 7579 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7580#endif
584206db 7581 want_reloc = FALSE;
845b51d6
PB
7582
7583 if (want_reloc)
7584 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7585}
7586
c19d1205
ZW
7587
7588/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7589
7590static void
c19d1205 7591do_bxj (void)
a737bd4d 7592{
c19d1205
ZW
7593 if (inst.operands[0].reg == REG_PC)
7594 as_tsktsk (_("use of r15 in bxj is not really useful"));
7595
7596 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7597}
7598
c19d1205
ZW
7599/* Co-processor data operation:
7600 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7601 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7602static void
7603do_cdp (void)
7604{
7605 inst.instruction |= inst.operands[0].reg << 8;
7606 inst.instruction |= inst.operands[1].imm << 20;
7607 inst.instruction |= inst.operands[2].reg << 12;
7608 inst.instruction |= inst.operands[3].reg << 16;
7609 inst.instruction |= inst.operands[4].reg;
7610 inst.instruction |= inst.operands[5].imm << 5;
7611}
a737bd4d
NC
7612
7613static void
c19d1205 7614do_cmp (void)
a737bd4d 7615{
c19d1205
ZW
7616 inst.instruction |= inst.operands[0].reg << 16;
7617 encode_arm_shifter_operand (1);
a737bd4d
NC
7618}
7619
c19d1205
ZW
7620/* Transfer between coprocessor and ARM registers.
7621 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7622 MRC2
7623 MCR{cond}
7624 MCR2
7625
7626 No special properties. */
09d92015
MM
7627
7628static void
c19d1205 7629do_co_reg (void)
09d92015 7630{
fdfde340
JM
7631 unsigned Rd;
7632
7633 Rd = inst.operands[2].reg;
7634 if (thumb_mode)
7635 {
7636 if (inst.instruction == 0xee000010
7637 || inst.instruction == 0xfe000010)
7638 /* MCR, MCR2 */
7639 reject_bad_reg (Rd);
7640 else
7641 /* MRC, MRC2 */
7642 constraint (Rd == REG_SP, BAD_SP);
7643 }
7644 else
7645 {
7646 /* MCR */
7647 if (inst.instruction == 0xe000010)
7648 constraint (Rd == REG_PC, BAD_PC);
7649 }
7650
7651
c19d1205
ZW
7652 inst.instruction |= inst.operands[0].reg << 8;
7653 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7654 inst.instruction |= Rd << 12;
c19d1205
ZW
7655 inst.instruction |= inst.operands[3].reg << 16;
7656 inst.instruction |= inst.operands[4].reg;
7657 inst.instruction |= inst.operands[5].imm << 5;
7658}
09d92015 7659
c19d1205
ZW
7660/* Transfer between coprocessor register and pair of ARM registers.
7661 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7662 MCRR2
7663 MRRC{cond}
7664 MRRC2
b99bd4ef 7665
c19d1205 7666 Two XScale instructions are special cases of these:
09d92015 7667
c19d1205
ZW
7668 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7669 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7670
5f4273c7 7671 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7672
c19d1205
ZW
7673static void
7674do_co_reg2c (void)
7675{
fdfde340
JM
7676 unsigned Rd, Rn;
7677
7678 Rd = inst.operands[2].reg;
7679 Rn = inst.operands[3].reg;
7680
7681 if (thumb_mode)
7682 {
7683 reject_bad_reg (Rd);
7684 reject_bad_reg (Rn);
7685 }
7686 else
7687 {
7688 constraint (Rd == REG_PC, BAD_PC);
7689 constraint (Rn == REG_PC, BAD_PC);
7690 }
7691
c19d1205
ZW
7692 inst.instruction |= inst.operands[0].reg << 8;
7693 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7694 inst.instruction |= Rd << 12;
7695 inst.instruction |= Rn << 16;
c19d1205 7696 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7697}
7698
c19d1205
ZW
7699static void
7700do_cpsi (void)
7701{
7702 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7703 if (inst.operands[1].present)
7704 {
7705 inst.instruction |= CPSI_MMOD;
7706 inst.instruction |= inst.operands[1].imm;
7707 }
c19d1205 7708}
b99bd4ef 7709
62b3e311
PB
7710static void
7711do_dbg (void)
7712{
7713 inst.instruction |= inst.operands[0].imm;
7714}
7715
eea54501
MGD
7716static void
7717do_div (void)
7718{
7719 unsigned Rd, Rn, Rm;
7720
7721 Rd = inst.operands[0].reg;
7722 Rn = (inst.operands[1].present
7723 ? inst.operands[1].reg : Rd);
7724 Rm = inst.operands[2].reg;
7725
7726 constraint ((Rd == REG_PC), BAD_PC);
7727 constraint ((Rn == REG_PC), BAD_PC);
7728 constraint ((Rm == REG_PC), BAD_PC);
7729
7730 inst.instruction |= Rd << 16;
7731 inst.instruction |= Rn << 0;
7732 inst.instruction |= Rm << 8;
7733}
7734
b99bd4ef 7735static void
c19d1205 7736do_it (void)
b99bd4ef 7737{
c19d1205 7738 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7739 process it to do the validation as if in
7740 thumb mode, just in case the code gets
7741 assembled for thumb using the unified syntax. */
7742
c19d1205 7743 inst.size = 0;
e07e6e58
NC
7744 if (unified_syntax)
7745 {
7746 set_it_insn_type (IT_INSN);
7747 now_it.mask = (inst.instruction & 0xf) | 0x10;
7748 now_it.cc = inst.operands[0].imm;
7749 }
09d92015 7750}
b99bd4ef 7751
09d92015 7752static void
c19d1205 7753do_ldmstm (void)
ea6ef066 7754{
c19d1205
ZW
7755 int base_reg = inst.operands[0].reg;
7756 int range = inst.operands[1].imm;
ea6ef066 7757
c19d1205
ZW
7758 inst.instruction |= base_reg << 16;
7759 inst.instruction |= range;
ea6ef066 7760
c19d1205
ZW
7761 if (inst.operands[1].writeback)
7762 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7763
c19d1205 7764 if (inst.operands[0].writeback)
ea6ef066 7765 {
c19d1205
ZW
7766 inst.instruction |= WRITE_BACK;
7767 /* Check for unpredictable uses of writeback. */
7768 if (inst.instruction & LOAD_BIT)
09d92015 7769 {
c19d1205
ZW
7770 /* Not allowed in LDM type 2. */
7771 if ((inst.instruction & LDM_TYPE_2_OR_3)
7772 && ((range & (1 << REG_PC)) == 0))
7773 as_warn (_("writeback of base register is UNPREDICTABLE"));
7774 /* Only allowed if base reg not in list for other types. */
7775 else if (range & (1 << base_reg))
7776 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7777 }
7778 else /* STM. */
7779 {
7780 /* Not allowed for type 2. */
7781 if (inst.instruction & LDM_TYPE_2_OR_3)
7782 as_warn (_("writeback of base register is UNPREDICTABLE"));
7783 /* Only allowed if base reg not in list, or first in list. */
7784 else if ((range & (1 << base_reg))
7785 && (range & ((1 << base_reg) - 1)))
7786 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7787 }
ea6ef066 7788 }
a737bd4d
NC
7789}
7790
c19d1205
ZW
7791/* ARMv5TE load-consecutive (argument parse)
7792 Mode is like LDRH.
7793
7794 LDRccD R, mode
7795 STRccD R, mode. */
7796
a737bd4d 7797static void
c19d1205 7798do_ldrd (void)
a737bd4d 7799{
c19d1205 7800 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 7801 _("first transfer register must be even"));
c19d1205
ZW
7802 constraint (inst.operands[1].present
7803 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 7804 _("can only transfer two consecutive registers"));
c19d1205
ZW
7805 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7806 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7807
c19d1205
ZW
7808 if (!inst.operands[1].present)
7809 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7810
c56791bb
RE
7811 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7812 register and the first register written; we have to diagnose
7813 overlap between the base and the second register written here. */
ea6ef066 7814
c56791bb
RE
7815 if (inst.operands[2].reg == inst.operands[1].reg
7816 && (inst.operands[2].writeback || inst.operands[2].postind))
7817 as_warn (_("base register written back, and overlaps "
7818 "second transfer register"));
b05fe5cf 7819
c56791bb
RE
7820 if (!(inst.instruction & V4_STR_BIT))
7821 {
c19d1205 7822 /* For an index-register load, the index register must not overlap the
c56791bb
RE
7823 destination (even if not write-back). */
7824 if (inst.operands[2].immisreg
7825 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7826 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7827 as_warn (_("index register overlaps transfer register"));
b05fe5cf 7828 }
c19d1205
ZW
7829 inst.instruction |= inst.operands[0].reg << 12;
7830 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7831}
7832
7833static void
c19d1205 7834do_ldrex (void)
b05fe5cf 7835{
c19d1205
ZW
7836 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7837 || inst.operands[1].postind || inst.operands[1].writeback
7838 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7839 || inst.operands[1].negative
7840 /* This can arise if the programmer has written
7841 strex rN, rM, foo
7842 or if they have mistakenly used a register name as the last
7843 operand, eg:
7844 strex rN, rM, rX
7845 It is very difficult to distinguish between these two cases
7846 because "rX" might actually be a label. ie the register
7847 name has been occluded by a symbol of the same name. So we
7848 just generate a general 'bad addressing mode' type error
7849 message and leave it up to the programmer to discover the
7850 true cause and fix their mistake. */
7851 || (inst.operands[1].reg == REG_PC),
7852 BAD_ADDR_MODE);
b05fe5cf 7853
c19d1205
ZW
7854 constraint (inst.reloc.exp.X_op != O_constant
7855 || inst.reloc.exp.X_add_number != 0,
7856 _("offset must be zero in ARM encoding"));
b05fe5cf 7857
5be8be5d
DG
7858 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7859
c19d1205
ZW
7860 inst.instruction |= inst.operands[0].reg << 12;
7861 inst.instruction |= inst.operands[1].reg << 16;
7862 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7863}
7864
7865static void
c19d1205 7866do_ldrexd (void)
b05fe5cf 7867{
c19d1205
ZW
7868 constraint (inst.operands[0].reg % 2 != 0,
7869 _("even register required"));
7870 constraint (inst.operands[1].present
7871 && inst.operands[1].reg != inst.operands[0].reg + 1,
7872 _("can only load two consecutive registers"));
7873 /* If op 1 were present and equal to PC, this function wouldn't
7874 have been called in the first place. */
7875 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7876
c19d1205
ZW
7877 inst.instruction |= inst.operands[0].reg << 12;
7878 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7879}
7880
7881static void
c19d1205 7882do_ldst (void)
b05fe5cf 7883{
c19d1205
ZW
7884 inst.instruction |= inst.operands[0].reg << 12;
7885 if (!inst.operands[1].isreg)
7886 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7887 return;
c19d1205 7888 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7889}
7890
7891static void
c19d1205 7892do_ldstt (void)
b05fe5cf 7893{
c19d1205
ZW
7894 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7895 reject [Rn,...]. */
7896 if (inst.operands[1].preind)
b05fe5cf 7897 {
bd3ba5d1
NC
7898 constraint (inst.reloc.exp.X_op != O_constant
7899 || inst.reloc.exp.X_add_number != 0,
c19d1205 7900 _("this instruction requires a post-indexed address"));
b05fe5cf 7901
c19d1205
ZW
7902 inst.operands[1].preind = 0;
7903 inst.operands[1].postind = 1;
7904 inst.operands[1].writeback = 1;
b05fe5cf 7905 }
c19d1205
ZW
7906 inst.instruction |= inst.operands[0].reg << 12;
7907 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7908}
b05fe5cf 7909
c19d1205 7910/* Halfword and signed-byte load/store operations. */
b05fe5cf 7911
c19d1205
ZW
7912static void
7913do_ldstv4 (void)
7914{
ff4a8d2b 7915 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7916 inst.instruction |= inst.operands[0].reg << 12;
7917 if (!inst.operands[1].isreg)
7918 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7919 return;
c19d1205 7920 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7921}
7922
7923static void
c19d1205 7924do_ldsttv4 (void)
b05fe5cf 7925{
c19d1205
ZW
7926 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7927 reject [Rn,...]. */
7928 if (inst.operands[1].preind)
b05fe5cf 7929 {
bd3ba5d1
NC
7930 constraint (inst.reloc.exp.X_op != O_constant
7931 || inst.reloc.exp.X_add_number != 0,
c19d1205 7932 _("this instruction requires a post-indexed address"));
b05fe5cf 7933
c19d1205
ZW
7934 inst.operands[1].preind = 0;
7935 inst.operands[1].postind = 1;
7936 inst.operands[1].writeback = 1;
b05fe5cf 7937 }
c19d1205
ZW
7938 inst.instruction |= inst.operands[0].reg << 12;
7939 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7940}
b05fe5cf 7941
c19d1205
ZW
7942/* Co-processor register load/store.
7943 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7944static void
7945do_lstc (void)
7946{
7947 inst.instruction |= inst.operands[0].reg << 8;
7948 inst.instruction |= inst.operands[1].reg << 12;
7949 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7950}
7951
b05fe5cf 7952static void
c19d1205 7953do_mlas (void)
b05fe5cf 7954{
8fb9d7b9 7955 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7956 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7957 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7958 && !(inst.instruction & 0x00400000))
8fb9d7b9 7959 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7960
c19d1205
ZW
7961 inst.instruction |= inst.operands[0].reg << 16;
7962 inst.instruction |= inst.operands[1].reg;
7963 inst.instruction |= inst.operands[2].reg << 8;
7964 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7965}
b05fe5cf 7966
c19d1205
ZW
7967static void
7968do_mov (void)
7969{
7970 inst.instruction |= inst.operands[0].reg << 12;
7971 encode_arm_shifter_operand (1);
7972}
b05fe5cf 7973
c19d1205
ZW
7974/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7975static void
7976do_mov16 (void)
7977{
b6895b4f
PB
7978 bfd_vma imm;
7979 bfd_boolean top;
7980
7981 top = (inst.instruction & 0x00400000) != 0;
7982 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7983 _(":lower16: not allowed this instruction"));
7984 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7985 _(":upper16: not allowed instruction"));
c19d1205 7986 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7987 if (inst.reloc.type == BFD_RELOC_UNUSED)
7988 {
7989 imm = inst.reloc.exp.X_add_number;
7990 /* The value is in two pieces: 0:11, 16:19. */
7991 inst.instruction |= (imm & 0x00000fff);
7992 inst.instruction |= (imm & 0x0000f000) << 4;
7993 }
b05fe5cf 7994}
b99bd4ef 7995
037e8744
JB
7996static void do_vfp_nsyn_opcode (const char *);
7997
7998static int
7999do_vfp_nsyn_mrs (void)
8000{
8001 if (inst.operands[0].isvec)
8002 {
8003 if (inst.operands[1].reg != 1)
8004 first_error (_("operand 1 must be FPSCR"));
8005 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8006 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8007 do_vfp_nsyn_opcode ("fmstat");
8008 }
8009 else if (inst.operands[1].isvec)
8010 do_vfp_nsyn_opcode ("fmrx");
8011 else
8012 return FAIL;
5f4273c7 8013
037e8744
JB
8014 return SUCCESS;
8015}
8016
8017static int
8018do_vfp_nsyn_msr (void)
8019{
8020 if (inst.operands[0].isvec)
8021 do_vfp_nsyn_opcode ("fmxr");
8022 else
8023 return FAIL;
8024
8025 return SUCCESS;
8026}
8027
f7c21dc7
NC
8028static void
8029do_vmrs (void)
8030{
8031 unsigned Rt = inst.operands[0].reg;
8032
8033 if (thumb_mode && inst.operands[0].reg == REG_SP)
8034 {
8035 inst.error = BAD_SP;
8036 return;
8037 }
8038
8039 /* APSR_ sets isvec. All other refs to PC are illegal. */
8040 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8041 {
8042 inst.error = BAD_PC;
8043 return;
8044 }
8045
8046 if (inst.operands[1].reg != 1)
8047 first_error (_("operand 1 must be FPSCR"));
8048
8049 inst.instruction |= (Rt << 12);
8050}
8051
8052static void
8053do_vmsr (void)
8054{
8055 unsigned Rt = inst.operands[1].reg;
8056
8057 if (thumb_mode)
8058 reject_bad_reg (Rt);
8059 else if (Rt == REG_PC)
8060 {
8061 inst.error = BAD_PC;
8062 return;
8063 }
8064
8065 if (inst.operands[0].reg != 1)
8066 first_error (_("operand 0 must be FPSCR"));
8067
8068 inst.instruction |= (Rt << 12);
8069}
8070
b99bd4ef 8071static void
c19d1205 8072do_mrs (void)
b99bd4ef 8073{
90ec0d68
MGD
8074 unsigned br;
8075
037e8744
JB
8076 if (do_vfp_nsyn_mrs () == SUCCESS)
8077 return;
8078
ff4a8d2b 8079 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8080 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8081
8082 if (inst.operands[1].isreg)
8083 {
8084 br = inst.operands[1].reg;
8085 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8086 as_bad (_("bad register for mrs"));
8087 }
8088 else
8089 {
8090 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8091 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8092 != (PSR_c|PSR_f),
d2cd1205 8093 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8094 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8095 }
8096
8097 inst.instruction |= br;
c19d1205 8098}
b99bd4ef 8099
c19d1205
ZW
8100/* Two possible forms:
8101 "{C|S}PSR_<field>, Rm",
8102 "{C|S}PSR_f, #expression". */
b99bd4ef 8103
c19d1205
ZW
8104static void
8105do_msr (void)
8106{
037e8744
JB
8107 if (do_vfp_nsyn_msr () == SUCCESS)
8108 return;
8109
c19d1205
ZW
8110 inst.instruction |= inst.operands[0].imm;
8111 if (inst.operands[1].isreg)
8112 inst.instruction |= inst.operands[1].reg;
8113 else
b99bd4ef 8114 {
c19d1205
ZW
8115 inst.instruction |= INST_IMMEDIATE;
8116 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8117 inst.reloc.pc_rel = 0;
b99bd4ef 8118 }
b99bd4ef
NC
8119}
8120
c19d1205
ZW
8121static void
8122do_mul (void)
a737bd4d 8123{
ff4a8d2b
NC
8124 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8125
c19d1205
ZW
8126 if (!inst.operands[2].present)
8127 inst.operands[2].reg = inst.operands[0].reg;
8128 inst.instruction |= inst.operands[0].reg << 16;
8129 inst.instruction |= inst.operands[1].reg;
8130 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8131
8fb9d7b9
MS
8132 if (inst.operands[0].reg == inst.operands[1].reg
8133 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8134 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8135}
8136
c19d1205
ZW
8137/* Long Multiply Parser
8138 UMULL RdLo, RdHi, Rm, Rs
8139 SMULL RdLo, RdHi, Rm, Rs
8140 UMLAL RdLo, RdHi, Rm, Rs
8141 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8142
8143static void
c19d1205 8144do_mull (void)
b99bd4ef 8145{
c19d1205
ZW
8146 inst.instruction |= inst.operands[0].reg << 12;
8147 inst.instruction |= inst.operands[1].reg << 16;
8148 inst.instruction |= inst.operands[2].reg;
8149 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8150
682b27ad
PB
8151 /* rdhi and rdlo must be different. */
8152 if (inst.operands[0].reg == inst.operands[1].reg)
8153 as_tsktsk (_("rdhi and rdlo must be different"));
8154
8155 /* rdhi, rdlo and rm must all be different before armv6. */
8156 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8157 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8158 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8159 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8160}
b99bd4ef 8161
c19d1205
ZW
8162static void
8163do_nop (void)
8164{
e7495e45
NS
8165 if (inst.operands[0].present
8166 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8167 {
8168 /* Architectural NOP hints are CPSR sets with no bits selected. */
8169 inst.instruction &= 0xf0000000;
e7495e45
NS
8170 inst.instruction |= 0x0320f000;
8171 if (inst.operands[0].present)
8172 inst.instruction |= inst.operands[0].imm;
c19d1205 8173 }
b99bd4ef
NC
8174}
8175
c19d1205
ZW
8176/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8177 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8178 Condition defaults to COND_ALWAYS.
8179 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8180
8181static void
c19d1205 8182do_pkhbt (void)
b99bd4ef 8183{
c19d1205
ZW
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 inst.instruction |= inst.operands[1].reg << 16;
8186 inst.instruction |= inst.operands[2].reg;
8187 if (inst.operands[3].present)
8188 encode_arm_shift (3);
8189}
b99bd4ef 8190
c19d1205 8191/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8192
c19d1205
ZW
8193static void
8194do_pkhtb (void)
8195{
8196 if (!inst.operands[3].present)
b99bd4ef 8197 {
c19d1205
ZW
8198 /* If the shift specifier is omitted, turn the instruction
8199 into pkhbt rd, rm, rn. */
8200 inst.instruction &= 0xfff00010;
8201 inst.instruction |= inst.operands[0].reg << 12;
8202 inst.instruction |= inst.operands[1].reg;
8203 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8204 }
8205 else
8206 {
c19d1205
ZW
8207 inst.instruction |= inst.operands[0].reg << 12;
8208 inst.instruction |= inst.operands[1].reg << 16;
8209 inst.instruction |= inst.operands[2].reg;
8210 encode_arm_shift (3);
b99bd4ef
NC
8211 }
8212}
8213
c19d1205 8214/* ARMv5TE: Preload-Cache
60e5ef9f 8215 MP Extensions: Preload for write
c19d1205 8216
60e5ef9f 8217 PLD(W) <addr_mode>
c19d1205
ZW
8218
8219 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8220
8221static void
c19d1205 8222do_pld (void)
b99bd4ef 8223{
c19d1205
ZW
8224 constraint (!inst.operands[0].isreg,
8225 _("'[' expected after PLD mnemonic"));
8226 constraint (inst.operands[0].postind,
8227 _("post-indexed expression used in preload instruction"));
8228 constraint (inst.operands[0].writeback,
8229 _("writeback used in preload instruction"));
8230 constraint (!inst.operands[0].preind,
8231 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8232 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8233}
b99bd4ef 8234
62b3e311
PB
8235/* ARMv7: PLI <addr_mode> */
8236static void
8237do_pli (void)
8238{
8239 constraint (!inst.operands[0].isreg,
8240 _("'[' expected after PLI mnemonic"));
8241 constraint (inst.operands[0].postind,
8242 _("post-indexed expression used in preload instruction"));
8243 constraint (inst.operands[0].writeback,
8244 _("writeback used in preload instruction"));
8245 constraint (!inst.operands[0].preind,
8246 _("unindexed addressing used in preload instruction"));
8247 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8248 inst.instruction &= ~PRE_INDEX;
8249}
8250
c19d1205
ZW
8251static void
8252do_push_pop (void)
8253{
8254 inst.operands[1] = inst.operands[0];
8255 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8256 inst.operands[0].isreg = 1;
8257 inst.operands[0].writeback = 1;
8258 inst.operands[0].reg = REG_SP;
8259 do_ldmstm ();
8260}
b99bd4ef 8261
c19d1205
ZW
8262/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8263 word at the specified address and the following word
8264 respectively.
8265 Unconditionally executed.
8266 Error if Rn is R15. */
b99bd4ef 8267
c19d1205
ZW
8268static void
8269do_rfe (void)
8270{
8271 inst.instruction |= inst.operands[0].reg << 16;
8272 if (inst.operands[0].writeback)
8273 inst.instruction |= WRITE_BACK;
8274}
b99bd4ef 8275
c19d1205 8276/* ARM V6 ssat (argument parse). */
b99bd4ef 8277
c19d1205
ZW
8278static void
8279do_ssat (void)
8280{
8281 inst.instruction |= inst.operands[0].reg << 12;
8282 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8283 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8284
c19d1205
ZW
8285 if (inst.operands[3].present)
8286 encode_arm_shift (3);
b99bd4ef
NC
8287}
8288
c19d1205 8289/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8290
8291static void
c19d1205 8292do_usat (void)
b99bd4ef 8293{
c19d1205
ZW
8294 inst.instruction |= inst.operands[0].reg << 12;
8295 inst.instruction |= inst.operands[1].imm << 16;
8296 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8297
c19d1205
ZW
8298 if (inst.operands[3].present)
8299 encode_arm_shift (3);
b99bd4ef
NC
8300}
8301
c19d1205 8302/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8303
8304static void
c19d1205 8305do_ssat16 (void)
09d92015 8306{
c19d1205
ZW
8307 inst.instruction |= inst.operands[0].reg << 12;
8308 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8309 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8310}
8311
c19d1205
ZW
8312static void
8313do_usat16 (void)
a737bd4d 8314{
c19d1205
ZW
8315 inst.instruction |= inst.operands[0].reg << 12;
8316 inst.instruction |= inst.operands[1].imm << 16;
8317 inst.instruction |= inst.operands[2].reg;
8318}
a737bd4d 8319
c19d1205
ZW
8320/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8321 preserving the other bits.
a737bd4d 8322
c19d1205
ZW
8323 setend <endian_specifier>, where <endian_specifier> is either
8324 BE or LE. */
a737bd4d 8325
c19d1205
ZW
8326static void
8327do_setend (void)
8328{
8329 if (inst.operands[0].imm)
8330 inst.instruction |= 0x200;
a737bd4d
NC
8331}
8332
8333static void
c19d1205 8334do_shift (void)
a737bd4d 8335{
c19d1205
ZW
8336 unsigned int Rm = (inst.operands[1].present
8337 ? inst.operands[1].reg
8338 : inst.operands[0].reg);
a737bd4d 8339
c19d1205
ZW
8340 inst.instruction |= inst.operands[0].reg << 12;
8341 inst.instruction |= Rm;
8342 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8343 {
c19d1205
ZW
8344 inst.instruction |= inst.operands[2].reg << 8;
8345 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8346 /* PR 12854: Error on extraneous shifts. */
8347 constraint (inst.operands[2].shifted,
8348 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8349 }
8350 else
c19d1205 8351 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8352}
8353
09d92015 8354static void
3eb17e6b 8355do_smc (void)
09d92015 8356{
3eb17e6b 8357 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8358 inst.reloc.pc_rel = 0;
09d92015
MM
8359}
8360
90ec0d68
MGD
8361static void
8362do_hvc (void)
8363{
8364 inst.reloc.type = BFD_RELOC_ARM_HVC;
8365 inst.reloc.pc_rel = 0;
8366}
8367
09d92015 8368static void
c19d1205 8369do_swi (void)
09d92015 8370{
c19d1205
ZW
8371 inst.reloc.type = BFD_RELOC_ARM_SWI;
8372 inst.reloc.pc_rel = 0;
09d92015
MM
8373}
8374
c19d1205
ZW
8375/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8376 SMLAxy{cond} Rd,Rm,Rs,Rn
8377 SMLAWy{cond} Rd,Rm,Rs,Rn
8378 Error if any register is R15. */
e16bb312 8379
c19d1205
ZW
8380static void
8381do_smla (void)
e16bb312 8382{
c19d1205
ZW
8383 inst.instruction |= inst.operands[0].reg << 16;
8384 inst.instruction |= inst.operands[1].reg;
8385 inst.instruction |= inst.operands[2].reg << 8;
8386 inst.instruction |= inst.operands[3].reg << 12;
8387}
a737bd4d 8388
c19d1205
ZW
8389/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8390 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8391 Error if any register is R15.
8392 Warning if Rdlo == Rdhi. */
a737bd4d 8393
c19d1205
ZW
8394static void
8395do_smlal (void)
8396{
8397 inst.instruction |= inst.operands[0].reg << 12;
8398 inst.instruction |= inst.operands[1].reg << 16;
8399 inst.instruction |= inst.operands[2].reg;
8400 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8401
c19d1205
ZW
8402 if (inst.operands[0].reg == inst.operands[1].reg)
8403 as_tsktsk (_("rdhi and rdlo must be different"));
8404}
a737bd4d 8405
c19d1205
ZW
8406/* ARM V5E (El Segundo) signed-multiply (argument parse)
8407 SMULxy{cond} Rd,Rm,Rs
8408 Error if any register is R15. */
a737bd4d 8409
c19d1205
ZW
8410static void
8411do_smul (void)
8412{
8413 inst.instruction |= inst.operands[0].reg << 16;
8414 inst.instruction |= inst.operands[1].reg;
8415 inst.instruction |= inst.operands[2].reg << 8;
8416}
a737bd4d 8417
b6702015
PB
8418/* ARM V6 srs (argument parse). The variable fields in the encoding are
8419 the same for both ARM and Thumb-2. */
a737bd4d 8420
c19d1205
ZW
8421static void
8422do_srs (void)
8423{
b6702015
PB
8424 int reg;
8425
8426 if (inst.operands[0].present)
8427 {
8428 reg = inst.operands[0].reg;
fdfde340 8429 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8430 }
8431 else
fdfde340 8432 reg = REG_SP;
b6702015
PB
8433
8434 inst.instruction |= reg << 16;
8435 inst.instruction |= inst.operands[1].imm;
8436 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8437 inst.instruction |= WRITE_BACK;
8438}
a737bd4d 8439
c19d1205 8440/* ARM V6 strex (argument parse). */
a737bd4d 8441
c19d1205
ZW
8442static void
8443do_strex (void)
8444{
8445 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8446 || inst.operands[2].postind || inst.operands[2].writeback
8447 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8448 || inst.operands[2].negative
8449 /* See comment in do_ldrex(). */
8450 || (inst.operands[2].reg == REG_PC),
8451 BAD_ADDR_MODE);
a737bd4d 8452
c19d1205
ZW
8453 constraint (inst.operands[0].reg == inst.operands[1].reg
8454 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8455
c19d1205
ZW
8456 constraint (inst.reloc.exp.X_op != O_constant
8457 || inst.reloc.exp.X_add_number != 0,
8458 _("offset must be zero in ARM encoding"));
a737bd4d 8459
c19d1205
ZW
8460 inst.instruction |= inst.operands[0].reg << 12;
8461 inst.instruction |= inst.operands[1].reg;
8462 inst.instruction |= inst.operands[2].reg << 16;
8463 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8464}
8465
8466static void
c19d1205 8467do_strexd (void)
e16bb312 8468{
c19d1205
ZW
8469 constraint (inst.operands[1].reg % 2 != 0,
8470 _("even register required"));
8471 constraint (inst.operands[2].present
8472 && inst.operands[2].reg != inst.operands[1].reg + 1,
8473 _("can only store two consecutive registers"));
8474 /* If op 2 were present and equal to PC, this function wouldn't
8475 have been called in the first place. */
8476 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8477
c19d1205
ZW
8478 constraint (inst.operands[0].reg == inst.operands[1].reg
8479 || inst.operands[0].reg == inst.operands[1].reg + 1
8480 || inst.operands[0].reg == inst.operands[3].reg,
8481 BAD_OVERLAP);
e16bb312 8482
c19d1205
ZW
8483 inst.instruction |= inst.operands[0].reg << 12;
8484 inst.instruction |= inst.operands[1].reg;
8485 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8486}
8487
c19d1205
ZW
8488/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8489 extends it to 32-bits, and adds the result to a value in another
8490 register. You can specify a rotation by 0, 8, 16, or 24 bits
8491 before extracting the 16-bit value.
8492 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8493 Condition defaults to COND_ALWAYS.
8494 Error if any register uses R15. */
8495
e16bb312 8496static void
c19d1205 8497do_sxtah (void)
e16bb312 8498{
c19d1205
ZW
8499 inst.instruction |= inst.operands[0].reg << 12;
8500 inst.instruction |= inst.operands[1].reg << 16;
8501 inst.instruction |= inst.operands[2].reg;
8502 inst.instruction |= inst.operands[3].imm << 10;
8503}
e16bb312 8504
c19d1205 8505/* ARM V6 SXTH.
e16bb312 8506
c19d1205
ZW
8507 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8508 Condition defaults to COND_ALWAYS.
8509 Error if any register uses R15. */
e16bb312
NC
8510
8511static void
c19d1205 8512do_sxth (void)
e16bb312 8513{
c19d1205
ZW
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].reg;
8516 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8517}
c19d1205
ZW
8518\f
8519/* VFP instructions. In a logical order: SP variant first, monad
8520 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8521
8522static void
c19d1205 8523do_vfp_sp_monadic (void)
e16bb312 8524{
5287ad62
JB
8525 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8526 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8527}
8528
8529static void
c19d1205 8530do_vfp_sp_dyadic (void)
e16bb312 8531{
5287ad62
JB
8532 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8533 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8534 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8535}
8536
8537static void
c19d1205 8538do_vfp_sp_compare_z (void)
e16bb312 8539{
5287ad62 8540 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8541}
8542
8543static void
c19d1205 8544do_vfp_dp_sp_cvt (void)
e16bb312 8545{
5287ad62
JB
8546 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8547 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8548}
8549
8550static void
c19d1205 8551do_vfp_sp_dp_cvt (void)
e16bb312 8552{
5287ad62
JB
8553 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8554 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8555}
8556
8557static void
c19d1205 8558do_vfp_reg_from_sp (void)
e16bb312 8559{
c19d1205 8560 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8561 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8562}
8563
8564static void
c19d1205 8565do_vfp_reg2_from_sp2 (void)
e16bb312 8566{
c19d1205
ZW
8567 constraint (inst.operands[2].imm != 2,
8568 _("only two consecutive VFP SP registers allowed here"));
8569 inst.instruction |= inst.operands[0].reg << 12;
8570 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8571 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8572}
8573
8574static void
c19d1205 8575do_vfp_sp_from_reg (void)
e16bb312 8576{
5287ad62 8577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8578 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8579}
8580
8581static void
c19d1205 8582do_vfp_sp2_from_reg2 (void)
e16bb312 8583{
c19d1205
ZW
8584 constraint (inst.operands[0].imm != 2,
8585 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8587 inst.instruction |= inst.operands[1].reg << 12;
8588 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8589}
8590
8591static void
c19d1205 8592do_vfp_sp_ldst (void)
e16bb312 8593{
5287ad62 8594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8595 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8596}
8597
8598static void
c19d1205 8599do_vfp_dp_ldst (void)
e16bb312 8600{
5287ad62 8601 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8602 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8603}
8604
c19d1205 8605
e16bb312 8606static void
c19d1205 8607vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8608{
c19d1205
ZW
8609 if (inst.operands[0].writeback)
8610 inst.instruction |= WRITE_BACK;
8611 else
8612 constraint (ldstm_type != VFP_LDSTMIA,
8613 _("this addressing mode requires base-register writeback"));
8614 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8615 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8616 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8617}
8618
8619static void
c19d1205 8620vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8621{
c19d1205 8622 int count;
e16bb312 8623
c19d1205
ZW
8624 if (inst.operands[0].writeback)
8625 inst.instruction |= WRITE_BACK;
8626 else
8627 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8628 _("this addressing mode requires base-register writeback"));
e16bb312 8629
c19d1205 8630 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8631 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8632
c19d1205
ZW
8633 count = inst.operands[1].imm << 1;
8634 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8635 count += 1;
e16bb312 8636
c19d1205 8637 inst.instruction |= count;
e16bb312
NC
8638}
8639
8640static void
c19d1205 8641do_vfp_sp_ldstmia (void)
e16bb312 8642{
c19d1205 8643 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8644}
8645
8646static void
c19d1205 8647do_vfp_sp_ldstmdb (void)
e16bb312 8648{
c19d1205 8649 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8650}
8651
8652static void
c19d1205 8653do_vfp_dp_ldstmia (void)
e16bb312 8654{
c19d1205 8655 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8656}
8657
8658static void
c19d1205 8659do_vfp_dp_ldstmdb (void)
e16bb312 8660{
c19d1205 8661 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8662}
8663
8664static void
c19d1205 8665do_vfp_xp_ldstmia (void)
e16bb312 8666{
c19d1205
ZW
8667 vfp_dp_ldstm (VFP_LDSTMIAX);
8668}
e16bb312 8669
c19d1205
ZW
8670static void
8671do_vfp_xp_ldstmdb (void)
8672{
8673 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8674}
5287ad62
JB
8675
8676static void
8677do_vfp_dp_rd_rm (void)
8678{
8679 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8680 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8681}
8682
8683static void
8684do_vfp_dp_rn_rd (void)
8685{
8686 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8687 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8688}
8689
8690static void
8691do_vfp_dp_rd_rn (void)
8692{
8693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8694 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8695}
8696
8697static void
8698do_vfp_dp_rd_rn_rm (void)
8699{
8700 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8701 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8702 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8703}
8704
8705static void
8706do_vfp_dp_rd (void)
8707{
8708 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8709}
8710
8711static void
8712do_vfp_dp_rm_rd_rn (void)
8713{
8714 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8715 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8716 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8717}
8718
8719/* VFPv3 instructions. */
8720static void
8721do_vfp_sp_const (void)
8722{
8723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8724 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8725 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8726}
8727
8728static void
8729do_vfp_dp_const (void)
8730{
8731 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8732 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8733 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8734}
8735
8736static void
8737vfp_conv (int srcsize)
8738{
8739 unsigned immbits = srcsize - inst.operands[1].imm;
8740 inst.instruction |= (immbits & 1) << 5;
8741 inst.instruction |= (immbits >> 1);
8742}
8743
8744static void
8745do_vfp_sp_conv_16 (void)
8746{
8747 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8748 vfp_conv (16);
8749}
8750
8751static void
8752do_vfp_dp_conv_16 (void)
8753{
8754 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8755 vfp_conv (16);
8756}
8757
8758static void
8759do_vfp_sp_conv_32 (void)
8760{
8761 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8762 vfp_conv (32);
8763}
8764
8765static void
8766do_vfp_dp_conv_32 (void)
8767{
8768 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8769 vfp_conv (32);
8770}
c19d1205
ZW
8771\f
8772/* FPA instructions. Also in a logical order. */
e16bb312 8773
c19d1205
ZW
8774static void
8775do_fpa_cmp (void)
8776{
8777 inst.instruction |= inst.operands[0].reg << 16;
8778 inst.instruction |= inst.operands[1].reg;
8779}
b99bd4ef
NC
8780
8781static void
c19d1205 8782do_fpa_ldmstm (void)
b99bd4ef 8783{
c19d1205
ZW
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 switch (inst.operands[1].imm)
8786 {
8787 case 1: inst.instruction |= CP_T_X; break;
8788 case 2: inst.instruction |= CP_T_Y; break;
8789 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8790 case 4: break;
8791 default: abort ();
8792 }
b99bd4ef 8793
c19d1205
ZW
8794 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8795 {
8796 /* The instruction specified "ea" or "fd", so we can only accept
8797 [Rn]{!}. The instruction does not really support stacking or
8798 unstacking, so we have to emulate these by setting appropriate
8799 bits and offsets. */
8800 constraint (inst.reloc.exp.X_op != O_constant
8801 || inst.reloc.exp.X_add_number != 0,
8802 _("this instruction does not support indexing"));
b99bd4ef 8803
c19d1205
ZW
8804 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8805 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8806
c19d1205
ZW
8807 if (!(inst.instruction & INDEX_UP))
8808 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8809
c19d1205
ZW
8810 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8811 {
8812 inst.operands[2].preind = 0;
8813 inst.operands[2].postind = 1;
8814 }
8815 }
b99bd4ef 8816
c19d1205 8817 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8818}
c19d1205
ZW
8819\f
8820/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8821
c19d1205
ZW
8822static void
8823do_iwmmxt_tandorc (void)
8824{
8825 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8826}
b99bd4ef 8827
c19d1205
ZW
8828static void
8829do_iwmmxt_textrc (void)
8830{
8831 inst.instruction |= inst.operands[0].reg << 12;
8832 inst.instruction |= inst.operands[1].imm;
8833}
b99bd4ef
NC
8834
8835static void
c19d1205 8836do_iwmmxt_textrm (void)
b99bd4ef 8837{
c19d1205
ZW
8838 inst.instruction |= inst.operands[0].reg << 12;
8839 inst.instruction |= inst.operands[1].reg << 16;
8840 inst.instruction |= inst.operands[2].imm;
8841}
b99bd4ef 8842
c19d1205
ZW
8843static void
8844do_iwmmxt_tinsr (void)
8845{
8846 inst.instruction |= inst.operands[0].reg << 16;
8847 inst.instruction |= inst.operands[1].reg << 12;
8848 inst.instruction |= inst.operands[2].imm;
8849}
b99bd4ef 8850
c19d1205
ZW
8851static void
8852do_iwmmxt_tmia (void)
8853{
8854 inst.instruction |= inst.operands[0].reg << 5;
8855 inst.instruction |= inst.operands[1].reg;
8856 inst.instruction |= inst.operands[2].reg << 12;
8857}
b99bd4ef 8858
c19d1205
ZW
8859static void
8860do_iwmmxt_waligni (void)
8861{
8862 inst.instruction |= inst.operands[0].reg << 12;
8863 inst.instruction |= inst.operands[1].reg << 16;
8864 inst.instruction |= inst.operands[2].reg;
8865 inst.instruction |= inst.operands[3].imm << 20;
8866}
b99bd4ef 8867
2d447fca
JM
8868static void
8869do_iwmmxt_wmerge (void)
8870{
8871 inst.instruction |= inst.operands[0].reg << 12;
8872 inst.instruction |= inst.operands[1].reg << 16;
8873 inst.instruction |= inst.operands[2].reg;
8874 inst.instruction |= inst.operands[3].imm << 21;
8875}
8876
c19d1205
ZW
8877static void
8878do_iwmmxt_wmov (void)
8879{
8880 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8881 inst.instruction |= inst.operands[0].reg << 12;
8882 inst.instruction |= inst.operands[1].reg << 16;
8883 inst.instruction |= inst.operands[1].reg;
8884}
b99bd4ef 8885
c19d1205
ZW
8886static void
8887do_iwmmxt_wldstbh (void)
8888{
8f06b2d8 8889 int reloc;
c19d1205 8890 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8891 if (thumb_mode)
8892 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8893 else
8894 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8895 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8896}
8897
c19d1205
ZW
8898static void
8899do_iwmmxt_wldstw (void)
8900{
8901 /* RIWR_RIWC clears .isreg for a control register. */
8902 if (!inst.operands[0].isreg)
8903 {
8904 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8905 inst.instruction |= 0xf0000000;
8906 }
b99bd4ef 8907
c19d1205
ZW
8908 inst.instruction |= inst.operands[0].reg << 12;
8909 encode_arm_cp_address (1, TRUE, TRUE, 0);
8910}
b99bd4ef
NC
8911
8912static void
c19d1205 8913do_iwmmxt_wldstd (void)
b99bd4ef 8914{
c19d1205 8915 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8916 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8917 && inst.operands[1].immisreg)
8918 {
8919 inst.instruction &= ~0x1a000ff;
8920 inst.instruction |= (0xf << 28);
8921 if (inst.operands[1].preind)
8922 inst.instruction |= PRE_INDEX;
8923 if (!inst.operands[1].negative)
8924 inst.instruction |= INDEX_UP;
8925 if (inst.operands[1].writeback)
8926 inst.instruction |= WRITE_BACK;
8927 inst.instruction |= inst.operands[1].reg << 16;
8928 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8929 inst.instruction |= inst.operands[1].imm;
8930 }
8931 else
8932 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8933}
b99bd4ef 8934
c19d1205
ZW
8935static void
8936do_iwmmxt_wshufh (void)
8937{
8938 inst.instruction |= inst.operands[0].reg << 12;
8939 inst.instruction |= inst.operands[1].reg << 16;
8940 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8941 inst.instruction |= (inst.operands[2].imm & 0x0f);
8942}
b99bd4ef 8943
c19d1205
ZW
8944static void
8945do_iwmmxt_wzero (void)
8946{
8947 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8948 inst.instruction |= inst.operands[0].reg;
8949 inst.instruction |= inst.operands[0].reg << 12;
8950 inst.instruction |= inst.operands[0].reg << 16;
8951}
2d447fca
JM
8952
8953static void
8954do_iwmmxt_wrwrwr_or_imm5 (void)
8955{
8956 if (inst.operands[2].isreg)
8957 do_rd_rn_rm ();
8958 else {
8959 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8960 _("immediate operand requires iWMMXt2"));
8961 do_rd_rn ();
8962 if (inst.operands[2].imm == 0)
8963 {
8964 switch ((inst.instruction >> 20) & 0xf)
8965 {
8966 case 4:
8967 case 5:
8968 case 6:
5f4273c7 8969 case 7:
2d447fca
JM
8970 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8971 inst.operands[2].imm = 16;
8972 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8973 break;
8974 case 8:
8975 case 9:
8976 case 10:
8977 case 11:
8978 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8979 inst.operands[2].imm = 32;
8980 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8981 break;
8982 case 12:
8983 case 13:
8984 case 14:
8985 case 15:
8986 {
8987 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8988 unsigned long wrn;
8989 wrn = (inst.instruction >> 16) & 0xf;
8990 inst.instruction &= 0xff0fff0f;
8991 inst.instruction |= wrn;
8992 /* Bail out here; the instruction is now assembled. */
8993 return;
8994 }
8995 }
8996 }
8997 /* Map 32 -> 0, etc. */
8998 inst.operands[2].imm &= 0x1f;
8999 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9000 }
9001}
c19d1205
ZW
9002\f
9003/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9004 operations first, then control, shift, and load/store. */
b99bd4ef 9005
c19d1205 9006/* Insns like "foo X,Y,Z". */
b99bd4ef 9007
c19d1205
ZW
9008static void
9009do_mav_triple (void)
9010{
9011 inst.instruction |= inst.operands[0].reg << 16;
9012 inst.instruction |= inst.operands[1].reg;
9013 inst.instruction |= inst.operands[2].reg << 12;
9014}
b99bd4ef 9015
c19d1205
ZW
9016/* Insns like "foo W,X,Y,Z".
9017 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9018
c19d1205
ZW
9019static void
9020do_mav_quad (void)
9021{
9022 inst.instruction |= inst.operands[0].reg << 5;
9023 inst.instruction |= inst.operands[1].reg << 12;
9024 inst.instruction |= inst.operands[2].reg << 16;
9025 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9026}
9027
c19d1205
ZW
9028/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9029static void
9030do_mav_dspsc (void)
a737bd4d 9031{
c19d1205
ZW
9032 inst.instruction |= inst.operands[1].reg << 12;
9033}
a737bd4d 9034
c19d1205
ZW
9035/* Maverick shift immediate instructions.
9036 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9037 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9038
c19d1205
ZW
9039static void
9040do_mav_shift (void)
9041{
9042 int imm = inst.operands[2].imm;
a737bd4d 9043
c19d1205
ZW
9044 inst.instruction |= inst.operands[0].reg << 12;
9045 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9046
c19d1205
ZW
9047 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9048 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9049 Bit 4 should be 0. */
9050 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9051
c19d1205
ZW
9052 inst.instruction |= imm;
9053}
9054\f
9055/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9056
c19d1205
ZW
9057/* Xscale multiply-accumulate (argument parse)
9058 MIAcc acc0,Rm,Rs
9059 MIAPHcc acc0,Rm,Rs
9060 MIAxycc acc0,Rm,Rs. */
a737bd4d 9061
c19d1205
ZW
9062static void
9063do_xsc_mia (void)
9064{
9065 inst.instruction |= inst.operands[1].reg;
9066 inst.instruction |= inst.operands[2].reg << 12;
9067}
a737bd4d 9068
c19d1205 9069/* Xscale move-accumulator-register (argument parse)
a737bd4d 9070
c19d1205 9071 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9072
c19d1205
ZW
9073static void
9074do_xsc_mar (void)
9075{
9076 inst.instruction |= inst.operands[1].reg << 12;
9077 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9078}
9079
c19d1205 9080/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9081
c19d1205 9082 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9083
9084static void
c19d1205 9085do_xsc_mra (void)
b99bd4ef 9086{
c19d1205
ZW
9087 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9088 inst.instruction |= inst.operands[0].reg << 12;
9089 inst.instruction |= inst.operands[1].reg << 16;
9090}
9091\f
9092/* Encoding functions relevant only to Thumb. */
b99bd4ef 9093
c19d1205
ZW
9094/* inst.operands[i] is a shifted-register operand; encode
9095 it into inst.instruction in the format used by Thumb32. */
9096
9097static void
9098encode_thumb32_shifted_operand (int i)
9099{
9100 unsigned int value = inst.reloc.exp.X_add_number;
9101 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9102
9c3c69f2
PB
9103 constraint (inst.operands[i].immisreg,
9104 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9105 inst.instruction |= inst.operands[i].reg;
9106 if (shift == SHIFT_RRX)
9107 inst.instruction |= SHIFT_ROR << 4;
9108 else
b99bd4ef 9109 {
c19d1205
ZW
9110 constraint (inst.reloc.exp.X_op != O_constant,
9111 _("expression too complex"));
9112
9113 constraint (value > 32
9114 || (value == 32 && (shift == SHIFT_LSL
9115 || shift == SHIFT_ROR)),
9116 _("shift expression is too large"));
9117
9118 if (value == 0)
9119 shift = SHIFT_LSL;
9120 else if (value == 32)
9121 value = 0;
9122
9123 inst.instruction |= shift << 4;
9124 inst.instruction |= (value & 0x1c) << 10;
9125 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9126 }
c19d1205 9127}
b99bd4ef 9128
b99bd4ef 9129
c19d1205
ZW
9130/* inst.operands[i] was set up by parse_address. Encode it into a
9131 Thumb32 format load or store instruction. Reject forms that cannot
9132 be used with such instructions. If is_t is true, reject forms that
9133 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9134 that cannot be used with a D instruction. If it is a store insn,
9135 reject PC in Rn. */
b99bd4ef 9136
c19d1205
ZW
9137static void
9138encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9139{
5be8be5d 9140 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9141
9142 constraint (!inst.operands[i].isreg,
53365c0d 9143 _("Instruction does not support =N addresses"));
b99bd4ef 9144
c19d1205
ZW
9145 inst.instruction |= inst.operands[i].reg << 16;
9146 if (inst.operands[i].immisreg)
b99bd4ef 9147 {
5be8be5d 9148 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9149 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9150 constraint (inst.operands[i].negative,
9151 _("Thumb does not support negative register indexing"));
9152 constraint (inst.operands[i].postind,
9153 _("Thumb does not support register post-indexing"));
9154 constraint (inst.operands[i].writeback,
9155 _("Thumb does not support register indexing with writeback"));
9156 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9157 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9158
f40d1643 9159 inst.instruction |= inst.operands[i].imm;
c19d1205 9160 if (inst.operands[i].shifted)
b99bd4ef 9161 {
c19d1205
ZW
9162 constraint (inst.reloc.exp.X_op != O_constant,
9163 _("expression too complex"));
9c3c69f2
PB
9164 constraint (inst.reloc.exp.X_add_number < 0
9165 || inst.reloc.exp.X_add_number > 3,
c19d1205 9166 _("shift out of range"));
9c3c69f2 9167 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9168 }
9169 inst.reloc.type = BFD_RELOC_UNUSED;
9170 }
9171 else if (inst.operands[i].preind)
9172 {
5be8be5d 9173 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9174 constraint (is_t && inst.operands[i].writeback,
c19d1205 9175 _("cannot use writeback with this instruction"));
5be8be5d
DG
9176 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9177 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9178
9179 if (is_d)
9180 {
9181 inst.instruction |= 0x01000000;
9182 if (inst.operands[i].writeback)
9183 inst.instruction |= 0x00200000;
b99bd4ef 9184 }
c19d1205 9185 else
b99bd4ef 9186 {
c19d1205
ZW
9187 inst.instruction |= 0x00000c00;
9188 if (inst.operands[i].writeback)
9189 inst.instruction |= 0x00000100;
b99bd4ef 9190 }
c19d1205 9191 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9192 }
c19d1205 9193 else if (inst.operands[i].postind)
b99bd4ef 9194 {
9c2799c2 9195 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9196 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9197 constraint (is_t, _("cannot use post-indexing with this instruction"));
9198
9199 if (is_d)
9200 inst.instruction |= 0x00200000;
9201 else
9202 inst.instruction |= 0x00000900;
9203 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9204 }
9205 else /* unindexed - only for coprocessor */
9206 inst.error = _("instruction does not accept unindexed addressing");
9207}
9208
9209/* Table of Thumb instructions which exist in both 16- and 32-bit
9210 encodings (the latter only in post-V6T2 cores). The index is the
9211 value used in the insns table below. When there is more than one
9212 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9213 holds variant (1).
9214 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9215#define T16_32_TAB \
21d799b5
NC
9216 X(_adc, 4140, eb400000), \
9217 X(_adcs, 4140, eb500000), \
9218 X(_add, 1c00, eb000000), \
9219 X(_adds, 1c00, eb100000), \
9220 X(_addi, 0000, f1000000), \
9221 X(_addis, 0000, f1100000), \
9222 X(_add_pc,000f, f20f0000), \
9223 X(_add_sp,000d, f10d0000), \
9224 X(_adr, 000f, f20f0000), \
9225 X(_and, 4000, ea000000), \
9226 X(_ands, 4000, ea100000), \
9227 X(_asr, 1000, fa40f000), \
9228 X(_asrs, 1000, fa50f000), \
9229 X(_b, e000, f000b000), \
9230 X(_bcond, d000, f0008000), \
9231 X(_bic, 4380, ea200000), \
9232 X(_bics, 4380, ea300000), \
9233 X(_cmn, 42c0, eb100f00), \
9234 X(_cmp, 2800, ebb00f00), \
9235 X(_cpsie, b660, f3af8400), \
9236 X(_cpsid, b670, f3af8600), \
9237 X(_cpy, 4600, ea4f0000), \
9238 X(_dec_sp,80dd, f1ad0d00), \
9239 X(_eor, 4040, ea800000), \
9240 X(_eors, 4040, ea900000), \
9241 X(_inc_sp,00dd, f10d0d00), \
9242 X(_ldmia, c800, e8900000), \
9243 X(_ldr, 6800, f8500000), \
9244 X(_ldrb, 7800, f8100000), \
9245 X(_ldrh, 8800, f8300000), \
9246 X(_ldrsb, 5600, f9100000), \
9247 X(_ldrsh, 5e00, f9300000), \
9248 X(_ldr_pc,4800, f85f0000), \
9249 X(_ldr_pc2,4800, f85f0000), \
9250 X(_ldr_sp,9800, f85d0000), \
9251 X(_lsl, 0000, fa00f000), \
9252 X(_lsls, 0000, fa10f000), \
9253 X(_lsr, 0800, fa20f000), \
9254 X(_lsrs, 0800, fa30f000), \
9255 X(_mov, 2000, ea4f0000), \
9256 X(_movs, 2000, ea5f0000), \
9257 X(_mul, 4340, fb00f000), \
9258 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9259 X(_mvn, 43c0, ea6f0000), \
9260 X(_mvns, 43c0, ea7f0000), \
9261 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9262 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9263 X(_orr, 4300, ea400000), \
9264 X(_orrs, 4300, ea500000), \
9265 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9266 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9267 X(_rev, ba00, fa90f080), \
9268 X(_rev16, ba40, fa90f090), \
9269 X(_revsh, bac0, fa90f0b0), \
9270 X(_ror, 41c0, fa60f000), \
9271 X(_rors, 41c0, fa70f000), \
9272 X(_sbc, 4180, eb600000), \
9273 X(_sbcs, 4180, eb700000), \
9274 X(_stmia, c000, e8800000), \
9275 X(_str, 6000, f8400000), \
9276 X(_strb, 7000, f8000000), \
9277 X(_strh, 8000, f8200000), \
9278 X(_str_sp,9000, f84d0000), \
9279 X(_sub, 1e00, eba00000), \
9280 X(_subs, 1e00, ebb00000), \
9281 X(_subi, 8000, f1a00000), \
9282 X(_subis, 8000, f1b00000), \
9283 X(_sxtb, b240, fa4ff080), \
9284 X(_sxth, b200, fa0ff080), \
9285 X(_tst, 4200, ea100f00), \
9286 X(_uxtb, b2c0, fa5ff080), \
9287 X(_uxth, b280, fa1ff080), \
9288 X(_nop, bf00, f3af8000), \
9289 X(_yield, bf10, f3af8001), \
9290 X(_wfe, bf20, f3af8002), \
9291 X(_wfi, bf30, f3af8003), \
9292 X(_sev, bf40, f3af8004),
c19d1205
ZW
9293
9294/* To catch errors in encoding functions, the codes are all offset by
9295 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9296 as 16-bit instructions. */
21d799b5 9297#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9298enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9299#undef X
9300
9301#define X(a,b,c) 0x##b
9302static const unsigned short thumb_op16[] = { T16_32_TAB };
9303#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9304#undef X
9305
9306#define X(a,b,c) 0x##c
9307static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9308#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9309#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9310#undef X
9311#undef T16_32_TAB
9312
9313/* Thumb instruction encoders, in alphabetical order. */
9314
92e90b6e 9315/* ADDW or SUBW. */
c921be7d 9316
92e90b6e
PB
9317static void
9318do_t_add_sub_w (void)
9319{
9320 int Rd, Rn;
9321
9322 Rd = inst.operands[0].reg;
9323 Rn = inst.operands[1].reg;
9324
539d4391
NC
9325 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9326 is the SP-{plus,minus}-immediate form of the instruction. */
9327 if (Rn == REG_SP)
9328 constraint (Rd == REG_PC, BAD_PC);
9329 else
9330 reject_bad_reg (Rd);
fdfde340 9331
92e90b6e
PB
9332 inst.instruction |= (Rn << 16) | (Rd << 8);
9333 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9334}
9335
c19d1205
ZW
9336/* Parse an add or subtract instruction. We get here with inst.instruction
9337 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9338
9339static void
9340do_t_add_sub (void)
9341{
9342 int Rd, Rs, Rn;
9343
9344 Rd = inst.operands[0].reg;
9345 Rs = (inst.operands[1].present
9346 ? inst.operands[1].reg /* Rd, Rs, foo */
9347 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9348
e07e6e58
NC
9349 if (Rd == REG_PC)
9350 set_it_insn_type_last ();
9351
c19d1205
ZW
9352 if (unified_syntax)
9353 {
0110f2b8
PB
9354 bfd_boolean flags;
9355 bfd_boolean narrow;
9356 int opcode;
9357
9358 flags = (inst.instruction == T_MNEM_adds
9359 || inst.instruction == T_MNEM_subs);
9360 if (flags)
e07e6e58 9361 narrow = !in_it_block ();
0110f2b8 9362 else
e07e6e58 9363 narrow = in_it_block ();
c19d1205 9364 if (!inst.operands[2].isreg)
b99bd4ef 9365 {
16805f35
PB
9366 int add;
9367
fdfde340
JM
9368 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9369
16805f35
PB
9370 add = (inst.instruction == T_MNEM_add
9371 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9372 opcode = 0;
9373 if (inst.size_req != 4)
9374 {
0110f2b8
PB
9375 /* Attempt to use a narrow opcode, with relaxation if
9376 appropriate. */
9377 if (Rd == REG_SP && Rs == REG_SP && !flags)
9378 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9379 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9380 opcode = T_MNEM_add_sp;
9381 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9382 opcode = T_MNEM_add_pc;
9383 else if (Rd <= 7 && Rs <= 7 && narrow)
9384 {
9385 if (flags)
9386 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9387 else
9388 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9389 }
9390 if (opcode)
9391 {
9392 inst.instruction = THUMB_OP16(opcode);
9393 inst.instruction |= (Rd << 4) | Rs;
9394 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9395 if (inst.size_req != 2)
9396 inst.relax = opcode;
9397 }
9398 else
9399 constraint (inst.size_req == 2, BAD_HIREG);
9400 }
9401 if (inst.size_req == 4
9402 || (inst.size_req != 2 && !opcode))
9403 {
efd81785
PB
9404 if (Rd == REG_PC)
9405 {
fdfde340 9406 constraint (add, BAD_PC);
efd81785
PB
9407 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9408 _("only SUBS PC, LR, #const allowed"));
9409 constraint (inst.reloc.exp.X_op != O_constant,
9410 _("expression too complex"));
9411 constraint (inst.reloc.exp.X_add_number < 0
9412 || inst.reloc.exp.X_add_number > 0xff,
9413 _("immediate value out of range"));
9414 inst.instruction = T2_SUBS_PC_LR
9415 | inst.reloc.exp.X_add_number;
9416 inst.reloc.type = BFD_RELOC_UNUSED;
9417 return;
9418 }
9419 else if (Rs == REG_PC)
16805f35
PB
9420 {
9421 /* Always use addw/subw. */
9422 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9423 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9424 }
9425 else
9426 {
9427 inst.instruction = THUMB_OP32 (inst.instruction);
9428 inst.instruction = (inst.instruction & 0xe1ffffff)
9429 | 0x10000000;
9430 if (flags)
9431 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9432 else
9433 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9434 }
dc4503c6
PB
9435 inst.instruction |= Rd << 8;
9436 inst.instruction |= Rs << 16;
0110f2b8 9437 }
b99bd4ef 9438 }
c19d1205
ZW
9439 else
9440 {
9441 Rn = inst.operands[2].reg;
9442 /* See if we can do this with a 16-bit instruction. */
9443 if (!inst.operands[2].shifted && inst.size_req != 4)
9444 {
e27ec89e
PB
9445 if (Rd > 7 || Rs > 7 || Rn > 7)
9446 narrow = FALSE;
9447
9448 if (narrow)
c19d1205 9449 {
e27ec89e
PB
9450 inst.instruction = ((inst.instruction == T_MNEM_adds
9451 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9452 ? T_OPCODE_ADD_R3
9453 : T_OPCODE_SUB_R3);
9454 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9455 return;
9456 }
b99bd4ef 9457
7e806470 9458 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9459 {
7e806470
PB
9460 /* Thumb-1 cores (except v6-M) require at least one high
9461 register in a narrow non flag setting add. */
9462 if (Rd > 7 || Rn > 7
9463 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9464 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9465 {
7e806470
PB
9466 if (Rd == Rn)
9467 {
9468 Rn = Rs;
9469 Rs = Rd;
9470 }
c19d1205
ZW
9471 inst.instruction = T_OPCODE_ADD_HI;
9472 inst.instruction |= (Rd & 8) << 4;
9473 inst.instruction |= (Rd & 7);
9474 inst.instruction |= Rn << 3;
9475 return;
9476 }
c19d1205
ZW
9477 }
9478 }
c921be7d 9479
fdfde340
JM
9480 constraint (Rd == REG_PC, BAD_PC);
9481 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9482 constraint (Rs == REG_PC, BAD_PC);
9483 reject_bad_reg (Rn);
9484
c19d1205
ZW
9485 /* If we get here, it can't be done in 16 bits. */
9486 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9487 _("shift must be constant"));
9488 inst.instruction = THUMB_OP32 (inst.instruction);
9489 inst.instruction |= Rd << 8;
9490 inst.instruction |= Rs << 16;
9491 encode_thumb32_shifted_operand (2);
9492 }
9493 }
9494 else
9495 {
9496 constraint (inst.instruction == T_MNEM_adds
9497 || inst.instruction == T_MNEM_subs,
9498 BAD_THUMB32);
b99bd4ef 9499
c19d1205 9500 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9501 {
c19d1205
ZW
9502 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9503 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9504 BAD_HIREG);
9505
9506 inst.instruction = (inst.instruction == T_MNEM_add
9507 ? 0x0000 : 0x8000);
9508 inst.instruction |= (Rd << 4) | Rs;
9509 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9510 return;
9511 }
9512
c19d1205
ZW
9513 Rn = inst.operands[2].reg;
9514 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9515
c19d1205
ZW
9516 /* We now have Rd, Rs, and Rn set to registers. */
9517 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9518 {
c19d1205
ZW
9519 /* Can't do this for SUB. */
9520 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9521 inst.instruction = T_OPCODE_ADD_HI;
9522 inst.instruction |= (Rd & 8) << 4;
9523 inst.instruction |= (Rd & 7);
9524 if (Rs == Rd)
9525 inst.instruction |= Rn << 3;
9526 else if (Rn == Rd)
9527 inst.instruction |= Rs << 3;
9528 else
9529 constraint (1, _("dest must overlap one source register"));
9530 }
9531 else
9532 {
9533 inst.instruction = (inst.instruction == T_MNEM_add
9534 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9535 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9536 }
b99bd4ef 9537 }
b99bd4ef
NC
9538}
9539
c19d1205
ZW
9540static void
9541do_t_adr (void)
9542{
fdfde340
JM
9543 unsigned Rd;
9544
9545 Rd = inst.operands[0].reg;
9546 reject_bad_reg (Rd);
9547
9548 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9549 {
9550 /* Defer to section relaxation. */
9551 inst.relax = inst.instruction;
9552 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9553 inst.instruction |= Rd << 4;
0110f2b8
PB
9554 }
9555 else if (unified_syntax && inst.size_req != 2)
e9f89963 9556 {
0110f2b8 9557 /* Generate a 32-bit opcode. */
e9f89963 9558 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9559 inst.instruction |= Rd << 8;
e9f89963
PB
9560 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9561 inst.reloc.pc_rel = 1;
9562 }
9563 else
9564 {
0110f2b8 9565 /* Generate a 16-bit opcode. */
e9f89963
PB
9566 inst.instruction = THUMB_OP16 (inst.instruction);
9567 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9568 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9569 inst.reloc.pc_rel = 1;
b99bd4ef 9570
fdfde340 9571 inst.instruction |= Rd << 4;
e9f89963 9572 }
c19d1205 9573}
b99bd4ef 9574
c19d1205
ZW
9575/* Arithmetic instructions for which there is just one 16-bit
9576 instruction encoding, and it allows only two low registers.
9577 For maximal compatibility with ARM syntax, we allow three register
9578 operands even when Thumb-32 instructions are not available, as long
9579 as the first two are identical. For instance, both "sbc r0,r1" and
9580 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9581static void
c19d1205 9582do_t_arit3 (void)
b99bd4ef 9583{
c19d1205 9584 int Rd, Rs, Rn;
b99bd4ef 9585
c19d1205
ZW
9586 Rd = inst.operands[0].reg;
9587 Rs = (inst.operands[1].present
9588 ? inst.operands[1].reg /* Rd, Rs, foo */
9589 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9590 Rn = inst.operands[2].reg;
b99bd4ef 9591
fdfde340
JM
9592 reject_bad_reg (Rd);
9593 reject_bad_reg (Rs);
9594 if (inst.operands[2].isreg)
9595 reject_bad_reg (Rn);
9596
c19d1205 9597 if (unified_syntax)
b99bd4ef 9598 {
c19d1205
ZW
9599 if (!inst.operands[2].isreg)
9600 {
9601 /* For an immediate, we always generate a 32-bit opcode;
9602 section relaxation will shrink it later if possible. */
9603 inst.instruction = THUMB_OP32 (inst.instruction);
9604 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9605 inst.instruction |= Rd << 8;
9606 inst.instruction |= Rs << 16;
9607 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9608 }
9609 else
9610 {
e27ec89e
PB
9611 bfd_boolean narrow;
9612
c19d1205 9613 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9614 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9615 narrow = !in_it_block ();
e27ec89e 9616 else
e07e6e58 9617 narrow = in_it_block ();
e27ec89e
PB
9618
9619 if (Rd > 7 || Rn > 7 || Rs > 7)
9620 narrow = FALSE;
9621 if (inst.operands[2].shifted)
9622 narrow = FALSE;
9623 if (inst.size_req == 4)
9624 narrow = FALSE;
9625
9626 if (narrow
c19d1205
ZW
9627 && Rd == Rs)
9628 {
9629 inst.instruction = THUMB_OP16 (inst.instruction);
9630 inst.instruction |= Rd;
9631 inst.instruction |= Rn << 3;
9632 return;
9633 }
b99bd4ef 9634
c19d1205
ZW
9635 /* If we get here, it can't be done in 16 bits. */
9636 constraint (inst.operands[2].shifted
9637 && inst.operands[2].immisreg,
9638 _("shift must be constant"));
9639 inst.instruction = THUMB_OP32 (inst.instruction);
9640 inst.instruction |= Rd << 8;
9641 inst.instruction |= Rs << 16;
9642 encode_thumb32_shifted_operand (2);
9643 }
a737bd4d 9644 }
c19d1205 9645 else
b99bd4ef 9646 {
c19d1205
ZW
9647 /* On its face this is a lie - the instruction does set the
9648 flags. However, the only supported mnemonic in this mode
9649 says it doesn't. */
9650 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9651
c19d1205
ZW
9652 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9653 _("unshifted register required"));
9654 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9655 constraint (Rd != Rs,
9656 _("dest and source1 must be the same register"));
a737bd4d 9657
c19d1205
ZW
9658 inst.instruction = THUMB_OP16 (inst.instruction);
9659 inst.instruction |= Rd;
9660 inst.instruction |= Rn << 3;
b99bd4ef 9661 }
a737bd4d 9662}
b99bd4ef 9663
c19d1205
ZW
9664/* Similarly, but for instructions where the arithmetic operation is
9665 commutative, so we can allow either of them to be different from
9666 the destination operand in a 16-bit instruction. For instance, all
9667 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9668 accepted. */
9669static void
9670do_t_arit3c (void)
a737bd4d 9671{
c19d1205 9672 int Rd, Rs, Rn;
b99bd4ef 9673
c19d1205
ZW
9674 Rd = inst.operands[0].reg;
9675 Rs = (inst.operands[1].present
9676 ? inst.operands[1].reg /* Rd, Rs, foo */
9677 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9678 Rn = inst.operands[2].reg;
c921be7d 9679
fdfde340
JM
9680 reject_bad_reg (Rd);
9681 reject_bad_reg (Rs);
9682 if (inst.operands[2].isreg)
9683 reject_bad_reg (Rn);
a737bd4d 9684
c19d1205 9685 if (unified_syntax)
a737bd4d 9686 {
c19d1205 9687 if (!inst.operands[2].isreg)
b99bd4ef 9688 {
c19d1205
ZW
9689 /* For an immediate, we always generate a 32-bit opcode;
9690 section relaxation will shrink it later if possible. */
9691 inst.instruction = THUMB_OP32 (inst.instruction);
9692 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9693 inst.instruction |= Rd << 8;
9694 inst.instruction |= Rs << 16;
9695 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9696 }
c19d1205 9697 else
a737bd4d 9698 {
e27ec89e
PB
9699 bfd_boolean narrow;
9700
c19d1205 9701 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9702 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9703 narrow = !in_it_block ();
e27ec89e 9704 else
e07e6e58 9705 narrow = in_it_block ();
e27ec89e
PB
9706
9707 if (Rd > 7 || Rn > 7 || Rs > 7)
9708 narrow = FALSE;
9709 if (inst.operands[2].shifted)
9710 narrow = FALSE;
9711 if (inst.size_req == 4)
9712 narrow = FALSE;
9713
9714 if (narrow)
a737bd4d 9715 {
c19d1205 9716 if (Rd == Rs)
a737bd4d 9717 {
c19d1205
ZW
9718 inst.instruction = THUMB_OP16 (inst.instruction);
9719 inst.instruction |= Rd;
9720 inst.instruction |= Rn << 3;
9721 return;
a737bd4d 9722 }
c19d1205 9723 if (Rd == Rn)
a737bd4d 9724 {
c19d1205
ZW
9725 inst.instruction = THUMB_OP16 (inst.instruction);
9726 inst.instruction |= Rd;
9727 inst.instruction |= Rs << 3;
9728 return;
a737bd4d
NC
9729 }
9730 }
c19d1205
ZW
9731
9732 /* If we get here, it can't be done in 16 bits. */
9733 constraint (inst.operands[2].shifted
9734 && inst.operands[2].immisreg,
9735 _("shift must be constant"));
9736 inst.instruction = THUMB_OP32 (inst.instruction);
9737 inst.instruction |= Rd << 8;
9738 inst.instruction |= Rs << 16;
9739 encode_thumb32_shifted_operand (2);
a737bd4d 9740 }
b99bd4ef 9741 }
c19d1205
ZW
9742 else
9743 {
9744 /* On its face this is a lie - the instruction does set the
9745 flags. However, the only supported mnemonic in this mode
9746 says it doesn't. */
9747 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9748
c19d1205
ZW
9749 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9750 _("unshifted register required"));
9751 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9752
9753 inst.instruction = THUMB_OP16 (inst.instruction);
9754 inst.instruction |= Rd;
9755
9756 if (Rd == Rs)
9757 inst.instruction |= Rn << 3;
9758 else if (Rd == Rn)
9759 inst.instruction |= Rs << 3;
9760 else
9761 constraint (1, _("dest must overlap one source register"));
9762 }
a737bd4d
NC
9763}
9764
62b3e311
PB
9765static void
9766do_t_barrier (void)
9767{
9768 if (inst.operands[0].present)
9769 {
9770 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9771 && inst.operands[0].imm > 0xf
9772 && inst.operands[0].imm < 0x0,
bd3ba5d1 9773 _("bad barrier type"));
62b3e311
PB
9774 inst.instruction |= inst.operands[0].imm;
9775 }
9776 else
9777 inst.instruction |= 0xf;
9778}
9779
c19d1205
ZW
9780static void
9781do_t_bfc (void)
a737bd4d 9782{
fdfde340 9783 unsigned Rd;
c19d1205
ZW
9784 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9785 constraint (msb > 32, _("bit-field extends past end of register"));
9786 /* The instruction encoding stores the LSB and MSB,
9787 not the LSB and width. */
fdfde340
JM
9788 Rd = inst.operands[0].reg;
9789 reject_bad_reg (Rd);
9790 inst.instruction |= Rd << 8;
c19d1205
ZW
9791 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9792 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9793 inst.instruction |= msb - 1;
b99bd4ef
NC
9794}
9795
c19d1205
ZW
9796static void
9797do_t_bfi (void)
b99bd4ef 9798{
fdfde340 9799 int Rd, Rn;
c19d1205 9800 unsigned int msb;
b99bd4ef 9801
fdfde340
JM
9802 Rd = inst.operands[0].reg;
9803 reject_bad_reg (Rd);
9804
c19d1205
ZW
9805 /* #0 in second position is alternative syntax for bfc, which is
9806 the same instruction but with REG_PC in the Rm field. */
9807 if (!inst.operands[1].isreg)
fdfde340
JM
9808 Rn = REG_PC;
9809 else
9810 {
9811 Rn = inst.operands[1].reg;
9812 reject_bad_reg (Rn);
9813 }
b99bd4ef 9814
c19d1205
ZW
9815 msb = inst.operands[2].imm + inst.operands[3].imm;
9816 constraint (msb > 32, _("bit-field extends past end of register"));
9817 /* The instruction encoding stores the LSB and MSB,
9818 not the LSB and width. */
fdfde340
JM
9819 inst.instruction |= Rd << 8;
9820 inst.instruction |= Rn << 16;
c19d1205
ZW
9821 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9822 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9823 inst.instruction |= msb - 1;
b99bd4ef
NC
9824}
9825
c19d1205
ZW
9826static void
9827do_t_bfx (void)
b99bd4ef 9828{
fdfde340
JM
9829 unsigned Rd, Rn;
9830
9831 Rd = inst.operands[0].reg;
9832 Rn = inst.operands[1].reg;
9833
9834 reject_bad_reg (Rd);
9835 reject_bad_reg (Rn);
9836
c19d1205
ZW
9837 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9838 _("bit-field extends past end of register"));
fdfde340
JM
9839 inst.instruction |= Rd << 8;
9840 inst.instruction |= Rn << 16;
c19d1205
ZW
9841 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9842 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9843 inst.instruction |= inst.operands[3].imm - 1;
9844}
b99bd4ef 9845
c19d1205
ZW
9846/* ARM V5 Thumb BLX (argument parse)
9847 BLX <target_addr> which is BLX(1)
9848 BLX <Rm> which is BLX(2)
9849 Unfortunately, there are two different opcodes for this mnemonic.
9850 So, the insns[].value is not used, and the code here zaps values
9851 into inst.instruction.
b99bd4ef 9852
c19d1205
ZW
9853 ??? How to take advantage of the additional two bits of displacement
9854 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9855
c19d1205
ZW
9856static void
9857do_t_blx (void)
9858{
e07e6e58
NC
9859 set_it_insn_type_last ();
9860
c19d1205 9861 if (inst.operands[0].isreg)
fdfde340
JM
9862 {
9863 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9864 /* We have a register, so this is BLX(2). */
9865 inst.instruction |= inst.operands[0].reg << 3;
9866 }
b99bd4ef
NC
9867 else
9868 {
c19d1205 9869 /* No register. This must be BLX(1). */
2fc8bdac 9870 inst.instruction = 0xf000e800;
0855e32b 9871 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9872 }
9873}
9874
c19d1205
ZW
9875static void
9876do_t_branch (void)
b99bd4ef 9877{
0110f2b8 9878 int opcode;
dfa9f0d5 9879 int cond;
9ae92b05 9880 int reloc;
dfa9f0d5 9881
e07e6e58
NC
9882 cond = inst.cond;
9883 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9884
9885 if (in_it_block ())
dfa9f0d5
PB
9886 {
9887 /* Conditional branches inside IT blocks are encoded as unconditional
9888 branches. */
9889 cond = COND_ALWAYS;
dfa9f0d5
PB
9890 }
9891 else
9892 cond = inst.cond;
9893
9894 if (cond != COND_ALWAYS)
0110f2b8
PB
9895 opcode = T_MNEM_bcond;
9896 else
9897 opcode = inst.instruction;
9898
12d6b0b7
RS
9899 if (unified_syntax
9900 && (inst.size_req == 4
10960bfb
PB
9901 || (inst.size_req != 2
9902 && (inst.operands[0].hasreloc
9903 || inst.reloc.exp.X_op == O_constant))))
c19d1205 9904 {
0110f2b8 9905 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9906 if (cond == COND_ALWAYS)
9ae92b05 9907 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9908 else
9909 {
9c2799c2 9910 gas_assert (cond != 0xF);
dfa9f0d5 9911 inst.instruction |= cond << 22;
9ae92b05 9912 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9913 }
9914 }
b99bd4ef
NC
9915 else
9916 {
0110f2b8 9917 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9918 if (cond == COND_ALWAYS)
9ae92b05 9919 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9920 else
b99bd4ef 9921 {
dfa9f0d5 9922 inst.instruction |= cond << 8;
9ae92b05 9923 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9924 }
0110f2b8
PB
9925 /* Allow section relaxation. */
9926 if (unified_syntax && inst.size_req != 2)
9927 inst.relax = opcode;
b99bd4ef 9928 }
9ae92b05 9929 inst.reloc.type = reloc;
c19d1205 9930 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9931}
9932
9933static void
c19d1205 9934do_t_bkpt (void)
b99bd4ef 9935{
dfa9f0d5
PB
9936 constraint (inst.cond != COND_ALWAYS,
9937 _("instruction is always unconditional"));
c19d1205 9938 if (inst.operands[0].present)
b99bd4ef 9939 {
c19d1205
ZW
9940 constraint (inst.operands[0].imm > 255,
9941 _("immediate value out of range"));
9942 inst.instruction |= inst.operands[0].imm;
e07e6e58 9943 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9944 }
b99bd4ef
NC
9945}
9946
9947static void
c19d1205 9948do_t_branch23 (void)
b99bd4ef 9949{
e07e6e58 9950 set_it_insn_type_last ();
0855e32b
NS
9951 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9952
9953 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9954 this file. We used to simply ignore the PLT reloc type here --
9955 the branch encoding is now needed to deal with TLSCALL relocs.
9956 So if we see a PLT reloc now, put it back to how it used to be to
9957 keep the preexisting behaviour. */
9958 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9959 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 9960
4343666d 9961#if defined(OBJ_COFF)
c19d1205
ZW
9962 /* If the destination of the branch is a defined symbol which does not have
9963 the THUMB_FUNC attribute, then we must be calling a function which has
9964 the (interfacearm) attribute. We look for the Thumb entry point to that
9965 function and change the branch to refer to that function instead. */
9966 if ( inst.reloc.exp.X_op == O_symbol
9967 && inst.reloc.exp.X_add_symbol != NULL
9968 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9969 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9970 inst.reloc.exp.X_add_symbol =
9971 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9972#endif
90e4755a
RE
9973}
9974
9975static void
c19d1205 9976do_t_bx (void)
90e4755a 9977{
e07e6e58 9978 set_it_insn_type_last ();
c19d1205
ZW
9979 inst.instruction |= inst.operands[0].reg << 3;
9980 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9981 should cause the alignment to be checked once it is known. This is
9982 because BX PC only works if the instruction is word aligned. */
9983}
90e4755a 9984
c19d1205
ZW
9985static void
9986do_t_bxj (void)
9987{
fdfde340 9988 int Rm;
90e4755a 9989
e07e6e58 9990 set_it_insn_type_last ();
fdfde340
JM
9991 Rm = inst.operands[0].reg;
9992 reject_bad_reg (Rm);
9993 inst.instruction |= Rm << 16;
90e4755a
RE
9994}
9995
9996static void
c19d1205 9997do_t_clz (void)
90e4755a 9998{
fdfde340
JM
9999 unsigned Rd;
10000 unsigned Rm;
10001
10002 Rd = inst.operands[0].reg;
10003 Rm = inst.operands[1].reg;
10004
10005 reject_bad_reg (Rd);
10006 reject_bad_reg (Rm);
10007
10008 inst.instruction |= Rd << 8;
10009 inst.instruction |= Rm << 16;
10010 inst.instruction |= Rm;
c19d1205 10011}
90e4755a 10012
dfa9f0d5
PB
10013static void
10014do_t_cps (void)
10015{
e07e6e58 10016 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10017 inst.instruction |= inst.operands[0].imm;
10018}
10019
c19d1205
ZW
10020static void
10021do_t_cpsi (void)
10022{
e07e6e58 10023 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10024 if (unified_syntax
62b3e311
PB
10025 && (inst.operands[1].present || inst.size_req == 4)
10026 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10027 {
c19d1205
ZW
10028 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10029 inst.instruction = 0xf3af8000;
10030 inst.instruction |= imod << 9;
10031 inst.instruction |= inst.operands[0].imm << 5;
10032 if (inst.operands[1].present)
10033 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10034 }
c19d1205 10035 else
90e4755a 10036 {
62b3e311
PB
10037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10038 && (inst.operands[0].imm & 4),
10039 _("selected processor does not support 'A' form "
10040 "of this instruction"));
10041 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10042 _("Thumb does not support the 2-argument "
10043 "form of this instruction"));
10044 inst.instruction |= inst.operands[0].imm;
90e4755a 10045 }
90e4755a
RE
10046}
10047
c19d1205
ZW
10048/* THUMB CPY instruction (argument parse). */
10049
90e4755a 10050static void
c19d1205 10051do_t_cpy (void)
90e4755a 10052{
c19d1205 10053 if (inst.size_req == 4)
90e4755a 10054 {
c19d1205
ZW
10055 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10056 inst.instruction |= inst.operands[0].reg << 8;
10057 inst.instruction |= inst.operands[1].reg;
90e4755a 10058 }
c19d1205 10059 else
90e4755a 10060 {
c19d1205
ZW
10061 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10062 inst.instruction |= (inst.operands[0].reg & 0x7);
10063 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10064 }
90e4755a
RE
10065}
10066
90e4755a 10067static void
25fe350b 10068do_t_cbz (void)
90e4755a 10069{
e07e6e58 10070 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10071 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10072 inst.instruction |= inst.operands[0].reg;
10073 inst.reloc.pc_rel = 1;
10074 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10075}
90e4755a 10076
62b3e311
PB
10077static void
10078do_t_dbg (void)
10079{
10080 inst.instruction |= inst.operands[0].imm;
10081}
10082
10083static void
10084do_t_div (void)
10085{
fdfde340
JM
10086 unsigned Rd, Rn, Rm;
10087
10088 Rd = inst.operands[0].reg;
10089 Rn = (inst.operands[1].present
10090 ? inst.operands[1].reg : Rd);
10091 Rm = inst.operands[2].reg;
10092
10093 reject_bad_reg (Rd);
10094 reject_bad_reg (Rn);
10095 reject_bad_reg (Rm);
10096
10097 inst.instruction |= Rd << 8;
10098 inst.instruction |= Rn << 16;
10099 inst.instruction |= Rm;
62b3e311
PB
10100}
10101
c19d1205
ZW
10102static void
10103do_t_hint (void)
10104{
10105 if (unified_syntax && inst.size_req == 4)
10106 inst.instruction = THUMB_OP32 (inst.instruction);
10107 else
10108 inst.instruction = THUMB_OP16 (inst.instruction);
10109}
90e4755a 10110
c19d1205
ZW
10111static void
10112do_t_it (void)
10113{
10114 unsigned int cond = inst.operands[0].imm;
e27ec89e 10115
e07e6e58
NC
10116 set_it_insn_type (IT_INSN);
10117 now_it.mask = (inst.instruction & 0xf) | 0x10;
10118 now_it.cc = cond;
e27ec89e
PB
10119
10120 /* If the condition is a negative condition, invert the mask. */
c19d1205 10121 if ((cond & 0x1) == 0x0)
90e4755a 10122 {
c19d1205 10123 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10124
c19d1205
ZW
10125 if ((mask & 0x7) == 0)
10126 /* no conversion needed */;
10127 else if ((mask & 0x3) == 0)
e27ec89e
PB
10128 mask ^= 0x8;
10129 else if ((mask & 0x1) == 0)
10130 mask ^= 0xC;
c19d1205 10131 else
e27ec89e 10132 mask ^= 0xE;
90e4755a 10133
e27ec89e
PB
10134 inst.instruction &= 0xfff0;
10135 inst.instruction |= mask;
c19d1205 10136 }
90e4755a 10137
c19d1205
ZW
10138 inst.instruction |= cond << 4;
10139}
90e4755a 10140
3c707909
PB
10141/* Helper function used for both push/pop and ldm/stm. */
10142static void
10143encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10144{
10145 bfd_boolean load;
10146
10147 load = (inst.instruction & (1 << 20)) != 0;
10148
10149 if (mask & (1 << 13))
10150 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10151
10152 if ((mask & (1 << base)) != 0
10153 && writeback)
10154 inst.error = _("having the base register in the register list when "
10155 "using write back is UNPREDICTABLE");
10156
3c707909
PB
10157 if (load)
10158 {
e07e6e58
NC
10159 if (mask & (1 << 15))
10160 {
10161 if (mask & (1 << 14))
10162 inst.error = _("LR and PC should not both be in register list");
10163 else
10164 set_it_insn_type_last ();
10165 }
3c707909
PB
10166 }
10167 else
10168 {
10169 if (mask & (1 << 15))
10170 inst.error = _("PC not allowed in register list");
3c707909
PB
10171 }
10172
10173 if ((mask & (mask - 1)) == 0)
10174 {
10175 /* Single register transfers implemented as str/ldr. */
10176 if (writeback)
10177 {
10178 if (inst.instruction & (1 << 23))
10179 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10180 else
10181 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10182 }
10183 else
10184 {
10185 if (inst.instruction & (1 << 23))
10186 inst.instruction = 0x00800000; /* ia -> [base] */
10187 else
10188 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10189 }
10190
10191 inst.instruction |= 0xf8400000;
10192 if (load)
10193 inst.instruction |= 0x00100000;
10194
5f4273c7 10195 mask = ffs (mask) - 1;
3c707909
PB
10196 mask <<= 12;
10197 }
10198 else if (writeback)
10199 inst.instruction |= WRITE_BACK;
10200
10201 inst.instruction |= mask;
10202 inst.instruction |= base << 16;
10203}
10204
c19d1205
ZW
10205static void
10206do_t_ldmstm (void)
10207{
10208 /* This really doesn't seem worth it. */
10209 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10210 _("expression too complex"));
10211 constraint (inst.operands[1].writeback,
10212 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10213
c19d1205
ZW
10214 if (unified_syntax)
10215 {
3c707909
PB
10216 bfd_boolean narrow;
10217 unsigned mask;
10218
10219 narrow = FALSE;
c19d1205
ZW
10220 /* See if we can use a 16-bit instruction. */
10221 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10222 && inst.size_req != 4
3c707909 10223 && !(inst.operands[1].imm & ~0xff))
90e4755a 10224 {
3c707909 10225 mask = 1 << inst.operands[0].reg;
90e4755a 10226
eab4f823 10227 if (inst.operands[0].reg <= 7)
90e4755a 10228 {
3c707909 10229 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10230 ? inst.operands[0].writeback
10231 : (inst.operands[0].writeback
10232 == !(inst.operands[1].imm & mask)))
10233 {
10234 if (inst.instruction == T_MNEM_stmia
10235 && (inst.operands[1].imm & mask)
10236 && (inst.operands[1].imm & (mask - 1)))
10237 as_warn (_("value stored for r%d is UNKNOWN"),
10238 inst.operands[0].reg);
3c707909 10239
eab4f823
MGD
10240 inst.instruction = THUMB_OP16 (inst.instruction);
10241 inst.instruction |= inst.operands[0].reg << 8;
10242 inst.instruction |= inst.operands[1].imm;
10243 narrow = TRUE;
10244 }
10245 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10246 {
10247 /* This means 1 register in reg list one of 3 situations:
10248 1. Instruction is stmia, but without writeback.
10249 2. lmdia without writeback, but with Rn not in
10250 reglist.
10251 3. ldmia with writeback, but with Rn in reglist.
10252 Case 3 is UNPREDICTABLE behaviour, so we handle
10253 case 1 and 2 which can be converted into a 16-bit
10254 str or ldr. The SP cases are handled below. */
10255 unsigned long opcode;
10256 /* First, record an error for Case 3. */
10257 if (inst.operands[1].imm & mask
10258 && inst.operands[0].writeback)
10259 inst.error =
10260 _("having the base register in the register list when "
10261 "using write back is UNPREDICTABLE");
10262
10263 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10264 : T_MNEM_ldr);
10265 inst.instruction = THUMB_OP16 (opcode);
10266 inst.instruction |= inst.operands[0].reg << 3;
10267 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10268 narrow = TRUE;
10269 }
90e4755a 10270 }
eab4f823 10271 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10272 {
eab4f823
MGD
10273 if (inst.operands[0].writeback)
10274 {
10275 inst.instruction =
10276 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10277 ? T_MNEM_push : T_MNEM_pop);
10278 inst.instruction |= inst.operands[1].imm;
10279 narrow = TRUE;
10280 }
10281 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10282 {
10283 inst.instruction =
10284 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10285 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10286 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10287 narrow = TRUE;
10288 }
90e4755a 10289 }
3c707909
PB
10290 }
10291
10292 if (!narrow)
10293 {
c19d1205
ZW
10294 if (inst.instruction < 0xffff)
10295 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10296
5f4273c7
NC
10297 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10298 inst.operands[0].writeback);
90e4755a
RE
10299 }
10300 }
c19d1205 10301 else
90e4755a 10302 {
c19d1205
ZW
10303 constraint (inst.operands[0].reg > 7
10304 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10305 constraint (inst.instruction != T_MNEM_ldmia
10306 && inst.instruction != T_MNEM_stmia,
10307 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10308 if (inst.instruction == T_MNEM_stmia)
f03698e6 10309 {
c19d1205
ZW
10310 if (!inst.operands[0].writeback)
10311 as_warn (_("this instruction will write back the base register"));
10312 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10313 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10314 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10315 inst.operands[0].reg);
f03698e6 10316 }
c19d1205 10317 else
90e4755a 10318 {
c19d1205
ZW
10319 if (!inst.operands[0].writeback
10320 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10321 as_warn (_("this instruction will write back the base register"));
10322 else if (inst.operands[0].writeback
10323 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10324 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10325 }
10326
c19d1205
ZW
10327 inst.instruction = THUMB_OP16 (inst.instruction);
10328 inst.instruction |= inst.operands[0].reg << 8;
10329 inst.instruction |= inst.operands[1].imm;
10330 }
10331}
e28cd48c 10332
c19d1205
ZW
10333static void
10334do_t_ldrex (void)
10335{
10336 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10337 || inst.operands[1].postind || inst.operands[1].writeback
10338 || inst.operands[1].immisreg || inst.operands[1].shifted
10339 || inst.operands[1].negative,
01cfc07f 10340 BAD_ADDR_MODE);
e28cd48c 10341
5be8be5d
DG
10342 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10343
c19d1205
ZW
10344 inst.instruction |= inst.operands[0].reg << 12;
10345 inst.instruction |= inst.operands[1].reg << 16;
10346 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10347}
e28cd48c 10348
c19d1205
ZW
10349static void
10350do_t_ldrexd (void)
10351{
10352 if (!inst.operands[1].present)
1cac9012 10353 {
c19d1205
ZW
10354 constraint (inst.operands[0].reg == REG_LR,
10355 _("r14 not allowed as first register "
10356 "when second register is omitted"));
10357 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10358 }
c19d1205
ZW
10359 constraint (inst.operands[0].reg == inst.operands[1].reg,
10360 BAD_OVERLAP);
b99bd4ef 10361
c19d1205
ZW
10362 inst.instruction |= inst.operands[0].reg << 12;
10363 inst.instruction |= inst.operands[1].reg << 8;
10364 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10365}
10366
10367static void
c19d1205 10368do_t_ldst (void)
b99bd4ef 10369{
0110f2b8
PB
10370 unsigned long opcode;
10371 int Rn;
10372
e07e6e58
NC
10373 if (inst.operands[0].isreg
10374 && !inst.operands[0].preind
10375 && inst.operands[0].reg == REG_PC)
10376 set_it_insn_type_last ();
10377
0110f2b8 10378 opcode = inst.instruction;
c19d1205 10379 if (unified_syntax)
b99bd4ef 10380 {
53365c0d
PB
10381 if (!inst.operands[1].isreg)
10382 {
10383 if (opcode <= 0xffff)
10384 inst.instruction = THUMB_OP32 (opcode);
10385 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10386 return;
10387 }
0110f2b8
PB
10388 if (inst.operands[1].isreg
10389 && !inst.operands[1].writeback
c19d1205
ZW
10390 && !inst.operands[1].shifted && !inst.operands[1].postind
10391 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10392 && opcode <= 0xffff
10393 && inst.size_req != 4)
c19d1205 10394 {
0110f2b8
PB
10395 /* Insn may have a 16-bit form. */
10396 Rn = inst.operands[1].reg;
10397 if (inst.operands[1].immisreg)
10398 {
10399 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10400 /* [Rn, Rik] */
0110f2b8
PB
10401 if (Rn <= 7 && inst.operands[1].imm <= 7)
10402 goto op16;
5be8be5d
DG
10403 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10404 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10405 }
10406 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10407 && opcode != T_MNEM_ldrsb)
10408 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10409 || (Rn == REG_SP && opcode == T_MNEM_str))
10410 {
10411 /* [Rn, #const] */
10412 if (Rn > 7)
10413 {
10414 if (Rn == REG_PC)
10415 {
10416 if (inst.reloc.pc_rel)
10417 opcode = T_MNEM_ldr_pc2;
10418 else
10419 opcode = T_MNEM_ldr_pc;
10420 }
10421 else
10422 {
10423 if (opcode == T_MNEM_ldr)
10424 opcode = T_MNEM_ldr_sp;
10425 else
10426 opcode = T_MNEM_str_sp;
10427 }
10428 inst.instruction = inst.operands[0].reg << 8;
10429 }
10430 else
10431 {
10432 inst.instruction = inst.operands[0].reg;
10433 inst.instruction |= inst.operands[1].reg << 3;
10434 }
10435 inst.instruction |= THUMB_OP16 (opcode);
10436 if (inst.size_req == 2)
10437 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10438 else
10439 inst.relax = opcode;
10440 return;
10441 }
c19d1205 10442 }
0110f2b8 10443 /* Definitely a 32-bit variant. */
5be8be5d 10444
8d67f500
NC
10445 /* Warning for Erratum 752419. */
10446 if (opcode == T_MNEM_ldr
10447 && inst.operands[0].reg == REG_SP
10448 && inst.operands[1].writeback == 1
10449 && !inst.operands[1].immisreg)
10450 {
10451 if (no_cpu_selected ()
10452 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10453 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10454 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10455 as_warn (_("This instruction may be unpredictable "
10456 "if executed on M-profile cores "
10457 "with interrupts enabled."));
10458 }
10459
5be8be5d
DG
10460 /* Do some validations regarding addressing modes. */
10461 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10462 && opcode != T_MNEM_str)
10463 reject_bad_reg (inst.operands[1].imm);
10464
0110f2b8 10465 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10466 inst.instruction |= inst.operands[0].reg << 12;
10467 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10468 return;
10469 }
10470
c19d1205
ZW
10471 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10472
10473 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10474 {
c19d1205
ZW
10475 /* Only [Rn,Rm] is acceptable. */
10476 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10477 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10478 || inst.operands[1].postind || inst.operands[1].shifted
10479 || inst.operands[1].negative,
10480 _("Thumb does not support this addressing mode"));
10481 inst.instruction = THUMB_OP16 (inst.instruction);
10482 goto op16;
b99bd4ef 10483 }
5f4273c7 10484
c19d1205
ZW
10485 inst.instruction = THUMB_OP16 (inst.instruction);
10486 if (!inst.operands[1].isreg)
10487 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10488 return;
b99bd4ef 10489
c19d1205
ZW
10490 constraint (!inst.operands[1].preind
10491 || inst.operands[1].shifted
10492 || inst.operands[1].writeback,
10493 _("Thumb does not support this addressing mode"));
10494 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10495 {
c19d1205
ZW
10496 constraint (inst.instruction & 0x0600,
10497 _("byte or halfword not valid for base register"));
10498 constraint (inst.operands[1].reg == REG_PC
10499 && !(inst.instruction & THUMB_LOAD_BIT),
10500 _("r15 based store not allowed"));
10501 constraint (inst.operands[1].immisreg,
10502 _("invalid base register for register offset"));
b99bd4ef 10503
c19d1205
ZW
10504 if (inst.operands[1].reg == REG_PC)
10505 inst.instruction = T_OPCODE_LDR_PC;
10506 else if (inst.instruction & THUMB_LOAD_BIT)
10507 inst.instruction = T_OPCODE_LDR_SP;
10508 else
10509 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10510
c19d1205
ZW
10511 inst.instruction |= inst.operands[0].reg << 8;
10512 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10513 return;
10514 }
90e4755a 10515
c19d1205
ZW
10516 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10517 if (!inst.operands[1].immisreg)
10518 {
10519 /* Immediate offset. */
10520 inst.instruction |= inst.operands[0].reg;
10521 inst.instruction |= inst.operands[1].reg << 3;
10522 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10523 return;
10524 }
90e4755a 10525
c19d1205
ZW
10526 /* Register offset. */
10527 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10528 constraint (inst.operands[1].negative,
10529 _("Thumb does not support this addressing mode"));
90e4755a 10530
c19d1205
ZW
10531 op16:
10532 switch (inst.instruction)
10533 {
10534 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10535 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10536 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10537 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10538 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10539 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10540 case 0x5600 /* ldrsb */:
10541 case 0x5e00 /* ldrsh */: break;
10542 default: abort ();
10543 }
90e4755a 10544
c19d1205
ZW
10545 inst.instruction |= inst.operands[0].reg;
10546 inst.instruction |= inst.operands[1].reg << 3;
10547 inst.instruction |= inst.operands[1].imm << 6;
10548}
90e4755a 10549
c19d1205
ZW
10550static void
10551do_t_ldstd (void)
10552{
10553 if (!inst.operands[1].present)
b99bd4ef 10554 {
c19d1205
ZW
10555 inst.operands[1].reg = inst.operands[0].reg + 1;
10556 constraint (inst.operands[0].reg == REG_LR,
10557 _("r14 not allowed here"));
b99bd4ef 10558 }
c19d1205
ZW
10559 inst.instruction |= inst.operands[0].reg << 12;
10560 inst.instruction |= inst.operands[1].reg << 8;
10561 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10562}
10563
c19d1205
ZW
10564static void
10565do_t_ldstt (void)
10566{
10567 inst.instruction |= inst.operands[0].reg << 12;
10568 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10569}
a737bd4d 10570
b99bd4ef 10571static void
c19d1205 10572do_t_mla (void)
b99bd4ef 10573{
fdfde340 10574 unsigned Rd, Rn, Rm, Ra;
c921be7d 10575
fdfde340
JM
10576 Rd = inst.operands[0].reg;
10577 Rn = inst.operands[1].reg;
10578 Rm = inst.operands[2].reg;
10579 Ra = inst.operands[3].reg;
10580
10581 reject_bad_reg (Rd);
10582 reject_bad_reg (Rn);
10583 reject_bad_reg (Rm);
10584 reject_bad_reg (Ra);
10585
10586 inst.instruction |= Rd << 8;
10587 inst.instruction |= Rn << 16;
10588 inst.instruction |= Rm;
10589 inst.instruction |= Ra << 12;
c19d1205 10590}
b99bd4ef 10591
c19d1205
ZW
10592static void
10593do_t_mlal (void)
10594{
fdfde340
JM
10595 unsigned RdLo, RdHi, Rn, Rm;
10596
10597 RdLo = inst.operands[0].reg;
10598 RdHi = inst.operands[1].reg;
10599 Rn = inst.operands[2].reg;
10600 Rm = inst.operands[3].reg;
10601
10602 reject_bad_reg (RdLo);
10603 reject_bad_reg (RdHi);
10604 reject_bad_reg (Rn);
10605 reject_bad_reg (Rm);
10606
10607 inst.instruction |= RdLo << 12;
10608 inst.instruction |= RdHi << 8;
10609 inst.instruction |= Rn << 16;
10610 inst.instruction |= Rm;
c19d1205 10611}
b99bd4ef 10612
c19d1205
ZW
10613static void
10614do_t_mov_cmp (void)
10615{
fdfde340
JM
10616 unsigned Rn, Rm;
10617
10618 Rn = inst.operands[0].reg;
10619 Rm = inst.operands[1].reg;
10620
e07e6e58
NC
10621 if (Rn == REG_PC)
10622 set_it_insn_type_last ();
10623
c19d1205 10624 if (unified_syntax)
b99bd4ef 10625 {
c19d1205
ZW
10626 int r0off = (inst.instruction == T_MNEM_mov
10627 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10628 unsigned long opcode;
3d388997
PB
10629 bfd_boolean narrow;
10630 bfd_boolean low_regs;
10631
fdfde340 10632 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10633 opcode = inst.instruction;
e07e6e58 10634 if (in_it_block ())
0110f2b8 10635 narrow = opcode != T_MNEM_movs;
3d388997 10636 else
0110f2b8 10637 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10638 if (inst.size_req == 4
10639 || inst.operands[1].shifted)
10640 narrow = FALSE;
10641
efd81785
PB
10642 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10643 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10644 && !inst.operands[1].shifted
fdfde340
JM
10645 && Rn == REG_PC
10646 && Rm == REG_LR)
efd81785
PB
10647 {
10648 inst.instruction = T2_SUBS_PC_LR;
10649 return;
10650 }
10651
fdfde340
JM
10652 if (opcode == T_MNEM_cmp)
10653 {
10654 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10655 if (narrow)
10656 {
10657 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10658 but valid. */
10659 warn_deprecated_sp (Rm);
10660 /* R15 was documented as a valid choice for Rm in ARMv6,
10661 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10662 tools reject R15, so we do too. */
10663 constraint (Rm == REG_PC, BAD_PC);
10664 }
10665 else
10666 reject_bad_reg (Rm);
fdfde340
JM
10667 }
10668 else if (opcode == T_MNEM_mov
10669 || opcode == T_MNEM_movs)
10670 {
10671 if (inst.operands[1].isreg)
10672 {
10673 if (opcode == T_MNEM_movs)
10674 {
10675 reject_bad_reg (Rn);
10676 reject_bad_reg (Rm);
10677 }
76fa04a4
MGD
10678 else if (narrow)
10679 {
10680 /* This is mov.n. */
10681 if ((Rn == REG_SP || Rn == REG_PC)
10682 && (Rm == REG_SP || Rm == REG_PC))
10683 {
10684 as_warn (_("Use of r%u as a source register is "
10685 "deprecated when r%u is the destination "
10686 "register."), Rm, Rn);
10687 }
10688 }
10689 else
10690 {
10691 /* This is mov.w. */
10692 constraint (Rn == REG_PC, BAD_PC);
10693 constraint (Rm == REG_PC, BAD_PC);
10694 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10695 }
fdfde340
JM
10696 }
10697 else
10698 reject_bad_reg (Rn);
10699 }
10700
c19d1205
ZW
10701 if (!inst.operands[1].isreg)
10702 {
0110f2b8 10703 /* Immediate operand. */
e07e6e58 10704 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10705 narrow = 0;
10706 if (low_regs && narrow)
10707 {
10708 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10709 inst.instruction |= Rn << 8;
0110f2b8
PB
10710 if (inst.size_req == 2)
10711 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10712 else
10713 inst.relax = opcode;
10714 }
10715 else
10716 {
10717 inst.instruction = THUMB_OP32 (inst.instruction);
10718 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10719 inst.instruction |= Rn << r0off;
0110f2b8
PB
10720 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10721 }
c19d1205 10722 }
728ca7c9
PB
10723 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10724 && (inst.instruction == T_MNEM_mov
10725 || inst.instruction == T_MNEM_movs))
10726 {
10727 /* Register shifts are encoded as separate shift instructions. */
10728 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10729
e07e6e58 10730 if (in_it_block ())
728ca7c9
PB
10731 narrow = !flags;
10732 else
10733 narrow = flags;
10734
10735 if (inst.size_req == 4)
10736 narrow = FALSE;
10737
10738 if (!low_regs || inst.operands[1].imm > 7)
10739 narrow = FALSE;
10740
fdfde340 10741 if (Rn != Rm)
728ca7c9
PB
10742 narrow = FALSE;
10743
10744 switch (inst.operands[1].shift_kind)
10745 {
10746 case SHIFT_LSL:
10747 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10748 break;
10749 case SHIFT_ASR:
10750 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10751 break;
10752 case SHIFT_LSR:
10753 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10754 break;
10755 case SHIFT_ROR:
10756 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10757 break;
10758 default:
5f4273c7 10759 abort ();
728ca7c9
PB
10760 }
10761
10762 inst.instruction = opcode;
10763 if (narrow)
10764 {
fdfde340 10765 inst.instruction |= Rn;
728ca7c9
PB
10766 inst.instruction |= inst.operands[1].imm << 3;
10767 }
10768 else
10769 {
10770 if (flags)
10771 inst.instruction |= CONDS_BIT;
10772
fdfde340
JM
10773 inst.instruction |= Rn << 8;
10774 inst.instruction |= Rm << 16;
728ca7c9
PB
10775 inst.instruction |= inst.operands[1].imm;
10776 }
10777 }
3d388997 10778 else if (!narrow)
c19d1205 10779 {
728ca7c9
PB
10780 /* Some mov with immediate shift have narrow variants.
10781 Register shifts are handled above. */
10782 if (low_regs && inst.operands[1].shifted
10783 && (inst.instruction == T_MNEM_mov
10784 || inst.instruction == T_MNEM_movs))
10785 {
e07e6e58 10786 if (in_it_block ())
728ca7c9
PB
10787 narrow = (inst.instruction == T_MNEM_mov);
10788 else
10789 narrow = (inst.instruction == T_MNEM_movs);
10790 }
10791
10792 if (narrow)
10793 {
10794 switch (inst.operands[1].shift_kind)
10795 {
10796 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10797 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10798 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10799 default: narrow = FALSE; break;
10800 }
10801 }
10802
10803 if (narrow)
10804 {
fdfde340
JM
10805 inst.instruction |= Rn;
10806 inst.instruction |= Rm << 3;
728ca7c9
PB
10807 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10808 }
10809 else
10810 {
10811 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10812 inst.instruction |= Rn << r0off;
728ca7c9
PB
10813 encode_thumb32_shifted_operand (1);
10814 }
c19d1205
ZW
10815 }
10816 else
10817 switch (inst.instruction)
10818 {
10819 case T_MNEM_mov:
10820 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10821 inst.instruction |= (Rn & 0x8) << 4;
10822 inst.instruction |= (Rn & 0x7);
10823 inst.instruction |= Rm << 3;
c19d1205 10824 break;
b99bd4ef 10825
c19d1205
ZW
10826 case T_MNEM_movs:
10827 /* We know we have low registers at this point.
941a8a52
MGD
10828 Generate LSLS Rd, Rs, #0. */
10829 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10830 inst.instruction |= Rn;
10831 inst.instruction |= Rm << 3;
c19d1205
ZW
10832 break;
10833
10834 case T_MNEM_cmp:
3d388997 10835 if (low_regs)
c19d1205
ZW
10836 {
10837 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10838 inst.instruction |= Rn;
10839 inst.instruction |= Rm << 3;
c19d1205
ZW
10840 }
10841 else
10842 {
10843 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10844 inst.instruction |= (Rn & 0x8) << 4;
10845 inst.instruction |= (Rn & 0x7);
10846 inst.instruction |= Rm << 3;
c19d1205
ZW
10847 }
10848 break;
10849 }
b99bd4ef
NC
10850 return;
10851 }
10852
c19d1205 10853 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10854
10855 /* PR 10443: Do not silently ignore shifted operands. */
10856 constraint (inst.operands[1].shifted,
10857 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10858
c19d1205 10859 if (inst.operands[1].isreg)
b99bd4ef 10860 {
fdfde340 10861 if (Rn < 8 && Rm < 8)
b99bd4ef 10862 {
c19d1205
ZW
10863 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10864 since a MOV instruction produces unpredictable results. */
10865 if (inst.instruction == T_OPCODE_MOV_I8)
10866 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10867 else
c19d1205 10868 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10869
fdfde340
JM
10870 inst.instruction |= Rn;
10871 inst.instruction |= Rm << 3;
b99bd4ef
NC
10872 }
10873 else
10874 {
c19d1205
ZW
10875 if (inst.instruction == T_OPCODE_MOV_I8)
10876 inst.instruction = T_OPCODE_MOV_HR;
10877 else
10878 inst.instruction = T_OPCODE_CMP_HR;
10879 do_t_cpy ();
b99bd4ef
NC
10880 }
10881 }
c19d1205 10882 else
b99bd4ef 10883 {
fdfde340 10884 constraint (Rn > 7,
c19d1205 10885 _("only lo regs allowed with immediate"));
fdfde340 10886 inst.instruction |= Rn << 8;
c19d1205
ZW
10887 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10888 }
10889}
b99bd4ef 10890
c19d1205
ZW
10891static void
10892do_t_mov16 (void)
10893{
fdfde340 10894 unsigned Rd;
b6895b4f
PB
10895 bfd_vma imm;
10896 bfd_boolean top;
10897
10898 top = (inst.instruction & 0x00800000) != 0;
10899 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10900 {
10901 constraint (top, _(":lower16: not allowed this instruction"));
10902 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10903 }
10904 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10905 {
10906 constraint (!top, _(":upper16: not allowed this instruction"));
10907 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10908 }
10909
fdfde340
JM
10910 Rd = inst.operands[0].reg;
10911 reject_bad_reg (Rd);
10912
10913 inst.instruction |= Rd << 8;
b6895b4f
PB
10914 if (inst.reloc.type == BFD_RELOC_UNUSED)
10915 {
10916 imm = inst.reloc.exp.X_add_number;
10917 inst.instruction |= (imm & 0xf000) << 4;
10918 inst.instruction |= (imm & 0x0800) << 15;
10919 inst.instruction |= (imm & 0x0700) << 4;
10920 inst.instruction |= (imm & 0x00ff);
10921 }
c19d1205 10922}
b99bd4ef 10923
c19d1205
ZW
10924static void
10925do_t_mvn_tst (void)
10926{
fdfde340 10927 unsigned Rn, Rm;
c921be7d 10928
fdfde340
JM
10929 Rn = inst.operands[0].reg;
10930 Rm = inst.operands[1].reg;
10931
10932 if (inst.instruction == T_MNEM_cmp
10933 || inst.instruction == T_MNEM_cmn)
10934 constraint (Rn == REG_PC, BAD_PC);
10935 else
10936 reject_bad_reg (Rn);
10937 reject_bad_reg (Rm);
10938
c19d1205
ZW
10939 if (unified_syntax)
10940 {
10941 int r0off = (inst.instruction == T_MNEM_mvn
10942 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10943 bfd_boolean narrow;
10944
10945 if (inst.size_req == 4
10946 || inst.instruction > 0xffff
10947 || inst.operands[1].shifted
fdfde340 10948 || Rn > 7 || Rm > 7)
3d388997
PB
10949 narrow = FALSE;
10950 else if (inst.instruction == T_MNEM_cmn)
10951 narrow = TRUE;
10952 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10953 narrow = !in_it_block ();
3d388997 10954 else
e07e6e58 10955 narrow = in_it_block ();
3d388997 10956
c19d1205 10957 if (!inst.operands[1].isreg)
b99bd4ef 10958 {
c19d1205
ZW
10959 /* For an immediate, we always generate a 32-bit opcode;
10960 section relaxation will shrink it later if possible. */
10961 if (inst.instruction < 0xffff)
10962 inst.instruction = THUMB_OP32 (inst.instruction);
10963 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10964 inst.instruction |= Rn << r0off;
c19d1205 10965 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10966 }
c19d1205 10967 else
b99bd4ef 10968 {
c19d1205 10969 /* See if we can do this with a 16-bit instruction. */
3d388997 10970 if (narrow)
b99bd4ef 10971 {
c19d1205 10972 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10973 inst.instruction |= Rn;
10974 inst.instruction |= Rm << 3;
b99bd4ef 10975 }
c19d1205 10976 else
b99bd4ef 10977 {
c19d1205
ZW
10978 constraint (inst.operands[1].shifted
10979 && inst.operands[1].immisreg,
10980 _("shift must be constant"));
10981 if (inst.instruction < 0xffff)
10982 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10983 inst.instruction |= Rn << r0off;
c19d1205 10984 encode_thumb32_shifted_operand (1);
b99bd4ef 10985 }
b99bd4ef
NC
10986 }
10987 }
10988 else
10989 {
c19d1205
ZW
10990 constraint (inst.instruction > 0xffff
10991 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10992 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10993 _("unshifted register required"));
fdfde340 10994 constraint (Rn > 7 || Rm > 7,
c19d1205 10995 BAD_HIREG);
b99bd4ef 10996
c19d1205 10997 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10998 inst.instruction |= Rn;
10999 inst.instruction |= Rm << 3;
b99bd4ef 11000 }
b99bd4ef
NC
11001}
11002
b05fe5cf 11003static void
c19d1205 11004do_t_mrs (void)
b05fe5cf 11005{
fdfde340 11006 unsigned Rd;
037e8744
JB
11007
11008 if (do_vfp_nsyn_mrs () == SUCCESS)
11009 return;
11010
90ec0d68
MGD
11011 Rd = inst.operands[0].reg;
11012 reject_bad_reg (Rd);
11013 inst.instruction |= Rd << 8;
11014
11015 if (inst.operands[1].isreg)
62b3e311 11016 {
90ec0d68
MGD
11017 unsigned br = inst.operands[1].reg;
11018 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11019 as_bad (_("bad register for mrs"));
11020
11021 inst.instruction |= br & (0xf << 16);
11022 inst.instruction |= (br & 0x300) >> 4;
11023 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11024 }
11025 else
11026 {
90ec0d68 11027 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11028
d2cd1205
JB
11029 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11030 constraint (flags != 0, _("selected processor does not support "
11031 "requested special purpose register"));
90ec0d68 11032 else
d2cd1205
JB
11033 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11034 devices). */
11035 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11036 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11037
90ec0d68
MGD
11038 inst.instruction |= (flags & SPSR_BIT) >> 2;
11039 inst.instruction |= inst.operands[1].imm & 0xff;
11040 inst.instruction |= 0xf0000;
11041 }
c19d1205 11042}
b05fe5cf 11043
c19d1205
ZW
11044static void
11045do_t_msr (void)
11046{
62b3e311 11047 int flags;
fdfde340 11048 unsigned Rn;
62b3e311 11049
037e8744
JB
11050 if (do_vfp_nsyn_msr () == SUCCESS)
11051 return;
11052
c19d1205
ZW
11053 constraint (!inst.operands[1].isreg,
11054 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11055
11056 if (inst.operands[0].isreg)
11057 flags = (int)(inst.operands[0].reg);
11058 else
11059 flags = inst.operands[0].imm;
11060
d2cd1205 11061 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11062 {
d2cd1205
JB
11063 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11064
11065 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11066 && (bits & ~(PSR_s | PSR_f)) != 0)
11067 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11068 && bits != PSR_f),
11069 _("selected processor does not support requested special "
11070 "purpose register"));
62b3e311
PB
11071 }
11072 else
d2cd1205
JB
11073 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11074 "requested special purpose register"));
c921be7d 11075
fdfde340
JM
11076 Rn = inst.operands[1].reg;
11077 reject_bad_reg (Rn);
11078
62b3e311 11079 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11080 inst.instruction |= (flags & 0xf0000) >> 8;
11081 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11082 inst.instruction |= (flags & 0xff);
fdfde340 11083 inst.instruction |= Rn << 16;
c19d1205 11084}
b05fe5cf 11085
c19d1205
ZW
11086static void
11087do_t_mul (void)
11088{
17828f45 11089 bfd_boolean narrow;
fdfde340 11090 unsigned Rd, Rn, Rm;
17828f45 11091
c19d1205
ZW
11092 if (!inst.operands[2].present)
11093 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11094
fdfde340
JM
11095 Rd = inst.operands[0].reg;
11096 Rn = inst.operands[1].reg;
11097 Rm = inst.operands[2].reg;
11098
17828f45 11099 if (unified_syntax)
b05fe5cf 11100 {
17828f45 11101 if (inst.size_req == 4
fdfde340
JM
11102 || (Rd != Rn
11103 && Rd != Rm)
11104 || Rn > 7
11105 || Rm > 7)
17828f45
JM
11106 narrow = FALSE;
11107 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11108 narrow = !in_it_block ();
17828f45 11109 else
e07e6e58 11110 narrow = in_it_block ();
b05fe5cf 11111 }
c19d1205 11112 else
b05fe5cf 11113 {
17828f45 11114 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11115 constraint (Rn > 7 || Rm > 7,
c19d1205 11116 BAD_HIREG);
17828f45
JM
11117 narrow = TRUE;
11118 }
b05fe5cf 11119
17828f45
JM
11120 if (narrow)
11121 {
11122 /* 16-bit MULS/Conditional MUL. */
c19d1205 11123 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11124 inst.instruction |= Rd;
b05fe5cf 11125
fdfde340
JM
11126 if (Rd == Rn)
11127 inst.instruction |= Rm << 3;
11128 else if (Rd == Rm)
11129 inst.instruction |= Rn << 3;
c19d1205
ZW
11130 else
11131 constraint (1, _("dest must overlap one source register"));
11132 }
17828f45
JM
11133 else
11134 {
e07e6e58
NC
11135 constraint (inst.instruction != T_MNEM_mul,
11136 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11137 /* 32-bit MUL. */
11138 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11139 inst.instruction |= Rd << 8;
11140 inst.instruction |= Rn << 16;
11141 inst.instruction |= Rm << 0;
11142
11143 reject_bad_reg (Rd);
11144 reject_bad_reg (Rn);
11145 reject_bad_reg (Rm);
17828f45 11146 }
c19d1205 11147}
b05fe5cf 11148
c19d1205
ZW
11149static void
11150do_t_mull (void)
11151{
fdfde340 11152 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11153
fdfde340
JM
11154 RdLo = inst.operands[0].reg;
11155 RdHi = inst.operands[1].reg;
11156 Rn = inst.operands[2].reg;
11157 Rm = inst.operands[3].reg;
11158
11159 reject_bad_reg (RdLo);
11160 reject_bad_reg (RdHi);
11161 reject_bad_reg (Rn);
11162 reject_bad_reg (Rm);
11163
11164 inst.instruction |= RdLo << 12;
11165 inst.instruction |= RdHi << 8;
11166 inst.instruction |= Rn << 16;
11167 inst.instruction |= Rm;
11168
11169 if (RdLo == RdHi)
c19d1205
ZW
11170 as_tsktsk (_("rdhi and rdlo must be different"));
11171}
b05fe5cf 11172
c19d1205
ZW
11173static void
11174do_t_nop (void)
11175{
e07e6e58
NC
11176 set_it_insn_type (NEUTRAL_IT_INSN);
11177
c19d1205
ZW
11178 if (unified_syntax)
11179 {
11180 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11181 {
c19d1205
ZW
11182 inst.instruction = THUMB_OP32 (inst.instruction);
11183 inst.instruction |= inst.operands[0].imm;
11184 }
11185 else
11186 {
bc2d1808
NC
11187 /* PR9722: Check for Thumb2 availability before
11188 generating a thumb2 nop instruction. */
afa62d5e 11189 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11190 {
11191 inst.instruction = THUMB_OP16 (inst.instruction);
11192 inst.instruction |= inst.operands[0].imm << 4;
11193 }
11194 else
11195 inst.instruction = 0x46c0;
c19d1205
ZW
11196 }
11197 }
11198 else
11199 {
11200 constraint (inst.operands[0].present,
11201 _("Thumb does not support NOP with hints"));
11202 inst.instruction = 0x46c0;
11203 }
11204}
b05fe5cf 11205
c19d1205
ZW
11206static void
11207do_t_neg (void)
11208{
11209 if (unified_syntax)
11210 {
3d388997
PB
11211 bfd_boolean narrow;
11212
11213 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11214 narrow = !in_it_block ();
3d388997 11215 else
e07e6e58 11216 narrow = in_it_block ();
3d388997
PB
11217 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11218 narrow = FALSE;
11219 if (inst.size_req == 4)
11220 narrow = FALSE;
11221
11222 if (!narrow)
c19d1205
ZW
11223 {
11224 inst.instruction = THUMB_OP32 (inst.instruction);
11225 inst.instruction |= inst.operands[0].reg << 8;
11226 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11227 }
11228 else
11229 {
c19d1205
ZW
11230 inst.instruction = THUMB_OP16 (inst.instruction);
11231 inst.instruction |= inst.operands[0].reg;
11232 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11233 }
11234 }
11235 else
11236 {
c19d1205
ZW
11237 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11238 BAD_HIREG);
11239 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11240
11241 inst.instruction = THUMB_OP16 (inst.instruction);
11242 inst.instruction |= inst.operands[0].reg;
11243 inst.instruction |= inst.operands[1].reg << 3;
11244 }
11245}
11246
1c444d06
JM
11247static void
11248do_t_orn (void)
11249{
11250 unsigned Rd, Rn;
11251
11252 Rd = inst.operands[0].reg;
11253 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11254
fdfde340
JM
11255 reject_bad_reg (Rd);
11256 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11257 reject_bad_reg (Rn);
11258
1c444d06
JM
11259 inst.instruction |= Rd << 8;
11260 inst.instruction |= Rn << 16;
11261
11262 if (!inst.operands[2].isreg)
11263 {
11264 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11265 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11266 }
11267 else
11268 {
11269 unsigned Rm;
11270
11271 Rm = inst.operands[2].reg;
fdfde340 11272 reject_bad_reg (Rm);
1c444d06
JM
11273
11274 constraint (inst.operands[2].shifted
11275 && inst.operands[2].immisreg,
11276 _("shift must be constant"));
11277 encode_thumb32_shifted_operand (2);
11278 }
11279}
11280
c19d1205
ZW
11281static void
11282do_t_pkhbt (void)
11283{
fdfde340
JM
11284 unsigned Rd, Rn, Rm;
11285
11286 Rd = inst.operands[0].reg;
11287 Rn = inst.operands[1].reg;
11288 Rm = inst.operands[2].reg;
11289
11290 reject_bad_reg (Rd);
11291 reject_bad_reg (Rn);
11292 reject_bad_reg (Rm);
11293
11294 inst.instruction |= Rd << 8;
11295 inst.instruction |= Rn << 16;
11296 inst.instruction |= Rm;
c19d1205
ZW
11297 if (inst.operands[3].present)
11298 {
11299 unsigned int val = inst.reloc.exp.X_add_number;
11300 constraint (inst.reloc.exp.X_op != O_constant,
11301 _("expression too complex"));
11302 inst.instruction |= (val & 0x1c) << 10;
11303 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11304 }
c19d1205 11305}
b05fe5cf 11306
c19d1205
ZW
11307static void
11308do_t_pkhtb (void)
11309{
11310 if (!inst.operands[3].present)
1ef52f49
NC
11311 {
11312 unsigned Rtmp;
11313
11314 inst.instruction &= ~0x00000020;
11315
11316 /* PR 10168. Swap the Rm and Rn registers. */
11317 Rtmp = inst.operands[1].reg;
11318 inst.operands[1].reg = inst.operands[2].reg;
11319 inst.operands[2].reg = Rtmp;
11320 }
c19d1205 11321 do_t_pkhbt ();
b05fe5cf
ZW
11322}
11323
c19d1205
ZW
11324static void
11325do_t_pld (void)
11326{
fdfde340
JM
11327 if (inst.operands[0].immisreg)
11328 reject_bad_reg (inst.operands[0].imm);
11329
c19d1205
ZW
11330 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11331}
b05fe5cf 11332
c19d1205
ZW
11333static void
11334do_t_push_pop (void)
b99bd4ef 11335{
e9f89963 11336 unsigned mask;
5f4273c7 11337
c19d1205
ZW
11338 constraint (inst.operands[0].writeback,
11339 _("push/pop do not support {reglist}^"));
11340 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11341 _("expression too complex"));
b99bd4ef 11342
e9f89963
PB
11343 mask = inst.operands[0].imm;
11344 if ((mask & ~0xff) == 0)
3c707909 11345 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11346 else if ((inst.instruction == T_MNEM_push
e9f89963 11347 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11348 || (inst.instruction == T_MNEM_pop
e9f89963 11349 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11350 {
c19d1205
ZW
11351 inst.instruction = THUMB_OP16 (inst.instruction);
11352 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11353 inst.instruction |= mask & 0xff;
c19d1205
ZW
11354 }
11355 else if (unified_syntax)
11356 {
3c707909 11357 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11358 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11359 }
11360 else
11361 {
11362 inst.error = _("invalid register list to push/pop instruction");
11363 return;
11364 }
c19d1205 11365}
b99bd4ef 11366
c19d1205
ZW
11367static void
11368do_t_rbit (void)
11369{
fdfde340
JM
11370 unsigned Rd, Rm;
11371
11372 Rd = inst.operands[0].reg;
11373 Rm = inst.operands[1].reg;
11374
11375 reject_bad_reg (Rd);
11376 reject_bad_reg (Rm);
11377
11378 inst.instruction |= Rd << 8;
11379 inst.instruction |= Rm << 16;
11380 inst.instruction |= Rm;
c19d1205 11381}
b99bd4ef 11382
c19d1205
ZW
11383static void
11384do_t_rev (void)
11385{
fdfde340
JM
11386 unsigned Rd, Rm;
11387
11388 Rd = inst.operands[0].reg;
11389 Rm = inst.operands[1].reg;
11390
11391 reject_bad_reg (Rd);
11392 reject_bad_reg (Rm);
11393
11394 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11395 && inst.size_req != 4)
11396 {
11397 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11398 inst.instruction |= Rd;
11399 inst.instruction |= Rm << 3;
c19d1205
ZW
11400 }
11401 else if (unified_syntax)
11402 {
11403 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11404 inst.instruction |= Rd << 8;
11405 inst.instruction |= Rm << 16;
11406 inst.instruction |= Rm;
c19d1205
ZW
11407 }
11408 else
11409 inst.error = BAD_HIREG;
11410}
b99bd4ef 11411
1c444d06
JM
11412static void
11413do_t_rrx (void)
11414{
11415 unsigned Rd, Rm;
11416
11417 Rd = inst.operands[0].reg;
11418 Rm = inst.operands[1].reg;
11419
fdfde340
JM
11420 reject_bad_reg (Rd);
11421 reject_bad_reg (Rm);
c921be7d 11422
1c444d06
JM
11423 inst.instruction |= Rd << 8;
11424 inst.instruction |= Rm;
11425}
11426
c19d1205
ZW
11427static void
11428do_t_rsb (void)
11429{
fdfde340 11430 unsigned Rd, Rs;
b99bd4ef 11431
c19d1205
ZW
11432 Rd = inst.operands[0].reg;
11433 Rs = (inst.operands[1].present
11434 ? inst.operands[1].reg /* Rd, Rs, foo */
11435 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11436
fdfde340
JM
11437 reject_bad_reg (Rd);
11438 reject_bad_reg (Rs);
11439 if (inst.operands[2].isreg)
11440 reject_bad_reg (inst.operands[2].reg);
11441
c19d1205
ZW
11442 inst.instruction |= Rd << 8;
11443 inst.instruction |= Rs << 16;
11444 if (!inst.operands[2].isreg)
11445 {
026d3abb
PB
11446 bfd_boolean narrow;
11447
11448 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11449 narrow = !in_it_block ();
026d3abb 11450 else
e07e6e58 11451 narrow = in_it_block ();
026d3abb
PB
11452
11453 if (Rd > 7 || Rs > 7)
11454 narrow = FALSE;
11455
11456 if (inst.size_req == 4 || !unified_syntax)
11457 narrow = FALSE;
11458
11459 if (inst.reloc.exp.X_op != O_constant
11460 || inst.reloc.exp.X_add_number != 0)
11461 narrow = FALSE;
11462
11463 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11464 relaxation, but it doesn't seem worth the hassle. */
11465 if (narrow)
11466 {
11467 inst.reloc.type = BFD_RELOC_UNUSED;
11468 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11469 inst.instruction |= Rs << 3;
11470 inst.instruction |= Rd;
11471 }
11472 else
11473 {
11474 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11475 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11476 }
c19d1205
ZW
11477 }
11478 else
11479 encode_thumb32_shifted_operand (2);
11480}
b99bd4ef 11481
c19d1205
ZW
11482static void
11483do_t_setend (void)
11484{
e07e6e58 11485 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11486 if (inst.operands[0].imm)
11487 inst.instruction |= 0x8;
11488}
b99bd4ef 11489
c19d1205
ZW
11490static void
11491do_t_shift (void)
11492{
11493 if (!inst.operands[1].present)
11494 inst.operands[1].reg = inst.operands[0].reg;
11495
11496 if (unified_syntax)
11497 {
3d388997
PB
11498 bfd_boolean narrow;
11499 int shift_kind;
11500
11501 switch (inst.instruction)
11502 {
11503 case T_MNEM_asr:
11504 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11505 case T_MNEM_lsl:
11506 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11507 case T_MNEM_lsr:
11508 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11509 case T_MNEM_ror:
11510 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11511 default: abort ();
11512 }
11513
11514 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11515 narrow = !in_it_block ();
3d388997 11516 else
e07e6e58 11517 narrow = in_it_block ();
3d388997
PB
11518 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11519 narrow = FALSE;
11520 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11521 narrow = FALSE;
11522 if (inst.operands[2].isreg
11523 && (inst.operands[1].reg != inst.operands[0].reg
11524 || inst.operands[2].reg > 7))
11525 narrow = FALSE;
11526 if (inst.size_req == 4)
11527 narrow = FALSE;
11528
fdfde340
JM
11529 reject_bad_reg (inst.operands[0].reg);
11530 reject_bad_reg (inst.operands[1].reg);
c921be7d 11531
3d388997 11532 if (!narrow)
c19d1205
ZW
11533 {
11534 if (inst.operands[2].isreg)
b99bd4ef 11535 {
fdfde340 11536 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11537 inst.instruction = THUMB_OP32 (inst.instruction);
11538 inst.instruction |= inst.operands[0].reg << 8;
11539 inst.instruction |= inst.operands[1].reg << 16;
11540 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11541
11542 /* PR 12854: Error on extraneous shifts. */
11543 constraint (inst.operands[2].shifted,
11544 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11545 }
11546 else
11547 {
11548 inst.operands[1].shifted = 1;
3d388997 11549 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11550 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11551 ? T_MNEM_movs : T_MNEM_mov);
11552 inst.instruction |= inst.operands[0].reg << 8;
11553 encode_thumb32_shifted_operand (1);
11554 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11555 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11556 }
11557 }
11558 else
11559 {
c19d1205 11560 if (inst.operands[2].isreg)
b99bd4ef 11561 {
3d388997 11562 switch (shift_kind)
b99bd4ef 11563 {
3d388997
PB
11564 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11565 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11566 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11567 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11568 default: abort ();
b99bd4ef 11569 }
5f4273c7 11570
c19d1205
ZW
11571 inst.instruction |= inst.operands[0].reg;
11572 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11573
11574 /* PR 12854: Error on extraneous shifts. */
11575 constraint (inst.operands[2].shifted,
11576 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11577 }
11578 else
11579 {
3d388997 11580 switch (shift_kind)
b99bd4ef 11581 {
3d388997
PB
11582 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11583 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11584 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11585 default: abort ();
b99bd4ef 11586 }
c19d1205
ZW
11587 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11590 }
11591 }
c19d1205
ZW
11592 }
11593 else
11594 {
11595 constraint (inst.operands[0].reg > 7
11596 || inst.operands[1].reg > 7, BAD_HIREG);
11597 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11598
c19d1205
ZW
11599 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11600 {
11601 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11602 constraint (inst.operands[0].reg != inst.operands[1].reg,
11603 _("source1 and dest must be same register"));
b99bd4ef 11604
c19d1205
ZW
11605 switch (inst.instruction)
11606 {
11607 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11608 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11609 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11610 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11611 default: abort ();
11612 }
5f4273c7 11613
c19d1205
ZW
11614 inst.instruction |= inst.operands[0].reg;
11615 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11616
11617 /* PR 12854: Error on extraneous shifts. */
11618 constraint (inst.operands[2].shifted,
11619 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11620 }
11621 else
b99bd4ef 11622 {
c19d1205
ZW
11623 switch (inst.instruction)
11624 {
11625 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11626 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11627 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11628 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11629 default: abort ();
11630 }
11631 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11632 inst.instruction |= inst.operands[0].reg;
11633 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11634 }
11635 }
b99bd4ef
NC
11636}
11637
11638static void
c19d1205 11639do_t_simd (void)
b99bd4ef 11640{
fdfde340
JM
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
c19d1205 11654}
b99bd4ef 11655
03ee1b7f
NC
11656static void
11657do_t_simd2 (void)
11658{
11659 unsigned Rd, Rn, Rm;
11660
11661 Rd = inst.operands[0].reg;
11662 Rm = inst.operands[1].reg;
11663 Rn = inst.operands[2].reg;
11664
11665 reject_bad_reg (Rd);
11666 reject_bad_reg (Rn);
11667 reject_bad_reg (Rm);
11668
11669 inst.instruction |= Rd << 8;
11670 inst.instruction |= Rn << 16;
11671 inst.instruction |= Rm;
11672}
11673
c19d1205 11674static void
3eb17e6b 11675do_t_smc (void)
c19d1205
ZW
11676{
11677 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11678 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11679 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11680 constraint (inst.reloc.exp.X_op != O_constant,
11681 _("expression too complex"));
11682 inst.reloc.type = BFD_RELOC_UNUSED;
11683 inst.instruction |= (value & 0xf000) >> 12;
11684 inst.instruction |= (value & 0x0ff0);
11685 inst.instruction |= (value & 0x000f) << 16;
11686}
b99bd4ef 11687
90ec0d68
MGD
11688static void
11689do_t_hvc (void)
11690{
11691 unsigned int value = inst.reloc.exp.X_add_number;
11692
11693 inst.reloc.type = BFD_RELOC_UNUSED;
11694 inst.instruction |= (value & 0x0fff);
11695 inst.instruction |= (value & 0xf000) << 4;
11696}
11697
c19d1205 11698static void
3a21c15a 11699do_t_ssat_usat (int bias)
c19d1205 11700{
fdfde340
JM
11701 unsigned Rd, Rn;
11702
11703 Rd = inst.operands[0].reg;
11704 Rn = inst.operands[2].reg;
11705
11706 reject_bad_reg (Rd);
11707 reject_bad_reg (Rn);
11708
11709 inst.instruction |= Rd << 8;
3a21c15a 11710 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11711 inst.instruction |= Rn << 16;
b99bd4ef 11712
c19d1205 11713 if (inst.operands[3].present)
b99bd4ef 11714 {
3a21c15a
NC
11715 offsetT shift_amount = inst.reloc.exp.X_add_number;
11716
11717 inst.reloc.type = BFD_RELOC_UNUSED;
11718
c19d1205
ZW
11719 constraint (inst.reloc.exp.X_op != O_constant,
11720 _("expression too complex"));
b99bd4ef 11721
3a21c15a 11722 if (shift_amount != 0)
6189168b 11723 {
3a21c15a
NC
11724 constraint (shift_amount > 31,
11725 _("shift expression is too large"));
11726
c19d1205 11727 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11728 inst.instruction |= 0x00200000; /* sh bit. */
11729
11730 inst.instruction |= (shift_amount & 0x1c) << 10;
11731 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11732 }
11733 }
b99bd4ef 11734}
c921be7d 11735
3a21c15a
NC
11736static void
11737do_t_ssat (void)
11738{
11739 do_t_ssat_usat (1);
11740}
b99bd4ef 11741
0dd132b6 11742static void
c19d1205 11743do_t_ssat16 (void)
0dd132b6 11744{
fdfde340
JM
11745 unsigned Rd, Rn;
11746
11747 Rd = inst.operands[0].reg;
11748 Rn = inst.operands[2].reg;
11749
11750 reject_bad_reg (Rd);
11751 reject_bad_reg (Rn);
11752
11753 inst.instruction |= Rd << 8;
c19d1205 11754 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11755 inst.instruction |= Rn << 16;
c19d1205 11756}
0dd132b6 11757
c19d1205
ZW
11758static void
11759do_t_strex (void)
11760{
11761 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11762 || inst.operands[2].postind || inst.operands[2].writeback
11763 || inst.operands[2].immisreg || inst.operands[2].shifted
11764 || inst.operands[2].negative,
01cfc07f 11765 BAD_ADDR_MODE);
0dd132b6 11766
5be8be5d
DG
11767 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11768
c19d1205
ZW
11769 inst.instruction |= inst.operands[0].reg << 8;
11770 inst.instruction |= inst.operands[1].reg << 12;
11771 inst.instruction |= inst.operands[2].reg << 16;
11772 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11773}
11774
b99bd4ef 11775static void
c19d1205 11776do_t_strexd (void)
b99bd4ef 11777{
c19d1205
ZW
11778 if (!inst.operands[2].present)
11779 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11780
c19d1205
ZW
11781 constraint (inst.operands[0].reg == inst.operands[1].reg
11782 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11783 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11784 BAD_OVERLAP);
b99bd4ef 11785
c19d1205
ZW
11786 inst.instruction |= inst.operands[0].reg;
11787 inst.instruction |= inst.operands[1].reg << 12;
11788 inst.instruction |= inst.operands[2].reg << 8;
11789 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11790}
11791
11792static void
c19d1205 11793do_t_sxtah (void)
b99bd4ef 11794{
fdfde340
JM
11795 unsigned Rd, Rn, Rm;
11796
11797 Rd = inst.operands[0].reg;
11798 Rn = inst.operands[1].reg;
11799 Rm = inst.operands[2].reg;
11800
11801 reject_bad_reg (Rd);
11802 reject_bad_reg (Rn);
11803 reject_bad_reg (Rm);
11804
11805 inst.instruction |= Rd << 8;
11806 inst.instruction |= Rn << 16;
11807 inst.instruction |= Rm;
c19d1205
ZW
11808 inst.instruction |= inst.operands[3].imm << 4;
11809}
b99bd4ef 11810
c19d1205
ZW
11811static void
11812do_t_sxth (void)
11813{
fdfde340
JM
11814 unsigned Rd, Rm;
11815
11816 Rd = inst.operands[0].reg;
11817 Rm = inst.operands[1].reg;
11818
11819 reject_bad_reg (Rd);
11820 reject_bad_reg (Rm);
c921be7d
NC
11821
11822 if (inst.instruction <= 0xffff
11823 && inst.size_req != 4
fdfde340 11824 && Rd <= 7 && Rm <= 7
c19d1205 11825 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11826 {
c19d1205 11827 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11828 inst.instruction |= Rd;
11829 inst.instruction |= Rm << 3;
b99bd4ef 11830 }
c19d1205 11831 else if (unified_syntax)
b99bd4ef 11832 {
c19d1205
ZW
11833 if (inst.instruction <= 0xffff)
11834 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11835 inst.instruction |= Rd << 8;
11836 inst.instruction |= Rm;
c19d1205 11837 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11838 }
c19d1205 11839 else
b99bd4ef 11840 {
c19d1205
ZW
11841 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11842 _("Thumb encoding does not support rotation"));
11843 constraint (1, BAD_HIREG);
b99bd4ef 11844 }
c19d1205 11845}
b99bd4ef 11846
c19d1205
ZW
11847static void
11848do_t_swi (void)
11849{
b2a5fbdc
MGD
11850 /* We have to do the following check manually as ARM_EXT_OS only applies
11851 to ARM_EXT_V6M. */
11852 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11853 {
ac7f631b
NC
11854 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11855 /* This only applies to the v6m howver, not later architectures. */
11856 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11857 as_bad (_("SVC is not permitted on this architecture"));
11858 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11859 }
11860
c19d1205
ZW
11861 inst.reloc.type = BFD_RELOC_ARM_SWI;
11862}
b99bd4ef 11863
92e90b6e
PB
11864static void
11865do_t_tb (void)
11866{
fdfde340 11867 unsigned Rn, Rm;
92e90b6e
PB
11868 int half;
11869
11870 half = (inst.instruction & 0x10) != 0;
e07e6e58 11871 set_it_insn_type_last ();
dfa9f0d5
PB
11872 constraint (inst.operands[0].immisreg,
11873 _("instruction requires register index"));
fdfde340
JM
11874
11875 Rn = inst.operands[0].reg;
11876 Rm = inst.operands[0].imm;
c921be7d 11877
fdfde340
JM
11878 constraint (Rn == REG_SP, BAD_SP);
11879 reject_bad_reg (Rm);
11880
92e90b6e
PB
11881 constraint (!half && inst.operands[0].shifted,
11882 _("instruction does not allow shifted index"));
fdfde340 11883 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11884}
11885
c19d1205
ZW
11886static void
11887do_t_usat (void)
11888{
3a21c15a 11889 do_t_ssat_usat (0);
b99bd4ef
NC
11890}
11891
11892static void
c19d1205 11893do_t_usat16 (void)
b99bd4ef 11894{
fdfde340
JM
11895 unsigned Rd, Rn;
11896
11897 Rd = inst.operands[0].reg;
11898 Rn = inst.operands[2].reg;
11899
11900 reject_bad_reg (Rd);
11901 reject_bad_reg (Rn);
11902
11903 inst.instruction |= Rd << 8;
c19d1205 11904 inst.instruction |= inst.operands[1].imm;
fdfde340 11905 inst.instruction |= Rn << 16;
b99bd4ef 11906}
c19d1205 11907
5287ad62 11908/* Neon instruction encoder helpers. */
5f4273c7 11909
5287ad62 11910/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11911
5287ad62
JB
11912/* An "invalid" code for the following tables. */
11913#define N_INV -1u
11914
11915struct neon_tab_entry
b99bd4ef 11916{
5287ad62
JB
11917 unsigned integer;
11918 unsigned float_or_poly;
11919 unsigned scalar_or_imm;
11920};
5f4273c7 11921
5287ad62
JB
11922/* Map overloaded Neon opcodes to their respective encodings. */
11923#define NEON_ENC_TAB \
11924 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11925 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11926 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11927 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11928 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11929 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11930 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11931 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11932 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11933 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11934 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11935 /* Register variants of the following two instructions are encoded as
e07e6e58 11936 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11937 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11938 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11939 X(vfma, N_INV, 0x0000c10, N_INV), \
11940 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11941 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11942 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11943 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11944 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11945 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11946 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11947 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11948 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11949 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11950 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11951 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11952 X(vshl, 0x0000400, N_INV, 0x0800510), \
11953 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11954 X(vand, 0x0000110, N_INV, 0x0800030), \
11955 X(vbic, 0x0100110, N_INV, 0x0800030), \
11956 X(veor, 0x1000110, N_INV, N_INV), \
11957 X(vorn, 0x0300110, N_INV, 0x0800010), \
11958 X(vorr, 0x0200110, N_INV, 0x0800010), \
11959 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11960 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11961 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11962 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11963 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11964 X(vst1, 0x0000000, 0x0800000, N_INV), \
11965 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11966 X(vst2, 0x0000100, 0x0800100, N_INV), \
11967 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11968 X(vst3, 0x0000200, 0x0800200, N_INV), \
11969 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11970 X(vst4, 0x0000300, 0x0800300, N_INV), \
11971 X(vmovn, 0x1b20200, N_INV, N_INV), \
11972 X(vtrn, 0x1b20080, N_INV, N_INV), \
11973 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11974 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11975 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11976 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11977 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11978 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11979 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11980 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11981 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11982 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11983 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11984
11985enum neon_opc
11986{
11987#define X(OPC,I,F,S) N_MNEM_##OPC
11988NEON_ENC_TAB
11989#undef X
11990};
b99bd4ef 11991
5287ad62
JB
11992static const struct neon_tab_entry neon_enc_tab[] =
11993{
11994#define X(OPC,I,F,S) { (I), (F), (S) }
11995NEON_ENC_TAB
11996#undef X
11997};
b99bd4ef 11998
88714cb8
DG
11999/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12000#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12001#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12002#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12003#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12004#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12005#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12006#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12007#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12008#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12009#define NEON_ENC_SINGLE_(X) \
037e8744 12010 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12011#define NEON_ENC_DOUBLE_(X) \
037e8744 12012 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 12013
88714cb8
DG
12014#define NEON_ENCODE(type, inst) \
12015 do \
12016 { \
12017 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12018 inst.is_neon = 1; \
12019 } \
12020 while (0)
12021
12022#define check_neon_suffixes \
12023 do \
12024 { \
12025 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12026 { \
12027 as_bad (_("invalid neon suffix for non neon instruction")); \
12028 return; \
12029 } \
12030 } \
12031 while (0)
12032
037e8744
JB
12033/* Define shapes for instruction operands. The following mnemonic characters
12034 are used in this table:
5287ad62 12035
037e8744 12036 F - VFP S<n> register
5287ad62
JB
12037 D - Neon D<n> register
12038 Q - Neon Q<n> register
12039 I - Immediate
12040 S - Scalar
12041 R - ARM register
12042 L - D<n> register list
5f4273c7 12043
037e8744
JB
12044 This table is used to generate various data:
12045 - enumerations of the form NS_DDR to be used as arguments to
12046 neon_select_shape.
12047 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12048 - a table used to drive neon_select_shape. */
b99bd4ef 12049
037e8744
JB
12050#define NEON_SHAPE_DEF \
12051 X(3, (D, D, D), DOUBLE), \
12052 X(3, (Q, Q, Q), QUAD), \
12053 X(3, (D, D, I), DOUBLE), \
12054 X(3, (Q, Q, I), QUAD), \
12055 X(3, (D, D, S), DOUBLE), \
12056 X(3, (Q, Q, S), QUAD), \
12057 X(2, (D, D), DOUBLE), \
12058 X(2, (Q, Q), QUAD), \
12059 X(2, (D, S), DOUBLE), \
12060 X(2, (Q, S), QUAD), \
12061 X(2, (D, R), DOUBLE), \
12062 X(2, (Q, R), QUAD), \
12063 X(2, (D, I), DOUBLE), \
12064 X(2, (Q, I), QUAD), \
12065 X(3, (D, L, D), DOUBLE), \
12066 X(2, (D, Q), MIXED), \
12067 X(2, (Q, D), MIXED), \
12068 X(3, (D, Q, I), MIXED), \
12069 X(3, (Q, D, I), MIXED), \
12070 X(3, (Q, D, D), MIXED), \
12071 X(3, (D, Q, Q), MIXED), \
12072 X(3, (Q, Q, D), MIXED), \
12073 X(3, (Q, D, S), MIXED), \
12074 X(3, (D, Q, S), MIXED), \
12075 X(4, (D, D, D, I), DOUBLE), \
12076 X(4, (Q, Q, Q, I), QUAD), \
12077 X(2, (F, F), SINGLE), \
12078 X(3, (F, F, F), SINGLE), \
12079 X(2, (F, I), SINGLE), \
12080 X(2, (F, D), MIXED), \
12081 X(2, (D, F), MIXED), \
12082 X(3, (F, F, I), MIXED), \
12083 X(4, (R, R, F, F), SINGLE), \
12084 X(4, (F, F, R, R), SINGLE), \
12085 X(3, (D, R, R), DOUBLE), \
12086 X(3, (R, R, D), DOUBLE), \
12087 X(2, (S, R), SINGLE), \
12088 X(2, (R, S), SINGLE), \
12089 X(2, (F, R), SINGLE), \
12090 X(2, (R, F), SINGLE)
12091
12092#define S2(A,B) NS_##A##B
12093#define S3(A,B,C) NS_##A##B##C
12094#define S4(A,B,C,D) NS_##A##B##C##D
12095
12096#define X(N, L, C) S##N L
12097
5287ad62
JB
12098enum neon_shape
12099{
037e8744
JB
12100 NEON_SHAPE_DEF,
12101 NS_NULL
5287ad62 12102};
b99bd4ef 12103
037e8744
JB
12104#undef X
12105#undef S2
12106#undef S3
12107#undef S4
12108
12109enum neon_shape_class
12110{
12111 SC_SINGLE,
12112 SC_DOUBLE,
12113 SC_QUAD,
12114 SC_MIXED
12115};
12116
12117#define X(N, L, C) SC_##C
12118
12119static enum neon_shape_class neon_shape_class[] =
12120{
12121 NEON_SHAPE_DEF
12122};
12123
12124#undef X
12125
12126enum neon_shape_el
12127{
12128 SE_F,
12129 SE_D,
12130 SE_Q,
12131 SE_I,
12132 SE_S,
12133 SE_R,
12134 SE_L
12135};
12136
12137/* Register widths of above. */
12138static unsigned neon_shape_el_size[] =
12139{
12140 32,
12141 64,
12142 128,
12143 0,
12144 32,
12145 32,
12146 0
12147};
12148
12149struct neon_shape_info
12150{
12151 unsigned els;
12152 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12153};
12154
12155#define S2(A,B) { SE_##A, SE_##B }
12156#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12157#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12158
12159#define X(N, L, C) { N, S##N L }
12160
12161static struct neon_shape_info neon_shape_tab[] =
12162{
12163 NEON_SHAPE_DEF
12164};
12165
12166#undef X
12167#undef S2
12168#undef S3
12169#undef S4
12170
5287ad62
JB
12171/* Bit masks used in type checking given instructions.
12172 'N_EQK' means the type must be the same as (or based on in some way) the key
12173 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12174 set, various other bits can be set as well in order to modify the meaning of
12175 the type constraint. */
12176
12177enum neon_type_mask
12178{
8e79c3df
CM
12179 N_S8 = 0x0000001,
12180 N_S16 = 0x0000002,
12181 N_S32 = 0x0000004,
12182 N_S64 = 0x0000008,
12183 N_U8 = 0x0000010,
12184 N_U16 = 0x0000020,
12185 N_U32 = 0x0000040,
12186 N_U64 = 0x0000080,
12187 N_I8 = 0x0000100,
12188 N_I16 = 0x0000200,
12189 N_I32 = 0x0000400,
12190 N_I64 = 0x0000800,
12191 N_8 = 0x0001000,
12192 N_16 = 0x0002000,
12193 N_32 = 0x0004000,
12194 N_64 = 0x0008000,
12195 N_P8 = 0x0010000,
12196 N_P16 = 0x0020000,
12197 N_F16 = 0x0040000,
12198 N_F32 = 0x0080000,
12199 N_F64 = 0x0100000,
c921be7d
NC
12200 N_KEY = 0x1000000, /* Key element (main type specifier). */
12201 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12202 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12203 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12204 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12205 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12206 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12207 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12208 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12209 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12210 N_UTYP = 0,
037e8744 12211 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12212};
12213
dcbf9037
JB
12214#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12215
5287ad62
JB
12216#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12217#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12218#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12219#define N_SUF_32 (N_SU_32 | N_F32)
12220#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12221#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12222
12223/* Pass this as the first type argument to neon_check_type to ignore types
12224 altogether. */
12225#define N_IGNORE_TYPE (N_KEY | N_EQK)
12226
037e8744
JB
12227/* Select a "shape" for the current instruction (describing register types or
12228 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12229 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12230 function of operand parsing, so this function doesn't need to be called.
12231 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12232
12233static enum neon_shape
037e8744 12234neon_select_shape (enum neon_shape shape, ...)
5287ad62 12235{
037e8744
JB
12236 va_list ap;
12237 enum neon_shape first_shape = shape;
5287ad62
JB
12238
12239 /* Fix missing optional operands. FIXME: we don't know at this point how
12240 many arguments we should have, so this makes the assumption that we have
12241 > 1. This is true of all current Neon opcodes, I think, but may not be
12242 true in the future. */
12243 if (!inst.operands[1].present)
12244 inst.operands[1] = inst.operands[0];
12245
037e8744 12246 va_start (ap, shape);
5f4273c7 12247
21d799b5 12248 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12249 {
12250 unsigned j;
12251 int matches = 1;
12252
12253 for (j = 0; j < neon_shape_tab[shape].els; j++)
12254 {
12255 if (!inst.operands[j].present)
12256 {
12257 matches = 0;
12258 break;
12259 }
12260
12261 switch (neon_shape_tab[shape].el[j])
12262 {
12263 case SE_F:
12264 if (!(inst.operands[j].isreg
12265 && inst.operands[j].isvec
12266 && inst.operands[j].issingle
12267 && !inst.operands[j].isquad))
12268 matches = 0;
12269 break;
12270
12271 case SE_D:
12272 if (!(inst.operands[j].isreg
12273 && inst.operands[j].isvec
12274 && !inst.operands[j].isquad
12275 && !inst.operands[j].issingle))
12276 matches = 0;
12277 break;
12278
12279 case SE_R:
12280 if (!(inst.operands[j].isreg
12281 && !inst.operands[j].isvec))
12282 matches = 0;
12283 break;
12284
12285 case SE_Q:
12286 if (!(inst.operands[j].isreg
12287 && inst.operands[j].isvec
12288 && inst.operands[j].isquad
12289 && !inst.operands[j].issingle))
12290 matches = 0;
12291 break;
12292
12293 case SE_I:
12294 if (!(!inst.operands[j].isreg
12295 && !inst.operands[j].isscalar))
12296 matches = 0;
12297 break;
12298
12299 case SE_S:
12300 if (!(!inst.operands[j].isreg
12301 && inst.operands[j].isscalar))
12302 matches = 0;
12303 break;
12304
12305 case SE_L:
12306 break;
12307 }
3fde54a2
JZ
12308 if (!matches)
12309 break;
037e8744
JB
12310 }
12311 if (matches)
5287ad62 12312 break;
037e8744 12313 }
5f4273c7 12314
037e8744 12315 va_end (ap);
5287ad62 12316
037e8744
JB
12317 if (shape == NS_NULL && first_shape != NS_NULL)
12318 first_error (_("invalid instruction shape"));
5287ad62 12319
037e8744
JB
12320 return shape;
12321}
5287ad62 12322
037e8744
JB
12323/* True if SHAPE is predominantly a quadword operation (most of the time, this
12324 means the Q bit should be set). */
12325
12326static int
12327neon_quad (enum neon_shape shape)
12328{
12329 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12330}
037e8744 12331
5287ad62
JB
12332static void
12333neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12334 unsigned *g_size)
12335{
12336 /* Allow modification to be made to types which are constrained to be
12337 based on the key element, based on bits set alongside N_EQK. */
12338 if ((typebits & N_EQK) != 0)
12339 {
12340 if ((typebits & N_HLF) != 0)
12341 *g_size /= 2;
12342 else if ((typebits & N_DBL) != 0)
12343 *g_size *= 2;
12344 if ((typebits & N_SGN) != 0)
12345 *g_type = NT_signed;
12346 else if ((typebits & N_UNS) != 0)
12347 *g_type = NT_unsigned;
12348 else if ((typebits & N_INT) != 0)
12349 *g_type = NT_integer;
12350 else if ((typebits & N_FLT) != 0)
12351 *g_type = NT_float;
dcbf9037
JB
12352 else if ((typebits & N_SIZ) != 0)
12353 *g_type = NT_untyped;
5287ad62
JB
12354 }
12355}
5f4273c7 12356
5287ad62
JB
12357/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12358 operand type, i.e. the single type specified in a Neon instruction when it
12359 is the only one given. */
12360
12361static struct neon_type_el
12362neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12363{
12364 struct neon_type_el dest = *key;
5f4273c7 12365
9c2799c2 12366 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12367
5287ad62
JB
12368 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12369
12370 return dest;
12371}
12372
12373/* Convert Neon type and size into compact bitmask representation. */
12374
12375static enum neon_type_mask
12376type_chk_of_el_type (enum neon_el_type type, unsigned size)
12377{
12378 switch (type)
12379 {
12380 case NT_untyped:
12381 switch (size)
12382 {
12383 case 8: return N_8;
12384 case 16: return N_16;
12385 case 32: return N_32;
12386 case 64: return N_64;
12387 default: ;
12388 }
12389 break;
12390
12391 case NT_integer:
12392 switch (size)
12393 {
12394 case 8: return N_I8;
12395 case 16: return N_I16;
12396 case 32: return N_I32;
12397 case 64: return N_I64;
12398 default: ;
12399 }
12400 break;
12401
12402 case NT_float:
037e8744
JB
12403 switch (size)
12404 {
8e79c3df 12405 case 16: return N_F16;
037e8744
JB
12406 case 32: return N_F32;
12407 case 64: return N_F64;
12408 default: ;
12409 }
5287ad62
JB
12410 break;
12411
12412 case NT_poly:
12413 switch (size)
12414 {
12415 case 8: return N_P8;
12416 case 16: return N_P16;
12417 default: ;
12418 }
12419 break;
12420
12421 case NT_signed:
12422 switch (size)
12423 {
12424 case 8: return N_S8;
12425 case 16: return N_S16;
12426 case 32: return N_S32;
12427 case 64: return N_S64;
12428 default: ;
12429 }
12430 break;
12431
12432 case NT_unsigned:
12433 switch (size)
12434 {
12435 case 8: return N_U8;
12436 case 16: return N_U16;
12437 case 32: return N_U32;
12438 case 64: return N_U64;
12439 default: ;
12440 }
12441 break;
12442
12443 default: ;
12444 }
5f4273c7 12445
5287ad62
JB
12446 return N_UTYP;
12447}
12448
12449/* Convert compact Neon bitmask type representation to a type and size. Only
12450 handles the case where a single bit is set in the mask. */
12451
dcbf9037 12452static int
5287ad62
JB
12453el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12454 enum neon_type_mask mask)
12455{
dcbf9037
JB
12456 if ((mask & N_EQK) != 0)
12457 return FAIL;
12458
5287ad62
JB
12459 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12460 *size = 8;
dcbf9037 12461 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12462 *size = 16;
dcbf9037 12463 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12464 *size = 32;
037e8744 12465 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12466 *size = 64;
dcbf9037
JB
12467 else
12468 return FAIL;
12469
5287ad62
JB
12470 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12471 *type = NT_signed;
dcbf9037 12472 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12473 *type = NT_unsigned;
dcbf9037 12474 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12475 *type = NT_integer;
dcbf9037 12476 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12477 *type = NT_untyped;
dcbf9037 12478 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12479 *type = NT_poly;
037e8744 12480 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12481 *type = NT_float;
dcbf9037
JB
12482 else
12483 return FAIL;
5f4273c7 12484
dcbf9037 12485 return SUCCESS;
5287ad62
JB
12486}
12487
12488/* Modify a bitmask of allowed types. This is only needed for type
12489 relaxation. */
12490
12491static unsigned
12492modify_types_allowed (unsigned allowed, unsigned mods)
12493{
12494 unsigned size;
12495 enum neon_el_type type;
12496 unsigned destmask;
12497 int i;
5f4273c7 12498
5287ad62 12499 destmask = 0;
5f4273c7 12500
5287ad62
JB
12501 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12502 {
21d799b5
NC
12503 if (el_type_of_type_chk (&type, &size,
12504 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12505 {
12506 neon_modify_type_size (mods, &type, &size);
12507 destmask |= type_chk_of_el_type (type, size);
12508 }
5287ad62 12509 }
5f4273c7 12510
5287ad62
JB
12511 return destmask;
12512}
12513
12514/* Check type and return type classification.
12515 The manual states (paraphrase): If one datatype is given, it indicates the
12516 type given in:
12517 - the second operand, if there is one
12518 - the operand, if there is no second operand
12519 - the result, if there are no operands.
12520 This isn't quite good enough though, so we use a concept of a "key" datatype
12521 which is set on a per-instruction basis, which is the one which matters when
12522 only one data type is written.
12523 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12524 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12525
12526static struct neon_type_el
12527neon_check_type (unsigned els, enum neon_shape ns, ...)
12528{
12529 va_list ap;
12530 unsigned i, pass, key_el = 0;
12531 unsigned types[NEON_MAX_TYPE_ELS];
12532 enum neon_el_type k_type = NT_invtype;
12533 unsigned k_size = -1u;
12534 struct neon_type_el badtype = {NT_invtype, -1};
12535 unsigned key_allowed = 0;
12536
12537 /* Optional registers in Neon instructions are always (not) in operand 1.
12538 Fill in the missing operand here, if it was omitted. */
12539 if (els > 1 && !inst.operands[1].present)
12540 inst.operands[1] = inst.operands[0];
12541
12542 /* Suck up all the varargs. */
12543 va_start (ap, ns);
12544 for (i = 0; i < els; i++)
12545 {
12546 unsigned thisarg = va_arg (ap, unsigned);
12547 if (thisarg == N_IGNORE_TYPE)
12548 {
12549 va_end (ap);
12550 return badtype;
12551 }
12552 types[i] = thisarg;
12553 if ((thisarg & N_KEY) != 0)
12554 key_el = i;
12555 }
12556 va_end (ap);
12557
dcbf9037
JB
12558 if (inst.vectype.elems > 0)
12559 for (i = 0; i < els; i++)
12560 if (inst.operands[i].vectype.type != NT_invtype)
12561 {
12562 first_error (_("types specified in both the mnemonic and operands"));
12563 return badtype;
12564 }
12565
5287ad62
JB
12566 /* Duplicate inst.vectype elements here as necessary.
12567 FIXME: No idea if this is exactly the same as the ARM assembler,
12568 particularly when an insn takes one register and one non-register
12569 operand. */
12570 if (inst.vectype.elems == 1 && els > 1)
12571 {
12572 unsigned j;
12573 inst.vectype.elems = els;
12574 inst.vectype.el[key_el] = inst.vectype.el[0];
12575 for (j = 0; j < els; j++)
dcbf9037
JB
12576 if (j != key_el)
12577 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12578 types[j]);
12579 }
12580 else if (inst.vectype.elems == 0 && els > 0)
12581 {
12582 unsigned j;
12583 /* No types were given after the mnemonic, so look for types specified
12584 after each operand. We allow some flexibility here; as long as the
12585 "key" operand has a type, we can infer the others. */
12586 for (j = 0; j < els; j++)
12587 if (inst.operands[j].vectype.type != NT_invtype)
12588 inst.vectype.el[j] = inst.operands[j].vectype;
12589
12590 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12591 {
dcbf9037
JB
12592 for (j = 0; j < els; j++)
12593 if (inst.operands[j].vectype.type == NT_invtype)
12594 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12595 types[j]);
12596 }
12597 else
12598 {
12599 first_error (_("operand types can't be inferred"));
12600 return badtype;
5287ad62
JB
12601 }
12602 }
12603 else if (inst.vectype.elems != els)
12604 {
dcbf9037 12605 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12606 return badtype;
12607 }
12608
12609 for (pass = 0; pass < 2; pass++)
12610 {
12611 for (i = 0; i < els; i++)
12612 {
12613 unsigned thisarg = types[i];
12614 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12615 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12616 enum neon_el_type g_type = inst.vectype.el[i].type;
12617 unsigned g_size = inst.vectype.el[i].size;
12618
12619 /* Decay more-specific signed & unsigned types to sign-insensitive
12620 integer types if sign-specific variants are unavailable. */
12621 if ((g_type == NT_signed || g_type == NT_unsigned)
12622 && (types_allowed & N_SU_ALL) == 0)
12623 g_type = NT_integer;
12624
12625 /* If only untyped args are allowed, decay any more specific types to
12626 them. Some instructions only care about signs for some element
12627 sizes, so handle that properly. */
12628 if ((g_size == 8 && (types_allowed & N_8) != 0)
12629 || (g_size == 16 && (types_allowed & N_16) != 0)
12630 || (g_size == 32 && (types_allowed & N_32) != 0)
12631 || (g_size == 64 && (types_allowed & N_64) != 0))
12632 g_type = NT_untyped;
12633
12634 if (pass == 0)
12635 {
12636 if ((thisarg & N_KEY) != 0)
12637 {
12638 k_type = g_type;
12639 k_size = g_size;
12640 key_allowed = thisarg & ~N_KEY;
12641 }
12642 }
12643 else
12644 {
037e8744
JB
12645 if ((thisarg & N_VFP) != 0)
12646 {
99b253c5
NC
12647 enum neon_shape_el regshape;
12648 unsigned regwidth, match;
12649
12650 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12651 if (ns == NS_NULL)
12652 {
12653 first_error (_("invalid instruction shape"));
12654 return badtype;
12655 }
12656 regshape = neon_shape_tab[ns].el[i];
12657 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12658
12659 /* In VFP mode, operands must match register widths. If we
12660 have a key operand, use its width, else use the width of
12661 the current operand. */
12662 if (k_size != -1u)
12663 match = k_size;
12664 else
12665 match = g_size;
12666
12667 if (regwidth != match)
12668 {
12669 first_error (_("operand size must match register width"));
12670 return badtype;
12671 }
12672 }
5f4273c7 12673
5287ad62
JB
12674 if ((thisarg & N_EQK) == 0)
12675 {
12676 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12677
12678 if ((given_type & types_allowed) == 0)
12679 {
dcbf9037 12680 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12681 return badtype;
12682 }
12683 }
12684 else
12685 {
12686 enum neon_el_type mod_k_type = k_type;
12687 unsigned mod_k_size = k_size;
12688 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12689 if (g_type != mod_k_type || g_size != mod_k_size)
12690 {
dcbf9037 12691 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12692 return badtype;
12693 }
12694 }
12695 }
12696 }
12697 }
12698
12699 return inst.vectype.el[key_el];
12700}
12701
037e8744 12702/* Neon-style VFP instruction forwarding. */
5287ad62 12703
037e8744
JB
12704/* Thumb VFP instructions have 0xE in the condition field. */
12705
12706static void
12707do_vfp_cond_or_thumb (void)
5287ad62 12708{
88714cb8
DG
12709 inst.is_neon = 1;
12710
5287ad62 12711 if (thumb_mode)
037e8744 12712 inst.instruction |= 0xe0000000;
5287ad62 12713 else
037e8744 12714 inst.instruction |= inst.cond << 28;
5287ad62
JB
12715}
12716
037e8744
JB
12717/* Look up and encode a simple mnemonic, for use as a helper function for the
12718 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12719 etc. It is assumed that operand parsing has already been done, and that the
12720 operands are in the form expected by the given opcode (this isn't necessarily
12721 the same as the form in which they were parsed, hence some massaging must
12722 take place before this function is called).
12723 Checks current arch version against that in the looked-up opcode. */
5287ad62 12724
037e8744
JB
12725static void
12726do_vfp_nsyn_opcode (const char *opname)
5287ad62 12727{
037e8744 12728 const struct asm_opcode *opcode;
5f4273c7 12729
21d799b5 12730 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12731
037e8744
JB
12732 if (!opcode)
12733 abort ();
5287ad62 12734
037e8744
JB
12735 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12736 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12737 _(BAD_FPU));
5287ad62 12738
88714cb8
DG
12739 inst.is_neon = 1;
12740
037e8744
JB
12741 if (thumb_mode)
12742 {
12743 inst.instruction = opcode->tvalue;
12744 opcode->tencode ();
12745 }
12746 else
12747 {
12748 inst.instruction = (inst.cond << 28) | opcode->avalue;
12749 opcode->aencode ();
12750 }
12751}
5287ad62
JB
12752
12753static void
037e8744 12754do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12755{
037e8744
JB
12756 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12757
12758 if (rs == NS_FFF)
12759 {
12760 if (is_add)
12761 do_vfp_nsyn_opcode ("fadds");
12762 else
12763 do_vfp_nsyn_opcode ("fsubs");
12764 }
12765 else
12766 {
12767 if (is_add)
12768 do_vfp_nsyn_opcode ("faddd");
12769 else
12770 do_vfp_nsyn_opcode ("fsubd");
12771 }
12772}
12773
12774/* Check operand types to see if this is a VFP instruction, and if so call
12775 PFN (). */
12776
12777static int
12778try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12779{
12780 enum neon_shape rs;
12781 struct neon_type_el et;
12782
12783 switch (args)
12784 {
12785 case 2:
12786 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12787 et = neon_check_type (2, rs,
12788 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12789 break;
5f4273c7 12790
037e8744
JB
12791 case 3:
12792 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12793 et = neon_check_type (3, rs,
12794 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12795 break;
12796
12797 default:
12798 abort ();
12799 }
12800
12801 if (et.type != NT_invtype)
12802 {
12803 pfn (rs);
12804 return SUCCESS;
12805 }
037e8744 12806
99b253c5 12807 inst.error = NULL;
037e8744
JB
12808 return FAIL;
12809}
12810
12811static void
12812do_vfp_nsyn_mla_mls (enum neon_shape rs)
12813{
12814 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12815
037e8744
JB
12816 if (rs == NS_FFF)
12817 {
12818 if (is_mla)
12819 do_vfp_nsyn_opcode ("fmacs");
12820 else
1ee69515 12821 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12822 }
12823 else
12824 {
12825 if (is_mla)
12826 do_vfp_nsyn_opcode ("fmacd");
12827 else
1ee69515 12828 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12829 }
12830}
12831
62f3b8c8
PB
12832static void
12833do_vfp_nsyn_fma_fms (enum neon_shape rs)
12834{
12835 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12836
12837 if (rs == NS_FFF)
12838 {
12839 if (is_fma)
12840 do_vfp_nsyn_opcode ("ffmas");
12841 else
12842 do_vfp_nsyn_opcode ("ffnmas");
12843 }
12844 else
12845 {
12846 if (is_fma)
12847 do_vfp_nsyn_opcode ("ffmad");
12848 else
12849 do_vfp_nsyn_opcode ("ffnmad");
12850 }
12851}
12852
037e8744
JB
12853static void
12854do_vfp_nsyn_mul (enum neon_shape rs)
12855{
12856 if (rs == NS_FFF)
12857 do_vfp_nsyn_opcode ("fmuls");
12858 else
12859 do_vfp_nsyn_opcode ("fmuld");
12860}
12861
12862static void
12863do_vfp_nsyn_abs_neg (enum neon_shape rs)
12864{
12865 int is_neg = (inst.instruction & 0x80) != 0;
12866 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12867
12868 if (rs == NS_FF)
12869 {
12870 if (is_neg)
12871 do_vfp_nsyn_opcode ("fnegs");
12872 else
12873 do_vfp_nsyn_opcode ("fabss");
12874 }
12875 else
12876 {
12877 if (is_neg)
12878 do_vfp_nsyn_opcode ("fnegd");
12879 else
12880 do_vfp_nsyn_opcode ("fabsd");
12881 }
12882}
12883
12884/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12885 insns belong to Neon, and are handled elsewhere. */
12886
12887static void
12888do_vfp_nsyn_ldm_stm (int is_dbmode)
12889{
12890 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12891 if (is_ldm)
12892 {
12893 if (is_dbmode)
12894 do_vfp_nsyn_opcode ("fldmdbs");
12895 else
12896 do_vfp_nsyn_opcode ("fldmias");
12897 }
12898 else
12899 {
12900 if (is_dbmode)
12901 do_vfp_nsyn_opcode ("fstmdbs");
12902 else
12903 do_vfp_nsyn_opcode ("fstmias");
12904 }
12905}
12906
037e8744
JB
12907static void
12908do_vfp_nsyn_sqrt (void)
12909{
12910 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12911 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12912
037e8744
JB
12913 if (rs == NS_FF)
12914 do_vfp_nsyn_opcode ("fsqrts");
12915 else
12916 do_vfp_nsyn_opcode ("fsqrtd");
12917}
12918
12919static void
12920do_vfp_nsyn_div (void)
12921{
12922 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12923 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12924 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12925
037e8744
JB
12926 if (rs == NS_FFF)
12927 do_vfp_nsyn_opcode ("fdivs");
12928 else
12929 do_vfp_nsyn_opcode ("fdivd");
12930}
12931
12932static void
12933do_vfp_nsyn_nmul (void)
12934{
12935 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12936 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12937 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12938
037e8744
JB
12939 if (rs == NS_FFF)
12940 {
88714cb8 12941 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12942 do_vfp_sp_dyadic ();
12943 }
12944 else
12945 {
88714cb8 12946 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12947 do_vfp_dp_rd_rn_rm ();
12948 }
12949 do_vfp_cond_or_thumb ();
12950}
12951
12952static void
12953do_vfp_nsyn_cmp (void)
12954{
12955 if (inst.operands[1].isreg)
12956 {
12957 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12958 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12959
037e8744
JB
12960 if (rs == NS_FF)
12961 {
88714cb8 12962 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12963 do_vfp_sp_monadic ();
12964 }
12965 else
12966 {
88714cb8 12967 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12968 do_vfp_dp_rd_rm ();
12969 }
12970 }
12971 else
12972 {
12973 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12974 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12975
12976 switch (inst.instruction & 0x0fffffff)
12977 {
12978 case N_MNEM_vcmp:
12979 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12980 break;
12981 case N_MNEM_vcmpe:
12982 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12983 break;
12984 default:
12985 abort ();
12986 }
5f4273c7 12987
037e8744
JB
12988 if (rs == NS_FI)
12989 {
88714cb8 12990 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12991 do_vfp_sp_compare_z ();
12992 }
12993 else
12994 {
88714cb8 12995 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12996 do_vfp_dp_rd ();
12997 }
12998 }
12999 do_vfp_cond_or_thumb ();
13000}
13001
13002static void
13003nsyn_insert_sp (void)
13004{
13005 inst.operands[1] = inst.operands[0];
13006 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13007 inst.operands[0].reg = REG_SP;
037e8744
JB
13008 inst.operands[0].isreg = 1;
13009 inst.operands[0].writeback = 1;
13010 inst.operands[0].present = 1;
13011}
13012
13013static void
13014do_vfp_nsyn_push (void)
13015{
13016 nsyn_insert_sp ();
13017 if (inst.operands[1].issingle)
13018 do_vfp_nsyn_opcode ("fstmdbs");
13019 else
13020 do_vfp_nsyn_opcode ("fstmdbd");
13021}
13022
13023static void
13024do_vfp_nsyn_pop (void)
13025{
13026 nsyn_insert_sp ();
13027 if (inst.operands[1].issingle)
22b5b651 13028 do_vfp_nsyn_opcode ("fldmias");
037e8744 13029 else
22b5b651 13030 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13031}
13032
13033/* Fix up Neon data-processing instructions, ORing in the correct bits for
13034 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13035
88714cb8
DG
13036static void
13037neon_dp_fixup (struct arm_it* insn)
037e8744 13038{
88714cb8
DG
13039 unsigned int i = insn->instruction;
13040 insn->is_neon = 1;
13041
037e8744
JB
13042 if (thumb_mode)
13043 {
13044 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13045 if (i & (1 << 24))
13046 i |= 1 << 28;
5f4273c7 13047
037e8744 13048 i &= ~(1 << 24);
5f4273c7 13049
037e8744
JB
13050 i |= 0xef000000;
13051 }
13052 else
13053 i |= 0xf2000000;
5f4273c7 13054
88714cb8 13055 insn->instruction = i;
037e8744
JB
13056}
13057
13058/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13059 (0, 1, 2, 3). */
13060
13061static unsigned
13062neon_logbits (unsigned x)
13063{
13064 return ffs (x) - 4;
13065}
13066
13067#define LOW4(R) ((R) & 0xf)
13068#define HI1(R) (((R) >> 4) & 1)
13069
13070/* Encode insns with bit pattern:
13071
13072 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13073 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13074
037e8744
JB
13075 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13076 different meaning for some instruction. */
13077
13078static void
13079neon_three_same (int isquad, int ubit, int size)
13080{
13081 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13082 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13083 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13084 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13085 inst.instruction |= LOW4 (inst.operands[2].reg);
13086 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13087 inst.instruction |= (isquad != 0) << 6;
13088 inst.instruction |= (ubit != 0) << 24;
13089 if (size != -1)
13090 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13091
88714cb8 13092 neon_dp_fixup (&inst);
037e8744
JB
13093}
13094
13095/* Encode instructions of the form:
13096
13097 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13098 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13099
13100 Don't write size if SIZE == -1. */
13101
13102static void
13103neon_two_same (int qbit, int ubit, int size)
13104{
13105 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13106 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13107 inst.instruction |= LOW4 (inst.operands[1].reg);
13108 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13109 inst.instruction |= (qbit != 0) << 6;
13110 inst.instruction |= (ubit != 0) << 24;
13111
13112 if (size != -1)
13113 inst.instruction |= neon_logbits (size) << 18;
13114
88714cb8 13115 neon_dp_fixup (&inst);
5287ad62
JB
13116}
13117
13118/* Neon instruction encoders, in approximate order of appearance. */
13119
13120static void
13121do_neon_dyadic_i_su (void)
13122{
037e8744 13123 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13124 struct neon_type_el et = neon_check_type (3, rs,
13125 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13126 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13127}
13128
13129static void
13130do_neon_dyadic_i64_su (void)
13131{
037e8744 13132 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13133 struct neon_type_el et = neon_check_type (3, rs,
13134 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13135 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13136}
13137
13138static void
13139neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13140 unsigned immbits)
13141{
13142 unsigned size = et.size >> 3;
13143 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13144 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13145 inst.instruction |= LOW4 (inst.operands[1].reg);
13146 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13147 inst.instruction |= (isquad != 0) << 6;
13148 inst.instruction |= immbits << 16;
13149 inst.instruction |= (size >> 3) << 7;
13150 inst.instruction |= (size & 0x7) << 19;
13151 if (write_ubit)
13152 inst.instruction |= (uval != 0) << 24;
13153
88714cb8 13154 neon_dp_fixup (&inst);
5287ad62
JB
13155}
13156
13157static void
13158do_neon_shl_imm (void)
13159{
13160 if (!inst.operands[2].isreg)
13161 {
037e8744 13162 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13163 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13164 NEON_ENCODE (IMMED, inst);
037e8744 13165 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13166 }
13167 else
13168 {
037e8744 13169 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13170 struct neon_type_el et = neon_check_type (3, rs,
13171 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13172 unsigned int tmp;
13173
13174 /* VSHL/VQSHL 3-register variants have syntax such as:
13175 vshl.xx Dd, Dm, Dn
13176 whereas other 3-register operations encoded by neon_three_same have
13177 syntax like:
13178 vadd.xx Dd, Dn, Dm
13179 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13180 here. */
13181 tmp = inst.operands[2].reg;
13182 inst.operands[2].reg = inst.operands[1].reg;
13183 inst.operands[1].reg = tmp;
88714cb8 13184 NEON_ENCODE (INTEGER, inst);
037e8744 13185 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13186 }
13187}
13188
13189static void
13190do_neon_qshl_imm (void)
13191{
13192 if (!inst.operands[2].isreg)
13193 {
037e8744 13194 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13195 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13196
88714cb8 13197 NEON_ENCODE (IMMED, inst);
037e8744 13198 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13199 inst.operands[2].imm);
13200 }
13201 else
13202 {
037e8744 13203 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13204 struct neon_type_el et = neon_check_type (3, rs,
13205 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13206 unsigned int tmp;
13207
13208 /* See note in do_neon_shl_imm. */
13209 tmp = inst.operands[2].reg;
13210 inst.operands[2].reg = inst.operands[1].reg;
13211 inst.operands[1].reg = tmp;
88714cb8 13212 NEON_ENCODE (INTEGER, inst);
037e8744 13213 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13214 }
13215}
13216
627907b7
JB
13217static void
13218do_neon_rshl (void)
13219{
13220 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13221 struct neon_type_el et = neon_check_type (3, rs,
13222 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13223 unsigned int tmp;
13224
13225 tmp = inst.operands[2].reg;
13226 inst.operands[2].reg = inst.operands[1].reg;
13227 inst.operands[1].reg = tmp;
13228 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13229}
13230
5287ad62
JB
13231static int
13232neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13233{
036dc3f7
PB
13234 /* Handle .I8 pseudo-instructions. */
13235 if (size == 8)
5287ad62 13236 {
5287ad62
JB
13237 /* Unfortunately, this will make everything apart from zero out-of-range.
13238 FIXME is this the intended semantics? There doesn't seem much point in
13239 accepting .I8 if so. */
13240 immediate |= immediate << 8;
13241 size = 16;
036dc3f7
PB
13242 }
13243
13244 if (size >= 32)
13245 {
13246 if (immediate == (immediate & 0x000000ff))
13247 {
13248 *immbits = immediate;
13249 return 0x1;
13250 }
13251 else if (immediate == (immediate & 0x0000ff00))
13252 {
13253 *immbits = immediate >> 8;
13254 return 0x3;
13255 }
13256 else if (immediate == (immediate & 0x00ff0000))
13257 {
13258 *immbits = immediate >> 16;
13259 return 0x5;
13260 }
13261 else if (immediate == (immediate & 0xff000000))
13262 {
13263 *immbits = immediate >> 24;
13264 return 0x7;
13265 }
13266 if ((immediate & 0xffff) != (immediate >> 16))
13267 goto bad_immediate;
13268 immediate &= 0xffff;
5287ad62
JB
13269 }
13270
13271 if (immediate == (immediate & 0x000000ff))
13272 {
13273 *immbits = immediate;
036dc3f7 13274 return 0x9;
5287ad62
JB
13275 }
13276 else if (immediate == (immediate & 0x0000ff00))
13277 {
13278 *immbits = immediate >> 8;
036dc3f7 13279 return 0xb;
5287ad62
JB
13280 }
13281
13282 bad_immediate:
dcbf9037 13283 first_error (_("immediate value out of range"));
5287ad62
JB
13284 return FAIL;
13285}
13286
13287/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13288 A, B, C, D. */
13289
13290static int
13291neon_bits_same_in_bytes (unsigned imm)
13292{
13293 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13294 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13295 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13296 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13297}
13298
13299/* For immediate of above form, return 0bABCD. */
13300
13301static unsigned
13302neon_squash_bits (unsigned imm)
13303{
13304 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13305 | ((imm & 0x01000000) >> 21);
13306}
13307
136da414 13308/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13309
13310static unsigned
13311neon_qfloat_bits (unsigned imm)
13312{
136da414 13313 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13314}
13315
13316/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13317 the instruction. *OP is passed as the initial value of the op field, and
13318 may be set to a different value depending on the constant (i.e.
13319 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13320 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13321 try smaller element sizes. */
5287ad62
JB
13322
13323static int
c96612cc
JB
13324neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13325 unsigned *immbits, int *op, int size,
13326 enum neon_el_type type)
5287ad62 13327{
c96612cc
JB
13328 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13329 float. */
13330 if (type == NT_float && !float_p)
13331 return FAIL;
13332
136da414
JB
13333 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13334 {
13335 if (size != 32 || *op == 1)
13336 return FAIL;
13337 *immbits = neon_qfloat_bits (immlo);
13338 return 0xf;
13339 }
036dc3f7
PB
13340
13341 if (size == 64)
5287ad62 13342 {
036dc3f7
PB
13343 if (neon_bits_same_in_bytes (immhi)
13344 && neon_bits_same_in_bytes (immlo))
13345 {
13346 if (*op == 1)
13347 return FAIL;
13348 *immbits = (neon_squash_bits (immhi) << 4)
13349 | neon_squash_bits (immlo);
13350 *op = 1;
13351 return 0xe;
13352 }
13353
13354 if (immhi != immlo)
13355 return FAIL;
5287ad62 13356 }
036dc3f7
PB
13357
13358 if (size >= 32)
5287ad62 13359 {
036dc3f7
PB
13360 if (immlo == (immlo & 0x000000ff))
13361 {
13362 *immbits = immlo;
13363 return 0x0;
13364 }
13365 else if (immlo == (immlo & 0x0000ff00))
13366 {
13367 *immbits = immlo >> 8;
13368 return 0x2;
13369 }
13370 else if (immlo == (immlo & 0x00ff0000))
13371 {
13372 *immbits = immlo >> 16;
13373 return 0x4;
13374 }
13375 else if (immlo == (immlo & 0xff000000))
13376 {
13377 *immbits = immlo >> 24;
13378 return 0x6;
13379 }
13380 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13381 {
13382 *immbits = (immlo >> 8) & 0xff;
13383 return 0xc;
13384 }
13385 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13386 {
13387 *immbits = (immlo >> 16) & 0xff;
13388 return 0xd;
13389 }
13390
13391 if ((immlo & 0xffff) != (immlo >> 16))
13392 return FAIL;
13393 immlo &= 0xffff;
5287ad62 13394 }
036dc3f7
PB
13395
13396 if (size >= 16)
5287ad62 13397 {
036dc3f7
PB
13398 if (immlo == (immlo & 0x000000ff))
13399 {
13400 *immbits = immlo;
13401 return 0x8;
13402 }
13403 else if (immlo == (immlo & 0x0000ff00))
13404 {
13405 *immbits = immlo >> 8;
13406 return 0xa;
13407 }
13408
13409 if ((immlo & 0xff) != (immlo >> 8))
13410 return FAIL;
13411 immlo &= 0xff;
5287ad62 13412 }
036dc3f7
PB
13413
13414 if (immlo == (immlo & 0x000000ff))
5287ad62 13415 {
036dc3f7
PB
13416 /* Don't allow MVN with 8-bit immediate. */
13417 if (*op == 1)
13418 return FAIL;
13419 *immbits = immlo;
13420 return 0xe;
5287ad62 13421 }
5287ad62
JB
13422
13423 return FAIL;
13424}
13425
13426/* Write immediate bits [7:0] to the following locations:
13427
13428 |28/24|23 19|18 16|15 4|3 0|
13429 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13430
13431 This function is used by VMOV/VMVN/VORR/VBIC. */
13432
13433static void
13434neon_write_immbits (unsigned immbits)
13435{
13436 inst.instruction |= immbits & 0xf;
13437 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13438 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13439}
13440
13441/* Invert low-order SIZE bits of XHI:XLO. */
13442
13443static void
13444neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13445{
13446 unsigned immlo = xlo ? *xlo : 0;
13447 unsigned immhi = xhi ? *xhi : 0;
13448
13449 switch (size)
13450 {
13451 case 8:
13452 immlo = (~immlo) & 0xff;
13453 break;
13454
13455 case 16:
13456 immlo = (~immlo) & 0xffff;
13457 break;
13458
13459 case 64:
13460 immhi = (~immhi) & 0xffffffff;
13461 /* fall through. */
13462
13463 case 32:
13464 immlo = (~immlo) & 0xffffffff;
13465 break;
13466
13467 default:
13468 abort ();
13469 }
13470
13471 if (xlo)
13472 *xlo = immlo;
13473
13474 if (xhi)
13475 *xhi = immhi;
13476}
13477
13478static void
13479do_neon_logic (void)
13480{
13481 if (inst.operands[2].present && inst.operands[2].isreg)
13482 {
037e8744 13483 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13484 neon_check_type (3, rs, N_IGNORE_TYPE);
13485 /* U bit and size field were set as part of the bitmask. */
88714cb8 13486 NEON_ENCODE (INTEGER, inst);
037e8744 13487 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13488 }
13489 else
13490 {
4316f0d2
DG
13491 const int three_ops_form = (inst.operands[2].present
13492 && !inst.operands[2].isreg);
13493 const int immoperand = (three_ops_form ? 2 : 1);
13494 enum neon_shape rs = (three_ops_form
13495 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13496 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13497 struct neon_type_el et = neon_check_type (2, rs,
13498 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13499 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13500 unsigned immbits;
13501 int cmode;
5f4273c7 13502
5287ad62
JB
13503 if (et.type == NT_invtype)
13504 return;
5f4273c7 13505
4316f0d2
DG
13506 if (three_ops_form)
13507 constraint (inst.operands[0].reg != inst.operands[1].reg,
13508 _("first and second operands shall be the same register"));
13509
88714cb8 13510 NEON_ENCODE (IMMED, inst);
5287ad62 13511
4316f0d2 13512 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13513 if (et.size == 64)
13514 {
13515 /* .i64 is a pseudo-op, so the immediate must be a repeating
13516 pattern. */
4316f0d2
DG
13517 if (immbits != (inst.operands[immoperand].regisimm ?
13518 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13519 {
13520 /* Set immbits to an invalid constant. */
13521 immbits = 0xdeadbeef;
13522 }
13523 }
13524
5287ad62
JB
13525 switch (opcode)
13526 {
13527 case N_MNEM_vbic:
036dc3f7 13528 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13529 break;
5f4273c7 13530
5287ad62 13531 case N_MNEM_vorr:
036dc3f7 13532 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13533 break;
5f4273c7 13534
5287ad62
JB
13535 case N_MNEM_vand:
13536 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13537 neon_invert_size (&immbits, 0, et.size);
13538 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13539 break;
5f4273c7 13540
5287ad62
JB
13541 case N_MNEM_vorn:
13542 /* Pseudo-instruction for VORR. */
5287ad62
JB
13543 neon_invert_size (&immbits, 0, et.size);
13544 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13545 break;
5f4273c7 13546
5287ad62
JB
13547 default:
13548 abort ();
13549 }
13550
13551 if (cmode == FAIL)
13552 return;
13553
037e8744 13554 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13555 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13556 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13557 inst.instruction |= cmode << 8;
13558 neon_write_immbits (immbits);
5f4273c7 13559
88714cb8 13560 neon_dp_fixup (&inst);
5287ad62
JB
13561 }
13562}
13563
13564static void
13565do_neon_bitfield (void)
13566{
037e8744 13567 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13568 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13569 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13570}
13571
13572static void
dcbf9037
JB
13573neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13574 unsigned destbits)
5287ad62 13575{
037e8744 13576 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13577 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13578 types | N_KEY);
5287ad62
JB
13579 if (et.type == NT_float)
13580 {
88714cb8 13581 NEON_ENCODE (FLOAT, inst);
037e8744 13582 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13583 }
13584 else
13585 {
88714cb8 13586 NEON_ENCODE (INTEGER, inst);
037e8744 13587 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13588 }
13589}
13590
13591static void
13592do_neon_dyadic_if_su (void)
13593{
dcbf9037 13594 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13595}
13596
13597static void
13598do_neon_dyadic_if_su_d (void)
13599{
13600 /* This version only allow D registers, but that constraint is enforced during
13601 operand parsing so we don't need to do anything extra here. */
dcbf9037 13602 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13603}
13604
5287ad62
JB
13605static void
13606do_neon_dyadic_if_i_d (void)
13607{
428e3f1f
PB
13608 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13609 affected if we specify unsigned args. */
13610 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13611}
13612
037e8744
JB
13613enum vfp_or_neon_is_neon_bits
13614{
13615 NEON_CHECK_CC = 1,
13616 NEON_CHECK_ARCH = 2
13617};
13618
13619/* Call this function if an instruction which may have belonged to the VFP or
13620 Neon instruction sets, but turned out to be a Neon instruction (due to the
13621 operand types involved, etc.). We have to check and/or fix-up a couple of
13622 things:
13623
13624 - Make sure the user hasn't attempted to make a Neon instruction
13625 conditional.
13626 - Alter the value in the condition code field if necessary.
13627 - Make sure that the arch supports Neon instructions.
13628
13629 Which of these operations take place depends on bits from enum
13630 vfp_or_neon_is_neon_bits.
13631
13632 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13633 current instruction's condition is COND_ALWAYS, the condition field is
13634 changed to inst.uncond_value. This is necessary because instructions shared
13635 between VFP and Neon may be conditional for the VFP variants only, and the
13636 unconditional Neon version must have, e.g., 0xF in the condition field. */
13637
13638static int
13639vfp_or_neon_is_neon (unsigned check)
13640{
13641 /* Conditions are always legal in Thumb mode (IT blocks). */
13642 if (!thumb_mode && (check & NEON_CHECK_CC))
13643 {
13644 if (inst.cond != COND_ALWAYS)
13645 {
13646 first_error (_(BAD_COND));
13647 return FAIL;
13648 }
13649 if (inst.uncond_value != -1)
13650 inst.instruction |= inst.uncond_value << 28;
13651 }
5f4273c7 13652
037e8744
JB
13653 if ((check & NEON_CHECK_ARCH)
13654 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13655 {
13656 first_error (_(BAD_FPU));
13657 return FAIL;
13658 }
5f4273c7 13659
037e8744
JB
13660 return SUCCESS;
13661}
13662
5287ad62
JB
13663static void
13664do_neon_addsub_if_i (void)
13665{
037e8744
JB
13666 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13667 return;
13668
13669 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13670 return;
13671
5287ad62
JB
13672 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13673 affected if we specify unsigned args. */
dcbf9037 13674 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13675}
13676
13677/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13678 result to be:
13679 V<op> A,B (A is operand 0, B is operand 2)
13680 to mean:
13681 V<op> A,B,A
13682 not:
13683 V<op> A,B,B
13684 so handle that case specially. */
13685
13686static void
13687neon_exchange_operands (void)
13688{
13689 void *scratch = alloca (sizeof (inst.operands[0]));
13690 if (inst.operands[1].present)
13691 {
13692 /* Swap operands[1] and operands[2]. */
13693 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13694 inst.operands[1] = inst.operands[2];
13695 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13696 }
13697 else
13698 {
13699 inst.operands[1] = inst.operands[2];
13700 inst.operands[2] = inst.operands[0];
13701 }
13702}
13703
13704static void
13705neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13706{
13707 if (inst.operands[2].isreg)
13708 {
13709 if (invert)
13710 neon_exchange_operands ();
dcbf9037 13711 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13712 }
13713 else
13714 {
037e8744 13715 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13716 struct neon_type_el et = neon_check_type (2, rs,
13717 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13718
88714cb8 13719 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13720 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13721 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13722 inst.instruction |= LOW4 (inst.operands[1].reg);
13723 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13724 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13725 inst.instruction |= (et.type == NT_float) << 10;
13726 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13727
88714cb8 13728 neon_dp_fixup (&inst);
5287ad62
JB
13729 }
13730}
13731
13732static void
13733do_neon_cmp (void)
13734{
13735 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13736}
13737
13738static void
13739do_neon_cmp_inv (void)
13740{
13741 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13742}
13743
13744static void
13745do_neon_ceq (void)
13746{
13747 neon_compare (N_IF_32, N_IF_32, FALSE);
13748}
13749
13750/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13751 scalars, which are encoded in 5 bits, M : Rm.
13752 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13753 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13754 index in M. */
13755
13756static unsigned
13757neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13758{
dcbf9037
JB
13759 unsigned regno = NEON_SCALAR_REG (scalar);
13760 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13761
13762 switch (elsize)
13763 {
13764 case 16:
13765 if (regno > 7 || elno > 3)
13766 goto bad_scalar;
13767 return regno | (elno << 3);
5f4273c7 13768
5287ad62
JB
13769 case 32:
13770 if (regno > 15 || elno > 1)
13771 goto bad_scalar;
13772 return regno | (elno << 4);
13773
13774 default:
13775 bad_scalar:
dcbf9037 13776 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13777 }
13778
13779 return 0;
13780}
13781
13782/* Encode multiply / multiply-accumulate scalar instructions. */
13783
13784static void
13785neon_mul_mac (struct neon_type_el et, int ubit)
13786{
dcbf9037
JB
13787 unsigned scalar;
13788
13789 /* Give a more helpful error message if we have an invalid type. */
13790 if (et.type == NT_invtype)
13791 return;
5f4273c7 13792
dcbf9037 13793 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13794 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13795 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13796 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13797 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13798 inst.instruction |= LOW4 (scalar);
13799 inst.instruction |= HI1 (scalar) << 5;
13800 inst.instruction |= (et.type == NT_float) << 8;
13801 inst.instruction |= neon_logbits (et.size) << 20;
13802 inst.instruction |= (ubit != 0) << 24;
13803
88714cb8 13804 neon_dp_fixup (&inst);
5287ad62
JB
13805}
13806
13807static void
13808do_neon_mac_maybe_scalar (void)
13809{
037e8744
JB
13810 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13811 return;
13812
13813 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13814 return;
13815
5287ad62
JB
13816 if (inst.operands[2].isscalar)
13817 {
037e8744 13818 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13819 struct neon_type_el et = neon_check_type (3, rs,
13820 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13821 NEON_ENCODE (SCALAR, inst);
037e8744 13822 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13823 }
13824 else
428e3f1f
PB
13825 {
13826 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13827 affected if we specify unsigned args. */
13828 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13829 }
5287ad62
JB
13830}
13831
62f3b8c8
PB
13832static void
13833do_neon_fmac (void)
13834{
13835 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13836 return;
13837
13838 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13839 return;
13840
13841 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13842}
13843
5287ad62
JB
13844static void
13845do_neon_tst (void)
13846{
037e8744 13847 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13848 struct neon_type_el et = neon_check_type (3, rs,
13849 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13850 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13851}
13852
13853/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13854 same types as the MAC equivalents. The polynomial type for this instruction
13855 is encoded the same as the integer type. */
13856
13857static void
13858do_neon_mul (void)
13859{
037e8744
JB
13860 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13861 return;
13862
13863 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13864 return;
13865
5287ad62
JB
13866 if (inst.operands[2].isscalar)
13867 do_neon_mac_maybe_scalar ();
13868 else
dcbf9037 13869 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13870}
13871
13872static void
13873do_neon_qdmulh (void)
13874{
13875 if (inst.operands[2].isscalar)
13876 {
037e8744 13877 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13878 struct neon_type_el et = neon_check_type (3, rs,
13879 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13880 NEON_ENCODE (SCALAR, inst);
037e8744 13881 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13882 }
13883 else
13884 {
037e8744 13885 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13886 struct neon_type_el et = neon_check_type (3, rs,
13887 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13888 NEON_ENCODE (INTEGER, inst);
5287ad62 13889 /* The U bit (rounding) comes from bit mask. */
037e8744 13890 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13891 }
13892}
13893
13894static void
13895do_neon_fcmp_absolute (void)
13896{
037e8744 13897 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13898 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13899 /* Size field comes from bit mask. */
037e8744 13900 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13901}
13902
13903static void
13904do_neon_fcmp_absolute_inv (void)
13905{
13906 neon_exchange_operands ();
13907 do_neon_fcmp_absolute ();
13908}
13909
13910static void
13911do_neon_step (void)
13912{
037e8744 13913 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13914 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13915 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13916}
13917
13918static void
13919do_neon_abs_neg (void)
13920{
037e8744
JB
13921 enum neon_shape rs;
13922 struct neon_type_el et;
5f4273c7 13923
037e8744
JB
13924 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13925 return;
13926
13927 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13928 return;
13929
13930 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13931 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13932
5287ad62
JB
13933 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13934 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13935 inst.instruction |= LOW4 (inst.operands[1].reg);
13936 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13937 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13938 inst.instruction |= (et.type == NT_float) << 10;
13939 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13940
88714cb8 13941 neon_dp_fixup (&inst);
5287ad62
JB
13942}
13943
13944static void
13945do_neon_sli (void)
13946{
037e8744 13947 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13948 struct neon_type_el et = neon_check_type (2, rs,
13949 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13950 int imm = inst.operands[2].imm;
13951 constraint (imm < 0 || (unsigned)imm >= et.size,
13952 _("immediate out of range for insert"));
037e8744 13953 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13954}
13955
13956static void
13957do_neon_sri (void)
13958{
037e8744 13959 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13960 struct neon_type_el et = neon_check_type (2, rs,
13961 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13962 int imm = inst.operands[2].imm;
13963 constraint (imm < 1 || (unsigned)imm > et.size,
13964 _("immediate out of range for insert"));
037e8744 13965 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13966}
13967
13968static void
13969do_neon_qshlu_imm (void)
13970{
037e8744 13971 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13972 struct neon_type_el et = neon_check_type (2, rs,
13973 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13974 int imm = inst.operands[2].imm;
13975 constraint (imm < 0 || (unsigned)imm >= et.size,
13976 _("immediate out of range for shift"));
13977 /* Only encodes the 'U present' variant of the instruction.
13978 In this case, signed types have OP (bit 8) set to 0.
13979 Unsigned types have OP set to 1. */
13980 inst.instruction |= (et.type == NT_unsigned) << 8;
13981 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13982 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13983}
13984
13985static void
13986do_neon_qmovn (void)
13987{
13988 struct neon_type_el et = neon_check_type (2, NS_DQ,
13989 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13990 /* Saturating move where operands can be signed or unsigned, and the
13991 destination has the same signedness. */
88714cb8 13992 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13993 if (et.type == NT_unsigned)
13994 inst.instruction |= 0xc0;
13995 else
13996 inst.instruction |= 0x80;
13997 neon_two_same (0, 1, et.size / 2);
13998}
13999
14000static void
14001do_neon_qmovun (void)
14002{
14003 struct neon_type_el et = neon_check_type (2, NS_DQ,
14004 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14005 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14006 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14007 neon_two_same (0, 1, et.size / 2);
14008}
14009
14010static void
14011do_neon_rshift_sat_narrow (void)
14012{
14013 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14014 or unsigned. If operands are unsigned, results must also be unsigned. */
14015 struct neon_type_el et = neon_check_type (2, NS_DQI,
14016 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14017 int imm = inst.operands[2].imm;
14018 /* This gets the bounds check, size encoding and immediate bits calculation
14019 right. */
14020 et.size /= 2;
5f4273c7 14021
5287ad62
JB
14022 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14023 VQMOVN.I<size> <Dd>, <Qm>. */
14024 if (imm == 0)
14025 {
14026 inst.operands[2].present = 0;
14027 inst.instruction = N_MNEM_vqmovn;
14028 do_neon_qmovn ();
14029 return;
14030 }
5f4273c7 14031
5287ad62
JB
14032 constraint (imm < 1 || (unsigned)imm > et.size,
14033 _("immediate out of range"));
14034 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14035}
14036
14037static void
14038do_neon_rshift_sat_narrow_u (void)
14039{
14040 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14041 or unsigned. If operands are unsigned, results must also be unsigned. */
14042 struct neon_type_el et = neon_check_type (2, NS_DQI,
14043 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14044 int imm = inst.operands[2].imm;
14045 /* This gets the bounds check, size encoding and immediate bits calculation
14046 right. */
14047 et.size /= 2;
14048
14049 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14050 VQMOVUN.I<size> <Dd>, <Qm>. */
14051 if (imm == 0)
14052 {
14053 inst.operands[2].present = 0;
14054 inst.instruction = N_MNEM_vqmovun;
14055 do_neon_qmovun ();
14056 return;
14057 }
14058
14059 constraint (imm < 1 || (unsigned)imm > et.size,
14060 _("immediate out of range"));
14061 /* FIXME: The manual is kind of unclear about what value U should have in
14062 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14063 must be 1. */
14064 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14065}
14066
14067static void
14068do_neon_movn (void)
14069{
14070 struct neon_type_el et = neon_check_type (2, NS_DQ,
14071 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14072 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14073 neon_two_same (0, 1, et.size / 2);
14074}
14075
14076static void
14077do_neon_rshift_narrow (void)
14078{
14079 struct neon_type_el et = neon_check_type (2, NS_DQI,
14080 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14081 int imm = inst.operands[2].imm;
14082 /* This gets the bounds check, size encoding and immediate bits calculation
14083 right. */
14084 et.size /= 2;
5f4273c7 14085
5287ad62
JB
14086 /* If immediate is zero then we are a pseudo-instruction for
14087 VMOVN.I<size> <Dd>, <Qm> */
14088 if (imm == 0)
14089 {
14090 inst.operands[2].present = 0;
14091 inst.instruction = N_MNEM_vmovn;
14092 do_neon_movn ();
14093 return;
14094 }
5f4273c7 14095
5287ad62
JB
14096 constraint (imm < 1 || (unsigned)imm > et.size,
14097 _("immediate out of range for narrowing operation"));
14098 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14099}
14100
14101static void
14102do_neon_shll (void)
14103{
14104 /* FIXME: Type checking when lengthening. */
14105 struct neon_type_el et = neon_check_type (2, NS_QDI,
14106 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14107 unsigned imm = inst.operands[2].imm;
14108
14109 if (imm == et.size)
14110 {
14111 /* Maximum shift variant. */
88714cb8 14112 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14113 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14114 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14115 inst.instruction |= LOW4 (inst.operands[1].reg);
14116 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14117 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14118
88714cb8 14119 neon_dp_fixup (&inst);
5287ad62
JB
14120 }
14121 else
14122 {
14123 /* A more-specific type check for non-max versions. */
14124 et = neon_check_type (2, NS_QDI,
14125 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14126 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14127 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14128 }
14129}
14130
037e8744 14131/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14132 the current instruction is. */
14133
14134static int
14135neon_cvt_flavour (enum neon_shape rs)
14136{
037e8744
JB
14137#define CVT_VAR(C,X,Y) \
14138 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14139 if (et.type != NT_invtype) \
14140 { \
14141 inst.error = NULL; \
14142 return (C); \
5287ad62
JB
14143 }
14144 struct neon_type_el et;
037e8744
JB
14145 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14146 || rs == NS_FF) ? N_VFP : 0;
14147 /* The instruction versions which take an immediate take one register
14148 argument, which is extended to the width of the full register. Thus the
14149 "source" and "destination" registers must have the same width. Hack that
14150 here by making the size equal to the key (wider, in this case) operand. */
14151 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14152
5287ad62
JB
14153 CVT_VAR (0, N_S32, N_F32);
14154 CVT_VAR (1, N_U32, N_F32);
14155 CVT_VAR (2, N_F32, N_S32);
14156 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14157 /* Half-precision conversions. */
14158 CVT_VAR (4, N_F32, N_F16);
14159 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14160
037e8744 14161 whole_reg = N_VFP;
5f4273c7 14162
037e8744 14163 /* VFP instructions. */
8e79c3df
CM
14164 CVT_VAR (6, N_F32, N_F64);
14165 CVT_VAR (7, N_F64, N_F32);
14166 CVT_VAR (8, N_S32, N_F64 | key);
14167 CVT_VAR (9, N_U32, N_F64 | key);
14168 CVT_VAR (10, N_F64 | key, N_S32);
14169 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14170 /* VFP instructions with bitshift. */
8e79c3df
CM
14171 CVT_VAR (12, N_F32 | key, N_S16);
14172 CVT_VAR (13, N_F32 | key, N_U16);
14173 CVT_VAR (14, N_F64 | key, N_S16);
14174 CVT_VAR (15, N_F64 | key, N_U16);
14175 CVT_VAR (16, N_S16, N_F32 | key);
14176 CVT_VAR (17, N_U16, N_F32 | key);
14177 CVT_VAR (18, N_S16, N_F64 | key);
14178 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14179
5287ad62
JB
14180 return -1;
14181#undef CVT_VAR
14182}
14183
037e8744
JB
14184/* Neon-syntax VFP conversions. */
14185
5287ad62 14186static void
037e8744 14187do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14188{
037e8744 14189 const char *opname = 0;
5f4273c7 14190
037e8744 14191 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14192 {
037e8744
JB
14193 /* Conversions with immediate bitshift. */
14194 const char *enc[] =
14195 {
14196 "ftosls",
14197 "ftouls",
14198 "fsltos",
14199 "fultos",
14200 NULL,
14201 NULL,
8e79c3df
CM
14202 NULL,
14203 NULL,
037e8744
JB
14204 "ftosld",
14205 "ftould",
14206 "fsltod",
14207 "fultod",
14208 "fshtos",
14209 "fuhtos",
14210 "fshtod",
14211 "fuhtod",
14212 "ftoshs",
14213 "ftouhs",
14214 "ftoshd",
14215 "ftouhd"
14216 };
14217
14218 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14219 {
14220 opname = enc[flavour];
14221 constraint (inst.operands[0].reg != inst.operands[1].reg,
14222 _("operands 0 and 1 must be the same register"));
14223 inst.operands[1] = inst.operands[2];
14224 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14225 }
5287ad62
JB
14226 }
14227 else
14228 {
037e8744
JB
14229 /* Conversions without bitshift. */
14230 const char *enc[] =
14231 {
14232 "ftosis",
14233 "ftouis",
14234 "fsitos",
14235 "fuitos",
8e79c3df
CM
14236 "NULL",
14237 "NULL",
037e8744
JB
14238 "fcvtsd",
14239 "fcvtds",
14240 "ftosid",
14241 "ftouid",
14242 "fsitod",
14243 "fuitod"
14244 };
14245
14246 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14247 opname = enc[flavour];
14248 }
14249
14250 if (opname)
14251 do_vfp_nsyn_opcode (opname);
14252}
14253
14254static void
14255do_vfp_nsyn_cvtz (void)
14256{
14257 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14258 int flavour = neon_cvt_flavour (rs);
14259 const char *enc[] =
14260 {
14261 "ftosizs",
14262 "ftouizs",
14263 NULL,
14264 NULL,
14265 NULL,
14266 NULL,
8e79c3df
CM
14267 NULL,
14268 NULL,
037e8744
JB
14269 "ftosizd",
14270 "ftouizd"
14271 };
14272
14273 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14274 do_vfp_nsyn_opcode (enc[flavour]);
14275}
f31fef98 14276
037e8744 14277static void
e3e535bc 14278do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14279{
14280 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14281 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14282 int flavour = neon_cvt_flavour (rs);
14283
e3e535bc
NC
14284 /* PR11109: Handle round-to-zero for VCVT conversions. */
14285 if (round_to_zero
14286 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14287 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14288 && (rs == NS_FD || rs == NS_FF))
14289 {
14290 do_vfp_nsyn_cvtz ();
14291 return;
14292 }
14293
037e8744 14294 /* VFP rather than Neon conversions. */
8e79c3df 14295 if (flavour >= 6)
037e8744
JB
14296 {
14297 do_vfp_nsyn_cvt (rs, flavour);
14298 return;
14299 }
14300
14301 switch (rs)
14302 {
14303 case NS_DDI:
14304 case NS_QQI:
14305 {
35997600
NC
14306 unsigned immbits;
14307 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14308
037e8744
JB
14309 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14310 return;
14311
14312 /* Fixed-point conversion with #0 immediate is encoded as an
14313 integer conversion. */
14314 if (inst.operands[2].present && inst.operands[2].imm == 0)
14315 goto int_encode;
35997600 14316 immbits = 32 - inst.operands[2].imm;
88714cb8 14317 NEON_ENCODE (IMMED, inst);
037e8744
JB
14318 if (flavour != -1)
14319 inst.instruction |= enctab[flavour];
14320 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14321 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14322 inst.instruction |= LOW4 (inst.operands[1].reg);
14323 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14324 inst.instruction |= neon_quad (rs) << 6;
14325 inst.instruction |= 1 << 21;
14326 inst.instruction |= immbits << 16;
14327
88714cb8 14328 neon_dp_fixup (&inst);
037e8744
JB
14329 }
14330 break;
14331
14332 case NS_DD:
14333 case NS_QQ:
14334 int_encode:
14335 {
14336 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14337
88714cb8 14338 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14339
14340 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14341 return;
14342
14343 if (flavour != -1)
14344 inst.instruction |= enctab[flavour];
14345
14346 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14347 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14348 inst.instruction |= LOW4 (inst.operands[1].reg);
14349 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14350 inst.instruction |= neon_quad (rs) << 6;
14351 inst.instruction |= 2 << 18;
14352
88714cb8 14353 neon_dp_fixup (&inst);
037e8744
JB
14354 }
14355 break;
14356
8e79c3df
CM
14357 /* Half-precision conversions for Advanced SIMD -- neon. */
14358 case NS_QD:
14359 case NS_DQ:
14360
14361 if ((rs == NS_DQ)
14362 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14363 {
14364 as_bad (_("operand size must match register width"));
14365 break;
14366 }
14367
14368 if ((rs == NS_QD)
14369 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14370 {
14371 as_bad (_("operand size must match register width"));
14372 break;
14373 }
14374
14375 if (rs == NS_DQ)
14376 inst.instruction = 0x3b60600;
14377 else
14378 inst.instruction = 0x3b60700;
14379
14380 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14381 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14382 inst.instruction |= LOW4 (inst.operands[1].reg);
14383 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14384 neon_dp_fixup (&inst);
8e79c3df
CM
14385 break;
14386
037e8744
JB
14387 default:
14388 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14389 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14390 }
5287ad62
JB
14391}
14392
e3e535bc
NC
14393static void
14394do_neon_cvtr (void)
14395{
14396 do_neon_cvt_1 (FALSE);
14397}
14398
14399static void
14400do_neon_cvt (void)
14401{
14402 do_neon_cvt_1 (TRUE);
14403}
14404
8e79c3df
CM
14405static void
14406do_neon_cvtb (void)
14407{
14408 inst.instruction = 0xeb20a40;
14409
14410 /* The sizes are attached to the mnemonic. */
14411 if (inst.vectype.el[0].type != NT_invtype
14412 && inst.vectype.el[0].size == 16)
14413 inst.instruction |= 0x00010000;
14414
14415 /* Programmer's syntax: the sizes are attached to the operands. */
14416 else if (inst.operands[0].vectype.type != NT_invtype
14417 && inst.operands[0].vectype.size == 16)
14418 inst.instruction |= 0x00010000;
14419
14420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14421 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14422 do_vfp_cond_or_thumb ();
14423}
14424
14425
14426static void
14427do_neon_cvtt (void)
14428{
14429 do_neon_cvtb ();
14430 inst.instruction |= 0x80;
14431}
14432
5287ad62
JB
14433static void
14434neon_move_immediate (void)
14435{
037e8744
JB
14436 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14437 struct neon_type_el et = neon_check_type (2, rs,
14438 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14439 unsigned immlo, immhi = 0, immbits;
c96612cc 14440 int op, cmode, float_p;
5287ad62 14441
037e8744
JB
14442 constraint (et.type == NT_invtype,
14443 _("operand size must be specified for immediate VMOV"));
14444
5287ad62
JB
14445 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14446 op = (inst.instruction & (1 << 5)) != 0;
14447
14448 immlo = inst.operands[1].imm;
14449 if (inst.operands[1].regisimm)
14450 immhi = inst.operands[1].reg;
14451
14452 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14453 _("immediate has bits set outside the operand size"));
14454
c96612cc
JB
14455 float_p = inst.operands[1].immisfloat;
14456
14457 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14458 et.size, et.type)) == FAIL)
5287ad62
JB
14459 {
14460 /* Invert relevant bits only. */
14461 neon_invert_size (&immlo, &immhi, et.size);
14462 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14463 with one or the other; those cases are caught by
14464 neon_cmode_for_move_imm. */
14465 op = !op;
c96612cc
JB
14466 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14467 &op, et.size, et.type)) == FAIL)
5287ad62 14468 {
dcbf9037 14469 first_error (_("immediate out of range"));
5287ad62
JB
14470 return;
14471 }
14472 }
14473
14474 inst.instruction &= ~(1 << 5);
14475 inst.instruction |= op << 5;
14476
14477 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14478 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14479 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14480 inst.instruction |= cmode << 8;
14481
14482 neon_write_immbits (immbits);
14483}
14484
14485static void
14486do_neon_mvn (void)
14487{
14488 if (inst.operands[1].isreg)
14489 {
037e8744 14490 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14491
88714cb8 14492 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14493 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14494 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14495 inst.instruction |= LOW4 (inst.operands[1].reg);
14496 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14497 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14498 }
14499 else
14500 {
88714cb8 14501 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14502 neon_move_immediate ();
14503 }
14504
88714cb8 14505 neon_dp_fixup (&inst);
5287ad62
JB
14506}
14507
14508/* Encode instructions of form:
14509
14510 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14511 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14512
14513static void
14514neon_mixed_length (struct neon_type_el et, unsigned size)
14515{
14516 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14517 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14518 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14519 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14520 inst.instruction |= LOW4 (inst.operands[2].reg);
14521 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14522 inst.instruction |= (et.type == NT_unsigned) << 24;
14523 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14524
88714cb8 14525 neon_dp_fixup (&inst);
5287ad62
JB
14526}
14527
14528static void
14529do_neon_dyadic_long (void)
14530{
14531 /* FIXME: Type checking for lengthening op. */
14532 struct neon_type_el et = neon_check_type (3, NS_QDD,
14533 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14534 neon_mixed_length (et, et.size);
14535}
14536
14537static void
14538do_neon_abal (void)
14539{
14540 struct neon_type_el et = neon_check_type (3, NS_QDD,
14541 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14542 neon_mixed_length (et, et.size);
14543}
14544
14545static void
14546neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14547{
14548 if (inst.operands[2].isscalar)
14549 {
dcbf9037
JB
14550 struct neon_type_el et = neon_check_type (3, NS_QDS,
14551 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14552 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14553 neon_mul_mac (et, et.type == NT_unsigned);
14554 }
14555 else
14556 {
14557 struct neon_type_el et = neon_check_type (3, NS_QDD,
14558 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14559 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14560 neon_mixed_length (et, et.size);
14561 }
14562}
14563
14564static void
14565do_neon_mac_maybe_scalar_long (void)
14566{
14567 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14568}
14569
14570static void
14571do_neon_dyadic_wide (void)
14572{
14573 struct neon_type_el et = neon_check_type (3, NS_QQD,
14574 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14575 neon_mixed_length (et, et.size);
14576}
14577
14578static void
14579do_neon_dyadic_narrow (void)
14580{
14581 struct neon_type_el et = neon_check_type (3, NS_QDD,
14582 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14583 /* Operand sign is unimportant, and the U bit is part of the opcode,
14584 so force the operand type to integer. */
14585 et.type = NT_integer;
5287ad62
JB
14586 neon_mixed_length (et, et.size / 2);
14587}
14588
14589static void
14590do_neon_mul_sat_scalar_long (void)
14591{
14592 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14593}
14594
14595static void
14596do_neon_vmull (void)
14597{
14598 if (inst.operands[2].isscalar)
14599 do_neon_mac_maybe_scalar_long ();
14600 else
14601 {
14602 struct neon_type_el et = neon_check_type (3, NS_QDD,
14603 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14604 if (et.type == NT_poly)
88714cb8 14605 NEON_ENCODE (POLY, inst);
5287ad62 14606 else
88714cb8 14607 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14608 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14609 zero. Should be OK as-is. */
14610 neon_mixed_length (et, et.size);
14611 }
14612}
14613
14614static void
14615do_neon_ext (void)
14616{
037e8744 14617 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14618 struct neon_type_el et = neon_check_type (3, rs,
14619 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14620 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14621
14622 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14623 _("shift out of range"));
5287ad62
JB
14624 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14625 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14626 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14627 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14628 inst.instruction |= LOW4 (inst.operands[2].reg);
14629 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14630 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14631 inst.instruction |= imm << 8;
5f4273c7 14632
88714cb8 14633 neon_dp_fixup (&inst);
5287ad62
JB
14634}
14635
14636static void
14637do_neon_rev (void)
14638{
037e8744 14639 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14640 struct neon_type_el et = neon_check_type (2, rs,
14641 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14642 unsigned op = (inst.instruction >> 7) & 3;
14643 /* N (width of reversed regions) is encoded as part of the bitmask. We
14644 extract it here to check the elements to be reversed are smaller.
14645 Otherwise we'd get a reserved instruction. */
14646 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14647 gas_assert (elsize != 0);
5287ad62
JB
14648 constraint (et.size >= elsize,
14649 _("elements must be smaller than reversal region"));
037e8744 14650 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14651}
14652
14653static void
14654do_neon_dup (void)
14655{
14656 if (inst.operands[1].isscalar)
14657 {
037e8744 14658 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14659 struct neon_type_el et = neon_check_type (2, rs,
14660 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14661 unsigned sizebits = et.size >> 3;
dcbf9037 14662 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14663 int logsize = neon_logbits (et.size);
dcbf9037 14664 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14665
14666 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14667 return;
14668
88714cb8 14669 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14670 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14671 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14672 inst.instruction |= LOW4 (dm);
14673 inst.instruction |= HI1 (dm) << 5;
037e8744 14674 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14675 inst.instruction |= x << 17;
14676 inst.instruction |= sizebits << 16;
5f4273c7 14677
88714cb8 14678 neon_dp_fixup (&inst);
5287ad62
JB
14679 }
14680 else
14681 {
037e8744
JB
14682 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14683 struct neon_type_el et = neon_check_type (2, rs,
14684 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14685 /* Duplicate ARM register to lanes of vector. */
88714cb8 14686 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14687 switch (et.size)
14688 {
14689 case 8: inst.instruction |= 0x400000; break;
14690 case 16: inst.instruction |= 0x000020; break;
14691 case 32: inst.instruction |= 0x000000; break;
14692 default: break;
14693 }
14694 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14695 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14696 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14697 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14698 /* The encoding for this instruction is identical for the ARM and Thumb
14699 variants, except for the condition field. */
037e8744 14700 do_vfp_cond_or_thumb ();
5287ad62
JB
14701 }
14702}
14703
14704/* VMOV has particularly many variations. It can be one of:
14705 0. VMOV<c><q> <Qd>, <Qm>
14706 1. VMOV<c><q> <Dd>, <Dm>
14707 (Register operations, which are VORR with Rm = Rn.)
14708 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14709 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14710 (Immediate loads.)
14711 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14712 (ARM register to scalar.)
14713 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14714 (Two ARM registers to vector.)
14715 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14716 (Scalar to ARM register.)
14717 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14718 (Vector to two ARM registers.)
037e8744
JB
14719 8. VMOV.F32 <Sd>, <Sm>
14720 9. VMOV.F64 <Dd>, <Dm>
14721 (VFP register moves.)
14722 10. VMOV.F32 <Sd>, #imm
14723 11. VMOV.F64 <Dd>, #imm
14724 (VFP float immediate load.)
14725 12. VMOV <Rd>, <Sm>
14726 (VFP single to ARM reg.)
14727 13. VMOV <Sd>, <Rm>
14728 (ARM reg to VFP single.)
14729 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14730 (Two ARM regs to two VFP singles.)
14731 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14732 (Two VFP singles to two ARM regs.)
5f4273c7 14733
037e8744
JB
14734 These cases can be disambiguated using neon_select_shape, except cases 1/9
14735 and 3/11 which depend on the operand type too.
5f4273c7 14736
5287ad62 14737 All the encoded bits are hardcoded by this function.
5f4273c7 14738
b7fc2769
JB
14739 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14740 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14741
5287ad62 14742 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14743 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14744
14745static void
14746do_neon_mov (void)
14747{
037e8744
JB
14748 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14749 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14750 NS_NULL);
14751 struct neon_type_el et;
14752 const char *ldconst = 0;
5287ad62 14753
037e8744 14754 switch (rs)
5287ad62 14755 {
037e8744
JB
14756 case NS_DD: /* case 1/9. */
14757 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14758 /* It is not an error here if no type is given. */
14759 inst.error = NULL;
14760 if (et.type == NT_float && et.size == 64)
5287ad62 14761 {
037e8744
JB
14762 do_vfp_nsyn_opcode ("fcpyd");
14763 break;
5287ad62 14764 }
037e8744 14765 /* fall through. */
5287ad62 14766
037e8744
JB
14767 case NS_QQ: /* case 0/1. */
14768 {
14769 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14770 return;
14771 /* The architecture manual I have doesn't explicitly state which
14772 value the U bit should have for register->register moves, but
14773 the equivalent VORR instruction has U = 0, so do that. */
14774 inst.instruction = 0x0200110;
14775 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14776 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14777 inst.instruction |= LOW4 (inst.operands[1].reg);
14778 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14779 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14780 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14781 inst.instruction |= neon_quad (rs) << 6;
14782
88714cb8 14783 neon_dp_fixup (&inst);
037e8744
JB
14784 }
14785 break;
5f4273c7 14786
037e8744
JB
14787 case NS_DI: /* case 3/11. */
14788 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14789 inst.error = NULL;
14790 if (et.type == NT_float && et.size == 64)
5287ad62 14791 {
037e8744
JB
14792 /* case 11 (fconstd). */
14793 ldconst = "fconstd";
14794 goto encode_fconstd;
5287ad62 14795 }
037e8744
JB
14796 /* fall through. */
14797
14798 case NS_QI: /* case 2/3. */
14799 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14800 return;
14801 inst.instruction = 0x0800010;
14802 neon_move_immediate ();
88714cb8 14803 neon_dp_fixup (&inst);
5287ad62 14804 break;
5f4273c7 14805
037e8744
JB
14806 case NS_SR: /* case 4. */
14807 {
14808 unsigned bcdebits = 0;
91d6fa6a 14809 int logsize;
037e8744
JB
14810 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14811 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14812
91d6fa6a
NC
14813 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14814 logsize = neon_logbits (et.size);
14815
037e8744
JB
14816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14817 _(BAD_FPU));
14818 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14819 && et.size != 32, _(BAD_FPU));
14820 constraint (et.type == NT_invtype, _("bad type for scalar"));
14821 constraint (x >= 64 / et.size, _("scalar index out of range"));
14822
14823 switch (et.size)
14824 {
14825 case 8: bcdebits = 0x8; break;
14826 case 16: bcdebits = 0x1; break;
14827 case 32: bcdebits = 0x0; break;
14828 default: ;
14829 }
14830
14831 bcdebits |= x << logsize;
14832
14833 inst.instruction = 0xe000b10;
14834 do_vfp_cond_or_thumb ();
14835 inst.instruction |= LOW4 (dn) << 16;
14836 inst.instruction |= HI1 (dn) << 7;
14837 inst.instruction |= inst.operands[1].reg << 12;
14838 inst.instruction |= (bcdebits & 3) << 5;
14839 inst.instruction |= (bcdebits >> 2) << 21;
14840 }
14841 break;
5f4273c7 14842
037e8744 14843 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14844 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14845 _(BAD_FPU));
b7fc2769 14846
037e8744
JB
14847 inst.instruction = 0xc400b10;
14848 do_vfp_cond_or_thumb ();
14849 inst.instruction |= LOW4 (inst.operands[0].reg);
14850 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14851 inst.instruction |= inst.operands[1].reg << 12;
14852 inst.instruction |= inst.operands[2].reg << 16;
14853 break;
5f4273c7 14854
037e8744
JB
14855 case NS_RS: /* case 6. */
14856 {
91d6fa6a 14857 unsigned logsize;
037e8744
JB
14858 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14859 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14860 unsigned abcdebits = 0;
14861
91d6fa6a
NC
14862 et = neon_check_type (2, NS_NULL,
14863 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14864 logsize = neon_logbits (et.size);
14865
037e8744
JB
14866 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14867 _(BAD_FPU));
14868 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14869 && et.size != 32, _(BAD_FPU));
14870 constraint (et.type == NT_invtype, _("bad type for scalar"));
14871 constraint (x >= 64 / et.size, _("scalar index out of range"));
14872
14873 switch (et.size)
14874 {
14875 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14876 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14877 case 32: abcdebits = 0x00; break;
14878 default: ;
14879 }
14880
14881 abcdebits |= x << logsize;
14882 inst.instruction = 0xe100b10;
14883 do_vfp_cond_or_thumb ();
14884 inst.instruction |= LOW4 (dn) << 16;
14885 inst.instruction |= HI1 (dn) << 7;
14886 inst.instruction |= inst.operands[0].reg << 12;
14887 inst.instruction |= (abcdebits & 3) << 5;
14888 inst.instruction |= (abcdebits >> 2) << 21;
14889 }
14890 break;
5f4273c7 14891
037e8744
JB
14892 case NS_RRD: /* case 7 (fmrrd). */
14893 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14894 _(BAD_FPU));
14895
14896 inst.instruction = 0xc500b10;
14897 do_vfp_cond_or_thumb ();
14898 inst.instruction |= inst.operands[0].reg << 12;
14899 inst.instruction |= inst.operands[1].reg << 16;
14900 inst.instruction |= LOW4 (inst.operands[2].reg);
14901 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14902 break;
5f4273c7 14903
037e8744
JB
14904 case NS_FF: /* case 8 (fcpys). */
14905 do_vfp_nsyn_opcode ("fcpys");
14906 break;
5f4273c7 14907
037e8744
JB
14908 case NS_FI: /* case 10 (fconsts). */
14909 ldconst = "fconsts";
14910 encode_fconstd:
14911 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14912 {
037e8744
JB
14913 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14914 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14915 }
14916 else
037e8744
JB
14917 first_error (_("immediate out of range"));
14918 break;
5f4273c7 14919
037e8744
JB
14920 case NS_RF: /* case 12 (fmrs). */
14921 do_vfp_nsyn_opcode ("fmrs");
14922 break;
5f4273c7 14923
037e8744
JB
14924 case NS_FR: /* case 13 (fmsr). */
14925 do_vfp_nsyn_opcode ("fmsr");
14926 break;
5f4273c7 14927
037e8744
JB
14928 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14929 (one of which is a list), but we have parsed four. Do some fiddling to
14930 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14931 expect. */
14932 case NS_RRFF: /* case 14 (fmrrs). */
14933 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14934 _("VFP registers must be adjacent"));
14935 inst.operands[2].imm = 2;
14936 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14937 do_vfp_nsyn_opcode ("fmrrs");
14938 break;
5f4273c7 14939
037e8744
JB
14940 case NS_FFRR: /* case 15 (fmsrr). */
14941 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14942 _("VFP registers must be adjacent"));
14943 inst.operands[1] = inst.operands[2];
14944 inst.operands[2] = inst.operands[3];
14945 inst.operands[0].imm = 2;
14946 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14947 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14948 break;
5f4273c7 14949
5287ad62
JB
14950 default:
14951 abort ();
14952 }
14953}
14954
14955static void
14956do_neon_rshift_round_imm (void)
14957{
037e8744 14958 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14959 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14960 int imm = inst.operands[2].imm;
14961
14962 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14963 if (imm == 0)
14964 {
14965 inst.operands[2].present = 0;
14966 do_neon_mov ();
14967 return;
14968 }
14969
14970 constraint (imm < 1 || (unsigned)imm > et.size,
14971 _("immediate out of range for shift"));
037e8744 14972 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14973 et.size - imm);
14974}
14975
14976static void
14977do_neon_movl (void)
14978{
14979 struct neon_type_el et = neon_check_type (2, NS_QD,
14980 N_EQK | N_DBL, N_SU_32 | N_KEY);
14981 unsigned sizebits = et.size >> 3;
14982 inst.instruction |= sizebits << 19;
14983 neon_two_same (0, et.type == NT_unsigned, -1);
14984}
14985
14986static void
14987do_neon_trn (void)
14988{
037e8744 14989 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14990 struct neon_type_el et = neon_check_type (2, rs,
14991 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14992 NEON_ENCODE (INTEGER, inst);
037e8744 14993 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14994}
14995
14996static void
14997do_neon_zip_uzp (void)
14998{
037e8744 14999 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15000 struct neon_type_el et = neon_check_type (2, rs,
15001 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15002 if (rs == NS_DD && et.size == 32)
15003 {
15004 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15005 inst.instruction = N_MNEM_vtrn;
15006 do_neon_trn ();
15007 return;
15008 }
037e8744 15009 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15010}
15011
15012static void
15013do_neon_sat_abs_neg (void)
15014{
037e8744 15015 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15016 struct neon_type_el et = neon_check_type (2, rs,
15017 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15018 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15019}
15020
15021static void
15022do_neon_pair_long (void)
15023{
037e8744 15024 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15025 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15026 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15027 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15028 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15029}
15030
15031static void
15032do_neon_recip_est (void)
15033{
037e8744 15034 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15035 struct neon_type_el et = neon_check_type (2, rs,
15036 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15037 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15038 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15039}
15040
15041static void
15042do_neon_cls (void)
15043{
037e8744 15044 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15045 struct neon_type_el et = neon_check_type (2, rs,
15046 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15047 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15048}
15049
15050static void
15051do_neon_clz (void)
15052{
037e8744 15053 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15054 struct neon_type_el et = neon_check_type (2, rs,
15055 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15056 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15057}
15058
15059static void
15060do_neon_cnt (void)
15061{
037e8744 15062 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15063 struct neon_type_el et = neon_check_type (2, rs,
15064 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15065 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15066}
15067
15068static void
15069do_neon_swp (void)
15070{
037e8744
JB
15071 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15072 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15073}
15074
15075static void
15076do_neon_tbl_tbx (void)
15077{
15078 unsigned listlenbits;
dcbf9037 15079 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15080
5287ad62
JB
15081 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15082 {
dcbf9037 15083 first_error (_("bad list length for table lookup"));
5287ad62
JB
15084 return;
15085 }
5f4273c7 15086
5287ad62
JB
15087 listlenbits = inst.operands[1].imm - 1;
15088 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15089 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15090 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15091 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15092 inst.instruction |= LOW4 (inst.operands[2].reg);
15093 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15094 inst.instruction |= listlenbits << 8;
5f4273c7 15095
88714cb8 15096 neon_dp_fixup (&inst);
5287ad62
JB
15097}
15098
15099static void
15100do_neon_ldm_stm (void)
15101{
15102 /* P, U and L bits are part of bitmask. */
15103 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15104 unsigned offsetbits = inst.operands[1].imm * 2;
15105
037e8744
JB
15106 if (inst.operands[1].issingle)
15107 {
15108 do_vfp_nsyn_ldm_stm (is_dbmode);
15109 return;
15110 }
15111
5287ad62
JB
15112 constraint (is_dbmode && !inst.operands[0].writeback,
15113 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15114
15115 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15116 _("register list must contain at least 1 and at most 16 "
15117 "registers"));
15118
15119 inst.instruction |= inst.operands[0].reg << 16;
15120 inst.instruction |= inst.operands[0].writeback << 21;
15121 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15122 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15123
15124 inst.instruction |= offsetbits;
5f4273c7 15125
037e8744 15126 do_vfp_cond_or_thumb ();
5287ad62
JB
15127}
15128
15129static void
15130do_neon_ldr_str (void)
15131{
5287ad62 15132 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15133
6844b2c2
MGD
15134 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15135 And is UNPREDICTABLE in thumb mode. */
15136 if (!is_ldr
15137 && inst.operands[1].reg == REG_PC
15138 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15139 {
15140 if (!thumb_mode && warn_on_deprecated)
15141 as_warn (_("Use of PC here is deprecated"));
15142 else
15143 inst.error = _("Use of PC here is UNPREDICTABLE");
15144 }
15145
037e8744
JB
15146 if (inst.operands[0].issingle)
15147 {
cd2f129f
JB
15148 if (is_ldr)
15149 do_vfp_nsyn_opcode ("flds");
15150 else
15151 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15152 }
15153 else
5287ad62 15154 {
cd2f129f
JB
15155 if (is_ldr)
15156 do_vfp_nsyn_opcode ("fldd");
5287ad62 15157 else
cd2f129f 15158 do_vfp_nsyn_opcode ("fstd");
5287ad62 15159 }
5287ad62
JB
15160}
15161
15162/* "interleave" version also handles non-interleaving register VLD1/VST1
15163 instructions. */
15164
15165static void
15166do_neon_ld_st_interleave (void)
15167{
037e8744 15168 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15169 N_8 | N_16 | N_32 | N_64);
15170 unsigned alignbits = 0;
15171 unsigned idx;
15172 /* The bits in this table go:
15173 0: register stride of one (0) or two (1)
15174 1,2: register list length, minus one (1, 2, 3, 4).
15175 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15176 We use -1 for invalid entries. */
15177 const int typetable[] =
15178 {
15179 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15180 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15181 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15182 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15183 };
15184 int typebits;
15185
dcbf9037
JB
15186 if (et.type == NT_invtype)
15187 return;
15188
5287ad62
JB
15189 if (inst.operands[1].immisalign)
15190 switch (inst.operands[1].imm >> 8)
15191 {
15192 case 64: alignbits = 1; break;
15193 case 128:
e23c0ad8
JZ
15194 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15195 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15196 goto bad_alignment;
15197 alignbits = 2;
15198 break;
15199 case 256:
e23c0ad8 15200 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15201 goto bad_alignment;
15202 alignbits = 3;
15203 break;
15204 default:
15205 bad_alignment:
dcbf9037 15206 first_error (_("bad alignment"));
5287ad62
JB
15207 return;
15208 }
15209
15210 inst.instruction |= alignbits << 4;
15211 inst.instruction |= neon_logbits (et.size) << 6;
15212
15213 /* Bits [4:6] of the immediate in a list specifier encode register stride
15214 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15215 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15216 up the right value for "type" in a table based on this value and the given
15217 list style, then stick it back. */
15218 idx = ((inst.operands[0].imm >> 4) & 7)
15219 | (((inst.instruction >> 8) & 3) << 3);
15220
15221 typebits = typetable[idx];
5f4273c7 15222
5287ad62
JB
15223 constraint (typebits == -1, _("bad list type for instruction"));
15224
15225 inst.instruction &= ~0xf00;
15226 inst.instruction |= typebits << 8;
15227}
15228
15229/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15230 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15231 otherwise. The variable arguments are a list of pairs of legal (size, align)
15232 values, terminated with -1. */
15233
15234static int
15235neon_alignment_bit (int size, int align, int *do_align, ...)
15236{
15237 va_list ap;
15238 int result = FAIL, thissize, thisalign;
5f4273c7 15239
5287ad62
JB
15240 if (!inst.operands[1].immisalign)
15241 {
15242 *do_align = 0;
15243 return SUCCESS;
15244 }
5f4273c7 15245
5287ad62
JB
15246 va_start (ap, do_align);
15247
15248 do
15249 {
15250 thissize = va_arg (ap, int);
15251 if (thissize == -1)
15252 break;
15253 thisalign = va_arg (ap, int);
15254
15255 if (size == thissize && align == thisalign)
15256 result = SUCCESS;
15257 }
15258 while (result != SUCCESS);
15259
15260 va_end (ap);
15261
15262 if (result == SUCCESS)
15263 *do_align = 1;
15264 else
dcbf9037 15265 first_error (_("unsupported alignment for instruction"));
5f4273c7 15266
5287ad62
JB
15267 return result;
15268}
15269
15270static void
15271do_neon_ld_st_lane (void)
15272{
037e8744 15273 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15274 int align_good, do_align = 0;
15275 int logsize = neon_logbits (et.size);
15276 int align = inst.operands[1].imm >> 8;
15277 int n = (inst.instruction >> 8) & 3;
15278 int max_el = 64 / et.size;
5f4273c7 15279
dcbf9037
JB
15280 if (et.type == NT_invtype)
15281 return;
5f4273c7 15282
5287ad62
JB
15283 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15284 _("bad list length"));
15285 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15286 _("scalar index out of range"));
15287 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15288 && et.size == 8,
15289 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15290
5287ad62
JB
15291 switch (n)
15292 {
15293 case 0: /* VLD1 / VST1. */
15294 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15295 32, 32, -1);
15296 if (align_good == FAIL)
15297 return;
15298 if (do_align)
15299 {
15300 unsigned alignbits = 0;
15301 switch (et.size)
15302 {
15303 case 16: alignbits = 0x1; break;
15304 case 32: alignbits = 0x3; break;
15305 default: ;
15306 }
15307 inst.instruction |= alignbits << 4;
15308 }
15309 break;
15310
15311 case 1: /* VLD2 / VST2. */
15312 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15313 32, 64, -1);
15314 if (align_good == FAIL)
15315 return;
15316 if (do_align)
15317 inst.instruction |= 1 << 4;
15318 break;
15319
15320 case 2: /* VLD3 / VST3. */
15321 constraint (inst.operands[1].immisalign,
15322 _("can't use alignment with this instruction"));
15323 break;
15324
15325 case 3: /* VLD4 / VST4. */
15326 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15327 16, 64, 32, 64, 32, 128, -1);
15328 if (align_good == FAIL)
15329 return;
15330 if (do_align)
15331 {
15332 unsigned alignbits = 0;
15333 switch (et.size)
15334 {
15335 case 8: alignbits = 0x1; break;
15336 case 16: alignbits = 0x1; break;
15337 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15338 default: ;
15339 }
15340 inst.instruction |= alignbits << 4;
15341 }
15342 break;
15343
15344 default: ;
15345 }
15346
15347 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15348 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15349 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15350
5287ad62
JB
15351 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15352 inst.instruction |= logsize << 10;
15353}
15354
15355/* Encode single n-element structure to all lanes VLD<n> instructions. */
15356
15357static void
15358do_neon_ld_dup (void)
15359{
037e8744 15360 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15361 int align_good, do_align = 0;
15362
dcbf9037
JB
15363 if (et.type == NT_invtype)
15364 return;
15365
5287ad62
JB
15366 switch ((inst.instruction >> 8) & 3)
15367 {
15368 case 0: /* VLD1. */
9c2799c2 15369 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15370 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15371 &do_align, 16, 16, 32, 32, -1);
15372 if (align_good == FAIL)
15373 return;
15374 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15375 {
15376 case 1: break;
15377 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15378 default: first_error (_("bad list length")); return;
5287ad62
JB
15379 }
15380 inst.instruction |= neon_logbits (et.size) << 6;
15381 break;
15382
15383 case 1: /* VLD2. */
15384 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15385 &do_align, 8, 16, 16, 32, 32, 64, -1);
15386 if (align_good == FAIL)
15387 return;
15388 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15389 _("bad list length"));
15390 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15391 inst.instruction |= 1 << 5;
15392 inst.instruction |= neon_logbits (et.size) << 6;
15393 break;
15394
15395 case 2: /* VLD3. */
15396 constraint (inst.operands[1].immisalign,
15397 _("can't use alignment with this instruction"));
15398 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15399 _("bad list length"));
15400 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15401 inst.instruction |= 1 << 5;
15402 inst.instruction |= neon_logbits (et.size) << 6;
15403 break;
15404
15405 case 3: /* VLD4. */
15406 {
15407 int align = inst.operands[1].imm >> 8;
15408 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15409 16, 64, 32, 64, 32, 128, -1);
15410 if (align_good == FAIL)
15411 return;
15412 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15413 _("bad list length"));
15414 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15415 inst.instruction |= 1 << 5;
15416 if (et.size == 32 && align == 128)
15417 inst.instruction |= 0x3 << 6;
15418 else
15419 inst.instruction |= neon_logbits (et.size) << 6;
15420 }
15421 break;
15422
15423 default: ;
15424 }
15425
15426 inst.instruction |= do_align << 4;
15427}
15428
15429/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15430 apart from bits [11:4]. */
15431
15432static void
15433do_neon_ldx_stx (void)
15434{
b1a769ed
DG
15435 if (inst.operands[1].isreg)
15436 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15437
5287ad62
JB
15438 switch (NEON_LANE (inst.operands[0].imm))
15439 {
15440 case NEON_INTERLEAVE_LANES:
88714cb8 15441 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15442 do_neon_ld_st_interleave ();
15443 break;
5f4273c7 15444
5287ad62 15445 case NEON_ALL_LANES:
88714cb8 15446 NEON_ENCODE (DUP, inst);
5287ad62
JB
15447 do_neon_ld_dup ();
15448 break;
5f4273c7 15449
5287ad62 15450 default:
88714cb8 15451 NEON_ENCODE (LANE, inst);
5287ad62
JB
15452 do_neon_ld_st_lane ();
15453 }
15454
15455 /* L bit comes from bit mask. */
15456 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15457 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15458 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15459
5287ad62
JB
15460 if (inst.operands[1].postind)
15461 {
15462 int postreg = inst.operands[1].imm & 0xf;
15463 constraint (!inst.operands[1].immisreg,
15464 _("post-index must be a register"));
15465 constraint (postreg == 0xd || postreg == 0xf,
15466 _("bad register for post-index"));
15467 inst.instruction |= postreg;
15468 }
15469 else if (inst.operands[1].writeback)
15470 {
15471 inst.instruction |= 0xd;
15472 }
15473 else
5f4273c7
NC
15474 inst.instruction |= 0xf;
15475
5287ad62
JB
15476 if (thumb_mode)
15477 inst.instruction |= 0xf9000000;
15478 else
15479 inst.instruction |= 0xf4000000;
15480}
5287ad62
JB
15481\f
15482/* Overall per-instruction processing. */
15483
15484/* We need to be able to fix up arbitrary expressions in some statements.
15485 This is so that we can handle symbols that are an arbitrary distance from
15486 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15487 which returns part of an address in a form which will be valid for
15488 a data instruction. We do this by pushing the expression into a symbol
15489 in the expr_section, and creating a fix for that. */
15490
15491static void
15492fix_new_arm (fragS * frag,
15493 int where,
15494 short int size,
15495 expressionS * exp,
15496 int pc_rel,
15497 int reloc)
15498{
15499 fixS * new_fix;
15500
15501 switch (exp->X_op)
15502 {
15503 case O_constant:
6e7ce2cd
PB
15504 if (pc_rel)
15505 {
15506 /* Create an absolute valued symbol, so we have something to
15507 refer to in the object file. Unfortunately for us, gas's
15508 generic expression parsing will already have folded out
15509 any use of .set foo/.type foo %function that may have
15510 been used to set type information of the target location,
15511 that's being specified symbolically. We have to presume
15512 the user knows what they are doing. */
15513 char name[16 + 8];
15514 symbolS *symbol;
15515
15516 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15517
15518 symbol = symbol_find_or_make (name);
15519 S_SET_SEGMENT (symbol, absolute_section);
15520 symbol_set_frag (symbol, &zero_address_frag);
15521 S_SET_VALUE (symbol, exp->X_add_number);
15522 exp->X_op = O_symbol;
15523 exp->X_add_symbol = symbol;
15524 exp->X_add_number = 0;
15525 }
15526 /* FALLTHROUGH */
5287ad62
JB
15527 case O_symbol:
15528 case O_add:
15529 case O_subtract:
21d799b5
NC
15530 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15531 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15532 break;
15533
15534 default:
21d799b5
NC
15535 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15536 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15537 break;
15538 }
15539
15540 /* Mark whether the fix is to a THUMB instruction, or an ARM
15541 instruction. */
15542 new_fix->tc_fix_data = thumb_mode;
15543}
15544
15545/* Create a frg for an instruction requiring relaxation. */
15546static void
15547output_relax_insn (void)
15548{
15549 char * to;
15550 symbolS *sym;
0110f2b8
PB
15551 int offset;
15552
6e1cb1a6
PB
15553 /* The size of the instruction is unknown, so tie the debug info to the
15554 start of the instruction. */
15555 dwarf2_emit_insn (0);
6e1cb1a6 15556
0110f2b8
PB
15557 switch (inst.reloc.exp.X_op)
15558 {
15559 case O_symbol:
15560 sym = inst.reloc.exp.X_add_symbol;
15561 offset = inst.reloc.exp.X_add_number;
15562 break;
15563 case O_constant:
15564 sym = NULL;
15565 offset = inst.reloc.exp.X_add_number;
15566 break;
15567 default:
15568 sym = make_expr_symbol (&inst.reloc.exp);
15569 offset = 0;
15570 break;
15571 }
15572 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15573 inst.relax, sym, offset, NULL/*offset, opcode*/);
15574 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15575}
15576
15577/* Write a 32-bit thumb instruction to buf. */
15578static void
15579put_thumb32_insn (char * buf, unsigned long insn)
15580{
15581 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15582 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15583}
15584
b99bd4ef 15585static void
c19d1205 15586output_inst (const char * str)
b99bd4ef 15587{
c19d1205 15588 char * to = NULL;
b99bd4ef 15589
c19d1205 15590 if (inst.error)
b99bd4ef 15591 {
c19d1205 15592 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15593 return;
15594 }
5f4273c7
NC
15595 if (inst.relax)
15596 {
15597 output_relax_insn ();
0110f2b8 15598 return;
5f4273c7 15599 }
c19d1205
ZW
15600 if (inst.size == 0)
15601 return;
b99bd4ef 15602
c19d1205 15603 to = frag_more (inst.size);
8dc2430f
NC
15604 /* PR 9814: Record the thumb mode into the current frag so that we know
15605 what type of NOP padding to use, if necessary. We override any previous
15606 setting so that if the mode has changed then the NOPS that we use will
15607 match the encoding of the last instruction in the frag. */
cd000bff 15608 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15609
15610 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15611 {
9c2799c2 15612 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15613 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15614 }
c19d1205 15615 else if (inst.size > INSN_SIZE)
b99bd4ef 15616 {
9c2799c2 15617 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15618 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15619 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15620 }
c19d1205
ZW
15621 else
15622 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15623
c19d1205
ZW
15624 if (inst.reloc.type != BFD_RELOC_UNUSED)
15625 fix_new_arm (frag_now, to - frag_now->fr_literal,
15626 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15627 inst.reloc.type);
b99bd4ef 15628
c19d1205 15629 dwarf2_emit_insn (inst.size);
c19d1205 15630}
b99bd4ef 15631
e07e6e58
NC
15632static char *
15633output_it_inst (int cond, int mask, char * to)
15634{
15635 unsigned long instruction = 0xbf00;
15636
15637 mask &= 0xf;
15638 instruction |= mask;
15639 instruction |= cond << 4;
15640
15641 if (to == NULL)
15642 {
15643 to = frag_more (2);
15644#ifdef OBJ_ELF
15645 dwarf2_emit_insn (2);
15646#endif
15647 }
15648
15649 md_number_to_chars (to, instruction, 2);
15650
15651 return to;
15652}
15653
c19d1205
ZW
15654/* Tag values used in struct asm_opcode's tag field. */
15655enum opcode_tag
15656{
15657 OT_unconditional, /* Instruction cannot be conditionalized.
15658 The ARM condition field is still 0xE. */
15659 OT_unconditionalF, /* Instruction cannot be conditionalized
15660 and carries 0xF in its ARM condition field. */
15661 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15662 OT_csuffixF, /* Some forms of the instruction take a conditional
15663 suffix, others place 0xF where the condition field
15664 would be. */
c19d1205
ZW
15665 OT_cinfix3, /* Instruction takes a conditional infix,
15666 beginning at character index 3. (In
15667 unified mode, it becomes a suffix.) */
088fa78e
KH
15668 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15669 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15670 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15671 character index 3, even in unified mode. Used for
15672 legacy instructions where suffix and infix forms
15673 may be ambiguous. */
c19d1205 15674 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15675 suffix or an infix at character index 3. */
c19d1205
ZW
15676 OT_odd_infix_unc, /* This is the unconditional variant of an
15677 instruction that takes a conditional infix
15678 at an unusual position. In unified mode,
15679 this variant will accept a suffix. */
15680 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15681 are the conditional variants of instructions that
15682 take conditional infixes in unusual positions.
15683 The infix appears at character index
15684 (tag - OT_odd_infix_0). These are not accepted
15685 in unified mode. */
15686};
b99bd4ef 15687
c19d1205
ZW
15688/* Subroutine of md_assemble, responsible for looking up the primary
15689 opcode from the mnemonic the user wrote. STR points to the
15690 beginning of the mnemonic.
15691
15692 This is not simply a hash table lookup, because of conditional
15693 variants. Most instructions have conditional variants, which are
15694 expressed with a _conditional affix_ to the mnemonic. If we were
15695 to encode each conditional variant as a literal string in the opcode
15696 table, it would have approximately 20,000 entries.
15697
15698 Most mnemonics take this affix as a suffix, and in unified syntax,
15699 'most' is upgraded to 'all'. However, in the divided syntax, some
15700 instructions take the affix as an infix, notably the s-variants of
15701 the arithmetic instructions. Of those instructions, all but six
15702 have the infix appear after the third character of the mnemonic.
15703
15704 Accordingly, the algorithm for looking up primary opcodes given
15705 an identifier is:
15706
15707 1. Look up the identifier in the opcode table.
15708 If we find a match, go to step U.
15709
15710 2. Look up the last two characters of the identifier in the
15711 conditions table. If we find a match, look up the first N-2
15712 characters of the identifier in the opcode table. If we
15713 find a match, go to step CE.
15714
15715 3. Look up the fourth and fifth characters of the identifier in
15716 the conditions table. If we find a match, extract those
15717 characters from the identifier, and look up the remaining
15718 characters in the opcode table. If we find a match, go
15719 to step CM.
15720
15721 4. Fail.
15722
15723 U. Examine the tag field of the opcode structure, in case this is
15724 one of the six instructions with its conditional infix in an
15725 unusual place. If it is, the tag tells us where to find the
15726 infix; look it up in the conditions table and set inst.cond
15727 accordingly. Otherwise, this is an unconditional instruction.
15728 Again set inst.cond accordingly. Return the opcode structure.
15729
15730 CE. Examine the tag field to make sure this is an instruction that
15731 should receive a conditional suffix. If it is not, fail.
15732 Otherwise, set inst.cond from the suffix we already looked up,
15733 and return the opcode structure.
15734
15735 CM. Examine the tag field to make sure this is an instruction that
15736 should receive a conditional infix after the third character.
15737 If it is not, fail. Otherwise, undo the edits to the current
15738 line of input and proceed as for case CE. */
15739
15740static const struct asm_opcode *
15741opcode_lookup (char **str)
15742{
15743 char *end, *base;
15744 char *affix;
15745 const struct asm_opcode *opcode;
15746 const struct asm_cond *cond;
e3cb604e 15747 char save[2];
c19d1205
ZW
15748
15749 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15750 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15751 for (base = end = *str; *end != '\0'; end++)
721a8186 15752 if (*end == ' ' || *end == '.')
c19d1205 15753 break;
b99bd4ef 15754
c19d1205 15755 if (end == base)
c921be7d 15756 return NULL;
b99bd4ef 15757
5287ad62 15758 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15759 if (end[0] == '.')
b99bd4ef 15760 {
5287ad62 15761 int offset = 2;
5f4273c7 15762
267d2029
JB
15763 /* The .w and .n suffixes are only valid if the unified syntax is in
15764 use. */
15765 if (unified_syntax && end[1] == 'w')
c19d1205 15766 inst.size_req = 4;
267d2029 15767 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15768 inst.size_req = 2;
15769 else
5287ad62
JB
15770 offset = 0;
15771
15772 inst.vectype.elems = 0;
15773
15774 *str = end + offset;
b99bd4ef 15775
5f4273c7 15776 if (end[offset] == '.')
5287ad62 15777 {
267d2029
JB
15778 /* See if we have a Neon type suffix (possible in either unified or
15779 non-unified ARM syntax mode). */
dcbf9037 15780 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15781 return NULL;
5287ad62
JB
15782 }
15783 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15784 return NULL;
b99bd4ef 15785 }
c19d1205
ZW
15786 else
15787 *str = end;
b99bd4ef 15788
c19d1205 15789 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15790 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15791 end - base);
c19d1205 15792 if (opcode)
b99bd4ef 15793 {
c19d1205
ZW
15794 /* step U */
15795 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15796 {
c19d1205
ZW
15797 inst.cond = COND_ALWAYS;
15798 return opcode;
b99bd4ef 15799 }
b99bd4ef 15800
278df34e 15801 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15802 as_warn (_("conditional infixes are deprecated in unified syntax"));
15803 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15804 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15805 gas_assert (cond);
b99bd4ef 15806
c19d1205
ZW
15807 inst.cond = cond->value;
15808 return opcode;
15809 }
b99bd4ef 15810
c19d1205
ZW
15811 /* Cannot have a conditional suffix on a mnemonic of less than two
15812 characters. */
15813 if (end - base < 3)
c921be7d 15814 return NULL;
b99bd4ef 15815
c19d1205
ZW
15816 /* Look for suffixed mnemonic. */
15817 affix = end - 2;
21d799b5
NC
15818 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15819 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15820 affix - base);
c19d1205
ZW
15821 if (opcode && cond)
15822 {
15823 /* step CE */
15824 switch (opcode->tag)
15825 {
e3cb604e
PB
15826 case OT_cinfix3_legacy:
15827 /* Ignore conditional suffixes matched on infix only mnemonics. */
15828 break;
15829
c19d1205 15830 case OT_cinfix3:
088fa78e 15831 case OT_cinfix3_deprecated:
c19d1205
ZW
15832 case OT_odd_infix_unc:
15833 if (!unified_syntax)
e3cb604e 15834 return 0;
c19d1205
ZW
15835 /* else fall through */
15836
15837 case OT_csuffix:
037e8744 15838 case OT_csuffixF:
c19d1205
ZW
15839 case OT_csuf_or_in3:
15840 inst.cond = cond->value;
15841 return opcode;
15842
15843 case OT_unconditional:
15844 case OT_unconditionalF:
dfa9f0d5 15845 if (thumb_mode)
c921be7d 15846 inst.cond = cond->value;
dfa9f0d5
PB
15847 else
15848 {
c921be7d 15849 /* Delayed diagnostic. */
dfa9f0d5
PB
15850 inst.error = BAD_COND;
15851 inst.cond = COND_ALWAYS;
15852 }
c19d1205 15853 return opcode;
b99bd4ef 15854
c19d1205 15855 default:
c921be7d 15856 return NULL;
c19d1205
ZW
15857 }
15858 }
b99bd4ef 15859
c19d1205
ZW
15860 /* Cannot have a usual-position infix on a mnemonic of less than
15861 six characters (five would be a suffix). */
15862 if (end - base < 6)
c921be7d 15863 return NULL;
b99bd4ef 15864
c19d1205
ZW
15865 /* Look for infixed mnemonic in the usual position. */
15866 affix = base + 3;
21d799b5 15867 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15868 if (!cond)
c921be7d 15869 return NULL;
e3cb604e
PB
15870
15871 memcpy (save, affix, 2);
15872 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15873 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15874 (end - base) - 2);
e3cb604e
PB
15875 memmove (affix + 2, affix, (end - affix) - 2);
15876 memcpy (affix, save, 2);
15877
088fa78e
KH
15878 if (opcode
15879 && (opcode->tag == OT_cinfix3
15880 || opcode->tag == OT_cinfix3_deprecated
15881 || opcode->tag == OT_csuf_or_in3
15882 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15883 {
c921be7d 15884 /* Step CM. */
278df34e 15885 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15886 && (opcode->tag == OT_cinfix3
15887 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15888 as_warn (_("conditional infixes are deprecated in unified syntax"));
15889
15890 inst.cond = cond->value;
15891 return opcode;
b99bd4ef
NC
15892 }
15893
c921be7d 15894 return NULL;
b99bd4ef
NC
15895}
15896
e07e6e58
NC
15897/* This function generates an initial IT instruction, leaving its block
15898 virtually open for the new instructions. Eventually,
15899 the mask will be updated by now_it_add_mask () each time
15900 a new instruction needs to be included in the IT block.
15901 Finally, the block is closed with close_automatic_it_block ().
15902 The block closure can be requested either from md_assemble (),
15903 a tencode (), or due to a label hook. */
15904
15905static void
15906new_automatic_it_block (int cond)
15907{
15908 now_it.state = AUTOMATIC_IT_BLOCK;
15909 now_it.mask = 0x18;
15910 now_it.cc = cond;
15911 now_it.block_length = 1;
cd000bff 15912 mapping_state (MAP_THUMB);
e07e6e58
NC
15913 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15914}
15915
15916/* Close an automatic IT block.
15917 See comments in new_automatic_it_block (). */
15918
15919static void
15920close_automatic_it_block (void)
15921{
15922 now_it.mask = 0x10;
15923 now_it.block_length = 0;
15924}
15925
15926/* Update the mask of the current automatically-generated IT
15927 instruction. See comments in new_automatic_it_block (). */
15928
15929static void
15930now_it_add_mask (int cond)
15931{
15932#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15933#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15934 | ((bitvalue) << (nbit)))
e07e6e58 15935 const int resulting_bit = (cond & 1);
c921be7d 15936
e07e6e58
NC
15937 now_it.mask &= 0xf;
15938 now_it.mask = SET_BIT_VALUE (now_it.mask,
15939 resulting_bit,
15940 (5 - now_it.block_length));
15941 now_it.mask = SET_BIT_VALUE (now_it.mask,
15942 1,
15943 ((5 - now_it.block_length) - 1) );
15944 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15945
15946#undef CLEAR_BIT
15947#undef SET_BIT_VALUE
e07e6e58
NC
15948}
15949
15950/* The IT blocks handling machinery is accessed through the these functions:
15951 it_fsm_pre_encode () from md_assemble ()
15952 set_it_insn_type () optional, from the tencode functions
15953 set_it_insn_type_last () ditto
15954 in_it_block () ditto
15955 it_fsm_post_encode () from md_assemble ()
15956 force_automatic_it_block_close () from label habdling functions
15957
15958 Rationale:
15959 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15960 initializing the IT insn type with a generic initial value depending
15961 on the inst.condition.
15962 2) During the tencode function, two things may happen:
15963 a) The tencode function overrides the IT insn type by
15964 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15965 b) The tencode function queries the IT block state by
15966 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15967
15968 Both set_it_insn_type and in_it_block run the internal FSM state
15969 handling function (handle_it_state), because: a) setting the IT insn
15970 type may incur in an invalid state (exiting the function),
15971 and b) querying the state requires the FSM to be updated.
15972 Specifically we want to avoid creating an IT block for conditional
15973 branches, so it_fsm_pre_encode is actually a guess and we can't
15974 determine whether an IT block is required until the tencode () routine
15975 has decided what type of instruction this actually it.
15976 Because of this, if set_it_insn_type and in_it_block have to be used,
15977 set_it_insn_type has to be called first.
15978
15979 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15980 determines the insn IT type depending on the inst.cond code.
15981 When a tencode () routine encodes an instruction that can be
15982 either outside an IT block, or, in the case of being inside, has to be
15983 the last one, set_it_insn_type_last () will determine the proper
15984 IT instruction type based on the inst.cond code. Otherwise,
15985 set_it_insn_type can be called for overriding that logic or
15986 for covering other cases.
15987
15988 Calling handle_it_state () may not transition the IT block state to
15989 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15990 still queried. Instead, if the FSM determines that the state should
15991 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15992 after the tencode () function: that's what it_fsm_post_encode () does.
15993
15994 Since in_it_block () calls the state handling function to get an
15995 updated state, an error may occur (due to invalid insns combination).
15996 In that case, inst.error is set.
15997 Therefore, inst.error has to be checked after the execution of
15998 the tencode () routine.
15999
16000 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16001 any pending state change (if any) that didn't take place in
16002 handle_it_state () as explained above. */
16003
16004static void
16005it_fsm_pre_encode (void)
16006{
16007 if (inst.cond != COND_ALWAYS)
16008 inst.it_insn_type = INSIDE_IT_INSN;
16009 else
16010 inst.it_insn_type = OUTSIDE_IT_INSN;
16011
16012 now_it.state_handled = 0;
16013}
16014
16015/* IT state FSM handling function. */
16016
16017static int
16018handle_it_state (void)
16019{
16020 now_it.state_handled = 1;
16021
16022 switch (now_it.state)
16023 {
16024 case OUTSIDE_IT_BLOCK:
16025 switch (inst.it_insn_type)
16026 {
16027 case OUTSIDE_IT_INSN:
16028 break;
16029
16030 case INSIDE_IT_INSN:
16031 case INSIDE_IT_LAST_INSN:
16032 if (thumb_mode == 0)
16033 {
c921be7d 16034 if (unified_syntax
e07e6e58
NC
16035 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16036 as_tsktsk (_("Warning: conditional outside an IT block"\
16037 " for Thumb."));
16038 }
16039 else
16040 {
16041 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16042 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16043 {
16044 /* Automatically generate the IT instruction. */
16045 new_automatic_it_block (inst.cond);
16046 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16047 close_automatic_it_block ();
16048 }
16049 else
16050 {
16051 inst.error = BAD_OUT_IT;
16052 return FAIL;
16053 }
16054 }
16055 break;
16056
16057 case IF_INSIDE_IT_LAST_INSN:
16058 case NEUTRAL_IT_INSN:
16059 break;
16060
16061 case IT_INSN:
16062 now_it.state = MANUAL_IT_BLOCK;
16063 now_it.block_length = 0;
16064 break;
16065 }
16066 break;
16067
16068 case AUTOMATIC_IT_BLOCK:
16069 /* Three things may happen now:
16070 a) We should increment current it block size;
16071 b) We should close current it block (closing insn or 4 insns);
16072 c) We should close current it block and start a new one (due
16073 to incompatible conditions or
16074 4 insns-length block reached). */
16075
16076 switch (inst.it_insn_type)
16077 {
16078 case OUTSIDE_IT_INSN:
16079 /* The closure of the block shall happen immediatelly,
16080 so any in_it_block () call reports the block as closed. */
16081 force_automatic_it_block_close ();
16082 break;
16083
16084 case INSIDE_IT_INSN:
16085 case INSIDE_IT_LAST_INSN:
16086 case IF_INSIDE_IT_LAST_INSN:
16087 now_it.block_length++;
16088
16089 if (now_it.block_length > 4
16090 || !now_it_compatible (inst.cond))
16091 {
16092 force_automatic_it_block_close ();
16093 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16094 new_automatic_it_block (inst.cond);
16095 }
16096 else
16097 {
16098 now_it_add_mask (inst.cond);
16099 }
16100
16101 if (now_it.state == AUTOMATIC_IT_BLOCK
16102 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16103 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16104 close_automatic_it_block ();
16105 break;
16106
16107 case NEUTRAL_IT_INSN:
16108 now_it.block_length++;
16109
16110 if (now_it.block_length > 4)
16111 force_automatic_it_block_close ();
16112 else
16113 now_it_add_mask (now_it.cc & 1);
16114 break;
16115
16116 case IT_INSN:
16117 close_automatic_it_block ();
16118 now_it.state = MANUAL_IT_BLOCK;
16119 break;
16120 }
16121 break;
16122
16123 case MANUAL_IT_BLOCK:
16124 {
16125 /* Check conditional suffixes. */
16126 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16127 int is_last;
16128 now_it.mask <<= 1;
16129 now_it.mask &= 0x1f;
16130 is_last = (now_it.mask == 0x10);
16131
16132 switch (inst.it_insn_type)
16133 {
16134 case OUTSIDE_IT_INSN:
16135 inst.error = BAD_NOT_IT;
16136 return FAIL;
16137
16138 case INSIDE_IT_INSN:
16139 if (cond != inst.cond)
16140 {
16141 inst.error = BAD_IT_COND;
16142 return FAIL;
16143 }
16144 break;
16145
16146 case INSIDE_IT_LAST_INSN:
16147 case IF_INSIDE_IT_LAST_INSN:
16148 if (cond != inst.cond)
16149 {
16150 inst.error = BAD_IT_COND;
16151 return FAIL;
16152 }
16153 if (!is_last)
16154 {
16155 inst.error = BAD_BRANCH;
16156 return FAIL;
16157 }
16158 break;
16159
16160 case NEUTRAL_IT_INSN:
16161 /* The BKPT instruction is unconditional even in an IT block. */
16162 break;
16163
16164 case IT_INSN:
16165 inst.error = BAD_IT_IT;
16166 return FAIL;
16167 }
16168 }
16169 break;
16170 }
16171
16172 return SUCCESS;
16173}
16174
16175static void
16176it_fsm_post_encode (void)
16177{
16178 int is_last;
16179
16180 if (!now_it.state_handled)
16181 handle_it_state ();
16182
16183 is_last = (now_it.mask == 0x10);
16184 if (is_last)
16185 {
16186 now_it.state = OUTSIDE_IT_BLOCK;
16187 now_it.mask = 0;
16188 }
16189}
16190
16191static void
16192force_automatic_it_block_close (void)
16193{
16194 if (now_it.state == AUTOMATIC_IT_BLOCK)
16195 {
16196 close_automatic_it_block ();
16197 now_it.state = OUTSIDE_IT_BLOCK;
16198 now_it.mask = 0;
16199 }
16200}
16201
16202static int
16203in_it_block (void)
16204{
16205 if (!now_it.state_handled)
16206 handle_it_state ();
16207
16208 return now_it.state != OUTSIDE_IT_BLOCK;
16209}
16210
c19d1205
ZW
16211void
16212md_assemble (char *str)
b99bd4ef 16213{
c19d1205
ZW
16214 char *p = str;
16215 const struct asm_opcode * opcode;
b99bd4ef 16216
c19d1205
ZW
16217 /* Align the previous label if needed. */
16218 if (last_label_seen != NULL)
b99bd4ef 16219 {
c19d1205
ZW
16220 symbol_set_frag (last_label_seen, frag_now);
16221 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16222 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16223 }
16224
c19d1205
ZW
16225 memset (&inst, '\0', sizeof (inst));
16226 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16227
c19d1205
ZW
16228 opcode = opcode_lookup (&p);
16229 if (!opcode)
b99bd4ef 16230 {
c19d1205 16231 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16232 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16233 if (! create_register_alias (str, p)
16234 && ! create_neon_reg_alias (str, p))
c19d1205 16235 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16236
b99bd4ef
NC
16237 return;
16238 }
16239
278df34e 16240 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16241 as_warn (_("s suffix on comparison instruction is deprecated"));
16242
037e8744
JB
16243 /* The value which unconditional instructions should have in place of the
16244 condition field. */
16245 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16246
c19d1205 16247 if (thumb_mode)
b99bd4ef 16248 {
e74cfd16 16249 arm_feature_set variant;
8f06b2d8
PB
16250
16251 variant = cpu_variant;
16252 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16253 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16254 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16255 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16256 if (!opcode->tvariant
16257 || (thumb_mode == 1
16258 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16259 {
bf3eeda7 16260 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16261 return;
16262 }
c19d1205
ZW
16263 if (inst.cond != COND_ALWAYS && !unified_syntax
16264 && opcode->tencode != do_t_branch)
b99bd4ef 16265 {
c19d1205 16266 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16267 return;
16268 }
16269
752d5da4 16270 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16271 {
7e806470 16272 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16273 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16274 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16275 {
16276 /* Two things are addressed here.
16277 1) Implicit require narrow instructions on Thumb-1.
16278 This avoids relaxation accidentally introducing Thumb-2
16279 instructions.
16280 2) Reject wide instructions in non Thumb-2 cores. */
16281 if (inst.size_req == 0)
16282 inst.size_req = 2;
16283 else if (inst.size_req == 4)
16284 {
bf3eeda7 16285 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16286 return;
16287 }
16288 }
076d447c
PB
16289 }
16290
c19d1205
ZW
16291 inst.instruction = opcode->tvalue;
16292
5be8be5d 16293 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16294 {
16295 /* Prepare the it_insn_type for those encodings that don't set
16296 it. */
16297 it_fsm_pre_encode ();
c19d1205 16298
e07e6e58
NC
16299 opcode->tencode ();
16300
16301 it_fsm_post_encode ();
16302 }
e27ec89e 16303
0110f2b8 16304 if (!(inst.error || inst.relax))
b99bd4ef 16305 {
9c2799c2 16306 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16307 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16308 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16309 {
c19d1205 16310 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16311 return;
16312 }
16313 }
076d447c
PB
16314
16315 /* Something has gone badly wrong if we try to relax a fixed size
16316 instruction. */
9c2799c2 16317 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16318
e74cfd16
PB
16319 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16320 *opcode->tvariant);
ee065d83 16321 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16322 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16323 anything other than bl/blx and v6-M instructions.
ee065d83 16324 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16325 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16326 || inst.relax)
e07e6e58
NC
16327 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16328 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16329 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16330 arm_ext_v6t2);
cd000bff 16331
88714cb8
DG
16332 check_neon_suffixes;
16333
cd000bff 16334 if (!inst.error)
c877a2f2
NC
16335 {
16336 mapping_state (MAP_THUMB);
16337 }
c19d1205 16338 }
3e9e4fcf 16339 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16340 {
845b51d6
PB
16341 bfd_boolean is_bx;
16342
16343 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16344 is_bx = (opcode->aencode == do_bx);
16345
c19d1205 16346 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16347 if (!(is_bx && fix_v4bx)
16348 && !(opcode->avariant &&
16349 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16350 {
bf3eeda7 16351 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16352 return;
b99bd4ef 16353 }
c19d1205 16354 if (inst.size_req)
b99bd4ef 16355 {
c19d1205
ZW
16356 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16357 return;
b99bd4ef
NC
16358 }
16359
c19d1205
ZW
16360 inst.instruction = opcode->avalue;
16361 if (opcode->tag == OT_unconditionalF)
16362 inst.instruction |= 0xF << 28;
16363 else
16364 inst.instruction |= inst.cond << 28;
16365 inst.size = INSN_SIZE;
5be8be5d 16366 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16367 {
16368 it_fsm_pre_encode ();
16369 opcode->aencode ();
16370 it_fsm_post_encode ();
16371 }
ee065d83
PB
16372 /* Arm mode bx is marked as both v4T and v5 because it's still required
16373 on a hypothetical non-thumb v5 core. */
845b51d6 16374 if (is_bx)
e74cfd16 16375 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16376 else
e74cfd16
PB
16377 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16378 *opcode->avariant);
88714cb8
DG
16379
16380 check_neon_suffixes;
16381
cd000bff 16382 if (!inst.error)
c877a2f2
NC
16383 {
16384 mapping_state (MAP_ARM);
16385 }
b99bd4ef 16386 }
3e9e4fcf
JB
16387 else
16388 {
16389 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16390 "-- `%s'"), str);
16391 return;
16392 }
c19d1205
ZW
16393 output_inst (str);
16394}
b99bd4ef 16395
e07e6e58
NC
16396static void
16397check_it_blocks_finished (void)
16398{
16399#ifdef OBJ_ELF
16400 asection *sect;
16401
16402 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16403 if (seg_info (sect)->tc_segment_info_data.current_it.state
16404 == MANUAL_IT_BLOCK)
16405 {
16406 as_warn (_("section '%s' finished with an open IT block."),
16407 sect->name);
16408 }
16409#else
16410 if (now_it.state == MANUAL_IT_BLOCK)
16411 as_warn (_("file finished with an open IT block."));
16412#endif
16413}
16414
c19d1205
ZW
16415/* Various frobbings of labels and their addresses. */
16416
16417void
16418arm_start_line_hook (void)
16419{
16420 last_label_seen = NULL;
b99bd4ef
NC
16421}
16422
c19d1205
ZW
16423void
16424arm_frob_label (symbolS * sym)
b99bd4ef 16425{
c19d1205 16426 last_label_seen = sym;
b99bd4ef 16427
c19d1205 16428 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16429
c19d1205
ZW
16430#if defined OBJ_COFF || defined OBJ_ELF
16431 ARM_SET_INTERWORK (sym, support_interwork);
16432#endif
b99bd4ef 16433
e07e6e58
NC
16434 force_automatic_it_block_close ();
16435
5f4273c7 16436 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16437 as Thumb functions. This is because these labels, whilst
16438 they exist inside Thumb code, are not the entry points for
16439 possible ARM->Thumb calls. Also, these labels can be used
16440 as part of a computed goto or switch statement. eg gcc
16441 can generate code that looks like this:
b99bd4ef 16442
c19d1205
ZW
16443 ldr r2, [pc, .Laaa]
16444 lsl r3, r3, #2
16445 ldr r2, [r3, r2]
16446 mov pc, r2
b99bd4ef 16447
c19d1205
ZW
16448 .Lbbb: .word .Lxxx
16449 .Lccc: .word .Lyyy
16450 ..etc...
16451 .Laaa: .word Lbbb
b99bd4ef 16452
c19d1205
ZW
16453 The first instruction loads the address of the jump table.
16454 The second instruction converts a table index into a byte offset.
16455 The third instruction gets the jump address out of the table.
16456 The fourth instruction performs the jump.
b99bd4ef 16457
c19d1205
ZW
16458 If the address stored at .Laaa is that of a symbol which has the
16459 Thumb_Func bit set, then the linker will arrange for this address
16460 to have the bottom bit set, which in turn would mean that the
16461 address computation performed by the third instruction would end
16462 up with the bottom bit set. Since the ARM is capable of unaligned
16463 word loads, the instruction would then load the incorrect address
16464 out of the jump table, and chaos would ensue. */
16465 if (label_is_thumb_function_name
16466 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16467 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16468 {
c19d1205
ZW
16469 /* When the address of a Thumb function is taken the bottom
16470 bit of that address should be set. This will allow
16471 interworking between Arm and Thumb functions to work
16472 correctly. */
b99bd4ef 16473
c19d1205 16474 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16475
c19d1205 16476 label_is_thumb_function_name = FALSE;
b99bd4ef 16477 }
07a53e5c 16478
07a53e5c 16479 dwarf2_emit_label (sym);
b99bd4ef
NC
16480}
16481
c921be7d 16482bfd_boolean
c19d1205 16483arm_data_in_code (void)
b99bd4ef 16484{
c19d1205 16485 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16486 {
c19d1205
ZW
16487 *input_line_pointer = '/';
16488 input_line_pointer += 5;
16489 *input_line_pointer = 0;
c921be7d 16490 return TRUE;
b99bd4ef
NC
16491 }
16492
c921be7d 16493 return FALSE;
b99bd4ef
NC
16494}
16495
c19d1205
ZW
16496char *
16497arm_canonicalize_symbol_name (char * name)
b99bd4ef 16498{
c19d1205 16499 int len;
b99bd4ef 16500
c19d1205
ZW
16501 if (thumb_mode && (len = strlen (name)) > 5
16502 && streq (name + len - 5, "/data"))
16503 *(name + len - 5) = 0;
b99bd4ef 16504
c19d1205 16505 return name;
b99bd4ef 16506}
c19d1205
ZW
16507\f
16508/* Table of all register names defined by default. The user can
16509 define additional names with .req. Note that all register names
16510 should appear in both upper and lowercase variants. Some registers
16511 also have mixed-case names. */
b99bd4ef 16512
dcbf9037 16513#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16514#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16515#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16516#define REGSET(p,t) \
16517 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16518 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16519 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16520 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16521#define REGSETH(p,t) \
16522 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16523 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16524 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16525 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16526#define REGSET2(p,t) \
16527 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16528 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16529 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16530 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16531#define SPLRBANK(base,bank,t) \
16532 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16533 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16534 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16535 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16536 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16537 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16538
c19d1205 16539static const struct reg_entry reg_names[] =
7ed4c4c5 16540{
c19d1205
ZW
16541 /* ARM integer registers. */
16542 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16543
c19d1205
ZW
16544 /* ATPCS synonyms. */
16545 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16546 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16547 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16548
c19d1205
ZW
16549 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16550 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16551 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16552
c19d1205
ZW
16553 /* Well-known aliases. */
16554 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16555 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16556
16557 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16558 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16559
16560 /* Coprocessor numbers. */
16561 REGSET(p, CP), REGSET(P, CP),
16562
16563 /* Coprocessor register numbers. The "cr" variants are for backward
16564 compatibility. */
16565 REGSET(c, CN), REGSET(C, CN),
16566 REGSET(cr, CN), REGSET(CR, CN),
16567
90ec0d68
MGD
16568 /* ARM banked registers. */
16569 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16570 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16571 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16572 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16573 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16574 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16575 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16576
16577 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16578 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16579 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16580 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16581 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16582 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16583 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16584 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16585
16586 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16587 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16588 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16589 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16590 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16591 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16592 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16593 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16594 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16595
c19d1205
ZW
16596 /* FPA registers. */
16597 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16598 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16599
16600 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16601 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16602
16603 /* VFP SP registers. */
5287ad62
JB
16604 REGSET(s,VFS), REGSET(S,VFS),
16605 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16606
16607 /* VFP DP Registers. */
5287ad62
JB
16608 REGSET(d,VFD), REGSET(D,VFD),
16609 /* Extra Neon DP registers. */
16610 REGSETH(d,VFD), REGSETH(D,VFD),
16611
16612 /* Neon QP registers. */
16613 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16614
16615 /* VFP control registers. */
16616 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16617 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16618 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16619 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16620 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16621 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16622
16623 /* Maverick DSP coprocessor registers. */
16624 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16625 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16626
16627 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16628 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16629 REGDEF(dspsc,0,DSPSC),
16630
16631 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16632 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16633 REGDEF(DSPSC,0,DSPSC),
16634
16635 /* iWMMXt data registers - p0, c0-15. */
16636 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16637
16638 /* iWMMXt control registers - p1, c0-3. */
16639 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16640 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16641 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16642 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16643
16644 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16645 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16646 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16647 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16648 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16649
16650 /* XScale accumulator registers. */
16651 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16652};
16653#undef REGDEF
16654#undef REGNUM
16655#undef REGSET
7ed4c4c5 16656
c19d1205
ZW
16657/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16658 within psr_required_here. */
16659static const struct asm_psr psrs[] =
16660{
16661 /* Backward compatibility notation. Note that "all" is no longer
16662 truly all possible PSR bits. */
16663 {"all", PSR_c | PSR_f},
16664 {"flg", PSR_f},
16665 {"ctl", PSR_c},
16666
16667 /* Individual flags. */
16668 {"f", PSR_f},
16669 {"c", PSR_c},
16670 {"x", PSR_x},
16671 {"s", PSR_s},
59b42a0d 16672
c19d1205
ZW
16673 /* Combinations of flags. */
16674 {"fs", PSR_f | PSR_s},
16675 {"fx", PSR_f | PSR_x},
16676 {"fc", PSR_f | PSR_c},
16677 {"sf", PSR_s | PSR_f},
16678 {"sx", PSR_s | PSR_x},
16679 {"sc", PSR_s | PSR_c},
16680 {"xf", PSR_x | PSR_f},
16681 {"xs", PSR_x | PSR_s},
16682 {"xc", PSR_x | PSR_c},
16683 {"cf", PSR_c | PSR_f},
16684 {"cs", PSR_c | PSR_s},
16685 {"cx", PSR_c | PSR_x},
16686 {"fsx", PSR_f | PSR_s | PSR_x},
16687 {"fsc", PSR_f | PSR_s | PSR_c},
16688 {"fxs", PSR_f | PSR_x | PSR_s},
16689 {"fxc", PSR_f | PSR_x | PSR_c},
16690 {"fcs", PSR_f | PSR_c | PSR_s},
16691 {"fcx", PSR_f | PSR_c | PSR_x},
16692 {"sfx", PSR_s | PSR_f | PSR_x},
16693 {"sfc", PSR_s | PSR_f | PSR_c},
16694 {"sxf", PSR_s | PSR_x | PSR_f},
16695 {"sxc", PSR_s | PSR_x | PSR_c},
16696 {"scf", PSR_s | PSR_c | PSR_f},
16697 {"scx", PSR_s | PSR_c | PSR_x},
16698 {"xfs", PSR_x | PSR_f | PSR_s},
16699 {"xfc", PSR_x | PSR_f | PSR_c},
16700 {"xsf", PSR_x | PSR_s | PSR_f},
16701 {"xsc", PSR_x | PSR_s | PSR_c},
16702 {"xcf", PSR_x | PSR_c | PSR_f},
16703 {"xcs", PSR_x | PSR_c | PSR_s},
16704 {"cfs", PSR_c | PSR_f | PSR_s},
16705 {"cfx", PSR_c | PSR_f | PSR_x},
16706 {"csf", PSR_c | PSR_s | PSR_f},
16707 {"csx", PSR_c | PSR_s | PSR_x},
16708 {"cxf", PSR_c | PSR_x | PSR_f},
16709 {"cxs", PSR_c | PSR_x | PSR_s},
16710 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16711 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16712 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16713 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16714 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16715 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16716 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16717 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16718 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16719 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16720 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16721 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16722 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16723 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16724 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16725 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16726 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16727 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16728 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16729 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16730 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16731 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16732 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16733 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16734};
16735
62b3e311
PB
16736/* Table of V7M psr names. */
16737static const struct asm_psr v7m_psrs[] =
16738{
2b744c99
PB
16739 {"apsr", 0 }, {"APSR", 0 },
16740 {"iapsr", 1 }, {"IAPSR", 1 },
16741 {"eapsr", 2 }, {"EAPSR", 2 },
16742 {"psr", 3 }, {"PSR", 3 },
16743 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16744 {"ipsr", 5 }, {"IPSR", 5 },
16745 {"epsr", 6 }, {"EPSR", 6 },
16746 {"iepsr", 7 }, {"IEPSR", 7 },
16747 {"msp", 8 }, {"MSP", 8 },
16748 {"psp", 9 }, {"PSP", 9 },
16749 {"primask", 16}, {"PRIMASK", 16},
16750 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16751 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16752 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16753 {"faultmask", 19}, {"FAULTMASK", 19},
16754 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16755};
16756
c19d1205
ZW
16757/* Table of all shift-in-operand names. */
16758static const struct asm_shift_name shift_names [] =
b99bd4ef 16759{
c19d1205
ZW
16760 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16761 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16762 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16763 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16764 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16765 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16766};
b99bd4ef 16767
c19d1205
ZW
16768/* Table of all explicit relocation names. */
16769#ifdef OBJ_ELF
16770static struct reloc_entry reloc_names[] =
16771{
16772 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16773 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16774 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16775 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16776 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16777 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16778 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16779 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16780 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16781 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16782 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16783 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16784 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16785 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16786 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16787 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16788 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16789 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16790};
16791#endif
b99bd4ef 16792
c19d1205
ZW
16793/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16794static const struct asm_cond conds[] =
16795{
16796 {"eq", 0x0},
16797 {"ne", 0x1},
16798 {"cs", 0x2}, {"hs", 0x2},
16799 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16800 {"mi", 0x4},
16801 {"pl", 0x5},
16802 {"vs", 0x6},
16803 {"vc", 0x7},
16804 {"hi", 0x8},
16805 {"ls", 0x9},
16806 {"ge", 0xa},
16807 {"lt", 0xb},
16808 {"gt", 0xc},
16809 {"le", 0xd},
16810 {"al", 0xe}
16811};
bfae80f2 16812
62b3e311
PB
16813static struct asm_barrier_opt barrier_opt_names[] =
16814{
52e7f43d
RE
16815 { "sy", 0xf }, { "SY", 0xf },
16816 { "un", 0x7 }, { "UN", 0x7 },
16817 { "st", 0xe }, { "ST", 0xe },
16818 { "unst", 0x6 }, { "UNST", 0x6 },
16819 { "ish", 0xb }, { "ISH", 0xb },
16820 { "sh", 0xb }, { "SH", 0xb },
16821 { "ishst", 0xa }, { "ISHST", 0xa },
16822 { "shst", 0xa }, { "SHST", 0xa },
16823 { "nsh", 0x7 }, { "NSH", 0x7 },
16824 { "nshst", 0x6 }, { "NSHST", 0x6 },
16825 { "osh", 0x3 }, { "OSH", 0x3 },
16826 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16827};
16828
c19d1205
ZW
16829/* Table of ARM-format instructions. */
16830
16831/* Macros for gluing together operand strings. N.B. In all cases
16832 other than OPS0, the trailing OP_stop comes from default
16833 zero-initialization of the unspecified elements of the array. */
16834#define OPS0() { OP_stop, }
16835#define OPS1(a) { OP_##a, }
16836#define OPS2(a,b) { OP_##a,OP_##b, }
16837#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16838#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16839#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16840#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16841
5be8be5d
DG
16842/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16843 This is useful when mixing operands for ARM and THUMB, i.e. using the
16844 MIX_ARM_THUMB_OPERANDS macro.
16845 In order to use these macros, prefix the number of operands with _
16846 e.g. _3. */
16847#define OPS_1(a) { a, }
16848#define OPS_2(a,b) { a,b, }
16849#define OPS_3(a,b,c) { a,b,c, }
16850#define OPS_4(a,b,c,d) { a,b,c,d, }
16851#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16852#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16853
c19d1205
ZW
16854/* These macros abstract out the exact format of the mnemonic table and
16855 save some repeated characters. */
16856
16857/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16858#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16859 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16860 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16861
16862/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16863 a T_MNEM_xyz enumerator. */
16864#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16865 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16866#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16867 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16868
16869/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16870 infix after the third character. */
16871#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16872 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16873 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16874#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16875 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16876 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16877#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16878 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16879#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16880 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16881#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16882 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16883#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16884 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16885
16886/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16887 appear in the condition table. */
16888#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16889 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16890 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16891
16892#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16893 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16894 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16895 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16896 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16897 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16898 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16899 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16900 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16901 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16902 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16903 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16904 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16905 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16906 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16907 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16908 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16909 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16910 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16911 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16912
16913#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16914 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16915#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16916 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16917
16918/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16919 field is still 0xE. Many of the Thumb variants can be executed
16920 conditionally, so this is checked separately. */
c19d1205 16921#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16922 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16923 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16924
16925/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16926 condition code field. */
16927#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16928 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16929 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16930
16931/* ARM-only variants of all the above. */
6a86118a 16932#define CE(mnem, op, nops, ops, ae) \
21d799b5 16933 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16934
16935#define C3(mnem, op, nops, ops, ae) \
16936 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16937
e3cb604e
PB
16938/* Legacy mnemonics that always have conditional infix after the third
16939 character. */
16940#define CL(mnem, op, nops, ops, ae) \
21d799b5 16941 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16942 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16943
8f06b2d8
PB
16944/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16945#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16946 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16947
e3cb604e
PB
16948/* Legacy coprocessor instructions where conditional infix and conditional
16949 suffix are ambiguous. For consistency this includes all FPA instructions,
16950 not just the potentially ambiguous ones. */
16951#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16952 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16953 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16954
16955/* Coprocessor, takes either a suffix or a position-3 infix
16956 (for an FPA corner case). */
16957#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16958 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16959 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16960
6a86118a 16961#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16962 { m1 #m2 m3, OPS##nops ops, \
16963 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16964 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16965
16966#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16967 xCM_ (m1, , m2, op, nops, ops, ae), \
16968 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16969 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16970 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16971 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16972 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16973 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16974 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16975 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16976 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16977 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16978 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16979 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16980 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16981 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16982 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16983 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16984 xCM_ (m1, le, m2, op, nops, ops, ae), \
16985 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16986
16987#define UE(mnem, op, nops, ops, ae) \
16988 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16989
16990#define UF(mnem, op, nops, ops, ae) \
16991 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16992
5287ad62
JB
16993/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16994 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16995 use the same encoding function for each. */
16996#define NUF(mnem, op, nops, ops, enc) \
16997 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16998 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16999
17000/* Neon data processing, version which indirects through neon_enc_tab for
17001 the various overloaded versions of opcodes. */
17002#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17003 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17004 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17005
17006/* Neon insn with conditional suffix for the ARM version, non-overloaded
17007 version. */
037e8744
JB
17008#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17009 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17010 THUMB_VARIANT, do_##enc, do_##enc }
17011
037e8744 17012#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17013 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17014
17015#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17016 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17017
5287ad62 17018/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17019#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17020 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17021 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17022
037e8744 17023#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17024 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17025
17026#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17027 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17028
c19d1205
ZW
17029#define do_0 0
17030
c19d1205 17031static const struct asm_opcode insns[] =
bfae80f2 17032{
e74cfd16
PB
17033#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17034#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17035 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17036 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17037 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17038 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17039 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17040 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17041 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17042 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17043 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17044 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17045 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17046 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17047 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17048 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17049 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17050 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17051
17052 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17053 for setting PSR flag bits. They are obsolete in V6 and do not
17054 have Thumb equivalents. */
21d799b5
NC
17055 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17056 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17057 CL("tstp", 110f000, 2, (RR, SH), cmp),
17058 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17059 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17060 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17061 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17062 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17063 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17064
17065 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17066 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17067 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17068 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17069
17070 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17071 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17072 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17073 OP_RRnpc),
17074 OP_ADDRGLDR),ldst, t_ldst),
17075 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17076
17077 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17078 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17079 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17080 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17081 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17082 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17083
17084 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17085 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17086 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17087 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17088
c19d1205 17089 /* Pseudo ops. */
21d799b5 17090 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17091 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17092 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17093
17094 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17095 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17096 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17097 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17098 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17099 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17100 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17101 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17102 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17103 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17104 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17105 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17106 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17107
16a4cf17 17108 /* These may simplify to neg. */
21d799b5
NC
17109 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17110 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17111
c921be7d
NC
17112#undef THUMB_VARIANT
17113#define THUMB_VARIANT & arm_ext_v6
17114
21d799b5 17115 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17116
17117 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17118#undef THUMB_VARIANT
17119#define THUMB_VARIANT & arm_ext_v6t2
17120
21d799b5
NC
17121 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17122 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17123 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17124
5be8be5d
DG
17125 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17126 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17127 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17128 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17129
21d799b5
NC
17130 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17131 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17132
21d799b5
NC
17133 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17134 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17135
17136 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17137 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17138 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17139
17140 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17141 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17142 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17143 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17144 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17145 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17146 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17147 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17148
c921be7d
NC
17149#undef ARM_VARIANT
17150#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17151#undef THUMB_VARIANT
17152#define THUMB_VARIANT & arm_ext_v4t
17153
21d799b5
NC
17154 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17155 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17156
c921be7d
NC
17157#undef THUMB_VARIANT
17158#define THUMB_VARIANT & arm_ext_v6t2
17159
21d799b5 17160 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17161 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17162
17163 /* Generic coprocessor instructions. */
21d799b5
NC
17164 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17165 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17166 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17167 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17168 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17169 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17170 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17171
c921be7d
NC
17172#undef ARM_VARIANT
17173#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17174
21d799b5 17175 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17176 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17177
c921be7d
NC
17178#undef ARM_VARIANT
17179#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17180#undef THUMB_VARIANT
17181#define THUMB_VARIANT & arm_ext_msr
17182
d2cd1205
JB
17183 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17184 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17185
c921be7d
NC
17186#undef ARM_VARIANT
17187#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17188#undef THUMB_VARIANT
17189#define THUMB_VARIANT & arm_ext_v6t2
17190
21d799b5
NC
17191 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17192 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17193 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17194 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17195 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17196 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17197 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17198 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17199
c921be7d
NC
17200#undef ARM_VARIANT
17201#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17202#undef THUMB_VARIANT
17203#define THUMB_VARIANT & arm_ext_v4t
17204
5be8be5d
DG
17205 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17206 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17207 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17208 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17209 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17210 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17211
c921be7d
NC
17212#undef ARM_VARIANT
17213#define ARM_VARIANT & arm_ext_v4t_5
17214
c19d1205
ZW
17215 /* ARM Architecture 4T. */
17216 /* Note: bx (and blx) are required on V5, even if the processor does
17217 not support Thumb. */
21d799b5 17218 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17219
c921be7d
NC
17220#undef ARM_VARIANT
17221#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17222#undef THUMB_VARIANT
17223#define THUMB_VARIANT & arm_ext_v5t
17224
c19d1205
ZW
17225 /* Note: blx has 2 variants; the .value coded here is for
17226 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17227 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17228 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17229
c921be7d
NC
17230#undef THUMB_VARIANT
17231#define THUMB_VARIANT & arm_ext_v6t2
17232
21d799b5
NC
17233 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17234 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17235 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17236 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17237 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17238 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17239 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17240 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17241
c921be7d
NC
17242#undef ARM_VARIANT
17243#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17244#undef THUMB_VARIANT
17245#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17246
21d799b5
NC
17247 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17248 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17249 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17250 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17251
21d799b5
NC
17252 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17253 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17254
21d799b5
NC
17255 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17256 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17257 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17258 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17259
21d799b5
NC
17260 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17261 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17262 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17263 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17264
21d799b5
NC
17265 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17266 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17267
03ee1b7f
NC
17268 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17269 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17270 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17271 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17272
c921be7d
NC
17273#undef ARM_VARIANT
17274#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17275#undef THUMB_VARIANT
17276#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17277
21d799b5 17278 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17279 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17280 ldrd, t_ldstd),
17281 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17282 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17283
21d799b5
NC
17284 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17285 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17286
c921be7d
NC
17287#undef ARM_VARIANT
17288#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17289
21d799b5 17290 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17291
c921be7d
NC
17292#undef ARM_VARIANT
17293#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17294#undef THUMB_VARIANT
17295#define THUMB_VARIANT & arm_ext_v6
17296
21d799b5
NC
17297 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17298 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17299 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17300 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17301 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17302 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17303 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17304 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17305 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17306 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17307
c921be7d
NC
17308#undef THUMB_VARIANT
17309#define THUMB_VARIANT & arm_ext_v6t2
17310
5be8be5d
DG
17311 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17312 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17313 strex, t_strex),
21d799b5
NC
17314 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17315 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17316
21d799b5
NC
17317 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17318 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17319
9e3c6df6 17320/* ARM V6 not included in V7M. */
c921be7d
NC
17321#undef THUMB_VARIANT
17322#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17323 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17324 UF(rfeib, 9900a00, 1, (RRw), rfe),
17325 UF(rfeda, 8100a00, 1, (RRw), rfe),
17326 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17327 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17328 UF(rfefa, 9900a00, 1, (RRw), rfe),
17329 UF(rfeea, 8100a00, 1, (RRw), rfe),
17330 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17331 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17332 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17333 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17334 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17335
9e3c6df6
PB
17336/* ARM V6 not included in V7M (eg. integer SIMD). */
17337#undef THUMB_VARIANT
17338#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17339 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17340 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17341 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17342 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17343 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17344 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17345 /* Old name for QASX. */
21d799b5
NC
17346 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17347 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17348 /* Old name for QSAX. */
21d799b5
NC
17349 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17350 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17351 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17352 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17353 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17354 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17355 /* Old name for SASX. */
21d799b5
NC
17356 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17357 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17358 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17359 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17360 /* Old name for SHASX. */
21d799b5
NC
17361 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17362 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17363 /* Old name for SHSAX. */
21d799b5
NC
17364 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17365 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17366 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17367 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17368 /* Old name for SSAX. */
21d799b5
NC
17369 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17370 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17371 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17372 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17373 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17374 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17375 /* Old name for UASX. */
21d799b5
NC
17376 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17377 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17378 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17379 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17380 /* Old name for UHASX. */
21d799b5
NC
17381 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17382 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17383 /* Old name for UHSAX. */
21d799b5
NC
17384 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17385 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17386 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17387 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17388 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17389 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17390 /* Old name for UQASX. */
21d799b5
NC
17391 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17392 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17393 /* Old name for UQSAX. */
21d799b5
NC
17394 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17395 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17396 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17397 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17398 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17399 /* Old name for USAX. */
21d799b5
NC
17400 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17401 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17402 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17403 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17404 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17405 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17406 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17407 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17408 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17409 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17410 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17411 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17412 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17413 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17414 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17415 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17416 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17417 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17418 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17419 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17420 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17421 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17422 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17423 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17424 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17425 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17426 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17427 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17428 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17429 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17430 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17431 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17432 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17433 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17434
c921be7d
NC
17435#undef ARM_VARIANT
17436#define ARM_VARIANT & arm_ext_v6k
17437#undef THUMB_VARIANT
17438#define THUMB_VARIANT & arm_ext_v6k
17439
21d799b5
NC
17440 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17441 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17442 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17443 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17444
c921be7d
NC
17445#undef THUMB_VARIANT
17446#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17447 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17448 ldrexd, t_ldrexd),
17449 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17450 RRnpcb), strexd, t_strexd),
ebdca51a 17451
c921be7d
NC
17452#undef THUMB_VARIANT
17453#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17454 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17455 rd_rn, rd_rn),
17456 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17457 rd_rn, rd_rn),
17458 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17459 strex, rm_rd_rn),
17460 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17461 strex, rm_rd_rn),
21d799b5 17462 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17463
c921be7d 17464#undef ARM_VARIANT
f4c65163
MGD
17465#define ARM_VARIANT & arm_ext_sec
17466#undef THUMB_VARIANT
17467#define THUMB_VARIANT & arm_ext_sec
c921be7d 17468
21d799b5 17469 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17470
90ec0d68
MGD
17471#undef ARM_VARIANT
17472#define ARM_VARIANT & arm_ext_virt
17473#undef THUMB_VARIANT
17474#define THUMB_VARIANT & arm_ext_virt
17475
17476 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17477 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17478
c921be7d
NC
17479#undef ARM_VARIANT
17480#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17481#undef THUMB_VARIANT
17482#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17483
21d799b5
NC
17484 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17485 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17486 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17487 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17488
21d799b5
NC
17489 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17490 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17491 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17492 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17493
5be8be5d
DG
17494 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17495 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17496 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17497 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17498
bf3eeda7
NS
17499 /* Thumb-only instructions. */
17500#undef ARM_VARIANT
17501#define ARM_VARIANT NULL
17502 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17503 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17504
17505 /* ARM does not really have an IT instruction, so always allow it.
17506 The opcode is copied from Thumb in order to allow warnings in
17507 -mimplicit-it=[never | arm] modes. */
17508#undef ARM_VARIANT
17509#define ARM_VARIANT & arm_ext_v1
17510
21d799b5
NC
17511 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17512 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17513 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17514 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17515 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17516 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17517 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17518 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17519 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17520 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17521 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17522 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17523 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17524 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17525 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17526 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17527 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17528 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17529
92e90b6e 17530 /* Thumb2 only instructions. */
c921be7d
NC
17531#undef ARM_VARIANT
17532#define ARM_VARIANT NULL
92e90b6e 17533
21d799b5
NC
17534 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17535 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17536 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17537 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17538 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17539 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17540
eea54501
MGD
17541 /* Hardware division instructions. */
17542#undef ARM_VARIANT
17543#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17544#undef THUMB_VARIANT
17545#define THUMB_VARIANT & arm_ext_div
17546
eea54501
MGD
17547 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17548 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17549
7e806470 17550 /* ARM V6M/V7 instructions. */
c921be7d
NC
17551#undef ARM_VARIANT
17552#define ARM_VARIANT & arm_ext_barrier
17553#undef THUMB_VARIANT
17554#define THUMB_VARIANT & arm_ext_barrier
17555
52e7f43d
RE
17556 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17557 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17558 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17559
62b3e311 17560 /* ARM V7 instructions. */
c921be7d
NC
17561#undef ARM_VARIANT
17562#define ARM_VARIANT & arm_ext_v7
17563#undef THUMB_VARIANT
17564#define THUMB_VARIANT & arm_ext_v7
17565
21d799b5
NC
17566 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17567 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17568
60e5ef9f
MGD
17569#undef ARM_VARIANT
17570#define ARM_VARIANT & arm_ext_mp
17571#undef THUMB_VARIANT
17572#define THUMB_VARIANT & arm_ext_mp
17573
17574 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17575
c921be7d
NC
17576#undef ARM_VARIANT
17577#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17578
21d799b5
NC
17579 cCE("wfs", e200110, 1, (RR), rd),
17580 cCE("rfs", e300110, 1, (RR), rd),
17581 cCE("wfc", e400110, 1, (RR), rd),
17582 cCE("rfc", e500110, 1, (RR), rd),
17583
17584 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17585 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17586 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17587 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17588
17589 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17590 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17591 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17592 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17593
17594 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17595 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17596 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17597 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17598 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17599 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17600 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17601 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17602 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17603 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17604 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17605 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17606
17607 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17608 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17609 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17610 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17611 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17612 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17613 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17614 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17615 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17616 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17617 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17618 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17619
17620 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17621 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17622 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17623 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17624 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17625 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17626 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17627 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17628 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17629 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17630 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17631 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17632
17633 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17634 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17635 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17636 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17637 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17638 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17639 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17640 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17641 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17642 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17643 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17644 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17645
17646 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17647 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17648 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17649 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17650 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17651 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17652 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17653 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17654 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17655 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17656 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17657 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17658
17659 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17660 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17661 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17662 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17663 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17664 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17665 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17666 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17667 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17668 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17669 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17670 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17671
17672 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17673 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17674 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17675 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17676 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17677 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17678 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17679 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17680 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17681 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17682 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17683 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17684
17685 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17686 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17687 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17688 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17689 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17690 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17691 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17692 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17693 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17694 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17695 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17696 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17697
17698 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17699 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17700 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17701 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17702 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17703 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17704 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17705 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17706 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17707 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17708 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17709 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17710
17711 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17712 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17713 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17714 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17715 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17716 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17717 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17718 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17719 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17720 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17721 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17722 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17723
17724 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17725 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17726 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17727 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17728 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17729 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17730 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17731 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17732 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17733 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17734 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17735 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17736
17737 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17738 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17739 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17740 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17741 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17742 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17743 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17744 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17745 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17746 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17747 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17748 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17749
17750 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17751 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17752 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17753 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17754 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17755 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17756 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17757 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17758 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17759 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17760 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17761 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17762
17763 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17764 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17765 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17766 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17767 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17768 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17769 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17770 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17771 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17772 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17773 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17774 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17775
17776 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17777 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17778 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17779 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17780 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17781 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17782 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17783 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17784 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17785 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17786 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17787 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17788
17789 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17790 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17791 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17792 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17793 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17794 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17795 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17796 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17797 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17798 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17799 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17800 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17801
17802 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17804 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17805 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17812 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17813 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17814
17815 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17817 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17818 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17825 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17826 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17827
17828 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17830 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17831 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17838 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17839 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17840
17841 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17843 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17844 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17851 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17852 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17853
17854 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17856 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17857 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17858 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17859 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17860 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17861 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17862 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17863 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17864 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17865 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17866
17867 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17868 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17869 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17870 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17871 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17872 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17873 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17874 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17875 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17876 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17877 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17878 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17879
17880 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17885 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17886 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17889 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17890 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17891 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17892
17893 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17898 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17903 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17904 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17905
17906 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17918
17919 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17931
17932 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17944
17945 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17955 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17957
17958 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17960 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17961 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17962 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17963 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17965 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17966 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17967 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17968 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17970
17971 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17972 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17973 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17974 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17975
17976 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17977 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17978 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17979 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17980 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17981 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17982 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17983 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17984 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17985 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17986 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17987 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17988
c19d1205
ZW
17989 /* The implementation of the FIX instruction is broken on some
17990 assemblers, in that it accepts a precision specifier as well as a
17991 rounding specifier, despite the fact that this is meaningless.
17992 To be more compatible, we accept it as well, though of course it
17993 does not set any bits. */
21d799b5
NC
17994 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17995 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17996 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17997 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17998 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17999 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18000 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18001 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18002 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18003 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18004 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18005 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18006 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18007
c19d1205 18008 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18009#undef ARM_VARIANT
18010#define ARM_VARIANT & fpu_fpa_ext_v2
18011
21d799b5
NC
18012 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18013 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18014 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18015 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18016 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18017 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18018
c921be7d
NC
18019#undef ARM_VARIANT
18020#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18021
c19d1205 18022 /* Moves and type conversions. */
21d799b5
NC
18023 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18024 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18025 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18026 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
18027 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18028 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18029 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18030 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18031 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18032 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18033 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18034 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18035 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18036 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18037
18038 /* Memory operations. */
21d799b5
NC
18039 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18040 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18041 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18042 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18043 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18044 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18045 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18046 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18047 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18048 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18049 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18050 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18051 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18052 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18053 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18054 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18055 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18056 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18057
c19d1205 18058 /* Monadic operations. */
21d799b5
NC
18059 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18060 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18061 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18062
18063 /* Dyadic operations. */
21d799b5
NC
18064 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18065 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18066 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18067 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18068 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18069 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18070 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18071 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18072 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18073
c19d1205 18074 /* Comparisons. */
21d799b5
NC
18075 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18076 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18077 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18078 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18079
62f3b8c8
PB
18080 /* Double precision load/store are still present on single precision
18081 implementations. */
18082 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18083 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18084 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18085 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18086 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18087 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18088 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18089 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18090 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18091 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18092
c921be7d
NC
18093#undef ARM_VARIANT
18094#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18095
c19d1205 18096 /* Moves and type conversions. */
21d799b5
NC
18097 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18098 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18099 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18100 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18101 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18102 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18103 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18104 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18105 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18106 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18107 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18108 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18109 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18110
c19d1205 18111 /* Monadic operations. */
21d799b5
NC
18112 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18113 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18114 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18115
18116 /* Dyadic operations. */
21d799b5
NC
18117 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18118 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18119 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18120 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18121 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18122 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18123 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18124 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18125 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18126
c19d1205 18127 /* Comparisons. */
21d799b5
NC
18128 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18129 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18130 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18131 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18132
c921be7d
NC
18133#undef ARM_VARIANT
18134#define ARM_VARIANT & fpu_vfp_ext_v2
18135
21d799b5
NC
18136 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18137 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18138 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18139 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18140
037e8744
JB
18141/* Instructions which may belong to either the Neon or VFP instruction sets.
18142 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18143#undef ARM_VARIANT
18144#define ARM_VARIANT & fpu_vfp_ext_v1xd
18145#undef THUMB_VARIANT
18146#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18147
037e8744
JB
18148 /* These mnemonics are unique to VFP. */
18149 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18150 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18151 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18152 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18153 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18154 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18155 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18156 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18157 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18158 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18159
18160 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18161 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18162 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18163 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18164
21d799b5
NC
18165 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18166 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18167
18168 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18169 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18170
55881a11
MGD
18171 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18172 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18173 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18174 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18175 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18176 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18177 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18178 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18179
e3e535bc
NC
18180 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18181 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18182 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18183 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18184
037e8744
JB
18185
18186 /* NOTE: All VMOV encoding is special-cased! */
18187 NCE(vmov, 0, 1, (VMOV), neon_mov),
18188 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18189
c921be7d
NC
18190#undef THUMB_VARIANT
18191#define THUMB_VARIANT & fpu_neon_ext_v1
18192#undef ARM_VARIANT
18193#define ARM_VARIANT & fpu_neon_ext_v1
18194
5287ad62
JB
18195 /* Data processing with three registers of the same length. */
18196 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18197 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18198 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18199 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18200 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18201 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18202 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18203 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18204 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18205 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18206 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18207 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18208 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18209 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18210 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18211 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18212 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18213 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18214 /* If not immediate, fall back to neon_dyadic_i64_su.
18215 shl_imm should accept I8 I16 I32 I64,
18216 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18217 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18218 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18219 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18220 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18221 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18222 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18223 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18224 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18225 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18226 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18227 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18228 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18229 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18230 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18231 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18232 /* Bitfield ops, untyped. */
18233 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18234 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18235 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18236 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18237 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18238 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18239 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18240 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18241 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18242 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18243 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18244 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18245 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18246 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18247 back to neon_dyadic_if_su. */
21d799b5
NC
18248 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18249 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18250 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18251 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18252 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18253 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18254 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18255 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18256 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18257 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18258 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18259 /* As above, D registers only. */
21d799b5
NC
18260 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18261 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18262 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18263 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18264 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18265 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18266 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18267 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18268 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18269 /* vtst takes sizes 8, 16, 32. */
18270 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18271 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18272 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18273 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18274 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18275 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18276 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18277 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18278 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18279 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18280 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18281 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18282 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18283 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18284 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18285 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18286 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18287 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18288 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18289 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18290 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18291
18292 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18293 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18294 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18295
18296 /* Data processing with two registers and a shift amount. */
18297 /* Right shifts, and variants with rounding.
18298 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18299 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18300 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18301 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18302 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18303 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18304 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18305 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18306 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18307 /* Shift and insert. Sizes accepted 8 16 32 64. */
18308 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18309 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18310 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18311 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18312 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18313 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18314 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18315 /* Right shift immediate, saturating & narrowing, with rounding variants.
18316 Types accepted S16 S32 S64 U16 U32 U64. */
18317 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18318 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18319 /* As above, unsigned. Types accepted S16 S32 S64. */
18320 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18321 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18322 /* Right shift narrowing. Types accepted I16 I32 I64. */
18323 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18324 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18325 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18326 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18327 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18328 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18329
4316f0d2
DG
18330 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18331 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18332
18333 /* Data processing, three registers of different lengths. */
18334 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18335 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18336 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18337 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18338 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18339 /* If not scalar, fall back to neon_dyadic_long.
18340 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18341 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18342 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18343 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18344 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18345 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18346 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18347 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18348 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18349 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18350 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18351 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18352 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18353 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18354 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18355 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18356 S16 S32 U16 U32. */
21d799b5 18357 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18358
18359 /* Extract. Size 8. */
3b8d421e
PB
18360 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18361 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18362
18363 /* Two registers, miscellaneous. */
18364 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18365 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18366 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18367 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18368 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18369 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18370 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18371 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18372 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18373 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18374 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18375 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18376 /* VMOVN. Types I16 I32 I64. */
21d799b5 18377 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18378 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18379 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18380 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18381 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18382 /* VZIP / VUZP. Sizes 8 16 32. */
18383 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18384 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18385 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18386 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18387 /* VQABS / VQNEG. Types S8 S16 S32. */
18388 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18389 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18390 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18391 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18392 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18393 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18394 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18395 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18396 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18397 /* Reciprocal estimates. Types U32 F32. */
18398 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18399 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18400 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18401 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18402 /* VCLS. Types S8 S16 S32. */
18403 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18404 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18405 /* VCLZ. Types I8 I16 I32. */
18406 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18407 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18408 /* VCNT. Size 8. */
18409 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18410 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18411 /* Two address, untyped. */
18412 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18413 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18414 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18415 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18416 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18417
18418 /* Table lookup. Size 8. */
18419 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18420 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18421
c921be7d
NC
18422#undef THUMB_VARIANT
18423#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18424#undef ARM_VARIANT
18425#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18426
5287ad62 18427 /* Neon element/structure load/store. */
21d799b5
NC
18428 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18429 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18430 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18431 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18432 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18433 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18434 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18435 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18436
c921be7d 18437#undef THUMB_VARIANT
62f3b8c8
PB
18438#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18439#undef ARM_VARIANT
18440#define ARM_VARIANT &fpu_vfp_ext_v3xd
18441 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18442 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18443 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18444 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18445 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18446 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18447 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18448 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18449 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18450
18451#undef THUMB_VARIANT
c921be7d
NC
18452#define THUMB_VARIANT & fpu_vfp_ext_v3
18453#undef ARM_VARIANT
18454#define ARM_VARIANT & fpu_vfp_ext_v3
18455
21d799b5 18456 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18457 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18458 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18459 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18460 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18461 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18462 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18463 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18464 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18465
62f3b8c8
PB
18466#undef ARM_VARIANT
18467#define ARM_VARIANT &fpu_vfp_ext_fma
18468#undef THUMB_VARIANT
18469#define THUMB_VARIANT &fpu_vfp_ext_fma
18470 /* Mnemonics shared by Neon and VFP. These are included in the
18471 VFP FMA variant; NEON and VFP FMA always includes the NEON
18472 FMA instructions. */
18473 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18474 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18475 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18476 the v form should always be used. */
18477 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18478 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18479 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18480 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18481 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18482 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18483
5287ad62 18484#undef THUMB_VARIANT
c921be7d
NC
18485#undef ARM_VARIANT
18486#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18487
21d799b5
NC
18488 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18489 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18490 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18491 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18492 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18493 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18494 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18495 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18496
c921be7d
NC
18497#undef ARM_VARIANT
18498#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18499
21d799b5
NC
18500 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18501 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18502 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18503 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18504 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18505 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18506 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18507 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18508 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18509 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18510 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18511 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18512 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18513 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18514 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18515 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18516 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18517 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18518 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18519 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18520 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18521 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18522 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18523 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18524 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18525 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18526 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18527 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18528 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18529 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18530 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18531 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18532 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18533 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18534 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18535 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18536 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18537 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18538 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18539 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18540 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18541 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18542 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18543 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18546 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18547 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18548 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18549 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18550 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18551 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18552 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18553 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18554 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18555 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18556 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18557 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18558 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18559 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18560 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18561 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18562 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18563 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18564 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18565 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18566 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18567 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18568 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18569 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18570 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18573 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18578 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18579 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18580 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18581 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18582 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18583 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18585 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18586 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18587 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18588 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18589 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18590 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18591 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18592 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18595 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18596 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18597 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18598 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18599 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18600 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18601 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18602 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18603 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18604 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18605 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18606 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18607 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18608 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18609 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18610 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18611 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18612 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18613 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18614 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18615 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18616 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18617 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18618 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18619 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18620 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18621 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18622 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18623 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18624 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18625 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18626 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18627 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18628 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18629 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18630 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18631 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18632 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18633 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18634 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18637 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18638 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18642 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18643 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18644 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18645 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18646 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18647 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18648 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18652 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18653 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18654 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18655 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18656 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18657 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18662
c921be7d
NC
18663#undef ARM_VARIANT
18664#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18665
21d799b5
NC
18666 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18667 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18668 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18669 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18670 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18671 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18672 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18687 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18707 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18708 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18709 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18710 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18711 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18712 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18713 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18714 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18715 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18716 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18717 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18718 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18719 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18720 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18721 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18722 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18723
c921be7d
NC
18724#undef ARM_VARIANT
18725#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18726
21d799b5
NC
18727 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18728 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18729 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18730 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18731 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18732 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18733 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18734 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18735 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18736 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18737 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18738 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18739 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18740 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18741 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18742 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18743 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18744 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18745 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18746 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18747 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18748 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18749 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18750 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18751 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18752 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18753 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18754 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18755 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18756 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18757 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18758 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18759 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18760 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18761 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18762 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18763 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18764 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18765 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18766 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18767 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18768 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18769 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18770 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18771 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18772 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18773 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18774 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18775 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18776 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18777 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18778 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18779 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18780 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18781 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18782 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18783 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18784 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18785 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18786 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18787 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18788 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18789 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18790 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18791 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18792 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18793 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18794 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18795 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18796 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18797 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18798 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18799 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18800 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18801 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18802 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18803};
18804#undef ARM_VARIANT
18805#undef THUMB_VARIANT
18806#undef TCE
18807#undef TCM
18808#undef TUE
18809#undef TUF
18810#undef TCC
8f06b2d8 18811#undef cCE
e3cb604e
PB
18812#undef cCL
18813#undef C3E
c19d1205
ZW
18814#undef CE
18815#undef CM
18816#undef UE
18817#undef UF
18818#undef UT
5287ad62
JB
18819#undef NUF
18820#undef nUF
18821#undef NCE
18822#undef nCE
c19d1205
ZW
18823#undef OPS0
18824#undef OPS1
18825#undef OPS2
18826#undef OPS3
18827#undef OPS4
18828#undef OPS5
18829#undef OPS6
18830#undef do_0
18831\f
18832/* MD interface: bits in the object file. */
bfae80f2 18833
c19d1205
ZW
18834/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18835 for use in the a.out file, and stores them in the array pointed to by buf.
18836 This knows about the endian-ness of the target machine and does
18837 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18838 2 (short) and 4 (long) Floating numbers are put out as a series of
18839 LITTLENUMS (shorts, here at least). */
b99bd4ef 18840
c19d1205
ZW
18841void
18842md_number_to_chars (char * buf, valueT val, int n)
18843{
18844 if (target_big_endian)
18845 number_to_chars_bigendian (buf, val, n);
18846 else
18847 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18848}
18849
c19d1205
ZW
18850static valueT
18851md_chars_to_number (char * buf, int n)
bfae80f2 18852{
c19d1205
ZW
18853 valueT result = 0;
18854 unsigned char * where = (unsigned char *) buf;
bfae80f2 18855
c19d1205 18856 if (target_big_endian)
b99bd4ef 18857 {
c19d1205
ZW
18858 while (n--)
18859 {
18860 result <<= 8;
18861 result |= (*where++ & 255);
18862 }
b99bd4ef 18863 }
c19d1205 18864 else
b99bd4ef 18865 {
c19d1205
ZW
18866 while (n--)
18867 {
18868 result <<= 8;
18869 result |= (where[n] & 255);
18870 }
bfae80f2 18871 }
b99bd4ef 18872
c19d1205 18873 return result;
bfae80f2 18874}
b99bd4ef 18875
c19d1205 18876/* MD interface: Sections. */
b99bd4ef 18877
0110f2b8
PB
18878/* Estimate the size of a frag before relaxing. Assume everything fits in
18879 2 bytes. */
18880
c19d1205 18881int
0110f2b8 18882md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18883 segT segtype ATTRIBUTE_UNUSED)
18884{
0110f2b8
PB
18885 fragp->fr_var = 2;
18886 return 2;
18887}
18888
18889/* Convert a machine dependent frag. */
18890
18891void
18892md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18893{
18894 unsigned long insn;
18895 unsigned long old_op;
18896 char *buf;
18897 expressionS exp;
18898 fixS *fixp;
18899 int reloc_type;
18900 int pc_rel;
18901 int opcode;
18902
18903 buf = fragp->fr_literal + fragp->fr_fix;
18904
18905 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18906 if (fragp->fr_symbol)
18907 {
0110f2b8
PB
18908 exp.X_op = O_symbol;
18909 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18910 }
18911 else
18912 {
0110f2b8 18913 exp.X_op = O_constant;
5f4273c7 18914 }
0110f2b8
PB
18915 exp.X_add_number = fragp->fr_offset;
18916 opcode = fragp->fr_subtype;
18917 switch (opcode)
18918 {
18919 case T_MNEM_ldr_pc:
18920 case T_MNEM_ldr_pc2:
18921 case T_MNEM_ldr_sp:
18922 case T_MNEM_str_sp:
18923 case T_MNEM_ldr:
18924 case T_MNEM_ldrb:
18925 case T_MNEM_ldrh:
18926 case T_MNEM_str:
18927 case T_MNEM_strb:
18928 case T_MNEM_strh:
18929 if (fragp->fr_var == 4)
18930 {
5f4273c7 18931 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18932 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18933 {
18934 insn |= (old_op & 0x700) << 4;
18935 }
18936 else
18937 {
18938 insn |= (old_op & 7) << 12;
18939 insn |= (old_op & 0x38) << 13;
18940 }
18941 insn |= 0x00000c00;
18942 put_thumb32_insn (buf, insn);
18943 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18944 }
18945 else
18946 {
18947 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18948 }
18949 pc_rel = (opcode == T_MNEM_ldr_pc2);
18950 break;
18951 case T_MNEM_adr:
18952 if (fragp->fr_var == 4)
18953 {
18954 insn = THUMB_OP32 (opcode);
18955 insn |= (old_op & 0xf0) << 4;
18956 put_thumb32_insn (buf, insn);
18957 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18958 }
18959 else
18960 {
18961 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18962 exp.X_add_number -= 4;
18963 }
18964 pc_rel = 1;
18965 break;
18966 case T_MNEM_mov:
18967 case T_MNEM_movs:
18968 case T_MNEM_cmp:
18969 case T_MNEM_cmn:
18970 if (fragp->fr_var == 4)
18971 {
18972 int r0off = (opcode == T_MNEM_mov
18973 || opcode == T_MNEM_movs) ? 0 : 8;
18974 insn = THUMB_OP32 (opcode);
18975 insn = (insn & 0xe1ffffff) | 0x10000000;
18976 insn |= (old_op & 0x700) << r0off;
18977 put_thumb32_insn (buf, insn);
18978 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18979 }
18980 else
18981 {
18982 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18983 }
18984 pc_rel = 0;
18985 break;
18986 case T_MNEM_b:
18987 if (fragp->fr_var == 4)
18988 {
18989 insn = THUMB_OP32(opcode);
18990 put_thumb32_insn (buf, insn);
18991 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18992 }
18993 else
18994 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18995 pc_rel = 1;
18996 break;
18997 case T_MNEM_bcond:
18998 if (fragp->fr_var == 4)
18999 {
19000 insn = THUMB_OP32(opcode);
19001 insn |= (old_op & 0xf00) << 14;
19002 put_thumb32_insn (buf, insn);
19003 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19004 }
19005 else
19006 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19007 pc_rel = 1;
19008 break;
19009 case T_MNEM_add_sp:
19010 case T_MNEM_add_pc:
19011 case T_MNEM_inc_sp:
19012 case T_MNEM_dec_sp:
19013 if (fragp->fr_var == 4)
19014 {
19015 /* ??? Choose between add and addw. */
19016 insn = THUMB_OP32 (opcode);
19017 insn |= (old_op & 0xf0) << 4;
19018 put_thumb32_insn (buf, insn);
16805f35
PB
19019 if (opcode == T_MNEM_add_pc)
19020 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19021 else
19022 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19023 }
19024 else
19025 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19026 pc_rel = 0;
19027 break;
19028
19029 case T_MNEM_addi:
19030 case T_MNEM_addis:
19031 case T_MNEM_subi:
19032 case T_MNEM_subis:
19033 if (fragp->fr_var == 4)
19034 {
19035 insn = THUMB_OP32 (opcode);
19036 insn |= (old_op & 0xf0) << 4;
19037 insn |= (old_op & 0xf) << 16;
19038 put_thumb32_insn (buf, insn);
16805f35
PB
19039 if (insn & (1 << 20))
19040 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19041 else
19042 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19043 }
19044 else
19045 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19046 pc_rel = 0;
19047 break;
19048 default:
5f4273c7 19049 abort ();
0110f2b8
PB
19050 }
19051 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19052 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19053 fixp->fx_file = fragp->fr_file;
19054 fixp->fx_line = fragp->fr_line;
19055 fragp->fr_fix += fragp->fr_var;
19056}
19057
19058/* Return the size of a relaxable immediate operand instruction.
19059 SHIFT and SIZE specify the form of the allowable immediate. */
19060static int
19061relax_immediate (fragS *fragp, int size, int shift)
19062{
19063 offsetT offset;
19064 offsetT mask;
19065 offsetT low;
19066
19067 /* ??? Should be able to do better than this. */
19068 if (fragp->fr_symbol)
19069 return 4;
19070
19071 low = (1 << shift) - 1;
19072 mask = (1 << (shift + size)) - (1 << shift);
19073 offset = fragp->fr_offset;
19074 /* Force misaligned offsets to 32-bit variant. */
19075 if (offset & low)
5e77afaa 19076 return 4;
0110f2b8
PB
19077 if (offset & ~mask)
19078 return 4;
19079 return 2;
19080}
19081
5e77afaa
PB
19082/* Get the address of a symbol during relaxation. */
19083static addressT
5f4273c7 19084relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19085{
19086 fragS *sym_frag;
19087 addressT addr;
19088 symbolS *sym;
19089
19090 sym = fragp->fr_symbol;
19091 sym_frag = symbol_get_frag (sym);
19092 know (S_GET_SEGMENT (sym) != absolute_section
19093 || sym_frag == &zero_address_frag);
19094 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19095
19096 /* If frag has yet to be reached on this pass, assume it will
19097 move by STRETCH just as we did. If this is not so, it will
19098 be because some frag between grows, and that will force
19099 another pass. */
19100
19101 if (stretch != 0
19102 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19103 {
19104 fragS *f;
19105
19106 /* Adjust stretch for any alignment frag. Note that if have
19107 been expanding the earlier code, the symbol may be
19108 defined in what appears to be an earlier frag. FIXME:
19109 This doesn't handle the fr_subtype field, which specifies
19110 a maximum number of bytes to skip when doing an
19111 alignment. */
19112 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19113 {
19114 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19115 {
19116 if (stretch < 0)
19117 stretch = - ((- stretch)
19118 & ~ ((1 << (int) f->fr_offset) - 1));
19119 else
19120 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19121 if (stretch == 0)
19122 break;
19123 }
19124 }
19125 if (f != NULL)
19126 addr += stretch;
19127 }
5e77afaa
PB
19128
19129 return addr;
19130}
19131
0110f2b8
PB
19132/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19133 load. */
19134static int
5e77afaa 19135relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19136{
19137 addressT addr;
19138 offsetT val;
19139
19140 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19141 if (fragp->fr_symbol == NULL
19142 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19143 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19144 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19145 return 4;
19146
5f4273c7 19147 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19148 addr = fragp->fr_address + fragp->fr_fix;
19149 addr = (addr + 4) & ~3;
5e77afaa 19150 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19151 if (val & 3)
5e77afaa 19152 return 4;
0110f2b8
PB
19153 val -= addr;
19154 if (val < 0 || val > 1020)
19155 return 4;
19156 return 2;
19157}
19158
19159/* Return the size of a relaxable add/sub immediate instruction. */
19160static int
19161relax_addsub (fragS *fragp, asection *sec)
19162{
19163 char *buf;
19164 int op;
19165
19166 buf = fragp->fr_literal + fragp->fr_fix;
19167 op = bfd_get_16(sec->owner, buf);
19168 if ((op & 0xf) == ((op >> 4) & 0xf))
19169 return relax_immediate (fragp, 8, 0);
19170 else
19171 return relax_immediate (fragp, 3, 0);
19172}
19173
19174
19175/* Return the size of a relaxable branch instruction. BITS is the
19176 size of the offset field in the narrow instruction. */
19177
19178static int
5e77afaa 19179relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19180{
19181 addressT addr;
19182 offsetT val;
19183 offsetT limit;
19184
19185 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19186 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19187 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19188 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19189 return 4;
19190
267bf995
RR
19191#ifdef OBJ_ELF
19192 if (S_IS_DEFINED (fragp->fr_symbol)
19193 && ARM_IS_FUNC (fragp->fr_symbol))
19194 return 4;
0d9b4b55
NC
19195
19196 /* PR 12532. Global symbols with default visibility might
19197 be preempted, so do not relax relocations to them. */
19198 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19199 && (! S_IS_LOCAL (fragp->fr_symbol)))
19200 return 4;
267bf995
RR
19201#endif
19202
5f4273c7 19203 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19204 addr = fragp->fr_address + fragp->fr_fix + 4;
19205 val -= addr;
19206
19207 /* Offset is a signed value *2 */
19208 limit = 1 << bits;
19209 if (val >= limit || val < -limit)
19210 return 4;
19211 return 2;
19212}
19213
19214
19215/* Relax a machine dependent frag. This returns the amount by which
19216 the current size of the frag should change. */
19217
19218int
5e77afaa 19219arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19220{
19221 int oldsize;
19222 int newsize;
19223
19224 oldsize = fragp->fr_var;
19225 switch (fragp->fr_subtype)
19226 {
19227 case T_MNEM_ldr_pc2:
5f4273c7 19228 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19229 break;
19230 case T_MNEM_ldr_pc:
19231 case T_MNEM_ldr_sp:
19232 case T_MNEM_str_sp:
5f4273c7 19233 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19234 break;
19235 case T_MNEM_ldr:
19236 case T_MNEM_str:
5f4273c7 19237 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19238 break;
19239 case T_MNEM_ldrh:
19240 case T_MNEM_strh:
5f4273c7 19241 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19242 break;
19243 case T_MNEM_ldrb:
19244 case T_MNEM_strb:
5f4273c7 19245 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19246 break;
19247 case T_MNEM_adr:
5f4273c7 19248 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19249 break;
19250 case T_MNEM_mov:
19251 case T_MNEM_movs:
19252 case T_MNEM_cmp:
19253 case T_MNEM_cmn:
5f4273c7 19254 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19255 break;
19256 case T_MNEM_b:
5f4273c7 19257 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19258 break;
19259 case T_MNEM_bcond:
5f4273c7 19260 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19261 break;
19262 case T_MNEM_add_sp:
19263 case T_MNEM_add_pc:
19264 newsize = relax_immediate (fragp, 8, 2);
19265 break;
19266 case T_MNEM_inc_sp:
19267 case T_MNEM_dec_sp:
19268 newsize = relax_immediate (fragp, 7, 2);
19269 break;
19270 case T_MNEM_addi:
19271 case T_MNEM_addis:
19272 case T_MNEM_subi:
19273 case T_MNEM_subis:
19274 newsize = relax_addsub (fragp, sec);
19275 break;
19276 default:
5f4273c7 19277 abort ();
0110f2b8 19278 }
5e77afaa
PB
19279
19280 fragp->fr_var = newsize;
19281 /* Freeze wide instructions that are at or before the same location as
19282 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19283 Don't freeze them unconditionally because targets may be artificially
19284 misaligned by the expansion of preceding frags. */
5e77afaa 19285 if (stretch <= 0 && newsize > 2)
0110f2b8 19286 {
0110f2b8 19287 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19288 frag_wane (fragp);
0110f2b8 19289 }
5e77afaa 19290
0110f2b8 19291 return newsize - oldsize;
c19d1205 19292}
b99bd4ef 19293
c19d1205 19294/* Round up a section size to the appropriate boundary. */
b99bd4ef 19295
c19d1205
ZW
19296valueT
19297md_section_align (segT segment ATTRIBUTE_UNUSED,
19298 valueT size)
19299{
f0927246
NC
19300#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19301 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19302 {
19303 /* For a.out, force the section size to be aligned. If we don't do
19304 this, BFD will align it for us, but it will not write out the
19305 final bytes of the section. This may be a bug in BFD, but it is
19306 easier to fix it here since that is how the other a.out targets
19307 work. */
19308 int align;
19309
19310 align = bfd_get_section_alignment (stdoutput, segment);
19311 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19312 }
c19d1205 19313#endif
f0927246
NC
19314
19315 return size;
bfae80f2 19316}
b99bd4ef 19317
c19d1205
ZW
19318/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19319 of an rs_align_code fragment. */
19320
19321void
19322arm_handle_align (fragS * fragP)
bfae80f2 19323{
e7495e45
NS
19324 static char const arm_noop[2][2][4] =
19325 {
19326 { /* ARMv1 */
19327 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19328 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19329 },
19330 { /* ARMv6k */
19331 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19332 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19333 },
19334 };
19335 static char const thumb_noop[2][2][2] =
19336 {
19337 { /* Thumb-1 */
19338 {0xc0, 0x46}, /* LE */
19339 {0x46, 0xc0}, /* BE */
19340 },
19341 { /* Thumb-2 */
19342 {0x00, 0xbf}, /* LE */
19343 {0xbf, 0x00} /* BE */
19344 }
19345 };
19346 static char const wide_thumb_noop[2][4] =
19347 { /* Wide Thumb-2 */
19348 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19349 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19350 };
c921be7d 19351
e7495e45 19352 unsigned bytes, fix, noop_size;
c19d1205
ZW
19353 char * p;
19354 const char * noop;
e7495e45 19355 const char *narrow_noop = NULL;
cd000bff
DJ
19356#ifdef OBJ_ELF
19357 enum mstate state;
19358#endif
bfae80f2 19359
c19d1205 19360 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19361 return;
19362
c19d1205
ZW
19363 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19364 p = fragP->fr_literal + fragP->fr_fix;
19365 fix = 0;
bfae80f2 19366
c19d1205
ZW
19367 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19368 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19369
cd000bff 19370 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19371
cd000bff 19372 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19373 {
e7495e45
NS
19374 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19375 {
19376 narrow_noop = thumb_noop[1][target_big_endian];
19377 noop = wide_thumb_noop[target_big_endian];
19378 }
c19d1205 19379 else
e7495e45
NS
19380 noop = thumb_noop[0][target_big_endian];
19381 noop_size = 2;
cd000bff
DJ
19382#ifdef OBJ_ELF
19383 state = MAP_THUMB;
19384#endif
7ed4c4c5
NC
19385 }
19386 else
19387 {
e7495e45
NS
19388 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19389 [target_big_endian];
19390 noop_size = 4;
cd000bff
DJ
19391#ifdef OBJ_ELF
19392 state = MAP_ARM;
19393#endif
7ed4c4c5 19394 }
c921be7d 19395
e7495e45 19396 fragP->fr_var = noop_size;
c921be7d 19397
c19d1205 19398 if (bytes & (noop_size - 1))
7ed4c4c5 19399 {
c19d1205 19400 fix = bytes & (noop_size - 1);
cd000bff
DJ
19401#ifdef OBJ_ELF
19402 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19403#endif
c19d1205
ZW
19404 memset (p, 0, fix);
19405 p += fix;
19406 bytes -= fix;
a737bd4d 19407 }
a737bd4d 19408
e7495e45
NS
19409 if (narrow_noop)
19410 {
19411 if (bytes & noop_size)
19412 {
19413 /* Insert a narrow noop. */
19414 memcpy (p, narrow_noop, noop_size);
19415 p += noop_size;
19416 bytes -= noop_size;
19417 fix += noop_size;
19418 }
19419
19420 /* Use wide noops for the remainder */
19421 noop_size = 4;
19422 }
19423
c19d1205 19424 while (bytes >= noop_size)
a737bd4d 19425 {
c19d1205
ZW
19426 memcpy (p, noop, noop_size);
19427 p += noop_size;
19428 bytes -= noop_size;
19429 fix += noop_size;
a737bd4d
NC
19430 }
19431
c19d1205 19432 fragP->fr_fix += fix;
a737bd4d
NC
19433}
19434
c19d1205
ZW
19435/* Called from md_do_align. Used to create an alignment
19436 frag in a code section. */
19437
19438void
19439arm_frag_align_code (int n, int max)
bfae80f2 19440{
c19d1205 19441 char * p;
7ed4c4c5 19442
c19d1205 19443 /* We assume that there will never be a requirement
6ec8e702 19444 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19445 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19446 {
19447 char err_msg[128];
19448
19449 sprintf (err_msg,
19450 _("alignments greater than %d bytes not supported in .text sections."),
19451 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19452 as_fatal ("%s", err_msg);
6ec8e702 19453 }
bfae80f2 19454
c19d1205
ZW
19455 p = frag_var (rs_align_code,
19456 MAX_MEM_FOR_RS_ALIGN_CODE,
19457 1,
19458 (relax_substateT) max,
19459 (symbolS *) NULL,
19460 (offsetT) n,
19461 (char *) NULL);
19462 *p = 0;
19463}
bfae80f2 19464
8dc2430f
NC
19465/* Perform target specific initialisation of a frag.
19466 Note - despite the name this initialisation is not done when the frag
19467 is created, but only when its type is assigned. A frag can be created
19468 and used a long time before its type is set, so beware of assuming that
19469 this initialisationis performed first. */
bfae80f2 19470
cd000bff
DJ
19471#ifndef OBJ_ELF
19472void
19473arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19474{
19475 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19476 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19477}
19478
19479#else /* OBJ_ELF is defined. */
c19d1205 19480void
cd000bff 19481arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19482{
8dc2430f
NC
19483 /* If the current ARM vs THUMB mode has not already
19484 been recorded into this frag then do so now. */
cd000bff
DJ
19485 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19486 {
19487 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19488
19489 /* Record a mapping symbol for alignment frags. We will delete this
19490 later if the alignment ends up empty. */
19491 switch (fragP->fr_type)
19492 {
19493 case rs_align:
19494 case rs_align_test:
19495 case rs_fill:
19496 mapping_state_2 (MAP_DATA, max_chars);
19497 break;
19498 case rs_align_code:
19499 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19500 break;
19501 default:
19502 break;
19503 }
19504 }
bfae80f2
RE
19505}
19506
c19d1205
ZW
19507/* When we change sections we need to issue a new mapping symbol. */
19508
19509void
19510arm_elf_change_section (void)
bfae80f2 19511{
c19d1205
ZW
19512 /* Link an unlinked unwind index table section to the .text section. */
19513 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19514 && elf_linked_to_section (now_seg) == NULL)
19515 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19516}
19517
c19d1205
ZW
19518int
19519arm_elf_section_type (const char * str, size_t len)
e45d0630 19520{
c19d1205
ZW
19521 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19522 return SHT_ARM_EXIDX;
e45d0630 19523
c19d1205
ZW
19524 return -1;
19525}
19526\f
19527/* Code to deal with unwinding tables. */
e45d0630 19528
c19d1205 19529static void add_unwind_adjustsp (offsetT);
e45d0630 19530
5f4273c7 19531/* Generate any deferred unwind frame offset. */
e45d0630 19532
bfae80f2 19533static void
c19d1205 19534flush_pending_unwind (void)
bfae80f2 19535{
c19d1205 19536 offsetT offset;
bfae80f2 19537
c19d1205
ZW
19538 offset = unwind.pending_offset;
19539 unwind.pending_offset = 0;
19540 if (offset != 0)
19541 add_unwind_adjustsp (offset);
bfae80f2
RE
19542}
19543
c19d1205
ZW
19544/* Add an opcode to this list for this function. Two-byte opcodes should
19545 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19546 order. */
19547
bfae80f2 19548static void
c19d1205 19549add_unwind_opcode (valueT op, int length)
bfae80f2 19550{
c19d1205
ZW
19551 /* Add any deferred stack adjustment. */
19552 if (unwind.pending_offset)
19553 flush_pending_unwind ();
bfae80f2 19554
c19d1205 19555 unwind.sp_restored = 0;
bfae80f2 19556
c19d1205 19557 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19558 {
c19d1205
ZW
19559 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19560 if (unwind.opcodes)
21d799b5
NC
19561 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19562 unwind.opcode_alloc);
c19d1205 19563 else
21d799b5 19564 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19565 }
c19d1205 19566 while (length > 0)
bfae80f2 19567 {
c19d1205
ZW
19568 length--;
19569 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19570 op >>= 8;
19571 unwind.opcode_count++;
bfae80f2 19572 }
bfae80f2
RE
19573}
19574
c19d1205
ZW
19575/* Add unwind opcodes to adjust the stack pointer. */
19576
bfae80f2 19577static void
c19d1205 19578add_unwind_adjustsp (offsetT offset)
bfae80f2 19579{
c19d1205 19580 valueT op;
bfae80f2 19581
c19d1205 19582 if (offset > 0x200)
bfae80f2 19583 {
c19d1205
ZW
19584 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19585 char bytes[5];
19586 int n;
19587 valueT o;
bfae80f2 19588
c19d1205
ZW
19589 /* Long form: 0xb2, uleb128. */
19590 /* This might not fit in a word so add the individual bytes,
19591 remembering the list is built in reverse order. */
19592 o = (valueT) ((offset - 0x204) >> 2);
19593 if (o == 0)
19594 add_unwind_opcode (0, 1);
bfae80f2 19595
c19d1205
ZW
19596 /* Calculate the uleb128 encoding of the offset. */
19597 n = 0;
19598 while (o)
19599 {
19600 bytes[n] = o & 0x7f;
19601 o >>= 7;
19602 if (o)
19603 bytes[n] |= 0x80;
19604 n++;
19605 }
19606 /* Add the insn. */
19607 for (; n; n--)
19608 add_unwind_opcode (bytes[n - 1], 1);
19609 add_unwind_opcode (0xb2, 1);
19610 }
19611 else if (offset > 0x100)
bfae80f2 19612 {
c19d1205
ZW
19613 /* Two short opcodes. */
19614 add_unwind_opcode (0x3f, 1);
19615 op = (offset - 0x104) >> 2;
19616 add_unwind_opcode (op, 1);
bfae80f2 19617 }
c19d1205
ZW
19618 else if (offset > 0)
19619 {
19620 /* Short opcode. */
19621 op = (offset - 4) >> 2;
19622 add_unwind_opcode (op, 1);
19623 }
19624 else if (offset < 0)
bfae80f2 19625 {
c19d1205
ZW
19626 offset = -offset;
19627 while (offset > 0x100)
bfae80f2 19628 {
c19d1205
ZW
19629 add_unwind_opcode (0x7f, 1);
19630 offset -= 0x100;
bfae80f2 19631 }
c19d1205
ZW
19632 op = ((offset - 4) >> 2) | 0x40;
19633 add_unwind_opcode (op, 1);
bfae80f2 19634 }
bfae80f2
RE
19635}
19636
c19d1205
ZW
19637/* Finish the list of unwind opcodes for this function. */
19638static void
19639finish_unwind_opcodes (void)
bfae80f2 19640{
c19d1205 19641 valueT op;
bfae80f2 19642
c19d1205 19643 if (unwind.fp_used)
bfae80f2 19644 {
708587a4 19645 /* Adjust sp as necessary. */
c19d1205
ZW
19646 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19647 flush_pending_unwind ();
bfae80f2 19648
c19d1205
ZW
19649 /* After restoring sp from the frame pointer. */
19650 op = 0x90 | unwind.fp_reg;
19651 add_unwind_opcode (op, 1);
19652 }
19653 else
19654 flush_pending_unwind ();
bfae80f2
RE
19655}
19656
bfae80f2 19657
c19d1205
ZW
19658/* Start an exception table entry. If idx is nonzero this is an index table
19659 entry. */
bfae80f2
RE
19660
19661static void
c19d1205 19662start_unwind_section (const segT text_seg, int idx)
bfae80f2 19663{
c19d1205
ZW
19664 const char * text_name;
19665 const char * prefix;
19666 const char * prefix_once;
19667 const char * group_name;
19668 size_t prefix_len;
19669 size_t text_len;
19670 char * sec_name;
19671 size_t sec_name_len;
19672 int type;
19673 int flags;
19674 int linkonce;
bfae80f2 19675
c19d1205 19676 if (idx)
bfae80f2 19677 {
c19d1205
ZW
19678 prefix = ELF_STRING_ARM_unwind;
19679 prefix_once = ELF_STRING_ARM_unwind_once;
19680 type = SHT_ARM_EXIDX;
bfae80f2 19681 }
c19d1205 19682 else
bfae80f2 19683 {
c19d1205
ZW
19684 prefix = ELF_STRING_ARM_unwind_info;
19685 prefix_once = ELF_STRING_ARM_unwind_info_once;
19686 type = SHT_PROGBITS;
bfae80f2
RE
19687 }
19688
c19d1205
ZW
19689 text_name = segment_name (text_seg);
19690 if (streq (text_name, ".text"))
19691 text_name = "";
19692
19693 if (strncmp (text_name, ".gnu.linkonce.t.",
19694 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19695 {
c19d1205
ZW
19696 prefix = prefix_once;
19697 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19698 }
19699
c19d1205
ZW
19700 prefix_len = strlen (prefix);
19701 text_len = strlen (text_name);
19702 sec_name_len = prefix_len + text_len;
21d799b5 19703 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19704 memcpy (sec_name, prefix, prefix_len);
19705 memcpy (sec_name + prefix_len, text_name, text_len);
19706 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19707
c19d1205
ZW
19708 flags = SHF_ALLOC;
19709 linkonce = 0;
19710 group_name = 0;
bfae80f2 19711
c19d1205
ZW
19712 /* Handle COMDAT group. */
19713 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19714 {
c19d1205
ZW
19715 group_name = elf_group_name (text_seg);
19716 if (group_name == NULL)
19717 {
bd3ba5d1 19718 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19719 segment_name (text_seg));
19720 ignore_rest_of_line ();
19721 return;
19722 }
19723 flags |= SHF_GROUP;
19724 linkonce = 1;
bfae80f2
RE
19725 }
19726
c19d1205 19727 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19728
5f4273c7 19729 /* Set the section link for index tables. */
c19d1205
ZW
19730 if (idx)
19731 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19732}
19733
bfae80f2 19734
c19d1205
ZW
19735/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19736 personality routine data. Returns zero, or the index table value for
19737 and inline entry. */
19738
19739static valueT
19740create_unwind_entry (int have_data)
bfae80f2 19741{
c19d1205
ZW
19742 int size;
19743 addressT where;
19744 char *ptr;
19745 /* The current word of data. */
19746 valueT data;
19747 /* The number of bytes left in this word. */
19748 int n;
bfae80f2 19749
c19d1205 19750 finish_unwind_opcodes ();
bfae80f2 19751
c19d1205
ZW
19752 /* Remember the current text section. */
19753 unwind.saved_seg = now_seg;
19754 unwind.saved_subseg = now_subseg;
bfae80f2 19755
c19d1205 19756 start_unwind_section (now_seg, 0);
bfae80f2 19757
c19d1205 19758 if (unwind.personality_routine == NULL)
bfae80f2 19759 {
c19d1205
ZW
19760 if (unwind.personality_index == -2)
19761 {
19762 if (have_data)
5f4273c7 19763 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19764 return 1; /* EXIDX_CANTUNWIND. */
19765 }
bfae80f2 19766
c19d1205
ZW
19767 /* Use a default personality routine if none is specified. */
19768 if (unwind.personality_index == -1)
19769 {
19770 if (unwind.opcode_count > 3)
19771 unwind.personality_index = 1;
19772 else
19773 unwind.personality_index = 0;
19774 }
bfae80f2 19775
c19d1205
ZW
19776 /* Space for the personality routine entry. */
19777 if (unwind.personality_index == 0)
19778 {
19779 if (unwind.opcode_count > 3)
19780 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19781
c19d1205
ZW
19782 if (!have_data)
19783 {
19784 /* All the data is inline in the index table. */
19785 data = 0x80;
19786 n = 3;
19787 while (unwind.opcode_count > 0)
19788 {
19789 unwind.opcode_count--;
19790 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19791 n--;
19792 }
bfae80f2 19793
c19d1205
ZW
19794 /* Pad with "finish" opcodes. */
19795 while (n--)
19796 data = (data << 8) | 0xb0;
bfae80f2 19797
c19d1205
ZW
19798 return data;
19799 }
19800 size = 0;
19801 }
19802 else
19803 /* We get two opcodes "free" in the first word. */
19804 size = unwind.opcode_count - 2;
19805 }
19806 else
19807 /* An extra byte is required for the opcode count. */
19808 size = unwind.opcode_count + 1;
bfae80f2 19809
c19d1205
ZW
19810 size = (size + 3) >> 2;
19811 if (size > 0xff)
19812 as_bad (_("too many unwind opcodes"));
bfae80f2 19813
c19d1205
ZW
19814 frag_align (2, 0, 0);
19815 record_alignment (now_seg, 2);
19816 unwind.table_entry = expr_build_dot ();
19817
19818 /* Allocate the table entry. */
19819 ptr = frag_more ((size << 2) + 4);
19820 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19821
c19d1205 19822 switch (unwind.personality_index)
bfae80f2 19823 {
c19d1205
ZW
19824 case -1:
19825 /* ??? Should this be a PLT generating relocation? */
19826 /* Custom personality routine. */
19827 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19828 BFD_RELOC_ARM_PREL31);
bfae80f2 19829
c19d1205
ZW
19830 where += 4;
19831 ptr += 4;
bfae80f2 19832
c19d1205
ZW
19833 /* Set the first byte to the number of additional words. */
19834 data = size - 1;
19835 n = 3;
19836 break;
bfae80f2 19837
c19d1205
ZW
19838 /* ABI defined personality routines. */
19839 case 0:
19840 /* Three opcodes bytes are packed into the first word. */
19841 data = 0x80;
19842 n = 3;
19843 break;
bfae80f2 19844
c19d1205
ZW
19845 case 1:
19846 case 2:
19847 /* The size and first two opcode bytes go in the first word. */
19848 data = ((0x80 + unwind.personality_index) << 8) | size;
19849 n = 2;
19850 break;
bfae80f2 19851
c19d1205
ZW
19852 default:
19853 /* Should never happen. */
19854 abort ();
19855 }
bfae80f2 19856
c19d1205
ZW
19857 /* Pack the opcodes into words (MSB first), reversing the list at the same
19858 time. */
19859 while (unwind.opcode_count > 0)
19860 {
19861 if (n == 0)
19862 {
19863 md_number_to_chars (ptr, data, 4);
19864 ptr += 4;
19865 n = 4;
19866 data = 0;
19867 }
19868 unwind.opcode_count--;
19869 n--;
19870 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19871 }
19872
19873 /* Finish off the last word. */
19874 if (n < 4)
19875 {
19876 /* Pad with "finish" opcodes. */
19877 while (n--)
19878 data = (data << 8) | 0xb0;
19879
19880 md_number_to_chars (ptr, data, 4);
19881 }
19882
19883 if (!have_data)
19884 {
19885 /* Add an empty descriptor if there is no user-specified data. */
19886 ptr = frag_more (4);
19887 md_number_to_chars (ptr, 0, 4);
19888 }
19889
19890 return 0;
bfae80f2
RE
19891}
19892
f0927246
NC
19893
19894/* Initialize the DWARF-2 unwind information for this procedure. */
19895
19896void
19897tc_arm_frame_initial_instructions (void)
19898{
19899 cfi_add_CFA_def_cfa (REG_SP, 0);
19900}
19901#endif /* OBJ_ELF */
19902
c19d1205
ZW
19903/* Convert REGNAME to a DWARF-2 register number. */
19904
19905int
1df69f4f 19906tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19907{
1df69f4f 19908 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19909
19910 if (reg == FAIL)
19911 return -1;
19912
19913 return reg;
bfae80f2
RE
19914}
19915
f0927246 19916#ifdef TE_PE
c19d1205 19917void
f0927246 19918tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19919{
91d6fa6a 19920 expressionS exp;
bfae80f2 19921
91d6fa6a
NC
19922 exp.X_op = O_secrel;
19923 exp.X_add_symbol = symbol;
19924 exp.X_add_number = 0;
19925 emit_expr (&exp, size);
f0927246
NC
19926}
19927#endif
bfae80f2 19928
c19d1205 19929/* MD interface: Symbol and relocation handling. */
bfae80f2 19930
2fc8bdac
ZW
19931/* Return the address within the segment that a PC-relative fixup is
19932 relative to. For ARM, PC-relative fixups applied to instructions
19933 are generally relative to the location of the fixup plus 8 bytes.
19934 Thumb branches are offset by 4, and Thumb loads relative to PC
19935 require special handling. */
bfae80f2 19936
c19d1205 19937long
2fc8bdac 19938md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19939{
2fc8bdac
ZW
19940 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19941
19942 /* If this is pc-relative and we are going to emit a relocation
19943 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19944 will need. Otherwise we want to use the calculated base.
19945 For WinCE we skip the bias for externals as well, since this
19946 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19947 if (fixP->fx_pcrel
2fc8bdac 19948 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19949 || (arm_force_relocation (fixP)
19950#ifdef TE_WINCE
19951 && !S_IS_EXTERNAL (fixP->fx_addsy)
19952#endif
19953 )))
2fc8bdac 19954 base = 0;
bfae80f2 19955
267bf995 19956
c19d1205 19957 switch (fixP->fx_r_type)
bfae80f2 19958 {
2fc8bdac
ZW
19959 /* PC relative addressing on the Thumb is slightly odd as the
19960 bottom two bits of the PC are forced to zero for the
19961 calculation. This happens *after* application of the
19962 pipeline offset. However, Thumb adrl already adjusts for
19963 this, so we need not do it again. */
c19d1205 19964 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19965 return base & ~3;
c19d1205
ZW
19966
19967 case BFD_RELOC_ARM_THUMB_OFFSET:
19968 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19969 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19970 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19971 return (base + 4) & ~3;
c19d1205 19972
2fc8bdac
ZW
19973 /* Thumb branches are simply offset by +4. */
19974 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19975 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19976 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19977 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19978 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19979 return base + 4;
bfae80f2 19980
267bf995 19981 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19982 if (fixP->fx_addsy
19983 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19984 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19985 && ARM_IS_FUNC (fixP->fx_addsy)
19986 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19987 base = fixP->fx_where + fixP->fx_frag->fr_address;
19988 return base + 4;
19989
00adf2d4
JB
19990 /* BLX is like branches above, but forces the low two bits of PC to
19991 zero. */
486499d0
CL
19992 case BFD_RELOC_THUMB_PCREL_BLX:
19993 if (fixP->fx_addsy
19994 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19995 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19996 && THUMB_IS_FUNC (fixP->fx_addsy)
19997 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19998 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19999 return (base + 4) & ~3;
20000
2fc8bdac
ZW
20001 /* ARM mode branches are offset by +8. However, the Windows CE
20002 loader expects the relocation not to take this into account. */
267bf995 20003 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20004 if (fixP->fx_addsy
20005 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20006 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20007 && ARM_IS_FUNC (fixP->fx_addsy)
20008 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20009 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20010 return base + 8;
267bf995 20011
486499d0
CL
20012 case BFD_RELOC_ARM_PCREL_CALL:
20013 if (fixP->fx_addsy
20014 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20015 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20016 && THUMB_IS_FUNC (fixP->fx_addsy)
20017 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20018 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20019 return base + 8;
267bf995 20020
2fc8bdac 20021 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20022 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20023 case BFD_RELOC_ARM_PLT32:
c19d1205 20024#ifdef TE_WINCE
5f4273c7 20025 /* When handling fixups immediately, because we have already
53baae48
NC
20026 discovered the value of a symbol, or the address of the frag involved
20027 we must account for the offset by +8, as the OS loader will never see the reloc.
20028 see fixup_segment() in write.c
20029 The S_IS_EXTERNAL test handles the case of global symbols.
20030 Those need the calculated base, not just the pipe compensation the linker will need. */
20031 if (fixP->fx_pcrel
20032 && fixP->fx_addsy != NULL
20033 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20034 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20035 return base + 8;
2fc8bdac 20036 return base;
c19d1205 20037#else
2fc8bdac 20038 return base + 8;
c19d1205 20039#endif
2fc8bdac 20040
267bf995 20041
2fc8bdac
ZW
20042 /* ARM mode loads relative to PC are also offset by +8. Unlike
20043 branches, the Windows CE loader *does* expect the relocation
20044 to take this into account. */
20045 case BFD_RELOC_ARM_OFFSET_IMM:
20046 case BFD_RELOC_ARM_OFFSET_IMM8:
20047 case BFD_RELOC_ARM_HWLITERAL:
20048 case BFD_RELOC_ARM_LITERAL:
20049 case BFD_RELOC_ARM_CP_OFF_IMM:
20050 return base + 8;
20051
20052
20053 /* Other PC-relative relocations are un-offset. */
20054 default:
20055 return base;
20056 }
bfae80f2
RE
20057}
20058
c19d1205
ZW
20059/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20060 Otherwise we have no need to default values of symbols. */
20061
20062symbolS *
20063md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20064{
c19d1205
ZW
20065#ifdef OBJ_ELF
20066 if (name[0] == '_' && name[1] == 'G'
20067 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20068 {
20069 if (!GOT_symbol)
20070 {
20071 if (symbol_find (name))
bd3ba5d1 20072 as_bad (_("GOT already in the symbol table"));
bfae80f2 20073
c19d1205
ZW
20074 GOT_symbol = symbol_new (name, undefined_section,
20075 (valueT) 0, & zero_address_frag);
20076 }
bfae80f2 20077
c19d1205 20078 return GOT_symbol;
bfae80f2 20079 }
c19d1205 20080#endif
bfae80f2 20081
c921be7d 20082 return NULL;
bfae80f2
RE
20083}
20084
55cf6793 20085/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20086 computed as two separate immediate values, added together. We
20087 already know that this value cannot be computed by just one ARM
20088 instruction. */
20089
20090static unsigned int
20091validate_immediate_twopart (unsigned int val,
20092 unsigned int * highpart)
bfae80f2 20093{
c19d1205
ZW
20094 unsigned int a;
20095 unsigned int i;
bfae80f2 20096
c19d1205
ZW
20097 for (i = 0; i < 32; i += 2)
20098 if (((a = rotate_left (val, i)) & 0xff) != 0)
20099 {
20100 if (a & 0xff00)
20101 {
20102 if (a & ~ 0xffff)
20103 continue;
20104 * highpart = (a >> 8) | ((i + 24) << 7);
20105 }
20106 else if (a & 0xff0000)
20107 {
20108 if (a & 0xff000000)
20109 continue;
20110 * highpart = (a >> 16) | ((i + 16) << 7);
20111 }
20112 else
20113 {
9c2799c2 20114 gas_assert (a & 0xff000000);
c19d1205
ZW
20115 * highpart = (a >> 24) | ((i + 8) << 7);
20116 }
bfae80f2 20117
c19d1205
ZW
20118 return (a & 0xff) | (i << 7);
20119 }
bfae80f2 20120
c19d1205 20121 return FAIL;
bfae80f2
RE
20122}
20123
c19d1205
ZW
20124static int
20125validate_offset_imm (unsigned int val, int hwse)
20126{
20127 if ((hwse && val > 255) || val > 4095)
20128 return FAIL;
20129 return val;
20130}
bfae80f2 20131
55cf6793 20132/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20133 negative immediate constant by altering the instruction. A bit of
20134 a hack really.
20135 MOV <-> MVN
20136 AND <-> BIC
20137 ADC <-> SBC
20138 by inverting the second operand, and
20139 ADD <-> SUB
20140 CMP <-> CMN
20141 by negating the second operand. */
bfae80f2 20142
c19d1205
ZW
20143static int
20144negate_data_op (unsigned long * instruction,
20145 unsigned long value)
bfae80f2 20146{
c19d1205
ZW
20147 int op, new_inst;
20148 unsigned long negated, inverted;
bfae80f2 20149
c19d1205
ZW
20150 negated = encode_arm_immediate (-value);
20151 inverted = encode_arm_immediate (~value);
bfae80f2 20152
c19d1205
ZW
20153 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20154 switch (op)
bfae80f2 20155 {
c19d1205
ZW
20156 /* First negates. */
20157 case OPCODE_SUB: /* ADD <-> SUB */
20158 new_inst = OPCODE_ADD;
20159 value = negated;
20160 break;
bfae80f2 20161
c19d1205
ZW
20162 case OPCODE_ADD:
20163 new_inst = OPCODE_SUB;
20164 value = negated;
20165 break;
bfae80f2 20166
c19d1205
ZW
20167 case OPCODE_CMP: /* CMP <-> CMN */
20168 new_inst = OPCODE_CMN;
20169 value = negated;
20170 break;
bfae80f2 20171
c19d1205
ZW
20172 case OPCODE_CMN:
20173 new_inst = OPCODE_CMP;
20174 value = negated;
20175 break;
bfae80f2 20176
c19d1205
ZW
20177 /* Now Inverted ops. */
20178 case OPCODE_MOV: /* MOV <-> MVN */
20179 new_inst = OPCODE_MVN;
20180 value = inverted;
20181 break;
bfae80f2 20182
c19d1205
ZW
20183 case OPCODE_MVN:
20184 new_inst = OPCODE_MOV;
20185 value = inverted;
20186 break;
bfae80f2 20187
c19d1205
ZW
20188 case OPCODE_AND: /* AND <-> BIC */
20189 new_inst = OPCODE_BIC;
20190 value = inverted;
20191 break;
bfae80f2 20192
c19d1205
ZW
20193 case OPCODE_BIC:
20194 new_inst = OPCODE_AND;
20195 value = inverted;
20196 break;
bfae80f2 20197
c19d1205
ZW
20198 case OPCODE_ADC: /* ADC <-> SBC */
20199 new_inst = OPCODE_SBC;
20200 value = inverted;
20201 break;
bfae80f2 20202
c19d1205
ZW
20203 case OPCODE_SBC:
20204 new_inst = OPCODE_ADC;
20205 value = inverted;
20206 break;
bfae80f2 20207
c19d1205
ZW
20208 /* We cannot do anything. */
20209 default:
20210 return FAIL;
b99bd4ef
NC
20211 }
20212
c19d1205
ZW
20213 if (value == (unsigned) FAIL)
20214 return FAIL;
20215
20216 *instruction &= OPCODE_MASK;
20217 *instruction |= new_inst << DATA_OP_SHIFT;
20218 return value;
b99bd4ef
NC
20219}
20220
ef8d22e6
PB
20221/* Like negate_data_op, but for Thumb-2. */
20222
20223static unsigned int
16dd5e42 20224thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20225{
20226 int op, new_inst;
20227 int rd;
16dd5e42 20228 unsigned int negated, inverted;
ef8d22e6
PB
20229
20230 negated = encode_thumb32_immediate (-value);
20231 inverted = encode_thumb32_immediate (~value);
20232
20233 rd = (*instruction >> 8) & 0xf;
20234 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20235 switch (op)
20236 {
20237 /* ADD <-> SUB. Includes CMP <-> CMN. */
20238 case T2_OPCODE_SUB:
20239 new_inst = T2_OPCODE_ADD;
20240 value = negated;
20241 break;
20242
20243 case T2_OPCODE_ADD:
20244 new_inst = T2_OPCODE_SUB;
20245 value = negated;
20246 break;
20247
20248 /* ORR <-> ORN. Includes MOV <-> MVN. */
20249 case T2_OPCODE_ORR:
20250 new_inst = T2_OPCODE_ORN;
20251 value = inverted;
20252 break;
20253
20254 case T2_OPCODE_ORN:
20255 new_inst = T2_OPCODE_ORR;
20256 value = inverted;
20257 break;
20258
20259 /* AND <-> BIC. TST has no inverted equivalent. */
20260 case T2_OPCODE_AND:
20261 new_inst = T2_OPCODE_BIC;
20262 if (rd == 15)
20263 value = FAIL;
20264 else
20265 value = inverted;
20266 break;
20267
20268 case T2_OPCODE_BIC:
20269 new_inst = T2_OPCODE_AND;
20270 value = inverted;
20271 break;
20272
20273 /* ADC <-> SBC */
20274 case T2_OPCODE_ADC:
20275 new_inst = T2_OPCODE_SBC;
20276 value = inverted;
20277 break;
20278
20279 case T2_OPCODE_SBC:
20280 new_inst = T2_OPCODE_ADC;
20281 value = inverted;
20282 break;
20283
20284 /* We cannot do anything. */
20285 default:
20286 return FAIL;
20287 }
20288
16dd5e42 20289 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20290 return FAIL;
20291
20292 *instruction &= T2_OPCODE_MASK;
20293 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20294 return value;
20295}
20296
8f06b2d8
PB
20297/* Read a 32-bit thumb instruction from buf. */
20298static unsigned long
20299get_thumb32_insn (char * buf)
20300{
20301 unsigned long insn;
20302 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20303 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20304
20305 return insn;
20306}
20307
a8bc6c78
PB
20308
20309/* We usually want to set the low bit on the address of thumb function
20310 symbols. In particular .word foo - . should have the low bit set.
20311 Generic code tries to fold the difference of two symbols to
20312 a constant. Prevent this and force a relocation when the first symbols
20313 is a thumb function. */
c921be7d
NC
20314
20315bfd_boolean
a8bc6c78
PB
20316arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20317{
20318 if (op == O_subtract
20319 && l->X_op == O_symbol
20320 && r->X_op == O_symbol
20321 && THUMB_IS_FUNC (l->X_add_symbol))
20322 {
20323 l->X_op = O_subtract;
20324 l->X_op_symbol = r->X_add_symbol;
20325 l->X_add_number -= r->X_add_number;
c921be7d 20326 return TRUE;
a8bc6c78 20327 }
c921be7d 20328
a8bc6c78 20329 /* Process as normal. */
c921be7d 20330 return FALSE;
a8bc6c78
PB
20331}
20332
4a42ebbc
RR
20333/* Encode Thumb2 unconditional branches and calls. The encoding
20334 for the 2 are identical for the immediate values. */
20335
20336static void
20337encode_thumb2_b_bl_offset (char * buf, offsetT value)
20338{
20339#define T2I1I2MASK ((1 << 13) | (1 << 11))
20340 offsetT newval;
20341 offsetT newval2;
20342 addressT S, I1, I2, lo, hi;
20343
20344 S = (value >> 24) & 0x01;
20345 I1 = (value >> 23) & 0x01;
20346 I2 = (value >> 22) & 0x01;
20347 hi = (value >> 12) & 0x3ff;
20348 lo = (value >> 1) & 0x7ff;
20349 newval = md_chars_to_number (buf, THUMB_SIZE);
20350 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20351 newval |= (S << 10) | hi;
20352 newval2 &= ~T2I1I2MASK;
20353 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20354 md_number_to_chars (buf, newval, THUMB_SIZE);
20355 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20356}
20357
c19d1205 20358void
55cf6793 20359md_apply_fix (fixS * fixP,
c19d1205
ZW
20360 valueT * valP,
20361 segT seg)
20362{
20363 offsetT value = * valP;
20364 offsetT newval;
20365 unsigned int newimm;
20366 unsigned long temp;
20367 int sign;
20368 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20369
9c2799c2 20370 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20371
c19d1205 20372 /* Note whether this will delete the relocation. */
4962c51a 20373
c19d1205
ZW
20374 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20375 fixP->fx_done = 1;
b99bd4ef 20376
adbaf948 20377 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20378 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20379 for emit_reloc. */
20380 value &= 0xffffffff;
20381 value ^= 0x80000000;
5f4273c7 20382 value -= 0x80000000;
adbaf948
ZW
20383
20384 *valP = value;
c19d1205 20385 fixP->fx_addnumber = value;
b99bd4ef 20386
adbaf948
ZW
20387 /* Same treatment for fixP->fx_offset. */
20388 fixP->fx_offset &= 0xffffffff;
20389 fixP->fx_offset ^= 0x80000000;
20390 fixP->fx_offset -= 0x80000000;
20391
c19d1205 20392 switch (fixP->fx_r_type)
b99bd4ef 20393 {
c19d1205
ZW
20394 case BFD_RELOC_NONE:
20395 /* This will need to go in the object file. */
20396 fixP->fx_done = 0;
20397 break;
b99bd4ef 20398
c19d1205
ZW
20399 case BFD_RELOC_ARM_IMMEDIATE:
20400 /* We claim that this fixup has been processed here,
20401 even if in fact we generate an error because we do
20402 not have a reloc for it, so tc_gen_reloc will reject it. */
20403 fixP->fx_done = 1;
b99bd4ef 20404
77db8e2e 20405 if (fixP->fx_addsy)
b99bd4ef 20406 {
77db8e2e 20407 const char *msg = 0;
b99bd4ef 20408
77db8e2e
NC
20409 if (! S_IS_DEFINED (fixP->fx_addsy))
20410 msg = _("undefined symbol %s used as an immediate value");
20411 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20412 msg = _("symbol %s is in a different section");
20413 else if (S_IS_WEAK (fixP->fx_addsy))
20414 msg = _("symbol %s is weak and may be overridden later");
20415
20416 if (msg)
20417 {
20418 as_bad_where (fixP->fx_file, fixP->fx_line,
20419 msg, S_GET_NAME (fixP->fx_addsy));
20420 break;
20421 }
42e5fcbf
AS
20422 }
20423
c19d1205
ZW
20424 newimm = encode_arm_immediate (value);
20425 temp = md_chars_to_number (buf, INSN_SIZE);
20426
20427 /* If the instruction will fail, see if we can fix things up by
20428 changing the opcode. */
20429 if (newimm == (unsigned int) FAIL
20430 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20431 {
c19d1205
ZW
20432 as_bad_where (fixP->fx_file, fixP->fx_line,
20433 _("invalid constant (%lx) after fixup"),
20434 (unsigned long) value);
20435 break;
b99bd4ef 20436 }
b99bd4ef 20437
c19d1205
ZW
20438 newimm |= (temp & 0xfffff000);
20439 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20440 break;
b99bd4ef 20441
c19d1205
ZW
20442 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20443 {
20444 unsigned int highpart = 0;
20445 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20446
77db8e2e 20447 if (fixP->fx_addsy)
42e5fcbf 20448 {
77db8e2e 20449 const char *msg = 0;
42e5fcbf 20450
77db8e2e
NC
20451 if (! S_IS_DEFINED (fixP->fx_addsy))
20452 msg = _("undefined symbol %s used as an immediate value");
20453 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20454 msg = _("symbol %s is in a different section");
20455 else if (S_IS_WEAK (fixP->fx_addsy))
20456 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20457
77db8e2e
NC
20458 if (msg)
20459 {
20460 as_bad_where (fixP->fx_file, fixP->fx_line,
20461 msg, S_GET_NAME (fixP->fx_addsy));
20462 break;
20463 }
20464 }
20465
c19d1205
ZW
20466 newimm = encode_arm_immediate (value);
20467 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20468
c19d1205
ZW
20469 /* If the instruction will fail, see if we can fix things up by
20470 changing the opcode. */
20471 if (newimm == (unsigned int) FAIL
20472 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20473 {
20474 /* No ? OK - try using two ADD instructions to generate
20475 the value. */
20476 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20477
c19d1205
ZW
20478 /* Yes - then make sure that the second instruction is
20479 also an add. */
20480 if (newimm != (unsigned int) FAIL)
20481 newinsn = temp;
20482 /* Still No ? Try using a negated value. */
20483 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20484 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20485 /* Otherwise - give up. */
20486 else
20487 {
20488 as_bad_where (fixP->fx_file, fixP->fx_line,
20489 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20490 (long) value);
20491 break;
20492 }
b99bd4ef 20493
c19d1205
ZW
20494 /* Replace the first operand in the 2nd instruction (which
20495 is the PC) with the destination register. We have
20496 already added in the PC in the first instruction and we
20497 do not want to do it again. */
20498 newinsn &= ~ 0xf0000;
20499 newinsn |= ((newinsn & 0x0f000) << 4);
20500 }
b99bd4ef 20501
c19d1205
ZW
20502 newimm |= (temp & 0xfffff000);
20503 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20504
c19d1205
ZW
20505 highpart |= (newinsn & 0xfffff000);
20506 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20507 }
20508 break;
b99bd4ef 20509
c19d1205 20510 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20511 if (!fixP->fx_done && seg->use_rela_p)
20512 value = 0;
20513
c19d1205 20514 case BFD_RELOC_ARM_LITERAL:
26d97720 20515 sign = value > 0;
b99bd4ef 20516
c19d1205
ZW
20517 if (value < 0)
20518 value = - value;
b99bd4ef 20519
c19d1205 20520 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20521 {
c19d1205
ZW
20522 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20523 as_bad_where (fixP->fx_file, fixP->fx_line,
20524 _("invalid literal constant: pool needs to be closer"));
20525 else
20526 as_bad_where (fixP->fx_file, fixP->fx_line,
20527 _("bad immediate value for offset (%ld)"),
20528 (long) value);
20529 break;
f03698e6
RE
20530 }
20531
c19d1205 20532 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20533 if (value == 0)
20534 newval &= 0xfffff000;
20535 else
20536 {
20537 newval &= 0xff7ff000;
20538 newval |= value | (sign ? INDEX_UP : 0);
20539 }
c19d1205
ZW
20540 md_number_to_chars (buf, newval, INSN_SIZE);
20541 break;
b99bd4ef 20542
c19d1205
ZW
20543 case BFD_RELOC_ARM_OFFSET_IMM8:
20544 case BFD_RELOC_ARM_HWLITERAL:
26d97720 20545 sign = value > 0;
b99bd4ef 20546
c19d1205
ZW
20547 if (value < 0)
20548 value = - value;
b99bd4ef 20549
c19d1205 20550 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20551 {
c19d1205
ZW
20552 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20553 as_bad_where (fixP->fx_file, fixP->fx_line,
20554 _("invalid literal constant: pool needs to be closer"));
20555 else
f9d4405b 20556 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20557 (long) value);
20558 break;
b99bd4ef
NC
20559 }
20560
c19d1205 20561 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20562 if (value == 0)
20563 newval &= 0xfffff0f0;
20564 else
20565 {
20566 newval &= 0xff7ff0f0;
20567 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20568 }
c19d1205
ZW
20569 md_number_to_chars (buf, newval, INSN_SIZE);
20570 break;
b99bd4ef 20571
c19d1205
ZW
20572 case BFD_RELOC_ARM_T32_OFFSET_U8:
20573 if (value < 0 || value > 1020 || value % 4 != 0)
20574 as_bad_where (fixP->fx_file, fixP->fx_line,
20575 _("bad immediate value for offset (%ld)"), (long) value);
20576 value /= 4;
b99bd4ef 20577
c19d1205 20578 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20579 newval |= value;
20580 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20581 break;
b99bd4ef 20582
c19d1205
ZW
20583 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20584 /* This is a complicated relocation used for all varieties of Thumb32
20585 load/store instruction with immediate offset:
20586
20587 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20588 *4, optional writeback(W)
20589 (doubleword load/store)
20590
20591 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20592 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20593 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20594 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20595 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20596
20597 Uppercase letters indicate bits that are already encoded at
20598 this point. Lowercase letters are our problem. For the
20599 second block of instructions, the secondary opcode nybble
20600 (bits 8..11) is present, and bit 23 is zero, even if this is
20601 a PC-relative operation. */
20602 newval = md_chars_to_number (buf, THUMB_SIZE);
20603 newval <<= 16;
20604 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20605
c19d1205 20606 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20607 {
c19d1205
ZW
20608 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20609 if (value >= 0)
20610 newval |= (1 << 23);
20611 else
20612 value = -value;
20613 if (value % 4 != 0)
20614 {
20615 as_bad_where (fixP->fx_file, fixP->fx_line,
20616 _("offset not a multiple of 4"));
20617 break;
20618 }
20619 value /= 4;
216d22bc 20620 if (value > 0xff)
c19d1205
ZW
20621 {
20622 as_bad_where (fixP->fx_file, fixP->fx_line,
20623 _("offset out of range"));
20624 break;
20625 }
20626 newval &= ~0xff;
b99bd4ef 20627 }
c19d1205 20628 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20629 {
c19d1205
ZW
20630 /* PC-relative, 12-bit offset. */
20631 if (value >= 0)
20632 newval |= (1 << 23);
20633 else
20634 value = -value;
216d22bc 20635 if (value > 0xfff)
c19d1205
ZW
20636 {
20637 as_bad_where (fixP->fx_file, fixP->fx_line,
20638 _("offset out of range"));
20639 break;
20640 }
20641 newval &= ~0xfff;
b99bd4ef 20642 }
c19d1205 20643 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20644 {
c19d1205
ZW
20645 /* Writeback: 8-bit, +/- offset. */
20646 if (value >= 0)
20647 newval |= (1 << 9);
20648 else
20649 value = -value;
216d22bc 20650 if (value > 0xff)
c19d1205
ZW
20651 {
20652 as_bad_where (fixP->fx_file, fixP->fx_line,
20653 _("offset out of range"));
20654 break;
20655 }
20656 newval &= ~0xff;
b99bd4ef 20657 }
c19d1205 20658 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20659 {
c19d1205 20660 /* T-instruction: positive 8-bit offset. */
216d22bc 20661 if (value < 0 || value > 0xff)
b99bd4ef 20662 {
c19d1205
ZW
20663 as_bad_where (fixP->fx_file, fixP->fx_line,
20664 _("offset out of range"));
20665 break;
b99bd4ef 20666 }
c19d1205
ZW
20667 newval &= ~0xff;
20668 newval |= value;
b99bd4ef
NC
20669 }
20670 else
b99bd4ef 20671 {
c19d1205
ZW
20672 /* Positive 12-bit or negative 8-bit offset. */
20673 int limit;
20674 if (value >= 0)
b99bd4ef 20675 {
c19d1205
ZW
20676 newval |= (1 << 23);
20677 limit = 0xfff;
20678 }
20679 else
20680 {
20681 value = -value;
20682 limit = 0xff;
20683 }
20684 if (value > limit)
20685 {
20686 as_bad_where (fixP->fx_file, fixP->fx_line,
20687 _("offset out of range"));
20688 break;
b99bd4ef 20689 }
c19d1205 20690 newval &= ~limit;
b99bd4ef 20691 }
b99bd4ef 20692
c19d1205
ZW
20693 newval |= value;
20694 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20695 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20696 break;
404ff6b5 20697
c19d1205
ZW
20698 case BFD_RELOC_ARM_SHIFT_IMM:
20699 newval = md_chars_to_number (buf, INSN_SIZE);
20700 if (((unsigned long) value) > 32
20701 || (value == 32
20702 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20703 {
20704 as_bad_where (fixP->fx_file, fixP->fx_line,
20705 _("shift expression is too large"));
20706 break;
20707 }
404ff6b5 20708
c19d1205
ZW
20709 if (value == 0)
20710 /* Shifts of zero must be done as lsl. */
20711 newval &= ~0x60;
20712 else if (value == 32)
20713 value = 0;
20714 newval &= 0xfffff07f;
20715 newval |= (value & 0x1f) << 7;
20716 md_number_to_chars (buf, newval, INSN_SIZE);
20717 break;
404ff6b5 20718
c19d1205 20719 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20720 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20721 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20722 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20723 /* We claim that this fixup has been processed here,
20724 even if in fact we generate an error because we do
20725 not have a reloc for it, so tc_gen_reloc will reject it. */
20726 fixP->fx_done = 1;
404ff6b5 20727
c19d1205
ZW
20728 if (fixP->fx_addsy
20729 && ! S_IS_DEFINED (fixP->fx_addsy))
20730 {
20731 as_bad_where (fixP->fx_file, fixP->fx_line,
20732 _("undefined symbol %s used as an immediate value"),
20733 S_GET_NAME (fixP->fx_addsy));
20734 break;
20735 }
404ff6b5 20736
c19d1205
ZW
20737 newval = md_chars_to_number (buf, THUMB_SIZE);
20738 newval <<= 16;
20739 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20740
16805f35
PB
20741 newimm = FAIL;
20742 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20743 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20744 {
20745 newimm = encode_thumb32_immediate (value);
20746 if (newimm == (unsigned int) FAIL)
20747 newimm = thumb32_negate_data_op (&newval, value);
20748 }
16805f35
PB
20749 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20750 && newimm == (unsigned int) FAIL)
92e90b6e 20751 {
16805f35
PB
20752 /* Turn add/sum into addw/subw. */
20753 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20754 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20755 /* No flat 12-bit imm encoding for addsw/subsw. */
20756 if ((newval & 0x00100000) == 0)
e9f89963 20757 {
40f246e3
NC
20758 /* 12 bit immediate for addw/subw. */
20759 if (value < 0)
20760 {
20761 value = -value;
20762 newval ^= 0x00a00000;
20763 }
20764 if (value > 0xfff)
20765 newimm = (unsigned int) FAIL;
20766 else
20767 newimm = value;
e9f89963 20768 }
92e90b6e 20769 }
cc8a6dd0 20770
c19d1205 20771 if (newimm == (unsigned int)FAIL)
3631a3c8 20772 {
c19d1205
ZW
20773 as_bad_where (fixP->fx_file, fixP->fx_line,
20774 _("invalid constant (%lx) after fixup"),
20775 (unsigned long) value);
20776 break;
3631a3c8
NC
20777 }
20778
c19d1205
ZW
20779 newval |= (newimm & 0x800) << 15;
20780 newval |= (newimm & 0x700) << 4;
20781 newval |= (newimm & 0x0ff);
cc8a6dd0 20782
c19d1205
ZW
20783 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20784 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20785 break;
a737bd4d 20786
3eb17e6b 20787 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20788 if (((unsigned long) value) > 0xffff)
20789 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20790 _("invalid smc expression"));
2fc8bdac 20791 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20792 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20793 md_number_to_chars (buf, newval, INSN_SIZE);
20794 break;
a737bd4d 20795
90ec0d68
MGD
20796 case BFD_RELOC_ARM_HVC:
20797 if (((unsigned long) value) > 0xffff)
20798 as_bad_where (fixP->fx_file, fixP->fx_line,
20799 _("invalid hvc expression"));
20800 newval = md_chars_to_number (buf, INSN_SIZE);
20801 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20802 md_number_to_chars (buf, newval, INSN_SIZE);
20803 break;
20804
c19d1205 20805 case BFD_RELOC_ARM_SWI:
adbaf948 20806 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20807 {
20808 if (((unsigned long) value) > 0xff)
20809 as_bad_where (fixP->fx_file, fixP->fx_line,
20810 _("invalid swi expression"));
2fc8bdac 20811 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20812 newval |= value;
20813 md_number_to_chars (buf, newval, THUMB_SIZE);
20814 }
20815 else
20816 {
20817 if (((unsigned long) value) > 0x00ffffff)
20818 as_bad_where (fixP->fx_file, fixP->fx_line,
20819 _("invalid swi expression"));
2fc8bdac 20820 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20821 newval |= value;
20822 md_number_to_chars (buf, newval, INSN_SIZE);
20823 }
20824 break;
a737bd4d 20825
c19d1205
ZW
20826 case BFD_RELOC_ARM_MULTI:
20827 if (((unsigned long) value) > 0xffff)
20828 as_bad_where (fixP->fx_file, fixP->fx_line,
20829 _("invalid expression in load/store multiple"));
20830 newval = value | md_chars_to_number (buf, INSN_SIZE);
20831 md_number_to_chars (buf, newval, INSN_SIZE);
20832 break;
a737bd4d 20833
c19d1205 20834#ifdef OBJ_ELF
39b41c9c 20835 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20836
20837 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20838 && fixP->fx_addsy
34e77a92 20839 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20840 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20841 && THUMB_IS_FUNC (fixP->fx_addsy))
20842 /* Flip the bl to blx. This is a simple flip
20843 bit here because we generate PCREL_CALL for
20844 unconditional bls. */
20845 {
20846 newval = md_chars_to_number (buf, INSN_SIZE);
20847 newval = newval | 0x10000000;
20848 md_number_to_chars (buf, newval, INSN_SIZE);
20849 temp = 1;
20850 fixP->fx_done = 1;
20851 }
39b41c9c
PB
20852 else
20853 temp = 3;
20854 goto arm_branch_common;
20855
20856 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20857 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20858 && fixP->fx_addsy
34e77a92 20859 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20860 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20861 && THUMB_IS_FUNC (fixP->fx_addsy))
20862 {
20863 /* This would map to a bl<cond>, b<cond>,
20864 b<always> to a Thumb function. We
20865 need to force a relocation for this particular
20866 case. */
20867 newval = md_chars_to_number (buf, INSN_SIZE);
20868 fixP->fx_done = 0;
20869 }
20870
2fc8bdac 20871 case BFD_RELOC_ARM_PLT32:
c19d1205 20872#endif
39b41c9c
PB
20873 case BFD_RELOC_ARM_PCREL_BRANCH:
20874 temp = 3;
20875 goto arm_branch_common;
a737bd4d 20876
39b41c9c 20877 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20878
39b41c9c 20879 temp = 1;
267bf995
RR
20880 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20881 && fixP->fx_addsy
34e77a92 20882 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20883 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20884 && ARM_IS_FUNC (fixP->fx_addsy))
20885 {
20886 /* Flip the blx to a bl and warn. */
20887 const char *name = S_GET_NAME (fixP->fx_addsy);
20888 newval = 0xeb000000;
20889 as_warn_where (fixP->fx_file, fixP->fx_line,
20890 _("blx to '%s' an ARM ISA state function changed to bl"),
20891 name);
20892 md_number_to_chars (buf, newval, INSN_SIZE);
20893 temp = 3;
20894 fixP->fx_done = 1;
20895 }
20896
20897#ifdef OBJ_ELF
20898 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20899 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20900#endif
20901
39b41c9c 20902 arm_branch_common:
c19d1205 20903 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20904 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20905 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20906 also be be clear. */
20907 if (value & temp)
c19d1205 20908 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20909 _("misaligned branch destination"));
20910 if ((value & (offsetT)0xfe000000) != (offsetT)0
20911 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20912 as_bad_where (fixP->fx_file, fixP->fx_line,
20913 _("branch out of range"));
a737bd4d 20914
2fc8bdac 20915 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20916 {
2fc8bdac
ZW
20917 newval = md_chars_to_number (buf, INSN_SIZE);
20918 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20919 /* Set the H bit on BLX instructions. */
20920 if (temp == 1)
20921 {
20922 if (value & 2)
20923 newval |= 0x01000000;
20924 else
20925 newval &= ~0x01000000;
20926 }
2fc8bdac 20927 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20928 }
c19d1205 20929 break;
a737bd4d 20930
25fe350b
MS
20931 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20932 /* CBZ can only branch forward. */
a737bd4d 20933
738755b0
MS
20934 /* Attempts to use CBZ to branch to the next instruction
20935 (which, strictly speaking, are prohibited) will be turned into
20936 no-ops.
20937
20938 FIXME: It may be better to remove the instruction completely and
20939 perform relaxation. */
20940 if (value == -2)
2fc8bdac
ZW
20941 {
20942 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20943 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20944 md_number_to_chars (buf, newval, THUMB_SIZE);
20945 }
738755b0
MS
20946 else
20947 {
20948 if (value & ~0x7e)
20949 as_bad_where (fixP->fx_file, fixP->fx_line,
20950 _("branch out of range"));
20951
20952 if (fixP->fx_done || !seg->use_rela_p)
20953 {
20954 newval = md_chars_to_number (buf, THUMB_SIZE);
20955 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20956 md_number_to_chars (buf, newval, THUMB_SIZE);
20957 }
20958 }
c19d1205 20959 break;
a737bd4d 20960
c19d1205 20961 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20962 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20963 as_bad_where (fixP->fx_file, fixP->fx_line,
20964 _("branch out of range"));
a737bd4d 20965
2fc8bdac
ZW
20966 if (fixP->fx_done || !seg->use_rela_p)
20967 {
20968 newval = md_chars_to_number (buf, THUMB_SIZE);
20969 newval |= (value & 0x1ff) >> 1;
20970 md_number_to_chars (buf, newval, THUMB_SIZE);
20971 }
c19d1205 20972 break;
a737bd4d 20973
c19d1205 20974 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20975 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20976 as_bad_where (fixP->fx_file, fixP->fx_line,
20977 _("branch out of range"));
a737bd4d 20978
2fc8bdac
ZW
20979 if (fixP->fx_done || !seg->use_rela_p)
20980 {
20981 newval = md_chars_to_number (buf, THUMB_SIZE);
20982 newval |= (value & 0xfff) >> 1;
20983 md_number_to_chars (buf, newval, THUMB_SIZE);
20984 }
c19d1205 20985 break;
a737bd4d 20986
c19d1205 20987 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20988 if (fixP->fx_addsy
20989 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20990 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20991 && ARM_IS_FUNC (fixP->fx_addsy)
20992 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20993 {
20994 /* Force a relocation for a branch 20 bits wide. */
20995 fixP->fx_done = 0;
20996 }
2fc8bdac
ZW
20997 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20998 as_bad_where (fixP->fx_file, fixP->fx_line,
20999 _("conditional branch out of range"));
404ff6b5 21000
2fc8bdac
ZW
21001 if (fixP->fx_done || !seg->use_rela_p)
21002 {
21003 offsetT newval2;
21004 addressT S, J1, J2, lo, hi;
404ff6b5 21005
2fc8bdac
ZW
21006 S = (value & 0x00100000) >> 20;
21007 J2 = (value & 0x00080000) >> 19;
21008 J1 = (value & 0x00040000) >> 18;
21009 hi = (value & 0x0003f000) >> 12;
21010 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21011
2fc8bdac
ZW
21012 newval = md_chars_to_number (buf, THUMB_SIZE);
21013 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21014 newval |= (S << 10) | hi;
21015 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21016 md_number_to_chars (buf, newval, THUMB_SIZE);
21017 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21018 }
c19d1205 21019 break;
6c43fab6 21020
c19d1205 21021 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21022
21023 /* If there is a blx from a thumb state function to
21024 another thumb function flip this to a bl and warn
21025 about it. */
21026
21027 if (fixP->fx_addsy
34e77a92 21028 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21029 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21030 && THUMB_IS_FUNC (fixP->fx_addsy))
21031 {
21032 const char *name = S_GET_NAME (fixP->fx_addsy);
21033 as_warn_where (fixP->fx_file, fixP->fx_line,
21034 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21035 name);
21036 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21037 newval = newval | 0x1000;
21038 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21039 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21040 fixP->fx_done = 1;
21041 }
21042
21043
21044 goto thumb_bl_common;
21045
c19d1205 21046 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21047
21048 /* A bl from Thumb state ISA to an internal ARM state function
21049 is converted to a blx. */
21050 if (fixP->fx_addsy
21051 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21052 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21053 && ARM_IS_FUNC (fixP->fx_addsy)
21054 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21055 {
21056 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21057 newval = newval & ~0x1000;
21058 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21059 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21060 fixP->fx_done = 1;
21061 }
21062
21063 thumb_bl_common:
21064
21065#ifdef OBJ_ELF
21066 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21067 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21068 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21069#endif
21070
2fc8bdac
ZW
21071 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21072 /* For a BLX instruction, make sure that the relocation is rounded up
21073 to a word boundary. This follows the semantics of the instruction
21074 which specifies that bit 1 of the target address will come from bit
21075 1 of the base address. */
21076 value = (value + 1) & ~ 1;
404ff6b5 21077
2fc8bdac 21078
4a42ebbc
RR
21079 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21080 {
21081 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21082 {
21083 as_bad_where (fixP->fx_file, fixP->fx_line,
21084 _("branch out of range"));
21085 }
21086 else if ((value & ~0x1ffffff)
21087 && ((value & ~0x1ffffff) != ~0x1ffffff))
21088 {
21089 as_bad_where (fixP->fx_file, fixP->fx_line,
21090 _("Thumb2 branch out of range"));
21091 }
c19d1205 21092 }
4a42ebbc
RR
21093
21094 if (fixP->fx_done || !seg->use_rela_p)
21095 encode_thumb2_b_bl_offset (buf, value);
21096
c19d1205 21097 break;
404ff6b5 21098
c19d1205 21099 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
21100 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
21101 as_bad_where (fixP->fx_file, fixP->fx_line,
21102 _("branch out of range"));
6c43fab6 21103
2fc8bdac 21104 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21105 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21106
2fc8bdac 21107 break;
a737bd4d 21108
2fc8bdac
ZW
21109 case BFD_RELOC_8:
21110 if (fixP->fx_done || !seg->use_rela_p)
21111 md_number_to_chars (buf, value, 1);
c19d1205 21112 break;
a737bd4d 21113
c19d1205 21114 case BFD_RELOC_16:
2fc8bdac 21115 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21116 md_number_to_chars (buf, value, 2);
c19d1205 21117 break;
a737bd4d 21118
c19d1205 21119#ifdef OBJ_ELF
0855e32b
NS
21120 case BFD_RELOC_ARM_TLS_CALL:
21121 case BFD_RELOC_ARM_THM_TLS_CALL:
21122 case BFD_RELOC_ARM_TLS_DESCSEQ:
21123 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21124 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21125 break;
21126
21127 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21128 case BFD_RELOC_ARM_TLS_GD32:
21129 case BFD_RELOC_ARM_TLS_LE32:
21130 case BFD_RELOC_ARM_TLS_IE32:
21131 case BFD_RELOC_ARM_TLS_LDM32:
21132 case BFD_RELOC_ARM_TLS_LDO32:
21133 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21134 /* fall through */
6c43fab6 21135
c19d1205
ZW
21136 case BFD_RELOC_ARM_GOT32:
21137 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21138 if (fixP->fx_done || !seg->use_rela_p)
21139 md_number_to_chars (buf, 0, 4);
c19d1205 21140 break;
b43420e6
NC
21141
21142 case BFD_RELOC_ARM_GOT_PREL:
21143 if (fixP->fx_done || !seg->use_rela_p)
21144 md_number_to_chars (buf, value, 4);
21145 break;
21146
9a6f4e97
NS
21147 case BFD_RELOC_ARM_TARGET2:
21148 /* TARGET2 is not partial-inplace, so we need to write the
21149 addend here for REL targets, because it won't be written out
21150 during reloc processing later. */
21151 if (fixP->fx_done || !seg->use_rela_p)
21152 md_number_to_chars (buf, fixP->fx_offset, 4);
21153 break;
c19d1205 21154#endif
6c43fab6 21155
c19d1205
ZW
21156 case BFD_RELOC_RVA:
21157 case BFD_RELOC_32:
21158 case BFD_RELOC_ARM_TARGET1:
21159 case BFD_RELOC_ARM_ROSEGREL32:
21160 case BFD_RELOC_ARM_SBREL32:
21161 case BFD_RELOC_32_PCREL:
f0927246
NC
21162#ifdef TE_PE
21163 case BFD_RELOC_32_SECREL:
21164#endif
2fc8bdac 21165 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21166#ifdef TE_WINCE
21167 /* For WinCE we only do this for pcrel fixups. */
21168 if (fixP->fx_done || fixP->fx_pcrel)
21169#endif
21170 md_number_to_chars (buf, value, 4);
c19d1205 21171 break;
6c43fab6 21172
c19d1205
ZW
21173#ifdef OBJ_ELF
21174 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21175 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21176 {
21177 newval = md_chars_to_number (buf, 4) & 0x80000000;
21178 if ((value ^ (value >> 1)) & 0x40000000)
21179 {
21180 as_bad_where (fixP->fx_file, fixP->fx_line,
21181 _("rel31 relocation overflow"));
21182 }
21183 newval |= value & 0x7fffffff;
21184 md_number_to_chars (buf, newval, 4);
21185 }
21186 break;
c19d1205 21187#endif
a737bd4d 21188
c19d1205 21189 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21190 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21191 if (value < -1023 || value > 1023 || (value & 3))
21192 as_bad_where (fixP->fx_file, fixP->fx_line,
21193 _("co-processor offset out of range"));
21194 cp_off_common:
26d97720 21195 sign = value > 0;
c19d1205
ZW
21196 if (value < 0)
21197 value = -value;
8f06b2d8
PB
21198 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21199 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21200 newval = md_chars_to_number (buf, INSN_SIZE);
21201 else
21202 newval = get_thumb32_insn (buf);
26d97720
NS
21203 if (value == 0)
21204 newval &= 0xffffff00;
21205 else
21206 {
21207 newval &= 0xff7fff00;
21208 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21209 }
8f06b2d8
PB
21210 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21211 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21212 md_number_to_chars (buf, newval, INSN_SIZE);
21213 else
21214 put_thumb32_insn (buf, newval);
c19d1205 21215 break;
a737bd4d 21216
c19d1205 21217 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21218 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21219 if (value < -255 || value > 255)
21220 as_bad_where (fixP->fx_file, fixP->fx_line,
21221 _("co-processor offset out of range"));
df7849c5 21222 value *= 4;
c19d1205 21223 goto cp_off_common;
6c43fab6 21224
c19d1205
ZW
21225 case BFD_RELOC_ARM_THUMB_OFFSET:
21226 newval = md_chars_to_number (buf, THUMB_SIZE);
21227 /* Exactly what ranges, and where the offset is inserted depends
21228 on the type of instruction, we can establish this from the
21229 top 4 bits. */
21230 switch (newval >> 12)
21231 {
21232 case 4: /* PC load. */
21233 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21234 forced to zero for these loads; md_pcrel_from has already
21235 compensated for this. */
21236 if (value & 3)
21237 as_bad_where (fixP->fx_file, fixP->fx_line,
21238 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21239 (((unsigned long) fixP->fx_frag->fr_address
21240 + (unsigned long) fixP->fx_where) & ~3)
21241 + (unsigned long) value);
a737bd4d 21242
c19d1205
ZW
21243 if (value & ~0x3fc)
21244 as_bad_where (fixP->fx_file, fixP->fx_line,
21245 _("invalid offset, value too big (0x%08lX)"),
21246 (long) value);
a737bd4d 21247
c19d1205
ZW
21248 newval |= value >> 2;
21249 break;
a737bd4d 21250
c19d1205
ZW
21251 case 9: /* SP load/store. */
21252 if (value & ~0x3fc)
21253 as_bad_where (fixP->fx_file, fixP->fx_line,
21254 _("invalid offset, value too big (0x%08lX)"),
21255 (long) value);
21256 newval |= value >> 2;
21257 break;
6c43fab6 21258
c19d1205
ZW
21259 case 6: /* Word load/store. */
21260 if (value & ~0x7c)
21261 as_bad_where (fixP->fx_file, fixP->fx_line,
21262 _("invalid offset, value too big (0x%08lX)"),
21263 (long) value);
21264 newval |= value << 4; /* 6 - 2. */
21265 break;
a737bd4d 21266
c19d1205
ZW
21267 case 7: /* Byte load/store. */
21268 if (value & ~0x1f)
21269 as_bad_where (fixP->fx_file, fixP->fx_line,
21270 _("invalid offset, value too big (0x%08lX)"),
21271 (long) value);
21272 newval |= value << 6;
21273 break;
a737bd4d 21274
c19d1205
ZW
21275 case 8: /* Halfword load/store. */
21276 if (value & ~0x3e)
21277 as_bad_where (fixP->fx_file, fixP->fx_line,
21278 _("invalid offset, value too big (0x%08lX)"),
21279 (long) value);
21280 newval |= value << 5; /* 6 - 1. */
21281 break;
a737bd4d 21282
c19d1205
ZW
21283 default:
21284 as_bad_where (fixP->fx_file, fixP->fx_line,
21285 "Unable to process relocation for thumb opcode: %lx",
21286 (unsigned long) newval);
21287 break;
21288 }
21289 md_number_to_chars (buf, newval, THUMB_SIZE);
21290 break;
a737bd4d 21291
c19d1205
ZW
21292 case BFD_RELOC_ARM_THUMB_ADD:
21293 /* This is a complicated relocation, since we use it for all of
21294 the following immediate relocations:
a737bd4d 21295
c19d1205
ZW
21296 3bit ADD/SUB
21297 8bit ADD/SUB
21298 9bit ADD/SUB SP word-aligned
21299 10bit ADD PC/SP word-aligned
a737bd4d 21300
c19d1205
ZW
21301 The type of instruction being processed is encoded in the
21302 instruction field:
a737bd4d 21303
c19d1205
ZW
21304 0x8000 SUB
21305 0x00F0 Rd
21306 0x000F Rs
21307 */
21308 newval = md_chars_to_number (buf, THUMB_SIZE);
21309 {
21310 int rd = (newval >> 4) & 0xf;
21311 int rs = newval & 0xf;
21312 int subtract = !!(newval & 0x8000);
a737bd4d 21313
c19d1205
ZW
21314 /* Check for HI regs, only very restricted cases allowed:
21315 Adjusting SP, and using PC or SP to get an address. */
21316 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21317 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21318 as_bad_where (fixP->fx_file, fixP->fx_line,
21319 _("invalid Hi register with immediate"));
a737bd4d 21320
c19d1205
ZW
21321 /* If value is negative, choose the opposite instruction. */
21322 if (value < 0)
21323 {
21324 value = -value;
21325 subtract = !subtract;
21326 if (value < 0)
21327 as_bad_where (fixP->fx_file, fixP->fx_line,
21328 _("immediate value out of range"));
21329 }
a737bd4d 21330
c19d1205
ZW
21331 if (rd == REG_SP)
21332 {
21333 if (value & ~0x1fc)
21334 as_bad_where (fixP->fx_file, fixP->fx_line,
21335 _("invalid immediate for stack address calculation"));
21336 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21337 newval |= value >> 2;
21338 }
21339 else if (rs == REG_PC || rs == REG_SP)
21340 {
21341 if (subtract || value & ~0x3fc)
21342 as_bad_where (fixP->fx_file, fixP->fx_line,
21343 _("invalid immediate for address calculation (value = 0x%08lX)"),
21344 (unsigned long) value);
21345 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21346 newval |= rd << 8;
21347 newval |= value >> 2;
21348 }
21349 else if (rs == rd)
21350 {
21351 if (value & ~0xff)
21352 as_bad_where (fixP->fx_file, fixP->fx_line,
21353 _("immediate value out of range"));
21354 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21355 newval |= (rd << 8) | value;
21356 }
21357 else
21358 {
21359 if (value & ~0x7)
21360 as_bad_where (fixP->fx_file, fixP->fx_line,
21361 _("immediate value out of range"));
21362 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21363 newval |= rd | (rs << 3) | (value << 6);
21364 }
21365 }
21366 md_number_to_chars (buf, newval, THUMB_SIZE);
21367 break;
a737bd4d 21368
c19d1205
ZW
21369 case BFD_RELOC_ARM_THUMB_IMM:
21370 newval = md_chars_to_number (buf, THUMB_SIZE);
21371 if (value < 0 || value > 255)
21372 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21373 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21374 (long) value);
21375 newval |= value;
21376 md_number_to_chars (buf, newval, THUMB_SIZE);
21377 break;
a737bd4d 21378
c19d1205
ZW
21379 case BFD_RELOC_ARM_THUMB_SHIFT:
21380 /* 5bit shift value (0..32). LSL cannot take 32. */
21381 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21382 temp = newval & 0xf800;
21383 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21384 as_bad_where (fixP->fx_file, fixP->fx_line,
21385 _("invalid shift value: %ld"), (long) value);
21386 /* Shifts of zero must be encoded as LSL. */
21387 if (value == 0)
21388 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21389 /* Shifts of 32 are encoded as zero. */
21390 else if (value == 32)
21391 value = 0;
21392 newval |= value << 6;
21393 md_number_to_chars (buf, newval, THUMB_SIZE);
21394 break;
a737bd4d 21395
c19d1205
ZW
21396 case BFD_RELOC_VTABLE_INHERIT:
21397 case BFD_RELOC_VTABLE_ENTRY:
21398 fixP->fx_done = 0;
21399 return;
6c43fab6 21400
b6895b4f
PB
21401 case BFD_RELOC_ARM_MOVW:
21402 case BFD_RELOC_ARM_MOVT:
21403 case BFD_RELOC_ARM_THUMB_MOVW:
21404 case BFD_RELOC_ARM_THUMB_MOVT:
21405 if (fixP->fx_done || !seg->use_rela_p)
21406 {
21407 /* REL format relocations are limited to a 16-bit addend. */
21408 if (!fixP->fx_done)
21409 {
39623e12 21410 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21411 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21412 _("offset out of range"));
b6895b4f
PB
21413 }
21414 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21415 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21416 {
21417 value >>= 16;
21418 }
21419
21420 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21421 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21422 {
21423 newval = get_thumb32_insn (buf);
21424 newval &= 0xfbf08f00;
21425 newval |= (value & 0xf000) << 4;
21426 newval |= (value & 0x0800) << 15;
21427 newval |= (value & 0x0700) << 4;
21428 newval |= (value & 0x00ff);
21429 put_thumb32_insn (buf, newval);
21430 }
21431 else
21432 {
21433 newval = md_chars_to_number (buf, 4);
21434 newval &= 0xfff0f000;
21435 newval |= value & 0x0fff;
21436 newval |= (value & 0xf000) << 4;
21437 md_number_to_chars (buf, newval, 4);
21438 }
21439 }
21440 return;
21441
4962c51a
MS
21442 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21443 case BFD_RELOC_ARM_ALU_PC_G0:
21444 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21445 case BFD_RELOC_ARM_ALU_PC_G1:
21446 case BFD_RELOC_ARM_ALU_PC_G2:
21447 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21448 case BFD_RELOC_ARM_ALU_SB_G0:
21449 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21450 case BFD_RELOC_ARM_ALU_SB_G1:
21451 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21452 gas_assert (!fixP->fx_done);
4962c51a
MS
21453 if (!seg->use_rela_p)
21454 {
21455 bfd_vma insn;
21456 bfd_vma encoded_addend;
21457 bfd_vma addend_abs = abs (value);
21458
21459 /* Check that the absolute value of the addend can be
21460 expressed as an 8-bit constant plus a rotation. */
21461 encoded_addend = encode_arm_immediate (addend_abs);
21462 if (encoded_addend == (unsigned int) FAIL)
21463 as_bad_where (fixP->fx_file, fixP->fx_line,
21464 _("the offset 0x%08lX is not representable"),
495bde8e 21465 (unsigned long) addend_abs);
4962c51a
MS
21466
21467 /* Extract the instruction. */
21468 insn = md_chars_to_number (buf, INSN_SIZE);
21469
21470 /* If the addend is positive, use an ADD instruction.
21471 Otherwise use a SUB. Take care not to destroy the S bit. */
21472 insn &= 0xff1fffff;
21473 if (value < 0)
21474 insn |= 1 << 22;
21475 else
21476 insn |= 1 << 23;
21477
21478 /* Place the encoded addend into the first 12 bits of the
21479 instruction. */
21480 insn &= 0xfffff000;
21481 insn |= encoded_addend;
5f4273c7
NC
21482
21483 /* Update the instruction. */
4962c51a
MS
21484 md_number_to_chars (buf, insn, INSN_SIZE);
21485 }
21486 break;
21487
21488 case BFD_RELOC_ARM_LDR_PC_G0:
21489 case BFD_RELOC_ARM_LDR_PC_G1:
21490 case BFD_RELOC_ARM_LDR_PC_G2:
21491 case BFD_RELOC_ARM_LDR_SB_G0:
21492 case BFD_RELOC_ARM_LDR_SB_G1:
21493 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21494 gas_assert (!fixP->fx_done);
4962c51a
MS
21495 if (!seg->use_rela_p)
21496 {
21497 bfd_vma insn;
21498 bfd_vma addend_abs = abs (value);
21499
21500 /* Check that the absolute value of the addend can be
21501 encoded in 12 bits. */
21502 if (addend_abs >= 0x1000)
21503 as_bad_where (fixP->fx_file, fixP->fx_line,
21504 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21505 (unsigned long) addend_abs);
4962c51a
MS
21506
21507 /* Extract the instruction. */
21508 insn = md_chars_to_number (buf, INSN_SIZE);
21509
21510 /* If the addend is negative, clear bit 23 of the instruction.
21511 Otherwise set it. */
21512 if (value < 0)
21513 insn &= ~(1 << 23);
21514 else
21515 insn |= 1 << 23;
21516
21517 /* Place the absolute value of the addend into the first 12 bits
21518 of the instruction. */
21519 insn &= 0xfffff000;
21520 insn |= addend_abs;
5f4273c7
NC
21521
21522 /* Update the instruction. */
4962c51a
MS
21523 md_number_to_chars (buf, insn, INSN_SIZE);
21524 }
21525 break;
21526
21527 case BFD_RELOC_ARM_LDRS_PC_G0:
21528 case BFD_RELOC_ARM_LDRS_PC_G1:
21529 case BFD_RELOC_ARM_LDRS_PC_G2:
21530 case BFD_RELOC_ARM_LDRS_SB_G0:
21531 case BFD_RELOC_ARM_LDRS_SB_G1:
21532 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21533 gas_assert (!fixP->fx_done);
4962c51a
MS
21534 if (!seg->use_rela_p)
21535 {
21536 bfd_vma insn;
21537 bfd_vma addend_abs = abs (value);
21538
21539 /* Check that the absolute value of the addend can be
21540 encoded in 8 bits. */
21541 if (addend_abs >= 0x100)
21542 as_bad_where (fixP->fx_file, fixP->fx_line,
21543 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21544 (unsigned long) addend_abs);
4962c51a
MS
21545
21546 /* Extract the instruction. */
21547 insn = md_chars_to_number (buf, INSN_SIZE);
21548
21549 /* If the addend is negative, clear bit 23 of the instruction.
21550 Otherwise set it. */
21551 if (value < 0)
21552 insn &= ~(1 << 23);
21553 else
21554 insn |= 1 << 23;
21555
21556 /* Place the first four bits of the absolute value of the addend
21557 into the first 4 bits of the instruction, and the remaining
21558 four into bits 8 .. 11. */
21559 insn &= 0xfffff0f0;
21560 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21561
21562 /* Update the instruction. */
4962c51a
MS
21563 md_number_to_chars (buf, insn, INSN_SIZE);
21564 }
21565 break;
21566
21567 case BFD_RELOC_ARM_LDC_PC_G0:
21568 case BFD_RELOC_ARM_LDC_PC_G1:
21569 case BFD_RELOC_ARM_LDC_PC_G2:
21570 case BFD_RELOC_ARM_LDC_SB_G0:
21571 case BFD_RELOC_ARM_LDC_SB_G1:
21572 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21573 gas_assert (!fixP->fx_done);
4962c51a
MS
21574 if (!seg->use_rela_p)
21575 {
21576 bfd_vma insn;
21577 bfd_vma addend_abs = abs (value);
21578
21579 /* Check that the absolute value of the addend is a multiple of
21580 four and, when divided by four, fits in 8 bits. */
21581 if (addend_abs & 0x3)
21582 as_bad_where (fixP->fx_file, fixP->fx_line,
21583 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21584 (unsigned long) addend_abs);
4962c51a
MS
21585
21586 if ((addend_abs >> 2) > 0xff)
21587 as_bad_where (fixP->fx_file, fixP->fx_line,
21588 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21589 (unsigned long) addend_abs);
4962c51a
MS
21590
21591 /* Extract the instruction. */
21592 insn = md_chars_to_number (buf, INSN_SIZE);
21593
21594 /* If the addend is negative, clear bit 23 of the instruction.
21595 Otherwise set it. */
21596 if (value < 0)
21597 insn &= ~(1 << 23);
21598 else
21599 insn |= 1 << 23;
21600
21601 /* Place the addend (divided by four) into the first eight
21602 bits of the instruction. */
21603 insn &= 0xfffffff0;
21604 insn |= addend_abs >> 2;
5f4273c7
NC
21605
21606 /* Update the instruction. */
4962c51a
MS
21607 md_number_to_chars (buf, insn, INSN_SIZE);
21608 }
21609 break;
21610
845b51d6
PB
21611 case BFD_RELOC_ARM_V4BX:
21612 /* This will need to go in the object file. */
21613 fixP->fx_done = 0;
21614 break;
21615
c19d1205
ZW
21616 case BFD_RELOC_UNUSED:
21617 default:
21618 as_bad_where (fixP->fx_file, fixP->fx_line,
21619 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21620 }
6c43fab6
RE
21621}
21622
c19d1205
ZW
21623/* Translate internal representation of relocation info to BFD target
21624 format. */
a737bd4d 21625
c19d1205 21626arelent *
00a97672 21627tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21628{
c19d1205
ZW
21629 arelent * reloc;
21630 bfd_reloc_code_real_type code;
a737bd4d 21631
21d799b5 21632 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21633
21d799b5 21634 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21635 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21636 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21637
2fc8bdac 21638 if (fixp->fx_pcrel)
00a97672
RS
21639 {
21640 if (section->use_rela_p)
21641 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21642 else
21643 fixp->fx_offset = reloc->address;
21644 }
c19d1205 21645 reloc->addend = fixp->fx_offset;
a737bd4d 21646
c19d1205 21647 switch (fixp->fx_r_type)
a737bd4d 21648 {
c19d1205
ZW
21649 case BFD_RELOC_8:
21650 if (fixp->fx_pcrel)
21651 {
21652 code = BFD_RELOC_8_PCREL;
21653 break;
21654 }
a737bd4d 21655
c19d1205
ZW
21656 case BFD_RELOC_16:
21657 if (fixp->fx_pcrel)
21658 {
21659 code = BFD_RELOC_16_PCREL;
21660 break;
21661 }
6c43fab6 21662
c19d1205
ZW
21663 case BFD_RELOC_32:
21664 if (fixp->fx_pcrel)
21665 {
21666 code = BFD_RELOC_32_PCREL;
21667 break;
21668 }
a737bd4d 21669
b6895b4f
PB
21670 case BFD_RELOC_ARM_MOVW:
21671 if (fixp->fx_pcrel)
21672 {
21673 code = BFD_RELOC_ARM_MOVW_PCREL;
21674 break;
21675 }
21676
21677 case BFD_RELOC_ARM_MOVT:
21678 if (fixp->fx_pcrel)
21679 {
21680 code = BFD_RELOC_ARM_MOVT_PCREL;
21681 break;
21682 }
21683
21684 case BFD_RELOC_ARM_THUMB_MOVW:
21685 if (fixp->fx_pcrel)
21686 {
21687 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21688 break;
21689 }
21690
21691 case BFD_RELOC_ARM_THUMB_MOVT:
21692 if (fixp->fx_pcrel)
21693 {
21694 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21695 break;
21696 }
21697
c19d1205
ZW
21698 case BFD_RELOC_NONE:
21699 case BFD_RELOC_ARM_PCREL_BRANCH:
21700 case BFD_RELOC_ARM_PCREL_BLX:
21701 case BFD_RELOC_RVA:
21702 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21703 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21704 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21705 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21706 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21707 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21708 case BFD_RELOC_VTABLE_ENTRY:
21709 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21710#ifdef TE_PE
21711 case BFD_RELOC_32_SECREL:
21712#endif
c19d1205
ZW
21713 code = fixp->fx_r_type;
21714 break;
a737bd4d 21715
00adf2d4
JB
21716 case BFD_RELOC_THUMB_PCREL_BLX:
21717#ifdef OBJ_ELF
21718 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21719 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21720 else
21721#endif
21722 code = BFD_RELOC_THUMB_PCREL_BLX;
21723 break;
21724
c19d1205
ZW
21725 case BFD_RELOC_ARM_LITERAL:
21726 case BFD_RELOC_ARM_HWLITERAL:
21727 /* If this is called then the a literal has
21728 been referenced across a section boundary. */
21729 as_bad_where (fixp->fx_file, fixp->fx_line,
21730 _("literal referenced across section boundary"));
21731 return NULL;
a737bd4d 21732
c19d1205 21733#ifdef OBJ_ELF
0855e32b
NS
21734 case BFD_RELOC_ARM_TLS_CALL:
21735 case BFD_RELOC_ARM_THM_TLS_CALL:
21736 case BFD_RELOC_ARM_TLS_DESCSEQ:
21737 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21738 case BFD_RELOC_ARM_GOT32:
21739 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21740 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21741 case BFD_RELOC_ARM_PLT32:
21742 case BFD_RELOC_ARM_TARGET1:
21743 case BFD_RELOC_ARM_ROSEGREL32:
21744 case BFD_RELOC_ARM_SBREL32:
21745 case BFD_RELOC_ARM_PREL31:
21746 case BFD_RELOC_ARM_TARGET2:
21747 case BFD_RELOC_ARM_TLS_LE32:
21748 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21749 case BFD_RELOC_ARM_PCREL_CALL:
21750 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21751 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21752 case BFD_RELOC_ARM_ALU_PC_G0:
21753 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21754 case BFD_RELOC_ARM_ALU_PC_G1:
21755 case BFD_RELOC_ARM_ALU_PC_G2:
21756 case BFD_RELOC_ARM_LDR_PC_G0:
21757 case BFD_RELOC_ARM_LDR_PC_G1:
21758 case BFD_RELOC_ARM_LDR_PC_G2:
21759 case BFD_RELOC_ARM_LDRS_PC_G0:
21760 case BFD_RELOC_ARM_LDRS_PC_G1:
21761 case BFD_RELOC_ARM_LDRS_PC_G2:
21762 case BFD_RELOC_ARM_LDC_PC_G0:
21763 case BFD_RELOC_ARM_LDC_PC_G1:
21764 case BFD_RELOC_ARM_LDC_PC_G2:
21765 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21766 case BFD_RELOC_ARM_ALU_SB_G0:
21767 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21768 case BFD_RELOC_ARM_ALU_SB_G1:
21769 case BFD_RELOC_ARM_ALU_SB_G2:
21770 case BFD_RELOC_ARM_LDR_SB_G0:
21771 case BFD_RELOC_ARM_LDR_SB_G1:
21772 case BFD_RELOC_ARM_LDR_SB_G2:
21773 case BFD_RELOC_ARM_LDRS_SB_G0:
21774 case BFD_RELOC_ARM_LDRS_SB_G1:
21775 case BFD_RELOC_ARM_LDRS_SB_G2:
21776 case BFD_RELOC_ARM_LDC_SB_G0:
21777 case BFD_RELOC_ARM_LDC_SB_G1:
21778 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21779 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21780 code = fixp->fx_r_type;
21781 break;
a737bd4d 21782
0855e32b 21783 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21784 case BFD_RELOC_ARM_TLS_GD32:
21785 case BFD_RELOC_ARM_TLS_IE32:
21786 case BFD_RELOC_ARM_TLS_LDM32:
21787 /* BFD will include the symbol's address in the addend.
21788 But we don't want that, so subtract it out again here. */
21789 if (!S_IS_COMMON (fixp->fx_addsy))
21790 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21791 code = fixp->fx_r_type;
21792 break;
21793#endif
a737bd4d 21794
c19d1205
ZW
21795 case BFD_RELOC_ARM_IMMEDIATE:
21796 as_bad_where (fixp->fx_file, fixp->fx_line,
21797 _("internal relocation (type: IMMEDIATE) not fixed up"));
21798 return NULL;
a737bd4d 21799
c19d1205
ZW
21800 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21801 as_bad_where (fixp->fx_file, fixp->fx_line,
21802 _("ADRL used for a symbol not defined in the same file"));
21803 return NULL;
a737bd4d 21804
c19d1205 21805 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21806 if (section->use_rela_p)
21807 {
21808 code = fixp->fx_r_type;
21809 break;
21810 }
21811
c19d1205
ZW
21812 if (fixp->fx_addsy != NULL
21813 && !S_IS_DEFINED (fixp->fx_addsy)
21814 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21815 {
c19d1205
ZW
21816 as_bad_where (fixp->fx_file, fixp->fx_line,
21817 _("undefined local label `%s'"),
21818 S_GET_NAME (fixp->fx_addsy));
21819 return NULL;
a737bd4d
NC
21820 }
21821
c19d1205
ZW
21822 as_bad_where (fixp->fx_file, fixp->fx_line,
21823 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21824 return NULL;
a737bd4d 21825
c19d1205
ZW
21826 default:
21827 {
21828 char * type;
6c43fab6 21829
c19d1205
ZW
21830 switch (fixp->fx_r_type)
21831 {
21832 case BFD_RELOC_NONE: type = "NONE"; break;
21833 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21834 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21835 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21836 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21837 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21838 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21839 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21840 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21841 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21842 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21843 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21844 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21845 default: type = _("<unknown>"); break;
21846 }
21847 as_bad_where (fixp->fx_file, fixp->fx_line,
21848 _("cannot represent %s relocation in this object file format"),
21849 type);
21850 return NULL;
21851 }
a737bd4d 21852 }
6c43fab6 21853
c19d1205
ZW
21854#ifdef OBJ_ELF
21855 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21856 && GOT_symbol
21857 && fixp->fx_addsy == GOT_symbol)
21858 {
21859 code = BFD_RELOC_ARM_GOTPC;
21860 reloc->addend = fixp->fx_offset = reloc->address;
21861 }
21862#endif
6c43fab6 21863
c19d1205 21864 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21865
c19d1205
ZW
21866 if (reloc->howto == NULL)
21867 {
21868 as_bad_where (fixp->fx_file, fixp->fx_line,
21869 _("cannot represent %s relocation in this object file format"),
21870 bfd_get_reloc_code_name (code));
21871 return NULL;
21872 }
6c43fab6 21873
c19d1205
ZW
21874 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21875 vtable entry to be used in the relocation's section offset. */
21876 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21877 reloc->address = fixp->fx_offset;
6c43fab6 21878
c19d1205 21879 return reloc;
6c43fab6
RE
21880}
21881
c19d1205 21882/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21883
c19d1205
ZW
21884void
21885cons_fix_new_arm (fragS * frag,
21886 int where,
21887 int size,
21888 expressionS * exp)
6c43fab6 21889{
c19d1205
ZW
21890 bfd_reloc_code_real_type type;
21891 int pcrel = 0;
6c43fab6 21892
c19d1205
ZW
21893 /* Pick a reloc.
21894 FIXME: @@ Should look at CPU word size. */
21895 switch (size)
21896 {
21897 case 1:
21898 type = BFD_RELOC_8;
21899 break;
21900 case 2:
21901 type = BFD_RELOC_16;
21902 break;
21903 case 4:
21904 default:
21905 type = BFD_RELOC_32;
21906 break;
21907 case 8:
21908 type = BFD_RELOC_64;
21909 break;
21910 }
6c43fab6 21911
f0927246
NC
21912#ifdef TE_PE
21913 if (exp->X_op == O_secrel)
21914 {
21915 exp->X_op = O_symbol;
21916 type = BFD_RELOC_32_SECREL;
21917 }
21918#endif
21919
c19d1205
ZW
21920 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21921}
6c43fab6 21922
4343666d 21923#if defined (OBJ_COFF)
c19d1205
ZW
21924void
21925arm_validate_fix (fixS * fixP)
6c43fab6 21926{
c19d1205
ZW
21927 /* If the destination of the branch is a defined symbol which does not have
21928 the THUMB_FUNC attribute, then we must be calling a function which has
21929 the (interfacearm) attribute. We look for the Thumb entry point to that
21930 function and change the branch to refer to that function instead. */
21931 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21932 && fixP->fx_addsy != NULL
21933 && S_IS_DEFINED (fixP->fx_addsy)
21934 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21935 {
c19d1205 21936 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21937 }
c19d1205
ZW
21938}
21939#endif
6c43fab6 21940
267bf995 21941
c19d1205
ZW
21942int
21943arm_force_relocation (struct fix * fixp)
21944{
21945#if defined (OBJ_COFF) && defined (TE_PE)
21946 if (fixp->fx_r_type == BFD_RELOC_RVA)
21947 return 1;
21948#endif
6c43fab6 21949
267bf995
RR
21950 /* In case we have a call or a branch to a function in ARM ISA mode from
21951 a thumb function or vice-versa force the relocation. These relocations
21952 are cleared off for some cores that might have blx and simple transformations
21953 are possible. */
21954
21955#ifdef OBJ_ELF
21956 switch (fixp->fx_r_type)
21957 {
21958 case BFD_RELOC_ARM_PCREL_JUMP:
21959 case BFD_RELOC_ARM_PCREL_CALL:
21960 case BFD_RELOC_THUMB_PCREL_BLX:
21961 if (THUMB_IS_FUNC (fixp->fx_addsy))
21962 return 1;
21963 break;
21964
21965 case BFD_RELOC_ARM_PCREL_BLX:
21966 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21967 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21968 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21969 if (ARM_IS_FUNC (fixp->fx_addsy))
21970 return 1;
21971 break;
21972
21973 default:
21974 break;
21975 }
21976#endif
21977
b5884301
PB
21978 /* Resolve these relocations even if the symbol is extern or weak.
21979 Technically this is probably wrong due to symbol preemption.
21980 In practice these relocations do not have enough range to be useful
21981 at dynamic link time, and some code (e.g. in the Linux kernel)
21982 expects these references to be resolved. */
c19d1205
ZW
21983 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21984 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 21985 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 21986 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
21987 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21988 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
21989 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 21990 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21991 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21992 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
21993 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
21994 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
21995 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
21996 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 21997 return 0;
a737bd4d 21998
4962c51a
MS
21999 /* Always leave these relocations for the linker. */
22000 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22001 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22002 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22003 return 1;
22004
f0291e4c
PB
22005 /* Always generate relocations against function symbols. */
22006 if (fixp->fx_r_type == BFD_RELOC_32
22007 && fixp->fx_addsy
22008 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22009 return 1;
22010
c19d1205 22011 return generic_force_reloc (fixp);
404ff6b5
AH
22012}
22013
0ffdc86c 22014#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22015/* Relocations against function names must be left unadjusted,
22016 so that the linker can use this information to generate interworking
22017 stubs. The MIPS version of this function
c19d1205
ZW
22018 also prevents relocations that are mips-16 specific, but I do not
22019 know why it does this.
404ff6b5 22020
c19d1205
ZW
22021 FIXME:
22022 There is one other problem that ought to be addressed here, but
22023 which currently is not: Taking the address of a label (rather
22024 than a function) and then later jumping to that address. Such
22025 addresses also ought to have their bottom bit set (assuming that
22026 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22027
c19d1205
ZW
22028bfd_boolean
22029arm_fix_adjustable (fixS * fixP)
404ff6b5 22030{
c19d1205
ZW
22031 if (fixP->fx_addsy == NULL)
22032 return 1;
404ff6b5 22033
e28387c3
PB
22034 /* Preserve relocations against symbols with function type. */
22035 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22036 return FALSE;
e28387c3 22037
c19d1205
ZW
22038 if (THUMB_IS_FUNC (fixP->fx_addsy)
22039 && fixP->fx_subsy == NULL)
c921be7d 22040 return FALSE;
a737bd4d 22041
c19d1205
ZW
22042 /* We need the symbol name for the VTABLE entries. */
22043 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22044 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22045 return FALSE;
404ff6b5 22046
c19d1205
ZW
22047 /* Don't allow symbols to be discarded on GOT related relocs. */
22048 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22049 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22050 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22051 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22052 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22053 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22054 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22055 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22056 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22057 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22058 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22059 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22060 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22061 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22062 return FALSE;
a737bd4d 22063
4962c51a
MS
22064 /* Similarly for group relocations. */
22065 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22066 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22067 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22068 return FALSE;
4962c51a 22069
79947c54
CD
22070 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22071 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22072 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22073 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22074 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22075 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22076 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22077 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22078 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22079 return FALSE;
79947c54 22080
c921be7d 22081 return TRUE;
a737bd4d 22082}
0ffdc86c
NC
22083#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22084
22085#ifdef OBJ_ELF
404ff6b5 22086
c19d1205
ZW
22087const char *
22088elf32_arm_target_format (void)
404ff6b5 22089{
c19d1205
ZW
22090#ifdef TE_SYMBIAN
22091 return (target_big_endian
22092 ? "elf32-bigarm-symbian"
22093 : "elf32-littlearm-symbian");
22094#elif defined (TE_VXWORKS)
22095 return (target_big_endian
22096 ? "elf32-bigarm-vxworks"
22097 : "elf32-littlearm-vxworks");
22098#else
22099 if (target_big_endian)
22100 return "elf32-bigarm";
22101 else
22102 return "elf32-littlearm";
22103#endif
404ff6b5
AH
22104}
22105
c19d1205
ZW
22106void
22107armelf_frob_symbol (symbolS * symp,
22108 int * puntp)
404ff6b5 22109{
c19d1205
ZW
22110 elf_frob_symbol (symp, puntp);
22111}
22112#endif
404ff6b5 22113
c19d1205 22114/* MD interface: Finalization. */
a737bd4d 22115
c19d1205
ZW
22116void
22117arm_cleanup (void)
22118{
22119 literal_pool * pool;
a737bd4d 22120
e07e6e58
NC
22121 /* Ensure that all the IT blocks are properly closed. */
22122 check_it_blocks_finished ();
22123
c19d1205
ZW
22124 for (pool = list_of_pools; pool; pool = pool->next)
22125 {
5f4273c7 22126 /* Put it at the end of the relevant section. */
c19d1205
ZW
22127 subseg_set (pool->section, pool->sub_section);
22128#ifdef OBJ_ELF
22129 arm_elf_change_section ();
22130#endif
22131 s_ltorg (0);
22132 }
404ff6b5
AH
22133}
22134
cd000bff
DJ
22135#ifdef OBJ_ELF
22136/* Remove any excess mapping symbols generated for alignment frags in
22137 SEC. We may have created a mapping symbol before a zero byte
22138 alignment; remove it if there's a mapping symbol after the
22139 alignment. */
22140static void
22141check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22142 void *dummy ATTRIBUTE_UNUSED)
22143{
22144 segment_info_type *seginfo = seg_info (sec);
22145 fragS *fragp;
22146
22147 if (seginfo == NULL || seginfo->frchainP == NULL)
22148 return;
22149
22150 for (fragp = seginfo->frchainP->frch_root;
22151 fragp != NULL;
22152 fragp = fragp->fr_next)
22153 {
22154 symbolS *sym = fragp->tc_frag_data.last_map;
22155 fragS *next = fragp->fr_next;
22156
22157 /* Variable-sized frags have been converted to fixed size by
22158 this point. But if this was variable-sized to start with,
22159 there will be a fixed-size frag after it. So don't handle
22160 next == NULL. */
22161 if (sym == NULL || next == NULL)
22162 continue;
22163
22164 if (S_GET_VALUE (sym) < next->fr_address)
22165 /* Not at the end of this frag. */
22166 continue;
22167 know (S_GET_VALUE (sym) == next->fr_address);
22168
22169 do
22170 {
22171 if (next->tc_frag_data.first_map != NULL)
22172 {
22173 /* Next frag starts with a mapping symbol. Discard this
22174 one. */
22175 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22176 break;
22177 }
22178
22179 if (next->fr_next == NULL)
22180 {
22181 /* This mapping symbol is at the end of the section. Discard
22182 it. */
22183 know (next->fr_fix == 0 && next->fr_var == 0);
22184 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22185 break;
22186 }
22187
22188 /* As long as we have empty frags without any mapping symbols,
22189 keep looking. */
22190 /* If the next frag is non-empty and does not start with a
22191 mapping symbol, then this mapping symbol is required. */
22192 if (next->fr_address != next->fr_next->fr_address)
22193 break;
22194
22195 next = next->fr_next;
22196 }
22197 while (next != NULL);
22198 }
22199}
22200#endif
22201
c19d1205
ZW
22202/* Adjust the symbol table. This marks Thumb symbols as distinct from
22203 ARM ones. */
404ff6b5 22204
c19d1205
ZW
22205void
22206arm_adjust_symtab (void)
404ff6b5 22207{
c19d1205
ZW
22208#ifdef OBJ_COFF
22209 symbolS * sym;
404ff6b5 22210
c19d1205
ZW
22211 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22212 {
22213 if (ARM_IS_THUMB (sym))
22214 {
22215 if (THUMB_IS_FUNC (sym))
22216 {
22217 /* Mark the symbol as a Thumb function. */
22218 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22219 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22220 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22221
c19d1205
ZW
22222 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22223 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22224 else
22225 as_bad (_("%s: unexpected function type: %d"),
22226 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22227 }
22228 else switch (S_GET_STORAGE_CLASS (sym))
22229 {
22230 case C_EXT:
22231 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22232 break;
22233 case C_STAT:
22234 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22235 break;
22236 case C_LABEL:
22237 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22238 break;
22239 default:
22240 /* Do nothing. */
22241 break;
22242 }
22243 }
a737bd4d 22244
c19d1205
ZW
22245 if (ARM_IS_INTERWORK (sym))
22246 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22247 }
c19d1205
ZW
22248#endif
22249#ifdef OBJ_ELF
22250 symbolS * sym;
22251 char bind;
404ff6b5 22252
c19d1205 22253 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22254 {
c19d1205
ZW
22255 if (ARM_IS_THUMB (sym))
22256 {
22257 elf_symbol_type * elf_sym;
404ff6b5 22258
c19d1205
ZW
22259 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22260 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22261
b0796911
PB
22262 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22263 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22264 {
22265 /* If it's a .thumb_func, declare it as so,
22266 otherwise tag label as .code 16. */
22267 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22268 elf_sym->internal_elf_sym.st_target_internal
22269 = ST_BRANCH_TO_THUMB;
3ba67470 22270 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22271 elf_sym->internal_elf_sym.st_info =
22272 ELF_ST_INFO (bind, STT_ARM_16BIT);
22273 }
22274 }
22275 }
cd000bff
DJ
22276
22277 /* Remove any overlapping mapping symbols generated by alignment frags. */
22278 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22279 /* Now do generic ELF adjustments. */
22280 elf_adjust_symtab ();
c19d1205 22281#endif
404ff6b5
AH
22282}
22283
c19d1205 22284/* MD interface: Initialization. */
404ff6b5 22285
a737bd4d 22286static void
c19d1205 22287set_constant_flonums (void)
a737bd4d 22288{
c19d1205 22289 int i;
404ff6b5 22290
c19d1205
ZW
22291 for (i = 0; i < NUM_FLOAT_VALS; i++)
22292 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22293 abort ();
a737bd4d 22294}
404ff6b5 22295
3e9e4fcf
JB
22296/* Auto-select Thumb mode if it's the only available instruction set for the
22297 given architecture. */
22298
22299static void
22300autoselect_thumb_from_cpu_variant (void)
22301{
22302 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22303 opcode_select (16);
22304}
22305
c19d1205
ZW
22306void
22307md_begin (void)
a737bd4d 22308{
c19d1205
ZW
22309 unsigned mach;
22310 unsigned int i;
404ff6b5 22311
c19d1205
ZW
22312 if ( (arm_ops_hsh = hash_new ()) == NULL
22313 || (arm_cond_hsh = hash_new ()) == NULL
22314 || (arm_shift_hsh = hash_new ()) == NULL
22315 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22316 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22317 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22318 || (arm_reloc_hsh = hash_new ()) == NULL
22319 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22320 as_fatal (_("virtual memory exhausted"));
22321
22322 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22323 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22324 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22325 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22326 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22327 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22328 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22329 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22330 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22331 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22332 (void *) (v7m_psrs + i));
c19d1205 22333 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22334 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22335 for (i = 0;
22336 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22337 i++)
d3ce72d0 22338 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22339 (void *) (barrier_opt_names + i));
c19d1205
ZW
22340#ifdef OBJ_ELF
22341 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22342 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22343#endif
22344
22345 set_constant_flonums ();
404ff6b5 22346
c19d1205
ZW
22347 /* Set the cpu variant based on the command-line options. We prefer
22348 -mcpu= over -march= if both are set (as for GCC); and we prefer
22349 -mfpu= over any other way of setting the floating point unit.
22350 Use of legacy options with new options are faulted. */
e74cfd16 22351 if (legacy_cpu)
404ff6b5 22352 {
e74cfd16 22353 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22354 as_bad (_("use of old and new-style options to set CPU type"));
22355
22356 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22357 }
e74cfd16 22358 else if (!mcpu_cpu_opt)
c19d1205 22359 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22360
e74cfd16 22361 if (legacy_fpu)
c19d1205 22362 {
e74cfd16 22363 if (mfpu_opt)
c19d1205 22364 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22365
22366 mfpu_opt = legacy_fpu;
22367 }
e74cfd16 22368 else if (!mfpu_opt)
03b1477f 22369 {
45eb4c1b
NS
22370#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22371 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22372 /* Some environments specify a default FPU. If they don't, infer it
22373 from the processor. */
e74cfd16 22374 if (mcpu_fpu_opt)
03b1477f
RE
22375 mfpu_opt = mcpu_fpu_opt;
22376 else
22377 mfpu_opt = march_fpu_opt;
39c2da32 22378#else
e74cfd16 22379 mfpu_opt = &fpu_default;
39c2da32 22380#endif
03b1477f
RE
22381 }
22382
e74cfd16 22383 if (!mfpu_opt)
03b1477f 22384 {
493cb6ef 22385 if (mcpu_cpu_opt != NULL)
e74cfd16 22386 mfpu_opt = &fpu_default;
493cb6ef 22387 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22388 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22389 else
e74cfd16 22390 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22391 }
22392
ee065d83 22393#ifdef CPU_DEFAULT
e74cfd16 22394 if (!mcpu_cpu_opt)
ee065d83 22395 {
e74cfd16
PB
22396 mcpu_cpu_opt = &cpu_default;
22397 selected_cpu = cpu_default;
ee065d83 22398 }
e74cfd16
PB
22399#else
22400 if (mcpu_cpu_opt)
22401 selected_cpu = *mcpu_cpu_opt;
ee065d83 22402 else
e74cfd16 22403 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22404#endif
03b1477f 22405
e74cfd16 22406 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22407
3e9e4fcf
JB
22408 autoselect_thumb_from_cpu_variant ();
22409
e74cfd16 22410 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22411
f17c130b 22412#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22413 {
7cc69913
NC
22414 unsigned int flags = 0;
22415
22416#if defined OBJ_ELF
22417 flags = meabi_flags;
d507cf36
PB
22418
22419 switch (meabi_flags)
33a392fb 22420 {
d507cf36 22421 case EF_ARM_EABI_UNKNOWN:
7cc69913 22422#endif
d507cf36
PB
22423 /* Set the flags in the private structure. */
22424 if (uses_apcs_26) flags |= F_APCS26;
22425 if (support_interwork) flags |= F_INTERWORK;
22426 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22427 if (pic_code) flags |= F_PIC;
e74cfd16 22428 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22429 flags |= F_SOFT_FLOAT;
22430
d507cf36
PB
22431 switch (mfloat_abi_opt)
22432 {
22433 case ARM_FLOAT_ABI_SOFT:
22434 case ARM_FLOAT_ABI_SOFTFP:
22435 flags |= F_SOFT_FLOAT;
22436 break;
33a392fb 22437
d507cf36
PB
22438 case ARM_FLOAT_ABI_HARD:
22439 if (flags & F_SOFT_FLOAT)
22440 as_bad (_("hard-float conflicts with specified fpu"));
22441 break;
22442 }
03b1477f 22443
e74cfd16
PB
22444 /* Using pure-endian doubles (even if soft-float). */
22445 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22446 flags |= F_VFP_FLOAT;
f17c130b 22447
fde78edd 22448#if defined OBJ_ELF
e74cfd16 22449 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22450 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22451 break;
22452
8cb51566 22453 case EF_ARM_EABI_VER4:
3a4a14e9 22454 case EF_ARM_EABI_VER5:
c19d1205 22455 /* No additional flags to set. */
d507cf36
PB
22456 break;
22457
22458 default:
22459 abort ();
22460 }
7cc69913 22461#endif
b99bd4ef
NC
22462 bfd_set_private_flags (stdoutput, flags);
22463
22464 /* We have run out flags in the COFF header to encode the
22465 status of ATPCS support, so instead we create a dummy,
c19d1205 22466 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22467 if (atpcs)
22468 {
22469 asection * sec;
22470
22471 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22472
22473 if (sec != NULL)
22474 {
22475 bfd_set_section_flags
22476 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22477 bfd_set_section_size (stdoutput, sec, 0);
22478 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22479 }
22480 }
7cc69913 22481 }
f17c130b 22482#endif
b99bd4ef
NC
22483
22484 /* Record the CPU type as well. */
2d447fca
JM
22485 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22486 mach = bfd_mach_arm_iWMMXt2;
22487 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22488 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22489 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22490 mach = bfd_mach_arm_XScale;
e74cfd16 22491 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22492 mach = bfd_mach_arm_ep9312;
e74cfd16 22493 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22494 mach = bfd_mach_arm_5TE;
e74cfd16 22495 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22496 {
e74cfd16 22497 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22498 mach = bfd_mach_arm_5T;
22499 else
22500 mach = bfd_mach_arm_5;
22501 }
e74cfd16 22502 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22503 {
e74cfd16 22504 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22505 mach = bfd_mach_arm_4T;
22506 else
22507 mach = bfd_mach_arm_4;
22508 }
e74cfd16 22509 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22510 mach = bfd_mach_arm_3M;
e74cfd16
PB
22511 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22512 mach = bfd_mach_arm_3;
22513 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22514 mach = bfd_mach_arm_2a;
22515 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22516 mach = bfd_mach_arm_2;
22517 else
22518 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22519
22520 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22521}
22522
c19d1205 22523/* Command line processing. */
b99bd4ef 22524
c19d1205
ZW
22525/* md_parse_option
22526 Invocation line includes a switch not recognized by the base assembler.
22527 See if it's a processor-specific option.
b99bd4ef 22528
c19d1205
ZW
22529 This routine is somewhat complicated by the need for backwards
22530 compatibility (since older releases of gcc can't be changed).
22531 The new options try to make the interface as compatible as
22532 possible with GCC.
b99bd4ef 22533
c19d1205 22534 New options (supported) are:
b99bd4ef 22535
c19d1205
ZW
22536 -mcpu=<cpu name> Assemble for selected processor
22537 -march=<architecture name> Assemble for selected architecture
22538 -mfpu=<fpu architecture> Assemble for selected FPU.
22539 -EB/-mbig-endian Big-endian
22540 -EL/-mlittle-endian Little-endian
22541 -k Generate PIC code
22542 -mthumb Start in Thumb mode
22543 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22544
278df34e 22545 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22546
c19d1205 22547 For now we will also provide support for:
b99bd4ef 22548
c19d1205
ZW
22549 -mapcs-32 32-bit Program counter
22550 -mapcs-26 26-bit Program counter
22551 -macps-float Floats passed in FP registers
22552 -mapcs-reentrant Reentrant code
22553 -matpcs
22554 (sometime these will probably be replaced with -mapcs=<list of options>
22555 and -matpcs=<list of options>)
b99bd4ef 22556
c19d1205
ZW
22557 The remaining options are only supported for back-wards compatibility.
22558 Cpu variants, the arm part is optional:
22559 -m[arm]1 Currently not supported.
22560 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22561 -m[arm]3 Arm 3 processor
22562 -m[arm]6[xx], Arm 6 processors
22563 -m[arm]7[xx][t][[d]m] Arm 7 processors
22564 -m[arm]8[10] Arm 8 processors
22565 -m[arm]9[20][tdmi] Arm 9 processors
22566 -mstrongarm[110[0]] StrongARM processors
22567 -mxscale XScale processors
22568 -m[arm]v[2345[t[e]]] Arm architectures
22569 -mall All (except the ARM1)
22570 FP variants:
22571 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22572 -mfpe-old (No float load/store multiples)
22573 -mvfpxd VFP Single precision
22574 -mvfp All VFP
22575 -mno-fpu Disable all floating point instructions
b99bd4ef 22576
c19d1205
ZW
22577 The following CPU names are recognized:
22578 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22579 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22580 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22581 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22582 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22583 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22584 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22585
c19d1205 22586 */
b99bd4ef 22587
c19d1205 22588const char * md_shortopts = "m:k";
b99bd4ef 22589
c19d1205
ZW
22590#ifdef ARM_BI_ENDIAN
22591#define OPTION_EB (OPTION_MD_BASE + 0)
22592#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22593#else
c19d1205
ZW
22594#if TARGET_BYTES_BIG_ENDIAN
22595#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22596#else
c19d1205
ZW
22597#define OPTION_EL (OPTION_MD_BASE + 1)
22598#endif
b99bd4ef 22599#endif
845b51d6 22600#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22601
c19d1205 22602struct option md_longopts[] =
b99bd4ef 22603{
c19d1205
ZW
22604#ifdef OPTION_EB
22605 {"EB", no_argument, NULL, OPTION_EB},
22606#endif
22607#ifdef OPTION_EL
22608 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22609#endif
845b51d6 22610 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22611 {NULL, no_argument, NULL, 0}
22612};
b99bd4ef 22613
c19d1205 22614size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22615
c19d1205 22616struct arm_option_table
b99bd4ef 22617{
c19d1205
ZW
22618 char *option; /* Option name to match. */
22619 char *help; /* Help information. */
22620 int *var; /* Variable to change. */
22621 int value; /* What to change it to. */
22622 char *deprecated; /* If non-null, print this message. */
22623};
b99bd4ef 22624
c19d1205
ZW
22625struct arm_option_table arm_opts[] =
22626{
22627 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22628 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22629 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22630 &support_interwork, 1, NULL},
22631 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22632 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22633 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22634 1, NULL},
22635 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22636 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22637 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22638 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22639 NULL},
b99bd4ef 22640
c19d1205
ZW
22641 /* These are recognized by the assembler, but have no affect on code. */
22642 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22643 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22644
22645 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22646 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22647 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22648 {NULL, NULL, NULL, 0, NULL}
22649};
22650
22651struct arm_legacy_option_table
22652{
22653 char *option; /* Option name to match. */
22654 const arm_feature_set **var; /* Variable to change. */
22655 const arm_feature_set value; /* What to change it to. */
22656 char *deprecated; /* If non-null, print this message. */
22657};
b99bd4ef 22658
e74cfd16
PB
22659const struct arm_legacy_option_table arm_legacy_opts[] =
22660{
c19d1205
ZW
22661 /* DON'T add any new processors to this list -- we want the whole list
22662 to go away... Add them to the processors table instead. */
e74cfd16
PB
22663 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22664 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22665 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22666 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22667 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22668 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22669 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22670 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22671 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22672 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22673 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22674 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22675 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22676 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22677 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22678 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22679 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22680 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22681 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22682 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22683 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22684 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22685 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22686 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22687 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22688 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22689 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22690 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22691 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22692 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22693 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22694 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22695 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22696 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22697 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22698 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22699 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22700 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22701 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22702 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22703 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22704 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22705 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22706 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22707 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22708 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22709 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22710 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22711 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22712 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22713 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22714 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22715 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22716 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22717 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22718 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22719 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22720 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22721 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22722 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22723 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22724 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22725 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22726 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22727 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22728 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22729 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22730 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22731 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22732 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22733 N_("use -mcpu=strongarm110")},
e74cfd16 22734 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22735 N_("use -mcpu=strongarm1100")},
e74cfd16 22736 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22737 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22738 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22739 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22740 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22741
c19d1205 22742 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22743 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22744 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22745 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22746 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22747 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22748 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22749 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22750 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22751 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22752 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22753 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22754 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22755 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22756 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22757 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22758 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22759 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22760 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22761
c19d1205 22762 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22763 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22764 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22765 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22766 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22767 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22768
e74cfd16 22769 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22770};
7ed4c4c5 22771
c19d1205 22772struct arm_cpu_option_table
7ed4c4c5 22773{
c19d1205 22774 char *name;
e74cfd16 22775 const arm_feature_set value;
c19d1205
ZW
22776 /* For some CPUs we assume an FPU unless the user explicitly sets
22777 -mfpu=... */
e74cfd16 22778 const arm_feature_set default_fpu;
ee065d83
PB
22779 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22780 case. */
22781 const char *canonical_name;
c19d1205 22782};
7ed4c4c5 22783
c19d1205
ZW
22784/* This list should, at a minimum, contain all the cpu names
22785 recognized by GCC. */
e74cfd16 22786static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22787{
ee065d83
PB
22788 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22789 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22790 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22791 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22792 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22793 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22794 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22795 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22796 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22797 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22798 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22799 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22800 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22801 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22802 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22803 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22804 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22805 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22806 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22807 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22808 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22809 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22810 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22811 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22812 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22813 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22814 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22815 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22816 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22817 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22818 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22819 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22820 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22821 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22822 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22823 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22824 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22825 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22826 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22827 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22828 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22829 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22830 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22831 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22832 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22833 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22834 /* For V5 or later processors we default to using VFP; but the user
22835 should really set the FPU type explicitly. */
ee065d83
PB
22836 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22837 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22838 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22839 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22840 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22841 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22842 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22843 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22844 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22845 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22846 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22847 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22848 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22849 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22850 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22851 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22852 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22853 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22854 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22855 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22856 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
4a58c4bd
NC
22857 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22858 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22859 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22860 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
7fac0536 22861 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22862 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22863 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22864 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22865 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22866 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22867 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22868 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22869 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22870 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22871 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22872 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22873 FPU_NONE, "Cortex-A5"},
22874 {"cortex-a8", ARM_ARCH_V7A_SEC,
22875 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22876 | FPU_NEON_EXT_V1),
4ff9b924 22877 "Cortex-A8"},
f4c65163
MGD
22878 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22879 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22880 | FPU_NEON_EXT_V1),
4ff9b924 22881 "Cortex-A9"},
90ec0d68 22882 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22883 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22884 "Cortex-A15"},
4ff9b924
MGD
22885 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22886 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22887 "Cortex-R4F"},
3b2f0793
PB
22888 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22889 FPU_NONE, "Cortex-R5"},
4ff9b924
MGD
22890 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22891 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22892 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22893 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22894 /* ??? XSCALE is really an architecture. */
ee065d83 22895 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22896 /* ??? iwmmxt is not a processor. */
ee065d83 22897 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22898 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22899 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22900 /* Maverick */
e07e6e58 22901 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22902 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22903};
7ed4c4c5 22904
c19d1205 22905struct arm_arch_option_table
7ed4c4c5 22906{
c19d1205 22907 char *name;
e74cfd16
PB
22908 const arm_feature_set value;
22909 const arm_feature_set default_fpu;
c19d1205 22910};
7ed4c4c5 22911
c19d1205
ZW
22912/* This list should, at a minimum, contain all the architecture names
22913 recognized by GCC. */
e74cfd16 22914static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22915{
22916 {"all", ARM_ANY, FPU_ARCH_FPA},
22917 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22918 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22919 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22920 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22921 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22922 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22923 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22924 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22925 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22926 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22927 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22928 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22929 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22930 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22931 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22932 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22933 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22934 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22935 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22936 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22937 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22938 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22939 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22940 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22941 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22942 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22943 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22944 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22945 /* The official spelling of the ARMv7 profile variants is the dashed form.
22946 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22947 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22948 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22949 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22950 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22951 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22952 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22953 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22954 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22955 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22956 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22957 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22958};
7ed4c4c5 22959
69133863
MGD
22960/* ISA extensions in the co-processor and main instruction set space. */
22961struct arm_option_extension_value_table
c19d1205
ZW
22962{
22963 char *name;
e74cfd16 22964 const arm_feature_set value;
69133863 22965 const arm_feature_set allowed_archs;
c19d1205 22966};
7ed4c4c5 22967
69133863
MGD
22968/* The following table must be in alphabetical order with a NULL last entry.
22969 */
22970static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22971{
eea54501 22972 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
3b2f0793 22973 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
69133863
MGD
22974 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22975 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22976 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22977 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22978 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22979 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22980 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22981 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22982 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22983 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22984 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22985 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22986 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22987};
22988
22989/* ISA floating-point and Advanced SIMD extensions. */
22990struct arm_option_fpu_value_table
22991{
22992 char *name;
22993 const arm_feature_set value;
c19d1205 22994};
7ed4c4c5 22995
c19d1205
ZW
22996/* This list should, at a minimum, contain all the fpu names
22997 recognized by GCC. */
69133863 22998static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22999{
23000 {"softfpa", FPU_NONE},
23001 {"fpe", FPU_ARCH_FPE},
23002 {"fpe2", FPU_ARCH_FPE},
23003 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23004 {"fpa", FPU_ARCH_FPA},
23005 {"fpa10", FPU_ARCH_FPA},
23006 {"fpa11", FPU_ARCH_FPA},
23007 {"arm7500fe", FPU_ARCH_FPA},
23008 {"softvfp", FPU_ARCH_VFP},
23009 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23010 {"vfp", FPU_ARCH_VFP_V2},
23011 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23012 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23013 {"vfp10", FPU_ARCH_VFP_V2},
23014 {"vfp10-r0", FPU_ARCH_VFP_V1},
23015 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23016 {"vfpv2", FPU_ARCH_VFP_V2},
23017 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23018 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23019 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23020 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23021 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23022 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23023 {"arm1020t", FPU_ARCH_VFP_V1},
23024 {"arm1020e", FPU_ARCH_VFP_V2},
23025 {"arm1136jfs", FPU_ARCH_VFP_V2},
23026 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23027 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23028 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23029 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23030 {"vfpv4", FPU_ARCH_VFP_V4},
23031 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23032 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23033 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
23034 {NULL, ARM_ARCH_NONE}
23035};
23036
23037struct arm_option_value_table
23038{
23039 char *name;
23040 long value;
c19d1205 23041};
7ed4c4c5 23042
e74cfd16 23043static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23044{
23045 {"hard", ARM_FLOAT_ABI_HARD},
23046 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23047 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23048 {NULL, 0}
c19d1205 23049};
7ed4c4c5 23050
c19d1205 23051#ifdef OBJ_ELF
3a4a14e9 23052/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23053static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23054{
23055 {"gnu", EF_ARM_EABI_UNKNOWN},
23056 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23057 {"5", EF_ARM_EABI_VER5},
e74cfd16 23058 {NULL, 0}
c19d1205
ZW
23059};
23060#endif
7ed4c4c5 23061
c19d1205
ZW
23062struct arm_long_option_table
23063{
23064 char * option; /* Substring to match. */
23065 char * help; /* Help information. */
23066 int (* func) (char * subopt); /* Function to decode sub-option. */
23067 char * deprecated; /* If non-null, print this message. */
23068};
7ed4c4c5 23069
c921be7d 23070static bfd_boolean
e74cfd16 23071arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 23072{
21d799b5
NC
23073 arm_feature_set *ext_set = (arm_feature_set *)
23074 xmalloc (sizeof (arm_feature_set));
e74cfd16 23075
69133863
MGD
23076 /* We insist on extensions being specified in alphabetical order, and with
23077 extensions being added before being removed. We achieve this by having
23078 the global ARM_EXTENSIONS table in alphabetical order, and using the
23079 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23080 or removing it (0) and only allowing it to change in the order
23081 -1 -> 1 -> 0. */
23082 const struct arm_option_extension_value_table * opt = NULL;
23083 int adding_value = -1;
23084
e74cfd16
PB
23085 /* Copy the feature set, so that we can modify it. */
23086 *ext_set = **opt_p;
23087 *opt_p = ext_set;
23088
c19d1205 23089 while (str != NULL && *str != 0)
7ed4c4c5 23090 {
c19d1205 23091 char * ext;
69133863 23092 size_t optlen;
7ed4c4c5 23093
c19d1205
ZW
23094 if (*str != '+')
23095 {
23096 as_bad (_("invalid architectural extension"));
c921be7d 23097 return FALSE;
c19d1205 23098 }
7ed4c4c5 23099
c19d1205
ZW
23100 str++;
23101 ext = strchr (str, '+');
7ed4c4c5 23102
c19d1205
ZW
23103 if (ext != NULL)
23104 optlen = ext - str;
23105 else
23106 optlen = strlen (str);
7ed4c4c5 23107
69133863
MGD
23108 if (optlen >= 2
23109 && strncmp (str, "no", 2) == 0)
23110 {
23111 if (adding_value != 0)
23112 {
23113 adding_value = 0;
23114 opt = arm_extensions;
23115 }
23116
23117 optlen -= 2;
23118 str += 2;
23119 }
23120 else if (optlen > 0)
23121 {
23122 if (adding_value == -1)
23123 {
23124 adding_value = 1;
23125 opt = arm_extensions;
23126 }
23127 else if (adding_value != 1)
23128 {
23129 as_bad (_("must specify extensions to add before specifying "
23130 "those to remove"));
23131 return FALSE;
23132 }
23133 }
23134
c19d1205
ZW
23135 if (optlen == 0)
23136 {
23137 as_bad (_("missing architectural extension"));
c921be7d 23138 return FALSE;
c19d1205 23139 }
7ed4c4c5 23140
69133863
MGD
23141 gas_assert (adding_value != -1);
23142 gas_assert (opt != NULL);
23143
23144 /* Scan over the options table trying to find an exact match. */
23145 for (; opt->name != NULL; opt++)
23146 if (strncmp (opt->name, str, optlen) == 0
23147 && strlen (opt->name) == optlen)
c19d1205 23148 {
69133863
MGD
23149 /* Check we can apply the extension to this architecture. */
23150 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23151 {
23152 as_bad (_("extension does not apply to the base architecture"));
23153 return FALSE;
23154 }
23155
23156 /* Add or remove the extension. */
23157 if (adding_value)
23158 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23159 else
23160 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23161
c19d1205
ZW
23162 break;
23163 }
7ed4c4c5 23164
c19d1205
ZW
23165 if (opt->name == NULL)
23166 {
69133863
MGD
23167 /* Did we fail to find an extension because it wasn't specified in
23168 alphabetical order, or because it does not exist? */
23169
23170 for (opt = arm_extensions; opt->name != NULL; opt++)
23171 if (strncmp (opt->name, str, optlen) == 0)
23172 break;
23173
23174 if (opt->name == NULL)
23175 as_bad (_("unknown architectural extension `%s'"), str);
23176 else
23177 as_bad (_("architectural extensions must be specified in "
23178 "alphabetical order"));
23179
c921be7d 23180 return FALSE;
c19d1205 23181 }
69133863
MGD
23182 else
23183 {
23184 /* We should skip the extension we've just matched the next time
23185 round. */
23186 opt++;
23187 }
7ed4c4c5 23188
c19d1205
ZW
23189 str = ext;
23190 };
7ed4c4c5 23191
c921be7d 23192 return TRUE;
c19d1205 23193}
7ed4c4c5 23194
c921be7d 23195static bfd_boolean
c19d1205 23196arm_parse_cpu (char * str)
7ed4c4c5 23197{
e74cfd16 23198 const struct arm_cpu_option_table * opt;
c19d1205
ZW
23199 char * ext = strchr (str, '+');
23200 int optlen;
7ed4c4c5 23201
c19d1205
ZW
23202 if (ext != NULL)
23203 optlen = ext - str;
7ed4c4c5 23204 else
c19d1205 23205 optlen = strlen (str);
7ed4c4c5 23206
c19d1205 23207 if (optlen == 0)
7ed4c4c5 23208 {
c19d1205 23209 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23210 return FALSE;
7ed4c4c5
NC
23211 }
23212
c19d1205
ZW
23213 for (opt = arm_cpus; opt->name != NULL; opt++)
23214 if (strncmp (opt->name, str, optlen) == 0)
23215 {
e74cfd16
PB
23216 mcpu_cpu_opt = &opt->value;
23217 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23218 if (opt->canonical_name)
5f4273c7 23219 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23220 else
23221 {
23222 int i;
c921be7d 23223
ee065d83
PB
23224 for (i = 0; i < optlen; i++)
23225 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23226 selected_cpu_name[i] = 0;
23227 }
7ed4c4c5 23228
c19d1205
ZW
23229 if (ext != NULL)
23230 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23231
c921be7d 23232 return TRUE;
c19d1205 23233 }
7ed4c4c5 23234
c19d1205 23235 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23236 return FALSE;
7ed4c4c5
NC
23237}
23238
c921be7d 23239static bfd_boolean
c19d1205 23240arm_parse_arch (char * str)
7ed4c4c5 23241{
e74cfd16 23242 const struct arm_arch_option_table *opt;
c19d1205
ZW
23243 char *ext = strchr (str, '+');
23244 int optlen;
7ed4c4c5 23245
c19d1205
ZW
23246 if (ext != NULL)
23247 optlen = ext - str;
7ed4c4c5 23248 else
c19d1205 23249 optlen = strlen (str);
7ed4c4c5 23250
c19d1205 23251 if (optlen == 0)
7ed4c4c5 23252 {
c19d1205 23253 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23254 return FALSE;
7ed4c4c5
NC
23255 }
23256
c19d1205 23257 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 23258 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 23259 {
e74cfd16
PB
23260 march_cpu_opt = &opt->value;
23261 march_fpu_opt = &opt->default_fpu;
5f4273c7 23262 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23263
c19d1205
ZW
23264 if (ext != NULL)
23265 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23266
c921be7d 23267 return TRUE;
c19d1205
ZW
23268 }
23269
23270 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23271 return FALSE;
7ed4c4c5 23272}
eb043451 23273
c921be7d 23274static bfd_boolean
c19d1205
ZW
23275arm_parse_fpu (char * str)
23276{
69133863 23277 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23278
c19d1205
ZW
23279 for (opt = arm_fpus; opt->name != NULL; opt++)
23280 if (streq (opt->name, str))
23281 {
e74cfd16 23282 mfpu_opt = &opt->value;
c921be7d 23283 return TRUE;
c19d1205 23284 }
b99bd4ef 23285
c19d1205 23286 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23287 return FALSE;
c19d1205
ZW
23288}
23289
c921be7d 23290static bfd_boolean
c19d1205 23291arm_parse_float_abi (char * str)
b99bd4ef 23292{
e74cfd16 23293 const struct arm_option_value_table * opt;
b99bd4ef 23294
c19d1205
ZW
23295 for (opt = arm_float_abis; opt->name != NULL; opt++)
23296 if (streq (opt->name, str))
23297 {
23298 mfloat_abi_opt = opt->value;
c921be7d 23299 return TRUE;
c19d1205 23300 }
cc8a6dd0 23301
c19d1205 23302 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23303 return FALSE;
c19d1205 23304}
b99bd4ef 23305
c19d1205 23306#ifdef OBJ_ELF
c921be7d 23307static bfd_boolean
c19d1205
ZW
23308arm_parse_eabi (char * str)
23309{
e74cfd16 23310 const struct arm_option_value_table *opt;
cc8a6dd0 23311
c19d1205
ZW
23312 for (opt = arm_eabis; opt->name != NULL; opt++)
23313 if (streq (opt->name, str))
23314 {
23315 meabi_flags = opt->value;
c921be7d 23316 return TRUE;
c19d1205
ZW
23317 }
23318 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23319 return FALSE;
c19d1205
ZW
23320}
23321#endif
cc8a6dd0 23322
c921be7d 23323static bfd_boolean
e07e6e58
NC
23324arm_parse_it_mode (char * str)
23325{
c921be7d 23326 bfd_boolean ret = TRUE;
e07e6e58
NC
23327
23328 if (streq ("arm", str))
23329 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23330 else if (streq ("thumb", str))
23331 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23332 else if (streq ("always", str))
23333 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23334 else if (streq ("never", str))
23335 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23336 else
23337 {
23338 as_bad (_("unknown implicit IT mode `%s', should be "\
23339 "arm, thumb, always, or never."), str);
c921be7d 23340 ret = FALSE;
e07e6e58
NC
23341 }
23342
23343 return ret;
23344}
23345
c19d1205
ZW
23346struct arm_long_option_table arm_long_opts[] =
23347{
23348 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23349 arm_parse_cpu, NULL},
23350 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23351 arm_parse_arch, NULL},
23352 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23353 arm_parse_fpu, NULL},
23354 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23355 arm_parse_float_abi, NULL},
23356#ifdef OBJ_ELF
7fac0536 23357 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23358 arm_parse_eabi, NULL},
23359#endif
e07e6e58
NC
23360 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23361 arm_parse_it_mode, NULL},
c19d1205
ZW
23362 {NULL, NULL, 0, NULL}
23363};
cc8a6dd0 23364
c19d1205
ZW
23365int
23366md_parse_option (int c, char * arg)
23367{
23368 struct arm_option_table *opt;
e74cfd16 23369 const struct arm_legacy_option_table *fopt;
c19d1205 23370 struct arm_long_option_table *lopt;
b99bd4ef 23371
c19d1205 23372 switch (c)
b99bd4ef 23373 {
c19d1205
ZW
23374#ifdef OPTION_EB
23375 case OPTION_EB:
23376 target_big_endian = 1;
23377 break;
23378#endif
cc8a6dd0 23379
c19d1205
ZW
23380#ifdef OPTION_EL
23381 case OPTION_EL:
23382 target_big_endian = 0;
23383 break;
23384#endif
b99bd4ef 23385
845b51d6
PB
23386 case OPTION_FIX_V4BX:
23387 fix_v4bx = TRUE;
23388 break;
23389
c19d1205
ZW
23390 case 'a':
23391 /* Listing option. Just ignore these, we don't support additional
23392 ones. */
23393 return 0;
b99bd4ef 23394
c19d1205
ZW
23395 default:
23396 for (opt = arm_opts; opt->option != NULL; opt++)
23397 {
23398 if (c == opt->option[0]
23399 && ((arg == NULL && opt->option[1] == 0)
23400 || streq (arg, opt->option + 1)))
23401 {
c19d1205 23402 /* If the option is deprecated, tell the user. */
278df34e 23403 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23404 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23405 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23406
c19d1205
ZW
23407 if (opt->var != NULL)
23408 *opt->var = opt->value;
cc8a6dd0 23409
c19d1205
ZW
23410 return 1;
23411 }
23412 }
b99bd4ef 23413
e74cfd16
PB
23414 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23415 {
23416 if (c == fopt->option[0]
23417 && ((arg == NULL && fopt->option[1] == 0)
23418 || streq (arg, fopt->option + 1)))
23419 {
e74cfd16 23420 /* If the option is deprecated, tell the user. */
278df34e 23421 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23422 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23423 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23424
23425 if (fopt->var != NULL)
23426 *fopt->var = &fopt->value;
23427
23428 return 1;
23429 }
23430 }
23431
c19d1205
ZW
23432 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23433 {
23434 /* These options are expected to have an argument. */
23435 if (c == lopt->option[0]
23436 && arg != NULL
23437 && strncmp (arg, lopt->option + 1,
23438 strlen (lopt->option + 1)) == 0)
23439 {
c19d1205 23440 /* If the option is deprecated, tell the user. */
278df34e 23441 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23442 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23443 _(lopt->deprecated));
b99bd4ef 23444
c19d1205
ZW
23445 /* Call the sup-option parser. */
23446 return lopt->func (arg + strlen (lopt->option) - 1);
23447 }
23448 }
a737bd4d 23449
c19d1205
ZW
23450 return 0;
23451 }
a394c00f 23452
c19d1205
ZW
23453 return 1;
23454}
a394c00f 23455
c19d1205
ZW
23456void
23457md_show_usage (FILE * fp)
a394c00f 23458{
c19d1205
ZW
23459 struct arm_option_table *opt;
23460 struct arm_long_option_table *lopt;
a394c00f 23461
c19d1205 23462 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23463
c19d1205
ZW
23464 for (opt = arm_opts; opt->option != NULL; opt++)
23465 if (opt->help != NULL)
23466 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23467
c19d1205
ZW
23468 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23469 if (lopt->help != NULL)
23470 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23471
c19d1205
ZW
23472#ifdef OPTION_EB
23473 fprintf (fp, _("\
23474 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23475#endif
23476
c19d1205
ZW
23477#ifdef OPTION_EL
23478 fprintf (fp, _("\
23479 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23480#endif
845b51d6
PB
23481
23482 fprintf (fp, _("\
23483 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23484}
ee065d83
PB
23485
23486
23487#ifdef OBJ_ELF
62b3e311
PB
23488typedef struct
23489{
23490 int val;
23491 arm_feature_set flags;
23492} cpu_arch_ver_table;
23493
23494/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23495 least features first. */
23496static const cpu_arch_ver_table cpu_arch_ver[] =
23497{
23498 {1, ARM_ARCH_V4},
23499 {2, ARM_ARCH_V4T},
23500 {3, ARM_ARCH_V5},
ee3c0378 23501 {3, ARM_ARCH_V5T},
62b3e311
PB
23502 {4, ARM_ARCH_V5TE},
23503 {5, ARM_ARCH_V5TEJ},
23504 {6, ARM_ARCH_V6},
7e806470 23505 {9, ARM_ARCH_V6K},
f4c65163 23506 {7, ARM_ARCH_V6Z},
91e22acd 23507 {11, ARM_ARCH_V6M},
b2a5fbdc 23508 {12, ARM_ARCH_V6SM},
7e806470 23509 {8, ARM_ARCH_V6T2},
62b3e311
PB
23510 {10, ARM_ARCH_V7A},
23511 {10, ARM_ARCH_V7R},
23512 {10, ARM_ARCH_V7M},
23513 {0, ARM_ARCH_NONE}
23514};
23515
ee3c0378
AS
23516/* Set an attribute if it has not already been set by the user. */
23517static void
23518aeabi_set_attribute_int (int tag, int value)
23519{
23520 if (tag < 1
23521 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23522 || !attributes_set_explicitly[tag])
23523 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23524}
23525
23526static void
23527aeabi_set_attribute_string (int tag, const char *value)
23528{
23529 if (tag < 1
23530 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23531 || !attributes_set_explicitly[tag])
23532 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23533}
23534
ee065d83
PB
23535/* Set the public EABI object attributes. */
23536static void
23537aeabi_set_public_attributes (void)
23538{
23539 int arch;
90ec0d68 23540 int virt_sec = 0;
e74cfd16 23541 arm_feature_set flags;
62b3e311
PB
23542 arm_feature_set tmp;
23543 const cpu_arch_ver_table *p;
ee065d83
PB
23544
23545 /* Choose the architecture based on the capabilities of the requested cpu
23546 (if any) and/or the instructions actually used. */
e74cfd16
PB
23547 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23548 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23549 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23550 /*Allow the user to override the reported architecture. */
23551 if (object_arch)
23552 {
23553 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23554 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23555 }
23556
251665fc
MGD
23557 /* We need to make sure that the attributes do not identify us as v6S-M
23558 when the only v6S-M feature in use is the Operating System Extensions. */
23559 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23560 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23561 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23562
62b3e311
PB
23563 tmp = flags;
23564 arch = 0;
23565 for (p = cpu_arch_ver; p->val; p++)
23566 {
23567 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23568 {
23569 arch = p->val;
23570 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23571 }
23572 }
ee065d83 23573
9e3c6df6
PB
23574 /* The table lookup above finds the last architecture to contribute
23575 a new feature. Unfortunately, Tag13 is a subset of the union of
23576 v6T2 and v7-M, so it is never seen as contributing a new feature.
23577 We can not search for the last entry which is entirely used,
23578 because if no CPU is specified we build up only those flags
23579 actually used. Perhaps we should separate out the specified
23580 and implicit cases. Avoid taking this path for -march=all by
23581 checking for contradictory v7-A / v7-M features. */
23582 if (arch == 10
23583 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23584 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23585 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23586 arch = 13;
23587
ee065d83
PB
23588 /* Tag_CPU_name. */
23589 if (selected_cpu_name[0])
23590 {
91d6fa6a 23591 char *q;
ee065d83 23592
91d6fa6a
NC
23593 q = selected_cpu_name;
23594 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23595 {
23596 int i;
5f4273c7 23597
91d6fa6a
NC
23598 q += 4;
23599 for (i = 0; q[i]; i++)
23600 q[i] = TOUPPER (q[i]);
ee065d83 23601 }
91d6fa6a 23602 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23603 }
62f3b8c8 23604
ee065d83 23605 /* Tag_CPU_arch. */
ee3c0378 23606 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23607
62b3e311
PB
23608 /* Tag_CPU_arch_profile. */
23609 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23610 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23611 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23612 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23613 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23614 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23615
ee065d83 23616 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23617 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23618 || arch == 0)
23619 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23620
ee065d83 23621 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23622 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23623 || arch == 0)
23624 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23625 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23626
ee065d83 23627 /* Tag_VFP_arch. */
62f3b8c8
PB
23628 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23629 aeabi_set_attribute_int (Tag_VFP_arch,
23630 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23631 ? 5 : 6);
23632 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23633 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23634 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23635 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23636 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23637 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23638 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23639 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23640 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23641
4547cb56
NC
23642 /* Tag_ABI_HardFP_use. */
23643 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23644 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23645 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23646
ee065d83 23647 /* Tag_WMMX_arch. */
ee3c0378
AS
23648 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23649 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23650 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23651 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23652
ee3c0378 23653 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23654 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23655 aeabi_set_attribute_int
23656 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23657 ? 2 : 1));
23658
ee3c0378 23659 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23660 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23661 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23662
23663 /* Tag_DIV_use. */
eea54501
MGD
23664 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23665 aeabi_set_attribute_int (Tag_DIV_use, 2);
23666 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23667 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23668 else
23669 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23670
23671 /* Tag_MP_extension_use. */
23672 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23673 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23674
23675 /* Tag Virtualization_use. */
23676 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23677 virt_sec |= 1;
23678 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23679 virt_sec |= 2;
23680 if (virt_sec != 0)
23681 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23682}
23683
104d59d1 23684/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23685void
23686arm_md_end (void)
23687{
ee065d83
PB
23688 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23689 return;
23690
23691 aeabi_set_public_attributes ();
ee065d83 23692}
8463be01 23693#endif /* OBJ_ELF */
ee065d83
PB
23694
23695
23696/* Parse a .cpu directive. */
23697
23698static void
23699s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23700{
e74cfd16 23701 const struct arm_cpu_option_table *opt;
ee065d83
PB
23702 char *name;
23703 char saved_char;
23704
23705 name = input_line_pointer;
5f4273c7 23706 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23707 input_line_pointer++;
23708 saved_char = *input_line_pointer;
23709 *input_line_pointer = 0;
23710
23711 /* Skip the first "all" entry. */
23712 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23713 if (streq (opt->name, name))
23714 {
e74cfd16
PB
23715 mcpu_cpu_opt = &opt->value;
23716 selected_cpu = opt->value;
ee065d83 23717 if (opt->canonical_name)
5f4273c7 23718 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23719 else
23720 {
23721 int i;
23722 for (i = 0; opt->name[i]; i++)
23723 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23724 selected_cpu_name[i] = 0;
23725 }
e74cfd16 23726 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23727 *input_line_pointer = saved_char;
23728 demand_empty_rest_of_line ();
23729 return;
23730 }
23731 as_bad (_("unknown cpu `%s'"), name);
23732 *input_line_pointer = saved_char;
23733 ignore_rest_of_line ();
23734}
23735
23736
23737/* Parse a .arch directive. */
23738
23739static void
23740s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23741{
e74cfd16 23742 const struct arm_arch_option_table *opt;
ee065d83
PB
23743 char saved_char;
23744 char *name;
23745
23746 name = input_line_pointer;
5f4273c7 23747 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23748 input_line_pointer++;
23749 saved_char = *input_line_pointer;
23750 *input_line_pointer = 0;
23751
23752 /* Skip the first "all" entry. */
23753 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23754 if (streq (opt->name, name))
23755 {
e74cfd16
PB
23756 mcpu_cpu_opt = &opt->value;
23757 selected_cpu = opt->value;
5f4273c7 23758 strcpy (selected_cpu_name, opt->name);
e74cfd16 23759 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23760 *input_line_pointer = saved_char;
23761 demand_empty_rest_of_line ();
23762 return;
23763 }
23764
23765 as_bad (_("unknown architecture `%s'\n"), name);
23766 *input_line_pointer = saved_char;
23767 ignore_rest_of_line ();
23768}
23769
23770
7a1d4c38
PB
23771/* Parse a .object_arch directive. */
23772
23773static void
23774s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23775{
23776 const struct arm_arch_option_table *opt;
23777 char saved_char;
23778 char *name;
23779
23780 name = input_line_pointer;
5f4273c7 23781 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23782 input_line_pointer++;
23783 saved_char = *input_line_pointer;
23784 *input_line_pointer = 0;
23785
23786 /* Skip the first "all" entry. */
23787 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23788 if (streq (opt->name, name))
23789 {
23790 object_arch = &opt->value;
23791 *input_line_pointer = saved_char;
23792 demand_empty_rest_of_line ();
23793 return;
23794 }
23795
23796 as_bad (_("unknown architecture `%s'\n"), name);
23797 *input_line_pointer = saved_char;
23798 ignore_rest_of_line ();
23799}
23800
69133863
MGD
23801/* Parse a .arch_extension directive. */
23802
23803static void
23804s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23805{
23806 const struct arm_option_extension_value_table *opt;
23807 char saved_char;
23808 char *name;
23809 int adding_value = 1;
23810
23811 name = input_line_pointer;
23812 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23813 input_line_pointer++;
23814 saved_char = *input_line_pointer;
23815 *input_line_pointer = 0;
23816
23817 if (strlen (name) >= 2
23818 && strncmp (name, "no", 2) == 0)
23819 {
23820 adding_value = 0;
23821 name += 2;
23822 }
23823
23824 for (opt = arm_extensions; opt->name != NULL; opt++)
23825 if (streq (opt->name, name))
23826 {
23827 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23828 {
23829 as_bad (_("architectural extension `%s' is not allowed for the "
23830 "current base architecture"), name);
23831 break;
23832 }
23833
23834 if (adding_value)
23835 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23836 else
23837 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23838
23839 mcpu_cpu_opt = &selected_cpu;
23840 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23841 *input_line_pointer = saved_char;
23842 demand_empty_rest_of_line ();
23843 return;
23844 }
23845
23846 if (opt->name == NULL)
23847 as_bad (_("unknown architecture `%s'\n"), name);
23848
23849 *input_line_pointer = saved_char;
23850 ignore_rest_of_line ();
23851}
23852
ee065d83
PB
23853/* Parse a .fpu directive. */
23854
23855static void
23856s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23857{
69133863 23858 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23859 char saved_char;
23860 char *name;
23861
23862 name = input_line_pointer;
5f4273c7 23863 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23864 input_line_pointer++;
23865 saved_char = *input_line_pointer;
23866 *input_line_pointer = 0;
5f4273c7 23867
ee065d83
PB
23868 for (opt = arm_fpus; opt->name != NULL; opt++)
23869 if (streq (opt->name, name))
23870 {
e74cfd16
PB
23871 mfpu_opt = &opt->value;
23872 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23873 *input_line_pointer = saved_char;
23874 demand_empty_rest_of_line ();
23875 return;
23876 }
23877
23878 as_bad (_("unknown floating point format `%s'\n"), name);
23879 *input_line_pointer = saved_char;
23880 ignore_rest_of_line ();
23881}
ee065d83 23882
794ba86a 23883/* Copy symbol information. */
f31fef98 23884
794ba86a
DJ
23885void
23886arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23887{
23888 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23889}
e04befd0 23890
f31fef98 23891#ifdef OBJ_ELF
e04befd0
AS
23892/* Given a symbolic attribute NAME, return the proper integer value.
23893 Returns -1 if the attribute is not known. */
f31fef98 23894
e04befd0
AS
23895int
23896arm_convert_symbolic_attribute (const char *name)
23897{
f31fef98
NC
23898 static const struct
23899 {
23900 const char * name;
23901 const int tag;
23902 }
23903 attribute_table[] =
23904 {
23905 /* When you modify this table you should
23906 also modify the list in doc/c-arm.texi. */
e04befd0 23907#define T(tag) {#tag, tag}
f31fef98
NC
23908 T (Tag_CPU_raw_name),
23909 T (Tag_CPU_name),
23910 T (Tag_CPU_arch),
23911 T (Tag_CPU_arch_profile),
23912 T (Tag_ARM_ISA_use),
23913 T (Tag_THUMB_ISA_use),
75375b3e 23914 T (Tag_FP_arch),
f31fef98
NC
23915 T (Tag_VFP_arch),
23916 T (Tag_WMMX_arch),
23917 T (Tag_Advanced_SIMD_arch),
23918 T (Tag_PCS_config),
23919 T (Tag_ABI_PCS_R9_use),
23920 T (Tag_ABI_PCS_RW_data),
23921 T (Tag_ABI_PCS_RO_data),
23922 T (Tag_ABI_PCS_GOT_use),
23923 T (Tag_ABI_PCS_wchar_t),
23924 T (Tag_ABI_FP_rounding),
23925 T (Tag_ABI_FP_denormal),
23926 T (Tag_ABI_FP_exceptions),
23927 T (Tag_ABI_FP_user_exceptions),
23928 T (Tag_ABI_FP_number_model),
75375b3e 23929 T (Tag_ABI_align_needed),
f31fef98 23930 T (Tag_ABI_align8_needed),
75375b3e 23931 T (Tag_ABI_align_preserved),
f31fef98
NC
23932 T (Tag_ABI_align8_preserved),
23933 T (Tag_ABI_enum_size),
23934 T (Tag_ABI_HardFP_use),
23935 T (Tag_ABI_VFP_args),
23936 T (Tag_ABI_WMMX_args),
23937 T (Tag_ABI_optimization_goals),
23938 T (Tag_ABI_FP_optimization_goals),
23939 T (Tag_compatibility),
23940 T (Tag_CPU_unaligned_access),
75375b3e 23941 T (Tag_FP_HP_extension),
f31fef98
NC
23942 T (Tag_VFP_HP_extension),
23943 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23944 T (Tag_MPextension_use),
23945 T (Tag_DIV_use),
f31fef98
NC
23946 T (Tag_nodefaults),
23947 T (Tag_also_compatible_with),
23948 T (Tag_conformance),
23949 T (Tag_T2EE_use),
23950 T (Tag_Virtualization_use),
cd21e546 23951 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23952#undef T
f31fef98 23953 };
e04befd0
AS
23954 unsigned int i;
23955
23956 if (name == NULL)
23957 return -1;
23958
f31fef98 23959 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23960 if (streq (name, attribute_table[i].name))
e04befd0
AS
23961 return attribute_table[i].tag;
23962
23963 return -1;
23964}
267bf995
RR
23965
23966
23967/* Apply sym value for relocations only in the case that
23968 they are for local symbols and you have the respective
23969 architectural feature for blx and simple switches. */
23970int
23971arm_apply_sym_value (struct fix * fixP)
23972{
23973 if (fixP->fx_addsy
23974 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 23975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
23976 {
23977 switch (fixP->fx_r_type)
23978 {
23979 case BFD_RELOC_ARM_PCREL_BLX:
23980 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23981 if (ARM_IS_FUNC (fixP->fx_addsy))
23982 return 1;
23983 break;
23984
23985 case BFD_RELOC_ARM_PCREL_CALL:
23986 case BFD_RELOC_THUMB_PCREL_BLX:
23987 if (THUMB_IS_FUNC (fixP->fx_addsy))
23988 return 1;
23989 break;
23990
23991 default:
23992 break;
23993 }
23994
23995 }
23996 return 0;
23997}
f31fef98 23998#endif /* OBJ_ELF */
This page took 2.332045 seconds and 4 git commands to generate.