[PATCH 33/57][Arm][GAS] Add support for MVE instructions: vshr, vrshr, vsli, vsri...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
35d1cfc2 6926 OP_RMQRR, /* MVE vector or ARM register. */
a302e574 6927
60f993ce
AV
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
a302e574
AV
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
c19d1205 6934 OP_REGLST, /* ARM register list */
4b5a202f 6935 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
037e8744 6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6944
5287ad62 6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
5287ad62 6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
a8465a06
AV
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
5287ad62 6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
42b16635
AV
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
5d281bf0 6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
5287ad62 6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6969 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6970
6971 OP_I0, /* immediate zero */
c19d1205
ZW
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
5287ad62 6975 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
5287ad62
JB
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
c19d1205 6981 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
c19d1205 6984 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6985
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6990
6991 OP_SH, /* shifter operand */
4962c51a 6992 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6993 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7005
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7010 OP_COND, /* conditional code */
92e90b6e 7011 OP_TB, /* Table branch. */
c19d1205 7012
037e8744
JB
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7014
c19d1205 7015 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7021
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
5287ad62 7025 OP_oI32b, /* 1 .. 32 */
5f1af56b 7026 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7029
7030 OP_oRR, /* ARM register */
60f993ce 7031 OP_oLR, /* ARM LR register */
c19d1205 7032 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7041 register. */
c19d1205
ZW
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7047
1b883319
AV
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7049
5be8be5d
DG
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7054
c19d1205
ZW
7055 OP_FIRST_OPTIONAL = OP_oI7b
7056};
a737bd4d 7057
c19d1205
ZW
7058/* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7062static int
5be8be5d 7063parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7064{
5be8be5d 7065 unsigned const int *upat = pattern;
c19d1205
ZW
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
99aad254 7068 int i, val = 0, backtrack_index = 0;
5287ad62 7069 enum arm_reg_type rtype;
4962c51a 7070 parse_operand_result result;
5be8be5d 7071 unsigned int op_parse_code;
efd6b359 7072 bfd_boolean partial_match;
c19d1205 7073
e07e6e58
NC
7074#define po_char_or_fail(chr) \
7075 do \
7076 { \
7077 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7078 goto bad_args; \
e07e6e58
NC
7079 } \
7080 while (0)
c19d1205 7081
e07e6e58
NC
7082#define po_reg_or_fail(regtype) \
7083 do \
dcbf9037 7084 { \
e07e6e58 7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7086 & inst.operands[i].vectype); \
e07e6e58 7087 if (val == FAIL) \
477330fc
RM
7088 { \
7089 first_error (_(reg_expected_msgs[regtype])); \
7090 goto failure; \
7091 } \
e07e6e58
NC
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
1b883319 7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7100 } \
e07e6e58
NC
7101 while (0)
7102
7103#define po_reg_or_goto(regtype, label) \
7104 do \
7105 { \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7108 if (val == FAIL) \
7109 goto label; \
dcbf9037 7110 \
e07e6e58
NC
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7116 || rtype == REG_TYPE_VFD \
e07e6e58 7117 || rtype == REG_TYPE_NQ); \
1b883319 7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7119 } \
7120 while (0)
7121
7122#define po_imm_or_fail(min, max, popt) \
7123 do \
7124 { \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 goto failure; \
7127 inst.operands[i].imm = val; \
7128 } \
7129 while (0)
7130
57785aa2 7131#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7132 do \
7133 { \
57785aa2
AV
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7135 reg_type); \
e07e6e58
NC
7136 if (val == FAIL) \
7137 goto label; \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7140 } \
7141 while (0)
7142
7143#define po_misc_or_fail(expr) \
7144 do \
7145 { \
7146 if (expr) \
7147 goto failure; \
7148 } \
7149 while (0)
7150
7151#define po_misc_or_fail_no_backtrack(expr) \
7152 do \
7153 { \
7154 result = expr; \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7158 goto failure; \
7159 } \
7160 while (0)
4962c51a 7161
52e7f43d
RE
7162#define po_barrier_or_imm(str) \
7163 do \
7164 { \
7165 val = parse_barrier (&str); \
ccb84d65
JB
7166 if (val == FAIL && ! ISALPHA (*str)) \
7167 goto immediate; \
7168 if (val == FAIL \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7171 && val != 0xf)) \
52e7f43d 7172 { \
ccb84d65
JB
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7175 goto failure; \
52e7f43d
RE
7176 } \
7177 } \
7178 while (0)
7179
c19d1205
ZW
7180 skip_whitespace (str);
7181
7182 for (i = 0; upat[i] != OP_stop; i++)
7183 {
5be8be5d
DG
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7188
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7190 {
7191 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7195 }
7196
b6702015 7197 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7198 po_char_or_fail (',');
7199
5be8be5d 7200 switch (op_parse_code)
c19d1205
ZW
7201 {
7202 /* Registers */
7203 case OP_oRRnpc:
5be8be5d 7204 case OP_oRRnpcsp:
c19d1205 7205 case OP_RRnpc:
5be8be5d 7206 case OP_RRnpcsp:
c19d1205 7207 case OP_oRR:
a302e574
AV
7208 case OP_RRe:
7209 case OP_RRo:
60f993ce
AV
7210 case OP_LR:
7211 case OP_oLR:
c19d1205
ZW
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7218 case OP_oRND:
5ee91343
AV
7219 case OP_RNDMQR:
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7221 break;
7222 try_rndmq:
7223 case OP_RNDMQ:
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7225 break;
7226 try_rnd:
5287ad62 7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7228 case OP_RVC:
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7230 break;
7231 /* Also accept generic coprocessor regs for unknown registers. */
7232 coproc_reg:
7233 po_reg_or_fail (REG_TYPE_CN);
7234 break;
c19d1205
ZW
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7245 case OP_oRNQ:
5ee91343
AV
7246 case OP_RNQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7248 break;
7249 try_nq:
5287ad62 7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7252 case OP_RNDQMQR:
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7254 break;
7255 try_rndqmq:
5ee91343
AV
7256 case OP_oRNDQMQ:
7257 case OP_RNDQMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7259 break;
7260 try_rndq:
477330fc 7261 case OP_oRNDQ:
5287ad62 7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7263 case OP_RVSDMQ:
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7265 break;
7266 try_rvsd:
477330fc 7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7268 case OP_RVSD_COND:
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7270 break;
477330fc
RM
7271 case OP_oRNSDQ:
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7273 case OP_RNSDQMQR:
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7275 break;
7276 try_mq:
7277 case OP_oRNSDQMQ:
7278 case OP_RNSDQMQ:
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7280 break;
7281 try_nsdq2:
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7283 inst.error = 0;
7284 break;
35d1cfc2
AV
7285 case OP_RMQRR:
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7287 break;
7288 try_rmq:
a302e574
AV
7289 case OP_RMQ:
7290 po_reg_or_fail (REG_TYPE_MQ);
7291 break;
477330fc
RM
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
57785aa2 7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7295
7296 case OP_RNDQ_I0:
7297 {
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7299 break;
7300 try_imm0:
7301 po_imm_or_fail (0, 0, TRUE);
7302 }
7303 break;
7304
7305 case OP_RVSD_I0:
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7307 break;
7308
1b883319
AV
7309 case OP_RSVDMQ_FI0:
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7311 break;
7312 try_rsvd_fi0:
aacf0b33
KT
7313 case OP_RSVD_FI0:
7314 {
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7316 break;
7317 try_ifimm0:
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7320 else
7321 {
7322 inst.error
7323 = _("only floating point zero is allowed as immediate value");
7324 goto failure;
7325 }
7326 }
7327 break;
7328
477330fc
RM
7329 case OP_RR_RNSC:
7330 {
57785aa2 7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7332 break;
7333 try_rr:
7334 po_reg_or_fail (REG_TYPE_RN);
7335 }
7336 break;
7337
a8465a06
AV
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7340 break;
7341 try_rnsdq_rnsc_mq:
886e1c73
AV
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7344 break;
7345 try_rnsdq_rnsc:
477330fc
RM
7346 case OP_RNSDQ_RNSC:
7347 {
57785aa2
AV
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7349 inst.error = 0;
477330fc
RM
7350 break;
7351 try_nsdq:
7352 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7353 inst.error = 0;
477330fc
RM
7354 }
7355 break;
7356
dec41383
JW
7357 case OP_RNSD_RNSC:
7358 {
57785aa2 7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7360 break;
7361 try_s_scalar:
57785aa2 7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7363 break;
7364 try_nsd:
7365 po_reg_or_fail (REG_TYPE_NSD);
7366 }
7367 break;
7368
42b16635
AV
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7371 break;
7372 try_rndq_rnsc_rr:
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7375 break;
5d281bf0
AV
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7378 break;
7379 try_rndq_rnsc:
477330fc
RM
7380 case OP_RNDQ_RNSC:
7381 {
57785aa2 7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7383 break;
7384 try_ndq:
7385 po_reg_or_fail (REG_TYPE_NDQ);
7386 }
7387 break;
7388
7389 case OP_RND_RNSC:
7390 {
57785aa2 7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7392 break;
7393 try_vfd:
7394 po_reg_or_fail (REG_TYPE_VFD);
7395 }
7396 break;
7397
7398 case OP_VMOV:
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7402 break;
7403
f601a00c
AV
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7406 break;
7407 try_rndq_ibig:
477330fc
RM
7408 case OP_RNDQ_Ibig:
7409 {
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7411 break;
7412 try_immbig:
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
8335d6aa
JW
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7416 == FAIL)
477330fc
RM
7417 {
7418 inst.error = _("immediate value is out of range");
7419 goto failure;
7420 }
7421 }
7422 break;
7423
7424 case OP_RNDQ_I63b:
7425 {
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7427 break;
7428 try_shimm:
7429 po_imm_or_fail (0, 63, TRUE);
7430 }
7431 break;
c19d1205
ZW
7432
7433 case OP_RRnpcb:
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7437 break;
a737bd4d 7438
55881a11 7439 case OP_RRnpctw:
c19d1205 7440 case OP_RRw:
b6702015 7441 case OP_oRRw:
c19d1205
ZW
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7445 break;
7446
7447 /* Immediates */
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7460
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7462 case OP_oI7b:
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7465 case OP_oI31b:
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7470
7471 /* Immediate variants */
7472 case OP_oI255c:
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7476 break;
7477
7478 case OP_I31w:
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7481 {
7482 char *s = str;
7483 while (*s && *s != ',')
7484 s++;
7485 if (s[-1] == '!')
7486 {
7487 s[-1] = '\0';
7488 inst.operands[i].writeback = 1;
7489 }
7490 po_imm_or_fail (0, 31, TRUE);
7491 if (str == s - 1)
7492 str = s;
7493 }
7494 break;
7495
7496 /* Expressions */
7497 case OP_EXPi: EXPi:
e2b0ab59 7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7499 GE_OPT_PREFIX));
7500 break;
7501
7502 case OP_EXP:
e2b0ab59 7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7504 GE_NO_PREFIX));
7505 break;
7506
7507 case OP_EXPr: EXPr:
e2b0ab59 7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7509 GE_NO_PREFIX));
e2b0ab59 7510 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7511 {
c19d1205
ZW
7512 val = parse_reloc (&str);
7513 if (val == -1)
7514 {
7515 inst.error = _("unrecognized relocation suffix");
7516 goto failure;
7517 }
7518 else if (val != BFD_RELOC_UNUSED)
7519 {
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7522 }
a737bd4d 7523 }
c19d1205 7524 break;
a737bd4d 7525
e2b0ab59
AV
7526 case OP_EXPs:
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7528 GE_NO_PREFIX));
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7530 {
7531 inst.operands[i].hasreloc = 1;
7532 }
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7534 {
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7537 }
7538 break;
7539
b6895b4f
PB
7540 /* Operand for MOVW or MOVT. */
7541 case OP_HALF:
7542 po_misc_or_fail (parse_half (&str));
7543 break;
7544
e07e6e58 7545 /* Register or expression. */
c19d1205
ZW
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7548
e07e6e58 7549 /* Register or immediate. */
c19d1205
ZW
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7552
c19d1205
ZW
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7554 IF:
7555 if (!is_immediate_prefix (*str))
7556 goto bad_args;
7557 str++;
7558 val = parse_fpa_immediate (&str);
7559 if (val == FAIL)
7560 goto failure;
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7565 break;
09d92015 7566
2d447fca
JM
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7569
e07e6e58 7570 /* Two kinds of register. */
c19d1205
ZW
7571 case OP_RIWR_RIWC:
7572 {
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7574 if (!rege
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7578 {
7579 inst.error = _("iWMMXt data or control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7584 }
7585 break;
09d92015 7586
41adaa5c
JM
7587 case OP_RIWC_RIWG:
7588 {
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7590 if (!rege
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7593 {
7594 inst.error = _("iWMMXt control register expected");
7595 goto failure;
7596 }
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7599 }
7600 break;
7601
c19d1205
ZW
7602 /* Misc */
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
1b883319 7606 try_cond:
c19d1205 7607 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7610 immediate:
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7612 goto failure;
52e7f43d 7613 break;
c19d1205 7614
fa94de6b 7615 case OP_wPSR:
d2cd1205 7616 case OP_rPSR:
90ec0d68
MGD
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7619 {
7620 inst.error = _("Banked registers are not available with this "
7621 "architecture.");
7622 goto failure;
7623 }
7624 break;
d2cd1205
JB
7625 try_psr:
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7627 break;
037e8744 7628
32c36c3c
AV
7629 case OP_VLDR:
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7631 break;
7632 try_sysreg:
7633 val = parse_sys_vldr_vstr (&str);
7634 break;
7635
477330fc
RM
7636 case OP_APSR_RR:
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7638 break;
7639 try_apsr:
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7641 instruction). */
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7643 {
7644 unsigned found = 0;
7645 str += 5;
7646 while (found < 15)
7647 switch (*str++)
7648 {
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7654 }
7655 if (found != 15)
7656 goto failure;
7657 inst.operands[i].isvec = 1;
f7c21dc7
NC
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
477330fc
RM
7660 }
7661 else
7662 goto failure;
7663 break;
037e8744 7664
92e90b6e
PB
7665 case OP_TB:
7666 po_misc_or_fail (parse_tb (&str));
7667 break;
7668
e07e6e58 7669 /* Register lists. */
c19d1205 7670 case OP_REGLST:
4b5a202f 7671 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7672 if (*str == '^')
7673 {
5e0d7f77 7674 inst.operands[i].writeback = 1;
c19d1205
ZW
7675 str++;
7676 }
7677 break;
09d92015 7678
4b5a202f
AV
7679 case OP_CLRMLST:
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7681 break;
7682
c19d1205 7683 case OP_VRSLST:
efd6b359
AV
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7685 &partial_match);
c19d1205 7686 break;
09d92015 7687
c19d1205 7688 case OP_VRDLST:
efd6b359
AV
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7690 &partial_match);
c19d1205 7691 break;
a737bd4d 7692
477330fc
RM
7693 case OP_VRSDLST:
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7696 REGLIST_NEON_D, &partial_match);
477330fc
RM
7697 if (val == FAIL)
7698 {
7699 inst.error = NULL;
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7703 }
7704 break;
7705
7706 case OP_VRSDVLST:
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_NRDLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7720 REGLIST_NEON_D, &partial_match);
477330fc 7721 break;
5287ad62 7722
35c228db
AV
7723 case OP_MSTRLST4:
7724 case OP_MSTRLST2:
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7728 goto failure;
7729 break;
5287ad62 7730 case OP_NSTRLST:
477330fc 7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7732 0, &inst.operands[i].vectype);
477330fc 7733 break;
5287ad62 7734
c19d1205 7735 /* Addressing modes */
35c228db
AV
7736 case OP_ADDRMVE:
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7738 break;
7739
c19d1205
ZW
7740 case OP_ADDR:
7741 po_misc_or_fail (parse_address (&str, i));
7742 break;
09d92015 7743
4962c51a
MS
7744 case OP_ADDRGLDR:
7745 po_misc_or_fail_no_backtrack (
477330fc 7746 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7747 break;
7748
7749 case OP_ADDRGLDRS:
7750 po_misc_or_fail_no_backtrack (
477330fc 7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7752 break;
7753
7754 case OP_ADDRGLDC:
7755 po_misc_or_fail_no_backtrack (
477330fc 7756 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7757 break;
7758
c19d1205
ZW
7759 case OP_SH:
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7761 break;
09d92015 7762
4962c51a
MS
7763 case OP_SHG:
7764 po_misc_or_fail_no_backtrack (
477330fc 7765 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7766 break;
7767
c19d1205
ZW
7768 case OP_oSHll:
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7770 break;
09d92015 7771
c19d1205
ZW
7772 case OP_oSHar:
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7774 break;
09d92015 7775
c19d1205
ZW
7776 case OP_oSHllar:
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7778 break;
09d92015 7779
1b883319
AV
7780 case OP_RMQRZ:
7781 case OP_oRMQRZ:
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7783 break;
7784 try_rr_zr:
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7786 break;
7787 ZR:
7788 po_reg_or_fail (REG_TYPE_ZR);
7789 break;
7790
c19d1205 7791 default:
5be8be5d 7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7793 }
09d92015 7794
c19d1205
ZW
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
5be8be5d 7798 switch (op_parse_code)
c19d1205
ZW
7799 {
7800 case OP_oRRnpc:
7801 case OP_RRnpc:
7802 case OP_RRnpcb:
7803 case OP_RRw:
b6702015 7804 case OP_oRRw:
c19d1205
ZW
7805 case OP_RRnpc_I0:
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7808 break;
09d92015 7809
5be8be5d
DG
7810 case OP_oRRnpcsp:
7811 case OP_RRnpcsp:
7812 if (inst.operands[i].isreg)
7813 {
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
5c8ed6a4
JW
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7820 {
7821 gas_assert (thumb);
7822 inst.error = BAD_SP;
7823 }
5be8be5d
DG
7824 }
7825 break;
7826
55881a11 7827 case OP_RRnpctw:
fa94de6b
RM
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
55881a11
MGD
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7832 break;
7833
1b883319 7834 case OP_RVSD_COND:
32c36c3c
AV
7835 case OP_VLDR:
7836 if (inst.operands[i].isreg)
7837 break;
7838 /* fall through. */
1b883319 7839
c19d1205
ZW
7840 case OP_CPSF:
7841 case OP_ENDI:
7842 case OP_oROR:
d2cd1205
JB
7843 case OP_wPSR:
7844 case OP_rPSR:
c19d1205 7845 case OP_COND:
52e7f43d 7846 case OP_oBARRIER_I15:
c19d1205 7847 case OP_REGLST:
4b5a202f 7848 case OP_CLRMLST:
c19d1205
ZW
7849 case OP_VRSLST:
7850 case OP_VRDLST:
477330fc 7851 case OP_VRSDLST:
efd6b359 7852 case OP_VRSDVLST:
477330fc
RM
7853 case OP_NRDLST:
7854 case OP_NSTRLST:
35c228db
AV
7855 case OP_MSTRLST2:
7856 case OP_MSTRLST4:
c19d1205
ZW
7857 if (val == FAIL)
7858 goto failure;
7859 inst.operands[i].imm = val;
7860 break;
a737bd4d 7861
60f993ce
AV
7862 case OP_LR:
7863 case OP_oLR:
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7866 break;
7867
1b883319
AV
7868 case OP_RMQRZ:
7869 case OP_oRMQRZ:
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7872 break;
7873
a302e574
AV
7874 case OP_RRe:
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7878 break;
7879
7880 case OP_RRo:
7881 if (inst.operands[i].isreg)
7882 {
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7889 }
7890 break;
7891
c19d1205
ZW
7892 default:
7893 break;
7894 }
09d92015 7895
c19d1205
ZW
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7898 continue;
09d92015 7899
c19d1205 7900 bad_args:
09d92015 7901 inst.error = BAD_ARGS;
c19d1205
ZW
7902
7903 failure:
7904 if (!backtrack_pos)
d252fdde
PB
7905 {
7906 /* The parse routine should already have set inst.error, but set a
5f4273c7 7907 default here just in case. */
d252fdde 7908 if (!inst.error)
5ee91343 7909 inst.error = BAD_SYNTAX;
d252fdde
PB
7910 return FAIL;
7911 }
c19d1205
ZW
7912
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
d252fdde
PB
7919 {
7920 if (!inst.error)
5ee91343 7921 inst.error = BAD_SYNTAX;
d252fdde
PB
7922 return FAIL;
7923 }
c19d1205
ZW
7924
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7930 backtrack_pos = 0;
09d92015 7931 }
09d92015 7932
c19d1205
ZW
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
09d92015 7936
c19d1205 7937 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7938}
7939
c19d1205
ZW
7940#undef po_char_or_fail
7941#undef po_reg_or_fail
7942#undef po_reg_or_goto
7943#undef po_imm_or_fail
5287ad62 7944#undef po_scalar_or_fail
52e7f43d 7945#undef po_barrier_or_imm
e07e6e58 7946
c19d1205 7947/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7948#define constraint(expr, err) \
7949 do \
c19d1205 7950 { \
e07e6e58
NC
7951 if (expr) \
7952 { \
7953 inst.error = err; \
7954 return; \
7955 } \
c19d1205 7956 } \
e07e6e58 7957 while (0)
c19d1205 7958
fdfde340
JM
7959/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7962
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965#define reject_bad_reg(reg) \
7966 do \
7967 if (reg == REG_PC) \
7968 { \
7969 inst.error = BAD_PC; \
7970 return; \
7971 } \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7974 { \
7975 inst.error = BAD_SP; \
7976 return; \
7977 } \
fdfde340
JM
7978 while (0)
7979
94206790
MM
7980/* If REG is R13 (the stack pointer), warn that its use is
7981 deprecated. */
7982#define warn_deprecated_sp(reg) \
7983 do \
7984 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7985 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7986 while (0)
7987
c19d1205
ZW
7988/* Functions for operand encoding. ARM, then Thumb. */
7989
d840c081 7990#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7991
9db2f6b4
RL
7992/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7993
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7996 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7997 exists for Single-Precision operation. */
7998
7999static void
8000do_scalar_fp16_v82_encode (void)
8001{
5ee91343 8002 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8006 _(BAD_FP16));
8007
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8010}
8011
c19d1205
ZW
8012/* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8014
8015static unsigned int
8016encode_arm_immediate (unsigned int val)
09d92015 8017{
c19d1205
ZW
8018 unsigned int a, i;
8019
4f1d6205
L
8020 if (val <= 0xff)
8021 return val;
8022
8023 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8026
8027 return FAIL;
09d92015
MM
8028}
8029
c19d1205
ZW
8030/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8032static unsigned int
8033encode_thumb32_immediate (unsigned int val)
09d92015 8034{
c19d1205 8035 unsigned int a, i;
09d92015 8036
9c3c69f2 8037 if (val <= 0xff)
c19d1205 8038 return val;
a737bd4d 8039
9c3c69f2 8040 for (i = 1; i <= 24; i++)
09d92015 8041 {
9c3c69f2
PB
8042 a = val >> i;
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8045 }
a737bd4d 8046
c19d1205
ZW
8047 a = val & 0xff;
8048 if (val == ((a << 16) | a))
8049 return 0x100 | a;
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8051 return 0x300 | a;
09d92015 8052
c19d1205
ZW
8053 a = val & 0xff00;
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
a737bd4d 8056
c19d1205 8057 return FAIL;
09d92015 8058}
5287ad62 8059/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8060
8061static void
5287ad62
JB
8062encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8063{
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8065 && reg > 15)
8066 {
b1cc4aeb 8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8068 {
8069 if (thumb_mode)
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8071 fpu_vfp_ext_d32);
8072 else
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8074 fpu_vfp_ext_d32);
8075 }
5287ad62 8076 else
477330fc
RM
8077 {
8078 first_error (_("D register out of range for selected VFP version"));
8079 return;
8080 }
5287ad62
JB
8081 }
8082
c19d1205 8083 switch (pos)
09d92015 8084 {
c19d1205
ZW
8085 case VFP_REG_Sd:
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8087 break;
8088
8089 case VFP_REG_Sn:
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8091 break;
8092
8093 case VFP_REG_Sm:
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8095 break;
8096
5287ad62
JB
8097 case VFP_REG_Dd:
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8099 break;
5f4273c7 8100
5287ad62
JB
8101 case VFP_REG_Dn:
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8103 break;
5f4273c7 8104
5287ad62
JB
8105 case VFP_REG_Dm:
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8107 break;
8108
c19d1205
ZW
8109 default:
8110 abort ();
09d92015 8111 }
09d92015
MM
8112}
8113
c19d1205 8114/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8115 if any, is handled by md_apply_fix. */
09d92015 8116static void
c19d1205 8117encode_arm_shift (int i)
09d92015 8118{
008a97ef
RL
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8121 {
bf355b69
MR
8122 int op_index;
8123 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8124 {
5689c942
RL
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
bf355b69
MR
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8130 as_warn (UNPRED_REG ("r15"));
8131 }
8132
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8135 }
8136
c19d1205
ZW
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8139 else
09d92015 8140 {
c19d1205
ZW
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8143 {
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8146 }
8147 else
e2b0ab59 8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8149 }
c19d1205 8150}
09d92015 8151
c19d1205
ZW
8152static void
8153encode_arm_shifter_operand (int i)
8154{
8155 if (inst.operands[i].isreg)
09d92015 8156 {
c19d1205
ZW
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
09d92015 8159 }
c19d1205 8160 else
a415b1cd
JB
8161 {
8162 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8164 inst.instruction |= inst.operands[i].imm;
8165 }
09d92015
MM
8166}
8167
c19d1205 8168/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8169static void
c19d1205 8170encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8171{
2b2f5df9
NC
8172 /* PR 14260:
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8176
c19d1205 8177 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8178
c19d1205 8179 if (inst.operands[i].preind)
09d92015 8180 {
c19d1205
ZW
8181 if (is_t)
8182 {
8183 inst.error = _("instruction does not accept preindexed addressing");
8184 return;
8185 }
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
09d92015 8189
c19d1205
ZW
8190 }
8191 else if (inst.operands[i].postind)
8192 {
9c2799c2 8193 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8194 if (is_t)
8195 inst.instruction |= WRITE_BACK;
8196 }
8197 else /* unindexed - only for coprocessor */
09d92015 8198 {
c19d1205 8199 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8200 return;
8201 }
8202
c19d1205
ZW
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
09d92015
MM
8209}
8210
c19d1205
ZW
8211/* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8214 post-indexed). */
a737bd4d 8215static void
c19d1205 8216encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8217{
5be8be5d
DG
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8219
c19d1205 8220 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8221
c19d1205 8222 if (inst.operands[i].immisreg)
09d92015 8223 {
5be8be5d
DG
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8226 BAD_PC_ADDRESSING);
c19d1205
ZW
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8232 {
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8235 else
8236 {
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8239 }
8240 }
09d92015 8241 }
e2b0ab59 8242 else /* immediate offset in inst.relocs[0] */
09d92015 8243 {
e2b0ab59 8244 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8245 {
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8247
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8252 BAD_PC_ADDRESSING);
23a10334 8253
dc5ec521 8254 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8255 if (warn_on_deprecated
8256 && !is_load
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8259 }
8260
e2b0ab59 8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8262 {
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
e2b0ab59 8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8267 }
09d92015 8268 }
09d92015
MM
8269}
8270
c19d1205
ZW
8271/* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8275 post-indexed). */
8276static void
8277encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8278{
c19d1205 8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8280 {
c19d1205
ZW
8281 inst.error = _("instruction does not accept scaled register index");
8282 return;
09d92015 8283 }
a737bd4d 8284
c19d1205 8285 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8286
c19d1205
ZW
8287 if (inst.operands[i].immisreg)
8288 {
5be8be5d 8289 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8290 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8291 BAD_PC_ADDRESSING);
eb9f3f00
JB
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8293 BAD_PC_WRITEBACK);
c19d1205
ZW
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8297 }
e2b0ab59 8298 else /* immediate offset in inst.relocs[0] */
c19d1205 8299 {
e2b0ab59 8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8301 && inst.operands[i].writeback),
8302 BAD_PC_WRITEBACK);
c19d1205 8303 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8305 {
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8309
e2b0ab59 8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8311 }
c19d1205 8312 }
a737bd4d
NC
8313}
8314
8335d6aa
JW
8315/* Write immediate bits [7:0] to the following locations:
8316
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8319
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8321
8322static void
8323neon_write_immbits (unsigned immbits)
8324{
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8328}
8329
8330/* Invert low-order SIZE bits of XHI:XLO. */
8331
8332static void
8333neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8334{
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8337
8338 switch (size)
8339 {
8340 case 8:
8341 immlo = (~immlo) & 0xff;
8342 break;
8343
8344 case 16:
8345 immlo = (~immlo) & 0xffff;
8346 break;
8347
8348 case 64:
8349 immhi = (~immhi) & 0xffffffff;
8350 /* fall through. */
8351
8352 case 32:
8353 immlo = (~immlo) & 0xffffffff;
8354 break;
8355
8356 default:
8357 abort ();
8358 }
8359
8360 if (xlo)
8361 *xlo = immlo;
8362
8363 if (xhi)
8364 *xhi = immhi;
8365}
8366
8367/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8368 A, B, C, D. */
09d92015 8369
c19d1205 8370static int
8335d6aa 8371neon_bits_same_in_bytes (unsigned imm)
09d92015 8372{
8335d6aa
JW
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8377}
a737bd4d 8378
8335d6aa 8379/* For immediate of above form, return 0bABCD. */
09d92015 8380
8335d6aa
JW
8381static unsigned
8382neon_squash_bits (unsigned imm)
8383{
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8386}
8387
8388/* Compress quarter-float representation to 0b...000 abcdefgh. */
8389
8390static unsigned
8391neon_qfloat_bits (unsigned imm)
8392{
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8394}
8395
8396/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8402
8403static int
8404neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8407{
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8409 float. */
8410 if (type == NT_float && !float_p)
8411 return FAIL;
8412
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8414 {
8335d6aa
JW
8415 if (size != 32 || *op == 1)
8416 return FAIL;
8417 *immbits = neon_qfloat_bits (immlo);
8418 return 0xf;
8419 }
8420
8421 if (size == 64)
8422 {
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
c19d1205 8425 {
8335d6aa
JW
8426 if (*op == 1)
8427 return FAIL;
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8430 *op = 1;
8431 return 0xe;
c19d1205 8432 }
a737bd4d 8433
8335d6aa
JW
8434 if (immhi != immlo)
8435 return FAIL;
8436 }
a737bd4d 8437
8335d6aa 8438 if (size >= 32)
09d92015 8439 {
8335d6aa 8440 if (immlo == (immlo & 0x000000ff))
c19d1205 8441 {
8335d6aa
JW
8442 *immbits = immlo;
8443 return 0x0;
c19d1205 8444 }
8335d6aa 8445 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8446 {
8335d6aa
JW
8447 *immbits = immlo >> 8;
8448 return 0x2;
c19d1205 8449 }
8335d6aa
JW
8450 else if (immlo == (immlo & 0x00ff0000))
8451 {
8452 *immbits = immlo >> 16;
8453 return 0x4;
8454 }
8455 else if (immlo == (immlo & 0xff000000))
8456 {
8457 *immbits = immlo >> 24;
8458 return 0x6;
8459 }
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8461 {
8462 *immbits = (immlo >> 8) & 0xff;
8463 return 0xc;
8464 }
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8466 {
8467 *immbits = (immlo >> 16) & 0xff;
8468 return 0xd;
8469 }
8470
8471 if ((immlo & 0xffff) != (immlo >> 16))
8472 return FAIL;
8473 immlo &= 0xffff;
09d92015 8474 }
a737bd4d 8475
8335d6aa 8476 if (size >= 16)
4962c51a 8477 {
8335d6aa
JW
8478 if (immlo == (immlo & 0x000000ff))
8479 {
8480 *immbits = immlo;
8481 return 0x8;
8482 }
8483 else if (immlo == (immlo & 0x0000ff00))
8484 {
8485 *immbits = immlo >> 8;
8486 return 0xa;
8487 }
8488
8489 if ((immlo & 0xff) != (immlo >> 8))
8490 return FAIL;
8491 immlo &= 0xff;
4962c51a
MS
8492 }
8493
8335d6aa
JW
8494 if (immlo == (immlo & 0x000000ff))
8495 {
8496 /* Don't allow MVN with 8-bit immediate. */
8497 if (*op == 1)
8498 return FAIL;
8499 *immbits = immlo;
8500 return 0xe;
8501 }
26d97720 8502
8335d6aa 8503 return FAIL;
c19d1205 8504}
a737bd4d 8505
5fc177c8 8506#if defined BFD_HOST_64_BIT
ba592044
AM
8507/* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8509
8510static bfd_boolean
5fc177c8 8511is_double_a_single (bfd_int64_t v)
ba592044 8512{
5fc177c8 8513 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8515
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8519}
8520
3739860c 8521/* Returns a double precision value casted to single precision
ba592044
AM
8522 (ignoring the least significant bits in exponent and mantissa). */
8523
8524static int
5fc177c8 8525double_to_single (bfd_int64_t v)
ba592044
AM
8526{
8527 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8528 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8530
8531 if (exp == 0x7FF)
8532 exp = 0xFF;
8533 else
8534 {
8535 exp = exp - 1023 + 127;
8536 if (exp >= 0xFF)
8537 {
8538 /* Infinity. */
8539 exp = 0x7F;
8540 mantissa = 0;
8541 }
8542 else if (exp < 0)
8543 {
8544 /* No denormalized numbers. */
8545 exp = 0;
8546 mantissa = 0;
8547 }
8548 }
8549 mantissa >>= 29;
8550 return (sign << 31) | (exp << 23) | mantissa;
8551}
5fc177c8 8552#endif /* BFD_HOST_64_BIT */
ba592044 8553
8335d6aa
JW
8554enum lit_type
8555{
8556 CONST_THUMB,
8557 CONST_ARM,
8558 CONST_VEC
8559};
8560
ba592044
AM
8561static void do_vfp_nsyn_opcode (const char *);
8562
e2b0ab59 8563/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
a737bd4d 8569
c19d1205
ZW
8570 inst.operands[i] describes the destination register. */
8571
c921be7d 8572static bfd_boolean
8335d6aa 8573move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8574{
53365c0d 8575 unsigned long tbit;
8335d6aa
JW
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8578
8579 if (thumb_p)
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8581 else
8582 tbit = LOAD_BIT;
8583
8584 if ((inst.instruction & tbit) == 0)
09d92015 8585 {
c19d1205 8586 inst.error = _("invalid pseudo operation");
c921be7d 8587 return TRUE;
09d92015 8588 }
ba592044 8589
e2b0ab59
AV
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8593 {
8594 inst.error = _("constant expression expected");
c921be7d 8595 return TRUE;
09d92015 8596 }
ba592044 8597
e2b0ab59
AV
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8600 {
5fc177c8
NC
8601#if defined BFD_HOST_64_BIT
8602 bfd_int64_t v;
8603#else
ba592044 8604 offsetT v;
5fc177c8 8605#endif
e2b0ab59 8606 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8607 {
ba592044
AM
8608 LITTLENUM_TYPE w[X_PRECISION];
8609 LITTLENUM_TYPE * l;
8610
e2b0ab59 8611 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8612 {
ba592044
AM
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8614 l = w;
8615 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8616 }
ba592044
AM
8617 else
8618 l = generic_bignum;
3739860c 8619
5fc177c8
NC
8620#if defined BFD_HOST_64_BIT
8621 v =
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8629#else
ba592044
AM
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
5fc177c8 8632#endif
8335d6aa 8633 }
ba592044 8634 else
e2b0ab59 8635 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8636
8637 if (!inst.operands[i].issingle)
8335d6aa 8638 {
12569877 8639 if (thumb_p)
8335d6aa 8640 {
53445554
TP
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
12569877 8643
53445554 8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
12569877 8648 {
fc289b0a
TP
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
12569877
AM
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8653
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = FALSE;
8657 else
8658 {
582cfe03 8659 newimm = encode_thumb32_immediate (~v);
12569877
AM
8660 if (newimm != (unsigned int) FAIL)
8661 isNegated = TRUE;
8662 }
8663
fc289b0a
TP
8664 /* The number can be loaded with a mov.w or mvn
8665 instruction. */
ff8646ee
TP
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8668 {
fc289b0a 8669 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8670 | (inst.operands[i].reg << 8));
fc289b0a 8671 /* Change to MOVN. */
582cfe03 8672 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8676 return TRUE;
8677 }
fc289b0a 8678 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8681 {
582cfe03 8682 int imm = v & 0xFFFF;
12569877 8683
582cfe03 8684 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8690 return TRUE;
8691 }
8692 }
8335d6aa 8693 }
12569877 8694 else if (arm_p)
ba592044
AM
8695 {
8696 int value = encode_arm_immediate (v);
12569877 8697
ba592044
AM
8698 if (value != FAIL)
8699 {
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8704 return TRUE;
8705 }
8335d6aa 8706
ba592044
AM
8707 value = encode_arm_immediate (~ v);
8708 if (value != FAIL)
8709 {
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8714 return TRUE;
8715 }
8716 }
934c2632 8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8718 {
ba592044
AM
8719 int op = 0;
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
e2b0ab59 8724 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8725 ? 0
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8729
8730 if (cmode == FAIL)
8731 {
8732 neon_invert_size (&immlo, &immhi, 64);
8733 op = !op;
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8736 }
8737
8738 if (cmode != FAIL)
8739 {
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8741 | (1 << 23)
8742 | (cmode << 8)
8743 | (op << 5)
8744 | (1 << 4);
8745
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8747 if (thumb_mode)
eff0bc54 8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8749 else
eff0bc54 8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8751 neon_write_immbits (immbits);
8752 return TRUE;
8753 }
8335d6aa
JW
8754 }
8755 }
8335d6aa 8756
ba592044
AM
8757 if (t == CONST_VEC)
8758 {
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8763 {
ba592044
AM
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8767 return TRUE;
8335d6aa 8768 }
5fc177c8
NC
8769
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775#if defined BFD_HOST_64_BIT
ba592044
AM
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8778 {
ba592044
AM
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8785 return TRUE;
8786 }
8335d6aa 8787 }
5fc177c8 8788#endif
8335d6aa
JW
8789 }
8790 }
8791
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8794 return TRUE;
8795
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
e2b0ab59
AV
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8802 : (mode_3
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8805 return FALSE;
8806}
8807
8808/* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8815
8816static int
8817encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8818{
8819 if (!inst.operands[i].isreg)
8820 {
99b2a2dd
NC
8821 /* PR 18256 */
8822 if (! inst.operands[0].isvec)
8823 {
8824 inst.error = _("invalid co-processor operand");
8825 return FAIL;
8826 }
8335d6aa
JW
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8828 return SUCCESS;
8829 }
8830
8831 inst.instruction |= inst.operands[i].reg << 16;
8832
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8834
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8836 {
8837 gas_assert (!inst.operands[i].writeback);
8838 if (!unind_ok)
8839 {
8840 inst.error = _("instruction does not support unindexed addressing");
8841 return FAIL;
8842 }
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8845 return SUCCESS;
8846 }
8847
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8850
8851 if (inst.operands[i].writeback)
09d92015 8852 {
8335d6aa 8853 if (inst.operands[i].reg == REG_PC)
c19d1205 8854 {
8335d6aa
JW
8855 inst.error = _("pc may not be used with write-back");
8856 return FAIL;
c19d1205 8857 }
8335d6aa 8858 if (!wb_ok)
c19d1205 8859 {
8335d6aa
JW
8860 inst.error = _("instruction does not support writeback");
8861 return FAIL;
c19d1205 8862 }
8335d6aa 8863 inst.instruction |= WRITE_BACK;
09d92015
MM
8864 }
8865
8335d6aa 8866 if (reloc_override)
e2b0ab59
AV
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8871 {
8335d6aa 8872 if (thumb_mode)
e2b0ab59 8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8874 else
e2b0ab59 8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8876 }
8335d6aa
JW
8877
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8881
8882 return SUCCESS;
09d92015
MM
8883}
8884
5f4273c7 8885/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
09d92015 8888
a737bd4d 8889static void
c19d1205 8890do_noargs (void)
09d92015 8891{
c19d1205 8892}
a737bd4d 8893
c19d1205
ZW
8894static void
8895do_rd (void)
8896{
8897 inst.instruction |= inst.operands[0].reg << 12;
8898}
a737bd4d 8899
16a1fa25
TP
8900static void
8901do_rn (void)
8902{
8903 inst.instruction |= inst.operands[0].reg << 16;
8904}
8905
c19d1205
ZW
8906static void
8907do_rd_rm (void)
8908{
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8911}
09d92015 8912
9eb6c0f1
MGD
8913static void
8914do_rm_rn (void)
8915{
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918}
8919
c19d1205
ZW
8920static void
8921do_rd_rn (void)
8922{
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925}
a737bd4d 8926
c19d1205
ZW
8927static void
8928do_rn_rd (void)
8929{
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8932}
09d92015 8933
4ed7ed8d
TP
8934static void
8935do_tt (void)
8936{
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939}
8940
59d09be6
MGD
8941static bfd_boolean
8942check_obsolete (const arm_feature_set *feature, const char *msg)
8943{
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8945 {
5c3696f8 8946 as_tsktsk ("%s", msg);
59d09be6
MGD
8947 return TRUE;
8948 }
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8950 {
8951 as_bad ("%s", msg);
8952 return TRUE;
8953 }
8954
8955 return FALSE;
8956}
8957
c19d1205
ZW
8958static void
8959do_rd_rm_rn (void)
8960{
9a64e435 8961 unsigned Rn = inst.operands[2].reg;
708587a4 8962 /* Enforce restrictions on SWP instruction. */
9a64e435 8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8964 {
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8967
59d09be6
MGD
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8969 */
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8975 }
59d09be6 8976
c19d1205
ZW
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
9a64e435 8979 inst.instruction |= Rn << 16;
c19d1205 8980}
09d92015 8981
c19d1205
ZW
8982static void
8983do_rd_rn_rm (void)
8984{
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8988}
a737bd4d 8989
c19d1205
ZW
8990static void
8991do_rm_rd_rn (void)
8992{
5be8be5d 8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8997 BAD_ADDR_MODE);
c19d1205
ZW
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9001}
09d92015 9002
c19d1205
ZW
9003static void
9004do_imm0 (void)
9005{
9006 inst.instruction |= inst.operands[0].imm;
9007}
09d92015 9008
c19d1205
ZW
9009static void
9010do_rd_cpaddr (void)
9011{
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 9014}
a737bd4d 9015
c19d1205
ZW
9016/* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9018 wrap). */
09d92015 9019
c19d1205
ZW
9020/* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9022
9023static void
c19d1205 9024do_adr (void)
09d92015 9025{
c19d1205 9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9027
c19d1205
ZW
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
e2b0ab59
AV
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9033
fc6141f0 9034 if (support_interwork
e2b0ab59
AV
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9040}
b99bd4ef 9041
c19d1205
ZW
9042/* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
b99bd4ef 9046
c19d1205
ZW
9047static void
9048do_adrl (void)
9049{
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9051
c19d1205
ZW
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
e2b0ab59
AV
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
c19d1205 9056 inst.size = INSN_SIZE * 2;
e2b0ab59 9057 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9058
fc6141f0 9059 if (support_interwork
e2b0ab59
AV
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9065}
9066
b99bd4ef 9067static void
c19d1205 9068do_arit (void)
b99bd4ef 9069{
e2b0ab59
AV
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9072 THUMB1_RELOC_ONLY);
c19d1205
ZW
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9078}
b99bd4ef 9079
62b3e311
PB
9080static void
9081do_barrier (void)
9082{
9083 if (inst.operands[0].present)
ccb84d65 9084 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9085 else
9086 inst.instruction |= 0xf;
9087}
9088
c19d1205
ZW
9089static void
9090do_bfc (void)
9091{
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9099}
b99bd4ef 9100
c19d1205
ZW
9101static void
9102do_bfi (void)
9103{
9104 unsigned int msb;
b99bd4ef 9105
c19d1205
ZW
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
b99bd4ef 9110
c19d1205
ZW
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9119}
9120
b99bd4ef 9121static void
c19d1205 9122do_bfx (void)
b99bd4ef 9123{
c19d1205
ZW
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9130}
09d92015 9131
c19d1205
ZW
9132/* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
b99bd4ef 9137
c19d1205
ZW
9138static void
9139do_bkpt (void)
9140{
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9143
c19d1205
ZW
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9146}
09d92015 9147
c19d1205
ZW
9148static void
9149encode_branch (int default_reloc)
9150{
9151 if (inst.operands[0].hasreloc)
9152 {
0855e32b
NS
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9159 }
b99bd4ef 9160 else
e2b0ab59
AV
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9163}
9164
b99bd4ef 9165static void
c19d1205 9166do_branch (void)
b99bd4ef 9167{
39b41c9c
PB
9168#ifdef OBJ_ELF
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 else
9172#endif
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9174}
9175
9176static void
9177do_bl (void)
9178{
9179#ifdef OBJ_ELF
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9181 {
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9184 else
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9186 }
9187 else
9188#endif
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9190}
b99bd4ef 9191
c19d1205
ZW
9192/* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9199
c19d1205
ZW
9200static void
9201do_blx (void)
9202{
9203 if (inst.operands[0].isreg)
b99bd4ef 9204 {
c19d1205
ZW
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9209
c19d1205
ZW
9210 inst.instruction |= inst.operands[0].reg;
9211 }
9212 else
b99bd4ef 9213 {
c19d1205 9214 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9219 inst.instruction = 0xfa000000;
267bf995 9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9221 }
c19d1205
ZW
9222}
9223
9224static void
9225do_bx (void)
9226{
845b51d6
PB
9227 bfd_boolean want_reloc;
9228
c19d1205
ZW
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9231
c19d1205 9232 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9238 want_reloc = TRUE;
9239
5ad34203 9240#ifdef OBJ_ELF
845b51d6 9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9242#endif
584206db 9243 want_reloc = FALSE;
845b51d6
PB
9244
9245 if (want_reloc)
e2b0ab59 9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9247}
9248
c19d1205
ZW
9249
9250/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9251
9252static void
c19d1205 9253do_bxj (void)
a737bd4d 9254{
c19d1205
ZW
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9257
9258 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9259}
9260
c19d1205
ZW
9261/* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9264static void
9265do_cdp (void)
9266{
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9273}
a737bd4d
NC
9274
9275static void
c19d1205 9276do_cmp (void)
a737bd4d 9277{
c19d1205
ZW
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
a737bd4d
NC
9280}
9281
c19d1205
ZW
9282/* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9284 MRC2
9285 MCR{cond}
9286 MCR2
9287
9288 No special properties. */
09d92015 9289
dcbd0d71
MGD
9290struct deprecated_coproc_regs_s
9291{
9292 unsigned cp;
9293 int opc1;
9294 unsigned crn;
9295 unsigned crm;
9296 int opc2;
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9301};
9302
9303#define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9305
9306/* Table of all deprecated coprocessor registers. */
9307static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9308{
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9323 DEPR_ACCESS_V8, NULL},
9324};
9325
9326#undef DEPR_ACCESS_V8
9327
9328static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9330
09d92015 9331static void
c19d1205 9332do_co_reg (void)
09d92015 9333{
fdfde340 9334 unsigned Rd;
dcbd0d71 9335 size_t i;
fdfde340
JM
9336
9337 Rd = inst.operands[2].reg;
9338 if (thumb_mode)
9339 {
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9342 /* MCR, MCR2 */
9343 reject_bad_reg (Rd);
5c8ed6a4 9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9345 /* MRC, MRC2 */
9346 constraint (Rd == REG_SP, BAD_SP);
9347 }
9348 else
9349 {
9350 /* MCR */
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9353 }
9354
dcbd0d71
MGD
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9356 {
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9359
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9365 {
b10bf8c5 9366 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9367 && warn_on_deprecated
dcbd0d71 9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9369 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9370 }
9371 }
fdfde340 9372
c19d1205
ZW
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9375 inst.instruction |= Rd << 12;
c19d1205
ZW
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9379}
09d92015 9380
c19d1205
ZW
9381/* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9383 MCRR2
9384 MRRC{cond}
9385 MRRC2
b99bd4ef 9386
c19d1205 9387 Two XScale instructions are special cases of these:
09d92015 9388
c19d1205
ZW
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9391
5f4273c7 9392 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9393
c19d1205
ZW
9394static void
9395do_co_reg2c (void)
9396{
fdfde340
JM
9397 unsigned Rd, Rn;
9398
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9401
9402 if (thumb_mode)
9403 {
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9406 }
9407 else
9408 {
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9411 }
9412
873f10f0
TC
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9415 {
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9419 }
9420
c19d1205
ZW
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
c19d1205 9425 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9426}
9427
c19d1205
ZW
9428static void
9429do_cpsi (void)
9430{
9431 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9432 if (inst.operands[1].present)
9433 {
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9436 }
c19d1205 9437}
b99bd4ef 9438
62b3e311
PB
9439static void
9440do_dbg (void)
9441{
9442 inst.instruction |= inst.operands[0].imm;
9443}
9444
eea54501
MGD
9445static void
9446do_div (void)
9447{
9448 unsigned Rd, Rn, Rm;
9449
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9454
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9458
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9462}
9463
b99bd4ef 9464static void
c19d1205 9465do_it (void)
b99bd4ef 9466{
c19d1205 9467 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9471
c19d1205 9472 inst.size = 0;
e07e6e58
NC
9473 if (unified_syntax)
9474 {
5ee91343
AV
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
e07e6e58 9478 }
09d92015 9479}
b99bd4ef 9480
6530b175
NC
9481/* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9483static int
9484only_one_reg_in_list (int range)
9485{
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9488}
9489
09d92015 9490static void
6530b175 9491encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9492{
c19d1205
ZW
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
6530b175 9495 int one_reg;
ea6ef066 9496
c19d1205
ZW
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
ea6ef066 9499
c19d1205
ZW
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9502
c19d1205 9503 if (inst.operands[0].writeback)
ea6ef066 9504 {
c19d1205
ZW
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
09d92015 9508 {
c19d1205
ZW
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9516 }
9517 else /* STM. */
9518 {
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9526 }
ea6ef066 9527 }
6530b175
NC
9528
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9532 {
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9534
4f588891
NC
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9538 return;
9539
6530b175
NC
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9543 }
9544}
9545
9546static void
9547do_ldmstm (void)
9548{
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9550}
9551
c19d1205
ZW
9552/* ARMv5TE load-consecutive (argument parse)
9553 Mode is like LDRH.
9554
9555 LDRccD R, mode
9556 STRccD R, mode. */
9557
a737bd4d 9558static void
c19d1205 9559do_ldrd (void)
a737bd4d 9560{
c19d1205 9561 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9562 _("first transfer register must be even"));
c19d1205
ZW
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9565 _("can only transfer two consecutive registers"));
c19d1205
ZW
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9568
c19d1205
ZW
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9571
c56791bb
RE
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
ea6ef066 9575
c56791bb
RE
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
b05fe5cf 9580
c56791bb
RE
9581 if (!(inst.instruction & V4_STR_BIT))
9582 {
c19d1205 9583 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9589 }
c19d1205
ZW
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9592}
9593
9594static void
c19d1205 9595do_ldrex (void)
b05fe5cf 9596{
c19d1205
ZW
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9602 strex rN, rM, foo
9603 or if they have mistakenly used a register name as the last
9604 operand, eg:
9605 strex rN, rM, rX
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9613 BAD_ADDR_MODE);
b05fe5cf 9614
e2b0ab59
AV
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9617 _("offset must be zero in ARM encoding"));
b05fe5cf 9618
5be8be5d
DG
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9620
c19d1205
ZW
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9624}
9625
9626static void
c19d1205 9627do_ldrexd (void)
b05fe5cf 9628{
c19d1205
ZW
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9637
c19d1205
ZW
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9640}
9641
1be5fd2e
NC
9642/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9644static void
9645check_ldr_r15_aligned (void)
9646{
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
e2b0ab59 9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9651 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9652}
9653
b05fe5cf 9654static void
c19d1205 9655do_ldst (void)
b05fe5cf 9656{
c19d1205
ZW
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
8335d6aa 9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9660 return;
c19d1205 9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9662 check_ldr_r15_aligned ();
b05fe5cf
ZW
9663}
9664
9665static void
c19d1205 9666do_ldstt (void)
b05fe5cf 9667{
c19d1205
ZW
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9669 reject [Rn,...]. */
9670 if (inst.operands[1].preind)
b05fe5cf 9671 {
e2b0ab59
AV
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9674 _("this instruction requires a post-indexed address"));
b05fe5cf 9675
c19d1205
ZW
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
b05fe5cf 9679 }
c19d1205
ZW
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9682}
b05fe5cf 9683
c19d1205 9684/* Halfword and signed-byte load/store operations. */
b05fe5cf 9685
c19d1205
ZW
9686static void
9687do_ldstv4 (void)
9688{
ff4a8d2b 9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
8335d6aa 9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9693 return;
c19d1205 9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9695}
9696
9697static void
c19d1205 9698do_ldsttv4 (void)
b05fe5cf 9699{
c19d1205
ZW
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9701 reject [Rn,...]. */
9702 if (inst.operands[1].preind)
b05fe5cf 9703 {
e2b0ab59
AV
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9706 _("this instruction requires a post-indexed address"));
b05fe5cf 9707
c19d1205
ZW
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
b05fe5cf 9711 }
c19d1205
ZW
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9714}
b05fe5cf 9715
c19d1205
ZW
9716/* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9718static void
9719do_lstc (void)
9720{
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9724}
9725
b05fe5cf 9726static void
c19d1205 9727do_mlas (void)
b05fe5cf 9728{
8fb9d7b9 9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9730 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9732 && !(inst.instruction & 0x00400000))
8fb9d7b9 9733 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9734
c19d1205
ZW
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9739}
b05fe5cf 9740
c19d1205
ZW
9741static void
9742do_mov (void)
9743{
e2b0ab59
AV
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9746 THUMB1_RELOC_ONLY);
c19d1205
ZW
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9749}
b05fe5cf 9750
c19d1205
ZW
9751/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9752static void
9753do_mov16 (void)
9754{
b6895b4f
PB
9755 bfd_vma imm;
9756 bfd_boolean top;
9757
9758 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9760 _(":lower16: not allowed in this instruction"));
e2b0ab59 9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9762 _(":upper16: not allowed in this instruction"));
c19d1205 9763 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9765 {
e2b0ab59 9766 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9770 }
b05fe5cf 9771}
b99bd4ef 9772
037e8744
JB
9773static int
9774do_vfp_nsyn_mrs (void)
9775{
9776 if (inst.operands[0].isvec)
9777 {
9778 if (inst.operands[1].reg != 1)
477330fc 9779 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9783 }
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9786 else
9787 return FAIL;
5f4273c7 9788
037e8744
JB
9789 return SUCCESS;
9790}
9791
9792static int
9793do_vfp_nsyn_msr (void)
9794{
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9797 else
9798 return FAIL;
9799
9800 return SUCCESS;
9801}
9802
f7c21dc7
NC
9803static void
9804do_vmrs (void)
9805{
9806 unsigned Rt = inst.operands[0].reg;
fa94de6b 9807
16d02dc9 9808 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9809 {
9810 inst.error = BAD_SP;
9811 return;
9812 }
9813
40c7d507
RR
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
f7c21dc7 9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9820 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9821 {
9822 inst.error = BAD_PC;
9823 return;
9824 }
9825
16d02dc9
JB
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9829 inst.instruction |= (Rt << 12);
9830}
9831
9832static void
9833do_vmsr (void)
9834{
9835 unsigned Rt = inst.operands[1].reg;
fa94de6b 9836
f7c21dc7
NC
9837 if (thumb_mode)
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9840 {
9841 inst.error = BAD_PC;
9842 return;
9843 }
9844
40c7d507
RR
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9848 _(BAD_FPU));
9849
16d02dc9
JB
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9853 inst.instruction |= (Rt << 12);
9854}
9855
b99bd4ef 9856static void
c19d1205 9857do_mrs (void)
b99bd4ef 9858{
90ec0d68
MGD
9859 unsigned br;
9860
037e8744
JB
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9862 return;
9863
ff4a8d2b 9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9865 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9866
9867 if (inst.operands[1].isreg)
9868 {
9869 br = inst.operands[1].reg;
806ab1c0 9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9871 as_bad (_("bad register for mrs"));
9872 }
9873 else
9874 {
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9877 != (PSR_c|PSR_f),
d2cd1205 9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9880 }
9881
9882 inst.instruction |= br;
c19d1205 9883}
b99bd4ef 9884
c19d1205
ZW
9885/* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
b99bd4ef 9888
c19d1205
ZW
9889static void
9890do_msr (void)
9891{
037e8744
JB
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9893 return;
9894
c19d1205
ZW
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9898 else
b99bd4ef 9899 {
c19d1205 9900 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
b99bd4ef 9903 }
b99bd4ef
NC
9904}
9905
c19d1205
ZW
9906static void
9907do_mul (void)
a737bd4d 9908{
ff4a8d2b
NC
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9910
c19d1205
ZW
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9916
8fb9d7b9
MS
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9920}
9921
c19d1205
ZW
9922/* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9927
9928static void
c19d1205 9929do_mull (void)
b99bd4ef 9930{
c19d1205
ZW
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9935
682b27ad
PB
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9939
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9942 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945}
b99bd4ef 9946
c19d1205
ZW
9947static void
9948do_nop (void)
9949{
e7495e45
NS
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9952 {
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
e7495e45
NS
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
c19d1205 9958 }
b99bd4ef
NC
9959}
9960
c19d1205
ZW
9961/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9965
9966static void
c19d1205 9967do_pkhbt (void)
b99bd4ef 9968{
c19d1205
ZW
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9974}
b99bd4ef 9975
c19d1205 9976/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9977
c19d1205
ZW
9978static void
9979do_pkhtb (void)
9980{
9981 if (!inst.operands[3].present)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9989 }
9990 else
9991 {
c19d1205
ZW
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
b99bd4ef
NC
9996 }
9997}
9998
c19d1205 9999/* ARMv5TE: Preload-Cache
60e5ef9f 10000 MP Extensions: Preload for write
c19d1205 10001
60e5ef9f 10002 PLD(W) <addr_mode>
c19d1205
ZW
10003
10004 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
10005
10006static void
c19d1205 10007do_pld (void)
b99bd4ef 10008{
c19d1205
ZW
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018}
b99bd4ef 10019
62b3e311
PB
10020/* ARMv7: PLI <addr_mode> */
10021static void
10022do_pli (void)
10023{
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10034}
10035
c19d1205
ZW
10036static void
10037do_push_pop (void)
10038{
5e0d7f77
MP
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
6530b175 10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10047}
b99bd4ef 10048
c19d1205
ZW
10049/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10051 respectively.
10052 Unconditionally executed.
10053 Error if Rn is R15. */
b99bd4ef 10054
c19d1205
ZW
10055static void
10056do_rfe (void)
10057{
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10061}
b99bd4ef 10062
c19d1205 10063/* ARM V6 ssat (argument parse). */
b99bd4ef 10064
c19d1205
ZW
10065static void
10066do_ssat (void)
10067{
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10071
c19d1205
ZW
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
b99bd4ef
NC
10074}
10075
c19d1205 10076/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10077
10078static void
c19d1205 10079do_usat (void)
b99bd4ef 10080{
c19d1205
ZW
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10084
c19d1205
ZW
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
b99bd4ef
NC
10087}
10088
c19d1205 10089/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10090
10091static void
c19d1205 10092do_ssat16 (void)
09d92015 10093{
c19d1205
ZW
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10097}
10098
c19d1205
ZW
10099static void
10100do_usat16 (void)
a737bd4d 10101{
c19d1205
ZW
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10105}
a737bd4d 10106
c19d1205
ZW
10107/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
a737bd4d 10109
c19d1205
ZW
10110 setend <endian_specifier>, where <endian_specifier> is either
10111 BE or LE. */
a737bd4d 10112
c19d1205
ZW
10113static void
10114do_setend (void)
10115{
12e37cbc
MGD
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10119
c19d1205
ZW
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
a737bd4d
NC
10122}
10123
10124static void
c19d1205 10125do_shift (void)
a737bd4d 10126{
c19d1205
ZW
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
a737bd4d 10130
c19d1205
ZW
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10134 {
c19d1205
ZW
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10140 }
10141 else
e2b0ab59 10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10143}
10144
09d92015 10145static void
3eb17e6b 10146do_smc (void)
09d92015 10147{
e2b0ab59
AV
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
09d92015
MM
10150}
10151
90ec0d68
MGD
10152static void
10153do_hvc (void)
10154{
e2b0ab59
AV
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10157}
10158
09d92015 10159static void
c19d1205 10160do_swi (void)
09d92015 10161{
e2b0ab59
AV
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
09d92015
MM
10164}
10165
ddfded2f
MW
10166static void
10167do_setpan (void)
10168{
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10171
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10173}
10174
10175static void
10176do_t_setpan (void)
10177{
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= (inst.operands[0].imm << 3);
10182}
10183
c19d1205
ZW
10184/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
e16bb312 10188
c19d1205
ZW
10189static void
10190do_smla (void)
e16bb312 10191{
c19d1205
ZW
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10196}
a737bd4d 10197
c19d1205
ZW
10198/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
a737bd4d 10202
c19d1205
ZW
10203static void
10204do_smlal (void)
10205{
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10210
c19d1205
ZW
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10213}
a737bd4d 10214
c19d1205
ZW
10215/* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
a737bd4d 10218
c19d1205
ZW
10219static void
10220do_smul (void)
10221{
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10225}
a737bd4d 10226
b6702015
PB
10227/* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
a737bd4d 10229
c19d1205
ZW
10230static void
10231do_srs (void)
10232{
b6702015
PB
10233 int reg;
10234
10235 if (inst.operands[0].present)
10236 {
10237 reg = inst.operands[0].reg;
fdfde340 10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10239 }
10240 else
fdfde340 10241 reg = REG_SP;
b6702015
PB
10242
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10246 inst.instruction |= WRITE_BACK;
10247}
a737bd4d 10248
c19d1205 10249/* ARM V6 strex (argument parse). */
a737bd4d 10250
c19d1205
ZW
10251static void
10252do_strex (void)
10253{
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10260 BAD_ADDR_MODE);
a737bd4d 10261
c19d1205
ZW
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10264
e2b0ab59
AV
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10267 _("offset must be zero in ARM encoding"));
a737bd4d 10268
c19d1205
ZW
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10273}
10274
877807f8
NC
10275static void
10276do_t_strexbh (void)
10277{
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10282 BAD_ADDR_MODE);
10283
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10286
10287 do_rm_rd_rn ();
10288}
10289
e16bb312 10290static void
c19d1205 10291do_strexd (void)
e16bb312 10292{
c19d1205
ZW
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10301
c19d1205
ZW
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10305 BAD_OVERLAP);
e16bb312 10306
c19d1205
ZW
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10310}
10311
9eb6c0f1
MGD
10312/* ARM V8 STRL. */
10313static void
4b8c8c02 10314do_stlex (void)
9eb6c0f1
MGD
10315{
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10318
10319 do_rd_rm_rn ();
10320}
10321
10322static void
4b8c8c02 10323do_t_stlex (void)
9eb6c0f1
MGD
10324{
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rm_rd_rn ();
10329}
10330
c19d1205
ZW
10331/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
e16bb312 10339static void
c19d1205 10340do_sxtah (void)
e16bb312 10341{
c19d1205
ZW
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10346}
e16bb312 10347
c19d1205 10348/* ARM V6 SXTH.
e16bb312 10349
c19d1205
ZW
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
e16bb312
NC
10353
10354static void
c19d1205 10355do_sxth (void)
e16bb312 10356{
c19d1205
ZW
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10360}
c19d1205
ZW
10361\f
10362/* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10364
10365static void
c19d1205 10366do_vfp_sp_monadic (void)
e16bb312 10367{
57785aa2
AV
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10370 _(BAD_FPU));
10371
5287ad62
JB
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10374}
10375
10376static void
c19d1205 10377do_vfp_sp_dyadic (void)
e16bb312 10378{
5287ad62
JB
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10382}
10383
10384static void
c19d1205 10385do_vfp_sp_compare_z (void)
e16bb312 10386{
5287ad62 10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10388}
10389
10390static void
c19d1205 10391do_vfp_dp_sp_cvt (void)
e16bb312 10392{
5287ad62
JB
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10395}
10396
10397static void
c19d1205 10398do_vfp_sp_dp_cvt (void)
e16bb312 10399{
5287ad62
JB
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10402}
10403
10404static void
c19d1205 10405do_vfp_reg_from_sp (void)
e16bb312 10406{
57785aa2
AV
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
c19d1205 10411 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10413}
10414
10415static void
c19d1205 10416do_vfp_reg2_from_sp2 (void)
e16bb312 10417{
c19d1205
ZW
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10423}
10424
10425static void
c19d1205 10426do_vfp_sp_from_reg (void)
e16bb312 10427{
57785aa2
AV
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10430 _(BAD_FPU));
10431
5287ad62 10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10433 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10434}
10435
10436static void
c19d1205 10437do_vfp_sp2_from_reg2 (void)
e16bb312 10438{
c19d1205
ZW
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10444}
10445
10446static void
c19d1205 10447do_vfp_sp_ldst (void)
e16bb312 10448{
5287ad62 10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10451}
10452
10453static void
c19d1205 10454do_vfp_dp_ldst (void)
e16bb312 10455{
5287ad62 10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10458}
10459
c19d1205 10460
e16bb312 10461static void
c19d1205 10462vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10463{
c19d1205
ZW
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10471 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10472}
10473
10474static void
c19d1205 10475vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10476{
c19d1205 10477 int count;
e16bb312 10478
c19d1205
ZW
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10481 else
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
e16bb312 10484
c19d1205 10485 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10487
c19d1205
ZW
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10490 count += 1;
e16bb312 10491
c19d1205 10492 inst.instruction |= count;
e16bb312
NC
10493}
10494
10495static void
c19d1205 10496do_vfp_sp_ldstmia (void)
e16bb312 10497{
c19d1205 10498 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10499}
10500
10501static void
c19d1205 10502do_vfp_sp_ldstmdb (void)
e16bb312 10503{
c19d1205 10504 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10505}
10506
10507static void
c19d1205 10508do_vfp_dp_ldstmia (void)
e16bb312 10509{
c19d1205 10510 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10511}
10512
10513static void
c19d1205 10514do_vfp_dp_ldstmdb (void)
e16bb312 10515{
c19d1205 10516 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10517}
10518
10519static void
c19d1205 10520do_vfp_xp_ldstmia (void)
e16bb312 10521{
c19d1205
ZW
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10523}
e16bb312 10524
c19d1205
ZW
10525static void
10526do_vfp_xp_ldstmdb (void)
10527{
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10529}
5287ad62
JB
10530
10531static void
10532do_vfp_dp_rd_rm (void)
10533{
57785aa2
AV
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10536 _(BAD_FPU));
10537
5287ad62
JB
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10540}
10541
10542static void
10543do_vfp_dp_rn_rd (void)
10544{
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10547}
10548
10549static void
10550do_vfp_dp_rd_rn (void)
10551{
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10554}
10555
10556static void
10557do_vfp_dp_rd_rn_rm (void)
10558{
57785aa2
AV
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10561 _(BAD_FPU));
10562
5287ad62
JB
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10566}
10567
10568static void
10569do_vfp_dp_rd (void)
10570{
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10572}
10573
10574static void
10575do_vfp_dp_rm_rd_rn (void)
10576{
57785aa2
AV
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
5287ad62
JB
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10584}
10585
10586/* VFPv3 instructions. */
10587static void
10588do_vfp_sp_const (void)
10589{
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10593}
10594
10595static void
10596do_vfp_dp_const (void)
10597{
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10601}
10602
10603static void
10604vfp_conv (int srcsize)
10605{
5f1af56b
MGD
10606 int immbits = srcsize - inst.operands[1].imm;
10607
fa94de6b
RM
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10609 {
5f1af56b 10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10611 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10613 return;
10614 }
fa94de6b 10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10616 {
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10618 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10620 return;
10621 }
10622
5287ad62
JB
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10625}
10626
10627static void
10628do_vfp_sp_conv_16 (void)
10629{
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10631 vfp_conv (16);
10632}
10633
10634static void
10635do_vfp_dp_conv_16 (void)
10636{
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10638 vfp_conv (16);
10639}
10640
10641static void
10642do_vfp_sp_conv_32 (void)
10643{
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (32);
10646}
10647
10648static void
10649do_vfp_dp_conv_32 (void)
10650{
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (32);
10653}
c19d1205
ZW
10654\f
10655/* FPA instructions. Also in a logical order. */
e16bb312 10656
c19d1205
ZW
10657static void
10658do_fpa_cmp (void)
10659{
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10662}
b99bd4ef
NC
10663
10664static void
c19d1205 10665do_fpa_ldmstm (void)
b99bd4ef 10666{
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10669 {
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10673 case 4: break;
10674 default: abort ();
10675 }
b99bd4ef 10676
c19d1205
ZW
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10678 {
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
e2b0ab59
AV
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10685 _("this instruction does not support indexing"));
b99bd4ef 10686
c19d1205 10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10689
c19d1205 10690 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10692
c19d1205
ZW
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10694 {
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10697 }
10698 }
b99bd4ef 10699
c19d1205 10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10701}
c19d1205
ZW
10702\f
10703/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10704
c19d1205
ZW
10705static void
10706do_iwmmxt_tandorc (void)
10707{
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10709}
b99bd4ef 10710
c19d1205
ZW
10711static void
10712do_iwmmxt_textrc (void)
10713{
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10716}
b99bd4ef
NC
10717
10718static void
c19d1205 10719do_iwmmxt_textrm (void)
b99bd4ef 10720{
c19d1205
ZW
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10724}
b99bd4ef 10725
c19d1205
ZW
10726static void
10727do_iwmmxt_tinsr (void)
10728{
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10732}
b99bd4ef 10733
c19d1205
ZW
10734static void
10735do_iwmmxt_tmia (void)
10736{
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10740}
b99bd4ef 10741
c19d1205
ZW
10742static void
10743do_iwmmxt_waligni (void)
10744{
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10749}
b99bd4ef 10750
2d447fca
JM
10751static void
10752do_iwmmxt_wmerge (void)
10753{
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10758}
10759
c19d1205
ZW
10760static void
10761do_iwmmxt_wmov (void)
10762{
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767}
b99bd4ef 10768
c19d1205
ZW
10769static void
10770do_iwmmxt_wldstbh (void)
10771{
8f06b2d8 10772 int reloc;
c19d1205 10773 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10774 if (thumb_mode)
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10776 else
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10779}
10780
c19d1205
ZW
10781static void
10782do_iwmmxt_wldstw (void)
10783{
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10786 {
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10789 }
b99bd4ef 10790
c19d1205
ZW
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10793}
b99bd4ef
NC
10794
10795static void
c19d1205 10796do_iwmmxt_wldstd (void)
b99bd4ef 10797{
c19d1205 10798 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10801 {
10802 inst.instruction &= ~0x1a000ff;
eff0bc54 10803 inst.instruction |= (0xfU << 28);
2d447fca
JM
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10812 inst.instruction |= inst.operands[1].imm;
10813 }
10814 else
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10816}
b99bd4ef 10817
c19d1205
ZW
10818static void
10819do_iwmmxt_wshufh (void)
10820{
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10825}
b99bd4ef 10826
c19d1205
ZW
10827static void
10828do_iwmmxt_wzero (void)
10829{
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10834}
2d447fca
JM
10835
10836static void
10837do_iwmmxt_wrwrwr_or_imm5 (void)
10838{
10839 if (inst.operands[2].isreg)
10840 do_rd_rn_rm ();
10841 else {
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10844 do_rd_rn ();
10845 if (inst.operands[2].imm == 0)
10846 {
10847 switch ((inst.instruction >> 20) & 0xf)
10848 {
10849 case 4:
10850 case 5:
10851 case 6:
5f4273c7 10852 case 7:
2d447fca
JM
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10856 break;
10857 case 8:
10858 case 9:
10859 case 10:
10860 case 11:
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10864 break;
10865 case 12:
10866 case 13:
10867 case 14:
10868 case 15:
10869 {
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10871 unsigned long wrn;
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10876 return;
10877 }
10878 }
10879 }
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
eff0bc54 10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10883 }
10884}
c19d1205
ZW
10885\f
10886/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
b99bd4ef 10888
c19d1205 10889/* Insns like "foo X,Y,Z". */
b99bd4ef 10890
c19d1205
ZW
10891static void
10892do_mav_triple (void)
10893{
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10897}
b99bd4ef 10898
c19d1205
ZW
10899/* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10901
c19d1205
ZW
10902static void
10903do_mav_quad (void)
10904{
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10909}
10910
c19d1205
ZW
10911/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10912static void
10913do_mav_dspsc (void)
a737bd4d 10914{
c19d1205
ZW
10915 inst.instruction |= inst.operands[1].reg << 12;
10916}
a737bd4d 10917
c19d1205
ZW
10918/* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10921
c19d1205
ZW
10922static void
10923do_mav_shift (void)
10924{
10925 int imm = inst.operands[2].imm;
a737bd4d 10926
c19d1205
ZW
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10929
c19d1205
ZW
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10934
c19d1205
ZW
10935 inst.instruction |= imm;
10936}
10937\f
10938/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10939
c19d1205
ZW
10940/* Xscale multiply-accumulate (argument parse)
10941 MIAcc acc0,Rm,Rs
10942 MIAPHcc acc0,Rm,Rs
10943 MIAxycc acc0,Rm,Rs. */
a737bd4d 10944
c19d1205
ZW
10945static void
10946do_xsc_mia (void)
10947{
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10950}
a737bd4d 10951
c19d1205 10952/* Xscale move-accumulator-register (argument parse)
a737bd4d 10953
c19d1205 10954 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10955
c19d1205
ZW
10956static void
10957do_xsc_mar (void)
10958{
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10961}
10962
c19d1205 10963/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10964
c19d1205 10965 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10966
10967static void
c19d1205 10968do_xsc_mra (void)
b99bd4ef 10969{
c19d1205
ZW
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10973}
10974\f
10975/* Encoding functions relevant only to Thumb. */
b99bd4ef 10976
c19d1205
ZW
10977/* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10979
10980static void
10981encode_thumb32_shifted_operand (int i)
10982{
e2b0ab59 10983 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10984 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10985
9c3c69f2
PB
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10991 else
b99bd4ef 10992 {
e2b0ab59 10993 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10994 _("expression too complex"));
10995
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11000
11001 if (value == 0)
11002 shift = SHIFT_LSL;
11003 else if (value == 32)
11004 value = 0;
11005
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 11009 }
c19d1205 11010}
b99bd4ef 11011
b99bd4ef 11012
c19d1205
ZW
11013/* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
b99bd4ef 11019
c19d1205
ZW
11020static void
11021encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11022{
5be8be5d 11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11024
11025 constraint (!inst.operands[i].isreg,
53365c0d 11026 _("Instruction does not support =N addresses"));
b99bd4ef 11027
c19d1205
ZW
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
b99bd4ef 11030 {
5be8be5d 11031 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11041
f40d1643 11042 inst.instruction |= inst.operands[i].imm;
c19d1205 11043 if (inst.operands[i].shifted)
b99bd4ef 11044 {
e2b0ab59 11045 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11046 _("expression too complex"));
e2b0ab59
AV
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11049 _("shift out of range"));
e2b0ab59 11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11051 }
e2b0ab59 11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11053 }
11054 else if (inst.operands[i].preind)
11055 {
5be8be5d 11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11057 constraint (is_t && inst.operands[i].writeback,
c19d1205 11058 _("cannot use writeback with this instruction"));
4755303e
WN
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
c19d1205
ZW
11061
11062 if (is_d)
11063 {
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
b99bd4ef 11067 }
c19d1205 11068 else
b99bd4ef 11069 {
c19d1205
ZW
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
b99bd4ef 11073 }
e2b0ab59 11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11075 }
c19d1205 11076 else if (inst.operands[i].postind)
b99bd4ef 11077 {
9c2799c2 11078 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11081
11082 if (is_d)
11083 inst.instruction |= 0x00200000;
11084 else
11085 inst.instruction |= 0x00000900;
e2b0ab59 11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11087 }
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11090}
11091
11092/* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11096 holds variant (1).
11097 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11098#define T16_32_TAB \
21d799b5
NC
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
4389b29a 11114 X(_bf, 0000, f040e001), \
f6b2b12d 11115 X(_bfcsel,0000, f000e001), \
f1c7f421 11116 X(_bfx, 0000, f060e001), \
65d1bc05 11117 X(_bfl, 0000, f000c001), \
f1c7f421 11118 X(_bflx, 0000, f070e001), \
21d799b5
NC
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11127 X(_dls, 0000, f040e001), \
21d799b5
NC
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
60f993ce 11140 X(_le, 0000, f00fc001), \
21d799b5
NC
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
60f993ce 11182 X(_wls, 0000, f040c001), \
53c4b28b 11183 X(_sev, bf40, f3af8004), \
74db7efb
NC
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
c19d1205
ZW
11186
11187/* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
21d799b5 11190#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11191enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11192#undef X
11193
11194#define X(a,b,c) 0x##b
11195static const unsigned short thumb_op16[] = { T16_32_TAB };
11196#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11197#undef X
11198
11199#define X(a,b,c) 0x##c
11200static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11201#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11203#undef X
11204#undef T16_32_TAB
11205
11206/* Thumb instruction encoders, in alphabetical order. */
11207
92e90b6e 11208/* ADDW or SUBW. */
c921be7d 11209
92e90b6e
PB
11210static void
11211do_t_add_sub_w (void)
11212{
11213 int Rd, Rn;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217
539d4391
NC
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11220 if (Rn == REG_SP)
11221 constraint (Rd == REG_PC, BAD_PC);
11222 else
11223 reject_bad_reg (Rd);
fdfde340 11224
92e90b6e 11225 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11227}
11228
c19d1205 11229/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11231
11232static void
11233do_t_add_sub (void)
11234{
11235 int Rd, Rs, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11241
e07e6e58 11242 if (Rd == REG_PC)
5ee91343 11243 set_pred_insn_type_last ();
e07e6e58 11244
c19d1205
ZW
11245 if (unified_syntax)
11246 {
0110f2b8
PB
11247 bfd_boolean flags;
11248 bfd_boolean narrow;
11249 int opcode;
11250
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11253 if (flags)
5ee91343 11254 narrow = !in_pred_block ();
0110f2b8 11255 else
5ee91343 11256 narrow = in_pred_block ();
c19d1205 11257 if (!inst.operands[2].isreg)
b99bd4ef 11258 {
16805f35
PB
11259 int add;
11260
5c8ed6a4
JW
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11263
16805f35
PB
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11266 opcode = 0;
11267 if (inst.size_req != 4)
11268 {
0110f2b8 11269 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11270 appropriate. */
0110f2b8
PB
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11278 {
11279 if (flags)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11281 else
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11283 }
11284 if (opcode)
11285 {
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11291 {
11292 if (inst.size_req == 2)
e2b0ab59 11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11294 else
11295 inst.relax = opcode;
11296 }
0110f2b8
PB
11297 }
11298 else
11299 constraint (inst.size_req == 2, BAD_HIREG);
11300 }
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11303 {
e2b0ab59
AV
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11308 THUMB1_RELOC_ONLY);
efd81785
PB
11309 if (Rd == REG_PC)
11310 {
fdfde340 11311 constraint (add, BAD_PC);
efd81785
PB
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11314 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11315 _("expression too complex"));
e2b0ab59
AV
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11322 return;
11323 }
11324 else if (Rs == REG_PC)
16805f35
PB
11325 {
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11329 }
11330 else
11331 {
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11334 | 0x10000000;
11335 if (flags)
e2b0ab59 11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11337 else
e2b0ab59 11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11339 }
dc4503c6
PB
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
0110f2b8 11342 }
b99bd4ef 11343 }
c19d1205
ZW
11344 else
11345 {
e2b0ab59 11346 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11347 unsigned int shift = inst.operands[2].shift_kind;
11348
c19d1205
ZW
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11352 {
e27ec89e
PB
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11354 narrow = FALSE;
11355
11356 if (narrow)
c19d1205 11357 {
e27ec89e
PB
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11360 ? T_OPCODE_ADD_R3
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11363 return;
11364 }
b99bd4ef 11365
7e806470 11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11367 {
7e806470
PB
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11373 {
7e806470
PB
11374 if (Rd == Rn)
11375 {
11376 Rn = Rs;
11377 Rs = Rd;
11378 }
c19d1205
ZW
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11383 return;
11384 }
c19d1205
ZW
11385 }
11386 }
c921be7d 11387
fdfde340 11388 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11393
c19d1205
ZW
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
5f4cb198
NC
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11404 encode_thumb32_shifted_operand (2);
11405 }
11406 }
11407 else
11408 {
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11411 BAD_THUMB32);
b99bd4ef 11412
c19d1205 11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11414 {
c19d1205
ZW
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11417 BAD_HIREG);
11418
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11423 return;
11424 }
11425
c19d1205
ZW
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11428
c19d1205
ZW
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11431 {
c19d1205
ZW
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11437 if (Rs == Rd)
11438 inst.instruction |= Rn << 3;
11439 else if (Rn == Rd)
11440 inst.instruction |= Rs << 3;
11441 else
11442 constraint (1, _("dest must overlap one source register"));
11443 }
11444 else
11445 {
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11449 }
b99bd4ef 11450 }
b99bd4ef
NC
11451}
11452
c19d1205
ZW
11453static void
11454do_t_adr (void)
11455{
fdfde340
JM
11456 unsigned Rd;
11457
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11460
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11462 {
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11466 inst.instruction |= Rd << 4;
0110f2b8
PB
11467 }
11468 else if (unified_syntax && inst.size_req != 2)
e9f89963 11469 {
0110f2b8 11470 /* Generate a 32-bit opcode. */
e9f89963 11471 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11472 inst.instruction |= Rd << 8;
e2b0ab59
AV
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11475 }
11476 else
11477 {
0110f2b8 11478 /* Generate a 16-bit opcode. */
e9f89963 11479 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
fdfde340 11483 inst.instruction |= Rd << 4;
e9f89963 11484 }
52a86f84 11485
e2b0ab59
AV
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11491}
b99bd4ef 11492
c19d1205
ZW
11493/* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11499static void
c19d1205 11500do_t_arit3 (void)
b99bd4ef 11501{
c19d1205 11502 int Rd, Rs, Rn;
b99bd4ef 11503
c19d1205
ZW
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
b99bd4ef 11509
fdfde340
JM
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11514
c19d1205 11515 if (unified_syntax)
b99bd4ef 11516 {
c19d1205
ZW
11517 if (!inst.operands[2].isreg)
11518 {
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
e2b0ab59 11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11526 }
11527 else
11528 {
e27ec89e
PB
11529 bfd_boolean narrow;
11530
c19d1205 11531 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11532 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11533 narrow = !in_pred_block ();
e27ec89e 11534 else
5ee91343 11535 narrow = in_pred_block ();
e27ec89e
PB
11536
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11538 narrow = FALSE;
11539 if (inst.operands[2].shifted)
11540 narrow = FALSE;
11541 if (inst.size_req == 4)
11542 narrow = FALSE;
11543
11544 if (narrow
c19d1205
ZW
11545 && Rd == Rs)
11546 {
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11550 return;
11551 }
b99bd4ef 11552
c19d1205
ZW
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11561 }
a737bd4d 11562 }
c19d1205 11563 else
b99bd4ef 11564 {
c19d1205
ZW
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11569
c19d1205
ZW
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
a737bd4d 11575
c19d1205
ZW
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
b99bd4ef 11579 }
a737bd4d 11580}
b99bd4ef 11581
c19d1205
ZW
11582/* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11586 accepted. */
11587static void
11588do_t_arit3c (void)
a737bd4d 11589{
c19d1205 11590 int Rd, Rs, Rn;
b99bd4ef 11591
c19d1205
ZW
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
c921be7d 11597
fdfde340
JM
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
a737bd4d 11602
c19d1205 11603 if (unified_syntax)
a737bd4d 11604 {
c19d1205 11605 if (!inst.operands[2].isreg)
b99bd4ef 11606 {
c19d1205
ZW
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
e2b0ab59 11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11614 }
c19d1205 11615 else
a737bd4d 11616 {
e27ec89e
PB
11617 bfd_boolean narrow;
11618
c19d1205 11619 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11620 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11621 narrow = !in_pred_block ();
e27ec89e 11622 else
5ee91343 11623 narrow = in_pred_block ();
e27ec89e
PB
11624
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11626 narrow = FALSE;
11627 if (inst.operands[2].shifted)
11628 narrow = FALSE;
11629 if (inst.size_req == 4)
11630 narrow = FALSE;
11631
11632 if (narrow)
a737bd4d 11633 {
c19d1205 11634 if (Rd == Rs)
a737bd4d 11635 {
c19d1205
ZW
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11639 return;
a737bd4d 11640 }
c19d1205 11641 if (Rd == Rn)
a737bd4d 11642 {
c19d1205
ZW
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11646 return;
a737bd4d
NC
11647 }
11648 }
c19d1205
ZW
11649
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
a737bd4d 11658 }
b99bd4ef 11659 }
c19d1205
ZW
11660 else
11661 {
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11666
c19d1205
ZW
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11670
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11673
11674 if (Rd == Rs)
11675 inst.instruction |= Rn << 3;
11676 else if (Rd == Rn)
11677 inst.instruction |= Rs << 3;
11678 else
11679 constraint (1, _("dest must overlap one source register"));
11680 }
a737bd4d
NC
11681}
11682
c19d1205
ZW
11683static void
11684do_t_bfc (void)
a737bd4d 11685{
fdfde340 11686 unsigned Rd;
c19d1205
ZW
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
fdfde340
JM
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
c19d1205
ZW
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
b99bd4ef
NC
11697}
11698
c19d1205
ZW
11699static void
11700do_t_bfi (void)
b99bd4ef 11701{
fdfde340 11702 int Rd, Rn;
c19d1205 11703 unsigned int msb;
b99bd4ef 11704
fdfde340
JM
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11707
c19d1205
ZW
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
fdfde340
JM
11711 Rn = REG_PC;
11712 else
11713 {
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11716 }
b99bd4ef 11717
c19d1205
ZW
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
fdfde340
JM
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
c19d1205
ZW
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
b99bd4ef
NC
11727}
11728
c19d1205
ZW
11729static void
11730do_t_bfx (void)
b99bd4ef 11731{
fdfde340
JM
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11736
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11739
c19d1205
ZW
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
fdfde340
JM
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
c19d1205
ZW
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11747}
b99bd4ef 11748
c19d1205
ZW
11749/* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
b99bd4ef 11755
c19d1205
ZW
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11758
c19d1205
ZW
11759static void
11760do_t_blx (void)
11761{
5ee91343 11762 set_pred_insn_type_last ();
e07e6e58 11763
c19d1205 11764 if (inst.operands[0].isreg)
fdfde340
JM
11765 {
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11769 }
b99bd4ef
NC
11770 else
11771 {
c19d1205 11772 /* No register. This must be BLX(1). */
2fc8bdac 11773 inst.instruction = 0xf000e800;
0855e32b 11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11775 }
11776}
11777
c19d1205
ZW
11778static void
11779do_t_branch (void)
b99bd4ef 11780{
0110f2b8 11781 int opcode;
dfa9f0d5 11782 int cond;
2fe88214 11783 bfd_reloc_code_real_type reloc;
dfa9f0d5 11784
e07e6e58 11785 cond = inst.cond;
5ee91343 11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11787
5ee91343 11788 if (in_pred_block ())
dfa9f0d5
PB
11789 {
11790 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11791 branches. */
dfa9f0d5 11792 cond = COND_ALWAYS;
dfa9f0d5
PB
11793 }
11794 else
11795 cond = inst.cond;
11796
11797 if (cond != COND_ALWAYS)
0110f2b8
PB
11798 opcode = T_MNEM_bcond;
11799 else
11800 opcode = inst.instruction;
11801
12d6b0b7
RS
11802 if (unified_syntax
11803 && (inst.size_req == 4
10960bfb
PB
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
e2b0ab59 11806 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11807 {
0110f2b8 11808 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11809 if (cond == COND_ALWAYS)
9ae92b05 11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11811 else
11812 {
ff8646ee
TP
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11816
9c2799c2 11817 gas_assert (cond != 0xF);
dfa9f0d5 11818 inst.instruction |= cond << 22;
9ae92b05 11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11820 }
11821 }
b99bd4ef
NC
11822 else
11823 {
0110f2b8 11824 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11825 if (cond == COND_ALWAYS)
9ae92b05 11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11827 else
b99bd4ef 11828 {
dfa9f0d5 11829 inst.instruction |= cond << 8;
9ae92b05 11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11831 }
0110f2b8
PB
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
b99bd4ef 11835 }
e2b0ab59
AV
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11838}
11839
8884b720 11840/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11841 between the two is the maximum immediate allowed - which is passed in
8884b720 11842 RANGE. */
b99bd4ef 11843static void
8884b720 11844do_t_bkpt_hlt1 (int range)
b99bd4ef 11845{
dfa9f0d5
PB
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
c19d1205 11848 if (inst.operands[0].present)
b99bd4ef 11849 {
8884b720 11850 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11853 }
8884b720 11854
5ee91343 11855 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11856}
11857
11858static void
11859do_t_hlt (void)
11860{
11861 do_t_bkpt_hlt1 (63);
11862}
11863
11864static void
11865do_t_bkpt (void)
11866{
11867 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11868}
11869
11870static void
c19d1205 11871do_t_branch23 (void)
b99bd4ef 11872{
5ee91343 11873 set_pred_insn_type_last ();
0855e32b 11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11875
0855e32b
NS
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
e2b0ab59
AV
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11883
4343666d 11884#if defined(OBJ_COFF)
c19d1205
ZW
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11895#endif
90e4755a
RE
11896}
11897
11898static void
c19d1205 11899do_t_bx (void)
90e4755a 11900{
5ee91343 11901 set_pred_insn_type_last ();
c19d1205
ZW
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11906}
90e4755a 11907
c19d1205
ZW
11908static void
11909do_t_bxj (void)
11910{
fdfde340 11911 int Rm;
90e4755a 11912
5ee91343 11913 set_pred_insn_type_last ();
fdfde340
JM
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
90e4755a
RE
11917}
11918
11919static void
c19d1205 11920do_t_clz (void)
90e4755a 11921{
fdfde340
JM
11922 unsigned Rd;
11923 unsigned Rm;
11924
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11927
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
c19d1205 11934}
90e4755a 11935
91d8b670
JG
11936static void
11937do_t_csdb (void)
11938{
5ee91343 11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11940}
11941
dfa9f0d5
PB
11942static void
11943do_t_cps (void)
11944{
5ee91343 11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11946 inst.instruction |= inst.operands[0].imm;
11947}
11948
c19d1205
ZW
11949static void
11950do_t_cpsi (void)
11951{
5ee91343 11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11953 if (unified_syntax
62b3e311
PB
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11956 {
c19d1205
ZW
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11963 }
c19d1205 11964 else
90e4755a 11965 {
62b3e311
PB
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
90e4755a 11974 }
90e4755a
RE
11975}
11976
c19d1205
ZW
11977/* THUMB CPY instruction (argument parse). */
11978
90e4755a 11979static void
c19d1205 11980do_t_cpy (void)
90e4755a 11981{
c19d1205 11982 if (inst.size_req == 4)
90e4755a 11983 {
c19d1205
ZW
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
90e4755a 11987 }
c19d1205 11988 else
90e4755a 11989 {
c19d1205
ZW
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11993 }
90e4755a
RE
11994}
11995
90e4755a 11996static void
25fe350b 11997do_t_cbz (void)
90e4755a 11998{
5ee91343 11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 12004}
90e4755a 12005
62b3e311
PB
12006static void
12007do_t_dbg (void)
12008{
12009 inst.instruction |= inst.operands[0].imm;
12010}
12011
12012static void
12013do_t_div (void)
12014{
fdfde340
JM
12015 unsigned Rd, Rn, Rm;
12016
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12021
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12025
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
62b3e311
PB
12029}
12030
c19d1205
ZW
12031static void
12032do_t_hint (void)
12033{
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12036 else
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12038}
90e4755a 12039
c19d1205
ZW
12040static void
12041do_t_it (void)
12042{
12043 unsigned int cond = inst.operands[0].imm;
e27ec89e 12044
5ee91343
AV
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12050
12051 /* If the condition is a negative condition, invert the mask. */
c19d1205 12052 if ((cond & 0x1) == 0x0)
90e4755a 12053 {
c19d1205 12054 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12055
c19d1205 12056 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12057 {
12058 /* No conversion needed. */
5ee91343 12059 now_pred.block_length = 1;
5a01bb1d 12060 }
c19d1205 12061 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12062 {
12063 mask ^= 0x8;
5ee91343 12064 now_pred.block_length = 2;
5a01bb1d 12065 }
e27ec89e 12066 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12067 {
12068 mask ^= 0xC;
5ee91343 12069 now_pred.block_length = 3;
5a01bb1d 12070 }
c19d1205 12071 else
5a01bb1d
MGD
12072 {
12073 mask ^= 0xE;
5ee91343 12074 now_pred.block_length = 4;
5a01bb1d 12075 }
90e4755a 12076
e27ec89e
PB
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
c19d1205 12079 }
90e4755a 12080
c19d1205
ZW
12081 inst.instruction |= cond << 4;
12082}
90e4755a 12083
3c707909
PB
12084/* Helper function used for both push/pop and ldm/stm. */
12085static void
4b5a202f
AV
12086encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
3c707909 12088{
4b5a202f 12089 bfd_boolean load, store;
3c707909 12090
4b5a202f
AV
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
3c707909
PB
12094
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
1e5b0379 12097
4b5a202f 12098 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12099 && writeback)
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12102
3c707909
PB
12103 if (load)
12104 {
e07e6e58 12105 if (mask & (1 << 15))
477330fc
RM
12106 {
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12109 else
5ee91343 12110 set_pred_insn_type_last ();
477330fc 12111 }
3c707909 12112 }
4b5a202f 12113 else if (store)
3c707909
PB
12114 {
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
3c707909
PB
12117 }
12118
4b5a202f 12119 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12120 {
12121 /* Single register transfers implemented as str/ldr. */
12122 if (writeback)
12123 {
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12126 else
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12128 }
12129 else
12130 {
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12133 else
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12135 }
12136
12137 inst.instruction |= 0xf8400000;
12138 if (load)
12139 inst.instruction |= 0x00100000;
12140
5f4273c7 12141 mask = ffs (mask) - 1;
3c707909
PB
12142 mask <<= 12;
12143 }
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12146
12147 inst.instruction |= mask;
4b5a202f
AV
12148 if (do_io)
12149 inst.instruction |= base << 16;
3c707909
PB
12150}
12151
c19d1205
ZW
12152static void
12153do_t_ldmstm (void)
12154{
12155 /* This really doesn't seem worth it. */
e2b0ab59 12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12160
c19d1205
ZW
12161 if (unified_syntax)
12162 {
3c707909
PB
12163 bfd_boolean narrow;
12164 unsigned mask;
12165
12166 narrow = FALSE;
c19d1205
ZW
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
3c707909 12170 && !(inst.operands[1].imm & ~0xff))
90e4755a 12171 {
3c707909 12172 mask = 1 << inst.operands[0].reg;
90e4755a 12173
eab4f823 12174 if (inst.operands[0].reg <= 7)
90e4755a 12175 {
3c707909 12176 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
477330fc 12180 {
eab4f823
MGD
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
3c707909 12186
eab4f823
MGD
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12190 narrow = TRUE;
12191 }
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12193 {
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
477330fc 12197 reglist.
eab4f823
MGD
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
fa94de6b 12206 inst.error =
eab4f823
MGD
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
fa94de6b
RM
12209
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12211 : T_MNEM_ldr);
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12215 narrow = TRUE;
12216 }
90e4755a 12217 }
eab4f823 12218 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12219 {
eab4f823
MGD
12220 if (inst.operands[0].writeback)
12221 {
fa94de6b 12222 inst.instruction =
eab4f823 12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12224 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12225 inst.instruction |= inst.operands[1].imm;
477330fc 12226 narrow = TRUE;
eab4f823
MGD
12227 }
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12229 {
fa94de6b 12230 inst.instruction =
eab4f823 12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12234 narrow = TRUE;
eab4f823 12235 }
90e4755a 12236 }
3c707909
PB
12237 }
12238
12239 if (!narrow)
12240 {
c19d1205
ZW
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12243
4b5a202f
AV
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
90e4755a
RE
12247 }
12248 }
c19d1205 12249 else
90e4755a 12250 {
c19d1205
ZW
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12256 if (inst.instruction == T_MNEM_stmia)
f03698e6 12257 {
c19d1205
ZW
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12262 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12263 inst.operands[0].reg);
f03698e6 12264 }
c19d1205 12265 else
90e4755a 12266 {
c19d1205
ZW
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12273 }
12274
c19d1205
ZW
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12278 }
12279}
e28cd48c 12280
c19d1205
ZW
12281static void
12282do_t_ldrex (void)
12283{
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
01cfc07f 12288 BAD_ADDR_MODE);
e28cd48c 12289
5be8be5d
DG
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12291
c19d1205
ZW
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12295}
e28cd48c 12296
c19d1205
ZW
12297static void
12298do_t_ldrexd (void)
12299{
12300 if (!inst.operands[1].present)
1cac9012 12301 {
c19d1205
ZW
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12306 }
c19d1205
ZW
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12308 BAD_OVERLAP);
b99bd4ef 12309
c19d1205
ZW
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12313}
12314
12315static void
c19d1205 12316do_t_ldst (void)
b99bd4ef 12317{
0110f2b8
PB
12318 unsigned long opcode;
12319 int Rn;
12320
e07e6e58
NC
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
5ee91343 12324 set_pred_insn_type_last ();
e07e6e58 12325
0110f2b8 12326 opcode = inst.instruction;
c19d1205 12327 if (unified_syntax)
b99bd4ef 12328 {
53365c0d
PB
12329 if (!inst.operands[1].isreg)
12330 {
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12334 return;
12335 }
0110f2b8
PB
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
c19d1205
ZW
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
c19d1205 12342 {
0110f2b8
PB
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12346 {
12347 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12348 /* [Rn, Rik] */
0110f2b8
PB
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12350 goto op16;
5be8be5d
DG
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12353 }
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12358 {
12359 /* [Rn, #const] */
12360 if (Rn > 7)
12361 {
12362 if (Rn == REG_PC)
12363 {
e2b0ab59 12364 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12365 opcode = T_MNEM_ldr_pc2;
12366 else
12367 opcode = T_MNEM_ldr_pc;
12368 }
12369 else
12370 {
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12373 else
12374 opcode = T_MNEM_str_sp;
12375 }
12376 inst.instruction = inst.operands[0].reg << 8;
12377 }
12378 else
12379 {
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12382 }
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
e2b0ab59 12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12386 else
12387 inst.relax = opcode;
12388 return;
12389 }
c19d1205 12390 }
0110f2b8 12391 /* Definitely a 32-bit variant. */
5be8be5d 12392
8d67f500
NC
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12398 {
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12406 }
12407
5be8be5d 12408 /* Do some validations regarding addressing modes. */
1be5fd2e 12409 if (inst.operands[1].immisreg)
5be8be5d
DG
12410 reject_bad_reg (inst.operands[1].imm);
12411
1be5fd2e
NC
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12414 BAD_OVERLAP);
12415
0110f2b8 12416 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12419 check_ldr_r15_aligned ();
b99bd4ef
NC
12420 return;
12421 }
12422
c19d1205
ZW
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12424
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12426 {
c19d1205
ZW
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12434 goto op16;
b99bd4ef 12435 }
5f4273c7 12436
c19d1205
ZW
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
8335d6aa 12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12440 return;
b99bd4ef 12441
c19d1205
ZW
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12447 {
c19d1205
ZW
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
b99bd4ef 12455
c19d1205
ZW
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12460 else
12461 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12462
c19d1205 12463 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12465 return;
12466 }
90e4755a 12467
c19d1205
ZW
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12470 {
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12475 return;
12476 }
90e4755a 12477
c19d1205
ZW
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
90e4755a 12482
c19d1205
ZW
12483 op16:
12484 switch (inst.instruction)
12485 {
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12494 default: abort ();
12495 }
90e4755a 12496
c19d1205
ZW
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12500}
90e4755a 12501
c19d1205
ZW
12502static void
12503do_t_ldstd (void)
12504{
12505 if (!inst.operands[1].present)
b99bd4ef 12506 {
c19d1205
ZW
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
bd340a04 12510 constraint (inst.operands[0].reg == REG_R12,
477330fc 12511 _("r12 not allowed here"));
b99bd4ef 12512 }
bd340a04
MGD
12513
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
477330fc 12518 "one of transfer registers"));
bd340a04 12519
c19d1205
ZW
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12523}
12524
c19d1205
ZW
12525static void
12526do_t_ldstt (void)
12527{
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12530}
a737bd4d 12531
b99bd4ef 12532static void
c19d1205 12533do_t_mla (void)
b99bd4ef 12534{
fdfde340 12535 unsigned Rd, Rn, Rm, Ra;
c921be7d 12536
fdfde340
JM
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12541
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12546
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
c19d1205 12551}
b99bd4ef 12552
c19d1205
ZW
12553static void
12554do_t_mlal (void)
12555{
fdfde340
JM
12556 unsigned RdLo, RdHi, Rn, Rm;
12557
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12562
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
c19d1205 12572}
b99bd4ef 12573
c19d1205
ZW
12574static void
12575do_t_mov_cmp (void)
12576{
fdfde340
JM
12577 unsigned Rn, Rm;
12578
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12581
e07e6e58 12582 if (Rn == REG_PC)
5ee91343 12583 set_pred_insn_type_last ();
e07e6e58 12584
c19d1205 12585 if (unified_syntax)
b99bd4ef 12586 {
c19d1205
ZW
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12589 unsigned long opcode;
3d388997
PB
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12592
fdfde340 12593 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12594 opcode = inst.instruction;
5ee91343 12595 if (in_pred_block ())
0110f2b8 12596 narrow = opcode != T_MNEM_movs;
3d388997 12597 else
0110f2b8 12598 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12601 narrow = FALSE;
12602
efd81785
PB
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
fdfde340
JM
12606 && Rn == REG_PC
12607 && Rm == REG_LR)
efd81785
PB
12608 {
12609 inst.instruction = T2_SUBS_PC_LR;
12610 return;
12611 }
12612
fdfde340
JM
12613 if (opcode == T_MNEM_cmp)
12614 {
12615 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12616 if (narrow)
12617 {
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12619 but valid. */
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12625 }
12626 else
12627 reject_bad_reg (Rm);
fdfde340
JM
12628 }
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12631 {
12632 if (inst.operands[1].isreg)
12633 {
12634 if (opcode == T_MNEM_movs)
12635 {
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638 }
76fa04a4
MGD
12639 else if (narrow)
12640 {
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12644 {
5c3696f8 12645 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12648 }
12649 }
12650 else
12651 {
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12657 }
fdfde340
JM
12658 }
12659 else
12660 reject_bad_reg (Rn);
12661 }
12662
c19d1205
ZW
12663 if (!inst.operands[1].isreg)
12664 {
0110f2b8 12665 /* Immediate operand. */
5ee91343 12666 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12667 narrow = 0;
12668 if (low_regs && narrow)
12669 {
12670 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12671 inst.instruction |= Rn << 8;
e2b0ab59
AV
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12674 {
a9f02af8 12675 if (inst.size_req == 2)
e2b0ab59 12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12677 else
12678 inst.relax = opcode;
72d98d16 12679 }
0110f2b8
PB
12680 }
12681 else
12682 {
e2b0ab59
AV
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12687 THUMB1_RELOC_ONLY);
12688
0110f2b8
PB
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12691 inst.instruction |= Rn << r0off;
e2b0ab59 12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12693 }
c19d1205 12694 }
728ca7c9
PB
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12698 {
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12701
5ee91343 12702 if (in_pred_block ())
728ca7c9
PB
12703 narrow = !flags;
12704 else
12705 narrow = flags;
12706
12707 if (inst.size_req == 4)
12708 narrow = FALSE;
12709
12710 if (!low_regs || inst.operands[1].imm > 7)
12711 narrow = FALSE;
12712
fdfde340 12713 if (Rn != Rm)
728ca7c9
PB
12714 narrow = FALSE;
12715
12716 switch (inst.operands[1].shift_kind)
12717 {
12718 case SHIFT_LSL:
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12720 break;
12721 case SHIFT_ASR:
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12723 break;
12724 case SHIFT_LSR:
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12726 break;
12727 case SHIFT_ROR:
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12729 break;
12730 default:
5f4273c7 12731 abort ();
728ca7c9
PB
12732 }
12733
12734 inst.instruction = opcode;
12735 if (narrow)
12736 {
fdfde340 12737 inst.instruction |= Rn;
728ca7c9
PB
12738 inst.instruction |= inst.operands[1].imm << 3;
12739 }
12740 else
12741 {
12742 if (flags)
12743 inst.instruction |= CONDS_BIT;
12744
fdfde340
JM
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
728ca7c9
PB
12747 inst.instruction |= inst.operands[1].imm;
12748 }
12749 }
3d388997 12750 else if (!narrow)
c19d1205 12751 {
728ca7c9
PB
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12757 {
5ee91343 12758 if (in_pred_block ())
728ca7c9
PB
12759 narrow = (inst.instruction == T_MNEM_mov);
12760 else
12761 narrow = (inst.instruction == T_MNEM_movs);
12762 }
12763
12764 if (narrow)
12765 {
12766 switch (inst.operands[1].shift_kind)
12767 {
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12772 }
12773 }
12774
12775 if (narrow)
12776 {
fdfde340
JM
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
e2b0ab59 12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12780 }
12781 else
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12784 inst.instruction |= Rn << r0off;
728ca7c9
PB
12785 encode_thumb32_shifted_operand (1);
12786 }
c19d1205
ZW
12787 }
12788 else
12789 switch (inst.instruction)
12790 {
12791 case T_MNEM_mov:
837b3435 12792 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12793 results. Don't allow this. */
12794 if (low_regs)
12795 {
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
fa94de6b 12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12800 arm_ext_v6);
12801 }
12802
c19d1205 12803 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
c19d1205 12807 break;
b99bd4ef 12808
c19d1205
ZW
12809 case T_MNEM_movs:
12810 /* We know we have low registers at this point.
941a8a52
MGD
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
c19d1205
ZW
12815 break;
12816
12817 case T_MNEM_cmp:
3d388997 12818 if (low_regs)
c19d1205
ZW
12819 {
12820 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
c19d1205
ZW
12823 }
12824 else
12825 {
12826 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
c19d1205
ZW
12830 }
12831 break;
12832 }
b99bd4ef
NC
12833 return;
12834 }
12835
c19d1205 12836 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12837
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12841
c19d1205 12842 if (inst.operands[1].isreg)
b99bd4ef 12843 {
fdfde340 12844 if (Rn < 8 && Rm < 8)
b99bd4ef 12845 {
c19d1205
ZW
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12850 else
c19d1205 12851 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12852
fdfde340
JM
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
b99bd4ef
NC
12855 }
12856 else
12857 {
c19d1205
ZW
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12860 else
12861 inst.instruction = T_OPCODE_CMP_HR;
12862 do_t_cpy ();
b99bd4ef
NC
12863 }
12864 }
c19d1205 12865 else
b99bd4ef 12866 {
fdfde340 12867 constraint (Rn > 7,
c19d1205 12868 _("only lo regs allowed with immediate"));
fdfde340 12869 inst.instruction |= Rn << 8;
e2b0ab59 12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12871 }
12872}
b99bd4ef 12873
c19d1205
ZW
12874static void
12875do_t_mov16 (void)
12876{
fdfde340 12877 unsigned Rd;
b6895b4f
PB
12878 bfd_vma imm;
12879 bfd_boolean top;
12880
12881 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12883 {
33eaf5de 12884 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12886 }
e2b0ab59 12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12888 {
33eaf5de 12889 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12891 }
12892
fdfde340
JM
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12895
12896 inst.instruction |= Rd << 8;
e2b0ab59 12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12898 {
e2b0ab59 12899 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12904 }
c19d1205 12905}
b99bd4ef 12906
c19d1205
ZW
12907static void
12908do_t_mvn_tst (void)
12909{
fdfde340 12910 unsigned Rn, Rm;
c921be7d 12911
fdfde340
JM
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12918 else
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
c19d1205
ZW
12922 if (unified_syntax)
12923 {
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12926 bfd_boolean narrow;
12927
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
fdfde340 12931 || Rn > 7 || Rm > 7)
3d388997 12932 narrow = FALSE;
fe8b4cc3
KT
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
3d388997
PB
12935 narrow = TRUE;
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12937 narrow = !in_pred_block ();
3d388997 12938 else
5ee91343 12939 narrow = in_pred_block ();
3d388997 12940
c19d1205 12941 if (!inst.operands[1].isreg)
b99bd4ef 12942 {
c19d1205
ZW
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12948 inst.instruction |= Rn << r0off;
e2b0ab59 12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12950 }
c19d1205 12951 else
b99bd4ef 12952 {
c19d1205 12953 /* See if we can do this with a 16-bit instruction. */
3d388997 12954 if (narrow)
b99bd4ef 12955 {
c19d1205 12956 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
b99bd4ef 12959 }
c19d1205 12960 else
b99bd4ef 12961 {
c19d1205
ZW
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12967 inst.instruction |= Rn << r0off;
c19d1205 12968 encode_thumb32_shifted_operand (1);
b99bd4ef 12969 }
b99bd4ef
NC
12970 }
12971 }
12972 else
12973 {
c19d1205
ZW
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
fdfde340 12978 constraint (Rn > 7 || Rm > 7,
c19d1205 12979 BAD_HIREG);
b99bd4ef 12980
c19d1205 12981 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
b99bd4ef 12984 }
b99bd4ef
NC
12985}
12986
b05fe5cf 12987static void
c19d1205 12988do_t_mrs (void)
b05fe5cf 12989{
fdfde340 12990 unsigned Rd;
037e8744
JB
12991
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12993 return;
12994
90ec0d68
MGD
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12998
12999 if (inst.operands[1].isreg)
62b3e311 13000 {
90ec0d68
MGD
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13004
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
13008 }
13009 else
13010 {
90ec0d68 13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 13012
d2cd1205 13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
13014 {
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
823d2571
TG
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13022 }
90ec0d68 13023 else
d2cd1205
JB
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13025 devices). */
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13028
90ec0d68
MGD
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13032 }
c19d1205 13033}
b05fe5cf 13034
c19d1205
ZW
13035static void
13036do_t_msr (void)
13037{
62b3e311 13038 int flags;
fdfde340 13039 unsigned Rn;
62b3e311 13040
037e8744
JB
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13042 return;
13043
c19d1205
ZW
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13046
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13049 else
13050 flags = inst.operands[0].imm;
13051
d2cd1205 13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13053 {
d2cd1205
JB
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13055
1a43faaf 13056 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
823d2571
TG
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
62b3e311
PB
13067 }
13068 else
d2cd1205
JB
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
c921be7d 13071
fdfde340
JM
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13074
62b3e311 13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13078 inst.instruction |= (flags & 0xff);
fdfde340 13079 inst.instruction |= Rn << 16;
c19d1205 13080}
b05fe5cf 13081
c19d1205
ZW
13082static void
13083do_t_mul (void)
13084{
17828f45 13085 bfd_boolean narrow;
fdfde340 13086 unsigned Rd, Rn, Rm;
17828f45 13087
c19d1205
ZW
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13090
fdfde340
JM
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13094
17828f45 13095 if (unified_syntax)
b05fe5cf 13096 {
17828f45 13097 if (inst.size_req == 4
fdfde340
JM
13098 || (Rd != Rn
13099 && Rd != Rm)
13100 || Rn > 7
13101 || Rm > 7)
17828f45
JM
13102 narrow = FALSE;
13103 else if (inst.instruction == T_MNEM_muls)
5ee91343 13104 narrow = !in_pred_block ();
17828f45 13105 else
5ee91343 13106 narrow = in_pred_block ();
b05fe5cf 13107 }
c19d1205 13108 else
b05fe5cf 13109 {
17828f45 13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13111 constraint (Rn > 7 || Rm > 7,
c19d1205 13112 BAD_HIREG);
17828f45
JM
13113 narrow = TRUE;
13114 }
b05fe5cf 13115
17828f45
JM
13116 if (narrow)
13117 {
13118 /* 16-bit MULS/Conditional MUL. */
c19d1205 13119 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13120 inst.instruction |= Rd;
b05fe5cf 13121
fdfde340
JM
13122 if (Rd == Rn)
13123 inst.instruction |= Rm << 3;
13124 else if (Rd == Rm)
13125 inst.instruction |= Rn << 3;
c19d1205
ZW
13126 else
13127 constraint (1, _("dest must overlap one source register"));
13128 }
17828f45
JM
13129 else
13130 {
e07e6e58
NC
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13133 /* 32-bit MUL. */
13134 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13138
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
17828f45 13142 }
c19d1205 13143}
b05fe5cf 13144
c19d1205
ZW
13145static void
13146do_t_mull (void)
13147{
fdfde340 13148 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13149
fdfde340
JM
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13154
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13159
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13164
13165 if (RdLo == RdHi)
c19d1205
ZW
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13167}
b05fe5cf 13168
c19d1205
ZW
13169static void
13170do_t_nop (void)
13171{
5ee91343 13172 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13173
c19d1205
ZW
13174 if (unified_syntax)
13175 {
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13177 {
c19d1205
ZW
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13180 }
13181 else
13182 {
bc2d1808
NC
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
afa62d5e 13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13186 {
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13189 }
13190 else
13191 inst.instruction = 0x46c0;
c19d1205
ZW
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13199 }
13200}
b05fe5cf 13201
c19d1205
ZW
13202static void
13203do_t_neg (void)
13204{
13205 if (unified_syntax)
13206 {
3d388997
PB
13207 bfd_boolean narrow;
13208
13209 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13210 narrow = !in_pred_block ();
3d388997 13211 else
5ee91343 13212 narrow = in_pred_block ();
3d388997
PB
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13214 narrow = FALSE;
13215 if (inst.size_req == 4)
13216 narrow = FALSE;
13217
13218 if (!narrow)
c19d1205
ZW
13219 {
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13223 }
13224 else
13225 {
c19d1205
ZW
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13229 }
13230 }
13231 else
13232 {
c19d1205
ZW
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13234 BAD_HIREG);
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13236
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13240 }
13241}
13242
1c444d06
JM
13243static void
13244do_t_orn (void)
13245{
13246 unsigned Rd, Rn;
13247
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13250
fdfde340
JM
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13254
1c444d06
JM
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13257
13258 if (!inst.operands[2].isreg)
13259 {
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13262 }
13263 else
13264 {
13265 unsigned Rm;
13266
13267 Rm = inst.operands[2].reg;
fdfde340 13268 reject_bad_reg (Rm);
1c444d06
JM
13269
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13274 }
13275}
13276
c19d1205
ZW
13277static void
13278do_t_pkhbt (void)
13279{
fdfde340
JM
13280 unsigned Rd, Rn, Rm;
13281
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13285
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13289
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
c19d1205
ZW
13293 if (inst.operands[3].present)
13294 {
e2b0ab59
AV
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13300 }
c19d1205 13301}
b05fe5cf 13302
c19d1205
ZW
13303static void
13304do_t_pkhtb (void)
13305{
13306 if (!inst.operands[3].present)
1ef52f49
NC
13307 {
13308 unsigned Rtmp;
13309
13310 inst.instruction &= ~0x00000020;
13311
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13316 }
c19d1205 13317 do_t_pkhbt ();
b05fe5cf
ZW
13318}
13319
c19d1205
ZW
13320static void
13321do_t_pld (void)
13322{
fdfde340
JM
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13325
c19d1205
ZW
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13327}
b05fe5cf 13328
c19d1205
ZW
13329static void
13330do_t_push_pop (void)
b99bd4ef 13331{
e9f89963 13332 unsigned mask;
5f4273c7 13333
c19d1205
ZW
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
e2b0ab59 13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13337 _("expression too complex"));
b99bd4ef 13338
e9f89963 13339 mask = inst.operands[0].imm;
d3bfe16e 13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13342 else if (inst.size_req != 4
c6025a80 13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13344 ? REG_LR : REG_PC)))
b99bd4ef 13345 {
c19d1205
ZW
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13348 inst.instruction |= mask & 0xff;
c19d1205
ZW
13349 }
13350 else if (unified_syntax)
13351 {
3c707909 13352 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13354 }
13355 else
13356 {
13357 inst.error = _("invalid register list to push/pop instruction");
13358 return;
c19d1205 13359 }
4b5a202f
AV
13360}
13361
13362static void
13363do_t_clrm (void)
13364{
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13367 else
13368 {
13369 inst.error = _("invalid register list to push/pop instruction");
13370 return;
13371 }
c19d1205 13372}
b99bd4ef 13373
efd6b359
AV
13374static void
13375do_t_vscclrm (void)
13376{
13377 if (inst.operands[0].issingle)
13378 {
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13382 }
13383 else
13384 {
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13389 }
13390}
13391
c19d1205
ZW
13392static void
13393do_t_rbit (void)
13394{
fdfde340
JM
13395 unsigned Rd, Rm;
13396
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13399
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13402
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
c19d1205 13406}
b99bd4ef 13407
c19d1205
ZW
13408static void
13409do_t_rev (void)
13410{
fdfde340
JM
13411 unsigned Rd, Rm;
13412
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13415
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13418
13419 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13420 && inst.size_req != 4)
13421 {
13422 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
c19d1205
ZW
13425 }
13426 else if (unified_syntax)
13427 {
13428 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
c19d1205
ZW
13432 }
13433 else
13434 inst.error = BAD_HIREG;
13435}
b99bd4ef 13436
1c444d06
JM
13437static void
13438do_t_rrx (void)
13439{
13440 unsigned Rd, Rm;
13441
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13444
fdfde340
JM
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
c921be7d 13447
1c444d06
JM
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13450}
13451
c19d1205
ZW
13452static void
13453do_t_rsb (void)
13454{
fdfde340 13455 unsigned Rd, Rs;
b99bd4ef 13456
c19d1205
ZW
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13461
fdfde340
JM
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13466
c19d1205
ZW
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13470 {
026d3abb
PB
13471 bfd_boolean narrow;
13472
13473 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13474 narrow = !in_pred_block ();
026d3abb 13475 else
5ee91343 13476 narrow = in_pred_block ();
026d3abb
PB
13477
13478 if (Rd > 7 || Rs > 7)
13479 narrow = FALSE;
13480
13481 if (inst.size_req == 4 || !unified_syntax)
13482 narrow = FALSE;
13483
e2b0ab59
AV
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13486 narrow = FALSE;
13487
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13489 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13490 if (narrow)
13491 {
e2b0ab59 13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13496 }
13497 else
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13501 }
c19d1205
ZW
13502 }
13503 else
13504 encode_thumb32_shifted_operand (2);
13505}
b99bd4ef 13506
c19d1205
ZW
13507static void
13508do_t_setend (void)
13509{
12e37cbc
MGD
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13513
5ee91343 13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13517}
b99bd4ef 13518
c19d1205
ZW
13519static void
13520do_t_shift (void)
13521{
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13524
13525 if (unified_syntax)
13526 {
3d388997
PB
13527 bfd_boolean narrow;
13528 int shift_kind;
13529
13530 switch (inst.instruction)
13531 {
13532 case T_MNEM_asr:
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13534 case T_MNEM_lsl:
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13536 case T_MNEM_lsr:
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13538 case T_MNEM_ror:
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13540 default: abort ();
13541 }
13542
13543 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13544 narrow = !in_pred_block ();
3d388997 13545 else
5ee91343 13546 narrow = in_pred_block ();
3d388997
PB
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13548 narrow = FALSE;
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13550 narrow = FALSE;
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13554 narrow = FALSE;
13555 if (inst.size_req == 4)
13556 narrow = FALSE;
13557
fdfde340
JM
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
c921be7d 13560
3d388997 13561 if (!narrow)
c19d1205
ZW
13562 {
13563 if (inst.operands[2].isreg)
b99bd4ef 13564 {
fdfde340 13565 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13570
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13574 }
13575 else
13576 {
13577 inst.operands[1].shifted = 1;
3d388997 13578 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13585 }
13586 }
13587 else
13588 {
c19d1205 13589 if (inst.operands[2].isreg)
b99bd4ef 13590 {
3d388997 13591 switch (shift_kind)
b99bd4ef 13592 {
3d388997
PB
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13597 default: abort ();
b99bd4ef 13598 }
5f4273c7 13599
c19d1205
ZW
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13602
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13606 }
13607 else
13608 {
3d388997 13609 switch (shift_kind)
b99bd4ef 13610 {
3d388997
PB
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13614 default: abort ();
b99bd4ef 13615 }
e2b0ab59 13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13619 }
13620 }
c19d1205
ZW
13621 }
13622 else
13623 {
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13627
c19d1205
ZW
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13629 {
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
b99bd4ef 13633
c19d1205
ZW
13634 switch (inst.instruction)
13635 {
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13640 default: abort ();
13641 }
5f4273c7 13642
c19d1205
ZW
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13645
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13649 }
13650 else
b99bd4ef 13651 {
c19d1205
ZW
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13658 default: abort ();
13659 }
e2b0ab59 13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13663 }
13664 }
b99bd4ef
NC
13665}
13666
13667static void
c19d1205 13668do_t_simd (void)
b99bd4ef 13669{
fdfde340
JM
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
c19d1205 13683}
b99bd4ef 13684
03ee1b7f
NC
13685static void
13686do_t_simd2 (void)
13687{
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13701}
13702
c19d1205 13703static void
3eb17e6b 13704do_t_smc (void)
c19d1205 13705{
e2b0ab59 13706 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
e2b0ab59 13709 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13710 _("expression too complex"));
e2b0ab59 13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
24382199 13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13716 set_pred_insn_type_last ();
c19d1205 13717}
b99bd4ef 13718
90ec0d68
MGD
13719static void
13720do_t_hvc (void)
13721{
e2b0ab59 13722 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13723
e2b0ab59 13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13727}
13728
c19d1205 13729static void
3a21c15a 13730do_t_ssat_usat (int bias)
c19d1205 13731{
fdfde340
JM
13732 unsigned Rd, Rn;
13733
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13736
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13739
13740 inst.instruction |= Rd << 8;
3a21c15a 13741 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13742 inst.instruction |= Rn << 16;
b99bd4ef 13743
c19d1205 13744 if (inst.operands[3].present)
b99bd4ef 13745 {
e2b0ab59 13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13747
e2b0ab59 13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13749
e2b0ab59 13750 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13751 _("expression too complex"));
b99bd4ef 13752
3a21c15a 13753 if (shift_amount != 0)
6189168b 13754 {
3a21c15a
NC
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13757
c19d1205 13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13759 inst.instruction |= 0x00200000; /* sh bit. */
13760
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13763 }
13764 }
b99bd4ef 13765}
c921be7d 13766
3a21c15a
NC
13767static void
13768do_t_ssat (void)
13769{
13770 do_t_ssat_usat (1);
13771}
b99bd4ef 13772
0dd132b6 13773static void
c19d1205 13774do_t_ssat16 (void)
0dd132b6 13775{
fdfde340
JM
13776 unsigned Rd, Rn;
13777
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13780
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13783
13784 inst.instruction |= Rd << 8;
c19d1205 13785 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13786 inst.instruction |= Rn << 16;
c19d1205 13787}
0dd132b6 13788
c19d1205
ZW
13789static void
13790do_t_strex (void)
13791{
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
01cfc07f 13796 BAD_ADDR_MODE);
0dd132b6 13797
5be8be5d
DG
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13799
c19d1205
ZW
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13804}
13805
b99bd4ef 13806static void
c19d1205 13807do_t_strexd (void)
b99bd4ef 13808{
c19d1205
ZW
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13811
c19d1205
ZW
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13814 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13815 BAD_OVERLAP);
b99bd4ef 13816
c19d1205
ZW
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13821}
13822
13823static void
c19d1205 13824do_t_sxtah (void)
b99bd4ef 13825{
fdfde340
JM
13826 unsigned Rd, Rn, Rm;
13827
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13831
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
c19d1205
ZW
13839 inst.instruction |= inst.operands[3].imm << 4;
13840}
b99bd4ef 13841
c19d1205
ZW
13842static void
13843do_t_sxth (void)
13844{
fdfde340
JM
13845 unsigned Rd, Rm;
13846
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
c921be7d
NC
13852
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
fdfde340 13855 && Rd <= 7 && Rm <= 7
c19d1205 13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13857 {
c19d1205 13858 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
b99bd4ef 13861 }
c19d1205 13862 else if (unified_syntax)
b99bd4ef 13863 {
c19d1205
ZW
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
c19d1205 13868 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13869 }
c19d1205 13870 else
b99bd4ef 13871 {
c19d1205
ZW
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
b99bd4ef 13875 }
c19d1205 13876}
b99bd4ef 13877
c19d1205
ZW
13878static void
13879do_t_swi (void)
13880{
e2b0ab59 13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13882}
b99bd4ef 13883
92e90b6e
PB
13884static void
13885do_t_tb (void)
13886{
fdfde340 13887 unsigned Rn, Rm;
92e90b6e
PB
13888 int half;
13889
13890 half = (inst.instruction & 0x10) != 0;
5ee91343 13891 set_pred_insn_type_last ();
dfa9f0d5
PB
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
fdfde340
JM
13894
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
c921be7d 13897
5c8ed6a4
JW
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13900 reject_bad_reg (Rm);
13901
92e90b6e
PB
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
fdfde340 13904 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13905}
13906
74db7efb
NC
13907static void
13908do_t_udf (void)
13909{
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13912
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13914 {
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13920 }
13921 else
13922 {
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13925 }
13926
5ee91343 13927 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13928}
13929
13930
c19d1205
ZW
13931static void
13932do_t_usat (void)
13933{
3a21c15a 13934 do_t_ssat_usat (0);
b99bd4ef
NC
13935}
13936
13937static void
c19d1205 13938do_t_usat16 (void)
b99bd4ef 13939{
fdfde340
JM
13940 unsigned Rd, Rn;
13941
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13944
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13947
13948 inst.instruction |= Rd << 8;
c19d1205 13949 inst.instruction |= inst.operands[1].imm;
fdfde340 13950 inst.instruction |= Rn << 16;
b99bd4ef 13951}
c19d1205 13952
e12437dc
AV
13953/* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13955static int
13956v8_1_branch_value_check (int val, int nbits, int is_signed)
13957{
13958 gas_assert (nbits > 0 && nbits <= 32);
13959 if (is_signed)
13960 {
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13963 return FAIL;
13964 }
13965 else
13966 {
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13968 return FAIL;
13969 }
13970 return SUCCESS;
13971}
13972
4389b29a
AV
13973/* For branches in Armv8.1-M Mainline. */
13974static void
13975do_t_branch_future (void)
13976{
13977 unsigned long insn = inst.instruction;
13978
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13981 {
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13984
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13986 }
13987 else
13988 {
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13991 }
13992
13993 switch (insn)
13994 {
13995 case T_MNEM_bf:
13996 if (inst.operands[1].hasreloc == 0)
13997 {
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14001
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14006 }
14007 else
14008 {
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14011 }
14012 break;
14013
65d1bc05
AV
14014 case T_MNEM_bfl:
14015 if (inst.operands[1].hasreloc == 0)
14016 {
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14020
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14025 }
14026 else
14027 {
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14030 }
14031 break;
14032
f6b2b12d
AV
14033 case T_MNEM_bfcsel:
14034 /* Operand 1. */
14035 if (inst.operands[1].hasreloc == 0)
14036 {
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14042 }
14043 else
14044 {
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14047 }
14048
14049 /* Operand 2. */
14050 if (inst.operands[2].hasreloc == 0)
14051 {
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14056 if (diff == 4)
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14060 }
14061 else
14062 {
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14066 }
14067
14068 /* Operand 3. */
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14071 break;
14072
f1c7f421
AV
14073 case T_MNEM_bfx:
14074 case T_MNEM_bflx:
14075 inst.instruction |= inst.operands[1].reg << 16;
14076 break;
14077
4389b29a
AV
14078 default: abort ();
14079 }
14080}
14081
60f993ce
AV
14082/* Helper function for do_t_loloop to handle relocations. */
14083static void
14084v8_1_loop_reloc (int is_le)
14085{
14086 if (inst.relocs[0].exp.X_op == O_constant)
14087 {
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14090
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14093
14094 int imml, immh;
14095
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14098
14099 inst.instruction |= (imml << 11) | (immh << 1);
14100 }
14101 else
14102 {
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14105 }
14106}
14107
14108/* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14110static void
14111do_t_loloop (void)
14112{
14113 unsigned long insn = inst.instruction;
14114
5ee91343 14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14117
14118 switch (insn)
14119 {
14120 case T_MNEM_le:
14121 /* le <label>. */
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14124
14125 v8_1_loop_reloc (TRUE);
14126 break;
14127
14128 case T_MNEM_wls:
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14131 case T_MNEM_dls:
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14134 break;
14135
14136 default: abort();
14137 }
14138}
14139
a302e574
AV
14140/* MVE instruction encoder helpers. */
14141#define M_MNEM_vabav 0xee800f01
14142#define M_MNEM_vmladav 0xeef00e00
14143#define M_MNEM_vmladava 0xeef00e20
14144#define M_MNEM_vmladavx 0xeef01e00
14145#define M_MNEM_vmladavax 0xeef01e20
14146#define M_MNEM_vmlsdav 0xeef00e01
14147#define M_MNEM_vmlsdava 0xeef00e21
14148#define M_MNEM_vmlsdavx 0xeef01e01
14149#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14150#define M_MNEM_vmullt 0xee011e00
14151#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14152#define M_MNEM_vst20 0xfc801e00
14153#define M_MNEM_vst21 0xfc801e20
14154#define M_MNEM_vst40 0xfc801e01
14155#define M_MNEM_vst41 0xfc801e21
14156#define M_MNEM_vst42 0xfc801e41
14157#define M_MNEM_vst43 0xfc801e61
14158#define M_MNEM_vld20 0xfc901e00
14159#define M_MNEM_vld21 0xfc901e20
14160#define M_MNEM_vld40 0xfc901e01
14161#define M_MNEM_vld41 0xfc901e21
14162#define M_MNEM_vld42 0xfc901e41
14163#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14164#define M_MNEM_vstrb 0xec000e00
14165#define M_MNEM_vstrh 0xec000e10
14166#define M_MNEM_vstrw 0xec000e40
14167#define M_MNEM_vstrd 0xec000e50
14168#define M_MNEM_vldrb 0xec100e00
14169#define M_MNEM_vldrh 0xec100e10
14170#define M_MNEM_vldrw 0xec100e40
14171#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14172#define M_MNEM_vmovlt 0xeea01f40
14173#define M_MNEM_vmovlb 0xeea00f40
14174#define M_MNEM_vmovnt 0xfe311e81
14175#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14176#define M_MNEM_vadc 0xee300f00
14177#define M_MNEM_vadci 0xee301f00
14178#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14179#define M_MNEM_vaddlv 0xee890f00
14180#define M_MNEM_vaddlva 0xee890f20
14181#define M_MNEM_vaddv 0xeef10f00
14182#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14183#define M_MNEM_vddup 0xee011f6e
14184#define M_MNEM_vdwdup 0xee011f60
14185#define M_MNEM_vidup 0xee010f6e
14186#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14187#define M_MNEM_vmaxv 0xeee20f00
14188#define M_MNEM_vmaxav 0xeee00f00
14189#define M_MNEM_vminv 0xeee20f80
14190#define M_MNEM_vminav 0xeee00f80
93925576
AV
14191#define M_MNEM_vmlaldav 0xee800e00
14192#define M_MNEM_vmlaldava 0xee800e20
14193#define M_MNEM_vmlaldavx 0xee801e00
14194#define M_MNEM_vmlaldavax 0xee801e20
14195#define M_MNEM_vmlsldav 0xee800e01
14196#define M_MNEM_vmlsldava 0xee800e21
14197#define M_MNEM_vmlsldavx 0xee801e01
14198#define M_MNEM_vmlsldavax 0xee801e21
14199#define M_MNEM_vrmlaldavhx 0xee801f00
14200#define M_MNEM_vrmlaldavhax 0xee801f20
14201#define M_MNEM_vrmlsldavh 0xfe800e01
14202#define M_MNEM_vrmlsldavha 0xfe800e21
14203#define M_MNEM_vrmlsldavhx 0xfe801e01
14204#define M_MNEM_vrmlsldavhax 0xfe801e21
1be7aba3
AV
14205#define M_MNEM_vqmovnt 0xee331e01
14206#define M_MNEM_vqmovnb 0xee330e01
14207#define M_MNEM_vqmovunt 0xee311e81
14208#define M_MNEM_vqmovunb 0xee310e81
4aa88b50
AV
14209#define M_MNEM_vshrnt 0xee801fc1
14210#define M_MNEM_vshrnb 0xee800fc1
14211#define M_MNEM_vrshrnt 0xfe801fc1
14212#define M_MNEM_vqshrnt 0xee801f40
14213#define M_MNEM_vqshrnb 0xee800f40
14214#define M_MNEM_vqshrunt 0xee801fc0
14215#define M_MNEM_vqshrunb 0xee800fc0
14216#define M_MNEM_vrshrnb 0xfe800fc1
14217#define M_MNEM_vqrshrnt 0xee801f41
14218#define M_MNEM_vqrshrnb 0xee800f41
14219#define M_MNEM_vqrshrunt 0xfe801fc0
14220#define M_MNEM_vqrshrunb 0xfe800fc0
a302e574 14221
5287ad62 14222/* Neon instruction encoder helpers. */
5f4273c7 14223
5287ad62 14224/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14225
5287ad62
JB
14226/* An "invalid" code for the following tables. */
14227#define N_INV -1u
14228
14229struct neon_tab_entry
b99bd4ef 14230{
5287ad62
JB
14231 unsigned integer;
14232 unsigned float_or_poly;
14233 unsigned scalar_or_imm;
14234};
5f4273c7 14235
5287ad62
JB
14236/* Map overloaded Neon opcodes to their respective encodings. */
14237#define NEON_ENC_TAB \
14238 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14239 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14240 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14241 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14242 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14243 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14244 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14245 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14246 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14247 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14248 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14249 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14250 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14251 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14252 /* Register variants of the following two instructions are encoded as
e07e6e58 14253 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14254 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14255 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14256 X(vfma, N_INV, 0x0000c10, N_INV), \
14257 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14258 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14259 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14260 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14261 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14262 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14263 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14264 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14265 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14266 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14267 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14268 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14269 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14270 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14271 X(vshl, 0x0000400, N_INV, 0x0800510), \
14272 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14273 X(vand, 0x0000110, N_INV, 0x0800030), \
14274 X(vbic, 0x0100110, N_INV, 0x0800030), \
14275 X(veor, 0x1000110, N_INV, N_INV), \
14276 X(vorn, 0x0300110, N_INV, 0x0800010), \
14277 X(vorr, 0x0200110, N_INV, 0x0800010), \
14278 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14279 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14280 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14281 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14282 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14283 X(vst1, 0x0000000, 0x0800000, N_INV), \
14284 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14285 X(vst2, 0x0000100, 0x0800100, N_INV), \
14286 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14287 X(vst3, 0x0000200, 0x0800200, N_INV), \
14288 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14289 X(vst4, 0x0000300, 0x0800300, N_INV), \
14290 X(vmovn, 0x1b20200, N_INV, N_INV), \
14291 X(vtrn, 0x1b20080, N_INV, N_INV), \
14292 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14293 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14294 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14295 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14296 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14297 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14298 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14299 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14300 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14301 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14302 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14303 X(vseleq, 0xe000a00, N_INV, N_INV), \
14304 X(vselvs, 0xe100a00, N_INV, N_INV), \
14305 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14306 X(vselgt, 0xe300a00, N_INV, N_INV), \
14307 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14308 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14309 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14310 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14311 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14312 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14313 X(sha3op, 0x2000c00, N_INV, N_INV), \
14314 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14315 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14316
14317enum neon_opc
14318{
14319#define X(OPC,I,F,S) N_MNEM_##OPC
14320NEON_ENC_TAB
14321#undef X
14322};
b99bd4ef 14323
5287ad62
JB
14324static const struct neon_tab_entry neon_enc_tab[] =
14325{
14326#define X(OPC,I,F,S) { (I), (F), (S) }
14327NEON_ENC_TAB
14328#undef X
14329};
b99bd4ef 14330
88714cb8
DG
14331/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14332#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14333#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14334#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14335#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14336#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14337#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14338#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14339#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14340#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14341#define NEON_ENC_SINGLE_(X) \
037e8744 14342 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14343#define NEON_ENC_DOUBLE_(X) \
037e8744 14344 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14345#define NEON_ENC_FPV8_(X) \
14346 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14347
88714cb8
DG
14348#define NEON_ENCODE(type, inst) \
14349 do \
14350 { \
14351 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14352 inst.is_neon = 1; \
14353 } \
14354 while (0)
14355
14356#define check_neon_suffixes \
14357 do \
14358 { \
14359 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14360 { \
14361 as_bad (_("invalid neon suffix for non neon instruction")); \
14362 return; \
14363 } \
14364 } \
14365 while (0)
14366
037e8744
JB
14367/* Define shapes for instruction operands. The following mnemonic characters
14368 are used in this table:
5287ad62 14369
037e8744 14370 F - VFP S<n> register
5287ad62
JB
14371 D - Neon D<n> register
14372 Q - Neon Q<n> register
14373 I - Immediate
14374 S - Scalar
14375 R - ARM register
14376 L - D<n> register list
5f4273c7 14377
037e8744
JB
14378 This table is used to generate various data:
14379 - enumerations of the form NS_DDR to be used as arguments to
14380 neon_select_shape.
14381 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14382 - a table used to drive neon_select_shape. */
b99bd4ef 14383
037e8744 14384#define NEON_SHAPE_DEF \
93925576 14385 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14386 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14387 X(4, (R, R, S, S), QUAD), \
14388 X(4, (S, S, R, R), QUAD), \
b409bdb6 14389 X(3, (Q, R, I), QUAD), \
1b883319
AV
14390 X(3, (I, Q, Q), QUAD), \
14391 X(3, (I, Q, R), QUAD), \
a302e574 14392 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14393 X(3, (D, D, D), DOUBLE), \
14394 X(3, (Q, Q, Q), QUAD), \
14395 X(3, (D, D, I), DOUBLE), \
14396 X(3, (Q, Q, I), QUAD), \
14397 X(3, (D, D, S), DOUBLE), \
14398 X(3, (Q, Q, S), QUAD), \
5ee91343 14399 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14400 X(3, (R, R, Q), QUAD), \
14401 X(2, (R, Q), QUAD), \
037e8744
JB
14402 X(2, (D, D), DOUBLE), \
14403 X(2, (Q, Q), QUAD), \
14404 X(2, (D, S), DOUBLE), \
14405 X(2, (Q, S), QUAD), \
14406 X(2, (D, R), DOUBLE), \
14407 X(2, (Q, R), QUAD), \
14408 X(2, (D, I), DOUBLE), \
14409 X(2, (Q, I), QUAD), \
14410 X(3, (D, L, D), DOUBLE), \
14411 X(2, (D, Q), MIXED), \
14412 X(2, (Q, D), MIXED), \
14413 X(3, (D, Q, I), MIXED), \
14414 X(3, (Q, D, I), MIXED), \
14415 X(3, (Q, D, D), MIXED), \
14416 X(3, (D, Q, Q), MIXED), \
14417 X(3, (Q, Q, D), MIXED), \
14418 X(3, (Q, D, S), MIXED), \
14419 X(3, (D, Q, S), MIXED), \
14420 X(4, (D, D, D, I), DOUBLE), \
14421 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14422 X(4, (D, D, S, I), DOUBLE), \
14423 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14424 X(2, (F, F), SINGLE), \
14425 X(3, (F, F, F), SINGLE), \
14426 X(2, (F, I), SINGLE), \
14427 X(2, (F, D), MIXED), \
14428 X(2, (D, F), MIXED), \
14429 X(3, (F, F, I), MIXED), \
14430 X(4, (R, R, F, F), SINGLE), \
14431 X(4, (F, F, R, R), SINGLE), \
14432 X(3, (D, R, R), DOUBLE), \
14433 X(3, (R, R, D), DOUBLE), \
14434 X(2, (S, R), SINGLE), \
14435 X(2, (R, S), SINGLE), \
14436 X(2, (F, R), SINGLE), \
d54af2d0
RL
14437 X(2, (R, F), SINGLE), \
14438/* Half float shape supported so far. */\
14439 X (2, (H, D), MIXED), \
14440 X (2, (D, H), MIXED), \
14441 X (2, (H, F), MIXED), \
14442 X (2, (F, H), MIXED), \
14443 X (2, (H, H), HALF), \
14444 X (2, (H, R), HALF), \
14445 X (2, (R, H), HALF), \
14446 X (2, (H, I), HALF), \
14447 X (3, (H, H, H), HALF), \
14448 X (3, (H, F, I), MIXED), \
dec41383
JW
14449 X (3, (F, H, I), MIXED), \
14450 X (3, (D, H, H), MIXED), \
14451 X (3, (D, H, S), MIXED)
037e8744
JB
14452
14453#define S2(A,B) NS_##A##B
14454#define S3(A,B,C) NS_##A##B##C
14455#define S4(A,B,C,D) NS_##A##B##C##D
14456
14457#define X(N, L, C) S##N L
14458
5287ad62
JB
14459enum neon_shape
14460{
037e8744
JB
14461 NEON_SHAPE_DEF,
14462 NS_NULL
5287ad62 14463};
b99bd4ef 14464
037e8744
JB
14465#undef X
14466#undef S2
14467#undef S3
14468#undef S4
14469
14470enum neon_shape_class
14471{
d54af2d0 14472 SC_HALF,
037e8744
JB
14473 SC_SINGLE,
14474 SC_DOUBLE,
14475 SC_QUAD,
14476 SC_MIXED
14477};
14478
14479#define X(N, L, C) SC_##C
14480
14481static enum neon_shape_class neon_shape_class[] =
14482{
14483 NEON_SHAPE_DEF
14484};
14485
14486#undef X
14487
14488enum neon_shape_el
14489{
d54af2d0 14490 SE_H,
037e8744
JB
14491 SE_F,
14492 SE_D,
14493 SE_Q,
14494 SE_I,
14495 SE_S,
14496 SE_R,
14497 SE_L
14498};
14499
14500/* Register widths of above. */
14501static unsigned neon_shape_el_size[] =
14502{
d54af2d0 14503 16,
037e8744
JB
14504 32,
14505 64,
14506 128,
14507 0,
14508 32,
14509 32,
14510 0
14511};
14512
14513struct neon_shape_info
14514{
14515 unsigned els;
14516 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14517};
14518
14519#define S2(A,B) { SE_##A, SE_##B }
14520#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14521#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14522
14523#define X(N, L, C) { N, S##N L }
14524
14525static struct neon_shape_info neon_shape_tab[] =
14526{
14527 NEON_SHAPE_DEF
14528};
14529
14530#undef X
14531#undef S2
14532#undef S3
14533#undef S4
14534
5287ad62
JB
14535/* Bit masks used in type checking given instructions.
14536 'N_EQK' means the type must be the same as (or based on in some way) the key
14537 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14538 set, various other bits can be set as well in order to modify the meaning of
14539 the type constraint. */
14540
14541enum neon_type_mask
14542{
8e79c3df
CM
14543 N_S8 = 0x0000001,
14544 N_S16 = 0x0000002,
14545 N_S32 = 0x0000004,
14546 N_S64 = 0x0000008,
14547 N_U8 = 0x0000010,
14548 N_U16 = 0x0000020,
14549 N_U32 = 0x0000040,
14550 N_U64 = 0x0000080,
14551 N_I8 = 0x0000100,
14552 N_I16 = 0x0000200,
14553 N_I32 = 0x0000400,
14554 N_I64 = 0x0000800,
14555 N_8 = 0x0001000,
14556 N_16 = 0x0002000,
14557 N_32 = 0x0004000,
14558 N_64 = 0x0008000,
14559 N_P8 = 0x0010000,
14560 N_P16 = 0x0020000,
14561 N_F16 = 0x0040000,
14562 N_F32 = 0x0080000,
14563 N_F64 = 0x0100000,
4f51b4bd 14564 N_P64 = 0x0200000,
c921be7d
NC
14565 N_KEY = 0x1000000, /* Key element (main type specifier). */
14566 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14567 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14568 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14569 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14570 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14571 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14572 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14573 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14574 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14575 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14576 N_UTYP = 0,
4f51b4bd 14577 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14578};
14579
dcbf9037
JB
14580#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14581
5287ad62
JB
14582#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14583#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14584#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14585#define N_S_32 (N_S8 | N_S16 | N_S32)
14586#define N_F_16_32 (N_F16 | N_F32)
14587#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14588#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14589#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14590#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14591#define N_I_MVE (N_I8 | N_I16 | N_I32)
14592#define N_F_MVE (N_F16 | N_F32)
14593#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14594
14595/* Pass this as the first type argument to neon_check_type to ignore types
14596 altogether. */
14597#define N_IGNORE_TYPE (N_KEY | N_EQK)
14598
037e8744
JB
14599/* Select a "shape" for the current instruction (describing register types or
14600 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14601 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14602 function of operand parsing, so this function doesn't need to be called.
14603 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14604
14605static enum neon_shape
037e8744 14606neon_select_shape (enum neon_shape shape, ...)
5287ad62 14607{
037e8744
JB
14608 va_list ap;
14609 enum neon_shape first_shape = shape;
5287ad62
JB
14610
14611 /* Fix missing optional operands. FIXME: we don't know at this point how
14612 many arguments we should have, so this makes the assumption that we have
14613 > 1. This is true of all current Neon opcodes, I think, but may not be
14614 true in the future. */
14615 if (!inst.operands[1].present)
14616 inst.operands[1] = inst.operands[0];
14617
037e8744 14618 va_start (ap, shape);
5f4273c7 14619
21d799b5 14620 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14621 {
14622 unsigned j;
14623 int matches = 1;
14624
14625 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14626 {
14627 if (!inst.operands[j].present)
14628 {
14629 matches = 0;
14630 break;
14631 }
14632
14633 switch (neon_shape_tab[shape].el[j])
14634 {
d54af2d0
RL
14635 /* If a .f16, .16, .u16, .s16 type specifier is given over
14636 a VFP single precision register operand, it's essentially
14637 means only half of the register is used.
14638
14639 If the type specifier is given after the mnemonics, the
14640 information is stored in inst.vectype. If the type specifier
14641 is given after register operand, the information is stored
14642 in inst.operands[].vectype.
14643
14644 When there is only one type specifier, and all the register
14645 operands are the same type of hardware register, the type
14646 specifier applies to all register operands.
14647
14648 If no type specifier is given, the shape is inferred from
14649 operand information.
14650
14651 for example:
14652 vadd.f16 s0, s1, s2: NS_HHH
14653 vabs.f16 s0, s1: NS_HH
14654 vmov.f16 s0, r1: NS_HR
14655 vmov.f16 r0, s1: NS_RH
14656 vcvt.f16 r0, s1: NS_RH
14657 vcvt.f16.s32 s2, s2, #29: NS_HFI
14658 vcvt.f16.s32 s2, s2: NS_HF
14659 */
14660 case SE_H:
14661 if (!(inst.operands[j].isreg
14662 && inst.operands[j].isvec
14663 && inst.operands[j].issingle
14664 && !inst.operands[j].isquad
14665 && ((inst.vectype.elems == 1
14666 && inst.vectype.el[0].size == 16)
14667 || (inst.vectype.elems > 1
14668 && inst.vectype.el[j].size == 16)
14669 || (inst.vectype.elems == 0
14670 && inst.operands[j].vectype.type != NT_invtype
14671 && inst.operands[j].vectype.size == 16))))
14672 matches = 0;
14673 break;
14674
477330fc
RM
14675 case SE_F:
14676 if (!(inst.operands[j].isreg
14677 && inst.operands[j].isvec
14678 && inst.operands[j].issingle
d54af2d0
RL
14679 && !inst.operands[j].isquad
14680 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14681 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14682 || (inst.vectype.elems == 0
14683 && (inst.operands[j].vectype.size == 32
14684 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14685 matches = 0;
14686 break;
14687
14688 case SE_D:
14689 if (!(inst.operands[j].isreg
14690 && inst.operands[j].isvec
14691 && !inst.operands[j].isquad
14692 && !inst.operands[j].issingle))
14693 matches = 0;
14694 break;
14695
14696 case SE_R:
14697 if (!(inst.operands[j].isreg
14698 && !inst.operands[j].isvec))
14699 matches = 0;
14700 break;
14701
14702 case SE_Q:
14703 if (!(inst.operands[j].isreg
14704 && inst.operands[j].isvec
14705 && inst.operands[j].isquad
14706 && !inst.operands[j].issingle))
14707 matches = 0;
14708 break;
14709
14710 case SE_I:
14711 if (!(!inst.operands[j].isreg
14712 && !inst.operands[j].isscalar))
14713 matches = 0;
14714 break;
14715
14716 case SE_S:
14717 if (!(!inst.operands[j].isreg
14718 && inst.operands[j].isscalar))
14719 matches = 0;
14720 break;
14721
14722 case SE_L:
14723 break;
14724 }
3fde54a2
JZ
14725 if (!matches)
14726 break;
477330fc 14727 }
ad6cec43
MGD
14728 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14729 /* We've matched all the entries in the shape table, and we don't
14730 have any left over operands which have not been matched. */
477330fc 14731 break;
037e8744 14732 }
5f4273c7 14733
037e8744 14734 va_end (ap);
5287ad62 14735
037e8744
JB
14736 if (shape == NS_NULL && first_shape != NS_NULL)
14737 first_error (_("invalid instruction shape"));
5287ad62 14738
037e8744
JB
14739 return shape;
14740}
5287ad62 14741
037e8744
JB
14742/* True if SHAPE is predominantly a quadword operation (most of the time, this
14743 means the Q bit should be set). */
14744
14745static int
14746neon_quad (enum neon_shape shape)
14747{
14748 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14749}
037e8744 14750
5287ad62
JB
14751static void
14752neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14753 unsigned *g_size)
5287ad62
JB
14754{
14755 /* Allow modification to be made to types which are constrained to be
14756 based on the key element, based on bits set alongside N_EQK. */
14757 if ((typebits & N_EQK) != 0)
14758 {
14759 if ((typebits & N_HLF) != 0)
14760 *g_size /= 2;
14761 else if ((typebits & N_DBL) != 0)
14762 *g_size *= 2;
14763 if ((typebits & N_SGN) != 0)
14764 *g_type = NT_signed;
14765 else if ((typebits & N_UNS) != 0)
477330fc 14766 *g_type = NT_unsigned;
5287ad62 14767 else if ((typebits & N_INT) != 0)
477330fc 14768 *g_type = NT_integer;
5287ad62 14769 else if ((typebits & N_FLT) != 0)
477330fc 14770 *g_type = NT_float;
dcbf9037 14771 else if ((typebits & N_SIZ) != 0)
477330fc 14772 *g_type = NT_untyped;
5287ad62
JB
14773 }
14774}
5f4273c7 14775
5287ad62
JB
14776/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14777 operand type, i.e. the single type specified in a Neon instruction when it
14778 is the only one given. */
14779
14780static struct neon_type_el
14781neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14782{
14783 struct neon_type_el dest = *key;
5f4273c7 14784
9c2799c2 14785 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14786
5287ad62
JB
14787 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14788
14789 return dest;
14790}
14791
14792/* Convert Neon type and size into compact bitmask representation. */
14793
14794static enum neon_type_mask
14795type_chk_of_el_type (enum neon_el_type type, unsigned size)
14796{
14797 switch (type)
14798 {
14799 case NT_untyped:
14800 switch (size)
477330fc
RM
14801 {
14802 case 8: return N_8;
14803 case 16: return N_16;
14804 case 32: return N_32;
14805 case 64: return N_64;
14806 default: ;
14807 }
5287ad62
JB
14808 break;
14809
14810 case NT_integer:
14811 switch (size)
477330fc
RM
14812 {
14813 case 8: return N_I8;
14814 case 16: return N_I16;
14815 case 32: return N_I32;
14816 case 64: return N_I64;
14817 default: ;
14818 }
5287ad62
JB
14819 break;
14820
14821 case NT_float:
037e8744 14822 switch (size)
477330fc 14823 {
8e79c3df 14824 case 16: return N_F16;
477330fc
RM
14825 case 32: return N_F32;
14826 case 64: return N_F64;
14827 default: ;
14828 }
5287ad62
JB
14829 break;
14830
14831 case NT_poly:
14832 switch (size)
477330fc
RM
14833 {
14834 case 8: return N_P8;
14835 case 16: return N_P16;
4f51b4bd 14836 case 64: return N_P64;
477330fc
RM
14837 default: ;
14838 }
5287ad62
JB
14839 break;
14840
14841 case NT_signed:
14842 switch (size)
477330fc
RM
14843 {
14844 case 8: return N_S8;
14845 case 16: return N_S16;
14846 case 32: return N_S32;
14847 case 64: return N_S64;
14848 default: ;
14849 }
5287ad62
JB
14850 break;
14851
14852 case NT_unsigned:
14853 switch (size)
477330fc
RM
14854 {
14855 case 8: return N_U8;
14856 case 16: return N_U16;
14857 case 32: return N_U32;
14858 case 64: return N_U64;
14859 default: ;
14860 }
5287ad62
JB
14861 break;
14862
14863 default: ;
14864 }
5f4273c7 14865
5287ad62
JB
14866 return N_UTYP;
14867}
14868
14869/* Convert compact Neon bitmask type representation to a type and size. Only
14870 handles the case where a single bit is set in the mask. */
14871
dcbf9037 14872static int
5287ad62 14873el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14874 enum neon_type_mask mask)
5287ad62 14875{
dcbf9037
JB
14876 if ((mask & N_EQK) != 0)
14877 return FAIL;
14878
5287ad62
JB
14879 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14880 *size = 8;
c70a8987 14881 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14882 *size = 16;
dcbf9037 14883 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14884 *size = 32;
4f51b4bd 14885 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14886 *size = 64;
dcbf9037
JB
14887 else
14888 return FAIL;
14889
5287ad62
JB
14890 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14891 *type = NT_signed;
dcbf9037 14892 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14893 *type = NT_unsigned;
dcbf9037 14894 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14895 *type = NT_integer;
dcbf9037 14896 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14897 *type = NT_untyped;
4f51b4bd 14898 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14899 *type = NT_poly;
d54af2d0 14900 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14901 *type = NT_float;
dcbf9037
JB
14902 else
14903 return FAIL;
5f4273c7 14904
dcbf9037 14905 return SUCCESS;
5287ad62
JB
14906}
14907
14908/* Modify a bitmask of allowed types. This is only needed for type
14909 relaxation. */
14910
14911static unsigned
14912modify_types_allowed (unsigned allowed, unsigned mods)
14913{
14914 unsigned size;
14915 enum neon_el_type type;
14916 unsigned destmask;
14917 int i;
5f4273c7 14918
5287ad62 14919 destmask = 0;
5f4273c7 14920
5287ad62
JB
14921 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14922 {
21d799b5 14923 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14924 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14925 {
14926 neon_modify_type_size (mods, &type, &size);
14927 destmask |= type_chk_of_el_type (type, size);
14928 }
5287ad62 14929 }
5f4273c7 14930
5287ad62
JB
14931 return destmask;
14932}
14933
14934/* Check type and return type classification.
14935 The manual states (paraphrase): If one datatype is given, it indicates the
14936 type given in:
14937 - the second operand, if there is one
14938 - the operand, if there is no second operand
14939 - the result, if there are no operands.
14940 This isn't quite good enough though, so we use a concept of a "key" datatype
14941 which is set on a per-instruction basis, which is the one which matters when
14942 only one data type is written.
14943 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14944 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14945
14946static struct neon_type_el
14947neon_check_type (unsigned els, enum neon_shape ns, ...)
14948{
14949 va_list ap;
14950 unsigned i, pass, key_el = 0;
14951 unsigned types[NEON_MAX_TYPE_ELS];
14952 enum neon_el_type k_type = NT_invtype;
14953 unsigned k_size = -1u;
14954 struct neon_type_el badtype = {NT_invtype, -1};
14955 unsigned key_allowed = 0;
14956
14957 /* Optional registers in Neon instructions are always (not) in operand 1.
14958 Fill in the missing operand here, if it was omitted. */
14959 if (els > 1 && !inst.operands[1].present)
14960 inst.operands[1] = inst.operands[0];
14961
14962 /* Suck up all the varargs. */
14963 va_start (ap, ns);
14964 for (i = 0; i < els; i++)
14965 {
14966 unsigned thisarg = va_arg (ap, unsigned);
14967 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14968 {
14969 va_end (ap);
14970 return badtype;
14971 }
5287ad62
JB
14972 types[i] = thisarg;
14973 if ((thisarg & N_KEY) != 0)
477330fc 14974 key_el = i;
5287ad62
JB
14975 }
14976 va_end (ap);
14977
dcbf9037
JB
14978 if (inst.vectype.elems > 0)
14979 for (i = 0; i < els; i++)
14980 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14981 {
14982 first_error (_("types specified in both the mnemonic and operands"));
14983 return badtype;
14984 }
dcbf9037 14985
5287ad62
JB
14986 /* Duplicate inst.vectype elements here as necessary.
14987 FIXME: No idea if this is exactly the same as the ARM assembler,
14988 particularly when an insn takes one register and one non-register
14989 operand. */
14990 if (inst.vectype.elems == 1 && els > 1)
14991 {
14992 unsigned j;
14993 inst.vectype.elems = els;
14994 inst.vectype.el[key_el] = inst.vectype.el[0];
14995 for (j = 0; j < els; j++)
477330fc
RM
14996 if (j != key_el)
14997 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14998 types[j]);
dcbf9037
JB
14999 }
15000 else if (inst.vectype.elems == 0 && els > 0)
15001 {
15002 unsigned j;
15003 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
15004 after each operand. We allow some flexibility here; as long as the
15005 "key" operand has a type, we can infer the others. */
dcbf9037 15006 for (j = 0; j < els; j++)
477330fc
RM
15007 if (inst.operands[j].vectype.type != NT_invtype)
15008 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
15009
15010 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
15011 {
15012 for (j = 0; j < els; j++)
15013 if (inst.operands[j].vectype.type == NT_invtype)
15014 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15015 types[j]);
15016 }
dcbf9037 15017 else
477330fc
RM
15018 {
15019 first_error (_("operand types can't be inferred"));
15020 return badtype;
15021 }
5287ad62
JB
15022 }
15023 else if (inst.vectype.elems != els)
15024 {
dcbf9037 15025 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
15026 return badtype;
15027 }
15028
15029 for (pass = 0; pass < 2; pass++)
15030 {
15031 for (i = 0; i < els; i++)
477330fc
RM
15032 {
15033 unsigned thisarg = types[i];
15034 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15035 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15036 enum neon_el_type g_type = inst.vectype.el[i].type;
15037 unsigned g_size = inst.vectype.el[i].size;
15038
15039 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15040 integer types if sign-specific variants are unavailable. */
477330fc 15041 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15042 && (types_allowed & N_SU_ALL) == 0)
15043 g_type = NT_integer;
15044
477330fc 15045 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15046 them. Some instructions only care about signs for some element
15047 sizes, so handle that properly. */
477330fc 15048 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15049 && ((g_size == 8 && (types_allowed & N_8) != 0)
15050 || (g_size == 16 && (types_allowed & N_16) != 0)
15051 || (g_size == 32 && (types_allowed & N_32) != 0)
15052 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15053 g_type = NT_untyped;
15054
477330fc
RM
15055 if (pass == 0)
15056 {
15057 if ((thisarg & N_KEY) != 0)
15058 {
15059 k_type = g_type;
15060 k_size = g_size;
15061 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15062
15063 /* Check architecture constraint on FP16 extension. */
15064 if (k_size == 16
15065 && k_type == NT_float
15066 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15067 {
15068 inst.error = _(BAD_FP16);
15069 return badtype;
15070 }
477330fc
RM
15071 }
15072 }
15073 else
15074 {
15075 if ((thisarg & N_VFP) != 0)
15076 {
15077 enum neon_shape_el regshape;
15078 unsigned regwidth, match;
99b253c5
NC
15079
15080 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15081 if (ns == NS_NULL)
15082 {
15083 first_error (_("invalid instruction shape"));
15084 return badtype;
15085 }
477330fc
RM
15086 regshape = neon_shape_tab[ns].el[i];
15087 regwidth = neon_shape_el_size[regshape];
15088
15089 /* In VFP mode, operands must match register widths. If we
15090 have a key operand, use its width, else use the width of
15091 the current operand. */
15092 if (k_size != -1u)
15093 match = k_size;
15094 else
15095 match = g_size;
15096
9db2f6b4
RL
15097 /* FP16 will use a single precision register. */
15098 if (regwidth == 32 && match == 16)
15099 {
15100 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15101 match = regwidth;
15102 else
15103 {
15104 inst.error = _(BAD_FP16);
15105 return badtype;
15106 }
15107 }
15108
477330fc
RM
15109 if (regwidth != match)
15110 {
15111 first_error (_("operand size must match register width"));
15112 return badtype;
15113 }
15114 }
15115
15116 if ((thisarg & N_EQK) == 0)
15117 {
15118 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15119
15120 if ((given_type & types_allowed) == 0)
15121 {
a302e574 15122 first_error (BAD_SIMD_TYPE);
477330fc
RM
15123 return badtype;
15124 }
15125 }
15126 else
15127 {
15128 enum neon_el_type mod_k_type = k_type;
15129 unsigned mod_k_size = k_size;
15130 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15131 if (g_type != mod_k_type || g_size != mod_k_size)
15132 {
15133 first_error (_("inconsistent types in Neon instruction"));
15134 return badtype;
15135 }
15136 }
15137 }
15138 }
5287ad62
JB
15139 }
15140
15141 return inst.vectype.el[key_el];
15142}
15143
037e8744 15144/* Neon-style VFP instruction forwarding. */
5287ad62 15145
037e8744
JB
15146/* Thumb VFP instructions have 0xE in the condition field. */
15147
15148static void
15149do_vfp_cond_or_thumb (void)
5287ad62 15150{
88714cb8
DG
15151 inst.is_neon = 1;
15152
5287ad62 15153 if (thumb_mode)
037e8744 15154 inst.instruction |= 0xe0000000;
5287ad62 15155 else
037e8744 15156 inst.instruction |= inst.cond << 28;
5287ad62
JB
15157}
15158
037e8744
JB
15159/* Look up and encode a simple mnemonic, for use as a helper function for the
15160 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15161 etc. It is assumed that operand parsing has already been done, and that the
15162 operands are in the form expected by the given opcode (this isn't necessarily
15163 the same as the form in which they were parsed, hence some massaging must
15164 take place before this function is called).
15165 Checks current arch version against that in the looked-up opcode. */
5287ad62 15166
037e8744
JB
15167static void
15168do_vfp_nsyn_opcode (const char *opname)
5287ad62 15169{
037e8744 15170 const struct asm_opcode *opcode;
5f4273c7 15171
21d799b5 15172 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15173
037e8744
JB
15174 if (!opcode)
15175 abort ();
5287ad62 15176
037e8744 15177 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15178 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15179 _(BAD_FPU));
5287ad62 15180
88714cb8
DG
15181 inst.is_neon = 1;
15182
037e8744
JB
15183 if (thumb_mode)
15184 {
15185 inst.instruction = opcode->tvalue;
15186 opcode->tencode ();
15187 }
15188 else
15189 {
15190 inst.instruction = (inst.cond << 28) | opcode->avalue;
15191 opcode->aencode ();
15192 }
15193}
5287ad62
JB
15194
15195static void
037e8744 15196do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15197{
037e8744
JB
15198 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15199
9db2f6b4 15200 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15201 {
15202 if (is_add)
477330fc 15203 do_vfp_nsyn_opcode ("fadds");
037e8744 15204 else
477330fc 15205 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15206
15207 /* ARMv8.2 fp16 instruction. */
15208 if (rs == NS_HHH)
15209 do_scalar_fp16_v82_encode ();
037e8744
JB
15210 }
15211 else
15212 {
15213 if (is_add)
477330fc 15214 do_vfp_nsyn_opcode ("faddd");
037e8744 15215 else
477330fc 15216 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15217 }
15218}
15219
15220/* Check operand types to see if this is a VFP instruction, and if so call
15221 PFN (). */
15222
15223static int
15224try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15225{
15226 enum neon_shape rs;
15227 struct neon_type_el et;
15228
15229 switch (args)
15230 {
15231 case 2:
9db2f6b4
RL
15232 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15233 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15234 break;
5f4273c7 15235
037e8744 15236 case 3:
9db2f6b4
RL
15237 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15238 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15239 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15240 break;
15241
15242 default:
15243 abort ();
15244 }
15245
15246 if (et.type != NT_invtype)
15247 {
15248 pfn (rs);
15249 return SUCCESS;
15250 }
037e8744 15251
99b253c5 15252 inst.error = NULL;
037e8744
JB
15253 return FAIL;
15254}
15255
15256static void
15257do_vfp_nsyn_mla_mls (enum neon_shape rs)
15258{
15259 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15260
9db2f6b4 15261 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15262 {
15263 if (is_mla)
477330fc 15264 do_vfp_nsyn_opcode ("fmacs");
037e8744 15265 else
477330fc 15266 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15267
15268 /* ARMv8.2 fp16 instruction. */
15269 if (rs == NS_HHH)
15270 do_scalar_fp16_v82_encode ();
037e8744
JB
15271 }
15272 else
15273 {
15274 if (is_mla)
477330fc 15275 do_vfp_nsyn_opcode ("fmacd");
037e8744 15276 else
477330fc 15277 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15278 }
15279}
15280
62f3b8c8
PB
15281static void
15282do_vfp_nsyn_fma_fms (enum neon_shape rs)
15283{
15284 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15285
9db2f6b4 15286 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15287 {
15288 if (is_fma)
477330fc 15289 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15290 else
477330fc 15291 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15292
15293 /* ARMv8.2 fp16 instruction. */
15294 if (rs == NS_HHH)
15295 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15296 }
15297 else
15298 {
15299 if (is_fma)
477330fc 15300 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15301 else
477330fc 15302 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15303 }
15304}
15305
037e8744
JB
15306static void
15307do_vfp_nsyn_mul (enum neon_shape rs)
15308{
9db2f6b4
RL
15309 if (rs == NS_FFF || rs == NS_HHH)
15310 {
15311 do_vfp_nsyn_opcode ("fmuls");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HHH)
15315 do_scalar_fp16_v82_encode ();
15316 }
037e8744
JB
15317 else
15318 do_vfp_nsyn_opcode ("fmuld");
15319}
15320
15321static void
15322do_vfp_nsyn_abs_neg (enum neon_shape rs)
15323{
15324 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15325 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15326
9db2f6b4 15327 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15328 {
15329 if (is_neg)
477330fc 15330 do_vfp_nsyn_opcode ("fnegs");
037e8744 15331 else
477330fc 15332 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15333
15334 /* ARMv8.2 fp16 instruction. */
15335 if (rs == NS_HH)
15336 do_scalar_fp16_v82_encode ();
037e8744
JB
15337 }
15338 else
15339 {
15340 if (is_neg)
477330fc 15341 do_vfp_nsyn_opcode ("fnegd");
037e8744 15342 else
477330fc 15343 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15344 }
15345}
15346
15347/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15348 insns belong to Neon, and are handled elsewhere. */
15349
15350static void
15351do_vfp_nsyn_ldm_stm (int is_dbmode)
15352{
15353 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15354 if (is_ldm)
15355 {
15356 if (is_dbmode)
477330fc 15357 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15358 else
477330fc 15359 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15360 }
15361 else
15362 {
15363 if (is_dbmode)
477330fc 15364 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15365 else
477330fc 15366 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15367 }
15368}
15369
037e8744
JB
15370static void
15371do_vfp_nsyn_sqrt (void)
15372{
9db2f6b4
RL
15373 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15374 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15375
9db2f6b4
RL
15376 if (rs == NS_FF || rs == NS_HH)
15377 {
15378 do_vfp_nsyn_opcode ("fsqrts");
15379
15380 /* ARMv8.2 fp16 instruction. */
15381 if (rs == NS_HH)
15382 do_scalar_fp16_v82_encode ();
15383 }
037e8744
JB
15384 else
15385 do_vfp_nsyn_opcode ("fsqrtd");
15386}
15387
15388static void
15389do_vfp_nsyn_div (void)
15390{
9db2f6b4 15391 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15392 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15393 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15394
9db2f6b4
RL
15395 if (rs == NS_FFF || rs == NS_HHH)
15396 {
15397 do_vfp_nsyn_opcode ("fdivs");
15398
15399 /* ARMv8.2 fp16 instruction. */
15400 if (rs == NS_HHH)
15401 do_scalar_fp16_v82_encode ();
15402 }
037e8744
JB
15403 else
15404 do_vfp_nsyn_opcode ("fdivd");
15405}
15406
15407static void
15408do_vfp_nsyn_nmul (void)
15409{
9db2f6b4 15410 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15411 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15412 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15413
9db2f6b4 15414 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15415 {
88714cb8 15416 NEON_ENCODE (SINGLE, inst);
037e8744 15417 do_vfp_sp_dyadic ();
9db2f6b4
RL
15418
15419 /* ARMv8.2 fp16 instruction. */
15420 if (rs == NS_HHH)
15421 do_scalar_fp16_v82_encode ();
037e8744
JB
15422 }
15423 else
15424 {
88714cb8 15425 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15426 do_vfp_dp_rd_rn_rm ();
15427 }
15428 do_vfp_cond_or_thumb ();
9db2f6b4 15429
037e8744
JB
15430}
15431
1b883319
AV
15432/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15433 (0, 1, 2, 3). */
15434
15435static unsigned
15436neon_logbits (unsigned x)
15437{
15438 return ffs (x) - 4;
15439}
15440
15441#define LOW4(R) ((R) & 0xf)
15442#define HI1(R) (((R) >> 4) & 1)
15443
15444static unsigned
15445mve_get_vcmp_vpt_cond (struct neon_type_el et)
15446{
15447 switch (et.type)
15448 {
15449 default:
15450 first_error (BAD_EL_TYPE);
15451 return 0;
15452 case NT_float:
15453 switch (inst.operands[0].imm)
15454 {
15455 default:
15456 first_error (_("invalid condition"));
15457 return 0;
15458 case 0x0:
15459 /* eq. */
15460 return 0;
15461 case 0x1:
15462 /* ne. */
15463 return 1;
15464 case 0xa:
15465 /* ge/ */
15466 return 4;
15467 case 0xb:
15468 /* lt. */
15469 return 5;
15470 case 0xc:
15471 /* gt. */
15472 return 6;
15473 case 0xd:
15474 /* le. */
15475 return 7;
15476 }
15477 case NT_integer:
15478 /* only accept eq and ne. */
15479 if (inst.operands[0].imm > 1)
15480 {
15481 first_error (_("invalid condition"));
15482 return 0;
15483 }
15484 return inst.operands[0].imm;
15485 case NT_unsigned:
15486 if (inst.operands[0].imm == 0x2)
15487 return 2;
15488 else if (inst.operands[0].imm == 0x8)
15489 return 3;
15490 else
15491 {
15492 first_error (_("invalid condition"));
15493 return 0;
15494 }
15495 case NT_signed:
15496 switch (inst.operands[0].imm)
15497 {
15498 default:
15499 first_error (_("invalid condition"));
15500 return 0;
15501 case 0xa:
15502 /* ge. */
15503 return 4;
15504 case 0xb:
15505 /* lt. */
15506 return 5;
15507 case 0xc:
15508 /* gt. */
15509 return 6;
15510 case 0xd:
15511 /* le. */
15512 return 7;
15513 }
15514 }
15515 /* Should be unreachable. */
15516 abort ();
15517}
15518
15519static void
15520do_mve_vpt (void)
15521{
15522 /* We are dealing with a vector predicated block. */
15523 if (inst.operands[0].present)
15524 {
15525 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15526 struct neon_type_el et
15527 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15528 N_EQK);
15529
15530 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15531
15532 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15533
15534 if (et.type == NT_invtype)
15535 return;
15536
15537 if (et.type == NT_float)
15538 {
15539 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15540 BAD_FPU);
15541 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15542 inst.instruction |= (et.size == 16) << 28;
15543 inst.instruction |= 0x3 << 20;
15544 }
15545 else
15546 {
15547 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15548 BAD_EL_TYPE);
15549 inst.instruction |= 1 << 28;
15550 inst.instruction |= neon_logbits (et.size) << 20;
15551 }
15552
15553 if (inst.operands[2].isquad)
15554 {
15555 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15556 inst.instruction |= LOW4 (inst.operands[2].reg);
15557 inst.instruction |= (fcond & 0x2) >> 1;
15558 }
15559 else
15560 {
15561 if (inst.operands[2].reg == REG_SP)
15562 as_tsktsk (MVE_BAD_SP);
15563 inst.instruction |= 1 << 6;
15564 inst.instruction |= (fcond & 0x2) << 4;
15565 inst.instruction |= inst.operands[2].reg;
15566 }
15567 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15568 inst.instruction |= (fcond & 0x4) << 10;
15569 inst.instruction |= (fcond & 0x1) << 7;
15570
15571 }
15572 set_pred_insn_type (VPT_INSN);
15573 now_pred.cc = 0;
15574 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15575 | ((inst.instruction & 0xe000) >> 13);
15576 now_pred.warn_deprecated = FALSE;
15577 now_pred.type = VECTOR_PRED;
15578 inst.is_neon = 1;
15579}
15580
15581static void
15582do_mve_vcmp (void)
15583{
15584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15585 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15586 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15587 if (!inst.operands[2].present)
15588 first_error (_("MVE vector or ARM register expected"));
15589 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15590
15591 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15592 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15593 && inst.operands[1].isquad)
15594 {
15595 inst.instruction = N_MNEM_vcmp;
15596 inst.cond = 0x10;
15597 }
15598
15599 if (inst.cond > COND_ALWAYS)
15600 inst.pred_insn_type = INSIDE_VPT_INSN;
15601 else
15602 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15603
15604 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15605 struct neon_type_el et
15606 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15607 N_EQK);
15608
15609 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15610 && !inst.operands[2].iszr, BAD_PC);
15611
15612 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15613
15614 inst.instruction = 0xee010f00;
15615 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15616 inst.instruction |= (fcond & 0x4) << 10;
15617 inst.instruction |= (fcond & 0x1) << 7;
15618 if (et.type == NT_float)
15619 {
15620 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15621 BAD_FPU);
15622 inst.instruction |= (et.size == 16) << 28;
15623 inst.instruction |= 0x3 << 20;
15624 }
15625 else
15626 {
15627 inst.instruction |= 1 << 28;
15628 inst.instruction |= neon_logbits (et.size) << 20;
15629 }
15630 if (inst.operands[2].isquad)
15631 {
15632 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15633 inst.instruction |= (fcond & 0x2) >> 1;
15634 inst.instruction |= LOW4 (inst.operands[2].reg);
15635 }
15636 else
15637 {
15638 if (inst.operands[2].reg == REG_SP)
15639 as_tsktsk (MVE_BAD_SP);
15640 inst.instruction |= 1 << 6;
15641 inst.instruction |= (fcond & 0x2) << 4;
15642 inst.instruction |= inst.operands[2].reg;
15643 }
15644
15645 inst.is_neon = 1;
15646 return;
15647}
15648
935295b5
AV
15649static void
15650do_mve_vmaxa_vmina (void)
15651{
15652 if (inst.cond > COND_ALWAYS)
15653 inst.pred_insn_type = INSIDE_VPT_INSN;
15654 else
15655 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15656
15657 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15658 struct neon_type_el et
15659 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15660
15661 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15662 inst.instruction |= neon_logbits (et.size) << 18;
15663 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15664 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15665 inst.instruction |= LOW4 (inst.operands[1].reg);
15666 inst.is_neon = 1;
15667}
15668
f30ee27c
AV
15669static void
15670do_mve_vfmas (void)
15671{
15672 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15673 struct neon_type_el et
15674 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15675
15676 if (inst.cond > COND_ALWAYS)
15677 inst.pred_insn_type = INSIDE_VPT_INSN;
15678 else
15679 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15680
15681 if (inst.operands[2].reg == REG_SP)
15682 as_tsktsk (MVE_BAD_SP);
15683 else if (inst.operands[2].reg == REG_PC)
15684 as_tsktsk (MVE_BAD_PC);
15685
15686 inst.instruction |= (et.size == 16) << 28;
15687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15688 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15690 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15691 inst.instruction |= inst.operands[2].reg;
15692 inst.is_neon = 1;
15693}
15694
b409bdb6
AV
15695static void
15696do_mve_viddup (void)
15697{
15698 if (inst.cond > COND_ALWAYS)
15699 inst.pred_insn_type = INSIDE_VPT_INSN;
15700 else
15701 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15702
15703 unsigned imm = inst.relocs[0].exp.X_add_number;
15704 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15705 _("immediate must be either 1, 2, 4 or 8"));
15706
15707 enum neon_shape rs;
15708 struct neon_type_el et;
15709 unsigned Rm;
15710 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15711 {
15712 rs = neon_select_shape (NS_QRI, NS_NULL);
15713 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15714 Rm = 7;
15715 }
15716 else
15717 {
15718 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15719 if (inst.operands[2].reg == REG_SP)
15720 as_tsktsk (MVE_BAD_SP);
15721 else if (inst.operands[2].reg == REG_PC)
15722 first_error (BAD_PC);
15723
15724 rs = neon_select_shape (NS_QRRI, NS_NULL);
15725 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15726 Rm = inst.operands[2].reg >> 1;
15727 }
15728 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15729 inst.instruction |= neon_logbits (et.size) << 20;
15730 inst.instruction |= inst.operands[1].reg << 16;
15731 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15732 inst.instruction |= (imm > 2) << 7;
15733 inst.instruction |= Rm << 1;
15734 inst.instruction |= (imm == 2 || imm == 8);
15735 inst.is_neon = 1;
15736}
15737
2d78f95b
AV
15738static void
15739do_mve_vmlas (void)
15740{
15741 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15742 struct neon_type_el et
15743 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15744
15745 if (inst.operands[2].reg == REG_PC)
15746 as_tsktsk (MVE_BAD_PC);
15747 else if (inst.operands[2].reg == REG_SP)
15748 as_tsktsk (MVE_BAD_SP);
15749
15750 if (inst.cond > COND_ALWAYS)
15751 inst.pred_insn_type = INSIDE_VPT_INSN;
15752 else
15753 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15754
15755 inst.instruction |= (et.type == NT_unsigned) << 28;
15756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15757 inst.instruction |= neon_logbits (et.size) << 20;
15758 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15759 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15760 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15761 inst.instruction |= inst.operands[2].reg;
15762 inst.is_neon = 1;
15763}
15764
4aa88b50
AV
15765static void
15766do_mve_vshrn (void)
15767{
15768 unsigned types;
15769 switch (inst.instruction)
15770 {
15771 case M_MNEM_vshrnt:
15772 case M_MNEM_vshrnb:
15773 case M_MNEM_vrshrnt:
15774 case M_MNEM_vrshrnb:
15775 types = N_I16 | N_I32;
15776 break;
15777 case M_MNEM_vqshrnt:
15778 case M_MNEM_vqshrnb:
15779 case M_MNEM_vqrshrnt:
15780 case M_MNEM_vqrshrnb:
15781 types = N_U16 | N_U32 | N_S16 | N_S32;
15782 break;
15783 case M_MNEM_vqshrunt:
15784 case M_MNEM_vqshrunb:
15785 case M_MNEM_vqrshrunt:
15786 case M_MNEM_vqrshrunb:
15787 types = N_S16 | N_S32;
15788 break;
15789 default:
15790 abort ();
15791 }
15792
15793 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
15794
15795 if (inst.cond > COND_ALWAYS)
15796 inst.pred_insn_type = INSIDE_VPT_INSN;
15797 else
15798 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15799
15800 unsigned Qd = inst.operands[0].reg;
15801 unsigned Qm = inst.operands[1].reg;
15802 unsigned imm = inst.operands[2].imm;
15803 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
15804 et.size == 16
15805 ? _("immediate operand expected in the range [1,8]")
15806 : _("immediate operand expected in the range [1,16]"));
15807
15808 inst.instruction |= (et.type == NT_unsigned) << 28;
15809 inst.instruction |= HI1 (Qd) << 22;
15810 inst.instruction |= (et.size - imm) << 16;
15811 inst.instruction |= LOW4 (Qd) << 12;
15812 inst.instruction |= HI1 (Qm) << 5;
15813 inst.instruction |= LOW4 (Qm);
15814 inst.is_neon = 1;
15815}
15816
1be7aba3
AV
15817static void
15818do_mve_vqmovn (void)
15819{
15820 struct neon_type_el et;
15821 if (inst.instruction == M_MNEM_vqmovnt
15822 || inst.instruction == M_MNEM_vqmovnb)
15823 et = neon_check_type (2, NS_QQ, N_EQK,
15824 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15825 else
15826 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15827
15828 if (inst.cond > COND_ALWAYS)
15829 inst.pred_insn_type = INSIDE_VPT_INSN;
15830 else
15831 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15832
15833 inst.instruction |= (et.type == NT_unsigned) << 28;
15834 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15835 inst.instruction |= (et.size == 32) << 18;
15836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15837 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15838 inst.instruction |= LOW4 (inst.operands[1].reg);
15839 inst.is_neon = 1;
15840}
15841
3063888e
AV
15842static void
15843do_mve_vpsel (void)
15844{
15845 neon_select_shape (NS_QQQ, NS_NULL);
15846
15847 if (inst.cond > COND_ALWAYS)
15848 inst.pred_insn_type = INSIDE_VPT_INSN;
15849 else
15850 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15851
15852 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15853 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15854 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15855 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15856 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15857 inst.instruction |= LOW4 (inst.operands[2].reg);
15858 inst.is_neon = 1;
15859}
15860
15861static void
15862do_mve_vpnot (void)
15863{
15864 if (inst.cond > COND_ALWAYS)
15865 inst.pred_insn_type = INSIDE_VPT_INSN;
15866 else
15867 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15868}
15869
935295b5
AV
15870static void
15871do_mve_vmaxnma_vminnma (void)
15872{
15873 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15874 struct neon_type_el et
15875 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15876
15877 if (inst.cond > COND_ALWAYS)
15878 inst.pred_insn_type = INSIDE_VPT_INSN;
15879 else
15880 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15881
15882 inst.instruction |= (et.size == 16) << 28;
15883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15884 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15885 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15886 inst.instruction |= LOW4 (inst.operands[1].reg);
15887 inst.is_neon = 1;
15888}
15889
5d281bf0
AV
15890static void
15891do_mve_vcmul (void)
15892{
15893 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15894 struct neon_type_el et
15895 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15896
15897 if (inst.cond > COND_ALWAYS)
15898 inst.pred_insn_type = INSIDE_VPT_INSN;
15899 else
15900 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15901
15902 unsigned rot = inst.relocs[0].exp.X_add_number;
15903 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15904 _("immediate out of range"));
15905
15906 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15907 || inst.operands[0].reg == inst.operands[2].reg))
15908 as_tsktsk (BAD_MVE_SRCDEST);
15909
15910 inst.instruction |= (et.size == 32) << 28;
15911 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15912 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15913 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15914 inst.instruction |= (rot > 90) << 12;
15915 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15916 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15917 inst.instruction |= LOW4 (inst.operands[2].reg);
15918 inst.instruction |= (rot == 90 || rot == 270);
15919 inst.is_neon = 1;
15920}
15921
037e8744
JB
15922static void
15923do_vfp_nsyn_cmp (void)
15924{
9db2f6b4 15925 enum neon_shape rs;
1b883319
AV
15926 if (!inst.operands[0].isreg)
15927 {
15928 do_mve_vcmp ();
15929 return;
15930 }
15931 else
15932 {
15933 constraint (inst.operands[2].present, BAD_SYNTAX);
15934 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15935 BAD_FPU);
15936 }
15937
037e8744
JB
15938 if (inst.operands[1].isreg)
15939 {
9db2f6b4
RL
15940 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15941 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15942
9db2f6b4 15943 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15944 {
15945 NEON_ENCODE (SINGLE, inst);
15946 do_vfp_sp_monadic ();
15947 }
037e8744 15948 else
477330fc
RM
15949 {
15950 NEON_ENCODE (DOUBLE, inst);
15951 do_vfp_dp_rd_rm ();
15952 }
037e8744
JB
15953 }
15954 else
15955 {
9db2f6b4
RL
15956 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15957 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15958
15959 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15960 {
15961 case N_MNEM_vcmp:
15962 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15963 break;
15964 case N_MNEM_vcmpe:
15965 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15966 break;
15967 default:
15968 abort ();
15969 }
5f4273c7 15970
9db2f6b4 15971 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15972 {
15973 NEON_ENCODE (SINGLE, inst);
15974 do_vfp_sp_compare_z ();
15975 }
037e8744 15976 else
477330fc
RM
15977 {
15978 NEON_ENCODE (DOUBLE, inst);
15979 do_vfp_dp_rd ();
15980 }
037e8744
JB
15981 }
15982 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15983
15984 /* ARMv8.2 fp16 instruction. */
15985 if (rs == NS_HI || rs == NS_HH)
15986 do_scalar_fp16_v82_encode ();
037e8744
JB
15987}
15988
15989static void
15990nsyn_insert_sp (void)
15991{
15992 inst.operands[1] = inst.operands[0];
15993 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15994 inst.operands[0].reg = REG_SP;
037e8744
JB
15995 inst.operands[0].isreg = 1;
15996 inst.operands[0].writeback = 1;
15997 inst.operands[0].present = 1;
15998}
15999
16000static void
16001do_vfp_nsyn_push (void)
16002{
16003 nsyn_insert_sp ();
b126985e
NC
16004
16005 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16006 _("register list must contain at least 1 and at most 16 "
16007 "registers"));
16008
037e8744
JB
16009 if (inst.operands[1].issingle)
16010 do_vfp_nsyn_opcode ("fstmdbs");
16011 else
16012 do_vfp_nsyn_opcode ("fstmdbd");
16013}
16014
16015static void
16016do_vfp_nsyn_pop (void)
16017{
16018 nsyn_insert_sp ();
b126985e
NC
16019
16020 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16021 _("register list must contain at least 1 and at most 16 "
16022 "registers"));
16023
037e8744 16024 if (inst.operands[1].issingle)
22b5b651 16025 do_vfp_nsyn_opcode ("fldmias");
037e8744 16026 else
22b5b651 16027 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
16028}
16029
16030/* Fix up Neon data-processing instructions, ORing in the correct bits for
16031 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16032
88714cb8
DG
16033static void
16034neon_dp_fixup (struct arm_it* insn)
037e8744 16035{
88714cb8
DG
16036 unsigned int i = insn->instruction;
16037 insn->is_neon = 1;
16038
037e8744
JB
16039 if (thumb_mode)
16040 {
16041 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16042 if (i & (1 << 24))
477330fc 16043 i |= 1 << 28;
5f4273c7 16044
037e8744 16045 i &= ~(1 << 24);
5f4273c7 16046
037e8744
JB
16047 i |= 0xef000000;
16048 }
16049 else
16050 i |= 0xf2000000;
5f4273c7 16051
88714cb8 16052 insn->instruction = i;
037e8744
JB
16053}
16054
5ee91343 16055static void
7df54120 16056mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
16057{
16058 if (inst.operands[2].reg == REG_SP)
16059 as_tsktsk (MVE_BAD_SP);
16060 else if (inst.operands[2].reg == REG_PC)
16061 as_tsktsk (MVE_BAD_PC);
16062
16063 if (fp)
16064 {
16065 /* vadd. */
16066 if (((unsigned)inst.instruction) == 0xd00)
16067 inst.instruction = 0xee300f40;
16068 /* vsub. */
16069 else if (((unsigned)inst.instruction) == 0x200d00)
16070 inst.instruction = 0xee301f40;
a8465a06
AV
16071 /* vmul. */
16072 else if (((unsigned)inst.instruction) == 0x1000d10)
16073 inst.instruction = 0xee310e60;
5ee91343
AV
16074
16075 /* Setting size which is 1 for F16 and 0 for F32. */
16076 inst.instruction |= (size == 16) << 28;
16077 }
16078 else
16079 {
16080 /* vadd. */
16081 if (((unsigned)inst.instruction) == 0x800)
16082 inst.instruction = 0xee010f40;
16083 /* vsub. */
16084 else if (((unsigned)inst.instruction) == 0x1000800)
16085 inst.instruction = 0xee011f40;
7df54120
AV
16086 /* vhadd. */
16087 else if (((unsigned)inst.instruction) == 0)
16088 inst.instruction = 0xee000f40;
16089 /* vhsub. */
16090 else if (((unsigned)inst.instruction) == 0x200)
16091 inst.instruction = 0xee001f40;
a8465a06
AV
16092 /* vmla. */
16093 else if (((unsigned)inst.instruction) == 0x900)
16094 inst.instruction = 0xee010e40;
16095 /* vmul. */
16096 else if (((unsigned)inst.instruction) == 0x910)
16097 inst.instruction = 0xee011e60;
16098 /* vqadd. */
16099 else if (((unsigned)inst.instruction) == 0x10)
16100 inst.instruction = 0xee000f60;
16101 /* vqsub. */
16102 else if (((unsigned)inst.instruction) == 0x210)
16103 inst.instruction = 0xee001f60;
42b16635
AV
16104 /* vqrdmlah. */
16105 else if (((unsigned)inst.instruction) == 0x3000b10)
16106 inst.instruction = 0xee000e40;
16107 /* vqdmulh. */
16108 else if (((unsigned)inst.instruction) == 0x0000b00)
16109 inst.instruction = 0xee010e60;
16110 /* vqrdmulh. */
16111 else if (((unsigned)inst.instruction) == 0x1000b00)
16112 inst.instruction = 0xfe010e60;
7df54120
AV
16113
16114 /* Set U-bit. */
16115 inst.instruction |= U << 28;
16116
5ee91343
AV
16117 /* Setting bits for size. */
16118 inst.instruction |= neon_logbits (size) << 20;
16119 }
16120 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16121 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16122 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16123 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16124 inst.instruction |= inst.operands[2].reg;
16125 inst.is_neon = 1;
16126}
16127
a302e574
AV
16128static void
16129mve_encode_rqq (unsigned bit28, unsigned size)
16130{
16131 inst.instruction |= bit28 << 28;
16132 inst.instruction |= neon_logbits (size) << 20;
16133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16134 inst.instruction |= inst.operands[0].reg << 12;
16135 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16136 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16137 inst.instruction |= LOW4 (inst.operands[2].reg);
16138 inst.is_neon = 1;
16139}
16140
886e1c73
AV
16141static void
16142mve_encode_qqq (int ubit, int size)
16143{
16144
16145 inst.instruction |= (ubit != 0) << 28;
16146 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16147 inst.instruction |= neon_logbits (size) << 20;
16148 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16149 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16150 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16151 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16152 inst.instruction |= LOW4 (inst.operands[2].reg);
16153
16154 inst.is_neon = 1;
16155}
16156
26c1e780
AV
16157static void
16158mve_encode_rq (unsigned bit28, unsigned size)
16159{
16160 inst.instruction |= bit28 << 28;
16161 inst.instruction |= neon_logbits (size) << 18;
16162 inst.instruction |= inst.operands[0].reg << 12;
16163 inst.instruction |= LOW4 (inst.operands[1].reg);
16164 inst.is_neon = 1;
16165}
886e1c73 16166
93925576
AV
16167static void
16168mve_encode_rrqq (unsigned U, unsigned size)
16169{
16170 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16171
16172 inst.instruction |= U << 28;
16173 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16174 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16175 inst.instruction |= (size == 32) << 16;
16176 inst.instruction |= inst.operands[0].reg << 12;
16177 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16178 inst.instruction |= inst.operands[3].reg;
16179 inst.is_neon = 1;
16180}
16181
037e8744
JB
16182/* Encode insns with bit pattern:
16183
16184 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16185 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16186
037e8744
JB
16187 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16188 different meaning for some instruction. */
16189
16190static void
16191neon_three_same (int isquad, int ubit, int size)
16192{
16193 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16194 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16195 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16196 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16197 inst.instruction |= LOW4 (inst.operands[2].reg);
16198 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16199 inst.instruction |= (isquad != 0) << 6;
16200 inst.instruction |= (ubit != 0) << 24;
16201 if (size != -1)
16202 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16203
88714cb8 16204 neon_dp_fixup (&inst);
037e8744
JB
16205}
16206
16207/* Encode instructions of the form:
16208
16209 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16210 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16211
16212 Don't write size if SIZE == -1. */
16213
16214static void
16215neon_two_same (int qbit, int ubit, int size)
16216{
16217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16219 inst.instruction |= LOW4 (inst.operands[1].reg);
16220 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16221 inst.instruction |= (qbit != 0) << 6;
16222 inst.instruction |= (ubit != 0) << 24;
16223
16224 if (size != -1)
16225 inst.instruction |= neon_logbits (size) << 18;
16226
88714cb8 16227 neon_dp_fixup (&inst);
5287ad62
JB
16228}
16229
7df54120
AV
16230enum vfp_or_neon_is_neon_bits
16231{
16232NEON_CHECK_CC = 1,
16233NEON_CHECK_ARCH = 2,
16234NEON_CHECK_ARCH8 = 4
16235};
16236
16237/* Call this function if an instruction which may have belonged to the VFP or
16238 Neon instruction sets, but turned out to be a Neon instruction (due to the
16239 operand types involved, etc.). We have to check and/or fix-up a couple of
16240 things:
16241
16242 - Make sure the user hasn't attempted to make a Neon instruction
16243 conditional.
16244 - Alter the value in the condition code field if necessary.
16245 - Make sure that the arch supports Neon instructions.
16246
16247 Which of these operations take place depends on bits from enum
16248 vfp_or_neon_is_neon_bits.
16249
16250 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16251 current instruction's condition is COND_ALWAYS, the condition field is
16252 changed to inst.uncond_value. This is necessary because instructions shared
16253 between VFP and Neon may be conditional for the VFP variants only, and the
16254 unconditional Neon version must have, e.g., 0xF in the condition field. */
16255
16256static int
16257vfp_or_neon_is_neon (unsigned check)
16258{
16259/* Conditions are always legal in Thumb mode (IT blocks). */
16260if (!thumb_mode && (check & NEON_CHECK_CC))
16261 {
16262 if (inst.cond != COND_ALWAYS)
16263 {
16264 first_error (_(BAD_COND));
16265 return FAIL;
16266 }
16267 if (inst.uncond_value != -1)
16268 inst.instruction |= inst.uncond_value << 28;
16269 }
16270
16271
16272 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16273 || ((check & NEON_CHECK_ARCH8)
16274 && !mark_feature_used (&fpu_neon_ext_armv8)))
16275 {
16276 first_error (_(BAD_FPU));
16277 return FAIL;
16278 }
16279
16280return SUCCESS;
16281}
16282
16283static int
16284check_simd_pred_availability (int fp, unsigned check)
16285{
16286if (inst.cond > COND_ALWAYS)
16287 {
16288 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16289 {
16290 inst.error = BAD_FPU;
16291 return 1;
16292 }
16293 inst.pred_insn_type = INSIDE_VPT_INSN;
16294 }
16295else if (inst.cond < COND_ALWAYS)
16296 {
16297 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16298 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16299 else if (vfp_or_neon_is_neon (check) == FAIL)
16300 return 2;
16301 }
16302else
16303 {
16304 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16305 && vfp_or_neon_is_neon (check) == FAIL)
16306 return 3;
16307
16308 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16309 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16310 }
16311return 0;
16312}
16313
5287ad62
JB
16314/* Neon instruction encoders, in approximate order of appearance. */
16315
16316static void
16317do_neon_dyadic_i_su (void)
16318{
7df54120
AV
16319 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16320 return;
16321
16322 enum neon_shape rs;
16323 struct neon_type_el et;
16324 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16325 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16326 else
16327 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16328
16329 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16330
16331
16332 if (rs != NS_QQR)
16333 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16334 else
16335 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16336}
16337
16338static void
16339do_neon_dyadic_i64_su (void)
16340{
a8465a06
AV
16341 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16342 return;
16343 enum neon_shape rs;
16344 struct neon_type_el et;
16345 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16346 {
16347 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16348 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16349 }
16350 else
16351 {
16352 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16353 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16354 }
16355 if (rs == NS_QQR)
16356 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16357 else
16358 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16359}
16360
16361static void
16362neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16363 unsigned immbits)
5287ad62
JB
16364{
16365 unsigned size = et.size >> 3;
16366 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16367 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16368 inst.instruction |= LOW4 (inst.operands[1].reg);
16369 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16370 inst.instruction |= (isquad != 0) << 6;
16371 inst.instruction |= immbits << 16;
16372 inst.instruction |= (size >> 3) << 7;
16373 inst.instruction |= (size & 0x7) << 19;
16374 if (write_ubit)
16375 inst.instruction |= (uval != 0) << 24;
16376
88714cb8 16377 neon_dp_fixup (&inst);
5287ad62
JB
16378}
16379
16380static void
16381do_neon_shl_imm (void)
16382{
16383 if (!inst.operands[2].isreg)
16384 {
037e8744 16385 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16386 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16387 int imm = inst.operands[2].imm;
16388
16389 constraint (imm < 0 || (unsigned)imm >= et.size,
16390 _("immediate out of range for shift"));
88714cb8 16391 NEON_ENCODE (IMMED, inst);
cb3b1e65 16392 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16393 }
16394 else
16395 {
037e8744 16396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16397 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16398 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16399 unsigned int tmp;
16400
16401 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16402 vshl.xx Dd, Dm, Dn
16403 whereas other 3-register operations encoded by neon_three_same have
16404 syntax like:
16405 vadd.xx Dd, Dn, Dm
16406 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16407 here. */
627907b7
JB
16408 tmp = inst.operands[2].reg;
16409 inst.operands[2].reg = inst.operands[1].reg;
16410 inst.operands[1].reg = tmp;
88714cb8 16411 NEON_ENCODE (INTEGER, inst);
037e8744 16412 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16413 }
16414}
16415
16416static void
16417do_neon_qshl_imm (void)
16418{
16419 if (!inst.operands[2].isreg)
16420 {
037e8744 16421 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16422 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16423 int imm = inst.operands[2].imm;
627907b7 16424
cb3b1e65
JB
16425 constraint (imm < 0 || (unsigned)imm >= et.size,
16426 _("immediate out of range for shift"));
88714cb8 16427 NEON_ENCODE (IMMED, inst);
cb3b1e65 16428 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16429 }
16430 else
16431 {
037e8744 16432 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16433 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16434 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16435 unsigned int tmp;
16436
16437 /* See note in do_neon_shl_imm. */
16438 tmp = inst.operands[2].reg;
16439 inst.operands[2].reg = inst.operands[1].reg;
16440 inst.operands[1].reg = tmp;
88714cb8 16441 NEON_ENCODE (INTEGER, inst);
037e8744 16442 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16443 }
16444}
16445
627907b7
JB
16446static void
16447do_neon_rshl (void)
16448{
1be7aba3
AV
16449 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16450 return;
16451
16452 enum neon_shape rs;
16453 struct neon_type_el et;
16454 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16455 {
16456 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16457 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16458 }
16459 else
16460 {
16461 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16462 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16463 }
16464
627907b7
JB
16465 unsigned int tmp;
16466
1be7aba3
AV
16467 if (rs == NS_QQR)
16468 {
16469 if (inst.operands[2].reg == REG_PC)
16470 as_tsktsk (MVE_BAD_PC);
16471 else if (inst.operands[2].reg == REG_SP)
16472 as_tsktsk (MVE_BAD_SP);
16473
16474 constraint (inst.operands[0].reg != inst.operands[1].reg,
16475 _("invalid instruction shape"));
16476
16477 if (inst.instruction == 0x0000510)
16478 /* We are dealing with vqrshl. */
16479 inst.instruction = 0xee331ee0;
16480 else
16481 /* We are dealing with vrshl. */
16482 inst.instruction = 0xee331e60;
16483
16484 inst.instruction |= (et.type == NT_unsigned) << 28;
16485 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16486 inst.instruction |= neon_logbits (et.size) << 18;
16487 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16488 inst.instruction |= inst.operands[2].reg;
16489 inst.is_neon = 1;
16490 }
16491 else
16492 {
16493 tmp = inst.operands[2].reg;
16494 inst.operands[2].reg = inst.operands[1].reg;
16495 inst.operands[1].reg = tmp;
16496 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16497 }
627907b7
JB
16498}
16499
5287ad62
JB
16500static int
16501neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16502{
036dc3f7
PB
16503 /* Handle .I8 pseudo-instructions. */
16504 if (size == 8)
5287ad62 16505 {
5287ad62 16506 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16507 FIXME is this the intended semantics? There doesn't seem much point in
16508 accepting .I8 if so. */
5287ad62
JB
16509 immediate |= immediate << 8;
16510 size = 16;
036dc3f7
PB
16511 }
16512
16513 if (size >= 32)
16514 {
16515 if (immediate == (immediate & 0x000000ff))
16516 {
16517 *immbits = immediate;
16518 return 0x1;
16519 }
16520 else if (immediate == (immediate & 0x0000ff00))
16521 {
16522 *immbits = immediate >> 8;
16523 return 0x3;
16524 }
16525 else if (immediate == (immediate & 0x00ff0000))
16526 {
16527 *immbits = immediate >> 16;
16528 return 0x5;
16529 }
16530 else if (immediate == (immediate & 0xff000000))
16531 {
16532 *immbits = immediate >> 24;
16533 return 0x7;
16534 }
16535 if ((immediate & 0xffff) != (immediate >> 16))
16536 goto bad_immediate;
16537 immediate &= 0xffff;
5287ad62
JB
16538 }
16539
16540 if (immediate == (immediate & 0x000000ff))
16541 {
16542 *immbits = immediate;
036dc3f7 16543 return 0x9;
5287ad62
JB
16544 }
16545 else if (immediate == (immediate & 0x0000ff00))
16546 {
16547 *immbits = immediate >> 8;
036dc3f7 16548 return 0xb;
5287ad62
JB
16549 }
16550
16551 bad_immediate:
dcbf9037 16552 first_error (_("immediate value out of range"));
5287ad62
JB
16553 return FAIL;
16554}
16555
5287ad62
JB
16556static void
16557do_neon_logic (void)
16558{
16559 if (inst.operands[2].present && inst.operands[2].isreg)
16560 {
037e8744 16561 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16562 if (rs == NS_QQQ
16563 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16564 == FAIL)
16565 return;
16566 else if (rs != NS_QQQ
16567 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16568 first_error (BAD_FPU);
16569
5287ad62
JB
16570 neon_check_type (3, rs, N_IGNORE_TYPE);
16571 /* U bit and size field were set as part of the bitmask. */
88714cb8 16572 NEON_ENCODE (INTEGER, inst);
037e8744 16573 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16574 }
16575 else
16576 {
4316f0d2
DG
16577 const int three_ops_form = (inst.operands[2].present
16578 && !inst.operands[2].isreg);
16579 const int immoperand = (three_ops_form ? 2 : 1);
16580 enum neon_shape rs = (three_ops_form
16581 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16582 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16583 /* Because neon_select_shape makes the second operand a copy of the first
16584 if the second operand is not present. */
16585 if (rs == NS_QQI
16586 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16587 == FAIL)
16588 return;
16589 else if (rs != NS_QQI
16590 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16591 first_error (BAD_FPU);
16592
16593 struct neon_type_el et;
16594 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16595 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16596 else
16597 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16598 | N_KEY, N_EQK);
16599
16600 if (et.type == NT_invtype)
16601 return;
21d799b5 16602 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16603 unsigned immbits;
16604 int cmode;
5f4273c7 16605
5f4273c7 16606
4316f0d2
DG
16607 if (three_ops_form)
16608 constraint (inst.operands[0].reg != inst.operands[1].reg,
16609 _("first and second operands shall be the same register"));
16610
88714cb8 16611 NEON_ENCODE (IMMED, inst);
5287ad62 16612
4316f0d2 16613 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16614 if (et.size == 64)
16615 {
16616 /* .i64 is a pseudo-op, so the immediate must be a repeating
16617 pattern. */
4316f0d2
DG
16618 if (immbits != (inst.operands[immoperand].regisimm ?
16619 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16620 {
16621 /* Set immbits to an invalid constant. */
16622 immbits = 0xdeadbeef;
16623 }
16624 }
16625
5287ad62 16626 switch (opcode)
477330fc
RM
16627 {
16628 case N_MNEM_vbic:
16629 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16630 break;
16631
16632 case N_MNEM_vorr:
16633 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16634 break;
16635
16636 case N_MNEM_vand:
16637 /* Pseudo-instruction for VBIC. */
16638 neon_invert_size (&immbits, 0, et.size);
16639 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16640 break;
16641
16642 case N_MNEM_vorn:
16643 /* Pseudo-instruction for VORR. */
16644 neon_invert_size (&immbits, 0, et.size);
16645 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16646 break;
16647
16648 default:
16649 abort ();
16650 }
5287ad62
JB
16651
16652 if (cmode == FAIL)
477330fc 16653 return;
5287ad62 16654
037e8744 16655 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16658 inst.instruction |= cmode << 8;
16659 neon_write_immbits (immbits);
5f4273c7 16660
88714cb8 16661 neon_dp_fixup (&inst);
5287ad62
JB
16662 }
16663}
16664
16665static void
16666do_neon_bitfield (void)
16667{
037e8744 16668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16669 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16670 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16671}
16672
16673static void
dcbf9037 16674neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16675 unsigned destbits)
5287ad62 16676{
5ee91343 16677 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16678 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16679 types | N_KEY);
5287ad62
JB
16680 if (et.type == NT_float)
16681 {
88714cb8 16682 NEON_ENCODE (FLOAT, inst);
5ee91343 16683 if (rs == NS_QQR)
7df54120 16684 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16685 else
16686 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16687 }
16688 else
16689 {
88714cb8 16690 NEON_ENCODE (INTEGER, inst);
5ee91343 16691 if (rs == NS_QQR)
a8465a06 16692 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16693 else
16694 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16695 }
16696}
16697
5287ad62
JB
16698
16699static void
16700do_neon_dyadic_if_su_d (void)
16701{
16702 /* This version only allow D registers, but that constraint is enforced during
16703 operand parsing so we don't need to do anything extra here. */
dcbf9037 16704 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16705}
16706
5287ad62
JB
16707static void
16708do_neon_dyadic_if_i_d (void)
16709{
428e3f1f
PB
16710 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16711 affected if we specify unsigned args. */
16712 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16713}
16714
f5f10c66
AV
16715static void
16716do_mve_vstr_vldr_QI (int size, int elsize, int load)
16717{
16718 constraint (size < 32, BAD_ADDR_MODE);
16719 constraint (size != elsize, BAD_EL_TYPE);
16720 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16721 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16722 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16723 _("destination register and offset register may not be the"
16724 " same"));
16725
16726 int imm = inst.relocs[0].exp.X_add_number;
16727 int add = 1;
16728 if (imm < 0)
16729 {
16730 add = 0;
16731 imm = -imm;
16732 }
16733 constraint ((imm % (size / 8) != 0)
16734 || imm > (0x7f << neon_logbits (size)),
16735 (size == 32) ? _("immediate must be a multiple of 4 in the"
16736 " range of +/-[0,508]")
16737 : _("immediate must be a multiple of 8 in the"
16738 " range of +/-[0,1016]"));
16739 inst.instruction |= 0x11 << 24;
16740 inst.instruction |= add << 23;
16741 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16742 inst.instruction |= inst.operands[1].writeback << 21;
16743 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16744 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16745 inst.instruction |= 1 << 12;
16746 inst.instruction |= (size == 64) << 8;
16747 inst.instruction &= 0xffffff00;
16748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16749 inst.instruction |= imm >> neon_logbits (size);
16750}
16751
16752static void
16753do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16754{
16755 unsigned os = inst.operands[1].imm >> 5;
16756 constraint (os != 0 && size == 8,
16757 _("can not shift offsets when accessing less than half-word"));
16758 constraint (os && os != neon_logbits (size),
16759 _("shift immediate must be 1, 2 or 3 for half-word, word"
16760 " or double-word accesses respectively"));
16761 if (inst.operands[1].reg == REG_PC)
16762 as_tsktsk (MVE_BAD_PC);
16763
16764 switch (size)
16765 {
16766 case 8:
16767 constraint (elsize >= 64, BAD_EL_TYPE);
16768 break;
16769 case 16:
16770 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16771 break;
16772 case 32:
16773 case 64:
16774 constraint (elsize != size, BAD_EL_TYPE);
16775 break;
16776 default:
16777 break;
16778 }
16779 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16780 BAD_ADDR_MODE);
16781 if (load)
16782 {
16783 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16784 _("destination register and offset register may not be"
16785 " the same"));
16786 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16787 BAD_EL_TYPE);
16788 constraint (inst.vectype.el[0].type != NT_unsigned
16789 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16790 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16791 }
16792 else
16793 {
16794 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16795 }
16796
16797 inst.instruction |= 1 << 23;
16798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16799 inst.instruction |= inst.operands[1].reg << 16;
16800 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16801 inst.instruction |= neon_logbits (elsize) << 7;
16802 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16803 inst.instruction |= LOW4 (inst.operands[1].imm);
16804 inst.instruction |= !!os;
16805}
16806
16807static void
16808do_mve_vstr_vldr_RI (int size, int elsize, int load)
16809{
16810 enum neon_el_type type = inst.vectype.el[0].type;
16811
16812 constraint (size >= 64, BAD_ADDR_MODE);
16813 switch (size)
16814 {
16815 case 16:
16816 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16817 break;
16818 case 32:
16819 constraint (elsize != size, BAD_EL_TYPE);
16820 break;
16821 default:
16822 break;
16823 }
16824 if (load)
16825 {
16826 constraint (elsize != size && type != NT_unsigned
16827 && type != NT_signed, BAD_EL_TYPE);
16828 }
16829 else
16830 {
16831 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16832 }
16833
16834 int imm = inst.relocs[0].exp.X_add_number;
16835 int add = 1;
16836 if (imm < 0)
16837 {
16838 add = 0;
16839 imm = -imm;
16840 }
16841
16842 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16843 {
16844 switch (size)
16845 {
16846 case 8:
16847 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16848 break;
16849 case 16:
16850 constraint (1, _("immediate must be a multiple of 2 in the"
16851 " range of +/-[0,254]"));
16852 break;
16853 case 32:
16854 constraint (1, _("immediate must be a multiple of 4 in the"
16855 " range of +/-[0,508]"));
16856 break;
16857 }
16858 }
16859
16860 if (size != elsize)
16861 {
16862 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16863 constraint (inst.operands[0].reg > 14,
16864 _("MVE vector register in the range [Q0..Q7] expected"));
16865 inst.instruction |= (load && type == NT_unsigned) << 28;
16866 inst.instruction |= (size == 16) << 19;
16867 inst.instruction |= neon_logbits (elsize) << 7;
16868 }
16869 else
16870 {
16871 if (inst.operands[1].reg == REG_PC)
16872 as_tsktsk (MVE_BAD_PC);
16873 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16874 as_tsktsk (MVE_BAD_SP);
16875 inst.instruction |= 1 << 12;
16876 inst.instruction |= neon_logbits (size) << 7;
16877 }
16878 inst.instruction |= inst.operands[1].preind << 24;
16879 inst.instruction |= add << 23;
16880 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16881 inst.instruction |= inst.operands[1].writeback << 21;
16882 inst.instruction |= inst.operands[1].reg << 16;
16883 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16884 inst.instruction &= 0xffffff80;
16885 inst.instruction |= imm >> neon_logbits (size);
16886
16887}
16888
16889static void
16890do_mve_vstr_vldr (void)
16891{
16892 unsigned size;
16893 int load = 0;
16894
16895 if (inst.cond > COND_ALWAYS)
16896 inst.pred_insn_type = INSIDE_VPT_INSN;
16897 else
16898 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16899
16900 switch (inst.instruction)
16901 {
16902 default:
16903 gas_assert (0);
16904 break;
16905 case M_MNEM_vldrb:
16906 load = 1;
16907 /* fall through. */
16908 case M_MNEM_vstrb:
16909 size = 8;
16910 break;
16911 case M_MNEM_vldrh:
16912 load = 1;
16913 /* fall through. */
16914 case M_MNEM_vstrh:
16915 size = 16;
16916 break;
16917 case M_MNEM_vldrw:
16918 load = 1;
16919 /* fall through. */
16920 case M_MNEM_vstrw:
16921 size = 32;
16922 break;
16923 case M_MNEM_vldrd:
16924 load = 1;
16925 /* fall through. */
16926 case M_MNEM_vstrd:
16927 size = 64;
16928 break;
16929 }
16930 unsigned elsize = inst.vectype.el[0].size;
16931
16932 if (inst.operands[1].isquad)
16933 {
16934 /* We are dealing with [Q, imm]{!} cases. */
16935 do_mve_vstr_vldr_QI (size, elsize, load);
16936 }
16937 else
16938 {
16939 if (inst.operands[1].immisreg == 2)
16940 {
16941 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16942 do_mve_vstr_vldr_RQ (size, elsize, load);
16943 }
16944 else if (!inst.operands[1].immisreg)
16945 {
16946 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16947 do_mve_vstr_vldr_RI (size, elsize, load);
16948 }
16949 else
16950 constraint (1, BAD_ADDR_MODE);
16951 }
16952
16953 inst.is_neon = 1;
16954}
16955
35c228db
AV
16956static void
16957do_mve_vst_vld (void)
16958{
16959 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16960 return;
16961
16962 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16963 || inst.relocs[0].exp.X_add_number != 0
16964 || inst.operands[1].immisreg != 0,
16965 BAD_ADDR_MODE);
16966 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16967 if (inst.operands[1].reg == REG_PC)
16968 as_tsktsk (MVE_BAD_PC);
16969 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16970 as_tsktsk (MVE_BAD_SP);
16971
16972
16973 /* These instructions are one of the "exceptions" mentioned in
16974 handle_pred_state. They are MVE instructions that are not VPT compatible
16975 and do not accept a VPT code, thus appending such a code is a syntax
16976 error. */
16977 if (inst.cond > COND_ALWAYS)
16978 first_error (BAD_SYNTAX);
16979 /* If we append a scalar condition code we can set this to
16980 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16981 else if (inst.cond < COND_ALWAYS)
16982 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16983 else
16984 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16985
16986 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16987 inst.instruction |= inst.operands[1].writeback << 21;
16988 inst.instruction |= inst.operands[1].reg << 16;
16989 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16990 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16991 inst.is_neon = 1;
16992}
16993
26c1e780
AV
16994static void
16995do_mve_vaddlv (void)
16996{
16997 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16998 struct neon_type_el et
16999 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17000
17001 if (et.type == NT_invtype)
17002 first_error (BAD_EL_TYPE);
17003
17004 if (inst.cond > COND_ALWAYS)
17005 inst.pred_insn_type = INSIDE_VPT_INSN;
17006 else
17007 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17008
17009 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17010
17011 inst.instruction |= (et.type == NT_unsigned) << 28;
17012 inst.instruction |= inst.operands[1].reg << 19;
17013 inst.instruction |= inst.operands[0].reg << 12;
17014 inst.instruction |= inst.operands[2].reg;
17015 inst.is_neon = 1;
17016}
17017
5287ad62 17018static void
5ee91343 17019do_neon_dyadic_if_su (void)
5287ad62 17020{
5ee91343
AV
17021 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17022 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17023 N_SUF_32 | N_KEY);
17024
935295b5
AV
17025 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17026 || inst.instruction == ((unsigned) N_MNEM_vmin))
17027 && et.type == NT_float
17028 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17029
5ee91343
AV
17030 if (check_simd_pred_availability (et.type == NT_float,
17031 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
17032 return;
17033
5ee91343
AV
17034 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17035}
17036
17037static void
17038do_neon_addsub_if_i (void)
17039{
17040 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17041 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
17042 return;
17043
5ee91343
AV
17044 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17045 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17046 N_EQK, N_IF_32 | N_I64 | N_KEY);
17047
17048 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17049 /* If we are parsing Q registers and the element types match MVE, which NEON
17050 also supports, then we must check whether this is an instruction that can
17051 be used by both MVE/NEON. This distinction can be made based on whether
17052 they are predicated or not. */
17053 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17054 {
17055 if (check_simd_pred_availability (et.type == NT_float,
17056 NEON_CHECK_ARCH | NEON_CHECK_CC))
17057 return;
17058 }
17059 else
17060 {
17061 /* If they are either in a D register or are using an unsupported. */
17062 if (rs != NS_QQR
17063 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17064 return;
17065 }
17066
5287ad62
JB
17067 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17068 affected if we specify unsigned args. */
dcbf9037 17069 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
17070}
17071
17072/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17073 result to be:
17074 V<op> A,B (A is operand 0, B is operand 2)
17075 to mean:
17076 V<op> A,B,A
17077 not:
17078 V<op> A,B,B
17079 so handle that case specially. */
17080
17081static void
17082neon_exchange_operands (void)
17083{
5287ad62
JB
17084 if (inst.operands[1].present)
17085 {
e1fa0163
NC
17086 void *scratch = xmalloc (sizeof (inst.operands[0]));
17087
5287ad62
JB
17088 /* Swap operands[1] and operands[2]. */
17089 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17090 inst.operands[1] = inst.operands[2];
17091 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 17092 free (scratch);
5287ad62
JB
17093 }
17094 else
17095 {
17096 inst.operands[1] = inst.operands[2];
17097 inst.operands[2] = inst.operands[0];
17098 }
17099}
17100
17101static void
17102neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17103{
17104 if (inst.operands[2].isreg)
17105 {
17106 if (invert)
477330fc 17107 neon_exchange_operands ();
dcbf9037 17108 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
17109 }
17110 else
17111 {
037e8744 17112 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 17113 struct neon_type_el et = neon_check_type (2, rs,
477330fc 17114 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 17115
88714cb8 17116 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17117 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17118 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17119 inst.instruction |= LOW4 (inst.operands[1].reg);
17120 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17121 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17122 inst.instruction |= (et.type == NT_float) << 10;
17123 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17124
88714cb8 17125 neon_dp_fixup (&inst);
5287ad62
JB
17126 }
17127}
17128
17129static void
17130do_neon_cmp (void)
17131{
cc933301 17132 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
17133}
17134
17135static void
17136do_neon_cmp_inv (void)
17137{
cc933301 17138 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
17139}
17140
17141static void
17142do_neon_ceq (void)
17143{
17144 neon_compare (N_IF_32, N_IF_32, FALSE);
17145}
17146
17147/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17148 scalars, which are encoded in 5 bits, M : Rm.
17149 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17150 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
17151 index in M.
17152
17153 Dot Product instructions are similar to multiply instructions except elsize
17154 should always be 32.
17155
17156 This function translates SCALAR, which is GAS's internal encoding of indexed
17157 scalar register, to raw encoding. There is also register and index range
17158 check based on ELSIZE. */
5287ad62
JB
17159
17160static unsigned
17161neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17162{
dcbf9037
JB
17163 unsigned regno = NEON_SCALAR_REG (scalar);
17164 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17165
17166 switch (elsize)
17167 {
17168 case 16:
17169 if (regno > 7 || elno > 3)
477330fc 17170 goto bad_scalar;
5287ad62 17171 return regno | (elno << 3);
5f4273c7 17172
5287ad62
JB
17173 case 32:
17174 if (regno > 15 || elno > 1)
477330fc 17175 goto bad_scalar;
5287ad62
JB
17176 return regno | (elno << 4);
17177
17178 default:
17179 bad_scalar:
dcbf9037 17180 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17181 }
17182
17183 return 0;
17184}
17185
17186/* Encode multiply / multiply-accumulate scalar instructions. */
17187
17188static void
17189neon_mul_mac (struct neon_type_el et, int ubit)
17190{
dcbf9037
JB
17191 unsigned scalar;
17192
17193 /* Give a more helpful error message if we have an invalid type. */
17194 if (et.type == NT_invtype)
17195 return;
5f4273c7 17196
dcbf9037 17197 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17198 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17199 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17200 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17201 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17202 inst.instruction |= LOW4 (scalar);
17203 inst.instruction |= HI1 (scalar) << 5;
17204 inst.instruction |= (et.type == NT_float) << 8;
17205 inst.instruction |= neon_logbits (et.size) << 20;
17206 inst.instruction |= (ubit != 0) << 24;
17207
88714cb8 17208 neon_dp_fixup (&inst);
5287ad62
JB
17209}
17210
17211static void
17212do_neon_mac_maybe_scalar (void)
17213{
037e8744
JB
17214 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17215 return;
17216
a8465a06 17217 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17218 return;
17219
5287ad62
JB
17220 if (inst.operands[2].isscalar)
17221 {
a8465a06 17222 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17223 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17224 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17225 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17226 NEON_ENCODE (SCALAR, inst);
037e8744 17227 neon_mul_mac (et, neon_quad (rs));
5287ad62 17228 }
a8465a06
AV
17229 else if (!inst.operands[2].isvec)
17230 {
17231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17232
17233 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17234 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17235
17236 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17237 }
5287ad62 17238 else
428e3f1f 17239 {
a8465a06 17240 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17241 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17242 affected if we specify unsigned args. */
17243 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17244 }
5287ad62
JB
17245}
17246
62f3b8c8
PB
17247static void
17248do_neon_fmac (void)
17249{
d58196e0
AV
17250 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17251 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17252 return;
17253
d58196e0 17254 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17255 return;
17256
d58196e0
AV
17257 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17258 {
17259 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17260 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17261 N_EQK);
17262
17263 if (rs == NS_QQR)
17264 {
17265 if (inst.operands[2].reg == REG_SP)
17266 as_tsktsk (MVE_BAD_SP);
17267 else if (inst.operands[2].reg == REG_PC)
17268 as_tsktsk (MVE_BAD_PC);
17269
17270 inst.instruction = 0xee310e40;
17271 inst.instruction |= (et.size == 16) << 28;
17272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17273 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17274 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17275 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17276 inst.instruction |= inst.operands[2].reg;
17277 inst.is_neon = 1;
17278 return;
17279 }
17280 }
17281 else
17282 {
17283 constraint (!inst.operands[2].isvec, BAD_FPU);
17284 }
17285
62f3b8c8
PB
17286 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17287}
17288
5287ad62
JB
17289static void
17290do_neon_tst (void)
17291{
037e8744 17292 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17293 struct neon_type_el et = neon_check_type (3, rs,
17294 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17295 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17296}
17297
17298/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17299 same types as the MAC equivalents. The polynomial type for this instruction
17300 is encoded the same as the integer type. */
17301
17302static void
17303do_neon_mul (void)
17304{
037e8744
JB
17305 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17306 return;
17307
a8465a06 17308 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17309 return;
17310
5287ad62 17311 if (inst.operands[2].isscalar)
a8465a06
AV
17312 {
17313 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17314 do_neon_mac_maybe_scalar ();
17315 }
5287ad62 17316 else
a8465a06
AV
17317 {
17318 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17319 {
17320 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17321 struct neon_type_el et
17322 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17323 if (et.type == NT_float)
17324 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17325 BAD_FPU);
17326
17327 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17328 }
17329 else
17330 {
17331 constraint (!inst.operands[2].isvec, BAD_FPU);
17332 neon_dyadic_misc (NT_poly,
17333 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17334 }
17335 }
5287ad62
JB
17336}
17337
17338static void
17339do_neon_qdmulh (void)
17340{
42b16635
AV
17341 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17342 return;
17343
5287ad62
JB
17344 if (inst.operands[2].isscalar)
17345 {
42b16635 17346 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17347 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17348 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17349 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17350 NEON_ENCODE (SCALAR, inst);
037e8744 17351 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17352 }
17353 else
17354 {
42b16635
AV
17355 enum neon_shape rs;
17356 struct neon_type_el et;
17357 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17358 {
17359 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17360 et = neon_check_type (3, rs,
17361 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17362 }
17363 else
17364 {
17365 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17366 et = neon_check_type (3, rs,
17367 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17368 }
17369
88714cb8 17370 NEON_ENCODE (INTEGER, inst);
42b16635
AV
17371 if (rs == NS_QQR)
17372 mve_encode_qqr (et.size, 0, 0);
17373 else
17374 /* The U bit (rounding) comes from bit mask. */
17375 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17376 }
17377}
17378
26c1e780
AV
17379static void
17380do_mve_vaddv (void)
17381{
17382 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17383 struct neon_type_el et
17384 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17385
17386 if (et.type == NT_invtype)
17387 first_error (BAD_EL_TYPE);
17388
17389 if (inst.cond > COND_ALWAYS)
17390 inst.pred_insn_type = INSIDE_VPT_INSN;
17391 else
17392 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17393
17394 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17395
17396 mve_encode_rq (et.type == NT_unsigned, et.size);
17397}
17398
7df54120
AV
17399static void
17400do_mve_vhcadd (void)
17401{
17402 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17403 struct neon_type_el et
17404 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17405
17406 if (inst.cond > COND_ALWAYS)
17407 inst.pred_insn_type = INSIDE_VPT_INSN;
17408 else
17409 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17410
17411 unsigned rot = inst.relocs[0].exp.X_add_number;
17412 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17413
17414 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17415 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17416 "operand makes instruction UNPREDICTABLE"));
17417
17418 mve_encode_qqq (0, et.size);
17419 inst.instruction |= (rot == 270) << 12;
17420 inst.is_neon = 1;
17421}
17422
35d1cfc2
AV
17423static void
17424do_mve_vqdmull (void)
17425{
17426 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17427 struct neon_type_el et
17428 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17429
17430 if (et.size == 32
17431 && (inst.operands[0].reg == inst.operands[1].reg
17432 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17433 as_tsktsk (BAD_MVE_SRCDEST);
17434
17435 if (inst.cond > COND_ALWAYS)
17436 inst.pred_insn_type = INSIDE_VPT_INSN;
17437 else
17438 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17439
17440 if (rs == NS_QQQ)
17441 {
17442 mve_encode_qqq (et.size == 32, 64);
17443 inst.instruction |= 1;
17444 }
17445 else
17446 {
17447 mve_encode_qqr (64, et.size == 32, 0);
17448 inst.instruction |= 0x3 << 5;
17449 }
17450}
17451
c2dafc2a
AV
17452static void
17453do_mve_vadc (void)
17454{
17455 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17456 struct neon_type_el et
17457 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17458
17459 if (et.type == NT_invtype)
17460 first_error (BAD_EL_TYPE);
17461
17462 if (inst.cond > COND_ALWAYS)
17463 inst.pred_insn_type = INSIDE_VPT_INSN;
17464 else
17465 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17466
17467 mve_encode_qqq (0, 64);
17468}
17469
17470static void
17471do_mve_vbrsr (void)
17472{
17473 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17474 struct neon_type_el et
17475 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17476
17477 if (inst.cond > COND_ALWAYS)
17478 inst.pred_insn_type = INSIDE_VPT_INSN;
17479 else
17480 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17481
7df54120 17482 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17483}
17484
17485static void
17486do_mve_vsbc (void)
17487{
17488 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17489
17490 if (inst.cond > COND_ALWAYS)
17491 inst.pred_insn_type = INSIDE_VPT_INSN;
17492 else
17493 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17494
17495 mve_encode_qqq (1, 64);
17496}
17497
2d78f95b
AV
17498static void
17499do_mve_vmulh (void)
17500{
17501 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17502 struct neon_type_el et
17503 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17504
17505 if (inst.cond > COND_ALWAYS)
17506 inst.pred_insn_type = INSIDE_VPT_INSN;
17507 else
17508 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17509
17510 mve_encode_qqq (et.type == NT_unsigned, et.size);
17511}
17512
42b16635
AV
17513static void
17514do_mve_vqdmlah (void)
17515{
17516 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17517 struct neon_type_el et
17518 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17519
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17522 else
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17524
17525 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17526}
8b8b22a4
AV
17527
17528static void
17529do_mve_vqdmladh (void)
17530{
17531 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17532 struct neon_type_el et
17533 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17534
17535 if (inst.cond > COND_ALWAYS)
17536 inst.pred_insn_type = INSIDE_VPT_INSN;
17537 else
17538 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17539
17540 if (et.size == 32
17541 && (inst.operands[0].reg == inst.operands[1].reg
17542 || inst.operands[0].reg == inst.operands[2].reg))
17543 as_tsktsk (BAD_MVE_SRCDEST);
17544
17545 mve_encode_qqq (0, et.size);
17546}
17547
17548
886e1c73
AV
17549static void
17550do_mve_vmull (void)
17551{
17552
17553 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17554 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17555 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17556 && inst.cond == COND_ALWAYS
17557 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17558 {
17559 if (rs == NS_QQQ)
17560 {
17561
17562 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17563 N_SUF_32 | N_F64 | N_P8
17564 | N_P16 | N_I_MVE | N_KEY);
17565 if (((et.type == NT_poly) && et.size == 8
17566 && ARM_CPU_IS_ANY (cpu_variant))
17567 || (et.type == NT_integer) || (et.type == NT_float))
17568 goto neon_vmul;
17569 }
17570 else
17571 goto neon_vmul;
17572 }
17573
17574 constraint (rs != NS_QQQ, BAD_FPU);
17575 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17576 N_SU_32 | N_P8 | N_P16 | N_KEY);
17577
17578 /* We are dealing with MVE's vmullt. */
17579 if (et.size == 32
17580 && (inst.operands[0].reg == inst.operands[1].reg
17581 || inst.operands[0].reg == inst.operands[2].reg))
17582 as_tsktsk (BAD_MVE_SRCDEST);
17583
17584 if (inst.cond > COND_ALWAYS)
17585 inst.pred_insn_type = INSIDE_VPT_INSN;
17586 else
17587 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17588
17589 if (et.type == NT_poly)
17590 mve_encode_qqq (neon_logbits (et.size), 64);
17591 else
17592 mve_encode_qqq (et.type == NT_unsigned, et.size);
17593
17594 return;
17595
17596neon_vmul:
17597 inst.instruction = N_MNEM_vmul;
17598 inst.cond = 0xb;
17599 if (thumb_mode)
17600 inst.pred_insn_type = INSIDE_IT_INSN;
17601 do_neon_mul ();
17602}
17603
a302e574
AV
17604static void
17605do_mve_vabav (void)
17606{
17607 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17608
17609 if (rs == NS_NULL)
17610 return;
17611
17612 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17613 return;
17614
17615 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17616 | N_S16 | N_S32 | N_U8 | N_U16
17617 | N_U32);
17618
17619 if (inst.cond > COND_ALWAYS)
17620 inst.pred_insn_type = INSIDE_VPT_INSN;
17621 else
17622 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17623
17624 mve_encode_rqq (et.type == NT_unsigned, et.size);
17625}
17626
17627static void
17628do_mve_vmladav (void)
17629{
17630 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17631 struct neon_type_el et = neon_check_type (3, rs,
17632 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17633
17634 if (et.type == NT_unsigned
17635 && (inst.instruction == M_MNEM_vmladavx
17636 || inst.instruction == M_MNEM_vmladavax
17637 || inst.instruction == M_MNEM_vmlsdav
17638 || inst.instruction == M_MNEM_vmlsdava
17639 || inst.instruction == M_MNEM_vmlsdavx
17640 || inst.instruction == M_MNEM_vmlsdavax))
17641 first_error (BAD_SIMD_TYPE);
17642
17643 constraint (inst.operands[2].reg > 14,
17644 _("MVE vector register in the range [Q0..Q7] expected"));
17645
17646 if (inst.cond > COND_ALWAYS)
17647 inst.pred_insn_type = INSIDE_VPT_INSN;
17648 else
17649 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17650
17651 if (inst.instruction == M_MNEM_vmlsdav
17652 || inst.instruction == M_MNEM_vmlsdava
17653 || inst.instruction == M_MNEM_vmlsdavx
17654 || inst.instruction == M_MNEM_vmlsdavax)
17655 inst.instruction |= (et.size == 8) << 28;
17656 else
17657 inst.instruction |= (et.size == 8) << 8;
17658
17659 mve_encode_rqq (et.type == NT_unsigned, 64);
17660 inst.instruction |= (et.size == 32) << 16;
17661}
17662
93925576
AV
17663static void
17664do_mve_vmlaldav (void)
17665{
17666 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17667 struct neon_type_el et
17668 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17669 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17670
17671 if (et.type == NT_unsigned
17672 && (inst.instruction == M_MNEM_vmlsldav
17673 || inst.instruction == M_MNEM_vmlsldava
17674 || inst.instruction == M_MNEM_vmlsldavx
17675 || inst.instruction == M_MNEM_vmlsldavax))
17676 first_error (BAD_SIMD_TYPE);
17677
17678 if (inst.cond > COND_ALWAYS)
17679 inst.pred_insn_type = INSIDE_VPT_INSN;
17680 else
17681 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17682
17683 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17684}
17685
17686static void
17687do_mve_vrmlaldavh (void)
17688{
17689 struct neon_type_el et;
17690 if (inst.instruction == M_MNEM_vrmlsldavh
17691 || inst.instruction == M_MNEM_vrmlsldavha
17692 || inst.instruction == M_MNEM_vrmlsldavhx
17693 || inst.instruction == M_MNEM_vrmlsldavhax)
17694 {
17695 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17696 if (inst.operands[1].reg == REG_SP)
17697 as_tsktsk (MVE_BAD_SP);
17698 }
17699 else
17700 {
17701 if (inst.instruction == M_MNEM_vrmlaldavhx
17702 || inst.instruction == M_MNEM_vrmlaldavhax)
17703 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17704 else
17705 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17706 N_U32 | N_S32 | N_KEY);
17707 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17708 with vmax/min instructions, making the use of SP in assembly really
17709 nonsensical, so instead of issuing a warning like we do for other uses
17710 of SP for the odd register operand we error out. */
17711 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17712 }
17713
17714 /* Make sure we still check the second operand is an odd one and that PC is
17715 disallowed. This because we are parsing for any GPR operand, to be able
17716 to distinguish between giving a warning or an error for SP as described
17717 above. */
17718 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17719 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17720
17721 if (inst.cond > COND_ALWAYS)
17722 inst.pred_insn_type = INSIDE_VPT_INSN;
17723 else
17724 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17725
17726 mve_encode_rrqq (et.type == NT_unsigned, 0);
17727}
17728
17729
8cd78170
AV
17730static void
17731do_mve_vmaxnmv (void)
17732{
17733 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17734 struct neon_type_el et
17735 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17736
17737 if (inst.cond > COND_ALWAYS)
17738 inst.pred_insn_type = INSIDE_VPT_INSN;
17739 else
17740 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17741
17742 if (inst.operands[0].reg == REG_SP)
17743 as_tsktsk (MVE_BAD_SP);
17744 else if (inst.operands[0].reg == REG_PC)
17745 as_tsktsk (MVE_BAD_PC);
17746
17747 mve_encode_rq (et.size == 16, 64);
17748}
17749
13ccd4c0
AV
17750static void
17751do_mve_vmaxv (void)
17752{
17753 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17754 struct neon_type_el et;
17755
17756 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17757 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17758 else
17759 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17760
17761 if (inst.cond > COND_ALWAYS)
17762 inst.pred_insn_type = INSIDE_VPT_INSN;
17763 else
17764 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17765
17766 if (inst.operands[0].reg == REG_SP)
17767 as_tsktsk (MVE_BAD_SP);
17768 else if (inst.operands[0].reg == REG_PC)
17769 as_tsktsk (MVE_BAD_PC);
17770
17771 mve_encode_rq (et.type == NT_unsigned, et.size);
17772}
17773
17774
643afb90
MW
17775static void
17776do_neon_qrdmlah (void)
17777{
42b16635
AV
17778 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17779 return;
17780 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
643afb90 17781 {
42b16635
AV
17782 /* Check we're on the correct architecture. */
17783 if (!mark_feature_used (&fpu_neon_ext_armv8))
17784 inst.error
17785 = _("instruction form not available on this architecture.");
17786 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17787 {
17788 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17789 record_feature_use (&fpu_neon_ext_v8_1);
17790 }
17791 if (inst.operands[2].isscalar)
17792 {
17793 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17794 struct neon_type_el et = neon_check_type (3, rs,
17795 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17796 NEON_ENCODE (SCALAR, inst);
17797 neon_mul_mac (et, neon_quad (rs));
17798 }
17799 else
17800 {
17801 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17802 struct neon_type_el et = neon_check_type (3, rs,
17803 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17804 NEON_ENCODE (INTEGER, inst);
17805 /* The U bit (rounding) comes from bit mask. */
17806 neon_three_same (neon_quad (rs), 0, et.size);
17807 }
643afb90
MW
17808 }
17809 else
17810 {
42b16635
AV
17811 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17812 struct neon_type_el et
17813 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17814
643afb90 17815 NEON_ENCODE (INTEGER, inst);
42b16635 17816 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
643afb90
MW
17817 }
17818}
17819
5287ad62
JB
17820static void
17821do_neon_fcmp_absolute (void)
17822{
037e8744 17823 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17824 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17825 N_F_16_32 | N_KEY);
5287ad62 17826 /* Size field comes from bit mask. */
cc933301 17827 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17828}
17829
17830static void
17831do_neon_fcmp_absolute_inv (void)
17832{
17833 neon_exchange_operands ();
17834 do_neon_fcmp_absolute ();
17835}
17836
17837static void
17838do_neon_step (void)
17839{
037e8744 17840 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17841 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17842 N_F_16_32 | N_KEY);
17843 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17844}
17845
17846static void
17847do_neon_abs_neg (void)
17848{
037e8744
JB
17849 enum neon_shape rs;
17850 struct neon_type_el et;
5f4273c7 17851
037e8744
JB
17852 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17853 return;
17854
037e8744 17855 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17856 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17857
485dee97
AV
17858 if (check_simd_pred_availability (et.type == NT_float,
17859 NEON_CHECK_ARCH | NEON_CHECK_CC))
17860 return;
17861
5287ad62
JB
17862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17864 inst.instruction |= LOW4 (inst.operands[1].reg);
17865 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17866 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17867 inst.instruction |= (et.type == NT_float) << 10;
17868 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17869
88714cb8 17870 neon_dp_fixup (&inst);
5287ad62
JB
17871}
17872
17873static void
17874do_neon_sli (void)
17875{
4401c241
AV
17876 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17877 return;
17878
17879 enum neon_shape rs;
17880 struct neon_type_el et;
17881 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17882 {
17883 rs = neon_select_shape (NS_QQI, NS_NULL);
17884 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17885 }
17886 else
17887 {
17888 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17889 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17890 }
17891
17892
5287ad62
JB
17893 int imm = inst.operands[2].imm;
17894 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17895 _("immediate out of range for insert"));
037e8744 17896 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17897}
17898
17899static void
17900do_neon_sri (void)
17901{
4401c241
AV
17902 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17903 return;
17904
17905 enum neon_shape rs;
17906 struct neon_type_el et;
17907 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17908 {
17909 rs = neon_select_shape (NS_QQI, NS_NULL);
17910 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17911 }
17912 else
17913 {
17914 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17915 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17916 }
17917
5287ad62
JB
17918 int imm = inst.operands[2].imm;
17919 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17920 _("immediate out of range for insert"));
037e8744 17921 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17922}
17923
17924static void
17925do_neon_qshlu_imm (void)
17926{
037e8744 17927 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17928 struct neon_type_el et = neon_check_type (2, rs,
17929 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17930 int imm = inst.operands[2].imm;
17931 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17932 _("immediate out of range for shift"));
5287ad62
JB
17933 /* Only encodes the 'U present' variant of the instruction.
17934 In this case, signed types have OP (bit 8) set to 0.
17935 Unsigned types have OP set to 1. */
17936 inst.instruction |= (et.type == NT_unsigned) << 8;
17937 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17938 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17939}
17940
17941static void
17942do_neon_qmovn (void)
17943{
17944 struct neon_type_el et = neon_check_type (2, NS_DQ,
17945 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17946 /* Saturating move where operands can be signed or unsigned, and the
17947 destination has the same signedness. */
88714cb8 17948 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17949 if (et.type == NT_unsigned)
17950 inst.instruction |= 0xc0;
17951 else
17952 inst.instruction |= 0x80;
17953 neon_two_same (0, 1, et.size / 2);
17954}
17955
17956static void
17957do_neon_qmovun (void)
17958{
17959 struct neon_type_el et = neon_check_type (2, NS_DQ,
17960 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17961 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17962 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17963 neon_two_same (0, 1, et.size / 2);
17964}
17965
17966static void
17967do_neon_rshift_sat_narrow (void)
17968{
17969 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17970 or unsigned. If operands are unsigned, results must also be unsigned. */
17971 struct neon_type_el et = neon_check_type (2, NS_DQI,
17972 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17973 int imm = inst.operands[2].imm;
17974 /* This gets the bounds check, size encoding and immediate bits calculation
17975 right. */
17976 et.size /= 2;
5f4273c7 17977
5287ad62
JB
17978 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17979 VQMOVN.I<size> <Dd>, <Qm>. */
17980 if (imm == 0)
17981 {
17982 inst.operands[2].present = 0;
17983 inst.instruction = N_MNEM_vqmovn;
17984 do_neon_qmovn ();
17985 return;
17986 }
5f4273c7 17987
5287ad62 17988 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17989 _("immediate out of range"));
5287ad62
JB
17990 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17991}
17992
17993static void
17994do_neon_rshift_sat_narrow_u (void)
17995{
17996 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17997 or unsigned. If operands are unsigned, results must also be unsigned. */
17998 struct neon_type_el et = neon_check_type (2, NS_DQI,
17999 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18000 int imm = inst.operands[2].imm;
18001 /* This gets the bounds check, size encoding and immediate bits calculation
18002 right. */
18003 et.size /= 2;
18004
18005 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18006 VQMOVUN.I<size> <Dd>, <Qm>. */
18007 if (imm == 0)
18008 {
18009 inst.operands[2].present = 0;
18010 inst.instruction = N_MNEM_vqmovun;
18011 do_neon_qmovun ();
18012 return;
18013 }
18014
18015 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18016 _("immediate out of range"));
5287ad62
JB
18017 /* FIXME: The manual is kind of unclear about what value U should have in
18018 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18019 must be 1. */
18020 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18021}
18022
18023static void
18024do_neon_movn (void)
18025{
18026 struct neon_type_el et = neon_check_type (2, NS_DQ,
18027 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 18028 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18029 neon_two_same (0, 1, et.size / 2);
18030}
18031
18032static void
18033do_neon_rshift_narrow (void)
18034{
18035 struct neon_type_el et = neon_check_type (2, NS_DQI,
18036 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18037 int imm = inst.operands[2].imm;
18038 /* This gets the bounds check, size encoding and immediate bits calculation
18039 right. */
18040 et.size /= 2;
5f4273c7 18041
5287ad62
JB
18042 /* If immediate is zero then we are a pseudo-instruction for
18043 VMOVN.I<size> <Dd>, <Qm> */
18044 if (imm == 0)
18045 {
18046 inst.operands[2].present = 0;
18047 inst.instruction = N_MNEM_vmovn;
18048 do_neon_movn ();
18049 return;
18050 }
5f4273c7 18051
5287ad62 18052 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18053 _("immediate out of range for narrowing operation"));
5287ad62
JB
18054 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18055}
18056
18057static void
18058do_neon_shll (void)
18059{
18060 /* FIXME: Type checking when lengthening. */
18061 struct neon_type_el et = neon_check_type (2, NS_QDI,
18062 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18063 unsigned imm = inst.operands[2].imm;
18064
18065 if (imm == et.size)
18066 {
18067 /* Maximum shift variant. */
88714cb8 18068 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18069 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18070 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18071 inst.instruction |= LOW4 (inst.operands[1].reg);
18072 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18073 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18074
88714cb8 18075 neon_dp_fixup (&inst);
5287ad62
JB
18076 }
18077 else
18078 {
18079 /* A more-specific type check for non-max versions. */
18080 et = neon_check_type (2, NS_QDI,
477330fc 18081 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 18082 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18083 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18084 }
18085}
18086
037e8744 18087/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
18088 the current instruction is. */
18089
6b9a8b67
MGD
18090#define CVT_FLAVOUR_VAR \
18091 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18092 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18093 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18094 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18095 /* Half-precision conversions. */ \
cc933301
JW
18096 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18097 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18098 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18099 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18100 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18101 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
18102 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18103 Compared with single/double precision variants, only the co-processor \
18104 field is different, so the encoding flow is reused here. */ \
18105 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18106 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18107 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18108 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
18109 /* VFP instructions. */ \
18110 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18111 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18112 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18113 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18114 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18115 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18116 /* VFP instructions with bitshift. */ \
18117 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18118 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18119 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18120 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18121 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18122 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18123 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18124 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18125
18126#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18127 neon_cvt_flavour_##C,
18128
18129/* The different types of conversions we can do. */
18130enum neon_cvt_flavour
18131{
18132 CVT_FLAVOUR_VAR
18133 neon_cvt_flavour_invalid,
18134 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18135};
18136
18137#undef CVT_VAR
18138
18139static enum neon_cvt_flavour
18140get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 18141{
6b9a8b67
MGD
18142#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18143 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18144 if (et.type != NT_invtype) \
18145 { \
18146 inst.error = NULL; \
18147 return (neon_cvt_flavour_##C); \
5287ad62 18148 }
6b9a8b67 18149
5287ad62 18150 struct neon_type_el et;
037e8744 18151 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 18152 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
18153 /* The instruction versions which take an immediate take one register
18154 argument, which is extended to the width of the full register. Thus the
18155 "source" and "destination" registers must have the same width. Hack that
18156 here by making the size equal to the key (wider, in this case) operand. */
18157 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 18158
6b9a8b67
MGD
18159 CVT_FLAVOUR_VAR;
18160
18161 return neon_cvt_flavour_invalid;
5287ad62
JB
18162#undef CVT_VAR
18163}
18164
7e8e6784
MGD
18165enum neon_cvt_mode
18166{
18167 neon_cvt_mode_a,
18168 neon_cvt_mode_n,
18169 neon_cvt_mode_p,
18170 neon_cvt_mode_m,
18171 neon_cvt_mode_z,
30bdf752
MGD
18172 neon_cvt_mode_x,
18173 neon_cvt_mode_r
7e8e6784
MGD
18174};
18175
037e8744
JB
18176/* Neon-syntax VFP conversions. */
18177
5287ad62 18178static void
6b9a8b67 18179do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 18180{
037e8744 18181 const char *opname = 0;
5f4273c7 18182
d54af2d0
RL
18183 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18184 || rs == NS_FHI || rs == NS_HFI)
5287ad62 18185 {
037e8744
JB
18186 /* Conversions with immediate bitshift. */
18187 const char *enc[] =
477330fc 18188 {
6b9a8b67
MGD
18189#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18190 CVT_FLAVOUR_VAR
18191 NULL
18192#undef CVT_VAR
477330fc 18193 };
037e8744 18194
6b9a8b67 18195 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
18196 {
18197 opname = enc[flavour];
18198 constraint (inst.operands[0].reg != inst.operands[1].reg,
18199 _("operands 0 and 1 must be the same register"));
18200 inst.operands[1] = inst.operands[2];
18201 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18202 }
5287ad62
JB
18203 }
18204 else
18205 {
037e8744
JB
18206 /* Conversions without bitshift. */
18207 const char *enc[] =
477330fc 18208 {
6b9a8b67
MGD
18209#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18210 CVT_FLAVOUR_VAR
18211 NULL
18212#undef CVT_VAR
477330fc 18213 };
037e8744 18214
6b9a8b67 18215 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 18216 opname = enc[flavour];
037e8744
JB
18217 }
18218
18219 if (opname)
18220 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
18221
18222 /* ARMv8.2 fp16 VCVT instruction. */
18223 if (flavour == neon_cvt_flavour_s32_f16
18224 || flavour == neon_cvt_flavour_u32_f16
18225 || flavour == neon_cvt_flavour_f16_u32
18226 || flavour == neon_cvt_flavour_f16_s32)
18227 do_scalar_fp16_v82_encode ();
037e8744
JB
18228}
18229
18230static void
18231do_vfp_nsyn_cvtz (void)
18232{
d54af2d0 18233 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 18234 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
18235 const char *enc[] =
18236 {
6b9a8b67
MGD
18237#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18238 CVT_FLAVOUR_VAR
18239 NULL
18240#undef CVT_VAR
037e8744
JB
18241 };
18242
6b9a8b67 18243 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
18244 do_vfp_nsyn_opcode (enc[flavour]);
18245}
f31fef98 18246
037e8744 18247static void
bacebabc 18248do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
18249 enum neon_cvt_mode mode)
18250{
18251 int sz, op;
18252 int rm;
18253
a715796b
TG
18254 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18255 D register operands. */
18256 if (flavour == neon_cvt_flavour_s32_f64
18257 || flavour == neon_cvt_flavour_u32_f64)
18258 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18259 _(BAD_FPU));
18260
9db2f6b4
RL
18261 if (flavour == neon_cvt_flavour_s32_f16
18262 || flavour == neon_cvt_flavour_u32_f16)
18263 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18264 _(BAD_FP16));
18265
5ee91343 18266 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
18267
18268 switch (flavour)
18269 {
18270 case neon_cvt_flavour_s32_f64:
18271 sz = 1;
827f64ff 18272 op = 1;
7e8e6784
MGD
18273 break;
18274 case neon_cvt_flavour_s32_f32:
18275 sz = 0;
18276 op = 1;
18277 break;
9db2f6b4
RL
18278 case neon_cvt_flavour_s32_f16:
18279 sz = 0;
18280 op = 1;
18281 break;
7e8e6784
MGD
18282 case neon_cvt_flavour_u32_f64:
18283 sz = 1;
18284 op = 0;
18285 break;
18286 case neon_cvt_flavour_u32_f32:
18287 sz = 0;
18288 op = 0;
18289 break;
9db2f6b4
RL
18290 case neon_cvt_flavour_u32_f16:
18291 sz = 0;
18292 op = 0;
18293 break;
7e8e6784
MGD
18294 default:
18295 first_error (_("invalid instruction shape"));
18296 return;
18297 }
18298
18299 switch (mode)
18300 {
18301 case neon_cvt_mode_a: rm = 0; break;
18302 case neon_cvt_mode_n: rm = 1; break;
18303 case neon_cvt_mode_p: rm = 2; break;
18304 case neon_cvt_mode_m: rm = 3; break;
18305 default: first_error (_("invalid rounding mode")); return;
18306 }
18307
18308 NEON_ENCODE (FPV8, inst);
18309 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18310 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18311 inst.instruction |= sz << 8;
9db2f6b4
RL
18312
18313 /* ARMv8.2 fp16 VCVT instruction. */
18314 if (flavour == neon_cvt_flavour_s32_f16
18315 ||flavour == neon_cvt_flavour_u32_f16)
18316 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
18317 inst.instruction |= op << 7;
18318 inst.instruction |= rm << 16;
18319 inst.instruction |= 0xf0000000;
18320 inst.is_neon = TRUE;
18321}
18322
18323static void
18324do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
18325{
18326 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
18327 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18328 NS_FH, NS_HF, NS_FHI, NS_HFI,
18329 NS_NULL);
6b9a8b67 18330 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 18331
cc933301
JW
18332 if (flavour == neon_cvt_flavour_invalid)
18333 return;
18334
e3e535bc 18335 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 18336 if (mode == neon_cvt_mode_z
e3e535bc 18337 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
18338 && (flavour == neon_cvt_flavour_s16_f16
18339 || flavour == neon_cvt_flavour_u16_f16
18340 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
18341 || flavour == neon_cvt_flavour_u32_f32
18342 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 18343 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
18344 && (rs == NS_FD || rs == NS_FF))
18345 {
18346 do_vfp_nsyn_cvtz ();
18347 return;
18348 }
18349
9db2f6b4
RL
18350 /* ARMv8.2 fp16 VCVT conversions. */
18351 if (mode == neon_cvt_mode_z
18352 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18353 && (flavour == neon_cvt_flavour_s32_f16
18354 || flavour == neon_cvt_flavour_u32_f16)
18355 && (rs == NS_FH))
18356 {
18357 do_vfp_nsyn_cvtz ();
18358 do_scalar_fp16_v82_encode ();
18359 return;
18360 }
18361
037e8744 18362 /* VFP rather than Neon conversions. */
6b9a8b67 18363 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18364 {
7e8e6784
MGD
18365 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18366 do_vfp_nsyn_cvt (rs, flavour);
18367 else
18368 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18369
037e8744
JB
18370 return;
18371 }
18372
18373 switch (rs)
18374 {
037e8744 18375 case NS_QQI:
dd9634d9
AV
18376 if (mode == neon_cvt_mode_z
18377 && (flavour == neon_cvt_flavour_f16_s16
18378 || flavour == neon_cvt_flavour_f16_u16
18379 || flavour == neon_cvt_flavour_s16_f16
18380 || flavour == neon_cvt_flavour_u16_f16
18381 || flavour == neon_cvt_flavour_f32_u32
18382 || flavour == neon_cvt_flavour_f32_s32
18383 || flavour == neon_cvt_flavour_s32_f32
18384 || flavour == neon_cvt_flavour_u32_f32))
18385 {
18386 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18387 return;
18388 }
18389 else if (mode == neon_cvt_mode_n)
18390 {
18391 /* We are dealing with vcvt with the 'ne' condition. */
18392 inst.cond = 0x1;
18393 inst.instruction = N_MNEM_vcvt;
18394 do_neon_cvt_1 (neon_cvt_mode_z);
18395 return;
18396 }
18397 /* fall through. */
18398 case NS_DDI:
037e8744 18399 {
477330fc 18400 unsigned immbits;
cc933301
JW
18401 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18402 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18403
dd9634d9
AV
18404 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18405 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18406 return;
18407
18408 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18409 {
18410 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18411 _("immediate value out of range"));
18412 switch (flavour)
18413 {
18414 case neon_cvt_flavour_f16_s16:
18415 case neon_cvt_flavour_f16_u16:
18416 case neon_cvt_flavour_s16_f16:
18417 case neon_cvt_flavour_u16_f16:
18418 constraint (inst.operands[2].imm > 16,
18419 _("immediate value out of range"));
18420 break;
18421 case neon_cvt_flavour_f32_u32:
18422 case neon_cvt_flavour_f32_s32:
18423 case neon_cvt_flavour_s32_f32:
18424 case neon_cvt_flavour_u32_f32:
18425 constraint (inst.operands[2].imm > 32,
18426 _("immediate value out of range"));
18427 break;
18428 default:
18429 inst.error = BAD_FPU;
18430 return;
18431 }
18432 }
037e8744 18433
477330fc
RM
18434 /* Fixed-point conversion with #0 immediate is encoded as an
18435 integer conversion. */
18436 if (inst.operands[2].present && inst.operands[2].imm == 0)
18437 goto int_encode;
477330fc
RM
18438 NEON_ENCODE (IMMED, inst);
18439 if (flavour != neon_cvt_flavour_invalid)
18440 inst.instruction |= enctab[flavour];
18441 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18442 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18443 inst.instruction |= LOW4 (inst.operands[1].reg);
18444 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18445 inst.instruction |= neon_quad (rs) << 6;
18446 inst.instruction |= 1 << 21;
cc933301
JW
18447 if (flavour < neon_cvt_flavour_s16_f16)
18448 {
18449 inst.instruction |= 1 << 21;
18450 immbits = 32 - inst.operands[2].imm;
18451 inst.instruction |= immbits << 16;
18452 }
18453 else
18454 {
18455 inst.instruction |= 3 << 20;
18456 immbits = 16 - inst.operands[2].imm;
18457 inst.instruction |= immbits << 16;
18458 inst.instruction &= ~(1 << 9);
18459 }
477330fc
RM
18460
18461 neon_dp_fixup (&inst);
037e8744
JB
18462 }
18463 break;
18464
037e8744 18465 case NS_QQ:
dd9634d9
AV
18466 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18467 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18468 && (flavour == neon_cvt_flavour_s16_f16
18469 || flavour == neon_cvt_flavour_u16_f16
18470 || flavour == neon_cvt_flavour_s32_f32
18471 || flavour == neon_cvt_flavour_u32_f32))
18472 {
18473 if (check_simd_pred_availability (1,
18474 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18475 return;
18476 }
18477 else if (mode == neon_cvt_mode_z
18478 && (flavour == neon_cvt_flavour_f16_s16
18479 || flavour == neon_cvt_flavour_f16_u16
18480 || flavour == neon_cvt_flavour_s16_f16
18481 || flavour == neon_cvt_flavour_u16_f16
18482 || flavour == neon_cvt_flavour_f32_u32
18483 || flavour == neon_cvt_flavour_f32_s32
18484 || flavour == neon_cvt_flavour_s32_f32
18485 || flavour == neon_cvt_flavour_u32_f32))
18486 {
18487 if (check_simd_pred_availability (1,
18488 NEON_CHECK_CC | NEON_CHECK_ARCH))
18489 return;
18490 }
18491 /* fall through. */
18492 case NS_DD:
7e8e6784
MGD
18493 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18494 {
7e8e6784 18495
dd9634d9
AV
18496 NEON_ENCODE (FLOAT, inst);
18497 if (check_simd_pred_availability (1,
18498 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18499 return;
18500
18501 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18502 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18503 inst.instruction |= LOW4 (inst.operands[1].reg);
18504 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18505 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18506 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18507 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18508 inst.instruction |= mode << 8;
cc933301
JW
18509 if (flavour == neon_cvt_flavour_u16_f16
18510 || flavour == neon_cvt_flavour_s16_f16)
18511 /* Mask off the original size bits and reencode them. */
18512 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18513
7e8e6784
MGD
18514 if (thumb_mode)
18515 inst.instruction |= 0xfc000000;
18516 else
18517 inst.instruction |= 0xf0000000;
18518 }
18519 else
18520 {
037e8744 18521 int_encode:
7e8e6784 18522 {
cc933301
JW
18523 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18524 0x100, 0x180, 0x0, 0x080};
037e8744 18525
7e8e6784 18526 NEON_ENCODE (INTEGER, inst);
037e8744 18527
dd9634d9
AV
18528 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18529 {
18530 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18531 return;
18532 }
037e8744 18533
7e8e6784
MGD
18534 if (flavour != neon_cvt_flavour_invalid)
18535 inst.instruction |= enctab[flavour];
037e8744 18536
7e8e6784
MGD
18537 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18538 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18539 inst.instruction |= LOW4 (inst.operands[1].reg);
18540 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18541 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18542 if (flavour >= neon_cvt_flavour_s16_f16
18543 && flavour <= neon_cvt_flavour_f16_u16)
18544 /* Half precision. */
18545 inst.instruction |= 1 << 18;
18546 else
18547 inst.instruction |= 2 << 18;
037e8744 18548
7e8e6784
MGD
18549 neon_dp_fixup (&inst);
18550 }
18551 }
18552 break;
037e8744 18553
8e79c3df
CM
18554 /* Half-precision conversions for Advanced SIMD -- neon. */
18555 case NS_QD:
18556 case NS_DQ:
bc52d49c
MM
18557 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18558 return;
8e79c3df
CM
18559
18560 if ((rs == NS_DQ)
18561 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18562 {
18563 as_bad (_("operand size must match register width"));
18564 break;
18565 }
18566
18567 if ((rs == NS_QD)
18568 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18569 {
18570 as_bad (_("operand size must match register width"));
18571 break;
18572 }
18573
18574 if (rs == NS_DQ)
477330fc 18575 inst.instruction = 0x3b60600;
8e79c3df
CM
18576 else
18577 inst.instruction = 0x3b60700;
18578
18579 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18580 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18581 inst.instruction |= LOW4 (inst.operands[1].reg);
18582 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18583 neon_dp_fixup (&inst);
8e79c3df
CM
18584 break;
18585
037e8744
JB
18586 default:
18587 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18588 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18589 do_vfp_nsyn_cvt (rs, flavour);
18590 else
18591 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18592 }
5287ad62
JB
18593}
18594
e3e535bc
NC
18595static void
18596do_neon_cvtr (void)
18597{
7e8e6784 18598 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18599}
18600
18601static void
18602do_neon_cvt (void)
18603{
7e8e6784
MGD
18604 do_neon_cvt_1 (neon_cvt_mode_z);
18605}
18606
18607static void
18608do_neon_cvta (void)
18609{
18610 do_neon_cvt_1 (neon_cvt_mode_a);
18611}
18612
18613static void
18614do_neon_cvtn (void)
18615{
18616 do_neon_cvt_1 (neon_cvt_mode_n);
18617}
18618
18619static void
18620do_neon_cvtp (void)
18621{
18622 do_neon_cvt_1 (neon_cvt_mode_p);
18623}
18624
18625static void
18626do_neon_cvtm (void)
18627{
18628 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18629}
18630
8e79c3df 18631static void
c70a8987 18632do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18633{
c70a8987
MGD
18634 if (is_double)
18635 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18636
c70a8987
MGD
18637 encode_arm_vfp_reg (inst.operands[0].reg,
18638 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18639 encode_arm_vfp_reg (inst.operands[1].reg,
18640 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18641 inst.instruction |= to ? 0x10000 : 0;
18642 inst.instruction |= t ? 0x80 : 0;
18643 inst.instruction |= is_double ? 0x100 : 0;
18644 do_vfp_cond_or_thumb ();
18645}
8e79c3df 18646
c70a8987
MGD
18647static void
18648do_neon_cvttb_1 (bfd_boolean t)
18649{
d54af2d0 18650 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18651 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18652
c70a8987
MGD
18653 if (rs == NS_NULL)
18654 return;
dd9634d9
AV
18655 else if (rs == NS_QQ || rs == NS_QQI)
18656 {
18657 int single_to_half = 0;
18658 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18659 return;
18660
18661 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18662
18663 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18664 && (flavour == neon_cvt_flavour_u16_f16
18665 || flavour == neon_cvt_flavour_s16_f16
18666 || flavour == neon_cvt_flavour_f16_s16
18667 || flavour == neon_cvt_flavour_f16_u16
18668 || flavour == neon_cvt_flavour_u32_f32
18669 || flavour == neon_cvt_flavour_s32_f32
18670 || flavour == neon_cvt_flavour_f32_s32
18671 || flavour == neon_cvt_flavour_f32_u32))
18672 {
18673 inst.cond = 0xf;
18674 inst.instruction = N_MNEM_vcvt;
18675 set_pred_insn_type (INSIDE_VPT_INSN);
18676 do_neon_cvt_1 (neon_cvt_mode_z);
18677 return;
18678 }
18679 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18680 single_to_half = 1;
18681 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18682 {
18683 first_error (BAD_FPU);
18684 return;
18685 }
18686
18687 inst.instruction = 0xee3f0e01;
18688 inst.instruction |= single_to_half << 28;
18689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18690 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18691 inst.instruction |= t << 12;
18692 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18693 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18694 inst.is_neon = 1;
18695 }
c70a8987
MGD
18696 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18697 {
18698 inst.error = NULL;
18699 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18700 }
18701 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18702 {
18703 inst.error = NULL;
18704 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18705 }
18706 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18707 {
a715796b
TG
18708 /* The VCVTB and VCVTT instructions with D-register operands
18709 don't work for SP only targets. */
18710 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18711 _(BAD_FPU));
18712
c70a8987
MGD
18713 inst.error = NULL;
18714 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18715 }
18716 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18717 {
a715796b
TG
18718 /* The VCVTB and VCVTT instructions with D-register operands
18719 don't work for SP only targets. */
18720 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18721 _(BAD_FPU));
18722
c70a8987
MGD
18723 inst.error = NULL;
18724 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18725 }
18726 else
18727 return;
18728}
18729
18730static void
18731do_neon_cvtb (void)
18732{
18733 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18734}
18735
18736
18737static void
18738do_neon_cvtt (void)
18739{
c70a8987 18740 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18741}
18742
5287ad62
JB
18743static void
18744neon_move_immediate (void)
18745{
037e8744
JB
18746 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18747 struct neon_type_el et = neon_check_type (2, rs,
18748 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18749 unsigned immlo, immhi = 0, immbits;
c96612cc 18750 int op, cmode, float_p;
5287ad62 18751
037e8744 18752 constraint (et.type == NT_invtype,
477330fc 18753 _("operand size must be specified for immediate VMOV"));
037e8744 18754
5287ad62
JB
18755 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18756 op = (inst.instruction & (1 << 5)) != 0;
18757
18758 immlo = inst.operands[1].imm;
18759 if (inst.operands[1].regisimm)
18760 immhi = inst.operands[1].reg;
18761
18762 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18763 _("immediate has bits set outside the operand size"));
5287ad62 18764
c96612cc
JB
18765 float_p = inst.operands[1].immisfloat;
18766
18767 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18768 et.size, et.type)) == FAIL)
5287ad62
JB
18769 {
18770 /* Invert relevant bits only. */
18771 neon_invert_size (&immlo, &immhi, et.size);
18772 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18773 with one or the other; those cases are caught by
18774 neon_cmode_for_move_imm. */
5287ad62 18775 op = !op;
c96612cc
JB
18776 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18777 &op, et.size, et.type)) == FAIL)
477330fc
RM
18778 {
18779 first_error (_("immediate out of range"));
18780 return;
18781 }
5287ad62
JB
18782 }
18783
18784 inst.instruction &= ~(1 << 5);
18785 inst.instruction |= op << 5;
18786
18787 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18788 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18789 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18790 inst.instruction |= cmode << 8;
18791
18792 neon_write_immbits (immbits);
18793}
18794
18795static void
18796do_neon_mvn (void)
18797{
1a186d29
AV
18798 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18799 return;
18800
5287ad62
JB
18801 if (inst.operands[1].isreg)
18802 {
1a186d29
AV
18803 enum neon_shape rs;
18804 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18805 rs = neon_select_shape (NS_QQ, NS_NULL);
18806 else
18807 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18808
88714cb8 18809 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18810 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18811 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18812 inst.instruction |= LOW4 (inst.operands[1].reg);
18813 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18814 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18815 }
18816 else
18817 {
88714cb8 18818 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18819 neon_move_immediate ();
18820 }
18821
88714cb8 18822 neon_dp_fixup (&inst);
1a186d29
AV
18823
18824 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18825 {
18826 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18827 constraint ((inst.instruction & 0xd00) == 0xd00,
18828 _("immediate value out of range"));
18829 }
5287ad62
JB
18830}
18831
18832/* Encode instructions of form:
18833
18834 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18835 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18836
18837static void
18838neon_mixed_length (struct neon_type_el et, unsigned size)
18839{
18840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18841 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18842 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18843 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18844 inst.instruction |= LOW4 (inst.operands[2].reg);
18845 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18846 inst.instruction |= (et.type == NT_unsigned) << 24;
18847 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18848
88714cb8 18849 neon_dp_fixup (&inst);
5287ad62
JB
18850}
18851
18852static void
18853do_neon_dyadic_long (void)
18854{
5ee91343
AV
18855 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18856 if (rs == NS_QDD)
18857 {
18858 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18859 return;
18860
18861 NEON_ENCODE (INTEGER, inst);
18862 /* FIXME: Type checking for lengthening op. */
18863 struct neon_type_el et = neon_check_type (3, NS_QDD,
18864 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18865 neon_mixed_length (et, et.size);
18866 }
18867 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18868 && (inst.cond == 0xf || inst.cond == 0x10))
18869 {
18870 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18871 in an IT block with le/lt conditions. */
18872
18873 if (inst.cond == 0xf)
18874 inst.cond = 0xb;
18875 else if (inst.cond == 0x10)
18876 inst.cond = 0xd;
18877
18878 inst.pred_insn_type = INSIDE_IT_INSN;
18879
18880 if (inst.instruction == N_MNEM_vaddl)
18881 {
18882 inst.instruction = N_MNEM_vadd;
18883 do_neon_addsub_if_i ();
18884 }
18885 else if (inst.instruction == N_MNEM_vsubl)
18886 {
18887 inst.instruction = N_MNEM_vsub;
18888 do_neon_addsub_if_i ();
18889 }
18890 else if (inst.instruction == N_MNEM_vabdl)
18891 {
18892 inst.instruction = N_MNEM_vabd;
18893 do_neon_dyadic_if_su ();
18894 }
18895 }
18896 else
18897 first_error (BAD_FPU);
5287ad62
JB
18898}
18899
18900static void
18901do_neon_abal (void)
18902{
18903 struct neon_type_el et = neon_check_type (3, NS_QDD,
18904 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18905 neon_mixed_length (et, et.size);
18906}
18907
18908static void
18909neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18910{
18911 if (inst.operands[2].isscalar)
18912 {
dcbf9037 18913 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18914 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18915 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18916 neon_mul_mac (et, et.type == NT_unsigned);
18917 }
18918 else
18919 {
18920 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18921 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18922 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18923 neon_mixed_length (et, et.size);
18924 }
18925}
18926
18927static void
18928do_neon_mac_maybe_scalar_long (void)
18929{
18930 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18931}
18932
dec41383
JW
18933/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18934 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18935
18936static unsigned
18937neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18938{
18939 unsigned regno = NEON_SCALAR_REG (scalar);
18940 unsigned elno = NEON_SCALAR_INDEX (scalar);
18941
18942 if (quad_p)
18943 {
18944 if (regno > 7 || elno > 3)
18945 goto bad_scalar;
18946
18947 return ((regno & 0x7)
18948 | ((elno & 0x1) << 3)
18949 | (((elno >> 1) & 0x1) << 5));
18950 }
18951 else
18952 {
18953 if (regno > 15 || elno > 1)
18954 goto bad_scalar;
18955
18956 return (((regno & 0x1) << 5)
18957 | ((regno >> 1) & 0x7)
18958 | ((elno & 0x1) << 3));
18959 }
18960
18961bad_scalar:
18962 first_error (_("scalar out of range for multiply instruction"));
18963 return 0;
18964}
18965
18966static void
18967do_neon_fmac_maybe_scalar_long (int subtype)
18968{
18969 enum neon_shape rs;
18970 int high8;
18971 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18972 field (bits[21:20]) has different meaning. For scalar index variant, it's
18973 used to differentiate add and subtract, otherwise it's with fixed value
18974 0x2. */
18975 int size = -1;
18976
18977 if (inst.cond != COND_ALWAYS)
18978 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18979 "behaviour is UNPREDICTABLE"));
18980
01f48020 18981 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18982 _(BAD_FP16));
18983
18984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18985 _(BAD_FPU));
18986
18987 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18988 be a scalar index register. */
18989 if (inst.operands[2].isscalar)
18990 {
18991 high8 = 0xfe000000;
18992 if (subtype)
18993 size = 16;
18994 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18995 }
18996 else
18997 {
18998 high8 = 0xfc000000;
18999 size = 32;
19000 if (subtype)
19001 inst.instruction |= (0x1 << 23);
19002 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19003 }
19004
19005 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19006
19007 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19008 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19009 so we simply pass -1 as size. */
19010 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19011 neon_three_same (quad_p, 0, size);
19012
19013 /* Undo neon_dp_fixup. Redo the high eight bits. */
19014 inst.instruction &= 0x00ffffff;
19015 inst.instruction |= high8;
19016
19017#define LOW1(R) ((R) & 0x1)
19018#define HI4(R) (((R) >> 1) & 0xf)
19019 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19020 whether the instruction is in Q form and whether Vm is a scalar indexed
19021 operand. */
19022 if (inst.operands[2].isscalar)
19023 {
19024 unsigned rm
19025 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19026 inst.instruction &= 0xffffffd0;
19027 inst.instruction |= rm;
19028
19029 if (!quad_p)
19030 {
19031 /* Redo Rn as well. */
19032 inst.instruction &= 0xfff0ff7f;
19033 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19034 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19035 }
19036 }
19037 else if (!quad_p)
19038 {
19039 /* Redo Rn and Rm. */
19040 inst.instruction &= 0xfff0ff50;
19041 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19042 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19043 inst.instruction |= HI4 (inst.operands[2].reg);
19044 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19045 }
19046}
19047
19048static void
19049do_neon_vfmal (void)
19050{
19051 return do_neon_fmac_maybe_scalar_long (0);
19052}
19053
19054static void
19055do_neon_vfmsl (void)
19056{
19057 return do_neon_fmac_maybe_scalar_long (1);
19058}
19059
5287ad62
JB
19060static void
19061do_neon_dyadic_wide (void)
19062{
19063 struct neon_type_el et = neon_check_type (3, NS_QQD,
19064 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19065 neon_mixed_length (et, et.size);
19066}
19067
19068static void
19069do_neon_dyadic_narrow (void)
19070{
19071 struct neon_type_el et = neon_check_type (3, NS_QDD,
19072 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
19073 /* Operand sign is unimportant, and the U bit is part of the opcode,
19074 so force the operand type to integer. */
19075 et.type = NT_integer;
5287ad62
JB
19076 neon_mixed_length (et, et.size / 2);
19077}
19078
19079static void
19080do_neon_mul_sat_scalar_long (void)
19081{
19082 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19083}
19084
19085static void
19086do_neon_vmull (void)
19087{
19088 if (inst.operands[2].isscalar)
19089 do_neon_mac_maybe_scalar_long ();
19090 else
19091 {
19092 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19093 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 19094
5287ad62 19095 if (et.type == NT_poly)
477330fc 19096 NEON_ENCODE (POLY, inst);
5287ad62 19097 else
477330fc 19098 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
19099
19100 /* For polynomial encoding the U bit must be zero, and the size must
19101 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19102 obviously, as 0b10). */
19103 if (et.size == 64)
19104 {
19105 /* Check we're on the correct architecture. */
19106 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19107 inst.error =
19108 _("Instruction form not available on this architecture.");
19109
19110 et.size = 32;
19111 }
19112
5287ad62
JB
19113 neon_mixed_length (et, et.size);
19114 }
19115}
19116
19117static void
19118do_neon_ext (void)
19119{
037e8744 19120 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
19121 struct neon_type_el et = neon_check_type (3, rs,
19122 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19123 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
19124
19125 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19126 _("shift out of range"));
5287ad62
JB
19127 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19128 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19129 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19130 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19131 inst.instruction |= LOW4 (inst.operands[2].reg);
19132 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 19133 inst.instruction |= neon_quad (rs) << 6;
5287ad62 19134 inst.instruction |= imm << 8;
5f4273c7 19135
88714cb8 19136 neon_dp_fixup (&inst);
5287ad62
JB
19137}
19138
19139static void
19140do_neon_rev (void)
19141{
4401c241
AV
19142 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19143 return;
19144
19145 enum neon_shape rs;
19146 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19147 rs = neon_select_shape (NS_QQ, NS_NULL);
19148 else
19149 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19150
5287ad62
JB
19151 struct neon_type_el et = neon_check_type (2, rs,
19152 N_EQK, N_8 | N_16 | N_32 | N_KEY);
4401c241 19153
5287ad62
JB
19154 unsigned op = (inst.instruction >> 7) & 3;
19155 /* N (width of reversed regions) is encoded as part of the bitmask. We
19156 extract it here to check the elements to be reversed are smaller.
19157 Otherwise we'd get a reserved instruction. */
19158 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
4401c241
AV
19159
19160 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19161 && inst.operands[0].reg == inst.operands[1].reg)
19162 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19163 " operands makes instruction UNPREDICTABLE"));
19164
9c2799c2 19165 gas_assert (elsize != 0);
5287ad62 19166 constraint (et.size >= elsize,
477330fc 19167 _("elements must be smaller than reversal region"));
037e8744 19168 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19169}
19170
19171static void
19172do_neon_dup (void)
19173{
19174 if (inst.operands[1].isscalar)
19175 {
b409bdb6
AV
19176 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19177 BAD_FPU);
037e8744 19178 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 19179 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19180 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 19181 unsigned sizebits = et.size >> 3;
dcbf9037 19182 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 19183 int logsize = neon_logbits (et.size);
dcbf9037 19184 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
19185
19186 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 19187 return;
037e8744 19188
88714cb8 19189 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19190 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19191 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19192 inst.instruction |= LOW4 (dm);
19193 inst.instruction |= HI1 (dm) << 5;
037e8744 19194 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19195 inst.instruction |= x << 17;
19196 inst.instruction |= sizebits << 16;
5f4273c7 19197
88714cb8 19198 neon_dp_fixup (&inst);
5287ad62
JB
19199 }
19200 else
19201 {
037e8744
JB
19202 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19203 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19204 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
19205 if (rs == NS_QR)
19206 {
19207 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19208 return;
19209 }
19210 else
19211 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19212 BAD_FPU);
19213
19214 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19215 {
19216 if (inst.operands[1].reg == REG_SP)
19217 as_tsktsk (MVE_BAD_SP);
19218 else if (inst.operands[1].reg == REG_PC)
19219 as_tsktsk (MVE_BAD_PC);
19220 }
19221
5287ad62 19222 /* Duplicate ARM register to lanes of vector. */
88714cb8 19223 NEON_ENCODE (ARMREG, inst);
5287ad62 19224 switch (et.size)
477330fc
RM
19225 {
19226 case 8: inst.instruction |= 0x400000; break;
19227 case 16: inst.instruction |= 0x000020; break;
19228 case 32: inst.instruction |= 0x000000; break;
19229 default: break;
19230 }
5287ad62
JB
19231 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19232 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19233 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 19234 inst.instruction |= neon_quad (rs) << 21;
5287ad62 19235 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 19236 variants, except for the condition field. */
037e8744 19237 do_vfp_cond_or_thumb ();
5287ad62
JB
19238 }
19239}
19240
57785aa2
AV
19241static void
19242do_mve_mov (int toQ)
19243{
19244 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19245 return;
19246 if (inst.cond > COND_ALWAYS)
19247 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19248
19249 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19250 if (toQ)
19251 {
19252 Q0 = 0;
19253 Q1 = 1;
19254 Rt = 2;
19255 Rt2 = 3;
19256 }
19257
19258 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19259 _("Index one must be [2,3] and index two must be two less than"
19260 " index one."));
19261 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19262 _("General purpose registers may not be the same"));
19263 constraint (inst.operands[Rt].reg == REG_SP
19264 || inst.operands[Rt2].reg == REG_SP,
19265 BAD_SP);
19266 constraint (inst.operands[Rt].reg == REG_PC
19267 || inst.operands[Rt2].reg == REG_PC,
19268 BAD_PC);
19269
19270 inst.instruction = 0xec000f00;
19271 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19272 inst.instruction |= !!toQ << 20;
19273 inst.instruction |= inst.operands[Rt2].reg << 16;
19274 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19275 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19276 inst.instruction |= inst.operands[Rt].reg;
19277}
19278
19279static void
19280do_mve_movn (void)
19281{
19282 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19283 return;
19284
19285 if (inst.cond > COND_ALWAYS)
19286 inst.pred_insn_type = INSIDE_VPT_INSN;
19287 else
19288 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19289
19290 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19291 | N_KEY);
19292
19293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19294 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19295 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19296 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19297 inst.instruction |= LOW4 (inst.operands[1].reg);
19298 inst.is_neon = 1;
19299
19300}
19301
5287ad62
JB
19302/* VMOV has particularly many variations. It can be one of:
19303 0. VMOV<c><q> <Qd>, <Qm>
19304 1. VMOV<c><q> <Dd>, <Dm>
19305 (Register operations, which are VORR with Rm = Rn.)
19306 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19307 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19308 (Immediate loads.)
19309 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19310 (ARM register to scalar.)
19311 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19312 (Two ARM registers to vector.)
19313 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19314 (Scalar to ARM register.)
19315 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19316 (Vector to two ARM registers.)
037e8744
JB
19317 8. VMOV.F32 <Sd>, <Sm>
19318 9. VMOV.F64 <Dd>, <Dm>
19319 (VFP register moves.)
19320 10. VMOV.F32 <Sd>, #imm
19321 11. VMOV.F64 <Dd>, #imm
19322 (VFP float immediate load.)
19323 12. VMOV <Rd>, <Sm>
19324 (VFP single to ARM reg.)
19325 13. VMOV <Sd>, <Rm>
19326 (ARM reg to VFP single.)
19327 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19328 (Two ARM regs to two VFP singles.)
19329 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19330 (Two VFP singles to two ARM regs.)
57785aa2
AV
19331 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19332 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19333 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19334 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 19335
037e8744
JB
19336 These cases can be disambiguated using neon_select_shape, except cases 1/9
19337 and 3/11 which depend on the operand type too.
5f4273c7 19338
5287ad62 19339 All the encoded bits are hardcoded by this function.
5f4273c7 19340
b7fc2769
JB
19341 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19342 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 19343
5287ad62 19344 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 19345 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
19346
19347static void
19348do_neon_mov (void)
19349{
57785aa2
AV
19350 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19351 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19352 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19353 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19354 NS_NULL);
037e8744
JB
19355 struct neon_type_el et;
19356 const char *ldconst = 0;
5287ad62 19357
037e8744 19358 switch (rs)
5287ad62 19359 {
037e8744
JB
19360 case NS_DD: /* case 1/9. */
19361 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19362 /* It is not an error here if no type is given. */
19363 inst.error = NULL;
19364 if (et.type == NT_float && et.size == 64)
477330fc
RM
19365 {
19366 do_vfp_nsyn_opcode ("fcpyd");
19367 break;
19368 }
037e8744 19369 /* fall through. */
5287ad62 19370
037e8744
JB
19371 case NS_QQ: /* case 0/1. */
19372 {
57785aa2 19373 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
19374 return;
19375 /* The architecture manual I have doesn't explicitly state which
19376 value the U bit should have for register->register moves, but
19377 the equivalent VORR instruction has U = 0, so do that. */
19378 inst.instruction = 0x0200110;
19379 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19380 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19381 inst.instruction |= LOW4 (inst.operands[1].reg);
19382 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19383 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19384 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19385 inst.instruction |= neon_quad (rs) << 6;
19386
19387 neon_dp_fixup (&inst);
037e8744
JB
19388 }
19389 break;
5f4273c7 19390
037e8744
JB
19391 case NS_DI: /* case 3/11. */
19392 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19393 inst.error = NULL;
19394 if (et.type == NT_float && et.size == 64)
477330fc
RM
19395 {
19396 /* case 11 (fconstd). */
19397 ldconst = "fconstd";
19398 goto encode_fconstd;
19399 }
037e8744
JB
19400 /* fall through. */
19401
19402 case NS_QI: /* case 2/3. */
57785aa2 19403 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19404 return;
037e8744
JB
19405 inst.instruction = 0x0800010;
19406 neon_move_immediate ();
88714cb8 19407 neon_dp_fixup (&inst);
5287ad62 19408 break;
5f4273c7 19409
037e8744
JB
19410 case NS_SR: /* case 4. */
19411 {
477330fc
RM
19412 unsigned bcdebits = 0;
19413 int logsize;
19414 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19415 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19416
05ac0ffb
JB
19417 /* .<size> is optional here, defaulting to .32. */
19418 if (inst.vectype.elems == 0
19419 && inst.operands[0].vectype.type == NT_invtype
19420 && inst.operands[1].vectype.type == NT_invtype)
19421 {
19422 inst.vectype.el[0].type = NT_untyped;
19423 inst.vectype.el[0].size = 32;
19424 inst.vectype.elems = 1;
19425 }
19426
477330fc
RM
19427 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19428 logsize = neon_logbits (et.size);
19429
57785aa2
AV
19430 if (et.size != 32)
19431 {
19432 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19433 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19434 return;
19435 }
19436 else
19437 {
19438 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19439 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19440 _(BAD_FPU));
19441 }
19442
19443 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19444 {
19445 if (inst.operands[1].reg == REG_SP)
19446 as_tsktsk (MVE_BAD_SP);
19447 else if (inst.operands[1].reg == REG_PC)
19448 as_tsktsk (MVE_BAD_PC);
19449 }
19450 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19451
477330fc 19452 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19453 constraint (x >= size / et.size, _("scalar index out of range"));
19454
477330fc
RM
19455
19456 switch (et.size)
19457 {
19458 case 8: bcdebits = 0x8; break;
19459 case 16: bcdebits = 0x1; break;
19460 case 32: bcdebits = 0x0; break;
19461 default: ;
19462 }
19463
57785aa2 19464 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19465
19466 inst.instruction = 0xe000b10;
19467 do_vfp_cond_or_thumb ();
19468 inst.instruction |= LOW4 (dn) << 16;
19469 inst.instruction |= HI1 (dn) << 7;
19470 inst.instruction |= inst.operands[1].reg << 12;
19471 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19472 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19473 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19474 }
19475 break;
5f4273c7 19476
037e8744 19477 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19478 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19479 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19480 _(BAD_FPU));
b7fc2769 19481
037e8744
JB
19482 inst.instruction = 0xc400b10;
19483 do_vfp_cond_or_thumb ();
19484 inst.instruction |= LOW4 (inst.operands[0].reg);
19485 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19486 inst.instruction |= inst.operands[1].reg << 12;
19487 inst.instruction |= inst.operands[2].reg << 16;
19488 break;
5f4273c7 19489
037e8744
JB
19490 case NS_RS: /* case 6. */
19491 {
477330fc
RM
19492 unsigned logsize;
19493 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19494 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19495 unsigned abcdebits = 0;
037e8744 19496
05ac0ffb
JB
19497 /* .<dt> is optional here, defaulting to .32. */
19498 if (inst.vectype.elems == 0
19499 && inst.operands[0].vectype.type == NT_invtype
19500 && inst.operands[1].vectype.type == NT_invtype)
19501 {
19502 inst.vectype.el[0].type = NT_untyped;
19503 inst.vectype.el[0].size = 32;
19504 inst.vectype.elems = 1;
19505 }
19506
91d6fa6a
NC
19507 et = neon_check_type (2, NS_NULL,
19508 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19509 logsize = neon_logbits (et.size);
19510
57785aa2
AV
19511 if (et.size != 32)
19512 {
19513 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19514 && vfp_or_neon_is_neon (NEON_CHECK_CC
19515 | NEON_CHECK_ARCH) == FAIL)
19516 return;
19517 }
19518 else
19519 {
19520 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19521 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19522 _(BAD_FPU));
19523 }
19524
19525 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19526 {
19527 if (inst.operands[0].reg == REG_SP)
19528 as_tsktsk (MVE_BAD_SP);
19529 else if (inst.operands[0].reg == REG_PC)
19530 as_tsktsk (MVE_BAD_PC);
19531 }
19532
19533 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19534
477330fc 19535 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19536 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19537
19538 switch (et.size)
19539 {
19540 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19541 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19542 case 32: abcdebits = 0x00; break;
19543 default: ;
19544 }
19545
57785aa2 19546 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19547 inst.instruction = 0xe100b10;
19548 do_vfp_cond_or_thumb ();
19549 inst.instruction |= LOW4 (dn) << 16;
19550 inst.instruction |= HI1 (dn) << 7;
19551 inst.instruction |= inst.operands[0].reg << 12;
19552 inst.instruction |= (abcdebits & 3) << 5;
19553 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19554 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19555 }
19556 break;
5f4273c7 19557
037e8744 19558 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19561 _(BAD_FPU));
037e8744
JB
19562
19563 inst.instruction = 0xc500b10;
19564 do_vfp_cond_or_thumb ();
19565 inst.instruction |= inst.operands[0].reg << 12;
19566 inst.instruction |= inst.operands[1].reg << 16;
19567 inst.instruction |= LOW4 (inst.operands[2].reg);
19568 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19569 break;
5f4273c7 19570
037e8744
JB
19571 case NS_FF: /* case 8 (fcpys). */
19572 do_vfp_nsyn_opcode ("fcpys");
19573 break;
5f4273c7 19574
9db2f6b4 19575 case NS_HI:
037e8744
JB
19576 case NS_FI: /* case 10 (fconsts). */
19577 ldconst = "fconsts";
4ef4710f 19578 encode_fconstd:
58ed5c38
TC
19579 if (!inst.operands[1].immisfloat)
19580 {
4ef4710f 19581 unsigned new_imm;
58ed5c38 19582 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19583 float imm = (float) inst.operands[1].imm;
19584 memcpy (&new_imm, &imm, sizeof (float));
19585 /* But the assembly may have been written to provide an integer
19586 bit pattern that equates to a float, so check that the
19587 conversion has worked. */
19588 if (is_quarter_float (new_imm))
19589 {
19590 if (is_quarter_float (inst.operands[1].imm))
19591 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19592
19593 inst.operands[1].imm = new_imm;
19594 inst.operands[1].immisfloat = 1;
19595 }
58ed5c38
TC
19596 }
19597
037e8744 19598 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19599 {
19600 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19601 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19602
19603 /* ARMv8.2 fp16 vmov.f16 instruction. */
19604 if (rs == NS_HI)
19605 do_scalar_fp16_v82_encode ();
477330fc 19606 }
5287ad62 19607 else
477330fc 19608 first_error (_("immediate out of range"));
037e8744 19609 break;
5f4273c7 19610
9db2f6b4 19611 case NS_RH:
037e8744
JB
19612 case NS_RF: /* case 12 (fmrs). */
19613 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19614 /* ARMv8.2 fp16 vmov.f16 instruction. */
19615 if (rs == NS_RH)
19616 do_scalar_fp16_v82_encode ();
037e8744 19617 break;
5f4273c7 19618
9db2f6b4 19619 case NS_HR:
037e8744
JB
19620 case NS_FR: /* case 13 (fmsr). */
19621 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19622 /* ARMv8.2 fp16 vmov.f16 instruction. */
19623 if (rs == NS_HR)
19624 do_scalar_fp16_v82_encode ();
037e8744 19625 break;
5f4273c7 19626
57785aa2
AV
19627 case NS_RRSS:
19628 do_mve_mov (0);
19629 break;
19630 case NS_SSRR:
19631 do_mve_mov (1);
19632 break;
19633
037e8744
JB
19634 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19635 (one of which is a list), but we have parsed four. Do some fiddling to
19636 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19637 expect. */
19638 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19639 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19640 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19641 _(BAD_FPU));
037e8744 19642 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19643 _("VFP registers must be adjacent"));
037e8744
JB
19644 inst.operands[2].imm = 2;
19645 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19646 do_vfp_nsyn_opcode ("fmrrs");
19647 break;
5f4273c7 19648
037e8744 19649 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19650 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19651 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19652 _(BAD_FPU));
037e8744 19653 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19654 _("VFP registers must be adjacent"));
037e8744
JB
19655 inst.operands[1] = inst.operands[2];
19656 inst.operands[2] = inst.operands[3];
19657 inst.operands[0].imm = 2;
19658 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19659 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19660 break;
5f4273c7 19661
4c261dff
NC
19662 case NS_NULL:
19663 /* neon_select_shape has determined that the instruction
19664 shape is wrong and has already set the error message. */
19665 break;
19666
5287ad62
JB
19667 default:
19668 abort ();
19669 }
19670}
19671
57785aa2
AV
19672static void
19673do_mve_movl (void)
19674{
19675 if (!(inst.operands[0].present && inst.operands[0].isquad
19676 && inst.operands[1].present && inst.operands[1].isquad
19677 && !inst.operands[2].present))
19678 {
19679 inst.instruction = 0;
19680 inst.cond = 0xb;
19681 if (thumb_mode)
19682 set_pred_insn_type (INSIDE_IT_INSN);
19683 do_neon_mov ();
19684 return;
19685 }
19686
19687 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19688 return;
19689
19690 if (inst.cond != COND_ALWAYS)
19691 inst.pred_insn_type = INSIDE_VPT_INSN;
19692
19693 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19694 | N_S16 | N_U16 | N_KEY);
19695
19696 inst.instruction |= (et.type == NT_unsigned) << 28;
19697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19698 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19699 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19700 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19701 inst.instruction |= LOW4 (inst.operands[1].reg);
19702 inst.is_neon = 1;
19703}
19704
5287ad62
JB
19705static void
19706do_neon_rshift_round_imm (void)
19707{
4401c241
AV
19708 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19709 return;
19710
19711 enum neon_shape rs;
19712 struct neon_type_el et;
19713
19714 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19715 {
19716 rs = neon_select_shape (NS_QQI, NS_NULL);
19717 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
19718 }
19719 else
19720 {
19721 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19722 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19723 }
5287ad62
JB
19724 int imm = inst.operands[2].imm;
19725
19726 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19727 if (imm == 0)
19728 {
19729 inst.operands[2].present = 0;
19730 do_neon_mov ();
19731 return;
19732 }
19733
19734 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19735 _("immediate out of range for shift"));
037e8744 19736 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19737 et.size - imm);
5287ad62
JB
19738}
19739
9db2f6b4
RL
19740static void
19741do_neon_movhf (void)
19742{
19743 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19744 constraint (rs != NS_HH, _("invalid suffix"));
19745
7bdf778b
ASDV
19746 if (inst.cond != COND_ALWAYS)
19747 {
19748 if (thumb_mode)
19749 {
19750 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19751 " the behaviour is UNPREDICTABLE"));
19752 }
19753 else
19754 {
19755 inst.error = BAD_COND;
19756 return;
19757 }
19758 }
19759
9db2f6b4
RL
19760 do_vfp_sp_monadic ();
19761
19762 inst.is_neon = 1;
19763 inst.instruction |= 0xf0000000;
19764}
19765
5287ad62
JB
19766static void
19767do_neon_movl (void)
19768{
19769 struct neon_type_el et = neon_check_type (2, NS_QD,
19770 N_EQK | N_DBL, N_SU_32 | N_KEY);
19771 unsigned sizebits = et.size >> 3;
19772 inst.instruction |= sizebits << 19;
19773 neon_two_same (0, et.type == NT_unsigned, -1);
19774}
19775
19776static void
19777do_neon_trn (void)
19778{
037e8744 19779 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19780 struct neon_type_el et = neon_check_type (2, rs,
19781 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19782 NEON_ENCODE (INTEGER, inst);
037e8744 19783 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19784}
19785
19786static void
19787do_neon_zip_uzp (void)
19788{
037e8744 19789 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19790 struct neon_type_el et = neon_check_type (2, rs,
19791 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19792 if (rs == NS_DD && et.size == 32)
19793 {
19794 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19795 inst.instruction = N_MNEM_vtrn;
19796 do_neon_trn ();
19797 return;
19798 }
037e8744 19799 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19800}
19801
19802static void
19803do_neon_sat_abs_neg (void)
19804{
1a186d29
AV
19805 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19806 return;
19807
19808 enum neon_shape rs;
19809 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19810 rs = neon_select_shape (NS_QQ, NS_NULL);
19811 else
19812 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19813 struct neon_type_el et = neon_check_type (2, rs,
19814 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19815 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19816}
19817
19818static void
19819do_neon_pair_long (void)
19820{
037e8744 19821 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19822 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19823 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19824 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19825 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19826}
19827
19828static void
19829do_neon_recip_est (void)
19830{
037e8744 19831 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19832 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19833 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19834 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19835 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19836}
19837
19838static void
19839do_neon_cls (void)
19840{
f30ee27c
AV
19841 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19842 return;
19843
19844 enum neon_shape rs;
19845 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19846 rs = neon_select_shape (NS_QQ, NS_NULL);
19847 else
19848 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19849
5287ad62
JB
19850 struct neon_type_el et = neon_check_type (2, rs,
19851 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19852 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19853}
19854
19855static void
19856do_neon_clz (void)
19857{
f30ee27c
AV
19858 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19859 return;
19860
19861 enum neon_shape rs;
19862 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19863 rs = neon_select_shape (NS_QQ, NS_NULL);
19864 else
19865 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19866
5287ad62
JB
19867 struct neon_type_el et = neon_check_type (2, rs,
19868 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19869 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19870}
19871
19872static void
19873do_neon_cnt (void)
19874{
037e8744 19875 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19876 struct neon_type_el et = neon_check_type (2, rs,
19877 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19878 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19879}
19880
19881static void
19882do_neon_swp (void)
19883{
037e8744
JB
19884 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19885 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19886}
19887
19888static void
19889do_neon_tbl_tbx (void)
19890{
19891 unsigned listlenbits;
dcbf9037 19892 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19893
5287ad62
JB
19894 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19895 {
dcbf9037 19896 first_error (_("bad list length for table lookup"));
5287ad62
JB
19897 return;
19898 }
5f4273c7 19899
5287ad62
JB
19900 listlenbits = inst.operands[1].imm - 1;
19901 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19902 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19903 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19904 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19905 inst.instruction |= LOW4 (inst.operands[2].reg);
19906 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19907 inst.instruction |= listlenbits << 8;
5f4273c7 19908
88714cb8 19909 neon_dp_fixup (&inst);
5287ad62
JB
19910}
19911
19912static void
19913do_neon_ldm_stm (void)
19914{
19915 /* P, U and L bits are part of bitmask. */
19916 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19917 unsigned offsetbits = inst.operands[1].imm * 2;
19918
037e8744
JB
19919 if (inst.operands[1].issingle)
19920 {
19921 do_vfp_nsyn_ldm_stm (is_dbmode);
19922 return;
19923 }
19924
5287ad62 19925 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19926 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19927
19928 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19929 _("register list must contain at least 1 and at most 16 "
19930 "registers"));
5287ad62
JB
19931
19932 inst.instruction |= inst.operands[0].reg << 16;
19933 inst.instruction |= inst.operands[0].writeback << 21;
19934 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19935 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19936
19937 inst.instruction |= offsetbits;
5f4273c7 19938
037e8744 19939 do_vfp_cond_or_thumb ();
5287ad62
JB
19940}
19941
19942static void
19943do_neon_ldr_str (void)
19944{
5287ad62 19945 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19946
6844b2c2
MGD
19947 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19948 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19949 if (!is_ldr
6844b2c2 19950 && inst.operands[1].reg == REG_PC
ba86b375 19951 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19952 {
94dcf8bf 19953 if (thumb_mode)
6844b2c2 19954 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19955 else if (warn_on_deprecated)
5c3696f8 19956 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19957 }
19958
037e8744
JB
19959 if (inst.operands[0].issingle)
19960 {
cd2f129f 19961 if (is_ldr)
477330fc 19962 do_vfp_nsyn_opcode ("flds");
cd2f129f 19963 else
477330fc 19964 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19965
19966 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19967 if (inst.vectype.el[0].size == 16)
19968 do_scalar_fp16_v82_encode ();
5287ad62
JB
19969 }
19970 else
5287ad62 19971 {
cd2f129f 19972 if (is_ldr)
477330fc 19973 do_vfp_nsyn_opcode ("fldd");
5287ad62 19974 else
477330fc 19975 do_vfp_nsyn_opcode ("fstd");
5287ad62 19976 }
5287ad62
JB
19977}
19978
32c36c3c
AV
19979static void
19980do_t_vldr_vstr_sysreg (void)
19981{
19982 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19983 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19984
19985 /* Use of PC is UNPREDICTABLE. */
19986 if (inst.operands[1].reg == REG_PC)
19987 inst.error = _("Use of PC here is UNPREDICTABLE");
19988
19989 if (inst.operands[1].immisreg)
19990 inst.error = _("instruction does not accept register index");
19991
19992 if (!inst.operands[1].isreg)
19993 inst.error = _("instruction does not accept PC-relative addressing");
19994
19995 if (abs (inst.operands[1].imm) >= (1 << 7))
19996 inst.error = _("immediate value out of range");
19997
19998 inst.instruction = 0xec000f80;
19999 if (is_vldr)
20000 inst.instruction |= 1 << sysreg_vldr_bitno;
20001 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20002 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20003 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20004}
20005
20006static void
20007do_vldr_vstr (void)
20008{
20009 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20010
20011 /* VLDR/VSTR (System Register). */
20012 if (sysreg_op)
20013 {
20014 if (!mark_feature_used (&arm_ext_v8_1m_main))
20015 as_bad (_("Instruction not permitted on this architecture"));
20016
20017 do_t_vldr_vstr_sysreg ();
20018 }
20019 /* VLDR/VSTR. */
20020 else
20021 {
20022 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20023 as_bad (_("Instruction not permitted on this architecture"));
20024 do_neon_ldr_str ();
20025 }
20026}
20027
5287ad62
JB
20028/* "interleave" version also handles non-interleaving register VLD1/VST1
20029 instructions. */
20030
20031static void
20032do_neon_ld_st_interleave (void)
20033{
037e8744 20034 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 20035 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
20036 unsigned alignbits = 0;
20037 unsigned idx;
20038 /* The bits in this table go:
20039 0: register stride of one (0) or two (1)
20040 1,2: register list length, minus one (1, 2, 3, 4).
20041 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20042 We use -1 for invalid entries. */
20043 const int typetable[] =
20044 {
20045 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20046 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20047 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20048 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20049 };
20050 int typebits;
20051
dcbf9037
JB
20052 if (et.type == NT_invtype)
20053 return;
20054
5287ad62
JB
20055 if (inst.operands[1].immisalign)
20056 switch (inst.operands[1].imm >> 8)
20057 {
20058 case 64: alignbits = 1; break;
20059 case 128:
477330fc 20060 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 20061 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
20062 goto bad_alignment;
20063 alignbits = 2;
20064 break;
5287ad62 20065 case 256:
477330fc
RM
20066 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20067 goto bad_alignment;
20068 alignbits = 3;
20069 break;
5287ad62
JB
20070 default:
20071 bad_alignment:
477330fc
RM
20072 first_error (_("bad alignment"));
20073 return;
5287ad62
JB
20074 }
20075
20076 inst.instruction |= alignbits << 4;
20077 inst.instruction |= neon_logbits (et.size) << 6;
20078
20079 /* Bits [4:6] of the immediate in a list specifier encode register stride
20080 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20081 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20082 up the right value for "type" in a table based on this value and the given
20083 list style, then stick it back. */
20084 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 20085 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
20086
20087 typebits = typetable[idx];
5f4273c7 20088
5287ad62 20089 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 20090 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 20091 BAD_EL_TYPE);
5287ad62
JB
20092
20093 inst.instruction &= ~0xf00;
20094 inst.instruction |= typebits << 8;
20095}
20096
20097/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20098 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20099 otherwise. The variable arguments are a list of pairs of legal (size, align)
20100 values, terminated with -1. */
20101
20102static int
aa8a0863 20103neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
20104{
20105 va_list ap;
20106 int result = FAIL, thissize, thisalign;
5f4273c7 20107
5287ad62
JB
20108 if (!inst.operands[1].immisalign)
20109 {
aa8a0863 20110 *do_alignment = 0;
5287ad62
JB
20111 return SUCCESS;
20112 }
5f4273c7 20113
aa8a0863 20114 va_start (ap, do_alignment);
5287ad62
JB
20115
20116 do
20117 {
20118 thissize = va_arg (ap, int);
20119 if (thissize == -1)
477330fc 20120 break;
5287ad62
JB
20121 thisalign = va_arg (ap, int);
20122
20123 if (size == thissize && align == thisalign)
477330fc 20124 result = SUCCESS;
5287ad62
JB
20125 }
20126 while (result != SUCCESS);
20127
20128 va_end (ap);
20129
20130 if (result == SUCCESS)
aa8a0863 20131 *do_alignment = 1;
5287ad62 20132 else
dcbf9037 20133 first_error (_("unsupported alignment for instruction"));
5f4273c7 20134
5287ad62
JB
20135 return result;
20136}
20137
20138static void
20139do_neon_ld_st_lane (void)
20140{
037e8744 20141 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20142 int align_good, do_alignment = 0;
5287ad62
JB
20143 int logsize = neon_logbits (et.size);
20144 int align = inst.operands[1].imm >> 8;
20145 int n = (inst.instruction >> 8) & 3;
20146 int max_el = 64 / et.size;
5f4273c7 20147
dcbf9037
JB
20148 if (et.type == NT_invtype)
20149 return;
5f4273c7 20150
5287ad62 20151 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 20152 _("bad list length"));
5287ad62 20153 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 20154 _("scalar index out of range"));
5287ad62 20155 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
20156 && et.size == 8,
20157 _("stride of 2 unavailable when element size is 8"));
5f4273c7 20158
5287ad62
JB
20159 switch (n)
20160 {
20161 case 0: /* VLD1 / VST1. */
aa8a0863 20162 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 20163 32, 32, -1);
5287ad62 20164 if (align_good == FAIL)
477330fc 20165 return;
aa8a0863 20166 if (do_alignment)
477330fc
RM
20167 {
20168 unsigned alignbits = 0;
20169 switch (et.size)
20170 {
20171 case 16: alignbits = 0x1; break;
20172 case 32: alignbits = 0x3; break;
20173 default: ;
20174 }
20175 inst.instruction |= alignbits << 4;
20176 }
5287ad62
JB
20177 break;
20178
20179 case 1: /* VLD2 / VST2. */
aa8a0863
TS
20180 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20181 16, 32, 32, 64, -1);
5287ad62 20182 if (align_good == FAIL)
477330fc 20183 return;
aa8a0863 20184 if (do_alignment)
477330fc 20185 inst.instruction |= 1 << 4;
5287ad62
JB
20186 break;
20187
20188 case 2: /* VLD3 / VST3. */
20189 constraint (inst.operands[1].immisalign,
477330fc 20190 _("can't use alignment with this instruction"));
5287ad62
JB
20191 break;
20192
20193 case 3: /* VLD4 / VST4. */
aa8a0863 20194 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 20195 16, 64, 32, 64, 32, 128, -1);
5287ad62 20196 if (align_good == FAIL)
477330fc 20197 return;
aa8a0863 20198 if (do_alignment)
477330fc
RM
20199 {
20200 unsigned alignbits = 0;
20201 switch (et.size)
20202 {
20203 case 8: alignbits = 0x1; break;
20204 case 16: alignbits = 0x1; break;
20205 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20206 default: ;
20207 }
20208 inst.instruction |= alignbits << 4;
20209 }
5287ad62
JB
20210 break;
20211
20212 default: ;
20213 }
20214
20215 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20216 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20217 inst.instruction |= 1 << (4 + logsize);
5f4273c7 20218
5287ad62
JB
20219 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20220 inst.instruction |= logsize << 10;
20221}
20222
20223/* Encode single n-element structure to all lanes VLD<n> instructions. */
20224
20225static void
20226do_neon_ld_dup (void)
20227{
037e8744 20228 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20229 int align_good, do_alignment = 0;
5287ad62 20230
dcbf9037
JB
20231 if (et.type == NT_invtype)
20232 return;
20233
5287ad62
JB
20234 switch ((inst.instruction >> 8) & 3)
20235 {
20236 case 0: /* VLD1. */
9c2799c2 20237 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 20238 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 20239 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 20240 if (align_good == FAIL)
477330fc 20241 return;
5287ad62 20242 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
20243 {
20244 case 1: break;
20245 case 2: inst.instruction |= 1 << 5; break;
20246 default: first_error (_("bad list length")); return;
20247 }
5287ad62
JB
20248 inst.instruction |= neon_logbits (et.size) << 6;
20249 break;
20250
20251 case 1: /* VLD2. */
20252 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
20253 &do_alignment, 8, 16, 16, 32, 32, 64,
20254 -1);
5287ad62 20255 if (align_good == FAIL)
477330fc 20256 return;
5287ad62 20257 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 20258 _("bad list length"));
5287ad62 20259 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20260 inst.instruction |= 1 << 5;
5287ad62
JB
20261 inst.instruction |= neon_logbits (et.size) << 6;
20262 break;
20263
20264 case 2: /* VLD3. */
20265 constraint (inst.operands[1].immisalign,
477330fc 20266 _("can't use alignment with this instruction"));
5287ad62 20267 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 20268 _("bad list length"));
5287ad62 20269 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20270 inst.instruction |= 1 << 5;
5287ad62
JB
20271 inst.instruction |= neon_logbits (et.size) << 6;
20272 break;
20273
20274 case 3: /* VLD4. */
20275 {
477330fc 20276 int align = inst.operands[1].imm >> 8;
aa8a0863 20277 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
20278 16, 64, 32, 64, 32, 128, -1);
20279 if (align_good == FAIL)
20280 return;
20281 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20282 _("bad list length"));
20283 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20284 inst.instruction |= 1 << 5;
20285 if (et.size == 32 && align == 128)
20286 inst.instruction |= 0x3 << 6;
20287 else
20288 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
20289 }
20290 break;
20291
20292 default: ;
20293 }
20294
aa8a0863 20295 inst.instruction |= do_alignment << 4;
5287ad62
JB
20296}
20297
20298/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20299 apart from bits [11:4]. */
20300
20301static void
20302do_neon_ldx_stx (void)
20303{
b1a769ed
DG
20304 if (inst.operands[1].isreg)
20305 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20306
5287ad62
JB
20307 switch (NEON_LANE (inst.operands[0].imm))
20308 {
20309 case NEON_INTERLEAVE_LANES:
88714cb8 20310 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
20311 do_neon_ld_st_interleave ();
20312 break;
5f4273c7 20313
5287ad62 20314 case NEON_ALL_LANES:
88714cb8 20315 NEON_ENCODE (DUP, inst);
2d51fb74
JB
20316 if (inst.instruction == N_INV)
20317 {
20318 first_error ("only loads support such operands");
20319 break;
20320 }
5287ad62
JB
20321 do_neon_ld_dup ();
20322 break;
5f4273c7 20323
5287ad62 20324 default:
88714cb8 20325 NEON_ENCODE (LANE, inst);
5287ad62
JB
20326 do_neon_ld_st_lane ();
20327 }
20328
20329 /* L bit comes from bit mask. */
20330 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20331 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20332 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 20333
5287ad62
JB
20334 if (inst.operands[1].postind)
20335 {
20336 int postreg = inst.operands[1].imm & 0xf;
20337 constraint (!inst.operands[1].immisreg,
477330fc 20338 _("post-index must be a register"));
5287ad62 20339 constraint (postreg == 0xd || postreg == 0xf,
477330fc 20340 _("bad register for post-index"));
5287ad62
JB
20341 inst.instruction |= postreg;
20342 }
4f2374c7 20343 else
5287ad62 20344 {
4f2374c7 20345 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
20346 constraint (inst.relocs[0].exp.X_op != O_constant
20347 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
20348 BAD_ADDR_MODE);
20349
20350 if (inst.operands[1].writeback)
20351 {
20352 inst.instruction |= 0xd;
20353 }
20354 else
20355 inst.instruction |= 0xf;
5287ad62 20356 }
5f4273c7 20357
5287ad62
JB
20358 if (thumb_mode)
20359 inst.instruction |= 0xf9000000;
20360 else
20361 inst.instruction |= 0xf4000000;
20362}
33399f07
MGD
20363
20364/* FP v8. */
20365static void
20366do_vfp_nsyn_fpv8 (enum neon_shape rs)
20367{
a715796b
TG
20368 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20369 D register operands. */
20370 if (neon_shape_class[rs] == SC_DOUBLE)
20371 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20372 _(BAD_FPU));
20373
33399f07
MGD
20374 NEON_ENCODE (FPV8, inst);
20375
9db2f6b4
RL
20376 if (rs == NS_FFF || rs == NS_HHH)
20377 {
20378 do_vfp_sp_dyadic ();
20379
20380 /* ARMv8.2 fp16 instruction. */
20381 if (rs == NS_HHH)
20382 do_scalar_fp16_v82_encode ();
20383 }
33399f07
MGD
20384 else
20385 do_vfp_dp_rd_rn_rm ();
20386
20387 if (rs == NS_DDD)
20388 inst.instruction |= 0x100;
20389
20390 inst.instruction |= 0xf0000000;
20391}
20392
20393static void
20394do_vsel (void)
20395{
5ee91343 20396 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
20397
20398 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20399 first_error (_("invalid instruction shape"));
20400}
20401
73924fbc
MGD
20402static void
20403do_vmaxnm (void)
20404{
935295b5
AV
20405 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20406 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20407
20408 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20409 return;
20410
935295b5 20411 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20412 return;
20413
cc933301 20414 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20415}
20416
30bdf752
MGD
20417static void
20418do_vrint_1 (enum neon_cvt_mode mode)
20419{
9db2f6b4 20420 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20421 struct neon_type_el et;
20422
20423 if (rs == NS_NULL)
20424 return;
20425
a715796b
TG
20426 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20427 D register operands. */
20428 if (neon_shape_class[rs] == SC_DOUBLE)
20429 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20430 _(BAD_FPU));
20431
9db2f6b4
RL
20432 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20433 | N_VFP);
30bdf752
MGD
20434 if (et.type != NT_invtype)
20435 {
20436 /* VFP encodings. */
20437 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20438 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20439 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20440
20441 NEON_ENCODE (FPV8, inst);
9db2f6b4 20442 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20443 do_vfp_sp_monadic ();
20444 else
20445 do_vfp_dp_rd_rm ();
20446
20447 switch (mode)
20448 {
20449 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20450 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20451 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20452 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20453 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20454 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20455 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20456 default: abort ();
20457 }
20458
20459 inst.instruction |= (rs == NS_DD) << 8;
20460 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20461
20462 /* ARMv8.2 fp16 vrint instruction. */
20463 if (rs == NS_HH)
20464 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20465 }
20466 else
20467 {
20468 /* Neon encodings (or something broken...). */
20469 inst.error = NULL;
cc933301 20470 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20471
20472 if (et.type == NT_invtype)
20473 return;
20474
a710b305 20475 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
30bdf752
MGD
20476 return;
20477
a710b305
AV
20478 NEON_ENCODE (FLOAT, inst);
20479
30bdf752
MGD
20480 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20481 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20482 inst.instruction |= LOW4 (inst.operands[1].reg);
20483 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20484 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20485 /* Mask off the original size bits and reencode them. */
20486 inst.instruction = ((inst.instruction & 0xfff3ffff)
20487 | neon_logbits (et.size) << 18);
20488
30bdf752
MGD
20489 switch (mode)
20490 {
20491 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20492 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20493 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20494 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20495 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20496 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20497 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20498 default: abort ();
20499 }
20500
20501 if (thumb_mode)
20502 inst.instruction |= 0xfc000000;
20503 else
20504 inst.instruction |= 0xf0000000;
20505 }
20506}
20507
20508static void
20509do_vrintx (void)
20510{
20511 do_vrint_1 (neon_cvt_mode_x);
20512}
20513
20514static void
20515do_vrintz (void)
20516{
20517 do_vrint_1 (neon_cvt_mode_z);
20518}
20519
20520static void
20521do_vrintr (void)
20522{
20523 do_vrint_1 (neon_cvt_mode_r);
20524}
20525
20526static void
20527do_vrinta (void)
20528{
20529 do_vrint_1 (neon_cvt_mode_a);
20530}
20531
20532static void
20533do_vrintn (void)
20534{
20535 do_vrint_1 (neon_cvt_mode_n);
20536}
20537
20538static void
20539do_vrintp (void)
20540{
20541 do_vrint_1 (neon_cvt_mode_p);
20542}
20543
20544static void
20545do_vrintm (void)
20546{
20547 do_vrint_1 (neon_cvt_mode_m);
20548}
20549
c28eeff2
SN
20550static unsigned
20551neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20552{
20553 unsigned regno = NEON_SCALAR_REG (opnd);
20554 unsigned elno = NEON_SCALAR_INDEX (opnd);
20555
20556 if (elsize == 16 && elno < 2 && regno < 16)
20557 return regno | (elno << 4);
20558 else if (elsize == 32 && elno == 0)
20559 return regno;
20560
20561 first_error (_("scalar out of range"));
20562 return 0;
20563}
20564
20565static void
20566do_vcmla (void)
20567{
5d281bf0
AV
20568 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20569 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20570 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20571 constraint (inst.relocs[0].exp.X_op != O_constant,
20572 _("expression too complex"));
20573 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20574 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20575 _("immediate out of range"));
20576 rot /= 90;
5d281bf0
AV
20577
20578 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20579 return;
20580
c28eeff2
SN
20581 if (inst.operands[2].isscalar)
20582 {
5d281bf0
AV
20583 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20584 first_error (_("invalid instruction shape"));
c28eeff2
SN
20585 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20586 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20587 N_KEY | N_F16 | N_F32).size;
20588 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20589 inst.is_neon = 1;
20590 inst.instruction = 0xfe000800;
20591 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20592 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20593 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20594 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20595 inst.instruction |= LOW4 (m);
20596 inst.instruction |= HI1 (m) << 5;
20597 inst.instruction |= neon_quad (rs) << 6;
20598 inst.instruction |= rot << 20;
20599 inst.instruction |= (size == 32) << 23;
20600 }
20601 else
20602 {
5d281bf0
AV
20603 enum neon_shape rs;
20604 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20605 rs = neon_select_shape (NS_QQQI, NS_NULL);
20606 else
20607 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20608
c28eeff2
SN
20609 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20610 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20611 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20612 && (inst.operands[0].reg == inst.operands[1].reg
20613 || inst.operands[0].reg == inst.operands[2].reg))
20614 as_tsktsk (BAD_MVE_SRCDEST);
20615
c28eeff2
SN
20616 neon_three_same (neon_quad (rs), 0, -1);
20617 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20618 inst.instruction |= 0xfc200800;
20619 inst.instruction |= rot << 23;
20620 inst.instruction |= (size == 32) << 20;
20621 }
20622}
20623
20624static void
20625do_vcadd (void)
20626{
5d281bf0
AV
20627 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20628 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20629 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20630 constraint (inst.relocs[0].exp.X_op != O_constant,
20631 _("expression too complex"));
5d281bf0 20632
e2b0ab59 20633 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20634 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20635 enum neon_shape rs;
20636 struct neon_type_el et;
20637 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20638 {
20639 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20640 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20641 }
20642 else
20643 {
20644 rs = neon_select_shape (NS_QQQI, NS_NULL);
20645 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20646 | N_I16 | N_I32);
20647 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20648 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20649 "operand makes instruction UNPREDICTABLE"));
20650 }
20651
20652 if (et.type == NT_invtype)
20653 return;
20654
20655 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20656 | NEON_CHECK_CC))
20657 return;
20658
20659 if (et.type == NT_float)
20660 {
20661 neon_three_same (neon_quad (rs), 0, -1);
20662 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20663 inst.instruction |= 0xfc800800;
20664 inst.instruction |= (rot == 270) << 24;
20665 inst.instruction |= (et.size == 32) << 20;
20666 }
20667 else
20668 {
20669 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20670 inst.instruction = 0xfe000f00;
20671 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20672 inst.instruction |= neon_logbits (et.size) << 20;
20673 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20674 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20675 inst.instruction |= (rot == 270) << 12;
20676 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20677 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20678 inst.instruction |= LOW4 (inst.operands[2].reg);
20679 inst.is_neon = 1;
20680 }
c28eeff2
SN
20681}
20682
c604a79a
JW
20683/* Dot Product instructions encoding support. */
20684
20685static void
20686do_neon_dotproduct (int unsigned_p)
20687{
20688 enum neon_shape rs;
20689 unsigned scalar_oprd2 = 0;
20690 int high8;
20691
20692 if (inst.cond != COND_ALWAYS)
20693 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20694 "is UNPREDICTABLE"));
20695
20696 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20697 _(BAD_FPU));
20698
20699 /* Dot Product instructions are in three-same D/Q register format or the third
20700 operand can be a scalar index register. */
20701 if (inst.operands[2].isscalar)
20702 {
20703 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20704 high8 = 0xfe000000;
20705 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20706 }
20707 else
20708 {
20709 high8 = 0xfc000000;
20710 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20711 }
20712
20713 if (unsigned_p)
20714 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20715 else
20716 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20717
20718 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20719 Product instruction, so we pass 0 as the "ubit" parameter. And the
20720 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20721 neon_three_same (neon_quad (rs), 0, 32);
20722
20723 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20724 different NEON three-same encoding. */
20725 inst.instruction &= 0x00ffffff;
20726 inst.instruction |= high8;
20727 /* Encode 'U' bit which indicates signedness. */
20728 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20729 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20730 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20731 the instruction encoding. */
20732 if (inst.operands[2].isscalar)
20733 {
20734 inst.instruction &= 0xffffffd0;
20735 inst.instruction |= LOW4 (scalar_oprd2);
20736 inst.instruction |= HI1 (scalar_oprd2) << 5;
20737 }
20738}
20739
20740/* Dot Product instructions for signed integer. */
20741
20742static void
20743do_neon_dotproduct_s (void)
20744{
20745 return do_neon_dotproduct (0);
20746}
20747
20748/* Dot Product instructions for unsigned integer. */
20749
20750static void
20751do_neon_dotproduct_u (void)
20752{
20753 return do_neon_dotproduct (1);
20754}
20755
91ff7894
MGD
20756/* Crypto v1 instructions. */
20757static void
20758do_crypto_2op_1 (unsigned elttype, int op)
20759{
5ee91343 20760 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20761
20762 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20763 == NT_invtype)
20764 return;
20765
20766 inst.error = NULL;
20767
20768 NEON_ENCODE (INTEGER, inst);
20769 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20771 inst.instruction |= LOW4 (inst.operands[1].reg);
20772 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20773 if (op != -1)
20774 inst.instruction |= op << 6;
20775
20776 if (thumb_mode)
20777 inst.instruction |= 0xfc000000;
20778 else
20779 inst.instruction |= 0xf0000000;
20780}
20781
48adcd8e
MGD
20782static void
20783do_crypto_3op_1 (int u, int op)
20784{
5ee91343 20785 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20786
20787 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20788 N_32 | N_UNT | N_KEY).type == NT_invtype)
20789 return;
20790
20791 inst.error = NULL;
20792
20793 NEON_ENCODE (INTEGER, inst);
20794 neon_three_same (1, u, 8 << op);
20795}
20796
91ff7894
MGD
20797static void
20798do_aese (void)
20799{
20800 do_crypto_2op_1 (N_8, 0);
20801}
20802
20803static void
20804do_aesd (void)
20805{
20806 do_crypto_2op_1 (N_8, 1);
20807}
20808
20809static void
20810do_aesmc (void)
20811{
20812 do_crypto_2op_1 (N_8, 2);
20813}
20814
20815static void
20816do_aesimc (void)
20817{
20818 do_crypto_2op_1 (N_8, 3);
20819}
20820
48adcd8e
MGD
20821static void
20822do_sha1c (void)
20823{
20824 do_crypto_3op_1 (0, 0);
20825}
20826
20827static void
20828do_sha1p (void)
20829{
20830 do_crypto_3op_1 (0, 1);
20831}
20832
20833static void
20834do_sha1m (void)
20835{
20836 do_crypto_3op_1 (0, 2);
20837}
20838
20839static void
20840do_sha1su0 (void)
20841{
20842 do_crypto_3op_1 (0, 3);
20843}
91ff7894 20844
48adcd8e
MGD
20845static void
20846do_sha256h (void)
20847{
20848 do_crypto_3op_1 (1, 0);
20849}
20850
20851static void
20852do_sha256h2 (void)
20853{
20854 do_crypto_3op_1 (1, 1);
20855}
20856
20857static void
20858do_sha256su1 (void)
20859{
20860 do_crypto_3op_1 (1, 2);
20861}
3c9017d2
MGD
20862
20863static void
20864do_sha1h (void)
20865{
20866 do_crypto_2op_1 (N_32, -1);
20867}
20868
20869static void
20870do_sha1su1 (void)
20871{
20872 do_crypto_2op_1 (N_32, 0);
20873}
20874
20875static void
20876do_sha256su0 (void)
20877{
20878 do_crypto_2op_1 (N_32, 1);
20879}
dd5181d5
KT
20880
20881static void
20882do_crc32_1 (unsigned int poly, unsigned int sz)
20883{
20884 unsigned int Rd = inst.operands[0].reg;
20885 unsigned int Rn = inst.operands[1].reg;
20886 unsigned int Rm = inst.operands[2].reg;
20887
5ee91343 20888 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20889 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20890 inst.instruction |= LOW4 (Rn) << 16;
20891 inst.instruction |= LOW4 (Rm);
20892 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20893 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20894
20895 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20896 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20897}
20898
20899static void
20900do_crc32b (void)
20901{
20902 do_crc32_1 (0, 0);
20903}
20904
20905static void
20906do_crc32h (void)
20907{
20908 do_crc32_1 (0, 1);
20909}
20910
20911static void
20912do_crc32w (void)
20913{
20914 do_crc32_1 (0, 2);
20915}
20916
20917static void
20918do_crc32cb (void)
20919{
20920 do_crc32_1 (1, 0);
20921}
20922
20923static void
20924do_crc32ch (void)
20925{
20926 do_crc32_1 (1, 1);
20927}
20928
20929static void
20930do_crc32cw (void)
20931{
20932 do_crc32_1 (1, 2);
20933}
20934
49e8a725
SN
20935static void
20936do_vjcvt (void)
20937{
20938 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20939 _(BAD_FPU));
20940 neon_check_type (2, NS_FD, N_S32, N_F64);
20941 do_vfp_sp_dp_cvt ();
20942 do_vfp_cond_or_thumb ();
20943}
20944
5287ad62
JB
20945\f
20946/* Overall per-instruction processing. */
20947
20948/* We need to be able to fix up arbitrary expressions in some statements.
20949 This is so that we can handle symbols that are an arbitrary distance from
20950 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20951 which returns part of an address in a form which will be valid for
20952 a data instruction. We do this by pushing the expression into a symbol
20953 in the expr_section, and creating a fix for that. */
20954
20955static void
20956fix_new_arm (fragS * frag,
20957 int where,
20958 short int size,
20959 expressionS * exp,
20960 int pc_rel,
20961 int reloc)
20962{
20963 fixS * new_fix;
20964
20965 switch (exp->X_op)
20966 {
20967 case O_constant:
6e7ce2cd
PB
20968 if (pc_rel)
20969 {
20970 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20971 refer to in the object file. Unfortunately for us, gas's
20972 generic expression parsing will already have folded out
20973 any use of .set foo/.type foo %function that may have
20974 been used to set type information of the target location,
20975 that's being specified symbolically. We have to presume
20976 the user knows what they are doing. */
6e7ce2cd
PB
20977 char name[16 + 8];
20978 symbolS *symbol;
20979
20980 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20981
20982 symbol = symbol_find_or_make (name);
20983 S_SET_SEGMENT (symbol, absolute_section);
20984 symbol_set_frag (symbol, &zero_address_frag);
20985 S_SET_VALUE (symbol, exp->X_add_number);
20986 exp->X_op = O_symbol;
20987 exp->X_add_symbol = symbol;
20988 exp->X_add_number = 0;
20989 }
20990 /* FALLTHROUGH */
5287ad62
JB
20991 case O_symbol:
20992 case O_add:
20993 case O_subtract:
21d799b5 20994 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20995 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20996 break;
20997
20998 default:
21d799b5 20999 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 21000 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21001 break;
21002 }
21003
21004 /* Mark whether the fix is to a THUMB instruction, or an ARM
21005 instruction. */
21006 new_fix->tc_fix_data = thumb_mode;
21007}
21008
21009/* Create a frg for an instruction requiring relaxation. */
21010static void
21011output_relax_insn (void)
21012{
21013 char * to;
21014 symbolS *sym;
0110f2b8
PB
21015 int offset;
21016
6e1cb1a6
PB
21017 /* The size of the instruction is unknown, so tie the debug info to the
21018 start of the instruction. */
21019 dwarf2_emit_insn (0);
6e1cb1a6 21020
e2b0ab59 21021 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
21022 {
21023 case O_symbol:
e2b0ab59
AV
21024 sym = inst.relocs[0].exp.X_add_symbol;
21025 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21026 break;
21027 case O_constant:
21028 sym = NULL;
e2b0ab59 21029 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21030 break;
21031 default:
e2b0ab59 21032 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
21033 offset = 0;
21034 break;
21035 }
21036 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21037 inst.relax, sym, offset, NULL/*offset, opcode*/);
21038 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
21039}
21040
21041/* Write a 32-bit thumb instruction to buf. */
21042static void
21043put_thumb32_insn (char * buf, unsigned long insn)
21044{
21045 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21046 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21047}
21048
b99bd4ef 21049static void
c19d1205 21050output_inst (const char * str)
b99bd4ef 21051{
c19d1205 21052 char * to = NULL;
b99bd4ef 21053
c19d1205 21054 if (inst.error)
b99bd4ef 21055 {
c19d1205 21056 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
21057 return;
21058 }
5f4273c7
NC
21059 if (inst.relax)
21060 {
21061 output_relax_insn ();
0110f2b8 21062 return;
5f4273c7 21063 }
c19d1205
ZW
21064 if (inst.size == 0)
21065 return;
b99bd4ef 21066
c19d1205 21067 to = frag_more (inst.size);
8dc2430f
NC
21068 /* PR 9814: Record the thumb mode into the current frag so that we know
21069 what type of NOP padding to use, if necessary. We override any previous
21070 setting so that if the mode has changed then the NOPS that we use will
21071 match the encoding of the last instruction in the frag. */
cd000bff 21072 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
21073
21074 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 21075 {
9c2799c2 21076 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 21077 put_thumb32_insn (to, inst.instruction);
b99bd4ef 21078 }
c19d1205 21079 else if (inst.size > INSN_SIZE)
b99bd4ef 21080 {
9c2799c2 21081 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
21082 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21083 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 21084 }
c19d1205
ZW
21085 else
21086 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 21087
e2b0ab59
AV
21088 int r;
21089 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21090 {
21091 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21092 fix_new_arm (frag_now, to - frag_now->fr_literal,
21093 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21094 inst.relocs[r].type);
21095 }
b99bd4ef 21096
c19d1205 21097 dwarf2_emit_insn (inst.size);
c19d1205 21098}
b99bd4ef 21099
e07e6e58
NC
21100static char *
21101output_it_inst (int cond, int mask, char * to)
21102{
21103 unsigned long instruction = 0xbf00;
21104
21105 mask &= 0xf;
21106 instruction |= mask;
21107 instruction |= cond << 4;
21108
21109 if (to == NULL)
21110 {
21111 to = frag_more (2);
21112#ifdef OBJ_ELF
21113 dwarf2_emit_insn (2);
21114#endif
21115 }
21116
21117 md_number_to_chars (to, instruction, 2);
21118
21119 return to;
21120}
21121
c19d1205
ZW
21122/* Tag values used in struct asm_opcode's tag field. */
21123enum opcode_tag
21124{
21125 OT_unconditional, /* Instruction cannot be conditionalized.
21126 The ARM condition field is still 0xE. */
21127 OT_unconditionalF, /* Instruction cannot be conditionalized
21128 and carries 0xF in its ARM condition field. */
21129 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
21130 OT_csuffixF, /* Some forms of the instruction take a scalar
21131 conditional suffix, others place 0xF where the
21132 condition field would be, others take a vector
21133 conditional suffix. */
c19d1205
ZW
21134 OT_cinfix3, /* Instruction takes a conditional infix,
21135 beginning at character index 3. (In
21136 unified mode, it becomes a suffix.) */
088fa78e
KH
21137 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21138 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
21139 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21140 character index 3, even in unified mode. Used for
21141 legacy instructions where suffix and infix forms
21142 may be ambiguous. */
c19d1205 21143 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 21144 suffix or an infix at character index 3. */
c19d1205
ZW
21145 OT_odd_infix_unc, /* This is the unconditional variant of an
21146 instruction that takes a conditional infix
21147 at an unusual position. In unified mode,
21148 this variant will accept a suffix. */
21149 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21150 are the conditional variants of instructions that
21151 take conditional infixes in unusual positions.
21152 The infix appears at character index
21153 (tag - OT_odd_infix_0). These are not accepted
21154 in unified mode. */
21155};
b99bd4ef 21156
c19d1205
ZW
21157/* Subroutine of md_assemble, responsible for looking up the primary
21158 opcode from the mnemonic the user wrote. STR points to the
21159 beginning of the mnemonic.
21160
21161 This is not simply a hash table lookup, because of conditional
21162 variants. Most instructions have conditional variants, which are
21163 expressed with a _conditional affix_ to the mnemonic. If we were
21164 to encode each conditional variant as a literal string in the opcode
21165 table, it would have approximately 20,000 entries.
21166
21167 Most mnemonics take this affix as a suffix, and in unified syntax,
21168 'most' is upgraded to 'all'. However, in the divided syntax, some
21169 instructions take the affix as an infix, notably the s-variants of
21170 the arithmetic instructions. Of those instructions, all but six
21171 have the infix appear after the third character of the mnemonic.
21172
21173 Accordingly, the algorithm for looking up primary opcodes given
21174 an identifier is:
21175
21176 1. Look up the identifier in the opcode table.
21177 If we find a match, go to step U.
21178
21179 2. Look up the last two characters of the identifier in the
21180 conditions table. If we find a match, look up the first N-2
21181 characters of the identifier in the opcode table. If we
21182 find a match, go to step CE.
21183
21184 3. Look up the fourth and fifth characters of the identifier in
21185 the conditions table. If we find a match, extract those
21186 characters from the identifier, and look up the remaining
21187 characters in the opcode table. If we find a match, go
21188 to step CM.
21189
21190 4. Fail.
21191
21192 U. Examine the tag field of the opcode structure, in case this is
21193 one of the six instructions with its conditional infix in an
21194 unusual place. If it is, the tag tells us where to find the
21195 infix; look it up in the conditions table and set inst.cond
21196 accordingly. Otherwise, this is an unconditional instruction.
21197 Again set inst.cond accordingly. Return the opcode structure.
21198
21199 CE. Examine the tag field to make sure this is an instruction that
21200 should receive a conditional suffix. If it is not, fail.
21201 Otherwise, set inst.cond from the suffix we already looked up,
21202 and return the opcode structure.
21203
21204 CM. Examine the tag field to make sure this is an instruction that
21205 should receive a conditional infix after the third character.
21206 If it is not, fail. Otherwise, undo the edits to the current
21207 line of input and proceed as for case CE. */
21208
21209static const struct asm_opcode *
21210opcode_lookup (char **str)
21211{
21212 char *end, *base;
21213 char *affix;
21214 const struct asm_opcode *opcode;
21215 const struct asm_cond *cond;
e3cb604e 21216 char save[2];
c19d1205
ZW
21217
21218 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 21219 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 21220 for (base = end = *str; *end != '\0'; end++)
721a8186 21221 if (*end == ' ' || *end == '.')
c19d1205 21222 break;
b99bd4ef 21223
c19d1205 21224 if (end == base)
c921be7d 21225 return NULL;
b99bd4ef 21226
5287ad62 21227 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 21228 if (end[0] == '.')
b99bd4ef 21229 {
5287ad62 21230 int offset = 2;
5f4273c7 21231
267d2029 21232 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 21233 use. */
267d2029 21234 if (unified_syntax && end[1] == 'w')
c19d1205 21235 inst.size_req = 4;
267d2029 21236 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
21237 inst.size_req = 2;
21238 else
477330fc 21239 offset = 0;
5287ad62
JB
21240
21241 inst.vectype.elems = 0;
21242
21243 *str = end + offset;
b99bd4ef 21244
5f4273c7 21245 if (end[offset] == '.')
5287ad62 21246 {
267d2029 21247 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
21248 non-unified ARM syntax mode). */
21249 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 21250 return NULL;
477330fc 21251 }
5287ad62 21252 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 21253 return NULL;
b99bd4ef 21254 }
c19d1205
ZW
21255 else
21256 *str = end;
b99bd4ef 21257
c19d1205 21258 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 21259 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21260 end - base);
c19d1205 21261 if (opcode)
b99bd4ef 21262 {
c19d1205
ZW
21263 /* step U */
21264 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 21265 {
c19d1205
ZW
21266 inst.cond = COND_ALWAYS;
21267 return opcode;
b99bd4ef 21268 }
b99bd4ef 21269
278df34e 21270 if (warn_on_deprecated && unified_syntax)
5c3696f8 21271 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 21272 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 21273 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 21274 gas_assert (cond);
b99bd4ef 21275
c19d1205
ZW
21276 inst.cond = cond->value;
21277 return opcode;
21278 }
5ee91343
AV
21279 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21280 {
21281 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21282 */
21283 if (end - base < 2)
21284 return NULL;
21285 affix = end - 1;
21286 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21287 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21288 affix - base);
21289 /* If this opcode can not be vector predicated then don't accept it with a
21290 vector predication code. */
21291 if (opcode && !opcode->mayBeVecPred)
21292 opcode = NULL;
21293 }
21294 if (!opcode || !cond)
21295 {
21296 /* Cannot have a conditional suffix on a mnemonic of less than two
21297 characters. */
21298 if (end - base < 3)
21299 return NULL;
b99bd4ef 21300
5ee91343
AV
21301 /* Look for suffixed mnemonic. */
21302 affix = end - 2;
21303 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21304 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21305 affix - base);
21306 }
b99bd4ef 21307
c19d1205
ZW
21308 if (opcode && cond)
21309 {
21310 /* step CE */
21311 switch (opcode->tag)
21312 {
e3cb604e
PB
21313 case OT_cinfix3_legacy:
21314 /* Ignore conditional suffixes matched on infix only mnemonics. */
21315 break;
21316
c19d1205 21317 case OT_cinfix3:
088fa78e 21318 case OT_cinfix3_deprecated:
c19d1205
ZW
21319 case OT_odd_infix_unc:
21320 if (!unified_syntax)
0198d5e6 21321 return NULL;
1a0670f3 21322 /* Fall through. */
c19d1205
ZW
21323
21324 case OT_csuffix:
477330fc 21325 case OT_csuffixF:
c19d1205
ZW
21326 case OT_csuf_or_in3:
21327 inst.cond = cond->value;
21328 return opcode;
21329
21330 case OT_unconditional:
21331 case OT_unconditionalF:
dfa9f0d5 21332 if (thumb_mode)
c921be7d 21333 inst.cond = cond->value;
dfa9f0d5
PB
21334 else
21335 {
c921be7d 21336 /* Delayed diagnostic. */
dfa9f0d5
PB
21337 inst.error = BAD_COND;
21338 inst.cond = COND_ALWAYS;
21339 }
c19d1205 21340 return opcode;
b99bd4ef 21341
c19d1205 21342 default:
c921be7d 21343 return NULL;
c19d1205
ZW
21344 }
21345 }
b99bd4ef 21346
c19d1205
ZW
21347 /* Cannot have a usual-position infix on a mnemonic of less than
21348 six characters (five would be a suffix). */
21349 if (end - base < 6)
c921be7d 21350 return NULL;
b99bd4ef 21351
c19d1205
ZW
21352 /* Look for infixed mnemonic in the usual position. */
21353 affix = base + 3;
21d799b5 21354 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 21355 if (!cond)
c921be7d 21356 return NULL;
e3cb604e
PB
21357
21358 memcpy (save, affix, 2);
21359 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 21360 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21361 (end - base) - 2);
e3cb604e
PB
21362 memmove (affix + 2, affix, (end - affix) - 2);
21363 memcpy (affix, save, 2);
21364
088fa78e
KH
21365 if (opcode
21366 && (opcode->tag == OT_cinfix3
21367 || opcode->tag == OT_cinfix3_deprecated
21368 || opcode->tag == OT_csuf_or_in3
21369 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 21370 {
c921be7d 21371 /* Step CM. */
278df34e 21372 if (warn_on_deprecated && unified_syntax
088fa78e
KH
21373 && (opcode->tag == OT_cinfix3
21374 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 21375 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
21376
21377 inst.cond = cond->value;
21378 return opcode;
b99bd4ef
NC
21379 }
21380
c921be7d 21381 return NULL;
b99bd4ef
NC
21382}
21383
e07e6e58
NC
21384/* This function generates an initial IT instruction, leaving its block
21385 virtually open for the new instructions. Eventually,
5ee91343 21386 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
21387 a new instruction needs to be included in the IT block.
21388 Finally, the block is closed with close_automatic_it_block ().
21389 The block closure can be requested either from md_assemble (),
21390 a tencode (), or due to a label hook. */
21391
21392static void
21393new_automatic_it_block (int cond)
21394{
5ee91343
AV
21395 now_pred.state = AUTOMATIC_PRED_BLOCK;
21396 now_pred.mask = 0x18;
21397 now_pred.cc = cond;
21398 now_pred.block_length = 1;
cd000bff 21399 mapping_state (MAP_THUMB);
5ee91343
AV
21400 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21401 now_pred.warn_deprecated = FALSE;
21402 now_pred.insn_cond = TRUE;
e07e6e58
NC
21403}
21404
21405/* Close an automatic IT block.
21406 See comments in new_automatic_it_block (). */
21407
21408static void
21409close_automatic_it_block (void)
21410{
5ee91343
AV
21411 now_pred.mask = 0x10;
21412 now_pred.block_length = 0;
e07e6e58
NC
21413}
21414
21415/* Update the mask of the current automatically-generated IT
21416 instruction. See comments in new_automatic_it_block (). */
21417
21418static void
5ee91343 21419now_pred_add_mask (int cond)
e07e6e58
NC
21420{
21421#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21422#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21423 | ((bitvalue) << (nbit)))
e07e6e58 21424 const int resulting_bit = (cond & 1);
c921be7d 21425
5ee91343
AV
21426 now_pred.mask &= 0xf;
21427 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21428 resulting_bit,
5ee91343
AV
21429 (5 - now_pred.block_length));
21430 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21431 1,
5ee91343
AV
21432 ((5 - now_pred.block_length) - 1));
21433 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21434
21435#undef CLEAR_BIT
21436#undef SET_BIT_VALUE
e07e6e58
NC
21437}
21438
21439/* The IT blocks handling machinery is accessed through the these functions:
21440 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21441 set_pred_insn_type () optional, from the tencode functions
21442 set_pred_insn_type_last () ditto
21443 in_pred_block () ditto
e07e6e58 21444 it_fsm_post_encode () from md_assemble ()
33eaf5de 21445 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21446
21447 Rationale:
21448 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21449 initializing the IT insn type with a generic initial value depending
21450 on the inst.condition.
e07e6e58 21451 2) During the tencode function, two things may happen:
477330fc 21452 a) The tencode function overrides the IT insn type by
5ee91343
AV
21453 calling either set_pred_insn_type (type) or
21454 set_pred_insn_type_last ().
477330fc 21455 b) The tencode function queries the IT block state by
5ee91343 21456 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21457
5ee91343
AV
21458 Both set_pred_insn_type and in_pred_block run the internal FSM state
21459 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21460 type may incur in an invalid state (exiting the function),
21461 and b) querying the state requires the FSM to be updated.
21462 Specifically we want to avoid creating an IT block for conditional
21463 branches, so it_fsm_pre_encode is actually a guess and we can't
21464 determine whether an IT block is required until the tencode () routine
21465 has decided what type of instruction this actually it.
5ee91343
AV
21466 Because of this, if set_pred_insn_type and in_pred_block have to be
21467 used, set_pred_insn_type has to be called first.
477330fc 21468
5ee91343
AV
21469 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21470 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21471 When a tencode () routine encodes an instruction that can be
21472 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21473 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21474 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21475 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21476 for covering other cases.
21477
5ee91343
AV
21478 Calling handle_pred_state () may not transition the IT block state to
21479 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21480 still queried. Instead, if the FSM determines that the state should
5ee91343 21481 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21482 after the tencode () function: that's what it_fsm_post_encode () does.
21483
5ee91343 21484 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21485 updated state, an error may occur (due to invalid insns combination).
21486 In that case, inst.error is set.
21487 Therefore, inst.error has to be checked after the execution of
21488 the tencode () routine.
e07e6e58
NC
21489
21490 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21491 any pending state change (if any) that didn't take place in
5ee91343 21492 handle_pred_state () as explained above. */
e07e6e58
NC
21493
21494static void
21495it_fsm_pre_encode (void)
21496{
21497 if (inst.cond != COND_ALWAYS)
5ee91343 21498 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21499 else
5ee91343 21500 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21501
5ee91343 21502 now_pred.state_handled = 0;
e07e6e58
NC
21503}
21504
21505/* IT state FSM handling function. */
5ee91343
AV
21506/* MVE instructions and non-MVE instructions are handled differently because of
21507 the introduction of VPT blocks.
21508 Specifications say that any non-MVE instruction inside a VPT block is
21509 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21510 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21511 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21512 The error messages provided depending on the different combinations possible
21513 are described in the cases below:
21514 For 'most' MVE instructions:
21515 1) In an IT block, with an IT code: syntax error
21516 2) In an IT block, with a VPT code: error: must be in a VPT block
21517 3) In an IT block, with no code: warning: UNPREDICTABLE
21518 4) In a VPT block, with an IT code: syntax error
21519 5) In a VPT block, with a VPT code: OK!
21520 6) In a VPT block, with no code: error: missing code
21521 7) Outside a pred block, with an IT code: error: syntax error
21522 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21523 9) Outside a pred block, with no code: OK!
21524 For non-MVE instructions:
21525 10) In an IT block, with an IT code: OK!
21526 11) In an IT block, with a VPT code: syntax error
21527 12) In an IT block, with no code: error: missing code
21528 13) In a VPT block, with an IT code: error: should be in an IT block
21529 14) In a VPT block, with a VPT code: syntax error
21530 15) In a VPT block, with no code: UNPREDICTABLE
21531 16) Outside a pred block, with an IT code: error: should be in an IT block
21532 17) Outside a pred block, with a VPT code: syntax error
21533 18) Outside a pred block, with no code: OK!
21534 */
21535
e07e6e58
NC
21536
21537static int
5ee91343 21538handle_pred_state (void)
e07e6e58 21539{
5ee91343
AV
21540 now_pred.state_handled = 1;
21541 now_pred.insn_cond = FALSE;
e07e6e58 21542
5ee91343 21543 switch (now_pred.state)
e07e6e58 21544 {
5ee91343
AV
21545 case OUTSIDE_PRED_BLOCK:
21546 switch (inst.pred_insn_type)
e07e6e58 21547 {
35c228db 21548 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21549 case MVE_OUTSIDE_PRED_INSN:
21550 if (inst.cond < COND_ALWAYS)
21551 {
21552 /* Case 7: Outside a pred block, with an IT code: error: syntax
21553 error. */
21554 inst.error = BAD_SYNTAX;
21555 return FAIL;
21556 }
21557 /* Case 9: Outside a pred block, with no code: OK! */
21558 break;
21559 case OUTSIDE_PRED_INSN:
21560 if (inst.cond > COND_ALWAYS)
21561 {
21562 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21563 */
21564 inst.error = BAD_SYNTAX;
21565 return FAIL;
21566 }
21567 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21568 break;
21569
5ee91343
AV
21570 case INSIDE_VPT_INSN:
21571 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21572 a VPT block. */
21573 inst.error = BAD_OUT_VPT;
21574 return FAIL;
21575
e07e6e58
NC
21576 case INSIDE_IT_INSN:
21577 case INSIDE_IT_LAST_INSN:
5ee91343 21578 if (inst.cond < COND_ALWAYS)
e07e6e58 21579 {
5ee91343
AV
21580 /* Case 16: Outside a pred block, with an IT code: error: should
21581 be in an IT block. */
21582 if (thumb_mode == 0)
e07e6e58 21583 {
5ee91343
AV
21584 if (unified_syntax
21585 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21586 as_tsktsk (_("Warning: conditional outside an IT block"\
21587 " for Thumb."));
e07e6e58
NC
21588 }
21589 else
21590 {
5ee91343
AV
21591 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21592 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21593 {
21594 /* Automatically generate the IT instruction. */
21595 new_automatic_it_block (inst.cond);
21596 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21597 close_automatic_it_block ();
21598 }
21599 else
21600 {
21601 inst.error = BAD_OUT_IT;
21602 return FAIL;
21603 }
e07e6e58 21604 }
5ee91343 21605 break;
e07e6e58 21606 }
5ee91343
AV
21607 else if (inst.cond > COND_ALWAYS)
21608 {
21609 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21610 */
21611 inst.error = BAD_SYNTAX;
21612 return FAIL;
21613 }
21614 else
21615 gas_assert (0);
e07e6e58
NC
21616 case IF_INSIDE_IT_LAST_INSN:
21617 case NEUTRAL_IT_INSN:
21618 break;
21619
5ee91343
AV
21620 case VPT_INSN:
21621 if (inst.cond != COND_ALWAYS)
21622 first_error (BAD_SYNTAX);
21623 now_pred.state = MANUAL_PRED_BLOCK;
21624 now_pred.block_length = 0;
21625 now_pred.type = VECTOR_PRED;
21626 now_pred.cc = 0;
21627 break;
e07e6e58 21628 case IT_INSN:
5ee91343
AV
21629 now_pred.state = MANUAL_PRED_BLOCK;
21630 now_pred.block_length = 0;
21631 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21632 break;
21633 }
21634 break;
21635
5ee91343 21636 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21637 /* Three things may happen now:
21638 a) We should increment current it block size;
21639 b) We should close current it block (closing insn or 4 insns);
21640 c) We should close current it block and start a new one (due
21641 to incompatible conditions or
21642 4 insns-length block reached). */
21643
5ee91343 21644 switch (inst.pred_insn_type)
e07e6e58 21645 {
5ee91343
AV
21646 case INSIDE_VPT_INSN:
21647 case VPT_INSN:
35c228db 21648 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21649 case MVE_OUTSIDE_PRED_INSN:
21650 gas_assert (0);
21651 case OUTSIDE_PRED_INSN:
2b0f3761 21652 /* The closure of the block shall happen immediately,
5ee91343 21653 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21654 force_automatic_it_block_close ();
21655 break;
21656
21657 case INSIDE_IT_INSN:
21658 case INSIDE_IT_LAST_INSN:
21659 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21660 now_pred.block_length++;
e07e6e58 21661
5ee91343
AV
21662 if (now_pred.block_length > 4
21663 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21664 {
21665 force_automatic_it_block_close ();
5ee91343 21666 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21667 new_automatic_it_block (inst.cond);
21668 }
21669 else
21670 {
5ee91343
AV
21671 now_pred.insn_cond = TRUE;
21672 now_pred_add_mask (inst.cond);
e07e6e58
NC
21673 }
21674
5ee91343
AV
21675 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21676 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21677 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21678 close_automatic_it_block ();
21679 break;
21680
21681 case NEUTRAL_IT_INSN:
5ee91343
AV
21682 now_pred.block_length++;
21683 now_pred.insn_cond = TRUE;
e07e6e58 21684
5ee91343 21685 if (now_pred.block_length > 4)
e07e6e58
NC
21686 force_automatic_it_block_close ();
21687 else
5ee91343 21688 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21689 break;
21690
21691 case IT_INSN:
21692 close_automatic_it_block ();
5ee91343 21693 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21694 break;
21695 }
21696 break;
21697
5ee91343 21698 case MANUAL_PRED_BLOCK:
e07e6e58 21699 {
5ee91343
AV
21700 int cond, is_last;
21701 if (now_pred.type == SCALAR_PRED)
e07e6e58 21702 {
5ee91343
AV
21703 /* Check conditional suffixes. */
21704 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21705 now_pred.mask <<= 1;
21706 now_pred.mask &= 0x1f;
21707 is_last = (now_pred.mask == 0x10);
21708 }
21709 else
21710 {
21711 now_pred.cc ^= (now_pred.mask >> 4);
21712 cond = now_pred.cc + 0xf;
21713 now_pred.mask <<= 1;
21714 now_pred.mask &= 0x1f;
21715 is_last = now_pred.mask == 0x10;
21716 }
21717 now_pred.insn_cond = TRUE;
e07e6e58 21718
5ee91343
AV
21719 switch (inst.pred_insn_type)
21720 {
21721 case OUTSIDE_PRED_INSN:
21722 if (now_pred.type == SCALAR_PRED)
21723 {
21724 if (inst.cond == COND_ALWAYS)
21725 {
21726 /* Case 12: In an IT block, with no code: error: missing
21727 code. */
21728 inst.error = BAD_NOT_IT;
21729 return FAIL;
21730 }
21731 else if (inst.cond > COND_ALWAYS)
21732 {
21733 /* Case 11: In an IT block, with a VPT code: syntax error.
21734 */
21735 inst.error = BAD_SYNTAX;
21736 return FAIL;
21737 }
21738 else if (thumb_mode)
21739 {
21740 /* This is for some special cases where a non-MVE
21741 instruction is not allowed in an IT block, such as cbz,
21742 but are put into one with a condition code.
21743 You could argue this should be a syntax error, but we
21744 gave the 'not allowed in IT block' diagnostic in the
21745 past so we will keep doing so. */
21746 inst.error = BAD_NOT_IT;
21747 return FAIL;
21748 }
21749 break;
21750 }
21751 else
21752 {
21753 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21754 as_tsktsk (MVE_NOT_VPT);
21755 return SUCCESS;
21756 }
21757 case MVE_OUTSIDE_PRED_INSN:
21758 if (now_pred.type == SCALAR_PRED)
21759 {
21760 if (inst.cond == COND_ALWAYS)
21761 {
21762 /* Case 3: In an IT block, with no code: warning:
21763 UNPREDICTABLE. */
21764 as_tsktsk (MVE_NOT_IT);
21765 return SUCCESS;
21766 }
21767 else if (inst.cond < COND_ALWAYS)
21768 {
21769 /* Case 1: In an IT block, with an IT code: syntax error.
21770 */
21771 inst.error = BAD_SYNTAX;
21772 return FAIL;
21773 }
21774 else
21775 gas_assert (0);
21776 }
21777 else
21778 {
21779 if (inst.cond < COND_ALWAYS)
21780 {
21781 /* Case 4: In a VPT block, with an IT code: syntax error.
21782 */
21783 inst.error = BAD_SYNTAX;
21784 return FAIL;
21785 }
21786 else if (inst.cond == COND_ALWAYS)
21787 {
21788 /* Case 6: In a VPT block, with no code: error: missing
21789 code. */
21790 inst.error = BAD_NOT_VPT;
21791 return FAIL;
21792 }
21793 else
21794 {
21795 gas_assert (0);
21796 }
21797 }
35c228db
AV
21798 case MVE_UNPREDICABLE_INSN:
21799 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21800 return SUCCESS;
e07e6e58 21801 case INSIDE_IT_INSN:
5ee91343 21802 if (inst.cond > COND_ALWAYS)
e07e6e58 21803 {
5ee91343
AV
21804 /* Case 11: In an IT block, with a VPT code: syntax error. */
21805 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21806 inst.error = BAD_SYNTAX;
21807 return FAIL;
21808 }
21809 else if (now_pred.type == SCALAR_PRED)
21810 {
21811 /* Case 10: In an IT block, with an IT code: OK! */
21812 if (cond != inst.cond)
21813 {
21814 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21815 BAD_VPT_COND;
21816 return FAIL;
21817 }
21818 }
21819 else
21820 {
21821 /* Case 13: In a VPT block, with an IT code: error: should be
21822 in an IT block. */
21823 inst.error = BAD_OUT_IT;
e07e6e58
NC
21824 return FAIL;
21825 }
21826 break;
21827
5ee91343
AV
21828 case INSIDE_VPT_INSN:
21829 if (now_pred.type == SCALAR_PRED)
21830 {
21831 /* Case 2: In an IT block, with a VPT code: error: must be in a
21832 VPT block. */
21833 inst.error = BAD_OUT_VPT;
21834 return FAIL;
21835 }
21836 /* Case 5: In a VPT block, with a VPT code: OK! */
21837 else if (cond != inst.cond)
21838 {
21839 inst.error = BAD_VPT_COND;
21840 return FAIL;
21841 }
21842 break;
e07e6e58
NC
21843 case INSIDE_IT_LAST_INSN:
21844 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21845 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21846 {
21847 /* Case 4: In a VPT block, with an IT code: syntax error. */
21848 /* Case 11: In an IT block, with a VPT code: syntax error. */
21849 inst.error = BAD_SYNTAX;
21850 return FAIL;
21851 }
21852 else if (cond != inst.cond)
e07e6e58
NC
21853 {
21854 inst.error = BAD_IT_COND;
21855 return FAIL;
21856 }
21857 if (!is_last)
21858 {
21859 inst.error = BAD_BRANCH;
21860 return FAIL;
21861 }
21862 break;
21863
21864 case NEUTRAL_IT_INSN:
5ee91343
AV
21865 /* The BKPT instruction is unconditional even in a IT or VPT
21866 block. */
e07e6e58
NC
21867 break;
21868
21869 case IT_INSN:
5ee91343
AV
21870 if (now_pred.type == SCALAR_PRED)
21871 {
21872 inst.error = BAD_IT_IT;
21873 return FAIL;
21874 }
21875 /* fall through. */
21876 case VPT_INSN:
21877 if (inst.cond == COND_ALWAYS)
21878 {
21879 /* Executing a VPT/VPST instruction inside an IT block or a
21880 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21881 */
21882 if (now_pred.type == SCALAR_PRED)
21883 as_tsktsk (MVE_NOT_IT);
21884 else
21885 as_tsktsk (MVE_NOT_VPT);
21886 return SUCCESS;
21887 }
21888 else
21889 {
21890 /* VPT/VPST do not accept condition codes. */
21891 inst.error = BAD_SYNTAX;
21892 return FAIL;
21893 }
e07e6e58 21894 }
5ee91343 21895 }
e07e6e58
NC
21896 break;
21897 }
21898
21899 return SUCCESS;
21900}
21901
5a01bb1d
MGD
21902struct depr_insn_mask
21903{
21904 unsigned long pattern;
21905 unsigned long mask;
21906 const char* description;
21907};
21908
21909/* List of 16-bit instruction patterns deprecated in an IT block in
21910 ARMv8. */
21911static const struct depr_insn_mask depr_it_insns[] = {
21912 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21913 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21914 { 0xa000, 0xb800, N_("ADR") },
21915 { 0x4800, 0xf800, N_("Literal loads") },
21916 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21917 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21918 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21919 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21920 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21921 { 0, 0, NULL }
21922};
21923
e07e6e58
NC
21924static void
21925it_fsm_post_encode (void)
21926{
21927 int is_last;
21928
5ee91343
AV
21929 if (!now_pred.state_handled)
21930 handle_pred_state ();
e07e6e58 21931
5ee91343
AV
21932 if (now_pred.insn_cond
21933 && !now_pred.warn_deprecated
5a01bb1d 21934 && warn_on_deprecated
df9909b8
TP
21935 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21936 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21937 {
21938 if (inst.instruction >= 0x10000)
21939 {
5c3696f8 21940 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21941 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21942 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21943 }
21944 else
21945 {
21946 const struct depr_insn_mask *p = depr_it_insns;
21947
21948 while (p->mask != 0)
21949 {
21950 if ((inst.instruction & p->mask) == p->pattern)
21951 {
df9909b8
TP
21952 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21953 "instructions of the following class are "
21954 "performance deprecated in ARMv8-A and "
21955 "ARMv8-R: %s"), p->description);
5ee91343 21956 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21957 break;
21958 }
21959
21960 ++p;
21961 }
21962 }
21963
5ee91343 21964 if (now_pred.block_length > 1)
5a01bb1d 21965 {
5c3696f8 21966 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21967 "instruction are performance deprecated in ARMv8-A and "
21968 "ARMv8-R"));
5ee91343 21969 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21970 }
21971 }
21972
5ee91343
AV
21973 is_last = (now_pred.mask == 0x10);
21974 if (is_last)
21975 {
21976 now_pred.state = OUTSIDE_PRED_BLOCK;
21977 now_pred.mask = 0;
21978 }
e07e6e58
NC
21979}
21980
21981static void
21982force_automatic_it_block_close (void)
21983{
5ee91343 21984 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21985 {
21986 close_automatic_it_block ();
5ee91343
AV
21987 now_pred.state = OUTSIDE_PRED_BLOCK;
21988 now_pred.mask = 0;
e07e6e58
NC
21989 }
21990}
21991
21992static int
5ee91343 21993in_pred_block (void)
e07e6e58 21994{
5ee91343
AV
21995 if (!now_pred.state_handled)
21996 handle_pred_state ();
e07e6e58 21997
5ee91343 21998 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21999}
22000
ff8646ee
TP
22001/* Whether OPCODE only has T32 encoding. Since this function is only used by
22002 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22003 here, hence the "known" in the function name. */
fc289b0a
TP
22004
22005static bfd_boolean
ff8646ee 22006known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
22007{
22008 /* Original Thumb-1 wide instruction. */
22009 if (opcode->tencode == do_t_blx
22010 || opcode->tencode == do_t_branch23
22011 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22012 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22013 return TRUE;
22014
16a1fa25
TP
22015 /* Wide-only instruction added to ARMv8-M Baseline. */
22016 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
22017 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22018 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22019 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22020 return TRUE;
22021
22022 return FALSE;
22023}
22024
22025/* Whether wide instruction variant can be used if available for a valid OPCODE
22026 in ARCH. */
22027
22028static bfd_boolean
22029t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22030{
22031 if (known_t32_only_insn (opcode))
22032 return TRUE;
22033
22034 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22035 of variant T3 of B.W is checked in do_t_branch. */
22036 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22037 && opcode->tencode == do_t_branch)
22038 return TRUE;
22039
bada4342
JW
22040 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22041 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22042 && opcode->tencode == do_t_mov_cmp
22043 /* Make sure CMP instruction is not affected. */
22044 && opcode->aencode == do_mov)
22045 return TRUE;
22046
ff8646ee
TP
22047 /* Wide instruction variants of all instructions with narrow *and* wide
22048 variants become available with ARMv6t2. Other opcodes are either
22049 narrow-only or wide-only and are thus available if OPCODE is valid. */
22050 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22051 return TRUE;
22052
22053 /* OPCODE with narrow only instruction variant or wide variant not
22054 available. */
fc289b0a
TP
22055 return FALSE;
22056}
22057
c19d1205
ZW
22058void
22059md_assemble (char *str)
b99bd4ef 22060{
c19d1205
ZW
22061 char *p = str;
22062 const struct asm_opcode * opcode;
b99bd4ef 22063
c19d1205
ZW
22064 /* Align the previous label if needed. */
22065 if (last_label_seen != NULL)
b99bd4ef 22066 {
c19d1205
ZW
22067 symbol_set_frag (last_label_seen, frag_now);
22068 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22069 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
22070 }
22071
c19d1205 22072 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
22073 int r;
22074 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22075 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 22076
c19d1205
ZW
22077 opcode = opcode_lookup (&p);
22078 if (!opcode)
b99bd4ef 22079 {
c19d1205 22080 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 22081 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 22082 if (! create_register_alias (str, p)
477330fc 22083 && ! create_neon_reg_alias (str, p))
c19d1205 22084 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 22085
b99bd4ef
NC
22086 return;
22087 }
22088
278df34e 22089 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 22090 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 22091
037e8744
JB
22092 /* The value which unconditional instructions should have in place of the
22093 condition field. */
22094 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22095
c19d1205 22096 if (thumb_mode)
b99bd4ef 22097 {
e74cfd16 22098 arm_feature_set variant;
8f06b2d8
PB
22099
22100 variant = cpu_variant;
22101 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
22102 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22103 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 22104 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
22105 if (!opcode->tvariant
22106 || (thumb_mode == 1
22107 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 22108 {
173205ca
TP
22109 if (opcode->tencode == do_t_swi)
22110 as_bad (_("SVC is not permitted on this architecture"));
22111 else
22112 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
22113 return;
22114 }
c19d1205
ZW
22115 if (inst.cond != COND_ALWAYS && !unified_syntax
22116 && opcode->tencode != do_t_branch)
b99bd4ef 22117 {
c19d1205 22118 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
22119 return;
22120 }
22121
fc289b0a
TP
22122 /* Two things are addressed here:
22123 1) Implicit require narrow instructions on Thumb-1.
22124 This avoids relaxation accidentally introducing Thumb-2
22125 instructions.
22126 2) Reject wide instructions in non Thumb-2 cores.
22127
22128 Only instructions with narrow and wide variants need to be handled
22129 but selecting all non wide-only instructions is easier. */
22130 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 22131 && !t32_insn_ok (variant, opcode))
076d447c 22132 {
fc289b0a
TP
22133 if (inst.size_req == 0)
22134 inst.size_req = 2;
22135 else if (inst.size_req == 4)
752d5da4 22136 {
ff8646ee
TP
22137 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22138 as_bad (_("selected processor does not support 32bit wide "
22139 "variant of instruction `%s'"), str);
22140 else
22141 as_bad (_("selected processor does not support `%s' in "
22142 "Thumb-2 mode"), str);
fc289b0a 22143 return;
752d5da4 22144 }
076d447c
PB
22145 }
22146
c19d1205
ZW
22147 inst.instruction = opcode->tvalue;
22148
5be8be5d 22149 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 22150 {
5ee91343 22151 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
22152 it. */
22153 it_fsm_pre_encode ();
c19d1205 22154
477330fc 22155 opcode->tencode ();
e07e6e58 22156
477330fc
RM
22157 it_fsm_post_encode ();
22158 }
e27ec89e 22159
0110f2b8 22160 if (!(inst.error || inst.relax))
b99bd4ef 22161 {
9c2799c2 22162 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
22163 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22164 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 22165 {
c19d1205 22166 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
22167 return;
22168 }
22169 }
076d447c
PB
22170
22171 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 22172 instruction. */
9c2799c2 22173 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 22174
e74cfd16
PB
22175 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22176 *opcode->tvariant);
ee065d83 22177 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
22178 set those bits when Thumb-2 32-bit instructions are seen. The impact
22179 of relaxable instructions will be considered later after we finish all
22180 relaxation. */
ff8646ee
TP
22181 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22182 variant = arm_arch_none;
22183 else
22184 variant = cpu_variant;
22185 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
22186 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22187 arm_ext_v6t2);
cd000bff 22188
88714cb8
DG
22189 check_neon_suffixes;
22190
cd000bff 22191 if (!inst.error)
c877a2f2
NC
22192 {
22193 mapping_state (MAP_THUMB);
22194 }
c19d1205 22195 }
3e9e4fcf 22196 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 22197 {
845b51d6
PB
22198 bfd_boolean is_bx;
22199
22200 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22201 is_bx = (opcode->aencode == do_bx);
22202
c19d1205 22203 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
22204 if (!(is_bx && fix_v4bx)
22205 && !(opcode->avariant &&
22206 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 22207 {
84b52b66 22208 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 22209 return;
b99bd4ef 22210 }
c19d1205 22211 if (inst.size_req)
b99bd4ef 22212 {
c19d1205
ZW
22213 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22214 return;
b99bd4ef
NC
22215 }
22216
c19d1205
ZW
22217 inst.instruction = opcode->avalue;
22218 if (opcode->tag == OT_unconditionalF)
eff0bc54 22219 inst.instruction |= 0xFU << 28;
c19d1205
ZW
22220 else
22221 inst.instruction |= inst.cond << 28;
22222 inst.size = INSN_SIZE;
5be8be5d 22223 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
22224 {
22225 it_fsm_pre_encode ();
22226 opcode->aencode ();
22227 it_fsm_post_encode ();
22228 }
ee065d83 22229 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 22230 on a hypothetical non-thumb v5 core. */
845b51d6 22231 if (is_bx)
e74cfd16 22232 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 22233 else
e74cfd16
PB
22234 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22235 *opcode->avariant);
88714cb8
DG
22236
22237 check_neon_suffixes;
22238
cd000bff 22239 if (!inst.error)
c877a2f2
NC
22240 {
22241 mapping_state (MAP_ARM);
22242 }
b99bd4ef 22243 }
3e9e4fcf
JB
22244 else
22245 {
22246 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22247 "-- `%s'"), str);
22248 return;
22249 }
c19d1205
ZW
22250 output_inst (str);
22251}
b99bd4ef 22252
e07e6e58 22253static void
5ee91343 22254check_pred_blocks_finished (void)
e07e6e58
NC
22255{
22256#ifdef OBJ_ELF
22257 asection *sect;
22258
22259 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
22260 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22261 == MANUAL_PRED_BLOCK)
e07e6e58 22262 {
5ee91343
AV
22263 if (now_pred.type == SCALAR_PRED)
22264 as_warn (_("section '%s' finished with an open IT block."),
22265 sect->name);
22266 else
22267 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22268 sect->name);
e07e6e58
NC
22269 }
22270#else
5ee91343
AV
22271 if (now_pred.state == MANUAL_PRED_BLOCK)
22272 {
22273 if (now_pred.type == SCALAR_PRED)
22274 as_warn (_("file finished with an open IT block."));
22275 else
22276 as_warn (_("file finished with an open VPT/VPST block."));
22277 }
e07e6e58
NC
22278#endif
22279}
22280
c19d1205
ZW
22281/* Various frobbings of labels and their addresses. */
22282
22283void
22284arm_start_line_hook (void)
22285{
22286 last_label_seen = NULL;
b99bd4ef
NC
22287}
22288
c19d1205
ZW
22289void
22290arm_frob_label (symbolS * sym)
b99bd4ef 22291{
c19d1205 22292 last_label_seen = sym;
b99bd4ef 22293
c19d1205 22294 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 22295
c19d1205
ZW
22296#if defined OBJ_COFF || defined OBJ_ELF
22297 ARM_SET_INTERWORK (sym, support_interwork);
22298#endif
b99bd4ef 22299
e07e6e58
NC
22300 force_automatic_it_block_close ();
22301
5f4273c7 22302 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
22303 as Thumb functions. This is because these labels, whilst
22304 they exist inside Thumb code, are not the entry points for
22305 possible ARM->Thumb calls. Also, these labels can be used
22306 as part of a computed goto or switch statement. eg gcc
22307 can generate code that looks like this:
b99bd4ef 22308
c19d1205
ZW
22309 ldr r2, [pc, .Laaa]
22310 lsl r3, r3, #2
22311 ldr r2, [r3, r2]
22312 mov pc, r2
b99bd4ef 22313
c19d1205
ZW
22314 .Lbbb: .word .Lxxx
22315 .Lccc: .word .Lyyy
22316 ..etc...
22317 .Laaa: .word Lbbb
b99bd4ef 22318
c19d1205
ZW
22319 The first instruction loads the address of the jump table.
22320 The second instruction converts a table index into a byte offset.
22321 The third instruction gets the jump address out of the table.
22322 The fourth instruction performs the jump.
b99bd4ef 22323
c19d1205
ZW
22324 If the address stored at .Laaa is that of a symbol which has the
22325 Thumb_Func bit set, then the linker will arrange for this address
22326 to have the bottom bit set, which in turn would mean that the
22327 address computation performed by the third instruction would end
22328 up with the bottom bit set. Since the ARM is capable of unaligned
22329 word loads, the instruction would then load the incorrect address
22330 out of the jump table, and chaos would ensue. */
22331 if (label_is_thumb_function_name
22332 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22333 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 22334 {
c19d1205
ZW
22335 /* When the address of a Thumb function is taken the bottom
22336 bit of that address should be set. This will allow
22337 interworking between Arm and Thumb functions to work
22338 correctly. */
b99bd4ef 22339
c19d1205 22340 THUMB_SET_FUNC (sym, 1);
b99bd4ef 22341
c19d1205 22342 label_is_thumb_function_name = FALSE;
b99bd4ef 22343 }
07a53e5c 22344
07a53e5c 22345 dwarf2_emit_label (sym);
b99bd4ef
NC
22346}
22347
c921be7d 22348bfd_boolean
c19d1205 22349arm_data_in_code (void)
b99bd4ef 22350{
c19d1205 22351 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 22352 {
c19d1205
ZW
22353 *input_line_pointer = '/';
22354 input_line_pointer += 5;
22355 *input_line_pointer = 0;
c921be7d 22356 return TRUE;
b99bd4ef
NC
22357 }
22358
c921be7d 22359 return FALSE;
b99bd4ef
NC
22360}
22361
c19d1205
ZW
22362char *
22363arm_canonicalize_symbol_name (char * name)
b99bd4ef 22364{
c19d1205 22365 int len;
b99bd4ef 22366
c19d1205
ZW
22367 if (thumb_mode && (len = strlen (name)) > 5
22368 && streq (name + len - 5, "/data"))
22369 *(name + len - 5) = 0;
b99bd4ef 22370
c19d1205 22371 return name;
b99bd4ef 22372}
c19d1205
ZW
22373\f
22374/* Table of all register names defined by default. The user can
22375 define additional names with .req. Note that all register names
22376 should appear in both upper and lowercase variants. Some registers
22377 also have mixed-case names. */
b99bd4ef 22378
dcbf9037 22379#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 22380#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 22381#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
22382#define REGSET(p,t) \
22383 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22384 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22385 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22386 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
22387#define REGSETH(p,t) \
22388 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22389 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22390 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22391 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22392#define REGSET2(p,t) \
22393 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22394 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22395 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22396 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
22397#define SPLRBANK(base,bank,t) \
22398 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22399 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22400 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22401 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22402 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22403 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22404
c19d1205 22405static const struct reg_entry reg_names[] =
7ed4c4c5 22406{
c19d1205
ZW
22407 /* ARM integer registers. */
22408 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22409
c19d1205
ZW
22410 /* ATPCS synonyms. */
22411 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22412 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22413 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22414
c19d1205
ZW
22415 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22416 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22417 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22418
c19d1205
ZW
22419 /* Well-known aliases. */
22420 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22421 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22422
22423 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22424 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22425
1b883319
AV
22426 /* Defining the new Zero register from ARMv8.1-M. */
22427 REGDEF(zr,15,ZR),
22428 REGDEF(ZR,15,ZR),
22429
c19d1205
ZW
22430 /* Coprocessor numbers. */
22431 REGSET(p, CP), REGSET(P, CP),
22432
22433 /* Coprocessor register numbers. The "cr" variants are for backward
22434 compatibility. */
22435 REGSET(c, CN), REGSET(C, CN),
22436 REGSET(cr, CN), REGSET(CR, CN),
22437
90ec0d68
MGD
22438 /* ARM banked registers. */
22439 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22440 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22441 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22442 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22443 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22444 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22445 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22446
22447 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22448 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22449 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22450 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22451 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22452 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22453 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22454 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22455
22456 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22457 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22458 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22459 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22460 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22461 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22462 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22463 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22464 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22465
c19d1205
ZW
22466 /* FPA registers. */
22467 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22468 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22469
22470 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22471 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22472
22473 /* VFP SP registers. */
5287ad62
JB
22474 REGSET(s,VFS), REGSET(S,VFS),
22475 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22476
22477 /* VFP DP Registers. */
5287ad62
JB
22478 REGSET(d,VFD), REGSET(D,VFD),
22479 /* Extra Neon DP registers. */
22480 REGSETH(d,VFD), REGSETH(D,VFD),
22481
22482 /* Neon QP registers. */
22483 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22484
22485 /* VFP control registers. */
22486 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22487 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22488 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22489 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22490 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22491 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22492 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22493
22494 /* Maverick DSP coprocessor registers. */
22495 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22496 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22497
22498 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22499 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22500 REGDEF(dspsc,0,DSPSC),
22501
22502 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22503 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22504 REGDEF(DSPSC,0,DSPSC),
22505
22506 /* iWMMXt data registers - p0, c0-15. */
22507 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22508
22509 /* iWMMXt control registers - p1, c0-3. */
22510 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22511 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22512 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22513 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22514
22515 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22516 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22517 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22518 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22519 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22520
22521 /* XScale accumulator registers. */
22522 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22523};
22524#undef REGDEF
22525#undef REGNUM
22526#undef REGSET
7ed4c4c5 22527
c19d1205
ZW
22528/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22529 within psr_required_here. */
22530static const struct asm_psr psrs[] =
22531{
22532 /* Backward compatibility notation. Note that "all" is no longer
22533 truly all possible PSR bits. */
22534 {"all", PSR_c | PSR_f},
22535 {"flg", PSR_f},
22536 {"ctl", PSR_c},
22537
22538 /* Individual flags. */
22539 {"f", PSR_f},
22540 {"c", PSR_c},
22541 {"x", PSR_x},
22542 {"s", PSR_s},
59b42a0d 22543
c19d1205
ZW
22544 /* Combinations of flags. */
22545 {"fs", PSR_f | PSR_s},
22546 {"fx", PSR_f | PSR_x},
22547 {"fc", PSR_f | PSR_c},
22548 {"sf", PSR_s | PSR_f},
22549 {"sx", PSR_s | PSR_x},
22550 {"sc", PSR_s | PSR_c},
22551 {"xf", PSR_x | PSR_f},
22552 {"xs", PSR_x | PSR_s},
22553 {"xc", PSR_x | PSR_c},
22554 {"cf", PSR_c | PSR_f},
22555 {"cs", PSR_c | PSR_s},
22556 {"cx", PSR_c | PSR_x},
22557 {"fsx", PSR_f | PSR_s | PSR_x},
22558 {"fsc", PSR_f | PSR_s | PSR_c},
22559 {"fxs", PSR_f | PSR_x | PSR_s},
22560 {"fxc", PSR_f | PSR_x | PSR_c},
22561 {"fcs", PSR_f | PSR_c | PSR_s},
22562 {"fcx", PSR_f | PSR_c | PSR_x},
22563 {"sfx", PSR_s | PSR_f | PSR_x},
22564 {"sfc", PSR_s | PSR_f | PSR_c},
22565 {"sxf", PSR_s | PSR_x | PSR_f},
22566 {"sxc", PSR_s | PSR_x | PSR_c},
22567 {"scf", PSR_s | PSR_c | PSR_f},
22568 {"scx", PSR_s | PSR_c | PSR_x},
22569 {"xfs", PSR_x | PSR_f | PSR_s},
22570 {"xfc", PSR_x | PSR_f | PSR_c},
22571 {"xsf", PSR_x | PSR_s | PSR_f},
22572 {"xsc", PSR_x | PSR_s | PSR_c},
22573 {"xcf", PSR_x | PSR_c | PSR_f},
22574 {"xcs", PSR_x | PSR_c | PSR_s},
22575 {"cfs", PSR_c | PSR_f | PSR_s},
22576 {"cfx", PSR_c | PSR_f | PSR_x},
22577 {"csf", PSR_c | PSR_s | PSR_f},
22578 {"csx", PSR_c | PSR_s | PSR_x},
22579 {"cxf", PSR_c | PSR_x | PSR_f},
22580 {"cxs", PSR_c | PSR_x | PSR_s},
22581 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22582 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22583 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22584 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22585 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22586 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22587 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22588 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22589 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22590 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22591 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22592 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22593 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22594 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22595 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22596 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22597 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22598 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22599 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22600 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22601 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22602 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22603 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22604 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22605};
22606
62b3e311
PB
22607/* Table of V7M psr names. */
22608static const struct asm_psr v7m_psrs[] =
22609{
1a336194
TP
22610 {"apsr", 0x0 }, {"APSR", 0x0 },
22611 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22612 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22613 {"psr", 0x3 }, {"PSR", 0x3 },
22614 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22615 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22616 {"epsr", 0x6 }, {"EPSR", 0x6 },
22617 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22618 {"msp", 0x8 }, {"MSP", 0x8 },
22619 {"psp", 0x9 }, {"PSP", 0x9 },
22620 {"msplim", 0xa }, {"MSPLIM", 0xa },
22621 {"psplim", 0xb }, {"PSPLIM", 0xb },
22622 {"primask", 0x10}, {"PRIMASK", 0x10},
22623 {"basepri", 0x11}, {"BASEPRI", 0x11},
22624 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22625 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22626 {"control", 0x14}, {"CONTROL", 0x14},
22627 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22628 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22629 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22630 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22631 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22632 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22633 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22634 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22635 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22636};
22637
c19d1205
ZW
22638/* Table of all shift-in-operand names. */
22639static const struct asm_shift_name shift_names [] =
b99bd4ef 22640{
c19d1205
ZW
22641 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22642 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22643 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22644 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22645 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22646 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22647 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22648};
b99bd4ef 22649
c19d1205
ZW
22650/* Table of all explicit relocation names. */
22651#ifdef OBJ_ELF
22652static struct reloc_entry reloc_names[] =
22653{
22654 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22655 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22656 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22657 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22658 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22659 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22660 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22661 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22662 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22663 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22664 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22665 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22666 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22667 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22668 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22669 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22670 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22671 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22672 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22673 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22674 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22675 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22676 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22677 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22678 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22679 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22680 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22681};
22682#endif
b99bd4ef 22683
5ee91343 22684/* Table of all conditional affixes. */
c19d1205
ZW
22685static const struct asm_cond conds[] =
22686{
22687 {"eq", 0x0},
22688 {"ne", 0x1},
22689 {"cs", 0x2}, {"hs", 0x2},
22690 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22691 {"mi", 0x4},
22692 {"pl", 0x5},
22693 {"vs", 0x6},
22694 {"vc", 0x7},
22695 {"hi", 0x8},
22696 {"ls", 0x9},
22697 {"ge", 0xa},
22698 {"lt", 0xb},
22699 {"gt", 0xc},
22700 {"le", 0xd},
22701 {"al", 0xe}
22702};
5ee91343
AV
22703static const struct asm_cond vconds[] =
22704{
22705 {"t", 0xf},
22706 {"e", 0x10}
22707};
bfae80f2 22708
e797f7e0 22709#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22710 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22711 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22712
62b3e311
PB
22713static struct asm_barrier_opt barrier_opt_names[] =
22714{
e797f7e0
MGD
22715 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22716 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22717 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22718 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22719 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22720 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22721 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22722 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22723 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22724 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22725 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22726 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22727 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22728 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22729 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22730 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22731};
22732
e797f7e0
MGD
22733#undef UL_BARRIER
22734
c19d1205
ZW
22735/* Table of ARM-format instructions. */
22736
22737/* Macros for gluing together operand strings. N.B. In all cases
22738 other than OPS0, the trailing OP_stop comes from default
22739 zero-initialization of the unspecified elements of the array. */
22740#define OPS0() { OP_stop, }
22741#define OPS1(a) { OP_##a, }
22742#define OPS2(a,b) { OP_##a,OP_##b, }
22743#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22744#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22745#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22746#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22747
5be8be5d
DG
22748/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22749 This is useful when mixing operands for ARM and THUMB, i.e. using the
22750 MIX_ARM_THUMB_OPERANDS macro.
22751 In order to use these macros, prefix the number of operands with _
22752 e.g. _3. */
22753#define OPS_1(a) { a, }
22754#define OPS_2(a,b) { a,b, }
22755#define OPS_3(a,b,c) { a,b,c, }
22756#define OPS_4(a,b,c,d) { a,b,c,d, }
22757#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22758#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22759
c19d1205
ZW
22760/* These macros abstract out the exact format of the mnemonic table and
22761 save some repeated characters. */
22762
22763/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22764#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22765 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22766 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22767
22768/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22769 a T_MNEM_xyz enumerator. */
22770#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22771 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22772#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22773 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22774
22775/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22776 infix after the third character. */
22777#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22778 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22779 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22780#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22781 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22782 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22783#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22784 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22785#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22786 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22787#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22788 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22789#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22790 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22791
c19d1205 22792/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22793 field is still 0xE. Many of the Thumb variants can be executed
22794 conditionally, so this is checked separately. */
c19d1205 22795#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22796 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22797 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22798
dd5181d5
KT
22799/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22800 Used by mnemonics that have very minimal differences in the encoding for
22801 ARM and Thumb variants and can be handled in a common function. */
22802#define TUEc(mnem, op, top, nops, ops, en) \
22803 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22804 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22805
c19d1205
ZW
22806/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22807 condition code field. */
22808#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22809 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22810 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22811
22812/* ARM-only variants of all the above. */
6a86118a 22813#define CE(mnem, op, nops, ops, ae) \
5ee91343 22814 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22815
22816#define C3(mnem, op, nops, ops, ae) \
5ee91343 22817 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22818
cf3cf39d
TP
22819/* Thumb-only variants of TCE and TUE. */
22820#define ToC(mnem, top, nops, ops, te) \
22821 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22822 do_##te, 0 }
cf3cf39d
TP
22823
22824#define ToU(mnem, top, nops, ops, te) \
22825 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22826 NULL, do_##te, 0 }
cf3cf39d 22827
4389b29a
AV
22828/* T_MNEM_xyz enumerator variants of ToC. */
22829#define toC(mnem, top, nops, ops, te) \
22830 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22831 do_##te, 0 }
4389b29a 22832
f6b2b12d
AV
22833/* T_MNEM_xyz enumerator variants of ToU. */
22834#define toU(mnem, top, nops, ops, te) \
22835 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22836 NULL, do_##te, 0 }
f6b2b12d 22837
e3cb604e
PB
22838/* Legacy mnemonics that always have conditional infix after the third
22839 character. */
22840#define CL(mnem, op, nops, ops, ae) \
21d799b5 22841 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22842 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22843
8f06b2d8
PB
22844/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22845#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22846 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22847
57785aa2
AV
22848/* mov instructions that are shared between coprocessor and MVE. */
22849#define mcCE(mnem, op, nops, ops, ae) \
22850 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22851
e3cb604e
PB
22852/* Legacy coprocessor instructions where conditional infix and conditional
22853 suffix are ambiguous. For consistency this includes all FPA instructions,
22854 not just the potentially ambiguous ones. */
22855#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22856 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22857 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22858
22859/* Coprocessor, takes either a suffix or a position-3 infix
22860 (for an FPA corner case). */
22861#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22862 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22863 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22864
6a86118a 22865#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22866 { m1 #m2 m3, OPS##nops ops, \
22867 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22868 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22869
22870#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22871 xCM_ (m1, , m2, op, nops, ops, ae), \
22872 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22873 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22874 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22875 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22876 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22877 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22878 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22879 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22880 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22881 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22882 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22883 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22884 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22885 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22886 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22887 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22888 xCM_ (m1, le, m2, op, nops, ops, ae), \
22889 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22890
22891#define UE(mnem, op, nops, ops, ae) \
5ee91343 22892 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22893
22894#define UF(mnem, op, nops, ops, ae) \
5ee91343 22895 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22896
5287ad62
JB
22897/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22898 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22899 use the same encoding function for each. */
22900#define NUF(mnem, op, nops, ops, enc) \
22901 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22902 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22903
22904/* Neon data processing, version which indirects through neon_enc_tab for
22905 the various overloaded versions of opcodes. */
22906#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22907 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22908 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22909
22910/* Neon insn with conditional suffix for the ARM version, non-overloaded
22911 version. */
5ee91343 22912#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22913 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22914 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22915
037e8744 22916#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22917 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22918
22919#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22920 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22921
5287ad62 22922/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22923#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22924 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22925 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22926
037e8744 22927#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22928 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22929
22930#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22931 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22932
22933/* */
22934#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22935 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22936 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22937
22938
22939/* nCEF but for MVE predicated instructions. */
22940#define mnCEF(mnem, op, nops, ops, enc) \
22941 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22942
22943/* nCE but for MVE predicated instructions. */
22944#define mnCE(mnem, op, nops, ops, enc) \
22945 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22946
5ee91343
AV
22947/* NUF but for potentially MVE predicated instructions. */
22948#define MNUF(mnem, op, nops, ops, enc) \
22949 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22950 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22951
22952/* nUF but for potentially MVE predicated instructions. */
22953#define mnUF(mnem, op, nops, ops, enc) \
22954 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22955 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22956
22957/* ToC but for potentially MVE predicated instructions. */
22958#define mToC(mnem, top, nops, ops, te) \
22959 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22960 do_##te, 1 }
22961
22962/* NCE but for MVE predicated instructions. */
22963#define MNCE(mnem, op, nops, ops, enc) \
22964 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22965
22966/* NCEF but for MVE predicated instructions. */
22967#define MNCEF(mnem, op, nops, ops, enc) \
22968 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22969#define do_0 0
22970
c19d1205 22971static const struct asm_opcode insns[] =
bfae80f2 22972{
74db7efb
NC
22973#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22974#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22975 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22976 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22977 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22978 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22979 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22980 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22981 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22982 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22983 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22984 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22985 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22986 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22987 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22988 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22989 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22990 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22991
22992 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22993 for setting PSR flag bits. They are obsolete in V6 and do not
22994 have Thumb equivalents. */
21d799b5
NC
22995 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22996 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22997 CL("tstp", 110f000, 2, (RR, SH), cmp),
22998 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22999 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23000 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23001 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23002 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23003 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23004
23005 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 23006 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
23007 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23008 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23009
23010 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
23011 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23012 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23013 OP_RRnpc),
23014 OP_ADDRGLDR),ldst, t_ldst),
23015 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
23016
23017 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23018 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23019 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23020 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23021 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23022 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23023
21d799b5
NC
23024 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23025 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 23026
c19d1205 23027 /* Pseudo ops. */
21d799b5 23028 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 23029 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 23030 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 23031 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
23032
23033 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
23034 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23035 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23036 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23037 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23038 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23039 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23040 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23041 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23042 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23043 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23044 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23045 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 23046
16a4cf17 23047 /* These may simplify to neg. */
21d799b5
NC
23048 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23049 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 23050
173205ca
TP
23051#undef THUMB_VARIANT
23052#define THUMB_VARIANT & arm_ext_os
23053
23054 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23055 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23056
c921be7d
NC
23057#undef THUMB_VARIANT
23058#define THUMB_VARIANT & arm_ext_v6
23059
21d799b5 23060 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
23061
23062 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
23063#undef THUMB_VARIANT
23064#define THUMB_VARIANT & arm_ext_v6t2
23065
21d799b5
NC
23066 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23067 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23068 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 23069
5be8be5d
DG
23070 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23071 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23072 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23073 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 23074
21d799b5
NC
23075 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23076 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 23077
21d799b5
NC
23078 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23079 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
23080
23081 /* V1 instructions with no Thumb analogue at all. */
21d799b5 23082 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
23083 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23084
23085 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23086 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23087 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23088 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23089 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23090 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23091 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23092 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23093
c921be7d
NC
23094#undef ARM_VARIANT
23095#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23096#undef THUMB_VARIANT
23097#define THUMB_VARIANT & arm_ext_v4t
23098
21d799b5
NC
23099 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23100 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 23101
c921be7d
NC
23102#undef THUMB_VARIANT
23103#define THUMB_VARIANT & arm_ext_v6t2
23104
21d799b5 23105 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
23106 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23107
23108 /* Generic coprocessor instructions. */
21d799b5
NC
23109 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23110 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23111 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23112 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23113 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23114 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 23115 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23116
c921be7d
NC
23117#undef ARM_VARIANT
23118#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23119
21d799b5 23120 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
23121 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23122
c921be7d
NC
23123#undef ARM_VARIANT
23124#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23125#undef THUMB_VARIANT
23126#define THUMB_VARIANT & arm_ext_msr
23127
d2cd1205
JB
23128 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23129 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 23130
c921be7d
NC
23131#undef ARM_VARIANT
23132#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23133#undef THUMB_VARIANT
23134#define THUMB_VARIANT & arm_ext_v6t2
23135
21d799b5
NC
23136 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23137 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23138 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23139 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23140 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23141 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23142 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23143 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 23144
c921be7d
NC
23145#undef ARM_VARIANT
23146#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23147#undef THUMB_VARIANT
23148#define THUMB_VARIANT & arm_ext_v4t
23149
5be8be5d
DG
23150 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23151 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23152 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23153 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
23154 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23155 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 23156
c921be7d
NC
23157#undef ARM_VARIANT
23158#define ARM_VARIANT & arm_ext_v4t_5
23159
c19d1205
ZW
23160 /* ARM Architecture 4T. */
23161 /* Note: bx (and blx) are required on V5, even if the processor does
23162 not support Thumb. */
21d799b5 23163 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 23164
c921be7d
NC
23165#undef ARM_VARIANT
23166#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23167#undef THUMB_VARIANT
23168#define THUMB_VARIANT & arm_ext_v5t
23169
c19d1205
ZW
23170 /* Note: blx has 2 variants; the .value coded here is for
23171 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
23172 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23173 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 23174
c921be7d
NC
23175#undef THUMB_VARIANT
23176#define THUMB_VARIANT & arm_ext_v6t2
23177
21d799b5
NC
23178 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23179 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23180 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23181 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23182 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23183 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23184 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23185 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23186
c921be7d 23187#undef ARM_VARIANT
74db7efb
NC
23188#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23189#undef THUMB_VARIANT
23190#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 23191
21d799b5
NC
23192 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23193 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23194 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23195 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23196
21d799b5
NC
23197 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23198 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23199
21d799b5
NC
23200 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23201 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23202 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23203 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 23204
21d799b5
NC
23205 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23206 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23207 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23208 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23209
21d799b5
NC
23210 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23211 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23212
03ee1b7f
NC
23213 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23214 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23215 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23216 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 23217
c921be7d 23218#undef ARM_VARIANT
74db7efb
NC
23219#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23220#undef THUMB_VARIANT
23221#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23222
21d799b5 23223 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
23224 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23225 ldrd, t_ldstd),
23226 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23227 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 23228
21d799b5
NC
23229 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23230 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 23231
c921be7d
NC
23232#undef ARM_VARIANT
23233#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23234
21d799b5 23235 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 23236
c921be7d
NC
23237#undef ARM_VARIANT
23238#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23239#undef THUMB_VARIANT
23240#define THUMB_VARIANT & arm_ext_v6
23241
21d799b5
NC
23242 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23243 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23244 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23245 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23246 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23247 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23248 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23249 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23250 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23251 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 23252
c921be7d 23253#undef THUMB_VARIANT
ff8646ee 23254#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 23255
5be8be5d
DG
23256 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23257 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23258 strex, t_strex),
ff8646ee
TP
23259#undef THUMB_VARIANT
23260#define THUMB_VARIANT & arm_ext_v6t2
23261
21d799b5
NC
23262 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23263 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 23264
21d799b5
NC
23265 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23266 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 23267
9e3c6df6 23268/* ARM V6 not included in V7M. */
c921be7d
NC
23269#undef THUMB_VARIANT
23270#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 23271 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 23272 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
23273 UF(rfeib, 9900a00, 1, (RRw), rfe),
23274 UF(rfeda, 8100a00, 1, (RRw), rfe),
23275 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23276 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
23277 UF(rfefa, 8100a00, 1, (RRw), rfe),
23278 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23279 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 23280 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
23281 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23282 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 23283 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 23284 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 23285 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 23286 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 23287 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 23288 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 23289 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 23290
9e3c6df6
PB
23291/* ARM V6 not included in V7M (eg. integer SIMD). */
23292#undef THUMB_VARIANT
23293#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
23294 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23295 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23296 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23297 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23298 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23299 /* Old name for QASX. */
74db7efb 23300 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23301 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23302 /* Old name for QSAX. */
74db7efb 23303 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23304 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23305 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23306 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23307 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23308 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23309 /* Old name for SASX. */
74db7efb 23310 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23311 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23312 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23313 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23314 /* Old name for SHASX. */
21d799b5 23315 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23316 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23317 /* Old name for SHSAX. */
21d799b5
NC
23318 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23319 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23320 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23321 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23322 /* Old name for SSAX. */
74db7efb 23323 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23324 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23325 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23326 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23327 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23328 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23329 /* Old name for UASX. */
74db7efb 23330 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23331 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23332 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23333 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23334 /* Old name for UHASX. */
21d799b5
NC
23335 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23336 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23337 /* Old name for UHSAX. */
21d799b5
NC
23338 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23339 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23340 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23341 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23342 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23343 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23344 /* Old name for UQASX. */
21d799b5
NC
23345 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23346 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23347 /* Old name for UQSAX. */
21d799b5
NC
23348 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23349 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23350 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23351 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23352 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23353 /* Old name for USAX. */
74db7efb 23354 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23355 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23356 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23357 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23358 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23359 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23360 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23361 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23362 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23363 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23364 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23365 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23366 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23367 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23368 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23369 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23370 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23371 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23372 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23373 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23374 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23375 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23376 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23377 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23378 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23379 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23380 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23381 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23382 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
23383 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23384 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23385 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23386 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23387 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 23388
c921be7d 23389#undef ARM_VARIANT
55e8aae7 23390#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 23391#undef THUMB_VARIANT
55e8aae7 23392#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 23393
21d799b5
NC
23394 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23395 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23396 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23397 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 23398
c921be7d
NC
23399#undef THUMB_VARIANT
23400#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23401 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23402 ldrexd, t_ldrexd),
23403 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23404 RRnpcb), strexd, t_strexd),
ebdca51a 23405
c921be7d 23406#undef THUMB_VARIANT
ff8646ee 23407#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23408 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23409 rd_rn, rd_rn),
23410 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23411 rd_rn, rd_rn),
23412 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23413 strex, t_strexbh),
5be8be5d 23414 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23415 strex, t_strexbh),
21d799b5 23416 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23417
c921be7d 23418#undef ARM_VARIANT
f4c65163 23419#define ARM_VARIANT & arm_ext_sec
74db7efb 23420#undef THUMB_VARIANT
f4c65163 23421#define THUMB_VARIANT & arm_ext_sec
c921be7d 23422
21d799b5 23423 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23424
90ec0d68
MGD
23425#undef ARM_VARIANT
23426#define ARM_VARIANT & arm_ext_virt
23427#undef THUMB_VARIANT
23428#define THUMB_VARIANT & arm_ext_virt
23429
23430 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23431 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23432
ddfded2f
MW
23433#undef ARM_VARIANT
23434#define ARM_VARIANT & arm_ext_pan
23435#undef THUMB_VARIANT
23436#define THUMB_VARIANT & arm_ext_pan
23437
23438 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23439
c921be7d 23440#undef ARM_VARIANT
74db7efb 23441#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23442#undef THUMB_VARIANT
23443#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23444
21d799b5
NC
23445 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23446 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23447 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23448 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23449
21d799b5 23450 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23451 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23452
5be8be5d
DG
23453 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23454 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23455 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23456 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23457
91d8b670
JG
23458#undef ARM_VARIANT
23459#define ARM_VARIANT & arm_ext_v3
23460#undef THUMB_VARIANT
23461#define THUMB_VARIANT & arm_ext_v6t2
23462
23463 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23464 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23465 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23466
23467#undef ARM_VARIANT
23468#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23469#undef THUMB_VARIANT
23470#define THUMB_VARIANT & arm_ext_v6t2_v8m
23471 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23472 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23473
bf3eeda7 23474 /* Thumb-only instructions. */
74db7efb 23475#undef ARM_VARIANT
bf3eeda7
NS
23476#define ARM_VARIANT NULL
23477 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23478 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23479
23480 /* ARM does not really have an IT instruction, so always allow it.
23481 The opcode is copied from Thumb in order to allow warnings in
23482 -mimplicit-it=[never | arm] modes. */
23483#undef ARM_VARIANT
23484#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23485#undef THUMB_VARIANT
23486#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23487
21d799b5
NC
23488 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23489 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23490 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23491 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23492 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23493 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23494 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23495 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23496 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23497 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23498 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23499 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23500 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23501 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23502 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23503 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23504 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23505 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23506
92e90b6e 23507 /* Thumb2 only instructions. */
c921be7d
NC
23508#undef ARM_VARIANT
23509#define ARM_VARIANT NULL
92e90b6e 23510
21d799b5
NC
23511 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23512 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23513 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23514 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23515 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23516 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23517
eea54501
MGD
23518 /* Hardware division instructions. */
23519#undef ARM_VARIANT
23520#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23521#undef THUMB_VARIANT
23522#define THUMB_VARIANT & arm_ext_div
23523
eea54501
MGD
23524 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23525 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23526
7e806470 23527 /* ARM V6M/V7 instructions. */
c921be7d
NC
23528#undef ARM_VARIANT
23529#define ARM_VARIANT & arm_ext_barrier
23530#undef THUMB_VARIANT
23531#define THUMB_VARIANT & arm_ext_barrier
23532
ccb84d65
JB
23533 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23534 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23535 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23536
62b3e311 23537 /* ARM V7 instructions. */
c921be7d
NC
23538#undef ARM_VARIANT
23539#define ARM_VARIANT & arm_ext_v7
23540#undef THUMB_VARIANT
23541#define THUMB_VARIANT & arm_ext_v7
23542
21d799b5
NC
23543 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23544 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23545
74db7efb 23546#undef ARM_VARIANT
60e5ef9f 23547#define ARM_VARIANT & arm_ext_mp
74db7efb 23548#undef THUMB_VARIANT
60e5ef9f
MGD
23549#define THUMB_VARIANT & arm_ext_mp
23550
23551 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23552
53c4b28b
MGD
23553 /* AArchv8 instructions. */
23554#undef ARM_VARIANT
23555#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23556
23557/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23558#undef THUMB_VARIANT
4ed7ed8d 23559#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23560
4ed7ed8d
TP
23561 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23562 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23563 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23564 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23565 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23566 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23567 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23568 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23569 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23570 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23571 stlex, t_stlex),
4b8c8c02
RE
23572 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23573 stlex, t_stlex),
23574 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23575 stlex, t_stlex),
4ed7ed8d
TP
23576#undef THUMB_VARIANT
23577#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23578
4ed7ed8d 23579 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23580 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23581 ldrexd, t_ldrexd),
23582 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23583 strexd, t_strexd),
f7dd2fb2
TC
23584
23585/* Defined in V8 but is in undefined encoding space for earlier
23586 architectures. However earlier architectures are required to treat
23587 this instuction as a semihosting trap as well. Hence while not explicitly
23588 defined as such, it is in fact correct to define the instruction for all
23589 architectures. */
23590#undef THUMB_VARIANT
23591#define THUMB_VARIANT & arm_ext_v1
23592#undef ARM_VARIANT
23593#define ARM_VARIANT & arm_ext_v1
23594 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23595
8884b720 23596 /* ARMv8 T32 only. */
74db7efb 23597#undef ARM_VARIANT
b79f7053
MGD
23598#define ARM_VARIANT NULL
23599 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23600 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23601 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23602
33399f07
MGD
23603 /* FP for ARMv8. */
23604#undef ARM_VARIANT
a715796b 23605#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23606#undef THUMB_VARIANT
a715796b 23607#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23608
23609 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23610 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23611 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23612 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752 23613 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
a710b305
AV
23614 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
23615 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
23616 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
23617 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
23618 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
23619 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
33399f07 23620
91ff7894
MGD
23621 /* Crypto v1 extensions. */
23622#undef ARM_VARIANT
23623#define ARM_VARIANT & fpu_crypto_ext_armv8
23624#undef THUMB_VARIANT
23625#define THUMB_VARIANT & fpu_crypto_ext_armv8
23626
23627 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23628 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23629 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23630 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23631 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23632 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23633 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23634 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23635 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23636 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23637 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23638 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23639 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23640 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23641
dd5181d5 23642#undef ARM_VARIANT
74db7efb 23643#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23644#undef THUMB_VARIANT
23645#define THUMB_VARIANT & crc_ext_armv8
23646 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23647 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23648 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23649 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23650 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23651 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23652
105bde57
MW
23653 /* ARMv8.2 RAS extension. */
23654#undef ARM_VARIANT
4d1464f2 23655#define ARM_VARIANT & arm_ext_ras
105bde57 23656#undef THUMB_VARIANT
4d1464f2 23657#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23658 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23659
49e8a725
SN
23660#undef ARM_VARIANT
23661#define ARM_VARIANT & arm_ext_v8_3
23662#undef THUMB_VARIANT
23663#define THUMB_VARIANT & arm_ext_v8_3
23664 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23665
c604a79a
JW
23666#undef ARM_VARIANT
23667#define ARM_VARIANT & fpu_neon_ext_dotprod
23668#undef THUMB_VARIANT
23669#define THUMB_VARIANT & fpu_neon_ext_dotprod
23670 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23671 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23672
c921be7d
NC
23673#undef ARM_VARIANT
23674#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23675#undef THUMB_VARIANT
23676#define THUMB_VARIANT NULL
c921be7d 23677
21d799b5
NC
23678 cCE("wfs", e200110, 1, (RR), rd),
23679 cCE("rfs", e300110, 1, (RR), rd),
23680 cCE("wfc", e400110, 1, (RR), rd),
23681 cCE("rfc", e500110, 1, (RR), rd),
23682
23683 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23684 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23685 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23686 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23687
23688 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23689 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23690 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23691 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23692
23693 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23694 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23695 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23696 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23697 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23698 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23699 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23700 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23701 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23702 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23703 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23704 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23705
23706 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23707 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23708 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23709 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23710 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23711 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23712 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23713 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23714 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23715 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23716 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23717 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23718
23719 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23720 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23721 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23722 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23723 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23724 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23725 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23726 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23727 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23728 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23729 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23730 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23731
23732 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23733 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23734 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23735 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23736 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23737 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23738 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23739 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23740 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23741 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23742 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23743 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23744
23745 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23746 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23747 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23748 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23749 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23750 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23751 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23752 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23753 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23754 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23755 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23756 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23757
23758 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23759 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23760 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23761 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23762 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23763 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23764 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23765 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23766 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23767 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23768 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23769 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23770
23771 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23772 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23773 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23774 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23775 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23776 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23777 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23778 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23779 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23780 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23781 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23782 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23783
23784 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23785 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23786 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23787 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23788 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23789 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23790 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23791 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23792 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23793 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23794 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23795 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23796
23797 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23798 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23799 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23800 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23801 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23802 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23803 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23804 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23805 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23806 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23807 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23808 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23809
23810 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23811 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23812 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23813 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23814 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23815 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23816 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23817 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23818 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23819 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23820 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23821 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23822
23823 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23824 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23825 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23826 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23827 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23828 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23829 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23830 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23831 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23832 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23833 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23834 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23835
23836 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23837 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23838 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23839 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23840 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23841 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23842 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23843 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23844 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23845 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23846 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23847 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23848
23849 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23850 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23851 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23852 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23853 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23854 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23855 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23856 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23857 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23858 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23859 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23860 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23861
23862 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23863 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23864 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23865 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23866 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23867 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23868 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23869 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23870 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23871 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23872 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23873 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23874
23875 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23876 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23877 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23878 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23879 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23880 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23881 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23882 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23883 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23884 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23885 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23886 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23887
23888 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23889 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23890 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23891 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23892 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23893 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23894 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23895 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23896 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23897 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23898 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23899 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23900
23901 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23902 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23903 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23904 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23905 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23906 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23907 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23908 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23909 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23910 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23911 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23912 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23913
23914 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23915 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23916 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23917 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23918 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23919 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23920 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23921 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23922 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23923 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23924 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23925 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23926
23927 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23928 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23929 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23930 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23931 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23932 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23933 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23934 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23935 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23936 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23937 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23938 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23939
23940 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23941 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23942 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23943 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23944 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23945 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23946 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23947 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23948 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23949 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23950 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23951 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23952
23953 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23954 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23955 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23956 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23957 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23958 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23959 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23960 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23961 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23962 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23963 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23964 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23965
23966 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23967 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23968 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23969 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23970 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23971 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23972 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23973 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23974 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23975 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23976 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23977 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23978
23979 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23980 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23981 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23982 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23983 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23984 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23985 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23986 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23987 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23988 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23989 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23990 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23991
23992 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23993 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23994 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23995 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23996 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23997 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23998 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23999 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24000 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24001 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24002 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24003 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24004
24005 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24006 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24007 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24008 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24009 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24010 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24011 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24012 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24013 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24014 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24015 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24016 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24017
24018 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24019 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24020 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24021 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24022 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24023 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24024 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24025 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24026 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24027 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24028 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24029 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24030
24031 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24032 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24033 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24034 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24035 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24036 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24037 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24038 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24039 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24040 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24041 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24042 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24043
24044 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24045 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24046 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24047 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24048 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24049 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24050 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24051 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24052 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24053 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24054 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24055 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24056
24057 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24058 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24059 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24060 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24061 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24062 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24063 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24064 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24065 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24066 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24067 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24068 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24069
24070 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24071 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24072 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24073 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24074
24075 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24076 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24077 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24078 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24079 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24080 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24081 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24082 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24083 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24084 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24085 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24086 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 24087
c19d1205
ZW
24088 /* The implementation of the FIX instruction is broken on some
24089 assemblers, in that it accepts a precision specifier as well as a
24090 rounding specifier, despite the fact that this is meaningless.
24091 To be more compatible, we accept it as well, though of course it
24092 does not set any bits. */
21d799b5
NC
24093 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24094 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24095 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24096 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24097 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24098 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24099 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24100 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24101 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24102 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24103 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24104 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24105 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 24106
c19d1205 24107 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
24108#undef ARM_VARIANT
24109#define ARM_VARIANT & fpu_fpa_ext_v2
24110
21d799b5
NC
24111 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24112 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24113 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24114 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24115 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24116 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 24117
c921be7d
NC
24118#undef ARM_VARIANT
24119#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24120
c19d1205 24121 /* Moves and type conversions. */
21d799b5 24122 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
24123 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24124 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
24125 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24126 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24127 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24128 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24129 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24130 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24131 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24132 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
24133
24134 /* Memory operations. */
21d799b5
NC
24135 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24136 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
24137 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24138 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24139 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24140 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24141 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24142 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24143 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24144 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24145 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24146 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24147 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24148 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24149 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24150 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24151 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24152 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 24153
c19d1205 24154 /* Monadic operations. */
21d799b5
NC
24155 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24156 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24157 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
24158
24159 /* Dyadic operations. */
21d799b5
NC
24160 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24161 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24162 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24163 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24164 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24165 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24166 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24167 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24168 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 24169
c19d1205 24170 /* Comparisons. */
21d799b5
NC
24171 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24172 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24173 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24174 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 24175
62f3b8c8
PB
24176 /* Double precision load/store are still present on single precision
24177 implementations. */
24178 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24179 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
24180 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24181 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24182 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24183 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24184 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24185 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24186 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24187 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 24188
c921be7d
NC
24189#undef ARM_VARIANT
24190#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24191
c19d1205 24192 /* Moves and type conversions. */
21d799b5
NC
24193 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24194 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24195 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24196 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24197 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24198 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24199 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24200 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24201 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24202 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24203 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24204 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 24205
c19d1205 24206 /* Monadic operations. */
21d799b5
NC
24207 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24208 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24209 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
24210
24211 /* Dyadic operations. */
21d799b5
NC
24212 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24213 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24214 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24215 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24216 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24217 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24218 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24219 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24220 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 24221
c19d1205 24222 /* Comparisons. */
21d799b5
NC
24223 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24224 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24225 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24226 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 24227
037e8744
JB
24228/* Instructions which may belong to either the Neon or VFP instruction sets.
24229 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
24230#undef ARM_VARIANT
24231#define ARM_VARIANT & fpu_vfp_ext_v1xd
24232#undef THUMB_VARIANT
24233#define THUMB_VARIANT & fpu_vfp_ext_v1xd
24234
037e8744
JB
24235 /* These mnemonics are unique to VFP. */
24236 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24237 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
24238 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24239 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24240 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
24241 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24242 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24243 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24244
24245 /* Mnemonics shared by Neon and VFP. */
21d799b5 24246 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 24247
55881a11
MGD
24248 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24249 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24250 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24251 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24252 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24253 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 24254
dd9634d9 24255 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 24256 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
24257 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24258 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 24259
037e8744
JB
24260
24261 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
24262 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24263
32c36c3c
AV
24264#undef THUMB_VARIANT
24265/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24266 by different feature bits. Since we are setting the Thumb guard, we can
24267 require Thumb-1 which makes it a nop guard and set the right feature bit in
24268 do_vldr_vstr (). */
24269#define THUMB_VARIANT & arm_ext_v4t
24270 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24271 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24272
9db2f6b4
RL
24273#undef ARM_VARIANT
24274#define ARM_VARIANT & arm_ext_fp16
24275#undef THUMB_VARIANT
24276#define THUMB_VARIANT & arm_ext_fp16
24277 /* New instructions added from v8.2, allowing the extraction and insertion of
24278 the upper 16 bits of a 32-bit vector register. */
24279 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24280 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24281
dec41383
JW
24282 /* New backported fma/fms instructions optional in v8.2. */
24283 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24284 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24285
c921be7d
NC
24286#undef THUMB_VARIANT
24287#define THUMB_VARIANT & fpu_neon_ext_v1
24288#undef ARM_VARIANT
24289#define ARM_VARIANT & fpu_neon_ext_v1
24290
5287ad62
JB
24291 /* Data processing with three registers of the same length. */
24292 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24293 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24294 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 24295 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 24296 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
24297 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24298 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24299 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 24300 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7 24301 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
627907b7 24302 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
24303 /* If not immediate, fall back to neon_dyadic_i64_su.
24304 shl_imm should accept I8 I16 I32 I64,
24305 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
24306 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24307 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24308 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24309 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 24310 /* Logic ops, types optional & ignored. */
4316f0d2 24311 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24312 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24313 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24314 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24315 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
24316 /* Bitfield ops, untyped. */
24317 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24318 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24319 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24320 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24321 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24322 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 24323 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 24324 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24325 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24326 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
24327 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24328 back to neon_dyadic_if_su. */
21d799b5
NC
24329 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24330 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24331 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24332 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24333 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24334 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24335 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24336 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 24337 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
24338 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24339 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 24340 /* As above, D registers only. */
21d799b5
NC
24341 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24342 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 24343 /* Int and float variants, signedness unimportant. */
21d799b5
NC
24344 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24345 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24346 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 24347 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
24348 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24349 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
24350 /* vtst takes sizes 8, 16, 32. */
24351 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24352 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24353 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 24354 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 24355 /* VQD{R}MULH takes S16 S32. */
21d799b5 24356 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21d799b5 24357 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
24358 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24359 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24360 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24361 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
24362 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24363 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24364 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24365 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
24366 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24367 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24368 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24369 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 24370 /* ARM v8.1 extension. */
643afb90
MW
24371 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24372 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24373 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
24374
24375 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 24376 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
24377 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24378
24379 /* Data processing with two registers and a shift amount. */
24380 /* Right shifts, and variants with rounding.
24381 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24382 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
5287ad62
JB
24383 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24384 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24385 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24386 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24387 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24388 /* Shift and insert. Sizes accepted 8 16 32 64. */
5287ad62 24389 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
5287ad62
JB
24390 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24391 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24392 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24393 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24394 /* Right shift immediate, saturating & narrowing, with rounding variants.
24395 Types accepted S16 S32 S64 U16 U32 U64. */
24396 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24397 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24398 /* As above, unsigned. Types accepted S16 S32 S64. */
24399 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24400 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24401 /* Right shift narrowing. Types accepted I16 I32 I64. */
24402 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24403 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24404 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24405 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24406 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24407 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24408
4316f0d2 24409 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24410
24411 /* Data processing, three registers of different lengths. */
24412 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24413 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24414 /* If not scalar, fall back to neon_dyadic_long.
24415 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24416 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24417 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24418 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24419 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24420 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24421 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24422 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24423 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24424 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24425 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24426 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24427 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24428 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24429 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24430 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24431 S16 S32 U16 U32. */
21d799b5 24432 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24433
24434 /* Extract. Size 8. */
3b8d421e
PB
24435 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24436 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24437
24438 /* Two registers, miscellaneous. */
24439 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
5287ad62 24440 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
5287ad62 24441 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
5287ad62
JB
24442 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24443 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24444 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24445 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24446 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24447 /* VMOVN. Types I16 I32 I64. */
21d799b5 24448 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24449 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24450 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24451 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24452 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24453 /* VZIP / VUZP. Sizes 8 16 32. */
24454 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24455 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24456 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24457 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24458 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 24459 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
24460 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24461 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24462 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24463 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24464 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24465 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24466 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24467 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24468 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24469 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24470 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24471 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24472 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24473 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24474 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24475 /* VCNT. Size 8. */
24476 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24477 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24478 /* Two address, untyped. */
24479 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24480 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24481 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24482 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24483 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24484
24485 /* Table lookup. Size 8. */
24486 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24487 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24488
c921be7d
NC
24489#undef THUMB_VARIANT
24490#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24491#undef ARM_VARIANT
24492#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24493
5287ad62 24494 /* Neon element/structure load/store. */
21d799b5
NC
24495 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24496 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24497 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24498 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24499 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24500 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24501 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24502 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24503
c921be7d 24504#undef THUMB_VARIANT
74db7efb
NC
24505#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24506#undef ARM_VARIANT
24507#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24508 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24509 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24510 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24511 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24512 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24513 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24514 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24515 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24516 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24517
74db7efb 24518#undef THUMB_VARIANT
c921be7d
NC
24519#define THUMB_VARIANT & fpu_vfp_ext_v3
24520#undef ARM_VARIANT
24521#define ARM_VARIANT & fpu_vfp_ext_v3
24522
21d799b5 24523 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24524 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24525 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24526 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24527 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24528 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24529 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24530 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24531 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24532
74db7efb
NC
24533#undef ARM_VARIANT
24534#define ARM_VARIANT & fpu_vfp_ext_fma
24535#undef THUMB_VARIANT
24536#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24537 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24538 VFP FMA variant; NEON and VFP FMA always includes the NEON
24539 FMA instructions. */
d58196e0
AV
24540 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24541 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24542
62f3b8c8
PB
24543 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24544 the v form should always be used. */
24545 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24546 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24547 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24548 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24549 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24550 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24551
5287ad62 24552#undef THUMB_VARIANT
c921be7d
NC
24553#undef ARM_VARIANT
24554#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24555
21d799b5
NC
24556 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24557 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24558 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24559 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24560 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24561 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24562 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24563 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24564
c921be7d
NC
24565#undef ARM_VARIANT
24566#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24567
21d799b5
NC
24568 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24569 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24570 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24571 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24572 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24573 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24574 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24575 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24576 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24577 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24578 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24579 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24580 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24581 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24582 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24583 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24584 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24585 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24586 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24587 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24588 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24589 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24590 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24591 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24592 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24593 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24594 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24595 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24596 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24597 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24598 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24599 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24600 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24601 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24602 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24603 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24604 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24605 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24608 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24609 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24610 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24611 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24612 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24613 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24614 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24615 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24616 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24617 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24618 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24619 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24620 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24621 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24622 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24623 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24624 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24625 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24626 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24627 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24628 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24629 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24630 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24631 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24632 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24633 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24634 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24635 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24636 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24637 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24638 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24639 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24640 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24641 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24642 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24643 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24644 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24645 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24646 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24647 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24648 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24649 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24650 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24651 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24652 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24653 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24654 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24655 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24656 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24657 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24658 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24659 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24660 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24661 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24662 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24663 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24664 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24665 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24666 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24667 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24668 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24669 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24670 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24671 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24672 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24673 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24674 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24675 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24676 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24677 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24678 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24679 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24680 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24681 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24682 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24683 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24684 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24685 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24686 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24687 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24688 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24689 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24690 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24691 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24692 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24693 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24694 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24695 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24696 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24697 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24698 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24699 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24700 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24701 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24702 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24703 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24704 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24705 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24706 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24707 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24708 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24709 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24710 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24711 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24712 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24713 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24714 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24715 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24716 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24717 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24718 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24719 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24720 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24721 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24722 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24723 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24724 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24725 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24726 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24727 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24728 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24729 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24730
c921be7d
NC
24731#undef ARM_VARIANT
24732#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24733
21d799b5
NC
24734 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24735 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24736 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24737 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24738 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24739 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24740 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24741 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24742 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24743 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24744 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24745 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24746 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24747 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24748 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24749 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24750 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24751 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24752 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24753 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24754 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24755 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24756 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24757 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24758 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24759 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24760 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24761 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24762 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24763 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24764 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24765 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24766 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24767 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24768 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24769 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24770 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24771 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24772 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24773 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24774 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24775 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24776 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24777 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24778 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24779 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24780 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24781 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24782 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24783 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24784 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24785 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24786 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24787 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24788 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24789 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24790 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24791
c921be7d
NC
24792#undef ARM_VARIANT
24793#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24794
21d799b5
NC
24795 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24796 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24797 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24798 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24799 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24800 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24801 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24802 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24803 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24804 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24805 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24806 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24807 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24808 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24809 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24810 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24811 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24812 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24813 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24814 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24815 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24816 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24817 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24818 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24819 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24820 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24821 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24822 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24823 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24824 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24825 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24826 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24827 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24828 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24829 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24830 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24831 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24832 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24833 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24834 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24835 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24836 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24837 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24838 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24839 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24840 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24841 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24842 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24843 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24844 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24845 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24846 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24847 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24848 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24849 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24850 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24851 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24852 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24853 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24854 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24855 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24856 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24857 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24858 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24859 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24860 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24861 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24862 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24863 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24864 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24865 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24866 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24867 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24868 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24869 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24870 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24871
7fadb25d
SD
24872 /* ARMv8.5-A instructions. */
24873#undef ARM_VARIANT
24874#define ARM_VARIANT & arm_ext_sb
24875#undef THUMB_VARIANT
24876#define THUMB_VARIANT & arm_ext_sb
24877 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24878
dad0c3bf
SD
24879#undef ARM_VARIANT
24880#define ARM_VARIANT & arm_ext_predres
24881#undef THUMB_VARIANT
24882#define THUMB_VARIANT & arm_ext_predres
24883 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24884 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24885 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24886
16a1fa25 24887 /* ARMv8-M instructions. */
4ed7ed8d
TP
24888#undef ARM_VARIANT
24889#define ARM_VARIANT NULL
24890#undef THUMB_VARIANT
24891#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24892 ToU("sg", e97fe97f, 0, (), noargs),
24893 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24894 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24895 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24896 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24897 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24898 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24899
24900 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24901 instructions behave as nop if no VFP is present. */
24902#undef THUMB_VARIANT
24903#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24904 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24905 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24906
24907 /* Armv8.1-M Mainline instructions. */
24908#undef THUMB_VARIANT
24909#define THUMB_VARIANT & arm_ext_v8_1m_main
24910 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24911 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24912 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24913 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24914 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24915
24916 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24917 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24918 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24919
efd6b359 24920 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24921 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24922
24923#undef THUMB_VARIANT
24924#define THUMB_VARIANT & mve_ext
1b883319
AV
24925
24926 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24927 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24928 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24929 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24930 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24931 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24932 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24933 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24934 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24935 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24936 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24937 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24938 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24939 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24940 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24941
5ee91343
AV
24942 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24943 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24944 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24945 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24946 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24947 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24948 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24949 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24950 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24951 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24952 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24953 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24954 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24955 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24956 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24957
a302e574 24958 /* MVE and MVE FP only. */
7df54120 24959 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24960 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24961 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24962 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24963 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24964 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24965 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24966 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24967 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24968 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24969 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24970 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24971 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24972 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24973 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24974 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24975 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24976
35c228db
AV
24977 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24978 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24979 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24980 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24981 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24982 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24983 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24984 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24985 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24986 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24987 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24988 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24989 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24990 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24991 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24992 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24993 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24994 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24995 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24996 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24997
57785aa2
AV
24998 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24999 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 25000 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
25001 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25002 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25003 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25004 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
25005 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25006 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25007 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25008 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
25009 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25010 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
25011 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25012 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25013 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25014 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 25015
93925576
AV
25016 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25017 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25018 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25019 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25020 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25021 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25022 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25023 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25024 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25025 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25026 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25027 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25028 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25029 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25030 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25031 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25032 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25033 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25034 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25035 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25036
2d78f95b
AV
25037 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25038 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25039 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
25040 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25041 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 25042
8b8b22a4
AV
25043 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25044 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25045 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25046 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25047 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25048 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25049 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25050 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
42b16635
AV
25051 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25052 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25053 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
35d1cfc2
AV
25054 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25055 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
1be7aba3
AV
25056 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25057 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25058 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25059 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
8b8b22a4 25060
4aa88b50
AV
25061 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25062 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25063 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25064 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25065 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25066 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25067 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25068 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25069 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25070 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25071 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25072 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25073
5d281bf0
AV
25074#undef THUMB_VARIANT
25075#define THUMB_VARIANT & mve_fp_ext
25076 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 25077 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
25078 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25079 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
25080 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25081 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25082 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25083 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 25084
5ee91343 25085#undef ARM_VARIANT
57785aa2 25086#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
25087#undef THUMB_VARIANT
25088#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
25089 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25090 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 25091
57785aa2
AV
25092 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25093
25094#undef ARM_VARIANT
25095#define ARM_VARIANT & fpu_vfp_ext_v1xd
25096
25097 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25098 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25099 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25100 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25101
886e1c73
AV
25102 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25103 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25104 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 25105
485dee97
AV
25106 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25107 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25108
57785aa2
AV
25109 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25110 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25111
1b883319
AV
25112 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25113 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25114
57785aa2
AV
25115#undef ARM_VARIANT
25116#define ARM_VARIANT & fpu_vfp_ext_v2
25117
25118 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25119 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25120 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25121 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25122
dd9634d9
AV
25123#undef ARM_VARIANT
25124#define ARM_VARIANT & fpu_vfp_ext_armv8xd
25125 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25126 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25127 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25128 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
25129 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25130 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
25131
25132#undef ARM_VARIANT
5ee91343 25133#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 25134 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
25135 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25136 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25137 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
25138 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25139 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25140 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25141 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25142 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
25143 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25144 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 25145 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
25146 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25147 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25148 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
25149 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25150 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
25151 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25152 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
25153 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25154 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25155 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
42b16635
AV
25156 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25157 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25158 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
1be7aba3
AV
25159 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25160 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
4401c241
AV
25161 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25162 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25163 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25164 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25165 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25166 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25167 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
5d281bf0
AV
25168
25169#undef ARM_VARIANT
25170#define ARM_VARIANT & arm_ext_v8_3
25171#undef THUMB_VARIANT
25172#define THUMB_VARIANT & arm_ext_v6t2_v8m
25173 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25174 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
25175};
25176#undef ARM_VARIANT
25177#undef THUMB_VARIANT
25178#undef TCE
c19d1205
ZW
25179#undef TUE
25180#undef TUF
25181#undef TCC
8f06b2d8 25182#undef cCE
e3cb604e
PB
25183#undef cCL
25184#undef C3E
4389b29a 25185#undef C3
c19d1205
ZW
25186#undef CE
25187#undef CM
4389b29a 25188#undef CL
c19d1205
ZW
25189#undef UE
25190#undef UF
25191#undef UT
5287ad62
JB
25192#undef NUF
25193#undef nUF
25194#undef NCE
25195#undef nCE
c19d1205
ZW
25196#undef OPS0
25197#undef OPS1
25198#undef OPS2
25199#undef OPS3
25200#undef OPS4
25201#undef OPS5
25202#undef OPS6
25203#undef do_0
4389b29a
AV
25204#undef ToC
25205#undef toC
25206#undef ToU
f6b2b12d 25207#undef toU
c19d1205
ZW
25208\f
25209/* MD interface: bits in the object file. */
bfae80f2 25210
c19d1205
ZW
25211/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25212 for use in the a.out file, and stores them in the array pointed to by buf.
25213 This knows about the endian-ness of the target machine and does
25214 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25215 2 (short) and 4 (long) Floating numbers are put out as a series of
25216 LITTLENUMS (shorts, here at least). */
b99bd4ef 25217
c19d1205
ZW
25218void
25219md_number_to_chars (char * buf, valueT val, int n)
25220{
25221 if (target_big_endian)
25222 number_to_chars_bigendian (buf, val, n);
25223 else
25224 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
25225}
25226
c19d1205
ZW
25227static valueT
25228md_chars_to_number (char * buf, int n)
bfae80f2 25229{
c19d1205
ZW
25230 valueT result = 0;
25231 unsigned char * where = (unsigned char *) buf;
bfae80f2 25232
c19d1205 25233 if (target_big_endian)
b99bd4ef 25234 {
c19d1205
ZW
25235 while (n--)
25236 {
25237 result <<= 8;
25238 result |= (*where++ & 255);
25239 }
b99bd4ef 25240 }
c19d1205 25241 else
b99bd4ef 25242 {
c19d1205
ZW
25243 while (n--)
25244 {
25245 result <<= 8;
25246 result |= (where[n] & 255);
25247 }
bfae80f2 25248 }
b99bd4ef 25249
c19d1205 25250 return result;
bfae80f2 25251}
b99bd4ef 25252
c19d1205 25253/* MD interface: Sections. */
b99bd4ef 25254
fa94de6b
RM
25255/* Calculate the maximum variable size (i.e., excluding fr_fix)
25256 that an rs_machine_dependent frag may reach. */
25257
25258unsigned int
25259arm_frag_max_var (fragS *fragp)
25260{
25261 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25262 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25263
25264 Note that we generate relaxable instructions even for cases that don't
25265 really need it, like an immediate that's a trivial constant. So we're
25266 overestimating the instruction size for some of those cases. Rather
25267 than putting more intelligence here, it would probably be better to
25268 avoid generating a relaxation frag in the first place when it can be
25269 determined up front that a short instruction will suffice. */
25270
25271 gas_assert (fragp->fr_type == rs_machine_dependent);
25272 return INSN_SIZE;
25273}
25274
0110f2b8
PB
25275/* Estimate the size of a frag before relaxing. Assume everything fits in
25276 2 bytes. */
25277
c19d1205 25278int
0110f2b8 25279md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
25280 segT segtype ATTRIBUTE_UNUSED)
25281{
0110f2b8
PB
25282 fragp->fr_var = 2;
25283 return 2;
25284}
25285
25286/* Convert a machine dependent frag. */
25287
25288void
25289md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25290{
25291 unsigned long insn;
25292 unsigned long old_op;
25293 char *buf;
25294 expressionS exp;
25295 fixS *fixp;
25296 int reloc_type;
25297 int pc_rel;
25298 int opcode;
25299
25300 buf = fragp->fr_literal + fragp->fr_fix;
25301
25302 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
25303 if (fragp->fr_symbol)
25304 {
0110f2b8
PB
25305 exp.X_op = O_symbol;
25306 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
25307 }
25308 else
25309 {
0110f2b8 25310 exp.X_op = O_constant;
5f4273c7 25311 }
0110f2b8
PB
25312 exp.X_add_number = fragp->fr_offset;
25313 opcode = fragp->fr_subtype;
25314 switch (opcode)
25315 {
25316 case T_MNEM_ldr_pc:
25317 case T_MNEM_ldr_pc2:
25318 case T_MNEM_ldr_sp:
25319 case T_MNEM_str_sp:
25320 case T_MNEM_ldr:
25321 case T_MNEM_ldrb:
25322 case T_MNEM_ldrh:
25323 case T_MNEM_str:
25324 case T_MNEM_strb:
25325 case T_MNEM_strh:
25326 if (fragp->fr_var == 4)
25327 {
5f4273c7 25328 insn = THUMB_OP32 (opcode);
0110f2b8
PB
25329 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25330 {
25331 insn |= (old_op & 0x700) << 4;
25332 }
25333 else
25334 {
25335 insn |= (old_op & 7) << 12;
25336 insn |= (old_op & 0x38) << 13;
25337 }
25338 insn |= 0x00000c00;
25339 put_thumb32_insn (buf, insn);
25340 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25341 }
25342 else
25343 {
25344 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25345 }
25346 pc_rel = (opcode == T_MNEM_ldr_pc2);
25347 break;
25348 case T_MNEM_adr:
25349 if (fragp->fr_var == 4)
25350 {
25351 insn = THUMB_OP32 (opcode);
25352 insn |= (old_op & 0xf0) << 4;
25353 put_thumb32_insn (buf, insn);
25354 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25355 }
25356 else
25357 {
25358 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25359 exp.X_add_number -= 4;
25360 }
25361 pc_rel = 1;
25362 break;
25363 case T_MNEM_mov:
25364 case T_MNEM_movs:
25365 case T_MNEM_cmp:
25366 case T_MNEM_cmn:
25367 if (fragp->fr_var == 4)
25368 {
25369 int r0off = (opcode == T_MNEM_mov
25370 || opcode == T_MNEM_movs) ? 0 : 8;
25371 insn = THUMB_OP32 (opcode);
25372 insn = (insn & 0xe1ffffff) | 0x10000000;
25373 insn |= (old_op & 0x700) << r0off;
25374 put_thumb32_insn (buf, insn);
25375 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25376 }
25377 else
25378 {
25379 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25380 }
25381 pc_rel = 0;
25382 break;
25383 case T_MNEM_b:
25384 if (fragp->fr_var == 4)
25385 {
25386 insn = THUMB_OP32(opcode);
25387 put_thumb32_insn (buf, insn);
25388 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25389 }
25390 else
25391 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25392 pc_rel = 1;
25393 break;
25394 case T_MNEM_bcond:
25395 if (fragp->fr_var == 4)
25396 {
25397 insn = THUMB_OP32(opcode);
25398 insn |= (old_op & 0xf00) << 14;
25399 put_thumb32_insn (buf, insn);
25400 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25401 }
25402 else
25403 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25404 pc_rel = 1;
25405 break;
25406 case T_MNEM_add_sp:
25407 case T_MNEM_add_pc:
25408 case T_MNEM_inc_sp:
25409 case T_MNEM_dec_sp:
25410 if (fragp->fr_var == 4)
25411 {
25412 /* ??? Choose between add and addw. */
25413 insn = THUMB_OP32 (opcode);
25414 insn |= (old_op & 0xf0) << 4;
25415 put_thumb32_insn (buf, insn);
16805f35
PB
25416 if (opcode == T_MNEM_add_pc)
25417 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25418 else
25419 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
25420 }
25421 else
25422 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25423 pc_rel = 0;
25424 break;
25425
25426 case T_MNEM_addi:
25427 case T_MNEM_addis:
25428 case T_MNEM_subi:
25429 case T_MNEM_subis:
25430 if (fragp->fr_var == 4)
25431 {
25432 insn = THUMB_OP32 (opcode);
25433 insn |= (old_op & 0xf0) << 4;
25434 insn |= (old_op & 0xf) << 16;
25435 put_thumb32_insn (buf, insn);
16805f35
PB
25436 if (insn & (1 << 20))
25437 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25438 else
25439 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25440 }
25441 else
25442 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25443 pc_rel = 0;
25444 break;
25445 default:
5f4273c7 25446 abort ();
0110f2b8
PB
25447 }
25448 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25449 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25450 fixp->fx_file = fragp->fr_file;
25451 fixp->fx_line = fragp->fr_line;
25452 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25453
25454 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25455 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25456 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25457 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25458}
25459
25460/* Return the size of a relaxable immediate operand instruction.
25461 SHIFT and SIZE specify the form of the allowable immediate. */
25462static int
25463relax_immediate (fragS *fragp, int size, int shift)
25464{
25465 offsetT offset;
25466 offsetT mask;
25467 offsetT low;
25468
25469 /* ??? Should be able to do better than this. */
25470 if (fragp->fr_symbol)
25471 return 4;
25472
25473 low = (1 << shift) - 1;
25474 mask = (1 << (shift + size)) - (1 << shift);
25475 offset = fragp->fr_offset;
25476 /* Force misaligned offsets to 32-bit variant. */
25477 if (offset & low)
5e77afaa 25478 return 4;
0110f2b8
PB
25479 if (offset & ~mask)
25480 return 4;
25481 return 2;
25482}
25483
5e77afaa
PB
25484/* Get the address of a symbol during relaxation. */
25485static addressT
5f4273c7 25486relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25487{
25488 fragS *sym_frag;
25489 addressT addr;
25490 symbolS *sym;
25491
25492 sym = fragp->fr_symbol;
25493 sym_frag = symbol_get_frag (sym);
25494 know (S_GET_SEGMENT (sym) != absolute_section
25495 || sym_frag == &zero_address_frag);
25496 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25497
25498 /* If frag has yet to be reached on this pass, assume it will
25499 move by STRETCH just as we did. If this is not so, it will
25500 be because some frag between grows, and that will force
25501 another pass. */
25502
25503 if (stretch != 0
25504 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25505 {
25506 fragS *f;
25507
25508 /* Adjust stretch for any alignment frag. Note that if have
25509 been expanding the earlier code, the symbol may be
25510 defined in what appears to be an earlier frag. FIXME:
25511 This doesn't handle the fr_subtype field, which specifies
25512 a maximum number of bytes to skip when doing an
25513 alignment. */
25514 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25515 {
25516 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25517 {
25518 if (stretch < 0)
25519 stretch = - ((- stretch)
25520 & ~ ((1 << (int) f->fr_offset) - 1));
25521 else
25522 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25523 if (stretch == 0)
25524 break;
25525 }
25526 }
25527 if (f != NULL)
25528 addr += stretch;
25529 }
5e77afaa
PB
25530
25531 return addr;
25532}
25533
0110f2b8
PB
25534/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25535 load. */
25536static int
5e77afaa 25537relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25538{
25539 addressT addr;
25540 offsetT val;
25541
25542 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25543 if (fragp->fr_symbol == NULL
25544 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25545 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25546 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25547 return 4;
25548
5f4273c7 25549 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25550 addr = fragp->fr_address + fragp->fr_fix;
25551 addr = (addr + 4) & ~3;
5e77afaa 25552 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25553 if (val & 3)
5e77afaa 25554 return 4;
0110f2b8
PB
25555 val -= addr;
25556 if (val < 0 || val > 1020)
25557 return 4;
25558 return 2;
25559}
25560
25561/* Return the size of a relaxable add/sub immediate instruction. */
25562static int
25563relax_addsub (fragS *fragp, asection *sec)
25564{
25565 char *buf;
25566 int op;
25567
25568 buf = fragp->fr_literal + fragp->fr_fix;
25569 op = bfd_get_16(sec->owner, buf);
25570 if ((op & 0xf) == ((op >> 4) & 0xf))
25571 return relax_immediate (fragp, 8, 0);
25572 else
25573 return relax_immediate (fragp, 3, 0);
25574}
25575
e83a675f
RE
25576/* Return TRUE iff the definition of symbol S could be pre-empted
25577 (overridden) at link or load time. */
25578static bfd_boolean
25579symbol_preemptible (symbolS *s)
25580{
25581 /* Weak symbols can always be pre-empted. */
25582 if (S_IS_WEAK (s))
25583 return TRUE;
25584
25585 /* Non-global symbols cannot be pre-empted. */
25586 if (! S_IS_EXTERNAL (s))
25587 return FALSE;
25588
25589#ifdef OBJ_ELF
25590 /* In ELF, a global symbol can be marked protected, or private. In that
25591 case it can't be pre-empted (other definitions in the same link unit
25592 would violate the ODR). */
25593 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25594 return FALSE;
25595#endif
25596
25597 /* Other global symbols might be pre-empted. */
25598 return TRUE;
25599}
0110f2b8
PB
25600
25601/* Return the size of a relaxable branch instruction. BITS is the
25602 size of the offset field in the narrow instruction. */
25603
25604static int
5e77afaa 25605relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25606{
25607 addressT addr;
25608 offsetT val;
25609 offsetT limit;
25610
25611 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25612 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25613 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25614 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25615 return 4;
25616
267bf995 25617#ifdef OBJ_ELF
e83a675f 25618 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25619 if (S_IS_DEFINED (fragp->fr_symbol)
25620 && ARM_IS_FUNC (fragp->fr_symbol))
25621 return 4;
e83a675f 25622#endif
0d9b4b55 25623
e83a675f 25624 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25625 return 4;
267bf995 25626
5f4273c7 25627 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25628 addr = fragp->fr_address + fragp->fr_fix + 4;
25629 val -= addr;
25630
25631 /* Offset is a signed value *2 */
25632 limit = 1 << bits;
25633 if (val >= limit || val < -limit)
25634 return 4;
25635 return 2;
25636}
25637
25638
25639/* Relax a machine dependent frag. This returns the amount by which
25640 the current size of the frag should change. */
25641
25642int
5e77afaa 25643arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25644{
25645 int oldsize;
25646 int newsize;
25647
25648 oldsize = fragp->fr_var;
25649 switch (fragp->fr_subtype)
25650 {
25651 case T_MNEM_ldr_pc2:
5f4273c7 25652 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25653 break;
25654 case T_MNEM_ldr_pc:
25655 case T_MNEM_ldr_sp:
25656 case T_MNEM_str_sp:
5f4273c7 25657 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25658 break;
25659 case T_MNEM_ldr:
25660 case T_MNEM_str:
5f4273c7 25661 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25662 break;
25663 case T_MNEM_ldrh:
25664 case T_MNEM_strh:
5f4273c7 25665 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25666 break;
25667 case T_MNEM_ldrb:
25668 case T_MNEM_strb:
5f4273c7 25669 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25670 break;
25671 case T_MNEM_adr:
5f4273c7 25672 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25673 break;
25674 case T_MNEM_mov:
25675 case T_MNEM_movs:
25676 case T_MNEM_cmp:
25677 case T_MNEM_cmn:
5f4273c7 25678 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25679 break;
25680 case T_MNEM_b:
5f4273c7 25681 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25682 break;
25683 case T_MNEM_bcond:
5f4273c7 25684 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25685 break;
25686 case T_MNEM_add_sp:
25687 case T_MNEM_add_pc:
25688 newsize = relax_immediate (fragp, 8, 2);
25689 break;
25690 case T_MNEM_inc_sp:
25691 case T_MNEM_dec_sp:
25692 newsize = relax_immediate (fragp, 7, 2);
25693 break;
25694 case T_MNEM_addi:
25695 case T_MNEM_addis:
25696 case T_MNEM_subi:
25697 case T_MNEM_subis:
25698 newsize = relax_addsub (fragp, sec);
25699 break;
25700 default:
5f4273c7 25701 abort ();
0110f2b8 25702 }
5e77afaa
PB
25703
25704 fragp->fr_var = newsize;
25705 /* Freeze wide instructions that are at or before the same location as
25706 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25707 Don't freeze them unconditionally because targets may be artificially
25708 misaligned by the expansion of preceding frags. */
5e77afaa 25709 if (stretch <= 0 && newsize > 2)
0110f2b8 25710 {
0110f2b8 25711 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25712 frag_wane (fragp);
0110f2b8 25713 }
5e77afaa 25714
0110f2b8 25715 return newsize - oldsize;
c19d1205 25716}
b99bd4ef 25717
c19d1205 25718/* Round up a section size to the appropriate boundary. */
b99bd4ef 25719
c19d1205
ZW
25720valueT
25721md_section_align (segT segment ATTRIBUTE_UNUSED,
25722 valueT size)
25723{
6844c0cc 25724 return size;
bfae80f2 25725}
b99bd4ef 25726
c19d1205
ZW
25727/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25728 of an rs_align_code fragment. */
25729
25730void
25731arm_handle_align (fragS * fragP)
bfae80f2 25732{
d9235011 25733 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25734 {
25735 { /* ARMv1 */
25736 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25737 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25738 },
25739 { /* ARMv6k */
25740 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25741 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25742 },
25743 };
d9235011 25744 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25745 {
25746 { /* Thumb-1 */
25747 {0xc0, 0x46}, /* LE */
25748 {0x46, 0xc0}, /* BE */
25749 },
25750 { /* Thumb-2 */
25751 {0x00, 0xbf}, /* LE */
25752 {0xbf, 0x00} /* BE */
25753 }
25754 };
d9235011 25755 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25756 { /* Wide Thumb-2 */
25757 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25758 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25759 };
c921be7d 25760
e7495e45 25761 unsigned bytes, fix, noop_size;
c19d1205 25762 char * p;
d9235011
TS
25763 const unsigned char * noop;
25764 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25765#ifdef OBJ_ELF
25766 enum mstate state;
25767#endif
bfae80f2 25768
c19d1205 25769 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25770 return;
25771
c19d1205
ZW
25772 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25773 p = fragP->fr_literal + fragP->fr_fix;
25774 fix = 0;
bfae80f2 25775
c19d1205
ZW
25776 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25777 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25778
cd000bff 25779 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25780
cd000bff 25781 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25782 {
7f78eb34
JW
25783 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25784 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25785 {
25786 narrow_noop = thumb_noop[1][target_big_endian];
25787 noop = wide_thumb_noop[target_big_endian];
25788 }
c19d1205 25789 else
e7495e45
NS
25790 noop = thumb_noop[0][target_big_endian];
25791 noop_size = 2;
cd000bff
DJ
25792#ifdef OBJ_ELF
25793 state = MAP_THUMB;
25794#endif
7ed4c4c5
NC
25795 }
25796 else
25797 {
7f78eb34
JW
25798 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25799 ? selected_cpu : arm_arch_none,
25800 arm_ext_v6k) != 0]
e7495e45
NS
25801 [target_big_endian];
25802 noop_size = 4;
cd000bff
DJ
25803#ifdef OBJ_ELF
25804 state = MAP_ARM;
25805#endif
7ed4c4c5 25806 }
c921be7d 25807
e7495e45 25808 fragP->fr_var = noop_size;
c921be7d 25809
c19d1205 25810 if (bytes & (noop_size - 1))
7ed4c4c5 25811 {
c19d1205 25812 fix = bytes & (noop_size - 1);
cd000bff
DJ
25813#ifdef OBJ_ELF
25814 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25815#endif
c19d1205
ZW
25816 memset (p, 0, fix);
25817 p += fix;
25818 bytes -= fix;
a737bd4d 25819 }
a737bd4d 25820
e7495e45
NS
25821 if (narrow_noop)
25822 {
25823 if (bytes & noop_size)
25824 {
25825 /* Insert a narrow noop. */
25826 memcpy (p, narrow_noop, noop_size);
25827 p += noop_size;
25828 bytes -= noop_size;
25829 fix += noop_size;
25830 }
25831
25832 /* Use wide noops for the remainder */
25833 noop_size = 4;
25834 }
25835
c19d1205 25836 while (bytes >= noop_size)
a737bd4d 25837 {
c19d1205
ZW
25838 memcpy (p, noop, noop_size);
25839 p += noop_size;
25840 bytes -= noop_size;
25841 fix += noop_size;
a737bd4d
NC
25842 }
25843
c19d1205 25844 fragP->fr_fix += fix;
a737bd4d
NC
25845}
25846
c19d1205
ZW
25847/* Called from md_do_align. Used to create an alignment
25848 frag in a code section. */
25849
25850void
25851arm_frag_align_code (int n, int max)
bfae80f2 25852{
c19d1205 25853 char * p;
7ed4c4c5 25854
c19d1205 25855 /* We assume that there will never be a requirement
6ec8e702 25856 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25857 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25858 {
25859 char err_msg[128];
25860
fa94de6b 25861 sprintf (err_msg,
477330fc
RM
25862 _("alignments greater than %d bytes not supported in .text sections."),
25863 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25864 as_fatal ("%s", err_msg);
6ec8e702 25865 }
bfae80f2 25866
c19d1205
ZW
25867 p = frag_var (rs_align_code,
25868 MAX_MEM_FOR_RS_ALIGN_CODE,
25869 1,
25870 (relax_substateT) max,
25871 (symbolS *) NULL,
25872 (offsetT) n,
25873 (char *) NULL);
25874 *p = 0;
25875}
bfae80f2 25876
8dc2430f
NC
25877/* Perform target specific initialisation of a frag.
25878 Note - despite the name this initialisation is not done when the frag
25879 is created, but only when its type is assigned. A frag can be created
25880 and used a long time before its type is set, so beware of assuming that
33eaf5de 25881 this initialisation is performed first. */
bfae80f2 25882
cd000bff
DJ
25883#ifndef OBJ_ELF
25884void
25885arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25886{
25887 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25888 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25889}
25890
25891#else /* OBJ_ELF is defined. */
c19d1205 25892void
cd000bff 25893arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25894{
e8d84ca1 25895 bfd_boolean frag_thumb_mode;
b968d18a 25896
8dc2430f
NC
25897 /* If the current ARM vs THUMB mode has not already
25898 been recorded into this frag then do so now. */
cd000bff 25899 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25900 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25901
e8d84ca1
NC
25902 /* PR 21809: Do not set a mapping state for debug sections
25903 - it just confuses other tools. */
25904 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25905 return;
25906
b968d18a 25907 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25908
f9c1b181
RL
25909 /* Record a mapping symbol for alignment frags. We will delete this
25910 later if the alignment ends up empty. */
25911 switch (fragP->fr_type)
25912 {
25913 case rs_align:
25914 case rs_align_test:
25915 case rs_fill:
25916 mapping_state_2 (MAP_DATA, max_chars);
25917 break;
25918 case rs_align_code:
b968d18a 25919 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25920 break;
25921 default:
25922 break;
cd000bff 25923 }
bfae80f2
RE
25924}
25925
c19d1205
ZW
25926/* When we change sections we need to issue a new mapping symbol. */
25927
25928void
25929arm_elf_change_section (void)
bfae80f2 25930{
c19d1205
ZW
25931 /* Link an unlinked unwind index table section to the .text section. */
25932 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25933 && elf_linked_to_section (now_seg) == NULL)
25934 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25935}
25936
c19d1205
ZW
25937int
25938arm_elf_section_type (const char * str, size_t len)
e45d0630 25939{
c19d1205
ZW
25940 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25941 return SHT_ARM_EXIDX;
e45d0630 25942
c19d1205
ZW
25943 return -1;
25944}
25945\f
25946/* Code to deal with unwinding tables. */
e45d0630 25947
c19d1205 25948static void add_unwind_adjustsp (offsetT);
e45d0630 25949
5f4273c7 25950/* Generate any deferred unwind frame offset. */
e45d0630 25951
bfae80f2 25952static void
c19d1205 25953flush_pending_unwind (void)
bfae80f2 25954{
c19d1205 25955 offsetT offset;
bfae80f2 25956
c19d1205
ZW
25957 offset = unwind.pending_offset;
25958 unwind.pending_offset = 0;
25959 if (offset != 0)
25960 add_unwind_adjustsp (offset);
bfae80f2
RE
25961}
25962
c19d1205
ZW
25963/* Add an opcode to this list for this function. Two-byte opcodes should
25964 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25965 order. */
25966
bfae80f2 25967static void
c19d1205 25968add_unwind_opcode (valueT op, int length)
bfae80f2 25969{
c19d1205
ZW
25970 /* Add any deferred stack adjustment. */
25971 if (unwind.pending_offset)
25972 flush_pending_unwind ();
bfae80f2 25973
c19d1205 25974 unwind.sp_restored = 0;
bfae80f2 25975
c19d1205 25976 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25977 {
c19d1205
ZW
25978 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25979 if (unwind.opcodes)
325801bd
TS
25980 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25981 unwind.opcode_alloc);
c19d1205 25982 else
325801bd 25983 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25984 }
c19d1205 25985 while (length > 0)
bfae80f2 25986 {
c19d1205
ZW
25987 length--;
25988 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25989 op >>= 8;
25990 unwind.opcode_count++;
bfae80f2 25991 }
bfae80f2
RE
25992}
25993
c19d1205
ZW
25994/* Add unwind opcodes to adjust the stack pointer. */
25995
bfae80f2 25996static void
c19d1205 25997add_unwind_adjustsp (offsetT offset)
bfae80f2 25998{
c19d1205 25999 valueT op;
bfae80f2 26000
c19d1205 26001 if (offset > 0x200)
bfae80f2 26002 {
c19d1205
ZW
26003 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26004 char bytes[5];
26005 int n;
26006 valueT o;
bfae80f2 26007
c19d1205
ZW
26008 /* Long form: 0xb2, uleb128. */
26009 /* This might not fit in a word so add the individual bytes,
26010 remembering the list is built in reverse order. */
26011 o = (valueT) ((offset - 0x204) >> 2);
26012 if (o == 0)
26013 add_unwind_opcode (0, 1);
bfae80f2 26014
c19d1205
ZW
26015 /* Calculate the uleb128 encoding of the offset. */
26016 n = 0;
26017 while (o)
26018 {
26019 bytes[n] = o & 0x7f;
26020 o >>= 7;
26021 if (o)
26022 bytes[n] |= 0x80;
26023 n++;
26024 }
26025 /* Add the insn. */
26026 for (; n; n--)
26027 add_unwind_opcode (bytes[n - 1], 1);
26028 add_unwind_opcode (0xb2, 1);
26029 }
26030 else if (offset > 0x100)
bfae80f2 26031 {
c19d1205
ZW
26032 /* Two short opcodes. */
26033 add_unwind_opcode (0x3f, 1);
26034 op = (offset - 0x104) >> 2;
26035 add_unwind_opcode (op, 1);
bfae80f2 26036 }
c19d1205
ZW
26037 else if (offset > 0)
26038 {
26039 /* Short opcode. */
26040 op = (offset - 4) >> 2;
26041 add_unwind_opcode (op, 1);
26042 }
26043 else if (offset < 0)
bfae80f2 26044 {
c19d1205
ZW
26045 offset = -offset;
26046 while (offset > 0x100)
bfae80f2 26047 {
c19d1205
ZW
26048 add_unwind_opcode (0x7f, 1);
26049 offset -= 0x100;
bfae80f2 26050 }
c19d1205
ZW
26051 op = ((offset - 4) >> 2) | 0x40;
26052 add_unwind_opcode (op, 1);
bfae80f2 26053 }
bfae80f2
RE
26054}
26055
c19d1205 26056/* Finish the list of unwind opcodes for this function. */
0198d5e6 26057
c19d1205
ZW
26058static void
26059finish_unwind_opcodes (void)
bfae80f2 26060{
c19d1205 26061 valueT op;
bfae80f2 26062
c19d1205 26063 if (unwind.fp_used)
bfae80f2 26064 {
708587a4 26065 /* Adjust sp as necessary. */
c19d1205
ZW
26066 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26067 flush_pending_unwind ();
bfae80f2 26068
c19d1205
ZW
26069 /* After restoring sp from the frame pointer. */
26070 op = 0x90 | unwind.fp_reg;
26071 add_unwind_opcode (op, 1);
26072 }
26073 else
26074 flush_pending_unwind ();
bfae80f2
RE
26075}
26076
bfae80f2 26077
c19d1205
ZW
26078/* Start an exception table entry. If idx is nonzero this is an index table
26079 entry. */
bfae80f2
RE
26080
26081static void
c19d1205 26082start_unwind_section (const segT text_seg, int idx)
bfae80f2 26083{
c19d1205
ZW
26084 const char * text_name;
26085 const char * prefix;
26086 const char * prefix_once;
26087 const char * group_name;
c19d1205 26088 char * sec_name;
c19d1205
ZW
26089 int type;
26090 int flags;
26091 int linkonce;
bfae80f2 26092
c19d1205 26093 if (idx)
bfae80f2 26094 {
c19d1205
ZW
26095 prefix = ELF_STRING_ARM_unwind;
26096 prefix_once = ELF_STRING_ARM_unwind_once;
26097 type = SHT_ARM_EXIDX;
bfae80f2 26098 }
c19d1205 26099 else
bfae80f2 26100 {
c19d1205
ZW
26101 prefix = ELF_STRING_ARM_unwind_info;
26102 prefix_once = ELF_STRING_ARM_unwind_info_once;
26103 type = SHT_PROGBITS;
bfae80f2
RE
26104 }
26105
c19d1205
ZW
26106 text_name = segment_name (text_seg);
26107 if (streq (text_name, ".text"))
26108 text_name = "";
26109
26110 if (strncmp (text_name, ".gnu.linkonce.t.",
26111 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 26112 {
c19d1205
ZW
26113 prefix = prefix_once;
26114 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
26115 }
26116
29a2809e 26117 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 26118
c19d1205
ZW
26119 flags = SHF_ALLOC;
26120 linkonce = 0;
26121 group_name = 0;
bfae80f2 26122
c19d1205
ZW
26123 /* Handle COMDAT group. */
26124 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 26125 {
c19d1205
ZW
26126 group_name = elf_group_name (text_seg);
26127 if (group_name == NULL)
26128 {
bd3ba5d1 26129 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
26130 segment_name (text_seg));
26131 ignore_rest_of_line ();
26132 return;
26133 }
26134 flags |= SHF_GROUP;
26135 linkonce = 1;
bfae80f2
RE
26136 }
26137
a91e1603
L
26138 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26139 linkonce, 0);
bfae80f2 26140
5f4273c7 26141 /* Set the section link for index tables. */
c19d1205
ZW
26142 if (idx)
26143 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
26144}
26145
bfae80f2 26146
c19d1205
ZW
26147/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26148 personality routine data. Returns zero, or the index table value for
cad0da33 26149 an inline entry. */
c19d1205
ZW
26150
26151static valueT
26152create_unwind_entry (int have_data)
bfae80f2 26153{
c19d1205
ZW
26154 int size;
26155 addressT where;
26156 char *ptr;
26157 /* The current word of data. */
26158 valueT data;
26159 /* The number of bytes left in this word. */
26160 int n;
bfae80f2 26161
c19d1205 26162 finish_unwind_opcodes ();
bfae80f2 26163
c19d1205
ZW
26164 /* Remember the current text section. */
26165 unwind.saved_seg = now_seg;
26166 unwind.saved_subseg = now_subseg;
bfae80f2 26167
c19d1205 26168 start_unwind_section (now_seg, 0);
bfae80f2 26169
c19d1205 26170 if (unwind.personality_routine == NULL)
bfae80f2 26171 {
c19d1205
ZW
26172 if (unwind.personality_index == -2)
26173 {
26174 if (have_data)
5f4273c7 26175 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
26176 return 1; /* EXIDX_CANTUNWIND. */
26177 }
bfae80f2 26178
c19d1205
ZW
26179 /* Use a default personality routine if none is specified. */
26180 if (unwind.personality_index == -1)
26181 {
26182 if (unwind.opcode_count > 3)
26183 unwind.personality_index = 1;
26184 else
26185 unwind.personality_index = 0;
26186 }
bfae80f2 26187
c19d1205
ZW
26188 /* Space for the personality routine entry. */
26189 if (unwind.personality_index == 0)
26190 {
26191 if (unwind.opcode_count > 3)
26192 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 26193
c19d1205
ZW
26194 if (!have_data)
26195 {
26196 /* All the data is inline in the index table. */
26197 data = 0x80;
26198 n = 3;
26199 while (unwind.opcode_count > 0)
26200 {
26201 unwind.opcode_count--;
26202 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26203 n--;
26204 }
bfae80f2 26205
c19d1205
ZW
26206 /* Pad with "finish" opcodes. */
26207 while (n--)
26208 data = (data << 8) | 0xb0;
bfae80f2 26209
c19d1205
ZW
26210 return data;
26211 }
26212 size = 0;
26213 }
26214 else
26215 /* We get two opcodes "free" in the first word. */
26216 size = unwind.opcode_count - 2;
26217 }
26218 else
5011093d 26219 {
cad0da33
NC
26220 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26221 if (unwind.personality_index != -1)
26222 {
26223 as_bad (_("attempt to recreate an unwind entry"));
26224 return 1;
26225 }
5011093d
NC
26226
26227 /* An extra byte is required for the opcode count. */
26228 size = unwind.opcode_count + 1;
26229 }
bfae80f2 26230
c19d1205
ZW
26231 size = (size + 3) >> 2;
26232 if (size > 0xff)
26233 as_bad (_("too many unwind opcodes"));
bfae80f2 26234
c19d1205
ZW
26235 frag_align (2, 0, 0);
26236 record_alignment (now_seg, 2);
26237 unwind.table_entry = expr_build_dot ();
26238
26239 /* Allocate the table entry. */
26240 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
26241 /* PR 13449: Zero the table entries in case some of them are not used. */
26242 memset (ptr, 0, (size << 2) + 4);
c19d1205 26243 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 26244
c19d1205 26245 switch (unwind.personality_index)
bfae80f2 26246 {
c19d1205
ZW
26247 case -1:
26248 /* ??? Should this be a PLT generating relocation? */
26249 /* Custom personality routine. */
26250 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26251 BFD_RELOC_ARM_PREL31);
bfae80f2 26252
c19d1205
ZW
26253 where += 4;
26254 ptr += 4;
bfae80f2 26255
c19d1205 26256 /* Set the first byte to the number of additional words. */
5011093d 26257 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
26258 n = 3;
26259 break;
bfae80f2 26260
c19d1205
ZW
26261 /* ABI defined personality routines. */
26262 case 0:
26263 /* Three opcodes bytes are packed into the first word. */
26264 data = 0x80;
26265 n = 3;
26266 break;
bfae80f2 26267
c19d1205
ZW
26268 case 1:
26269 case 2:
26270 /* The size and first two opcode bytes go in the first word. */
26271 data = ((0x80 + unwind.personality_index) << 8) | size;
26272 n = 2;
26273 break;
bfae80f2 26274
c19d1205
ZW
26275 default:
26276 /* Should never happen. */
26277 abort ();
26278 }
bfae80f2 26279
c19d1205
ZW
26280 /* Pack the opcodes into words (MSB first), reversing the list at the same
26281 time. */
26282 while (unwind.opcode_count > 0)
26283 {
26284 if (n == 0)
26285 {
26286 md_number_to_chars (ptr, data, 4);
26287 ptr += 4;
26288 n = 4;
26289 data = 0;
26290 }
26291 unwind.opcode_count--;
26292 n--;
26293 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26294 }
26295
26296 /* Finish off the last word. */
26297 if (n < 4)
26298 {
26299 /* Pad with "finish" opcodes. */
26300 while (n--)
26301 data = (data << 8) | 0xb0;
26302
26303 md_number_to_chars (ptr, data, 4);
26304 }
26305
26306 if (!have_data)
26307 {
26308 /* Add an empty descriptor if there is no user-specified data. */
26309 ptr = frag_more (4);
26310 md_number_to_chars (ptr, 0, 4);
26311 }
26312
26313 return 0;
bfae80f2
RE
26314}
26315
f0927246
NC
26316
26317/* Initialize the DWARF-2 unwind information for this procedure. */
26318
26319void
26320tc_arm_frame_initial_instructions (void)
26321{
26322 cfi_add_CFA_def_cfa (REG_SP, 0);
26323}
26324#endif /* OBJ_ELF */
26325
c19d1205
ZW
26326/* Convert REGNAME to a DWARF-2 register number. */
26327
26328int
1df69f4f 26329tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 26330{
1df69f4f 26331 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
26332 if (reg != FAIL)
26333 return reg;
c19d1205 26334
1f5afe1c
NC
26335 /* PR 16694: Allow VFP registers as well. */
26336 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26337 if (reg != FAIL)
26338 return 64 + reg;
c19d1205 26339
1f5afe1c
NC
26340 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26341 if (reg != FAIL)
26342 return reg + 256;
26343
0198d5e6 26344 return FAIL;
bfae80f2
RE
26345}
26346
f0927246 26347#ifdef TE_PE
c19d1205 26348void
f0927246 26349tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 26350{
91d6fa6a 26351 expressionS exp;
bfae80f2 26352
91d6fa6a
NC
26353 exp.X_op = O_secrel;
26354 exp.X_add_symbol = symbol;
26355 exp.X_add_number = 0;
26356 emit_expr (&exp, size);
f0927246
NC
26357}
26358#endif
bfae80f2 26359
c19d1205 26360/* MD interface: Symbol and relocation handling. */
bfae80f2 26361
2fc8bdac
ZW
26362/* Return the address within the segment that a PC-relative fixup is
26363 relative to. For ARM, PC-relative fixups applied to instructions
26364 are generally relative to the location of the fixup plus 8 bytes.
26365 Thumb branches are offset by 4, and Thumb loads relative to PC
26366 require special handling. */
bfae80f2 26367
c19d1205 26368long
2fc8bdac 26369md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 26370{
2fc8bdac
ZW
26371 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26372
26373 /* If this is pc-relative and we are going to emit a relocation
26374 then we just want to put out any pipeline compensation that the linker
53baae48
NC
26375 will need. Otherwise we want to use the calculated base.
26376 For WinCE we skip the bias for externals as well, since this
26377 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 26378 if (fixP->fx_pcrel
2fc8bdac 26379 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
26380 || (arm_force_relocation (fixP)
26381#ifdef TE_WINCE
26382 && !S_IS_EXTERNAL (fixP->fx_addsy)
26383#endif
26384 )))
2fc8bdac 26385 base = 0;
bfae80f2 26386
267bf995 26387
c19d1205 26388 switch (fixP->fx_r_type)
bfae80f2 26389 {
2fc8bdac
ZW
26390 /* PC relative addressing on the Thumb is slightly odd as the
26391 bottom two bits of the PC are forced to zero for the
26392 calculation. This happens *after* application of the
26393 pipeline offset. However, Thumb adrl already adjusts for
26394 this, so we need not do it again. */
c19d1205 26395 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 26396 return base & ~3;
c19d1205
ZW
26397
26398 case BFD_RELOC_ARM_THUMB_OFFSET:
26399 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 26400 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 26401 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 26402 return (base + 4) & ~3;
c19d1205 26403
2fc8bdac 26404 /* Thumb branches are simply offset by +4. */
e12437dc 26405 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
26406 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26407 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26408 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26409 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 26410 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 26411 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 26412 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 26413 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 26414 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 26415 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 26416 return base + 4;
bfae80f2 26417
267bf995 26418 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
26419 if (fixP->fx_addsy
26420 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26421 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 26422 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
26423 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26424 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
26425 return base + 4;
26426
00adf2d4
JB
26427 /* BLX is like branches above, but forces the low two bits of PC to
26428 zero. */
486499d0
CL
26429 case BFD_RELOC_THUMB_PCREL_BLX:
26430 if (fixP->fx_addsy
26431 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26432 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26433 && THUMB_IS_FUNC (fixP->fx_addsy)
26434 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26435 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
26436 return (base + 4) & ~3;
26437
2fc8bdac
ZW
26438 /* ARM mode branches are offset by +8. However, the Windows CE
26439 loader expects the relocation not to take this into account. */
267bf995 26440 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26441 if (fixP->fx_addsy
26442 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26443 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26444 && ARM_IS_FUNC (fixP->fx_addsy)
26445 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26446 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26447 return base + 8;
267bf995 26448
486499d0
CL
26449 case BFD_RELOC_ARM_PCREL_CALL:
26450 if (fixP->fx_addsy
26451 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26452 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26453 && THUMB_IS_FUNC (fixP->fx_addsy)
26454 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26455 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26456 return base + 8;
267bf995 26457
2fc8bdac 26458 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26459 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26460 case BFD_RELOC_ARM_PLT32:
c19d1205 26461#ifdef TE_WINCE
5f4273c7 26462 /* When handling fixups immediately, because we have already
477330fc 26463 discovered the value of a symbol, or the address of the frag involved
53baae48 26464 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26465 see fixup_segment() in write.c
26466 The S_IS_EXTERNAL test handles the case of global symbols.
26467 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26468 if (fixP->fx_pcrel
26469 && fixP->fx_addsy != NULL
26470 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26471 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26472 return base + 8;
2fc8bdac 26473 return base;
c19d1205 26474#else
2fc8bdac 26475 return base + 8;
c19d1205 26476#endif
2fc8bdac 26477
267bf995 26478
2fc8bdac
ZW
26479 /* ARM mode loads relative to PC are also offset by +8. Unlike
26480 branches, the Windows CE loader *does* expect the relocation
26481 to take this into account. */
26482 case BFD_RELOC_ARM_OFFSET_IMM:
26483 case BFD_RELOC_ARM_OFFSET_IMM8:
26484 case BFD_RELOC_ARM_HWLITERAL:
26485 case BFD_RELOC_ARM_LITERAL:
26486 case BFD_RELOC_ARM_CP_OFF_IMM:
26487 return base + 8;
26488
26489
26490 /* Other PC-relative relocations are un-offset. */
26491 default:
26492 return base;
26493 }
bfae80f2
RE
26494}
26495
8b2d793c
NC
26496static bfd_boolean flag_warn_syms = TRUE;
26497
ae8714c2
NC
26498bfd_boolean
26499arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26500{
8b2d793c
NC
26501 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26502 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26503 does mean that the resulting code might be very confusing to the reader.
26504 Also this warning can be triggered if the user omits an operand before
26505 an immediate address, eg:
26506
26507 LDR =foo
26508
26509 GAS treats this as an assignment of the value of the symbol foo to a
26510 symbol LDR, and so (without this code) it will not issue any kind of
26511 warning or error message.
26512
26513 Note - ARM instructions are case-insensitive but the strings in the hash
26514 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26515 lower case too. */
26516 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26517 {
26518 char * nbuf = strdup (name);
26519 char * p;
26520
26521 for (p = nbuf; *p; p++)
26522 *p = TOLOWER (*p);
26523 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26524 {
26525 static struct hash_control * already_warned = NULL;
26526
26527 if (already_warned == NULL)
26528 already_warned = hash_new ();
26529 /* Only warn about the symbol once. To keep the code
26530 simple we let hash_insert do the lookup for us. */
3076e594 26531 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26532 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26533 }
26534 else
26535 free (nbuf);
26536 }
3739860c 26537
ae8714c2
NC
26538 return FALSE;
26539}
26540
26541/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26542 Otherwise we have no need to default values of symbols. */
26543
26544symbolS *
26545md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26546{
26547#ifdef OBJ_ELF
26548 if (name[0] == '_' && name[1] == 'G'
26549 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26550 {
26551 if (!GOT_symbol)
26552 {
26553 if (symbol_find (name))
26554 as_bad (_("GOT already in the symbol table"));
26555
26556 GOT_symbol = symbol_new (name, undefined_section,
26557 (valueT) 0, & zero_address_frag);
26558 }
26559
26560 return GOT_symbol;
26561 }
26562#endif
26563
c921be7d 26564 return NULL;
bfae80f2
RE
26565}
26566
55cf6793 26567/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26568 computed as two separate immediate values, added together. We
26569 already know that this value cannot be computed by just one ARM
26570 instruction. */
26571
26572static unsigned int
26573validate_immediate_twopart (unsigned int val,
26574 unsigned int * highpart)
bfae80f2 26575{
c19d1205
ZW
26576 unsigned int a;
26577 unsigned int i;
bfae80f2 26578
c19d1205
ZW
26579 for (i = 0; i < 32; i += 2)
26580 if (((a = rotate_left (val, i)) & 0xff) != 0)
26581 {
26582 if (a & 0xff00)
26583 {
26584 if (a & ~ 0xffff)
26585 continue;
26586 * highpart = (a >> 8) | ((i + 24) << 7);
26587 }
26588 else if (a & 0xff0000)
26589 {
26590 if (a & 0xff000000)
26591 continue;
26592 * highpart = (a >> 16) | ((i + 16) << 7);
26593 }
26594 else
26595 {
9c2799c2 26596 gas_assert (a & 0xff000000);
c19d1205
ZW
26597 * highpart = (a >> 24) | ((i + 8) << 7);
26598 }
bfae80f2 26599
c19d1205
ZW
26600 return (a & 0xff) | (i << 7);
26601 }
bfae80f2 26602
c19d1205 26603 return FAIL;
bfae80f2
RE
26604}
26605
c19d1205
ZW
26606static int
26607validate_offset_imm (unsigned int val, int hwse)
26608{
26609 if ((hwse && val > 255) || val > 4095)
26610 return FAIL;
26611 return val;
26612}
bfae80f2 26613
55cf6793 26614/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26615 negative immediate constant by altering the instruction. A bit of
26616 a hack really.
26617 MOV <-> MVN
26618 AND <-> BIC
26619 ADC <-> SBC
26620 by inverting the second operand, and
26621 ADD <-> SUB
26622 CMP <-> CMN
26623 by negating the second operand. */
bfae80f2 26624
c19d1205
ZW
26625static int
26626negate_data_op (unsigned long * instruction,
26627 unsigned long value)
bfae80f2 26628{
c19d1205
ZW
26629 int op, new_inst;
26630 unsigned long negated, inverted;
bfae80f2 26631
c19d1205
ZW
26632 negated = encode_arm_immediate (-value);
26633 inverted = encode_arm_immediate (~value);
bfae80f2 26634
c19d1205
ZW
26635 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26636 switch (op)
bfae80f2 26637 {
c19d1205
ZW
26638 /* First negates. */
26639 case OPCODE_SUB: /* ADD <-> SUB */
26640 new_inst = OPCODE_ADD;
26641 value = negated;
26642 break;
bfae80f2 26643
c19d1205
ZW
26644 case OPCODE_ADD:
26645 new_inst = OPCODE_SUB;
26646 value = negated;
26647 break;
bfae80f2 26648
c19d1205
ZW
26649 case OPCODE_CMP: /* CMP <-> CMN */
26650 new_inst = OPCODE_CMN;
26651 value = negated;
26652 break;
bfae80f2 26653
c19d1205
ZW
26654 case OPCODE_CMN:
26655 new_inst = OPCODE_CMP;
26656 value = negated;
26657 break;
bfae80f2 26658
c19d1205
ZW
26659 /* Now Inverted ops. */
26660 case OPCODE_MOV: /* MOV <-> MVN */
26661 new_inst = OPCODE_MVN;
26662 value = inverted;
26663 break;
bfae80f2 26664
c19d1205
ZW
26665 case OPCODE_MVN:
26666 new_inst = OPCODE_MOV;
26667 value = inverted;
26668 break;
bfae80f2 26669
c19d1205
ZW
26670 case OPCODE_AND: /* AND <-> BIC */
26671 new_inst = OPCODE_BIC;
26672 value = inverted;
26673 break;
bfae80f2 26674
c19d1205
ZW
26675 case OPCODE_BIC:
26676 new_inst = OPCODE_AND;
26677 value = inverted;
26678 break;
bfae80f2 26679
c19d1205
ZW
26680 case OPCODE_ADC: /* ADC <-> SBC */
26681 new_inst = OPCODE_SBC;
26682 value = inverted;
26683 break;
bfae80f2 26684
c19d1205
ZW
26685 case OPCODE_SBC:
26686 new_inst = OPCODE_ADC;
26687 value = inverted;
26688 break;
bfae80f2 26689
c19d1205
ZW
26690 /* We cannot do anything. */
26691 default:
26692 return FAIL;
b99bd4ef
NC
26693 }
26694
c19d1205
ZW
26695 if (value == (unsigned) FAIL)
26696 return FAIL;
26697
26698 *instruction &= OPCODE_MASK;
26699 *instruction |= new_inst << DATA_OP_SHIFT;
26700 return value;
b99bd4ef
NC
26701}
26702
ef8d22e6
PB
26703/* Like negate_data_op, but for Thumb-2. */
26704
26705static unsigned int
16dd5e42 26706thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26707{
26708 int op, new_inst;
26709 int rd;
16dd5e42 26710 unsigned int negated, inverted;
ef8d22e6
PB
26711
26712 negated = encode_thumb32_immediate (-value);
26713 inverted = encode_thumb32_immediate (~value);
26714
26715 rd = (*instruction >> 8) & 0xf;
26716 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26717 switch (op)
26718 {
26719 /* ADD <-> SUB. Includes CMP <-> CMN. */
26720 case T2_OPCODE_SUB:
26721 new_inst = T2_OPCODE_ADD;
26722 value = negated;
26723 break;
26724
26725 case T2_OPCODE_ADD:
26726 new_inst = T2_OPCODE_SUB;
26727 value = negated;
26728 break;
26729
26730 /* ORR <-> ORN. Includes MOV <-> MVN. */
26731 case T2_OPCODE_ORR:
26732 new_inst = T2_OPCODE_ORN;
26733 value = inverted;
26734 break;
26735
26736 case T2_OPCODE_ORN:
26737 new_inst = T2_OPCODE_ORR;
26738 value = inverted;
26739 break;
26740
26741 /* AND <-> BIC. TST has no inverted equivalent. */
26742 case T2_OPCODE_AND:
26743 new_inst = T2_OPCODE_BIC;
26744 if (rd == 15)
26745 value = FAIL;
26746 else
26747 value = inverted;
26748 break;
26749
26750 case T2_OPCODE_BIC:
26751 new_inst = T2_OPCODE_AND;
26752 value = inverted;
26753 break;
26754
26755 /* ADC <-> SBC */
26756 case T2_OPCODE_ADC:
26757 new_inst = T2_OPCODE_SBC;
26758 value = inverted;
26759 break;
26760
26761 case T2_OPCODE_SBC:
26762 new_inst = T2_OPCODE_ADC;
26763 value = inverted;
26764 break;
26765
26766 /* We cannot do anything. */
26767 default:
26768 return FAIL;
26769 }
26770
16dd5e42 26771 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26772 return FAIL;
26773
26774 *instruction &= T2_OPCODE_MASK;
26775 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26776 return value;
26777}
26778
8f06b2d8 26779/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26780
8f06b2d8
PB
26781static unsigned long
26782get_thumb32_insn (char * buf)
26783{
26784 unsigned long insn;
26785 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26786 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26787
26788 return insn;
26789}
26790
a8bc6c78
PB
26791/* We usually want to set the low bit on the address of thumb function
26792 symbols. In particular .word foo - . should have the low bit set.
26793 Generic code tries to fold the difference of two symbols to
26794 a constant. Prevent this and force a relocation when the first symbols
26795 is a thumb function. */
c921be7d
NC
26796
26797bfd_boolean
a8bc6c78
PB
26798arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26799{
26800 if (op == O_subtract
26801 && l->X_op == O_symbol
26802 && r->X_op == O_symbol
26803 && THUMB_IS_FUNC (l->X_add_symbol))
26804 {
26805 l->X_op = O_subtract;
26806 l->X_op_symbol = r->X_add_symbol;
26807 l->X_add_number -= r->X_add_number;
c921be7d 26808 return TRUE;
a8bc6c78 26809 }
c921be7d 26810
a8bc6c78 26811 /* Process as normal. */
c921be7d 26812 return FALSE;
a8bc6c78
PB
26813}
26814
4a42ebbc
RR
26815/* Encode Thumb2 unconditional branches and calls. The encoding
26816 for the 2 are identical for the immediate values. */
26817
26818static void
26819encode_thumb2_b_bl_offset (char * buf, offsetT value)
26820{
26821#define T2I1I2MASK ((1 << 13) | (1 << 11))
26822 offsetT newval;
26823 offsetT newval2;
26824 addressT S, I1, I2, lo, hi;
26825
26826 S = (value >> 24) & 0x01;
26827 I1 = (value >> 23) & 0x01;
26828 I2 = (value >> 22) & 0x01;
26829 hi = (value >> 12) & 0x3ff;
fa94de6b 26830 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26831 newval = md_chars_to_number (buf, THUMB_SIZE);
26832 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26833 newval |= (S << 10) | hi;
26834 newval2 &= ~T2I1I2MASK;
26835 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26836 md_number_to_chars (buf, newval, THUMB_SIZE);
26837 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26838}
26839
c19d1205 26840void
55cf6793 26841md_apply_fix (fixS * fixP,
c19d1205
ZW
26842 valueT * valP,
26843 segT seg)
26844{
26845 offsetT value = * valP;
26846 offsetT newval;
26847 unsigned int newimm;
26848 unsigned long temp;
26849 int sign;
26850 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26851
9c2799c2 26852 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26853
c19d1205 26854 /* Note whether this will delete the relocation. */
4962c51a 26855
c19d1205
ZW
26856 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26857 fixP->fx_done = 1;
b99bd4ef 26858
adbaf948 26859 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26860 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26861 for emit_reloc. */
26862 value &= 0xffffffff;
26863 value ^= 0x80000000;
5f4273c7 26864 value -= 0x80000000;
adbaf948
ZW
26865
26866 *valP = value;
c19d1205 26867 fixP->fx_addnumber = value;
b99bd4ef 26868
adbaf948
ZW
26869 /* Same treatment for fixP->fx_offset. */
26870 fixP->fx_offset &= 0xffffffff;
26871 fixP->fx_offset ^= 0x80000000;
26872 fixP->fx_offset -= 0x80000000;
26873
c19d1205 26874 switch (fixP->fx_r_type)
b99bd4ef 26875 {
c19d1205
ZW
26876 case BFD_RELOC_NONE:
26877 /* This will need to go in the object file. */
26878 fixP->fx_done = 0;
26879 break;
b99bd4ef 26880
c19d1205
ZW
26881 case BFD_RELOC_ARM_IMMEDIATE:
26882 /* We claim that this fixup has been processed here,
26883 even if in fact we generate an error because we do
26884 not have a reloc for it, so tc_gen_reloc will reject it. */
26885 fixP->fx_done = 1;
b99bd4ef 26886
77db8e2e 26887 if (fixP->fx_addsy)
b99bd4ef 26888 {
77db8e2e 26889 const char *msg = 0;
b99bd4ef 26890
77db8e2e
NC
26891 if (! S_IS_DEFINED (fixP->fx_addsy))
26892 msg = _("undefined symbol %s used as an immediate value");
26893 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26894 msg = _("symbol %s is in a different section");
26895 else if (S_IS_WEAK (fixP->fx_addsy))
26896 msg = _("symbol %s is weak and may be overridden later");
26897
26898 if (msg)
26899 {
26900 as_bad_where (fixP->fx_file, fixP->fx_line,
26901 msg, S_GET_NAME (fixP->fx_addsy));
26902 break;
26903 }
42e5fcbf
AS
26904 }
26905
c19d1205
ZW
26906 temp = md_chars_to_number (buf, INSN_SIZE);
26907
5e73442d
SL
26908 /* If the offset is negative, we should use encoding A2 for ADR. */
26909 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26910 newimm = negate_data_op (&temp, value);
26911 else
26912 {
26913 newimm = encode_arm_immediate (value);
26914
26915 /* If the instruction will fail, see if we can fix things up by
26916 changing the opcode. */
26917 if (newimm == (unsigned int) FAIL)
26918 newimm = negate_data_op (&temp, value);
bada4342
JW
26919 /* MOV accepts both ARM modified immediate (A1 encoding) and
26920 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26921 When disassembling, MOV is preferred when there is no encoding
26922 overlap. */
26923 if (newimm == (unsigned int) FAIL
26924 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26925 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26926 && !((temp >> SBIT_SHIFT) & 0x1)
26927 && value >= 0 && value <= 0xffff)
26928 {
26929 /* Clear bits[23:20] to change encoding from A1 to A2. */
26930 temp &= 0xff0fffff;
26931 /* Encoding high 4bits imm. Code below will encode the remaining
26932 low 12bits. */
26933 temp |= (value & 0x0000f000) << 4;
26934 newimm = value & 0x00000fff;
26935 }
5e73442d
SL
26936 }
26937
26938 if (newimm == (unsigned int) FAIL)
b99bd4ef 26939 {
c19d1205
ZW
26940 as_bad_where (fixP->fx_file, fixP->fx_line,
26941 _("invalid constant (%lx) after fixup"),
26942 (unsigned long) value);
26943 break;
b99bd4ef 26944 }
b99bd4ef 26945
c19d1205
ZW
26946 newimm |= (temp & 0xfffff000);
26947 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26948 break;
b99bd4ef 26949
c19d1205
ZW
26950 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26951 {
26952 unsigned int highpart = 0;
26953 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26954
77db8e2e 26955 if (fixP->fx_addsy)
42e5fcbf 26956 {
77db8e2e 26957 const char *msg = 0;
42e5fcbf 26958
77db8e2e
NC
26959 if (! S_IS_DEFINED (fixP->fx_addsy))
26960 msg = _("undefined symbol %s used as an immediate value");
26961 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26962 msg = _("symbol %s is in a different section");
26963 else if (S_IS_WEAK (fixP->fx_addsy))
26964 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26965
77db8e2e
NC
26966 if (msg)
26967 {
26968 as_bad_where (fixP->fx_file, fixP->fx_line,
26969 msg, S_GET_NAME (fixP->fx_addsy));
26970 break;
26971 }
26972 }
fa94de6b 26973
c19d1205
ZW
26974 newimm = encode_arm_immediate (value);
26975 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26976
c19d1205
ZW
26977 /* If the instruction will fail, see if we can fix things up by
26978 changing the opcode. */
26979 if (newimm == (unsigned int) FAIL
26980 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26981 {
26982 /* No ? OK - try using two ADD instructions to generate
26983 the value. */
26984 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26985
c19d1205
ZW
26986 /* Yes - then make sure that the second instruction is
26987 also an add. */
26988 if (newimm != (unsigned int) FAIL)
26989 newinsn = temp;
26990 /* Still No ? Try using a negated value. */
26991 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26992 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26993 /* Otherwise - give up. */
26994 else
26995 {
26996 as_bad_where (fixP->fx_file, fixP->fx_line,
26997 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26998 (long) value);
26999 break;
27000 }
b99bd4ef 27001
c19d1205
ZW
27002 /* Replace the first operand in the 2nd instruction (which
27003 is the PC) with the destination register. We have
27004 already added in the PC in the first instruction and we
27005 do not want to do it again. */
27006 newinsn &= ~ 0xf0000;
27007 newinsn |= ((newinsn & 0x0f000) << 4);
27008 }
b99bd4ef 27009
c19d1205
ZW
27010 newimm |= (temp & 0xfffff000);
27011 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 27012
c19d1205
ZW
27013 highpart |= (newinsn & 0xfffff000);
27014 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27015 }
27016 break;
b99bd4ef 27017
c19d1205 27018 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27019 if (!fixP->fx_done && seg->use_rela_p)
27020 value = 0;
1a0670f3 27021 /* Fall through. */
00a97672 27022
c19d1205 27023 case BFD_RELOC_ARM_LITERAL:
26d97720 27024 sign = value > 0;
b99bd4ef 27025
c19d1205
ZW
27026 if (value < 0)
27027 value = - value;
b99bd4ef 27028
c19d1205 27029 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 27030 {
c19d1205
ZW
27031 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27032 as_bad_where (fixP->fx_file, fixP->fx_line,
27033 _("invalid literal constant: pool needs to be closer"));
27034 else
27035 as_bad_where (fixP->fx_file, fixP->fx_line,
27036 _("bad immediate value for offset (%ld)"),
27037 (long) value);
27038 break;
f03698e6
RE
27039 }
27040
c19d1205 27041 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27042 if (value == 0)
27043 newval &= 0xfffff000;
27044 else
27045 {
27046 newval &= 0xff7ff000;
27047 newval |= value | (sign ? INDEX_UP : 0);
27048 }
c19d1205
ZW
27049 md_number_to_chars (buf, newval, INSN_SIZE);
27050 break;
b99bd4ef 27051
c19d1205
ZW
27052 case BFD_RELOC_ARM_OFFSET_IMM8:
27053 case BFD_RELOC_ARM_HWLITERAL:
26d97720 27054 sign = value > 0;
b99bd4ef 27055
c19d1205
ZW
27056 if (value < 0)
27057 value = - value;
b99bd4ef 27058
c19d1205 27059 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 27060 {
c19d1205
ZW
27061 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27062 as_bad_where (fixP->fx_file, fixP->fx_line,
27063 _("invalid literal constant: pool needs to be closer"));
27064 else
427d0db6
RM
27065 as_bad_where (fixP->fx_file, fixP->fx_line,
27066 _("bad immediate value for 8-bit offset (%ld)"),
27067 (long) value);
c19d1205 27068 break;
b99bd4ef
NC
27069 }
27070
c19d1205 27071 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27072 if (value == 0)
27073 newval &= 0xfffff0f0;
27074 else
27075 {
27076 newval &= 0xff7ff0f0;
27077 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27078 }
c19d1205
ZW
27079 md_number_to_chars (buf, newval, INSN_SIZE);
27080 break;
b99bd4ef 27081
c19d1205
ZW
27082 case BFD_RELOC_ARM_T32_OFFSET_U8:
27083 if (value < 0 || value > 1020 || value % 4 != 0)
27084 as_bad_where (fixP->fx_file, fixP->fx_line,
27085 _("bad immediate value for offset (%ld)"), (long) value);
27086 value /= 4;
b99bd4ef 27087
c19d1205 27088 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
27089 newval |= value;
27090 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27091 break;
b99bd4ef 27092
c19d1205
ZW
27093 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27094 /* This is a complicated relocation used for all varieties of Thumb32
27095 load/store instruction with immediate offset:
27096
27097 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 27098 *4, optional writeback(W)
c19d1205
ZW
27099 (doubleword load/store)
27100
27101 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27102 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27103 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27104 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27105 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27106
27107 Uppercase letters indicate bits that are already encoded at
27108 this point. Lowercase letters are our problem. For the
27109 second block of instructions, the secondary opcode nybble
27110 (bits 8..11) is present, and bit 23 is zero, even if this is
27111 a PC-relative operation. */
27112 newval = md_chars_to_number (buf, THUMB_SIZE);
27113 newval <<= 16;
27114 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 27115
c19d1205 27116 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 27117 {
c19d1205
ZW
27118 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27119 if (value >= 0)
27120 newval |= (1 << 23);
27121 else
27122 value = -value;
27123 if (value % 4 != 0)
27124 {
27125 as_bad_where (fixP->fx_file, fixP->fx_line,
27126 _("offset not a multiple of 4"));
27127 break;
27128 }
27129 value /= 4;
216d22bc 27130 if (value > 0xff)
c19d1205
ZW
27131 {
27132 as_bad_where (fixP->fx_file, fixP->fx_line,
27133 _("offset out of range"));
27134 break;
27135 }
27136 newval &= ~0xff;
b99bd4ef 27137 }
c19d1205 27138 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 27139 {
c19d1205
ZW
27140 /* PC-relative, 12-bit offset. */
27141 if (value >= 0)
27142 newval |= (1 << 23);
27143 else
27144 value = -value;
216d22bc 27145 if (value > 0xfff)
c19d1205
ZW
27146 {
27147 as_bad_where (fixP->fx_file, fixP->fx_line,
27148 _("offset out of range"));
27149 break;
27150 }
27151 newval &= ~0xfff;
b99bd4ef 27152 }
c19d1205 27153 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 27154 {
c19d1205
ZW
27155 /* Writeback: 8-bit, +/- offset. */
27156 if (value >= 0)
27157 newval |= (1 << 9);
27158 else
27159 value = -value;
216d22bc 27160 if (value > 0xff)
c19d1205
ZW
27161 {
27162 as_bad_where (fixP->fx_file, fixP->fx_line,
27163 _("offset out of range"));
27164 break;
27165 }
27166 newval &= ~0xff;
b99bd4ef 27167 }
c19d1205 27168 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 27169 {
c19d1205 27170 /* T-instruction: positive 8-bit offset. */
216d22bc 27171 if (value < 0 || value > 0xff)
b99bd4ef 27172 {
c19d1205
ZW
27173 as_bad_where (fixP->fx_file, fixP->fx_line,
27174 _("offset out of range"));
27175 break;
b99bd4ef 27176 }
c19d1205
ZW
27177 newval &= ~0xff;
27178 newval |= value;
b99bd4ef
NC
27179 }
27180 else
b99bd4ef 27181 {
c19d1205
ZW
27182 /* Positive 12-bit or negative 8-bit offset. */
27183 int limit;
27184 if (value >= 0)
b99bd4ef 27185 {
c19d1205
ZW
27186 newval |= (1 << 23);
27187 limit = 0xfff;
27188 }
27189 else
27190 {
27191 value = -value;
27192 limit = 0xff;
27193 }
27194 if (value > limit)
27195 {
27196 as_bad_where (fixP->fx_file, fixP->fx_line,
27197 _("offset out of range"));
27198 break;
b99bd4ef 27199 }
c19d1205 27200 newval &= ~limit;
b99bd4ef 27201 }
b99bd4ef 27202
c19d1205
ZW
27203 newval |= value;
27204 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27205 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27206 break;
404ff6b5 27207
c19d1205
ZW
27208 case BFD_RELOC_ARM_SHIFT_IMM:
27209 newval = md_chars_to_number (buf, INSN_SIZE);
27210 if (((unsigned long) value) > 32
27211 || (value == 32
27212 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27213 {
27214 as_bad_where (fixP->fx_file, fixP->fx_line,
27215 _("shift expression is too large"));
27216 break;
27217 }
404ff6b5 27218
c19d1205
ZW
27219 if (value == 0)
27220 /* Shifts of zero must be done as lsl. */
27221 newval &= ~0x60;
27222 else if (value == 32)
27223 value = 0;
27224 newval &= 0xfffff07f;
27225 newval |= (value & 0x1f) << 7;
27226 md_number_to_chars (buf, newval, INSN_SIZE);
27227 break;
404ff6b5 27228
c19d1205 27229 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 27230 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 27231 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 27232 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
27233 /* We claim that this fixup has been processed here,
27234 even if in fact we generate an error because we do
27235 not have a reloc for it, so tc_gen_reloc will reject it. */
27236 fixP->fx_done = 1;
404ff6b5 27237
c19d1205
ZW
27238 if (fixP->fx_addsy
27239 && ! S_IS_DEFINED (fixP->fx_addsy))
27240 {
27241 as_bad_where (fixP->fx_file, fixP->fx_line,
27242 _("undefined symbol %s used as an immediate value"),
27243 S_GET_NAME (fixP->fx_addsy));
27244 break;
27245 }
404ff6b5 27246
c19d1205
ZW
27247 newval = md_chars_to_number (buf, THUMB_SIZE);
27248 newval <<= 16;
27249 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 27250
16805f35 27251 newimm = FAIL;
bada4342
JW
27252 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27253 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27254 Thumb2 modified immediate encoding (T2). */
27255 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 27256 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
27257 {
27258 newimm = encode_thumb32_immediate (value);
27259 if (newimm == (unsigned int) FAIL)
27260 newimm = thumb32_negate_data_op (&newval, value);
27261 }
bada4342 27262 if (newimm == (unsigned int) FAIL)
92e90b6e 27263 {
bada4342 27264 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 27265 {
bada4342
JW
27266 /* Turn add/sum into addw/subw. */
27267 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27268 newval = (newval & 0xfeffffff) | 0x02000000;
27269 /* No flat 12-bit imm encoding for addsw/subsw. */
27270 if ((newval & 0x00100000) == 0)
40f246e3 27271 {
bada4342
JW
27272 /* 12 bit immediate for addw/subw. */
27273 if (value < 0)
27274 {
27275 value = -value;
27276 newval ^= 0x00a00000;
27277 }
27278 if (value > 0xfff)
27279 newimm = (unsigned int) FAIL;
27280 else
27281 newimm = value;
27282 }
27283 }
27284 else
27285 {
27286 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27287 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27288 disassembling, MOV is preferred when there is no encoding
db7bf105 27289 overlap. */
bada4342 27290 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
27291 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27292 but with the Rn field [19:16] set to 1111. */
27293 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
27294 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27295 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 27296 && value >= 0 && value <= 0xffff)
bada4342
JW
27297 {
27298 /* Toggle bit[25] to change encoding from T2 to T3. */
27299 newval ^= 1 << 25;
27300 /* Clear bits[19:16]. */
27301 newval &= 0xfff0ffff;
27302 /* Encoding high 4bits imm. Code below will encode the
27303 remaining low 12bits. */
27304 newval |= (value & 0x0000f000) << 4;
27305 newimm = value & 0x00000fff;
40f246e3 27306 }
e9f89963 27307 }
92e90b6e 27308 }
cc8a6dd0 27309
c19d1205 27310 if (newimm == (unsigned int)FAIL)
3631a3c8 27311 {
c19d1205
ZW
27312 as_bad_where (fixP->fx_file, fixP->fx_line,
27313 _("invalid constant (%lx) after fixup"),
27314 (unsigned long) value);
27315 break;
3631a3c8
NC
27316 }
27317
c19d1205
ZW
27318 newval |= (newimm & 0x800) << 15;
27319 newval |= (newimm & 0x700) << 4;
27320 newval |= (newimm & 0x0ff);
cc8a6dd0 27321
c19d1205
ZW
27322 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27323 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27324 break;
a737bd4d 27325
3eb17e6b 27326 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
27327 if (((unsigned long) value) > 0xffff)
27328 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 27329 _("invalid smc expression"));
2fc8bdac 27330 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27331 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27332 md_number_to_chars (buf, newval, INSN_SIZE);
27333 break;
a737bd4d 27334
90ec0d68
MGD
27335 case BFD_RELOC_ARM_HVC:
27336 if (((unsigned long) value) > 0xffff)
27337 as_bad_where (fixP->fx_file, fixP->fx_line,
27338 _("invalid hvc expression"));
27339 newval = md_chars_to_number (buf, INSN_SIZE);
27340 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27341 md_number_to_chars (buf, newval, INSN_SIZE);
27342 break;
27343
c19d1205 27344 case BFD_RELOC_ARM_SWI:
adbaf948 27345 if (fixP->tc_fix_data != 0)
c19d1205
ZW
27346 {
27347 if (((unsigned long) value) > 0xff)
27348 as_bad_where (fixP->fx_file, fixP->fx_line,
27349 _("invalid swi expression"));
2fc8bdac 27350 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
27351 newval |= value;
27352 md_number_to_chars (buf, newval, THUMB_SIZE);
27353 }
27354 else
27355 {
27356 if (((unsigned long) value) > 0x00ffffff)
27357 as_bad_where (fixP->fx_file, fixP->fx_line,
27358 _("invalid swi expression"));
2fc8bdac 27359 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27360 newval |= value;
27361 md_number_to_chars (buf, newval, INSN_SIZE);
27362 }
27363 break;
a737bd4d 27364
c19d1205
ZW
27365 case BFD_RELOC_ARM_MULTI:
27366 if (((unsigned long) value) > 0xffff)
27367 as_bad_where (fixP->fx_file, fixP->fx_line,
27368 _("invalid expression in load/store multiple"));
27369 newval = value | md_chars_to_number (buf, INSN_SIZE);
27370 md_number_to_chars (buf, newval, INSN_SIZE);
27371 break;
a737bd4d 27372
c19d1205 27373#ifdef OBJ_ELF
39b41c9c 27374 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
27375
27376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27377 && fixP->fx_addsy
34e77a92 27378 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27379 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27380 && THUMB_IS_FUNC (fixP->fx_addsy))
27381 /* Flip the bl to blx. This is a simple flip
27382 bit here because we generate PCREL_CALL for
27383 unconditional bls. */
27384 {
27385 newval = md_chars_to_number (buf, INSN_SIZE);
27386 newval = newval | 0x10000000;
27387 md_number_to_chars (buf, newval, INSN_SIZE);
27388 temp = 1;
27389 fixP->fx_done = 1;
27390 }
39b41c9c
PB
27391 else
27392 temp = 3;
27393 goto arm_branch_common;
27394
27395 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
27396 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27397 && fixP->fx_addsy
34e77a92 27398 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27399 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27400 && THUMB_IS_FUNC (fixP->fx_addsy))
27401 {
27402 /* This would map to a bl<cond>, b<cond>,
27403 b<always> to a Thumb function. We
27404 need to force a relocation for this particular
27405 case. */
27406 newval = md_chars_to_number (buf, INSN_SIZE);
27407 fixP->fx_done = 0;
27408 }
1a0670f3 27409 /* Fall through. */
267bf995 27410
2fc8bdac 27411 case BFD_RELOC_ARM_PLT32:
c19d1205 27412#endif
39b41c9c
PB
27413 case BFD_RELOC_ARM_PCREL_BRANCH:
27414 temp = 3;
27415 goto arm_branch_common;
a737bd4d 27416
39b41c9c 27417 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 27418
39b41c9c 27419 temp = 1;
267bf995
RR
27420 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27421 && fixP->fx_addsy
34e77a92 27422 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27423 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27424 && ARM_IS_FUNC (fixP->fx_addsy))
27425 {
27426 /* Flip the blx to a bl and warn. */
27427 const char *name = S_GET_NAME (fixP->fx_addsy);
27428 newval = 0xeb000000;
27429 as_warn_where (fixP->fx_file, fixP->fx_line,
27430 _("blx to '%s' an ARM ISA state function changed to bl"),
27431 name);
27432 md_number_to_chars (buf, newval, INSN_SIZE);
27433 temp = 3;
27434 fixP->fx_done = 1;
27435 }
27436
27437#ifdef OBJ_ELF
27438 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27439 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27440#endif
27441
39b41c9c 27442 arm_branch_common:
c19d1205 27443 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27444 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27445 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27446 also be clear. */
39b41c9c 27447 if (value & temp)
c19d1205 27448 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27449 _("misaligned branch destination"));
27450 if ((value & (offsetT)0xfe000000) != (offsetT)0
27451 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27452 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27453
2fc8bdac 27454 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27455 {
2fc8bdac
ZW
27456 newval = md_chars_to_number (buf, INSN_SIZE);
27457 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27458 /* Set the H bit on BLX instructions. */
27459 if (temp == 1)
27460 {
27461 if (value & 2)
27462 newval |= 0x01000000;
27463 else
27464 newval &= ~0x01000000;
27465 }
2fc8bdac 27466 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27467 }
c19d1205 27468 break;
a737bd4d 27469
25fe350b
MS
27470 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27471 /* CBZ can only branch forward. */
a737bd4d 27472
738755b0 27473 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27474 (which, strictly speaking, are prohibited) will be turned into
27475 no-ops.
738755b0
MS
27476
27477 FIXME: It may be better to remove the instruction completely and
27478 perform relaxation. */
27479 if (value == -2)
2fc8bdac
ZW
27480 {
27481 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27482 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27483 md_number_to_chars (buf, newval, THUMB_SIZE);
27484 }
738755b0
MS
27485 else
27486 {
27487 if (value & ~0x7e)
08f10d51 27488 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27489
477330fc 27490 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27491 {
27492 newval = md_chars_to_number (buf, THUMB_SIZE);
27493 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27494 md_number_to_chars (buf, newval, THUMB_SIZE);
27495 }
27496 }
c19d1205 27497 break;
a737bd4d 27498
c19d1205 27499 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27500 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27501 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27502
2fc8bdac
ZW
27503 if (fixP->fx_done || !seg->use_rela_p)
27504 {
27505 newval = md_chars_to_number (buf, THUMB_SIZE);
27506 newval |= (value & 0x1ff) >> 1;
27507 md_number_to_chars (buf, newval, THUMB_SIZE);
27508 }
c19d1205 27509 break;
a737bd4d 27510
c19d1205 27511 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27512 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27513 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27514
2fc8bdac
ZW
27515 if (fixP->fx_done || !seg->use_rela_p)
27516 {
27517 newval = md_chars_to_number (buf, THUMB_SIZE);
27518 newval |= (value & 0xfff) >> 1;
27519 md_number_to_chars (buf, newval, THUMB_SIZE);
27520 }
c19d1205 27521 break;
a737bd4d 27522
c19d1205 27523 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27524 if (fixP->fx_addsy
27525 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27526 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27527 && ARM_IS_FUNC (fixP->fx_addsy)
27528 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27529 {
27530 /* Force a relocation for a branch 20 bits wide. */
27531 fixP->fx_done = 0;
27532 }
08f10d51 27533 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27534 as_bad_where (fixP->fx_file, fixP->fx_line,
27535 _("conditional branch out of range"));
404ff6b5 27536
2fc8bdac
ZW
27537 if (fixP->fx_done || !seg->use_rela_p)
27538 {
27539 offsetT newval2;
27540 addressT S, J1, J2, lo, hi;
404ff6b5 27541
2fc8bdac
ZW
27542 S = (value & 0x00100000) >> 20;
27543 J2 = (value & 0x00080000) >> 19;
27544 J1 = (value & 0x00040000) >> 18;
27545 hi = (value & 0x0003f000) >> 12;
27546 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27547
2fc8bdac
ZW
27548 newval = md_chars_to_number (buf, THUMB_SIZE);
27549 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27550 newval |= (S << 10) | hi;
27551 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27552 md_number_to_chars (buf, newval, THUMB_SIZE);
27553 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27554 }
c19d1205 27555 break;
6c43fab6 27556
c19d1205 27557 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27558 /* If there is a blx from a thumb state function to
27559 another thumb function flip this to a bl and warn
27560 about it. */
27561
27562 if (fixP->fx_addsy
34e77a92 27563 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27564 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27565 && THUMB_IS_FUNC (fixP->fx_addsy))
27566 {
27567 const char *name = S_GET_NAME (fixP->fx_addsy);
27568 as_warn_where (fixP->fx_file, fixP->fx_line,
27569 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27570 name);
27571 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27572 newval = newval | 0x1000;
27573 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27574 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27575 fixP->fx_done = 1;
27576 }
27577
27578
27579 goto thumb_bl_common;
27580
c19d1205 27581 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27582 /* A bl from Thumb state ISA to an internal ARM state function
27583 is converted to a blx. */
27584 if (fixP->fx_addsy
27585 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27586 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27587 && ARM_IS_FUNC (fixP->fx_addsy)
27588 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27589 {
27590 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27591 newval = newval & ~0x1000;
27592 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27593 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27594 fixP->fx_done = 1;
27595 }
27596
27597 thumb_bl_common:
27598
2fc8bdac
ZW
27599 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27600 /* For a BLX instruction, make sure that the relocation is rounded up
27601 to a word boundary. This follows the semantics of the instruction
27602 which specifies that bit 1 of the target address will come from bit
27603 1 of the base address. */
d406f3e4
JB
27604 value = (value + 3) & ~ 3;
27605
27606#ifdef OBJ_ELF
27607 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27608 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27609 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27610#endif
404ff6b5 27611
2b2f5df9
NC
27612 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27613 {
fc289b0a 27614 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27615 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27616 else if ((value & ~0x1ffffff)
27617 && ((value & ~0x1ffffff) != ~0x1ffffff))
27618 as_bad_where (fixP->fx_file, fixP->fx_line,
27619 _("Thumb2 branch out of range"));
27620 }
4a42ebbc
RR
27621
27622 if (fixP->fx_done || !seg->use_rela_p)
27623 encode_thumb2_b_bl_offset (buf, value);
27624
c19d1205 27625 break;
404ff6b5 27626
c19d1205 27627 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27628 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27629 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27630
2fc8bdac 27631 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27632 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27633
2fc8bdac 27634 break;
a737bd4d 27635
2fc8bdac
ZW
27636 case BFD_RELOC_8:
27637 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27638 *buf = value;
c19d1205 27639 break;
a737bd4d 27640
c19d1205 27641 case BFD_RELOC_16:
2fc8bdac 27642 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27643 md_number_to_chars (buf, value, 2);
c19d1205 27644 break;
a737bd4d 27645
c19d1205 27646#ifdef OBJ_ELF
0855e32b
NS
27647 case BFD_RELOC_ARM_TLS_CALL:
27648 case BFD_RELOC_ARM_THM_TLS_CALL:
27649 case BFD_RELOC_ARM_TLS_DESCSEQ:
27650 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27651 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27652 case BFD_RELOC_ARM_TLS_GD32:
27653 case BFD_RELOC_ARM_TLS_LE32:
27654 case BFD_RELOC_ARM_TLS_IE32:
27655 case BFD_RELOC_ARM_TLS_LDM32:
27656 case BFD_RELOC_ARM_TLS_LDO32:
27657 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27658 break;
6c43fab6 27659
5c5a4843
CL
27660 /* Same handling as above, but with the arm_fdpic guard. */
27661 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27662 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27663 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27664 if (arm_fdpic)
27665 {
27666 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27667 }
27668 else
27669 {
27670 as_bad_where (fixP->fx_file, fixP->fx_line,
27671 _("Relocation supported only in FDPIC mode"));
27672 }
27673 break;
27674
c19d1205
ZW
27675 case BFD_RELOC_ARM_GOT32:
27676 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27677 break;
b43420e6
NC
27678
27679 case BFD_RELOC_ARM_GOT_PREL:
27680 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27681 md_number_to_chars (buf, value, 4);
b43420e6
NC
27682 break;
27683
9a6f4e97
NS
27684 case BFD_RELOC_ARM_TARGET2:
27685 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27686 addend here for REL targets, because it won't be written out
27687 during reloc processing later. */
9a6f4e97
NS
27688 if (fixP->fx_done || !seg->use_rela_p)
27689 md_number_to_chars (buf, fixP->fx_offset, 4);
27690 break;
188fd7ae
CL
27691
27692 /* Relocations for FDPIC. */
27693 case BFD_RELOC_ARM_GOTFUNCDESC:
27694 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27695 case BFD_RELOC_ARM_FUNCDESC:
27696 if (arm_fdpic)
27697 {
27698 if (fixP->fx_done || !seg->use_rela_p)
27699 md_number_to_chars (buf, 0, 4);
27700 }
27701 else
27702 {
27703 as_bad_where (fixP->fx_file, fixP->fx_line,
27704 _("Relocation supported only in FDPIC mode"));
27705 }
27706 break;
c19d1205 27707#endif
6c43fab6 27708
c19d1205
ZW
27709 case BFD_RELOC_RVA:
27710 case BFD_RELOC_32:
27711 case BFD_RELOC_ARM_TARGET1:
27712 case BFD_RELOC_ARM_ROSEGREL32:
27713 case BFD_RELOC_ARM_SBREL32:
27714 case BFD_RELOC_32_PCREL:
f0927246
NC
27715#ifdef TE_PE
27716 case BFD_RELOC_32_SECREL:
27717#endif
2fc8bdac 27718 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27719#ifdef TE_WINCE
27720 /* For WinCE we only do this for pcrel fixups. */
27721 if (fixP->fx_done || fixP->fx_pcrel)
27722#endif
27723 md_number_to_chars (buf, value, 4);
c19d1205 27724 break;
6c43fab6 27725
c19d1205
ZW
27726#ifdef OBJ_ELF
27727 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27728 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27729 {
27730 newval = md_chars_to_number (buf, 4) & 0x80000000;
27731 if ((value ^ (value >> 1)) & 0x40000000)
27732 {
27733 as_bad_where (fixP->fx_file, fixP->fx_line,
27734 _("rel31 relocation overflow"));
27735 }
27736 newval |= value & 0x7fffffff;
27737 md_number_to_chars (buf, newval, 4);
27738 }
27739 break;
c19d1205 27740#endif
a737bd4d 27741
c19d1205 27742 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27743 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27744 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27745 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27746 newval = md_chars_to_number (buf, INSN_SIZE);
27747 else
27748 newval = get_thumb32_insn (buf);
27749 if ((newval & 0x0f200f00) == 0x0d000900)
27750 {
27751 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27752 has permitted values that are multiples of 2, in the range 0
27753 to 510. */
27754 if (value < -510 || value > 510 || (value & 1))
27755 as_bad_where (fixP->fx_file, fixP->fx_line,
27756 _("co-processor offset out of range"));
27757 }
32c36c3c
AV
27758 else if ((newval & 0xfe001f80) == 0xec000f80)
27759 {
27760 if (value < -511 || value > 512 || (value & 3))
27761 as_bad_where (fixP->fx_file, fixP->fx_line,
27762 _("co-processor offset out of range"));
27763 }
9db2f6b4 27764 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27765 as_bad_where (fixP->fx_file, fixP->fx_line,
27766 _("co-processor offset out of range"));
27767 cp_off_common:
26d97720 27768 sign = value > 0;
c19d1205
ZW
27769 if (value < 0)
27770 value = -value;
8f06b2d8
PB
27771 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27772 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27773 newval = md_chars_to_number (buf, INSN_SIZE);
27774 else
27775 newval = get_thumb32_insn (buf);
26d97720 27776 if (value == 0)
32c36c3c
AV
27777 {
27778 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27779 newval &= 0xffffff80;
27780 else
27781 newval &= 0xffffff00;
27782 }
26d97720
NS
27783 else
27784 {
32c36c3c
AV
27785 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27786 newval &= 0xff7fff80;
27787 else
27788 newval &= 0xff7fff00;
9db2f6b4
RL
27789 if ((newval & 0x0f200f00) == 0x0d000900)
27790 {
27791 /* This is a fp16 vstr/vldr.
27792
27793 It requires the immediate offset in the instruction is shifted
27794 left by 1 to be a half-word offset.
27795
27796 Here, left shift by 1 first, and later right shift by 2
27797 should get the right offset. */
27798 value <<= 1;
27799 }
26d97720
NS
27800 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27801 }
8f06b2d8
PB
27802 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27803 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27804 md_number_to_chars (buf, newval, INSN_SIZE);
27805 else
27806 put_thumb32_insn (buf, newval);
c19d1205 27807 break;
a737bd4d 27808
c19d1205 27809 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27810 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27811 if (value < -255 || value > 255)
27812 as_bad_where (fixP->fx_file, fixP->fx_line,
27813 _("co-processor offset out of range"));
df7849c5 27814 value *= 4;
c19d1205 27815 goto cp_off_common;
6c43fab6 27816
c19d1205
ZW
27817 case BFD_RELOC_ARM_THUMB_OFFSET:
27818 newval = md_chars_to_number (buf, THUMB_SIZE);
27819 /* Exactly what ranges, and where the offset is inserted depends
27820 on the type of instruction, we can establish this from the
27821 top 4 bits. */
27822 switch (newval >> 12)
27823 {
27824 case 4: /* PC load. */
27825 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27826 forced to zero for these loads; md_pcrel_from has already
27827 compensated for this. */
27828 if (value & 3)
27829 as_bad_where (fixP->fx_file, fixP->fx_line,
27830 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27831 (((unsigned long) fixP->fx_frag->fr_address
27832 + (unsigned long) fixP->fx_where) & ~3)
27833 + (unsigned long) value);
a737bd4d 27834
c19d1205
ZW
27835 if (value & ~0x3fc)
27836 as_bad_where (fixP->fx_file, fixP->fx_line,
27837 _("invalid offset, value too big (0x%08lX)"),
27838 (long) value);
a737bd4d 27839
c19d1205
ZW
27840 newval |= value >> 2;
27841 break;
a737bd4d 27842
c19d1205
ZW
27843 case 9: /* SP load/store. */
27844 if (value & ~0x3fc)
27845 as_bad_where (fixP->fx_file, fixP->fx_line,
27846 _("invalid offset, value too big (0x%08lX)"),
27847 (long) value);
27848 newval |= value >> 2;
27849 break;
6c43fab6 27850
c19d1205
ZW
27851 case 6: /* Word load/store. */
27852 if (value & ~0x7c)
27853 as_bad_where (fixP->fx_file, fixP->fx_line,
27854 _("invalid offset, value too big (0x%08lX)"),
27855 (long) value);
27856 newval |= value << 4; /* 6 - 2. */
27857 break;
a737bd4d 27858
c19d1205
ZW
27859 case 7: /* Byte load/store. */
27860 if (value & ~0x1f)
27861 as_bad_where (fixP->fx_file, fixP->fx_line,
27862 _("invalid offset, value too big (0x%08lX)"),
27863 (long) value);
27864 newval |= value << 6;
27865 break;
a737bd4d 27866
c19d1205
ZW
27867 case 8: /* Halfword load/store. */
27868 if (value & ~0x3e)
27869 as_bad_where (fixP->fx_file, fixP->fx_line,
27870 _("invalid offset, value too big (0x%08lX)"),
27871 (long) value);
27872 newval |= value << 5; /* 6 - 1. */
27873 break;
a737bd4d 27874
c19d1205
ZW
27875 default:
27876 as_bad_where (fixP->fx_file, fixP->fx_line,
27877 "Unable to process relocation for thumb opcode: %lx",
27878 (unsigned long) newval);
27879 break;
27880 }
27881 md_number_to_chars (buf, newval, THUMB_SIZE);
27882 break;
a737bd4d 27883
c19d1205
ZW
27884 case BFD_RELOC_ARM_THUMB_ADD:
27885 /* This is a complicated relocation, since we use it for all of
27886 the following immediate relocations:
a737bd4d 27887
c19d1205
ZW
27888 3bit ADD/SUB
27889 8bit ADD/SUB
27890 9bit ADD/SUB SP word-aligned
27891 10bit ADD PC/SP word-aligned
a737bd4d 27892
c19d1205
ZW
27893 The type of instruction being processed is encoded in the
27894 instruction field:
a737bd4d 27895
c19d1205
ZW
27896 0x8000 SUB
27897 0x00F0 Rd
27898 0x000F Rs
27899 */
27900 newval = md_chars_to_number (buf, THUMB_SIZE);
27901 {
27902 int rd = (newval >> 4) & 0xf;
27903 int rs = newval & 0xf;
27904 int subtract = !!(newval & 0x8000);
a737bd4d 27905
c19d1205
ZW
27906 /* Check for HI regs, only very restricted cases allowed:
27907 Adjusting SP, and using PC or SP to get an address. */
27908 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27909 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27910 as_bad_where (fixP->fx_file, fixP->fx_line,
27911 _("invalid Hi register with immediate"));
a737bd4d 27912
c19d1205
ZW
27913 /* If value is negative, choose the opposite instruction. */
27914 if (value < 0)
27915 {
27916 value = -value;
27917 subtract = !subtract;
27918 if (value < 0)
27919 as_bad_where (fixP->fx_file, fixP->fx_line,
27920 _("immediate value out of range"));
27921 }
a737bd4d 27922
c19d1205
ZW
27923 if (rd == REG_SP)
27924 {
75c11999 27925 if (value & ~0x1fc)
c19d1205
ZW
27926 as_bad_where (fixP->fx_file, fixP->fx_line,
27927 _("invalid immediate for stack address calculation"));
27928 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27929 newval |= value >> 2;
27930 }
27931 else if (rs == REG_PC || rs == REG_SP)
27932 {
c12d2c9d
NC
27933 /* PR gas/18541. If the addition is for a defined symbol
27934 within range of an ADR instruction then accept it. */
27935 if (subtract
27936 && value == 4
27937 && fixP->fx_addsy != NULL)
27938 {
27939 subtract = 0;
27940
27941 if (! S_IS_DEFINED (fixP->fx_addsy)
27942 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27943 || S_IS_WEAK (fixP->fx_addsy))
27944 {
27945 as_bad_where (fixP->fx_file, fixP->fx_line,
27946 _("address calculation needs a strongly defined nearby symbol"));
27947 }
27948 else
27949 {
27950 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27951
27952 /* Round up to the next 4-byte boundary. */
27953 if (v & 3)
27954 v = (v + 3) & ~ 3;
27955 else
27956 v += 4;
27957 v = S_GET_VALUE (fixP->fx_addsy) - v;
27958
27959 if (v & ~0x3fc)
27960 {
27961 as_bad_where (fixP->fx_file, fixP->fx_line,
27962 _("symbol too far away"));
27963 }
27964 else
27965 {
27966 fixP->fx_done = 1;
27967 value = v;
27968 }
27969 }
27970 }
27971
c19d1205
ZW
27972 if (subtract || value & ~0x3fc)
27973 as_bad_where (fixP->fx_file, fixP->fx_line,
27974 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27975 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27976 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27977 newval |= rd << 8;
27978 newval |= value >> 2;
27979 }
27980 else if (rs == rd)
27981 {
27982 if (value & ~0xff)
27983 as_bad_where (fixP->fx_file, fixP->fx_line,
27984 _("immediate value out of range"));
27985 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27986 newval |= (rd << 8) | value;
27987 }
27988 else
27989 {
27990 if (value & ~0x7)
27991 as_bad_where (fixP->fx_file, fixP->fx_line,
27992 _("immediate value out of range"));
27993 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27994 newval |= rd | (rs << 3) | (value << 6);
27995 }
27996 }
27997 md_number_to_chars (buf, newval, THUMB_SIZE);
27998 break;
a737bd4d 27999
c19d1205
ZW
28000 case BFD_RELOC_ARM_THUMB_IMM:
28001 newval = md_chars_to_number (buf, THUMB_SIZE);
28002 if (value < 0 || value > 255)
28003 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 28004 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
28005 (long) value);
28006 newval |= value;
28007 md_number_to_chars (buf, newval, THUMB_SIZE);
28008 break;
a737bd4d 28009
c19d1205
ZW
28010 case BFD_RELOC_ARM_THUMB_SHIFT:
28011 /* 5bit shift value (0..32). LSL cannot take 32. */
28012 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28013 temp = newval & 0xf800;
28014 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28015 as_bad_where (fixP->fx_file, fixP->fx_line,
28016 _("invalid shift value: %ld"), (long) value);
28017 /* Shifts of zero must be encoded as LSL. */
28018 if (value == 0)
28019 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28020 /* Shifts of 32 are encoded as zero. */
28021 else if (value == 32)
28022 value = 0;
28023 newval |= value << 6;
28024 md_number_to_chars (buf, newval, THUMB_SIZE);
28025 break;
a737bd4d 28026
c19d1205
ZW
28027 case BFD_RELOC_VTABLE_INHERIT:
28028 case BFD_RELOC_VTABLE_ENTRY:
28029 fixP->fx_done = 0;
28030 return;
6c43fab6 28031
b6895b4f
PB
28032 case BFD_RELOC_ARM_MOVW:
28033 case BFD_RELOC_ARM_MOVT:
28034 case BFD_RELOC_ARM_THUMB_MOVW:
28035 case BFD_RELOC_ARM_THUMB_MOVT:
28036 if (fixP->fx_done || !seg->use_rela_p)
28037 {
28038 /* REL format relocations are limited to a 16-bit addend. */
28039 if (!fixP->fx_done)
28040 {
39623e12 28041 if (value < -0x8000 || value > 0x7fff)
b6895b4f 28042 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 28043 _("offset out of range"));
b6895b4f
PB
28044 }
28045 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28046 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28047 {
28048 value >>= 16;
28049 }
28050
28051 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28052 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28053 {
28054 newval = get_thumb32_insn (buf);
28055 newval &= 0xfbf08f00;
28056 newval |= (value & 0xf000) << 4;
28057 newval |= (value & 0x0800) << 15;
28058 newval |= (value & 0x0700) << 4;
28059 newval |= (value & 0x00ff);
28060 put_thumb32_insn (buf, newval);
28061 }
28062 else
28063 {
28064 newval = md_chars_to_number (buf, 4);
28065 newval &= 0xfff0f000;
28066 newval |= value & 0x0fff;
28067 newval |= (value & 0xf000) << 4;
28068 md_number_to_chars (buf, newval, 4);
28069 }
28070 }
28071 return;
28072
72d98d16
MG
28073 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28074 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28075 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28076 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28077 gas_assert (!fixP->fx_done);
28078 {
28079 bfd_vma insn;
28080 bfd_boolean is_mov;
28081 bfd_vma encoded_addend = value;
28082
28083 /* Check that addend can be encoded in instruction. */
28084 if (!seg->use_rela_p && (value < 0 || value > 255))
28085 as_bad_where (fixP->fx_file, fixP->fx_line,
28086 _("the offset 0x%08lX is not representable"),
28087 (unsigned long) encoded_addend);
28088
28089 /* Extract the instruction. */
28090 insn = md_chars_to_number (buf, THUMB_SIZE);
28091 is_mov = (insn & 0xf800) == 0x2000;
28092
28093 /* Encode insn. */
28094 if (is_mov)
28095 {
28096 if (!seg->use_rela_p)
28097 insn |= encoded_addend;
28098 }
28099 else
28100 {
28101 int rd, rs;
28102
28103 /* Extract the instruction. */
28104 /* Encoding is the following
28105 0x8000 SUB
28106 0x00F0 Rd
28107 0x000F Rs
28108 */
28109 /* The following conditions must be true :
28110 - ADD
28111 - Rd == Rs
28112 - Rd <= 7
28113 */
28114 rd = (insn >> 4) & 0xf;
28115 rs = insn & 0xf;
28116 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28117 as_bad_where (fixP->fx_file, fixP->fx_line,
28118 _("Unable to process relocation for thumb opcode: %lx"),
28119 (unsigned long) insn);
28120
28121 /* Encode as ADD immediate8 thumb 1 code. */
28122 insn = 0x3000 | (rd << 8);
28123
28124 /* Place the encoded addend into the first 8 bits of the
28125 instruction. */
28126 if (!seg->use_rela_p)
28127 insn |= encoded_addend;
28128 }
28129
28130 /* Update the instruction. */
28131 md_number_to_chars (buf, insn, THUMB_SIZE);
28132 }
28133 break;
28134
4962c51a
MS
28135 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28136 case BFD_RELOC_ARM_ALU_PC_G0:
28137 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28138 case BFD_RELOC_ARM_ALU_PC_G1:
28139 case BFD_RELOC_ARM_ALU_PC_G2:
28140 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28141 case BFD_RELOC_ARM_ALU_SB_G0:
28142 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28143 case BFD_RELOC_ARM_ALU_SB_G1:
28144 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 28145 gas_assert (!fixP->fx_done);
4962c51a
MS
28146 if (!seg->use_rela_p)
28147 {
477330fc
RM
28148 bfd_vma insn;
28149 bfd_vma encoded_addend;
3ca4a8ec 28150 bfd_vma addend_abs = llabs (value);
477330fc
RM
28151
28152 /* Check that the absolute value of the addend can be
28153 expressed as an 8-bit constant plus a rotation. */
28154 encoded_addend = encode_arm_immediate (addend_abs);
28155 if (encoded_addend == (unsigned int) FAIL)
4962c51a 28156 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28157 _("the offset 0x%08lX is not representable"),
28158 (unsigned long) addend_abs);
28159
28160 /* Extract the instruction. */
28161 insn = md_chars_to_number (buf, INSN_SIZE);
28162
28163 /* If the addend is positive, use an ADD instruction.
28164 Otherwise use a SUB. Take care not to destroy the S bit. */
28165 insn &= 0xff1fffff;
28166 if (value < 0)
28167 insn |= 1 << 22;
28168 else
28169 insn |= 1 << 23;
28170
28171 /* Place the encoded addend into the first 12 bits of the
28172 instruction. */
28173 insn &= 0xfffff000;
28174 insn |= encoded_addend;
28175
28176 /* Update the instruction. */
28177 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
28178 }
28179 break;
28180
28181 case BFD_RELOC_ARM_LDR_PC_G0:
28182 case BFD_RELOC_ARM_LDR_PC_G1:
28183 case BFD_RELOC_ARM_LDR_PC_G2:
28184 case BFD_RELOC_ARM_LDR_SB_G0:
28185 case BFD_RELOC_ARM_LDR_SB_G1:
28186 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 28187 gas_assert (!fixP->fx_done);
4962c51a 28188 if (!seg->use_rela_p)
477330fc
RM
28189 {
28190 bfd_vma insn;
3ca4a8ec 28191 bfd_vma addend_abs = llabs (value);
4962c51a 28192
477330fc
RM
28193 /* Check that the absolute value of the addend can be
28194 encoded in 12 bits. */
28195 if (addend_abs >= 0x1000)
4962c51a 28196 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28197 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28198 (unsigned long) addend_abs);
28199
28200 /* Extract the instruction. */
28201 insn = md_chars_to_number (buf, INSN_SIZE);
28202
28203 /* If the addend is negative, clear bit 23 of the instruction.
28204 Otherwise set it. */
28205 if (value < 0)
28206 insn &= ~(1 << 23);
28207 else
28208 insn |= 1 << 23;
28209
28210 /* Place the absolute value of the addend into the first 12 bits
28211 of the instruction. */
28212 insn &= 0xfffff000;
28213 insn |= addend_abs;
28214
28215 /* Update the instruction. */
28216 md_number_to_chars (buf, insn, INSN_SIZE);
28217 }
4962c51a
MS
28218 break;
28219
28220 case BFD_RELOC_ARM_LDRS_PC_G0:
28221 case BFD_RELOC_ARM_LDRS_PC_G1:
28222 case BFD_RELOC_ARM_LDRS_PC_G2:
28223 case BFD_RELOC_ARM_LDRS_SB_G0:
28224 case BFD_RELOC_ARM_LDRS_SB_G1:
28225 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 28226 gas_assert (!fixP->fx_done);
4962c51a 28227 if (!seg->use_rela_p)
477330fc
RM
28228 {
28229 bfd_vma insn;
3ca4a8ec 28230 bfd_vma addend_abs = llabs (value);
4962c51a 28231
477330fc
RM
28232 /* Check that the absolute value of the addend can be
28233 encoded in 8 bits. */
28234 if (addend_abs >= 0x100)
4962c51a 28235 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28236 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28237 (unsigned long) addend_abs);
28238
28239 /* Extract the instruction. */
28240 insn = md_chars_to_number (buf, INSN_SIZE);
28241
28242 /* If the addend is negative, clear bit 23 of the instruction.
28243 Otherwise set it. */
28244 if (value < 0)
28245 insn &= ~(1 << 23);
28246 else
28247 insn |= 1 << 23;
28248
28249 /* Place the first four bits of the absolute value of the addend
28250 into the first 4 bits of the instruction, and the remaining
28251 four into bits 8 .. 11. */
28252 insn &= 0xfffff0f0;
28253 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28254
28255 /* Update the instruction. */
28256 md_number_to_chars (buf, insn, INSN_SIZE);
28257 }
4962c51a
MS
28258 break;
28259
28260 case BFD_RELOC_ARM_LDC_PC_G0:
28261 case BFD_RELOC_ARM_LDC_PC_G1:
28262 case BFD_RELOC_ARM_LDC_PC_G2:
28263 case BFD_RELOC_ARM_LDC_SB_G0:
28264 case BFD_RELOC_ARM_LDC_SB_G1:
28265 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 28266 gas_assert (!fixP->fx_done);
4962c51a 28267 if (!seg->use_rela_p)
477330fc
RM
28268 {
28269 bfd_vma insn;
3ca4a8ec 28270 bfd_vma addend_abs = llabs (value);
4962c51a 28271
477330fc
RM
28272 /* Check that the absolute value of the addend is a multiple of
28273 four and, when divided by four, fits in 8 bits. */
28274 if (addend_abs & 0x3)
4962c51a 28275 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28276 _("bad offset 0x%08lX (must be word-aligned)"),
28277 (unsigned long) addend_abs);
4962c51a 28278
477330fc 28279 if ((addend_abs >> 2) > 0xff)
4962c51a 28280 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28281 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28282 (unsigned long) addend_abs);
28283
28284 /* Extract the instruction. */
28285 insn = md_chars_to_number (buf, INSN_SIZE);
28286
28287 /* If the addend is negative, clear bit 23 of the instruction.
28288 Otherwise set it. */
28289 if (value < 0)
28290 insn &= ~(1 << 23);
28291 else
28292 insn |= 1 << 23;
28293
28294 /* Place the addend (divided by four) into the first eight
28295 bits of the instruction. */
28296 insn &= 0xfffffff0;
28297 insn |= addend_abs >> 2;
28298
28299 /* Update the instruction. */
28300 md_number_to_chars (buf, insn, INSN_SIZE);
28301 }
4962c51a
MS
28302 break;
28303
e12437dc
AV
28304 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28305 if (fixP->fx_addsy
28306 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28307 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28308 && ARM_IS_FUNC (fixP->fx_addsy)
28309 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28310 {
28311 /* Force a relocation for a branch 5 bits wide. */
28312 fixP->fx_done = 0;
28313 }
28314 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28315 as_bad_where (fixP->fx_file, fixP->fx_line,
28316 BAD_BRANCH_OFF);
28317
28318 if (fixP->fx_done || !seg->use_rela_p)
28319 {
28320 addressT boff = value >> 1;
28321
28322 newval = md_chars_to_number (buf, THUMB_SIZE);
28323 newval |= (boff << 7);
28324 md_number_to_chars (buf, newval, THUMB_SIZE);
28325 }
28326 break;
28327
f6b2b12d
AV
28328 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28329 if (fixP->fx_addsy
28330 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28331 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28332 && ARM_IS_FUNC (fixP->fx_addsy)
28333 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28334 {
28335 fixP->fx_done = 0;
28336 }
28337 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28338 as_bad_where (fixP->fx_file, fixP->fx_line,
28339 _("branch out of range"));
28340
28341 if (fixP->fx_done || !seg->use_rela_p)
28342 {
28343 newval = md_chars_to_number (buf, THUMB_SIZE);
28344
28345 addressT boff = ((newval & 0x0780) >> 7) << 1;
28346 addressT diff = value - boff;
28347
28348 if (diff == 4)
28349 {
28350 newval |= 1 << 1; /* T bit. */
28351 }
28352 else if (diff != 2)
28353 {
28354 as_bad_where (fixP->fx_file, fixP->fx_line,
28355 _("out of range label-relative fixup value"));
28356 }
28357 md_number_to_chars (buf, newval, THUMB_SIZE);
28358 }
28359 break;
28360
e5d6e09e
AV
28361 case BFD_RELOC_ARM_THUMB_BF17:
28362 if (fixP->fx_addsy
28363 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28364 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28365 && ARM_IS_FUNC (fixP->fx_addsy)
28366 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28367 {
28368 /* Force a relocation for a branch 17 bits wide. */
28369 fixP->fx_done = 0;
28370 }
28371
28372 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28373 as_bad_where (fixP->fx_file, fixP->fx_line,
28374 BAD_BRANCH_OFF);
28375
28376 if (fixP->fx_done || !seg->use_rela_p)
28377 {
28378 offsetT newval2;
28379 addressT immA, immB, immC;
28380
28381 immA = (value & 0x0001f000) >> 12;
28382 immB = (value & 0x00000ffc) >> 2;
28383 immC = (value & 0x00000002) >> 1;
28384
28385 newval = md_chars_to_number (buf, THUMB_SIZE);
28386 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28387 newval |= immA;
28388 newval2 |= (immC << 11) | (immB << 1);
28389 md_number_to_chars (buf, newval, THUMB_SIZE);
28390 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28391 }
28392 break;
28393
1caf72a5
AV
28394 case BFD_RELOC_ARM_THUMB_BF19:
28395 if (fixP->fx_addsy
28396 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28397 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28398 && ARM_IS_FUNC (fixP->fx_addsy)
28399 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28400 {
28401 /* Force a relocation for a branch 19 bits wide. */
28402 fixP->fx_done = 0;
28403 }
28404
28405 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28406 as_bad_where (fixP->fx_file, fixP->fx_line,
28407 BAD_BRANCH_OFF);
28408
28409 if (fixP->fx_done || !seg->use_rela_p)
28410 {
28411 offsetT newval2;
28412 addressT immA, immB, immC;
28413
28414 immA = (value & 0x0007f000) >> 12;
28415 immB = (value & 0x00000ffc) >> 2;
28416 immC = (value & 0x00000002) >> 1;
28417
28418 newval = md_chars_to_number (buf, THUMB_SIZE);
28419 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28420 newval |= immA;
28421 newval2 |= (immC << 11) | (immB << 1);
28422 md_number_to_chars (buf, newval, THUMB_SIZE);
28423 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28424 }
28425 break;
28426
1889da70
AV
28427 case BFD_RELOC_ARM_THUMB_BF13:
28428 if (fixP->fx_addsy
28429 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28430 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28431 && ARM_IS_FUNC (fixP->fx_addsy)
28432 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28433 {
28434 /* Force a relocation for a branch 13 bits wide. */
28435 fixP->fx_done = 0;
28436 }
28437
28438 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28439 as_bad_where (fixP->fx_file, fixP->fx_line,
28440 BAD_BRANCH_OFF);
28441
28442 if (fixP->fx_done || !seg->use_rela_p)
28443 {
28444 offsetT newval2;
28445 addressT immA, immB, immC;
28446
28447 immA = (value & 0x00001000) >> 12;
28448 immB = (value & 0x00000ffc) >> 2;
28449 immC = (value & 0x00000002) >> 1;
28450
28451 newval = md_chars_to_number (buf, THUMB_SIZE);
28452 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28453 newval |= immA;
28454 newval2 |= (immC << 11) | (immB << 1);
28455 md_number_to_chars (buf, newval, THUMB_SIZE);
28456 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28457 }
28458 break;
28459
60f993ce
AV
28460 case BFD_RELOC_ARM_THUMB_LOOP12:
28461 if (fixP->fx_addsy
28462 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28463 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28464 && ARM_IS_FUNC (fixP->fx_addsy)
28465 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28466 {
28467 /* Force a relocation for a branch 12 bits wide. */
28468 fixP->fx_done = 0;
28469 }
28470
28471 bfd_vma insn = get_thumb32_insn (buf);
28472 /* le lr, <label> or le <label> */
28473 if (((insn & 0xffffffff) == 0xf00fc001)
28474 || ((insn & 0xffffffff) == 0xf02fc001))
28475 value = -value;
28476
28477 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28478 as_bad_where (fixP->fx_file, fixP->fx_line,
28479 BAD_BRANCH_OFF);
28480 if (fixP->fx_done || !seg->use_rela_p)
28481 {
28482 addressT imml, immh;
28483
28484 immh = (value & 0x00000ffc) >> 2;
28485 imml = (value & 0x00000002) >> 1;
28486
28487 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28488 newval |= (imml << 11) | (immh << 1);
28489 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28490 }
28491 break;
28492
845b51d6
PB
28493 case BFD_RELOC_ARM_V4BX:
28494 /* This will need to go in the object file. */
28495 fixP->fx_done = 0;
28496 break;
28497
c19d1205
ZW
28498 case BFD_RELOC_UNUSED:
28499 default:
28500 as_bad_where (fixP->fx_file, fixP->fx_line,
28501 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28502 }
6c43fab6
RE
28503}
28504
c19d1205
ZW
28505/* Translate internal representation of relocation info to BFD target
28506 format. */
a737bd4d 28507
c19d1205 28508arelent *
00a97672 28509tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28510{
c19d1205
ZW
28511 arelent * reloc;
28512 bfd_reloc_code_real_type code;
a737bd4d 28513
325801bd 28514 reloc = XNEW (arelent);
a737bd4d 28515
325801bd 28516 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28517 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28518 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28519
2fc8bdac 28520 if (fixp->fx_pcrel)
00a97672
RS
28521 {
28522 if (section->use_rela_p)
28523 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28524 else
28525 fixp->fx_offset = reloc->address;
28526 }
c19d1205 28527 reloc->addend = fixp->fx_offset;
a737bd4d 28528
c19d1205 28529 switch (fixp->fx_r_type)
a737bd4d 28530 {
c19d1205
ZW
28531 case BFD_RELOC_8:
28532 if (fixp->fx_pcrel)
28533 {
28534 code = BFD_RELOC_8_PCREL;
28535 break;
28536 }
1a0670f3 28537 /* Fall through. */
a737bd4d 28538
c19d1205
ZW
28539 case BFD_RELOC_16:
28540 if (fixp->fx_pcrel)
28541 {
28542 code = BFD_RELOC_16_PCREL;
28543 break;
28544 }
1a0670f3 28545 /* Fall through. */
6c43fab6 28546
c19d1205
ZW
28547 case BFD_RELOC_32:
28548 if (fixp->fx_pcrel)
28549 {
28550 code = BFD_RELOC_32_PCREL;
28551 break;
28552 }
1a0670f3 28553 /* Fall through. */
a737bd4d 28554
b6895b4f
PB
28555 case BFD_RELOC_ARM_MOVW:
28556 if (fixp->fx_pcrel)
28557 {
28558 code = BFD_RELOC_ARM_MOVW_PCREL;
28559 break;
28560 }
1a0670f3 28561 /* Fall through. */
b6895b4f
PB
28562
28563 case BFD_RELOC_ARM_MOVT:
28564 if (fixp->fx_pcrel)
28565 {
28566 code = BFD_RELOC_ARM_MOVT_PCREL;
28567 break;
28568 }
1a0670f3 28569 /* Fall through. */
b6895b4f
PB
28570
28571 case BFD_RELOC_ARM_THUMB_MOVW:
28572 if (fixp->fx_pcrel)
28573 {
28574 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28575 break;
28576 }
1a0670f3 28577 /* Fall through. */
b6895b4f
PB
28578
28579 case BFD_RELOC_ARM_THUMB_MOVT:
28580 if (fixp->fx_pcrel)
28581 {
28582 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28583 break;
28584 }
1a0670f3 28585 /* Fall through. */
b6895b4f 28586
c19d1205
ZW
28587 case BFD_RELOC_NONE:
28588 case BFD_RELOC_ARM_PCREL_BRANCH:
28589 case BFD_RELOC_ARM_PCREL_BLX:
28590 case BFD_RELOC_RVA:
28591 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28592 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28593 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28594 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28595 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28596 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28597 case BFD_RELOC_VTABLE_ENTRY:
28598 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28599#ifdef TE_PE
28600 case BFD_RELOC_32_SECREL:
28601#endif
c19d1205
ZW
28602 code = fixp->fx_r_type;
28603 break;
a737bd4d 28604
00adf2d4
JB
28605 case BFD_RELOC_THUMB_PCREL_BLX:
28606#ifdef OBJ_ELF
28607 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28608 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28609 else
28610#endif
28611 code = BFD_RELOC_THUMB_PCREL_BLX;
28612 break;
28613
c19d1205
ZW
28614 case BFD_RELOC_ARM_LITERAL:
28615 case BFD_RELOC_ARM_HWLITERAL:
28616 /* If this is called then the a literal has
28617 been referenced across a section boundary. */
28618 as_bad_where (fixp->fx_file, fixp->fx_line,
28619 _("literal referenced across section boundary"));
28620 return NULL;
a737bd4d 28621
c19d1205 28622#ifdef OBJ_ELF
0855e32b
NS
28623 case BFD_RELOC_ARM_TLS_CALL:
28624 case BFD_RELOC_ARM_THM_TLS_CALL:
28625 case BFD_RELOC_ARM_TLS_DESCSEQ:
28626 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28627 case BFD_RELOC_ARM_GOT32:
28628 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28629 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28630 case BFD_RELOC_ARM_PLT32:
28631 case BFD_RELOC_ARM_TARGET1:
28632 case BFD_RELOC_ARM_ROSEGREL32:
28633 case BFD_RELOC_ARM_SBREL32:
28634 case BFD_RELOC_ARM_PREL31:
28635 case BFD_RELOC_ARM_TARGET2:
c19d1205 28636 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28637 case BFD_RELOC_ARM_PCREL_CALL:
28638 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28639 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28640 case BFD_RELOC_ARM_ALU_PC_G0:
28641 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28642 case BFD_RELOC_ARM_ALU_PC_G1:
28643 case BFD_RELOC_ARM_ALU_PC_G2:
28644 case BFD_RELOC_ARM_LDR_PC_G0:
28645 case BFD_RELOC_ARM_LDR_PC_G1:
28646 case BFD_RELOC_ARM_LDR_PC_G2:
28647 case BFD_RELOC_ARM_LDRS_PC_G0:
28648 case BFD_RELOC_ARM_LDRS_PC_G1:
28649 case BFD_RELOC_ARM_LDRS_PC_G2:
28650 case BFD_RELOC_ARM_LDC_PC_G0:
28651 case BFD_RELOC_ARM_LDC_PC_G1:
28652 case BFD_RELOC_ARM_LDC_PC_G2:
28653 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28654 case BFD_RELOC_ARM_ALU_SB_G0:
28655 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28656 case BFD_RELOC_ARM_ALU_SB_G1:
28657 case BFD_RELOC_ARM_ALU_SB_G2:
28658 case BFD_RELOC_ARM_LDR_SB_G0:
28659 case BFD_RELOC_ARM_LDR_SB_G1:
28660 case BFD_RELOC_ARM_LDR_SB_G2:
28661 case BFD_RELOC_ARM_LDRS_SB_G0:
28662 case BFD_RELOC_ARM_LDRS_SB_G1:
28663 case BFD_RELOC_ARM_LDRS_SB_G2:
28664 case BFD_RELOC_ARM_LDC_SB_G0:
28665 case BFD_RELOC_ARM_LDC_SB_G1:
28666 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28667 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28668 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28669 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28670 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28671 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28672 case BFD_RELOC_ARM_GOTFUNCDESC:
28673 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28674 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28675 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28676 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28677 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28678 code = fixp->fx_r_type;
28679 break;
a737bd4d 28680
0855e32b 28681 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28682 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28683 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28684 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28685 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28686 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28687 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28688 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28689 /* BFD will include the symbol's address in the addend.
28690 But we don't want that, so subtract it out again here. */
28691 if (!S_IS_COMMON (fixp->fx_addsy))
28692 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28693 code = fixp->fx_r_type;
28694 break;
28695#endif
a737bd4d 28696
c19d1205
ZW
28697 case BFD_RELOC_ARM_IMMEDIATE:
28698 as_bad_where (fixp->fx_file, fixp->fx_line,
28699 _("internal relocation (type: IMMEDIATE) not fixed up"));
28700 return NULL;
a737bd4d 28701
c19d1205
ZW
28702 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28703 as_bad_where (fixp->fx_file, fixp->fx_line,
28704 _("ADRL used for a symbol not defined in the same file"));
28705 return NULL;
a737bd4d 28706
e12437dc 28707 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28708 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28709 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28710 as_bad_where (fixp->fx_file, fixp->fx_line,
28711 _("%s used for a symbol not defined in the same file"),
28712 bfd_get_reloc_code_name (fixp->fx_r_type));
28713 return NULL;
28714
c19d1205 28715 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28716 if (section->use_rela_p)
28717 {
28718 code = fixp->fx_r_type;
28719 break;
28720 }
28721
c19d1205
ZW
28722 if (fixp->fx_addsy != NULL
28723 && !S_IS_DEFINED (fixp->fx_addsy)
28724 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28725 {
c19d1205
ZW
28726 as_bad_where (fixp->fx_file, fixp->fx_line,
28727 _("undefined local label `%s'"),
28728 S_GET_NAME (fixp->fx_addsy));
28729 return NULL;
a737bd4d
NC
28730 }
28731
c19d1205
ZW
28732 as_bad_where (fixp->fx_file, fixp->fx_line,
28733 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28734 return NULL;
a737bd4d 28735
c19d1205
ZW
28736 default:
28737 {
e0471c16 28738 const char * type;
6c43fab6 28739
c19d1205
ZW
28740 switch (fixp->fx_r_type)
28741 {
28742 case BFD_RELOC_NONE: type = "NONE"; break;
28743 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28744 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28745 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28746 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28747 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28748 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28749 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28750 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28751 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28752 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28753 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28754 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28755 default: type = _("<unknown>"); break;
28756 }
28757 as_bad_where (fixp->fx_file, fixp->fx_line,
28758 _("cannot represent %s relocation in this object file format"),
28759 type);
28760 return NULL;
28761 }
a737bd4d 28762 }
6c43fab6 28763
c19d1205
ZW
28764#ifdef OBJ_ELF
28765 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28766 && GOT_symbol
28767 && fixp->fx_addsy == GOT_symbol)
28768 {
28769 code = BFD_RELOC_ARM_GOTPC;
28770 reloc->addend = fixp->fx_offset = reloc->address;
28771 }
28772#endif
6c43fab6 28773
c19d1205 28774 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28775
c19d1205
ZW
28776 if (reloc->howto == NULL)
28777 {
28778 as_bad_where (fixp->fx_file, fixp->fx_line,
28779 _("cannot represent %s relocation in this object file format"),
28780 bfd_get_reloc_code_name (code));
28781 return NULL;
28782 }
6c43fab6 28783
c19d1205
ZW
28784 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28785 vtable entry to be used in the relocation's section offset. */
28786 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28787 reloc->address = fixp->fx_offset;
6c43fab6 28788
c19d1205 28789 return reloc;
6c43fab6
RE
28790}
28791
c19d1205 28792/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28793
c19d1205
ZW
28794void
28795cons_fix_new_arm (fragS * frag,
28796 int where,
28797 int size,
62ebcb5c
AM
28798 expressionS * exp,
28799 bfd_reloc_code_real_type reloc)
6c43fab6 28800{
c19d1205 28801 int pcrel = 0;
6c43fab6 28802
c19d1205
ZW
28803 /* Pick a reloc.
28804 FIXME: @@ Should look at CPU word size. */
28805 switch (size)
28806 {
28807 case 1:
62ebcb5c 28808 reloc = BFD_RELOC_8;
c19d1205
ZW
28809 break;
28810 case 2:
62ebcb5c 28811 reloc = BFD_RELOC_16;
c19d1205
ZW
28812 break;
28813 case 4:
28814 default:
62ebcb5c 28815 reloc = BFD_RELOC_32;
c19d1205
ZW
28816 break;
28817 case 8:
62ebcb5c 28818 reloc = BFD_RELOC_64;
c19d1205
ZW
28819 break;
28820 }
6c43fab6 28821
f0927246
NC
28822#ifdef TE_PE
28823 if (exp->X_op == O_secrel)
28824 {
28825 exp->X_op = O_symbol;
62ebcb5c 28826 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28827 }
28828#endif
28829
62ebcb5c 28830 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28831}
6c43fab6 28832
4343666d 28833#if defined (OBJ_COFF)
c19d1205
ZW
28834void
28835arm_validate_fix (fixS * fixP)
6c43fab6 28836{
c19d1205
ZW
28837 /* If the destination of the branch is a defined symbol which does not have
28838 the THUMB_FUNC attribute, then we must be calling a function which has
28839 the (interfacearm) attribute. We look for the Thumb entry point to that
28840 function and change the branch to refer to that function instead. */
28841 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28842 && fixP->fx_addsy != NULL
28843 && S_IS_DEFINED (fixP->fx_addsy)
28844 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28845 {
c19d1205 28846 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28847 }
c19d1205
ZW
28848}
28849#endif
6c43fab6 28850
267bf995 28851
c19d1205
ZW
28852int
28853arm_force_relocation (struct fix * fixp)
28854{
28855#if defined (OBJ_COFF) && defined (TE_PE)
28856 if (fixp->fx_r_type == BFD_RELOC_RVA)
28857 return 1;
28858#endif
6c43fab6 28859
267bf995
RR
28860 /* In case we have a call or a branch to a function in ARM ISA mode from
28861 a thumb function or vice-versa force the relocation. These relocations
28862 are cleared off for some cores that might have blx and simple transformations
28863 are possible. */
28864
28865#ifdef OBJ_ELF
28866 switch (fixp->fx_r_type)
28867 {
28868 case BFD_RELOC_ARM_PCREL_JUMP:
28869 case BFD_RELOC_ARM_PCREL_CALL:
28870 case BFD_RELOC_THUMB_PCREL_BLX:
28871 if (THUMB_IS_FUNC (fixp->fx_addsy))
28872 return 1;
28873 break;
28874
28875 case BFD_RELOC_ARM_PCREL_BLX:
28876 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28877 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28878 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28879 if (ARM_IS_FUNC (fixp->fx_addsy))
28880 return 1;
28881 break;
28882
28883 default:
28884 break;
28885 }
28886#endif
28887
b5884301
PB
28888 /* Resolve these relocations even if the symbol is extern or weak.
28889 Technically this is probably wrong due to symbol preemption.
28890 In practice these relocations do not have enough range to be useful
28891 at dynamic link time, and some code (e.g. in the Linux kernel)
28892 expects these references to be resolved. */
c19d1205
ZW
28893 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28894 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28895 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28896 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28897 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28898 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28899 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28900 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28901 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28902 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28903 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28904 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28905 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28906 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28907 return 0;
a737bd4d 28908
4962c51a
MS
28909 /* Always leave these relocations for the linker. */
28910 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28911 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28912 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28913 return 1;
28914
f0291e4c
PB
28915 /* Always generate relocations against function symbols. */
28916 if (fixp->fx_r_type == BFD_RELOC_32
28917 && fixp->fx_addsy
28918 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28919 return 1;
28920
c19d1205 28921 return generic_force_reloc (fixp);
404ff6b5
AH
28922}
28923
0ffdc86c 28924#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28925/* Relocations against function names must be left unadjusted,
28926 so that the linker can use this information to generate interworking
28927 stubs. The MIPS version of this function
c19d1205
ZW
28928 also prevents relocations that are mips-16 specific, but I do not
28929 know why it does this.
404ff6b5 28930
c19d1205
ZW
28931 FIXME:
28932 There is one other problem that ought to be addressed here, but
28933 which currently is not: Taking the address of a label (rather
28934 than a function) and then later jumping to that address. Such
28935 addresses also ought to have their bottom bit set (assuming that
28936 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28937
c19d1205
ZW
28938bfd_boolean
28939arm_fix_adjustable (fixS * fixP)
404ff6b5 28940{
c19d1205
ZW
28941 if (fixP->fx_addsy == NULL)
28942 return 1;
404ff6b5 28943
e28387c3
PB
28944 /* Preserve relocations against symbols with function type. */
28945 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28946 return FALSE;
e28387c3 28947
c19d1205
ZW
28948 if (THUMB_IS_FUNC (fixP->fx_addsy)
28949 && fixP->fx_subsy == NULL)
c921be7d 28950 return FALSE;
a737bd4d 28951
c19d1205
ZW
28952 /* We need the symbol name for the VTABLE entries. */
28953 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28954 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28955 return FALSE;
404ff6b5 28956
c19d1205
ZW
28957 /* Don't allow symbols to be discarded on GOT related relocs. */
28958 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28959 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28960 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28961 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28962 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28963 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28964 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28965 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28966 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28967 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28968 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28969 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28970 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28971 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28972 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28973 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28974 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28975 return FALSE;
a737bd4d 28976
4962c51a
MS
28977 /* Similarly for group relocations. */
28978 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28979 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28980 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28981 return FALSE;
4962c51a 28982
79947c54
CD
28983 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28984 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28985 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28986 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28987 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28988 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28989 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28990 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28991 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28992 return FALSE;
79947c54 28993
72d98d16
MG
28994 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28995 offsets, so keep these symbols. */
28996 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28997 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28998 return FALSE;
28999
c921be7d 29000 return TRUE;
a737bd4d 29001}
0ffdc86c
NC
29002#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29003
29004#ifdef OBJ_ELF
c19d1205
ZW
29005const char *
29006elf32_arm_target_format (void)
404ff6b5 29007{
c19d1205
ZW
29008#ifdef TE_SYMBIAN
29009 return (target_big_endian
29010 ? "elf32-bigarm-symbian"
29011 : "elf32-littlearm-symbian");
29012#elif defined (TE_VXWORKS)
29013 return (target_big_endian
29014 ? "elf32-bigarm-vxworks"
29015 : "elf32-littlearm-vxworks");
b38cadfb
NC
29016#elif defined (TE_NACL)
29017 return (target_big_endian
29018 ? "elf32-bigarm-nacl"
29019 : "elf32-littlearm-nacl");
c19d1205 29020#else
18a20338
CL
29021 if (arm_fdpic)
29022 {
29023 if (target_big_endian)
29024 return "elf32-bigarm-fdpic";
29025 else
29026 return "elf32-littlearm-fdpic";
29027 }
c19d1205 29028 else
18a20338
CL
29029 {
29030 if (target_big_endian)
29031 return "elf32-bigarm";
29032 else
29033 return "elf32-littlearm";
29034 }
c19d1205 29035#endif
404ff6b5
AH
29036}
29037
c19d1205
ZW
29038void
29039armelf_frob_symbol (symbolS * symp,
29040 int * puntp)
404ff6b5 29041{
c19d1205
ZW
29042 elf_frob_symbol (symp, puntp);
29043}
29044#endif
404ff6b5 29045
c19d1205 29046/* MD interface: Finalization. */
a737bd4d 29047
c19d1205
ZW
29048void
29049arm_cleanup (void)
29050{
29051 literal_pool * pool;
a737bd4d 29052
5ee91343
AV
29053 /* Ensure that all the predication blocks are properly closed. */
29054 check_pred_blocks_finished ();
e07e6e58 29055
c19d1205
ZW
29056 for (pool = list_of_pools; pool; pool = pool->next)
29057 {
5f4273c7 29058 /* Put it at the end of the relevant section. */
c19d1205
ZW
29059 subseg_set (pool->section, pool->sub_section);
29060#ifdef OBJ_ELF
29061 arm_elf_change_section ();
29062#endif
29063 s_ltorg (0);
29064 }
404ff6b5
AH
29065}
29066
cd000bff
DJ
29067#ifdef OBJ_ELF
29068/* Remove any excess mapping symbols generated for alignment frags in
29069 SEC. We may have created a mapping symbol before a zero byte
29070 alignment; remove it if there's a mapping symbol after the
29071 alignment. */
29072static void
29073check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29074 void *dummy ATTRIBUTE_UNUSED)
29075{
29076 segment_info_type *seginfo = seg_info (sec);
29077 fragS *fragp;
29078
29079 if (seginfo == NULL || seginfo->frchainP == NULL)
29080 return;
29081
29082 for (fragp = seginfo->frchainP->frch_root;
29083 fragp != NULL;
29084 fragp = fragp->fr_next)
29085 {
29086 symbolS *sym = fragp->tc_frag_data.last_map;
29087 fragS *next = fragp->fr_next;
29088
29089 /* Variable-sized frags have been converted to fixed size by
29090 this point. But if this was variable-sized to start with,
29091 there will be a fixed-size frag after it. So don't handle
29092 next == NULL. */
29093 if (sym == NULL || next == NULL)
29094 continue;
29095
29096 if (S_GET_VALUE (sym) < next->fr_address)
29097 /* Not at the end of this frag. */
29098 continue;
29099 know (S_GET_VALUE (sym) == next->fr_address);
29100
29101 do
29102 {
29103 if (next->tc_frag_data.first_map != NULL)
29104 {
29105 /* Next frag starts with a mapping symbol. Discard this
29106 one. */
29107 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29108 break;
29109 }
29110
29111 if (next->fr_next == NULL)
29112 {
29113 /* This mapping symbol is at the end of the section. Discard
29114 it. */
29115 know (next->fr_fix == 0 && next->fr_var == 0);
29116 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29117 break;
29118 }
29119
29120 /* As long as we have empty frags without any mapping symbols,
29121 keep looking. */
29122 /* If the next frag is non-empty and does not start with a
29123 mapping symbol, then this mapping symbol is required. */
29124 if (next->fr_address != next->fr_next->fr_address)
29125 break;
29126
29127 next = next->fr_next;
29128 }
29129 while (next != NULL);
29130 }
29131}
29132#endif
29133
c19d1205
ZW
29134/* Adjust the symbol table. This marks Thumb symbols as distinct from
29135 ARM ones. */
404ff6b5 29136
c19d1205
ZW
29137void
29138arm_adjust_symtab (void)
404ff6b5 29139{
c19d1205
ZW
29140#ifdef OBJ_COFF
29141 symbolS * sym;
404ff6b5 29142
c19d1205
ZW
29143 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29144 {
29145 if (ARM_IS_THUMB (sym))
29146 {
29147 if (THUMB_IS_FUNC (sym))
29148 {
29149 /* Mark the symbol as a Thumb function. */
29150 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29151 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29152 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 29153
c19d1205
ZW
29154 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29155 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29156 else
29157 as_bad (_("%s: unexpected function type: %d"),
29158 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29159 }
29160 else switch (S_GET_STORAGE_CLASS (sym))
29161 {
29162 case C_EXT:
29163 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29164 break;
29165 case C_STAT:
29166 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29167 break;
29168 case C_LABEL:
29169 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29170 break;
29171 default:
29172 /* Do nothing. */
29173 break;
29174 }
29175 }
a737bd4d 29176
c19d1205
ZW
29177 if (ARM_IS_INTERWORK (sym))
29178 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 29179 }
c19d1205
ZW
29180#endif
29181#ifdef OBJ_ELF
29182 symbolS * sym;
29183 char bind;
404ff6b5 29184
c19d1205 29185 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 29186 {
c19d1205
ZW
29187 if (ARM_IS_THUMB (sym))
29188 {
29189 elf_symbol_type * elf_sym;
404ff6b5 29190
c19d1205
ZW
29191 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29192 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 29193
b0796911
PB
29194 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29195 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
29196 {
29197 /* If it's a .thumb_func, declare it as so,
29198 otherwise tag label as .code 16. */
29199 if (THUMB_IS_FUNC (sym))
39d911fc
TP
29200 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29201 ST_BRANCH_TO_THUMB);
3ba67470 29202 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
29203 elf_sym->internal_elf_sym.st_info =
29204 ELF_ST_INFO (bind, STT_ARM_16BIT);
29205 }
29206 }
29207 }
cd000bff
DJ
29208
29209 /* Remove any overlapping mapping symbols generated by alignment frags. */
29210 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
29211 /* Now do generic ELF adjustments. */
29212 elf_adjust_symtab ();
c19d1205 29213#endif
404ff6b5
AH
29214}
29215
c19d1205 29216/* MD interface: Initialization. */
404ff6b5 29217
a737bd4d 29218static void
c19d1205 29219set_constant_flonums (void)
a737bd4d 29220{
c19d1205 29221 int i;
404ff6b5 29222
c19d1205
ZW
29223 for (i = 0; i < NUM_FLOAT_VALS; i++)
29224 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29225 abort ();
a737bd4d 29226}
404ff6b5 29227
3e9e4fcf
JB
29228/* Auto-select Thumb mode if it's the only available instruction set for the
29229 given architecture. */
29230
29231static void
29232autoselect_thumb_from_cpu_variant (void)
29233{
29234 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29235 opcode_select (16);
29236}
29237
c19d1205
ZW
29238void
29239md_begin (void)
a737bd4d 29240{
c19d1205
ZW
29241 unsigned mach;
29242 unsigned int i;
404ff6b5 29243
c19d1205
ZW
29244 if ( (arm_ops_hsh = hash_new ()) == NULL
29245 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 29246 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
29247 || (arm_shift_hsh = hash_new ()) == NULL
29248 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 29249 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 29250 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
29251 || (arm_reloc_hsh = hash_new ()) == NULL
29252 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
29253 as_fatal (_("virtual memory exhausted"));
29254
29255 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 29256 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 29257 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 29258 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
29259 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29260 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 29261 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 29262 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 29263 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29264 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 29265 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29266 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 29267 (void *) (v7m_psrs + i));
c19d1205 29268 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 29269 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
29270 for (i = 0;
29271 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29272 i++)
d3ce72d0 29273 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 29274 (void *) (barrier_opt_names + i));
c19d1205 29275#ifdef OBJ_ELF
3da1d841
NC
29276 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29277 {
29278 struct reloc_entry * entry = reloc_names + i;
29279
29280 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29281 /* This makes encode_branch() use the EABI versions of this relocation. */
29282 entry->reloc = BFD_RELOC_UNUSED;
29283
29284 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29285 }
c19d1205
ZW
29286#endif
29287
29288 set_constant_flonums ();
404ff6b5 29289
c19d1205
ZW
29290 /* Set the cpu variant based on the command-line options. We prefer
29291 -mcpu= over -march= if both are set (as for GCC); and we prefer
29292 -mfpu= over any other way of setting the floating point unit.
29293 Use of legacy options with new options are faulted. */
e74cfd16 29294 if (legacy_cpu)
404ff6b5 29295 {
e74cfd16 29296 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
29297 as_bad (_("use of old and new-style options to set CPU type"));
29298
4d354d8b 29299 selected_arch = *legacy_cpu;
404ff6b5 29300 }
4d354d8b
TP
29301 else if (mcpu_cpu_opt)
29302 {
29303 selected_arch = *mcpu_cpu_opt;
29304 selected_ext = *mcpu_ext_opt;
29305 }
29306 else if (march_cpu_opt)
c168ce07 29307 {
4d354d8b
TP
29308 selected_arch = *march_cpu_opt;
29309 selected_ext = *march_ext_opt;
c168ce07 29310 }
4d354d8b 29311 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 29312
e74cfd16 29313 if (legacy_fpu)
c19d1205 29314 {
e74cfd16 29315 if (mfpu_opt)
c19d1205 29316 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 29317
4d354d8b 29318 selected_fpu = *legacy_fpu;
03b1477f 29319 }
4d354d8b
TP
29320 else if (mfpu_opt)
29321 selected_fpu = *mfpu_opt;
29322 else
03b1477f 29323 {
45eb4c1b
NS
29324#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29325 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
29326 /* Some environments specify a default FPU. If they don't, infer it
29327 from the processor. */
e74cfd16 29328 if (mcpu_fpu_opt)
4d354d8b 29329 selected_fpu = *mcpu_fpu_opt;
e7da50fa 29330 else if (march_fpu_opt)
4d354d8b 29331 selected_fpu = *march_fpu_opt;
39c2da32 29332#else
4d354d8b 29333 selected_fpu = fpu_default;
39c2da32 29334#endif
03b1477f
RE
29335 }
29336
4d354d8b 29337 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 29338 {
4d354d8b
TP
29339 if (!no_cpu_selected ())
29340 selected_fpu = fpu_default;
03b1477f 29341 else
4d354d8b 29342 selected_fpu = fpu_arch_fpa;
03b1477f
RE
29343 }
29344
ee065d83 29345#ifdef CPU_DEFAULT
4d354d8b 29346 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 29347 {
4d354d8b
TP
29348 selected_arch = cpu_default;
29349 selected_cpu = selected_arch;
ee065d83 29350 }
4d354d8b 29351 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 29352#else
4d354d8b
TP
29353 /* Autodection of feature mode: allow all features in cpu_variant but leave
29354 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29355 after all instruction have been processed and we can decide what CPU
29356 should be selected. */
29357 if (ARM_FEATURE_ZERO (selected_arch))
29358 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 29359 else
4d354d8b 29360 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 29361#endif
03b1477f 29362
3e9e4fcf
JB
29363 autoselect_thumb_from_cpu_variant ();
29364
e74cfd16 29365 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 29366
f17c130b 29367#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 29368 {
7cc69913
NC
29369 unsigned int flags = 0;
29370
29371#if defined OBJ_ELF
29372 flags = meabi_flags;
d507cf36
PB
29373
29374 switch (meabi_flags)
33a392fb 29375 {
d507cf36 29376 case EF_ARM_EABI_UNKNOWN:
7cc69913 29377#endif
d507cf36
PB
29378 /* Set the flags in the private structure. */
29379 if (uses_apcs_26) flags |= F_APCS26;
29380 if (support_interwork) flags |= F_INTERWORK;
29381 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 29382 if (pic_code) flags |= F_PIC;
e74cfd16 29383 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
29384 flags |= F_SOFT_FLOAT;
29385
d507cf36
PB
29386 switch (mfloat_abi_opt)
29387 {
29388 case ARM_FLOAT_ABI_SOFT:
29389 case ARM_FLOAT_ABI_SOFTFP:
29390 flags |= F_SOFT_FLOAT;
29391 break;
33a392fb 29392
d507cf36
PB
29393 case ARM_FLOAT_ABI_HARD:
29394 if (flags & F_SOFT_FLOAT)
29395 as_bad (_("hard-float conflicts with specified fpu"));
29396 break;
29397 }
03b1477f 29398
e74cfd16
PB
29399 /* Using pure-endian doubles (even if soft-float). */
29400 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 29401 flags |= F_VFP_FLOAT;
f17c130b 29402
fde78edd 29403#if defined OBJ_ELF
e74cfd16 29404 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 29405 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
29406 break;
29407
8cb51566 29408 case EF_ARM_EABI_VER4:
3a4a14e9 29409 case EF_ARM_EABI_VER5:
c19d1205 29410 /* No additional flags to set. */
d507cf36
PB
29411 break;
29412
29413 default:
29414 abort ();
29415 }
7cc69913 29416#endif
b99bd4ef
NC
29417 bfd_set_private_flags (stdoutput, flags);
29418
29419 /* We have run out flags in the COFF header to encode the
29420 status of ATPCS support, so instead we create a dummy,
c19d1205 29421 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
29422 if (atpcs)
29423 {
29424 asection * sec;
29425
29426 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29427
29428 if (sec != NULL)
29429 {
29430 bfd_set_section_flags
29431 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29432 bfd_set_section_size (stdoutput, sec, 0);
29433 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29434 }
29435 }
7cc69913 29436 }
f17c130b 29437#endif
b99bd4ef
NC
29438
29439 /* Record the CPU type as well. */
2d447fca
JM
29440 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29441 mach = bfd_mach_arm_iWMMXt2;
29442 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29443 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29444 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29445 mach = bfd_mach_arm_XScale;
e74cfd16 29446 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29447 mach = bfd_mach_arm_ep9312;
e74cfd16 29448 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29449 mach = bfd_mach_arm_5TE;
e74cfd16 29450 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29451 {
e74cfd16 29452 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29453 mach = bfd_mach_arm_5T;
29454 else
29455 mach = bfd_mach_arm_5;
29456 }
e74cfd16 29457 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29458 {
e74cfd16 29459 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29460 mach = bfd_mach_arm_4T;
29461 else
29462 mach = bfd_mach_arm_4;
29463 }
e74cfd16 29464 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29465 mach = bfd_mach_arm_3M;
e74cfd16
PB
29466 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29467 mach = bfd_mach_arm_3;
29468 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29469 mach = bfd_mach_arm_2a;
29470 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29471 mach = bfd_mach_arm_2;
29472 else
29473 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29474
29475 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29476}
29477
c19d1205 29478/* Command line processing. */
b99bd4ef 29479
c19d1205
ZW
29480/* md_parse_option
29481 Invocation line includes a switch not recognized by the base assembler.
29482 See if it's a processor-specific option.
b99bd4ef 29483
c19d1205
ZW
29484 This routine is somewhat complicated by the need for backwards
29485 compatibility (since older releases of gcc can't be changed).
29486 The new options try to make the interface as compatible as
29487 possible with GCC.
b99bd4ef 29488
c19d1205 29489 New options (supported) are:
b99bd4ef 29490
c19d1205
ZW
29491 -mcpu=<cpu name> Assemble for selected processor
29492 -march=<architecture name> Assemble for selected architecture
29493 -mfpu=<fpu architecture> Assemble for selected FPU.
29494 -EB/-mbig-endian Big-endian
29495 -EL/-mlittle-endian Little-endian
29496 -k Generate PIC code
29497 -mthumb Start in Thumb mode
29498 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29499
278df34e 29500 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29501 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29502
c19d1205 29503 For now we will also provide support for:
b99bd4ef 29504
c19d1205
ZW
29505 -mapcs-32 32-bit Program counter
29506 -mapcs-26 26-bit Program counter
29507 -macps-float Floats passed in FP registers
29508 -mapcs-reentrant Reentrant code
29509 -matpcs
29510 (sometime these will probably be replaced with -mapcs=<list of options>
29511 and -matpcs=<list of options>)
b99bd4ef 29512
c19d1205
ZW
29513 The remaining options are only supported for back-wards compatibility.
29514 Cpu variants, the arm part is optional:
29515 -m[arm]1 Currently not supported.
29516 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29517 -m[arm]3 Arm 3 processor
29518 -m[arm]6[xx], Arm 6 processors
29519 -m[arm]7[xx][t][[d]m] Arm 7 processors
29520 -m[arm]8[10] Arm 8 processors
29521 -m[arm]9[20][tdmi] Arm 9 processors
29522 -mstrongarm[110[0]] StrongARM processors
29523 -mxscale XScale processors
29524 -m[arm]v[2345[t[e]]] Arm architectures
29525 -mall All (except the ARM1)
29526 FP variants:
29527 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29528 -mfpe-old (No float load/store multiples)
29529 -mvfpxd VFP Single precision
29530 -mvfp All VFP
29531 -mno-fpu Disable all floating point instructions
b99bd4ef 29532
c19d1205
ZW
29533 The following CPU names are recognized:
29534 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29535 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29536 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29537 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29538 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29539 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29540 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29541
c19d1205 29542 */
b99bd4ef 29543
c19d1205 29544const char * md_shortopts = "m:k";
b99bd4ef 29545
c19d1205
ZW
29546#ifdef ARM_BI_ENDIAN
29547#define OPTION_EB (OPTION_MD_BASE + 0)
29548#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29549#else
c19d1205
ZW
29550#if TARGET_BYTES_BIG_ENDIAN
29551#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29552#else
c19d1205
ZW
29553#define OPTION_EL (OPTION_MD_BASE + 1)
29554#endif
b99bd4ef 29555#endif
845b51d6 29556#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29557#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29558
c19d1205 29559struct option md_longopts[] =
b99bd4ef 29560{
c19d1205
ZW
29561#ifdef OPTION_EB
29562 {"EB", no_argument, NULL, OPTION_EB},
29563#endif
29564#ifdef OPTION_EL
29565 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29566#endif
845b51d6 29567 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29568#ifdef OBJ_ELF
29569 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29570#endif
c19d1205
ZW
29571 {NULL, no_argument, NULL, 0}
29572};
b99bd4ef 29573
c19d1205 29574size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29575
c19d1205 29576struct arm_option_table
b99bd4ef 29577{
0198d5e6
TC
29578 const char * option; /* Option name to match. */
29579 const char * help; /* Help information. */
29580 int * var; /* Variable to change. */
29581 int value; /* What to change it to. */
29582 const char * deprecated; /* If non-null, print this message. */
c19d1205 29583};
b99bd4ef 29584
c19d1205
ZW
29585struct arm_option_table arm_opts[] =
29586{
29587 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29588 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29589 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29590 &support_interwork, 1, NULL},
29591 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29592 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29593 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29594 1, NULL},
29595 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29596 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29597 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29598 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29599 NULL},
b99bd4ef 29600
c19d1205
ZW
29601 /* These are recognized by the assembler, but have no affect on code. */
29602 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29603 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29604
29605 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29606 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29607 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29608 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29609 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29610 {NULL, NULL, NULL, 0, NULL}
29611};
29612
29613struct arm_legacy_option_table
29614{
0198d5e6
TC
29615 const char * option; /* Option name to match. */
29616 const arm_feature_set ** var; /* Variable to change. */
29617 const arm_feature_set value; /* What to change it to. */
29618 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29619};
b99bd4ef 29620
e74cfd16
PB
29621const struct arm_legacy_option_table arm_legacy_opts[] =
29622{
c19d1205
ZW
29623 /* DON'T add any new processors to this list -- we want the whole list
29624 to go away... Add them to the processors table instead. */
e74cfd16
PB
29625 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29626 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29627 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29628 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29629 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29630 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29631 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29632 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29633 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29634 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29635 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29636 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29637 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29638 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29639 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29640 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29641 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29642 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29643 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29644 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29645 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29646 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29647 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29648 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29649 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29650 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29651 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29652 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29653 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29654 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29655 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29656 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29657 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29658 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29659 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29660 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29661 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29662 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29663 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29664 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29665 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29666 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29667 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29668 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29669 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29670 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29671 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29672 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29673 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29674 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29675 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29676 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29677 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29678 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29679 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29680 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29681 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29682 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29683 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29684 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29685 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29686 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29687 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29688 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29689 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29690 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29691 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29692 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29693 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29694 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29695 N_("use -mcpu=strongarm110")},
e74cfd16 29696 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29697 N_("use -mcpu=strongarm1100")},
e74cfd16 29698 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29699 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29700 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29701 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29702 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29703
c19d1205 29704 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29705 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29706 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29707 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29708 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29709 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29710 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29711 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29712 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29713 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29714 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29715 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29716 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29717 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29718 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29719 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29720 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29721 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29722 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29723
c19d1205 29724 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29725 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29726 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29727 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29728 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29729 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29730
e74cfd16 29731 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29732};
7ed4c4c5 29733
c19d1205 29734struct arm_cpu_option_table
7ed4c4c5 29735{
0198d5e6
TC
29736 const char * name;
29737 size_t name_len;
29738 const arm_feature_set value;
29739 const arm_feature_set ext;
c19d1205
ZW
29740 /* For some CPUs we assume an FPU unless the user explicitly sets
29741 -mfpu=... */
0198d5e6 29742 const arm_feature_set default_fpu;
ee065d83
PB
29743 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29744 case. */
0198d5e6 29745 const char * canonical_name;
c19d1205 29746};
7ed4c4c5 29747
c19d1205
ZW
29748/* This list should, at a minimum, contain all the cpu names
29749 recognized by GCC. */
996b5569 29750#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29751
e74cfd16 29752static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29753{
996b5569
TP
29754 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29755 ARM_ARCH_NONE,
29756 FPU_ARCH_FPA),
29757 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29758 ARM_ARCH_NONE,
29759 FPU_ARCH_FPA),
29760 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29761 ARM_ARCH_NONE,
29762 FPU_ARCH_FPA),
29763 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29764 ARM_ARCH_NONE,
29765 FPU_ARCH_FPA),
29766 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29767 ARM_ARCH_NONE,
29768 FPU_ARCH_FPA),
29769 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29770 ARM_ARCH_NONE,
29771 FPU_ARCH_FPA),
29772 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29773 ARM_ARCH_NONE,
29774 FPU_ARCH_FPA),
29775 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29776 ARM_ARCH_NONE,
29777 FPU_ARCH_FPA),
29778 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29779 ARM_ARCH_NONE,
29780 FPU_ARCH_FPA),
29781 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29782 ARM_ARCH_NONE,
29783 FPU_ARCH_FPA),
29784 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29785 ARM_ARCH_NONE,
29786 FPU_ARCH_FPA),
29787 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29788 ARM_ARCH_NONE,
29789 FPU_ARCH_FPA),
29790 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29791 ARM_ARCH_NONE,
29792 FPU_ARCH_FPA),
29793 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29794 ARM_ARCH_NONE,
29795 FPU_ARCH_FPA),
29796 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29797 ARM_ARCH_NONE,
29798 FPU_ARCH_FPA),
29799 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29800 ARM_ARCH_NONE,
29801 FPU_ARCH_FPA),
29802 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29803 ARM_ARCH_NONE,
29804 FPU_ARCH_FPA),
29805 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29806 ARM_ARCH_NONE,
29807 FPU_ARCH_FPA),
29808 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29809 ARM_ARCH_NONE,
29810 FPU_ARCH_FPA),
29811 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29812 ARM_ARCH_NONE,
29813 FPU_ARCH_FPA),
29814 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29815 ARM_ARCH_NONE,
29816 FPU_ARCH_FPA),
29817 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29818 ARM_ARCH_NONE,
29819 FPU_ARCH_FPA),
29820 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29821 ARM_ARCH_NONE,
29822 FPU_ARCH_FPA),
29823 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29824 ARM_ARCH_NONE,
29825 FPU_ARCH_FPA),
29826 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29827 ARM_ARCH_NONE,
29828 FPU_ARCH_FPA),
29829 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29830 ARM_ARCH_NONE,
29831 FPU_ARCH_FPA),
29832 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29833 ARM_ARCH_NONE,
29834 FPU_ARCH_FPA),
29835 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29836 ARM_ARCH_NONE,
29837 FPU_ARCH_FPA),
29838 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29839 ARM_ARCH_NONE,
29840 FPU_ARCH_FPA),
29841 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29842 ARM_ARCH_NONE,
29843 FPU_ARCH_FPA),
29844 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29845 ARM_ARCH_NONE,
29846 FPU_ARCH_FPA),
29847 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29848 ARM_ARCH_NONE,
29849 FPU_ARCH_FPA),
29850 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29851 ARM_ARCH_NONE,
29852 FPU_ARCH_FPA),
29853 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29854 ARM_ARCH_NONE,
29855 FPU_ARCH_FPA),
29856 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29857 ARM_ARCH_NONE,
29858 FPU_ARCH_FPA),
29859 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29860 ARM_ARCH_NONE,
29861 FPU_ARCH_FPA),
29862 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29863 ARM_ARCH_NONE,
29864 FPU_ARCH_FPA),
29865 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29866 ARM_ARCH_NONE,
29867 FPU_ARCH_FPA),
29868 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29869 ARM_ARCH_NONE,
29870 FPU_ARCH_FPA),
29871 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29872 ARM_ARCH_NONE,
29873 FPU_ARCH_FPA),
29874 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29875 ARM_ARCH_NONE,
29876 FPU_ARCH_FPA),
29877 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29878 ARM_ARCH_NONE,
29879 FPU_ARCH_FPA),
29880 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29881 ARM_ARCH_NONE,
29882 FPU_ARCH_FPA),
29883 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29884 ARM_ARCH_NONE,
29885 FPU_ARCH_FPA),
29886 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29887 ARM_ARCH_NONE,
29888 FPU_ARCH_FPA),
29889 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29890 ARM_ARCH_NONE,
29891 FPU_ARCH_FPA),
29892
c19d1205
ZW
29893 /* For V5 or later processors we default to using VFP; but the user
29894 should really set the FPU type explicitly. */
996b5569
TP
29895 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29896 ARM_ARCH_NONE,
29897 FPU_ARCH_VFP_V2),
29898 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29899 ARM_ARCH_NONE,
29900 FPU_ARCH_VFP_V2),
29901 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29902 ARM_ARCH_NONE,
29903 FPU_ARCH_VFP_V2),
29904 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29905 ARM_ARCH_NONE,
29906 FPU_ARCH_VFP_V2),
29907 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29908 ARM_ARCH_NONE,
29909 FPU_ARCH_VFP_V2),
29910 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29911 ARM_ARCH_NONE,
29912 FPU_ARCH_VFP_V2),
29913 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29914 ARM_ARCH_NONE,
29915 FPU_ARCH_VFP_V2),
29916 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29917 ARM_ARCH_NONE,
29918 FPU_ARCH_VFP_V2),
29919 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29920 ARM_ARCH_NONE,
29921 FPU_ARCH_VFP_V2),
29922 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29923 ARM_ARCH_NONE,
29924 FPU_ARCH_VFP_V2),
29925 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29926 ARM_ARCH_NONE,
29927 FPU_ARCH_VFP_V2),
29928 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29929 ARM_ARCH_NONE,
29930 FPU_ARCH_VFP_V2),
29931 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29932 ARM_ARCH_NONE,
29933 FPU_ARCH_VFP_V1),
29934 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29935 ARM_ARCH_NONE,
29936 FPU_ARCH_VFP_V1),
29937 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29938 ARM_ARCH_NONE,
29939 FPU_ARCH_VFP_V2),
29940 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29941 ARM_ARCH_NONE,
29942 FPU_ARCH_VFP_V2),
29943 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29944 ARM_ARCH_NONE,
29945 FPU_ARCH_VFP_V1),
29946 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29947 ARM_ARCH_NONE,
29948 FPU_ARCH_VFP_V2),
29949 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29950 ARM_ARCH_NONE,
29951 FPU_ARCH_VFP_V2),
29952 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29953 ARM_ARCH_NONE,
29954 FPU_ARCH_VFP_V2),
29955 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29956 ARM_ARCH_NONE,
29957 FPU_ARCH_VFP_V2),
29958 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29959 ARM_ARCH_NONE,
29960 FPU_ARCH_VFP_V2),
29961 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29962 ARM_ARCH_NONE,
29963 FPU_ARCH_VFP_V2),
29964 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29965 ARM_ARCH_NONE,
29966 FPU_ARCH_VFP_V2),
29967 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29968 ARM_ARCH_NONE,
29969 FPU_ARCH_VFP_V2),
29970 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29971 ARM_ARCH_NONE,
29972 FPU_ARCH_VFP_V2),
29973 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29974 ARM_ARCH_NONE,
29975 FPU_NONE),
29976 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29977 ARM_ARCH_NONE,
29978 FPU_NONE),
29979 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29980 ARM_ARCH_NONE,
29981 FPU_ARCH_VFP_V2),
29982 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29983 ARM_ARCH_NONE,
29984 FPU_ARCH_VFP_V2),
29985 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29986 ARM_ARCH_NONE,
29987 FPU_ARCH_VFP_V2),
29988 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29989 ARM_ARCH_NONE,
29990 FPU_NONE),
29991 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29992 ARM_ARCH_NONE,
29993 FPU_NONE),
29994 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29995 ARM_ARCH_NONE,
29996 FPU_ARCH_VFP_V2),
29997 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29998 ARM_ARCH_NONE,
29999 FPU_NONE),
30000 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30001 ARM_ARCH_NONE,
30002 FPU_ARCH_VFP_V2),
30003 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30004 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30005 FPU_NONE),
30006 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30007 ARM_ARCH_NONE,
30008 FPU_ARCH_NEON_VFP_V4),
30009 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30010 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30011 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30012 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30013 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30014 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30015 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30016 ARM_ARCH_NONE,
30017 FPU_ARCH_NEON_VFP_V4),
30018 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30019 ARM_ARCH_NONE,
30020 FPU_ARCH_NEON_VFP_V4),
30021 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30022 ARM_ARCH_NONE,
30023 FPU_ARCH_NEON_VFP_V4),
30024 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30025 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30026 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30027 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30028 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30029 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30030 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30031 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30032 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30033 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30034 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30035 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30036 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30037 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30038 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30039 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30040 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30041 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30042 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30043 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30044 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30045 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30046 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30047 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 30048 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30049 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30050 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
30051 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30052 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30053 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30054 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30055 ARM_ARCH_NONE,
30056 FPU_NONE),
30057 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30058 ARM_ARCH_NONE,
30059 FPU_ARCH_VFP_V3D16),
30060 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30061 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30062 FPU_NONE),
30063 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30064 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30065 FPU_ARCH_VFP_V3D16),
30066 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30067 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30068 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
30069 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30070 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30071 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
30072 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30073 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30074 FPU_NONE),
30075 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30076 ARM_ARCH_NONE,
30077 FPU_NONE),
30078 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30079 ARM_ARCH_NONE,
30080 FPU_NONE),
30081 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30082 ARM_ARCH_NONE,
30083 FPU_NONE),
30084 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30085 ARM_ARCH_NONE,
30086 FPU_NONE),
30087 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30088 ARM_ARCH_NONE,
30089 FPU_NONE),
30090 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30091 ARM_ARCH_NONE,
30092 FPU_NONE),
30093 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30094 ARM_ARCH_NONE,
30095 FPU_NONE),
30096 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30097 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30098 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
30099 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30100 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30101 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 30102 /* ??? XSCALE is really an architecture. */
996b5569
TP
30103 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30104 ARM_ARCH_NONE,
30105 FPU_ARCH_VFP_V2),
30106
c19d1205 30107 /* ??? iwmmxt is not a processor. */
996b5569
TP
30108 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30109 ARM_ARCH_NONE,
30110 FPU_ARCH_VFP_V2),
30111 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30112 ARM_ARCH_NONE,
30113 FPU_ARCH_VFP_V2),
30114 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30115 ARM_ARCH_NONE,
30116 FPU_ARCH_VFP_V2),
30117
0198d5e6 30118 /* Maverick. */
996b5569
TP
30119 ARM_CPU_OPT ("ep9312", "ARM920T",
30120 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30121 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30122
da4339ed 30123 /* Marvell processors. */
996b5569
TP
30124 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30125 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30126 FPU_ARCH_VFP_V3D16),
30127 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30128 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30129 FPU_ARCH_NEON_VFP_V4),
da4339ed 30130
996b5569
TP
30131 /* APM X-Gene family. */
30132 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30133 ARM_ARCH_NONE,
30134 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30135 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30136 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30137 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30138
30139 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30140};
f3bad469 30141#undef ARM_CPU_OPT
7ed4c4c5 30142
34ef62f4
AV
30143struct arm_ext_table
30144{
30145 const char * name;
30146 size_t name_len;
30147 const arm_feature_set merge;
30148 const arm_feature_set clear;
30149};
30150
c19d1205 30151struct arm_arch_option_table
7ed4c4c5 30152{
34ef62f4
AV
30153 const char * name;
30154 size_t name_len;
30155 const arm_feature_set value;
30156 const arm_feature_set default_fpu;
30157 const struct arm_ext_table * ext_table;
30158};
30159
30160/* Used to add support for +E and +noE extension. */
30161#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30162/* Used to add support for a +E extension. */
30163#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30164/* Used to add support for a +noE extension. */
30165#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30166
30167#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30168 ~0 & ~FPU_ENDIAN_PURE)
30169
30170static const struct arm_ext_table armv5te_ext_table[] =
30171{
30172 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30173 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30174};
30175
30176static const struct arm_ext_table armv7_ext_table[] =
30177{
30178 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30179 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30180};
30181
30182static const struct arm_ext_table armv7ve_ext_table[] =
30183{
30184 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30185 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30186 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30187 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30188 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30189 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30190 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30191
30192 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30193 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30194
30195 /* Aliases for +simd. */
30196 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30197
30198 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30199 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30200 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30201
30202 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30203};
30204
30205static const struct arm_ext_table armv7a_ext_table[] =
30206{
30207 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30208 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30209 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30210 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30211 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30212 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30213 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30214
30215 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30216 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30217
30218 /* Aliases for +simd. */
30219 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30220 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30221
30222 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30223 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30224
30225 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30226 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30227 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30228};
30229
30230static const struct arm_ext_table armv7r_ext_table[] =
30231{
30232 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30233 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30234 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30235 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30236 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30237 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30238 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30239 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30240 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30241};
30242
30243static const struct arm_ext_table armv7em_ext_table[] =
30244{
30245 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30246 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30247 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30248 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30249 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30250 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30251 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30252};
30253
30254static const struct arm_ext_table armv8a_ext_table[] =
30255{
30256 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30257 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30258 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30259 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30260
30261 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30262 should use the +simd option to turn on FP. */
30263 ARM_REMOVE ("fp", ALL_FP),
30264 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30265 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30266 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30267};
30268
30269
30270static const struct arm_ext_table armv81a_ext_table[] =
30271{
30272 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30273 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30274 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30275
30276 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30277 should use the +simd option to turn on FP. */
30278 ARM_REMOVE ("fp", ALL_FP),
30279 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30280 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30281 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30282};
30283
30284static const struct arm_ext_table armv82a_ext_table[] =
30285{
30286 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30287 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30288 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30289 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30290 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30291 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30292
30293 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30294 should use the +simd option to turn on FP. */
30295 ARM_REMOVE ("fp", ALL_FP),
30296 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30297 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30298 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30299};
30300
30301static const struct arm_ext_table armv84a_ext_table[] =
30302{
30303 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30304 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30305 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30306 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30307
30308 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30309 should use the +simd option to turn on FP. */
30310 ARM_REMOVE ("fp", ALL_FP),
30311 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30312 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30313 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30314};
30315
30316static const struct arm_ext_table armv85a_ext_table[] =
30317{
30318 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30319 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30320 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30321 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30322
30323 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30324 should use the +simd option to turn on FP. */
30325 ARM_REMOVE ("fp", ALL_FP),
30326 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30327};
30328
30329static const struct arm_ext_table armv8m_main_ext_table[] =
30330{
30331 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30332 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30333 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30334 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30335 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30336};
30337
e0991585
AV
30338static const struct arm_ext_table armv8_1m_main_ext_table[] =
30339{
30340 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30341 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30342 ARM_EXT ("fp",
30343 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30344 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30345 ALL_FP),
30346 ARM_ADD ("fp.dp",
30347 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30348 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
30349 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30350 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30351 ARM_ADD ("mve.fp",
30352 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30353 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30354 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
30355 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30356};
30357
34ef62f4
AV
30358static const struct arm_ext_table armv8r_ext_table[] =
30359{
30360 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30361 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30362 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30363 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30364 ARM_REMOVE ("fp", ALL_FP),
30365 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30366 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 30367};
7ed4c4c5 30368
c19d1205
ZW
30369/* This list should, at a minimum, contain all the architecture names
30370 recognized by GCC. */
34ef62f4
AV
30371#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30372#define ARM_ARCH_OPT2(N, V, DF, ext) \
30373 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 30374
e74cfd16 30375static const struct arm_arch_option_table arm_archs[] =
c19d1205 30376{
497d849d
TP
30377 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30378 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30379 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30380 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30381 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30382 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30383 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30384 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30385 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30386 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30387 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30388 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30389 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30390 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
30391 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30392 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30393 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30394 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30395 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30396 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30397 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30398 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30399 kept to preserve existing behaviour. */
34ef62f4
AV
30400 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30401 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30402 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30403 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30404 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30405 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30406 kept to preserve existing behaviour. */
34ef62f4
AV
30407 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30408 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
30409 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30410 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 30411 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
30412 /* The official spelling of the ARMv7 profile variants is the dashed form.
30413 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
30414 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30415 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30416 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30417 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
30418 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30419 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30420 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 30421 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 30422 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
30423 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30424 armv8m_main),
e0991585
AV
30425 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30426 armv8_1m_main),
34ef62f4
AV
30427 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30428 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30429 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30430 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30431 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30432 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30433 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
30434 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30435 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30436 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30437 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30438};
f3bad469 30439#undef ARM_ARCH_OPT
7ed4c4c5 30440
69133863 30441/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30442
69133863 30443struct arm_option_extension_value_table
c19d1205 30444{
0198d5e6
TC
30445 const char * name;
30446 size_t name_len;
30447 const arm_feature_set merge_value;
30448 const arm_feature_set clear_value;
d942732e
TP
30449 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30450 indicates that an extension is available for all architectures while
30451 ARM_ANY marks an empty entry. */
0198d5e6 30452 const arm_feature_set allowed_archs[2];
c19d1205 30453};
7ed4c4c5 30454
0198d5e6
TC
30455/* The following table must be in alphabetical order with a NULL last entry. */
30456
d942732e
TP
30457#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30458#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30459
34ef62f4
AV
30460/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30461 use the context sensitive approach using arm_ext_table's. */
69133863 30462static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30463{
823d2571
TG
30464 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30465 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30466 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30467 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30468 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30469 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30470 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30471 ARM_ARCH_V8_2A),
15afaa63
TP
30472 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30473 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30474 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30475 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30476 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30477 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30478 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30479 ARM_ARCH_V8_2A),
01f48020
TC
30480 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30481 | ARM_EXT2_FP16_FML),
30482 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30483 | ARM_EXT2_FP16_FML),
30484 ARM_ARCH_V8_2A),
d942732e 30485 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30486 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30487 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30488 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30489 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30490 Thumb divide instruction. Due to this having the same name as the
30491 previous entry, this will be ignored when doing command-line parsing and
30492 only considered by build attribute selection code. */
30493 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30494 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30495 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30496 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30497 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30498 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30499 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30500 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30501 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30502 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30503 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30504 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30505 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30506 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30507 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30508 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30509 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30510 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30511 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30512 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30513 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30514 ARM_ARCH_V8A),
4d1464f2
MW
30515 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30516 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30517 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30518 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30519 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30520 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30521 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30522 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30523 ARM_ARCH_V8A),
d942732e 30524 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30525 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30526 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30527 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30528 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30529 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30530 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30531 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30532 | ARM_EXT_DIV),
30533 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30534 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30535 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30536 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30537 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30538};
f3bad469 30539#undef ARM_EXT_OPT
69133863
MGD
30540
30541/* ISA floating-point and Advanced SIMD extensions. */
30542struct arm_option_fpu_value_table
30543{
0198d5e6
TC
30544 const char * name;
30545 const arm_feature_set value;
c19d1205 30546};
7ed4c4c5 30547
c19d1205
ZW
30548/* This list should, at a minimum, contain all the fpu names
30549 recognized by GCC. */
69133863 30550static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30551{
30552 {"softfpa", FPU_NONE},
30553 {"fpe", FPU_ARCH_FPE},
30554 {"fpe2", FPU_ARCH_FPE},
30555 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30556 {"fpa", FPU_ARCH_FPA},
30557 {"fpa10", FPU_ARCH_FPA},
30558 {"fpa11", FPU_ARCH_FPA},
30559 {"arm7500fe", FPU_ARCH_FPA},
30560 {"softvfp", FPU_ARCH_VFP},
30561 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30562 {"vfp", FPU_ARCH_VFP_V2},
30563 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30564 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30565 {"vfp10", FPU_ARCH_VFP_V2},
30566 {"vfp10-r0", FPU_ARCH_VFP_V1},
30567 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30568 {"vfpv2", FPU_ARCH_VFP_V2},
30569 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30570 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30571 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30572 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30573 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30574 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30575 {"arm1020t", FPU_ARCH_VFP_V1},
30576 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30577 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30578 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30579 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30580 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30581 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30582 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30583 {"vfpv4", FPU_ARCH_VFP_V4},
30584 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30585 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30586 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30587 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30588 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30589 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30590 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30591 {"crypto-neon-fp-armv8",
30592 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30593 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30594 {"crypto-neon-fp-armv8.1",
30595 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30596 {NULL, ARM_ARCH_NONE}
30597};
30598
30599struct arm_option_value_table
30600{
e0471c16 30601 const char *name;
e74cfd16 30602 long value;
c19d1205 30603};
7ed4c4c5 30604
e74cfd16 30605static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30606{
30607 {"hard", ARM_FLOAT_ABI_HARD},
30608 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30609 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30610 {NULL, 0}
c19d1205 30611};
7ed4c4c5 30612
c19d1205 30613#ifdef OBJ_ELF
3a4a14e9 30614/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30615static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30616{
30617 {"gnu", EF_ARM_EABI_UNKNOWN},
30618 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30619 {"5", EF_ARM_EABI_VER5},
e74cfd16 30620 {NULL, 0}
c19d1205
ZW
30621};
30622#endif
7ed4c4c5 30623
c19d1205
ZW
30624struct arm_long_option_table
30625{
0198d5e6 30626 const char * option; /* Substring to match. */
e0471c16 30627 const char * help; /* Help information. */
17b9d67d 30628 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30629 const char * deprecated; /* If non-null, print this message. */
c19d1205 30630};
7ed4c4c5 30631
c921be7d 30632static bfd_boolean
c168ce07 30633arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30634 arm_feature_set *ext_set,
30635 const struct arm_ext_table *ext_table)
7ed4c4c5 30636{
69133863 30637 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30638 extensions being added before being removed. We achieve this by having
30639 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30640 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30641 or removing it (0) and only allowing it to change in the order
69133863
MGD
30642 -1 -> 1 -> 0. */
30643 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30644 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30645 int adding_value = -1;
30646
c19d1205 30647 while (str != NULL && *str != 0)
7ed4c4c5 30648 {
82b8a785 30649 const char *ext;
f3bad469 30650 size_t len;
7ed4c4c5 30651
c19d1205
ZW
30652 if (*str != '+')
30653 {
30654 as_bad (_("invalid architectural extension"));
c921be7d 30655 return FALSE;
c19d1205 30656 }
7ed4c4c5 30657
c19d1205
ZW
30658 str++;
30659 ext = strchr (str, '+');
7ed4c4c5 30660
c19d1205 30661 if (ext != NULL)
f3bad469 30662 len = ext - str;
c19d1205 30663 else
f3bad469 30664 len = strlen (str);
7ed4c4c5 30665
f3bad469 30666 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30667 {
30668 if (adding_value != 0)
30669 {
30670 adding_value = 0;
30671 opt = arm_extensions;
30672 }
30673
f3bad469 30674 len -= 2;
69133863
MGD
30675 str += 2;
30676 }
f3bad469 30677 else if (len > 0)
69133863
MGD
30678 {
30679 if (adding_value == -1)
30680 {
30681 adding_value = 1;
30682 opt = arm_extensions;
30683 }
30684 else if (adding_value != 1)
30685 {
30686 as_bad (_("must specify extensions to add before specifying "
30687 "those to remove"));
30688 return FALSE;
30689 }
30690 }
30691
f3bad469 30692 if (len == 0)
c19d1205
ZW
30693 {
30694 as_bad (_("missing architectural extension"));
c921be7d 30695 return FALSE;
c19d1205 30696 }
7ed4c4c5 30697
69133863
MGD
30698 gas_assert (adding_value != -1);
30699 gas_assert (opt != NULL);
30700
34ef62f4
AV
30701 if (ext_table != NULL)
30702 {
30703 const struct arm_ext_table * ext_opt = ext_table;
30704 bfd_boolean found = FALSE;
30705 for (; ext_opt->name != NULL; ext_opt++)
30706 if (ext_opt->name_len == len
30707 && strncmp (ext_opt->name, str, len) == 0)
30708 {
30709 if (adding_value)
30710 {
30711 if (ARM_FEATURE_ZERO (ext_opt->merge))
30712 /* TODO: Option not supported. When we remove the
30713 legacy table this case should error out. */
30714 continue;
30715
30716 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30717 }
30718 else
30719 {
30720 if (ARM_FEATURE_ZERO (ext_opt->clear))
30721 /* TODO: Option not supported. When we remove the
30722 legacy table this case should error out. */
30723 continue;
30724 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30725 }
30726 found = TRUE;
30727 break;
30728 }
30729 if (found)
30730 {
30731 str = ext;
30732 continue;
30733 }
30734 }
30735
69133863
MGD
30736 /* Scan over the options table trying to find an exact match. */
30737 for (; opt->name != NULL; opt++)
f3bad469 30738 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30739 {
d942732e
TP
30740 int i, nb_allowed_archs =
30741 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30742 /* Check we can apply the extension to this architecture. */
d942732e
TP
30743 for (i = 0; i < nb_allowed_archs; i++)
30744 {
30745 /* Empty entry. */
30746 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30747 continue;
c168ce07 30748 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30749 break;
30750 }
30751 if (i == nb_allowed_archs)
69133863
MGD
30752 {
30753 as_bad (_("extension does not apply to the base architecture"));
30754 return FALSE;
30755 }
30756
30757 /* Add or remove the extension. */
30758 if (adding_value)
4d354d8b 30759 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30760 else
4d354d8b 30761 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30762
3d030cdb
TP
30763 /* Allowing Thumb division instructions for ARMv7 in autodetection
30764 rely on this break so that duplicate extensions (extensions
30765 with the same name as a previous extension in the list) are not
30766 considered for command-line parsing. */
c19d1205
ZW
30767 break;
30768 }
7ed4c4c5 30769
c19d1205
ZW
30770 if (opt->name == NULL)
30771 {
69133863
MGD
30772 /* Did we fail to find an extension because it wasn't specified in
30773 alphabetical order, or because it does not exist? */
30774
30775 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30776 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30777 break;
30778
30779 if (opt->name == NULL)
30780 as_bad (_("unknown architectural extension `%s'"), str);
30781 else
30782 as_bad (_("architectural extensions must be specified in "
30783 "alphabetical order"));
30784
c921be7d 30785 return FALSE;
c19d1205 30786 }
69133863
MGD
30787 else
30788 {
30789 /* We should skip the extension we've just matched the next time
30790 round. */
30791 opt++;
30792 }
7ed4c4c5 30793
c19d1205
ZW
30794 str = ext;
30795 };
7ed4c4c5 30796
c921be7d 30797 return TRUE;
c19d1205 30798}
7ed4c4c5 30799
c921be7d 30800static bfd_boolean
17b9d67d 30801arm_parse_cpu (const char *str)
7ed4c4c5 30802{
f3bad469 30803 const struct arm_cpu_option_table *opt;
82b8a785 30804 const char *ext = strchr (str, '+');
f3bad469 30805 size_t len;
7ed4c4c5 30806
c19d1205 30807 if (ext != NULL)
f3bad469 30808 len = ext - str;
7ed4c4c5 30809 else
f3bad469 30810 len = strlen (str);
7ed4c4c5 30811
f3bad469 30812 if (len == 0)
7ed4c4c5 30813 {
c19d1205 30814 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30815 return FALSE;
7ed4c4c5
NC
30816 }
30817
c19d1205 30818 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30819 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30820 {
c168ce07 30821 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30822 if (mcpu_ext_opt == NULL)
30823 mcpu_ext_opt = XNEW (arm_feature_set);
30824 *mcpu_ext_opt = opt->ext;
e74cfd16 30825 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30826 if (opt->canonical_name)
ef8e6722
JW
30827 {
30828 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30829 strcpy (selected_cpu_name, opt->canonical_name);
30830 }
ee065d83
PB
30831 else
30832 {
f3bad469 30833 size_t i;
c921be7d 30834
ef8e6722
JW
30835 if (len >= sizeof selected_cpu_name)
30836 len = (sizeof selected_cpu_name) - 1;
30837
f3bad469 30838 for (i = 0; i < len; i++)
ee065d83
PB
30839 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30840 selected_cpu_name[i] = 0;
30841 }
7ed4c4c5 30842
c19d1205 30843 if (ext != NULL)
34ef62f4 30844 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30845
c921be7d 30846 return TRUE;
c19d1205 30847 }
7ed4c4c5 30848
c19d1205 30849 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30850 return FALSE;
7ed4c4c5
NC
30851}
30852
c921be7d 30853static bfd_boolean
17b9d67d 30854arm_parse_arch (const char *str)
7ed4c4c5 30855{
e74cfd16 30856 const struct arm_arch_option_table *opt;
82b8a785 30857 const char *ext = strchr (str, '+');
f3bad469 30858 size_t len;
7ed4c4c5 30859
c19d1205 30860 if (ext != NULL)
f3bad469 30861 len = ext - str;
7ed4c4c5 30862 else
f3bad469 30863 len = strlen (str);
7ed4c4c5 30864
f3bad469 30865 if (len == 0)
7ed4c4c5 30866 {
c19d1205 30867 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30868 return FALSE;
7ed4c4c5
NC
30869 }
30870
c19d1205 30871 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30872 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30873 {
e74cfd16 30874 march_cpu_opt = &opt->value;
4d354d8b
TP
30875 if (march_ext_opt == NULL)
30876 march_ext_opt = XNEW (arm_feature_set);
30877 *march_ext_opt = arm_arch_none;
e74cfd16 30878 march_fpu_opt = &opt->default_fpu;
5f4273c7 30879 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30880
c19d1205 30881 if (ext != NULL)
34ef62f4
AV
30882 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30883 opt->ext_table);
7ed4c4c5 30884
c921be7d 30885 return TRUE;
c19d1205
ZW
30886 }
30887
30888 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30889 return FALSE;
7ed4c4c5 30890}
eb043451 30891
c921be7d 30892static bfd_boolean
17b9d67d 30893arm_parse_fpu (const char * str)
c19d1205 30894{
69133863 30895 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30896
c19d1205
ZW
30897 for (opt = arm_fpus; opt->name != NULL; opt++)
30898 if (streq (opt->name, str))
30899 {
e74cfd16 30900 mfpu_opt = &opt->value;
c921be7d 30901 return TRUE;
c19d1205 30902 }
b99bd4ef 30903
c19d1205 30904 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30905 return FALSE;
c19d1205
ZW
30906}
30907
c921be7d 30908static bfd_boolean
17b9d67d 30909arm_parse_float_abi (const char * str)
b99bd4ef 30910{
e74cfd16 30911 const struct arm_option_value_table * opt;
b99bd4ef 30912
c19d1205
ZW
30913 for (opt = arm_float_abis; opt->name != NULL; opt++)
30914 if (streq (opt->name, str))
30915 {
30916 mfloat_abi_opt = opt->value;
c921be7d 30917 return TRUE;
c19d1205 30918 }
cc8a6dd0 30919
c19d1205 30920 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30921 return FALSE;
c19d1205 30922}
b99bd4ef 30923
c19d1205 30924#ifdef OBJ_ELF
c921be7d 30925static bfd_boolean
17b9d67d 30926arm_parse_eabi (const char * str)
c19d1205 30927{
e74cfd16 30928 const struct arm_option_value_table *opt;
cc8a6dd0 30929
c19d1205
ZW
30930 for (opt = arm_eabis; opt->name != NULL; opt++)
30931 if (streq (opt->name, str))
30932 {
30933 meabi_flags = opt->value;
c921be7d 30934 return TRUE;
c19d1205
ZW
30935 }
30936 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30937 return FALSE;
c19d1205
ZW
30938}
30939#endif
cc8a6dd0 30940
c921be7d 30941static bfd_boolean
17b9d67d 30942arm_parse_it_mode (const char * str)
e07e6e58 30943{
c921be7d 30944 bfd_boolean ret = TRUE;
e07e6e58
NC
30945
30946 if (streq ("arm", str))
30947 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30948 else if (streq ("thumb", str))
30949 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30950 else if (streq ("always", str))
30951 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30952 else if (streq ("never", str))
30953 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30954 else
30955 {
30956 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30957 "arm, thumb, always, or never."), str);
c921be7d 30958 ret = FALSE;
e07e6e58
NC
30959 }
30960
30961 return ret;
30962}
30963
2e6976a8 30964static bfd_boolean
17b9d67d 30965arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30966{
30967 codecomposer_syntax = TRUE;
30968 arm_comment_chars[0] = ';';
30969 arm_line_separator_chars[0] = 0;
30970 return TRUE;
30971}
30972
c19d1205
ZW
30973struct arm_long_option_table arm_long_opts[] =
30974{
30975 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30976 arm_parse_cpu, NULL},
30977 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30978 arm_parse_arch, NULL},
30979 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30980 arm_parse_fpu, NULL},
30981 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30982 arm_parse_float_abi, NULL},
30983#ifdef OBJ_ELF
7fac0536 30984 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30985 arm_parse_eabi, NULL},
30986#endif
e07e6e58
NC
30987 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30988 arm_parse_it_mode, NULL},
2e6976a8
DG
30989 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30990 arm_ccs_mode, NULL},
c19d1205
ZW
30991 {NULL, NULL, 0, NULL}
30992};
cc8a6dd0 30993
c19d1205 30994int
17b9d67d 30995md_parse_option (int c, const char * arg)
c19d1205
ZW
30996{
30997 struct arm_option_table *opt;
e74cfd16 30998 const struct arm_legacy_option_table *fopt;
c19d1205 30999 struct arm_long_option_table *lopt;
b99bd4ef 31000
c19d1205 31001 switch (c)
b99bd4ef 31002 {
c19d1205
ZW
31003#ifdef OPTION_EB
31004 case OPTION_EB:
31005 target_big_endian = 1;
31006 break;
31007#endif
cc8a6dd0 31008
c19d1205
ZW
31009#ifdef OPTION_EL
31010 case OPTION_EL:
31011 target_big_endian = 0;
31012 break;
31013#endif
b99bd4ef 31014
845b51d6
PB
31015 case OPTION_FIX_V4BX:
31016 fix_v4bx = TRUE;
31017 break;
31018
18a20338
CL
31019#ifdef OBJ_ELF
31020 case OPTION_FDPIC:
31021 arm_fdpic = TRUE;
31022 break;
31023#endif /* OBJ_ELF */
31024
c19d1205
ZW
31025 case 'a':
31026 /* Listing option. Just ignore these, we don't support additional
31027 ones. */
31028 return 0;
b99bd4ef 31029
c19d1205
ZW
31030 default:
31031 for (opt = arm_opts; opt->option != NULL; opt++)
31032 {
31033 if (c == opt->option[0]
31034 && ((arg == NULL && opt->option[1] == 0)
31035 || streq (arg, opt->option + 1)))
31036 {
c19d1205 31037 /* If the option is deprecated, tell the user. */
278df34e 31038 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
31039 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31040 arg ? arg : "", _(opt->deprecated));
b99bd4ef 31041
c19d1205
ZW
31042 if (opt->var != NULL)
31043 *opt->var = opt->value;
cc8a6dd0 31044
c19d1205
ZW
31045 return 1;
31046 }
31047 }
b99bd4ef 31048
e74cfd16
PB
31049 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31050 {
31051 if (c == fopt->option[0]
31052 && ((arg == NULL && fopt->option[1] == 0)
31053 || streq (arg, fopt->option + 1)))
31054 {
e74cfd16 31055 /* If the option is deprecated, tell the user. */
278df34e 31056 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
31057 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31058 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
31059
31060 if (fopt->var != NULL)
31061 *fopt->var = &fopt->value;
31062
31063 return 1;
31064 }
31065 }
31066
c19d1205
ZW
31067 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31068 {
31069 /* These options are expected to have an argument. */
31070 if (c == lopt->option[0]
31071 && arg != NULL
31072 && strncmp (arg, lopt->option + 1,
31073 strlen (lopt->option + 1)) == 0)
31074 {
c19d1205 31075 /* If the option is deprecated, tell the user. */
278df34e 31076 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
31077 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31078 _(lopt->deprecated));
b99bd4ef 31079
c19d1205
ZW
31080 /* Call the sup-option parser. */
31081 return lopt->func (arg + strlen (lopt->option) - 1);
31082 }
31083 }
a737bd4d 31084
c19d1205
ZW
31085 return 0;
31086 }
a394c00f 31087
c19d1205
ZW
31088 return 1;
31089}
a394c00f 31090
c19d1205
ZW
31091void
31092md_show_usage (FILE * fp)
a394c00f 31093{
c19d1205
ZW
31094 struct arm_option_table *opt;
31095 struct arm_long_option_table *lopt;
a394c00f 31096
c19d1205 31097 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 31098
c19d1205
ZW
31099 for (opt = arm_opts; opt->option != NULL; opt++)
31100 if (opt->help != NULL)
31101 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 31102
c19d1205
ZW
31103 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31104 if (lopt->help != NULL)
31105 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 31106
c19d1205
ZW
31107#ifdef OPTION_EB
31108 fprintf (fp, _("\
31109 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
31110#endif
31111
c19d1205
ZW
31112#ifdef OPTION_EL
31113 fprintf (fp, _("\
31114 -EL assemble code for a little-endian cpu\n"));
a737bd4d 31115#endif
845b51d6
PB
31116
31117 fprintf (fp, _("\
31118 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
31119
31120#ifdef OBJ_ELF
31121 fprintf (fp, _("\
31122 --fdpic generate an FDPIC object file\n"));
31123#endif /* OBJ_ELF */
c19d1205 31124}
ee065d83 31125
ee065d83 31126#ifdef OBJ_ELF
0198d5e6 31127
62b3e311
PB
31128typedef struct
31129{
31130 int val;
31131 arm_feature_set flags;
31132} cpu_arch_ver_table;
31133
2c6b98ea
TP
31134/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31135 chronologically for architectures, with an exception for ARMv6-M and
31136 ARMv6S-M due to legacy reasons. No new architecture should have a
31137 special case. This allows for build attribute selection results to be
31138 stable when new architectures are added. */
62b3e311
PB
31139static const cpu_arch_ver_table cpu_arch_ver[] =
31140{
031254f2
AV
31141 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31142 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31143 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31144 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31145 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31146 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31147 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31148 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31149 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31150 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31151 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31152 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31153 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31154 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31155 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31156 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31157 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31158 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31159 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31160 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31161 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31162 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31163 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31164 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
31165
31166 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31167 always selected build attributes to match those of ARMv6-M
31168 (resp. ARMv6S-M). However, due to these architectures being a strict
31169 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31170 would be selected when fully respecting chronology of architectures.
31171 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31172 move them before ARMv7 architectures. */
031254f2
AV
31173 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31174 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31175
31176 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31177 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31178 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31179 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31180 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31181 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31182 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31183 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31184 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31185 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31186 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31187 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31188 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31189 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31190 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31191 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31192 {-1, ARM_ARCH_NONE}
62b3e311
PB
31193};
31194
ee3c0378 31195/* Set an attribute if it has not already been set by the user. */
0198d5e6 31196
ee3c0378
AS
31197static void
31198aeabi_set_attribute_int (int tag, int value)
31199{
31200 if (tag < 1
31201 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31202 || !attributes_set_explicitly[tag])
31203 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31204}
31205
31206static void
31207aeabi_set_attribute_string (int tag, const char *value)
31208{
31209 if (tag < 1
31210 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31211 || !attributes_set_explicitly[tag])
31212 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31213}
31214
2c6b98ea
TP
31215/* Return whether features in the *NEEDED feature set are available via
31216 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 31217
2c6b98ea
TP
31218static bfd_boolean
31219have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31220 const arm_feature_set *needed)
31221{
31222 int i, nb_allowed_archs;
31223 arm_feature_set ext_fset;
31224 const struct arm_option_extension_value_table *opt;
31225
31226 ext_fset = arm_arch_none;
31227 for (opt = arm_extensions; opt->name != NULL; opt++)
31228 {
31229 /* Extension does not provide any feature we need. */
31230 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31231 continue;
31232
31233 nb_allowed_archs =
31234 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31235 for (i = 0; i < nb_allowed_archs; i++)
31236 {
31237 /* Empty entry. */
31238 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31239 break;
31240
31241 /* Extension is available, add it. */
31242 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31243 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31244 }
31245 }
31246
31247 /* Can we enable all features in *needed? */
31248 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31249}
31250
31251/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31252 a given architecture feature set *ARCH_EXT_FSET including extension feature
31253 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31254 - if true, check for an exact match of the architecture modulo extensions;
31255 - otherwise, select build attribute value of the first superset
31256 architecture released so that results remains stable when new architectures
31257 are added.
31258 For -march/-mcpu=all the build attribute value of the most featureful
31259 architecture is returned. Tag_CPU_arch_profile result is returned in
31260 PROFILE. */
0198d5e6 31261
2c6b98ea
TP
31262static int
31263get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31264 const arm_feature_set *ext_fset,
31265 char *profile, int exact_match)
31266{
31267 arm_feature_set arch_fset;
31268 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31269
31270 /* Select most featureful architecture with all its extensions if building
31271 for -march=all as the feature sets used to set build attributes. */
31272 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31273 {
31274 /* Force revisiting of decision for each new architecture. */
031254f2 31275 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
31276 *profile = 'A';
31277 return TAG_CPU_ARCH_V8;
31278 }
31279
31280 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31281
31282 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31283 {
31284 arm_feature_set known_arch_fset;
31285
31286 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31287 if (exact_match)
31288 {
31289 /* Base architecture match user-specified architecture and
31290 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31291 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31292 {
31293 p_ver_ret = p_ver;
31294 goto found;
31295 }
31296 /* Base architecture match user-specified architecture only
31297 (eg. ARMv6-M in the same case as above). Record it in case we
31298 find a match with above condition. */
31299 else if (p_ver_ret == NULL
31300 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31301 p_ver_ret = p_ver;
31302 }
31303 else
31304 {
31305
31306 /* Architecture has all features wanted. */
31307 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31308 {
31309 arm_feature_set added_fset;
31310
31311 /* Compute features added by this architecture over the one
31312 recorded in p_ver_ret. */
31313 if (p_ver_ret != NULL)
31314 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31315 p_ver_ret->flags);
31316 /* First architecture that match incl. with extensions, or the
31317 only difference in features over the recorded match is
31318 features that were optional and are now mandatory. */
31319 if (p_ver_ret == NULL
31320 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31321 {
31322 p_ver_ret = p_ver;
31323 goto found;
31324 }
31325 }
31326 else if (p_ver_ret == NULL)
31327 {
31328 arm_feature_set needed_ext_fset;
31329
31330 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31331
31332 /* Architecture has all features needed when using some
31333 extensions. Record it and continue searching in case there
31334 exist an architecture providing all needed features without
31335 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31336 OS extension). */
31337 if (have_ext_for_needed_feat_p (&known_arch_fset,
31338 &needed_ext_fset))
31339 p_ver_ret = p_ver;
31340 }
31341 }
31342 }
31343
31344 if (p_ver_ret == NULL)
31345 return -1;
31346
31347found:
31348 /* Tag_CPU_arch_profile. */
31349 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31350 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31351 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31352 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31353 *profile = 'A';
31354 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31355 *profile = 'R';
31356 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31357 *profile = 'M';
31358 else
31359 *profile = '\0';
31360 return p_ver_ret->val;
31361}
31362
ee065d83 31363/* Set the public EABI object attributes. */
0198d5e6 31364
c168ce07 31365static void
ee065d83
PB
31366aeabi_set_public_attributes (void)
31367{
b90d5ba0 31368 char profile = '\0';
2c6b98ea 31369 int arch = -1;
90ec0d68 31370 int virt_sec = 0;
bca38921 31371 int fp16_optional = 0;
2c6b98ea
TP
31372 int skip_exact_match = 0;
31373 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 31374
54bab281
TP
31375 /* Autodetection mode, choose the architecture based the instructions
31376 actually used. */
31377 if (no_cpu_selected ())
31378 {
31379 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 31380
54bab281
TP
31381 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31382 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 31383
54bab281
TP
31384 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31385 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 31386
54bab281 31387 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
31388 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31389 flags_ext = arm_arch_none;
31390 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31391 selected_ext = flags_ext;
54bab281
TP
31392 selected_cpu = flags;
31393 }
31394 /* Otherwise, choose the architecture based on the capabilities of the
31395 requested cpu. */
31396 else
4d354d8b
TP
31397 {
31398 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31399 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31400 flags_ext = selected_ext;
31401 flags = selected_cpu;
31402 }
31403 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 31404
ddd7f988 31405 /* Allow the user to override the reported architecture. */
4d354d8b 31406 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 31407 {
4d354d8b 31408 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 31409 flags_ext = arm_arch_none;
7a1d4c38 31410 }
2c6b98ea 31411 else
4d354d8b 31412 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
31413
31414 /* When this function is run again after relaxation has happened there is no
31415 way to determine whether an architecture or CPU was specified by the user:
31416 - selected_cpu is set above for relaxation to work;
31417 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31418 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31419 Therefore, if not in -march=all case we first try an exact match and fall
31420 back to autodetection. */
31421 if (!skip_exact_match)
31422 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31423 if (arch == -1)
31424 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31425 if (arch == -1)
31426 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 31427
ee065d83
PB
31428 /* Tag_CPU_name. */
31429 if (selected_cpu_name[0])
31430 {
91d6fa6a 31431 char *q;
ee065d83 31432
91d6fa6a
NC
31433 q = selected_cpu_name;
31434 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
31435 {
31436 int i;
5f4273c7 31437
91d6fa6a
NC
31438 q += 4;
31439 for (i = 0; q[i]; i++)
31440 q[i] = TOUPPER (q[i]);
ee065d83 31441 }
91d6fa6a 31442 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31443 }
62f3b8c8 31444
ee065d83 31445 /* Tag_CPU_arch. */
ee3c0378 31446 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31447
62b3e311 31448 /* Tag_CPU_arch_profile. */
69239280
MGD
31449 if (profile != '\0')
31450 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31451
15afaa63 31452 /* Tag_DSP_extension. */
4d354d8b 31453 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31454 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31455
2c6b98ea 31456 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31457 /* Tag_ARM_ISA_use. */
ee3c0378 31458 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31459 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31460 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31461
ee065d83 31462 /* Tag_THUMB_ISA_use. */
ee3c0378 31463 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31464 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31465 {
31466 int thumb_isa_use;
31467
31468 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31469 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31470 thumb_isa_use = 3;
31471 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31472 thumb_isa_use = 2;
31473 else
31474 thumb_isa_use = 1;
31475 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31476 }
62f3b8c8 31477
ee065d83 31478 /* Tag_VFP_arch. */
a715796b
TG
31479 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31480 aeabi_set_attribute_int (Tag_VFP_arch,
31481 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31482 ? 7 : 8);
bca38921 31483 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31484 aeabi_set_attribute_int (Tag_VFP_arch,
31485 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31486 ? 5 : 6);
31487 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31488 {
31489 fp16_optional = 1;
31490 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31491 }
ada65aa3 31492 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31493 {
31494 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31495 fp16_optional = 1;
31496 }
ee3c0378
AS
31497 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31498 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31499 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31500 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31501 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31502
4547cb56
NC
31503 /* Tag_ABI_HardFP_use. */
31504 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31505 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31506 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31507
ee065d83 31508 /* Tag_WMMX_arch. */
ee3c0378
AS
31509 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31510 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31511 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31512 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31513
ee3c0378 31514 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31515 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31516 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31517 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31518 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31519 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31520 {
31521 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31522 {
31523 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31524 }
31525 else
31526 {
31527 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31528 fp16_optional = 1;
31529 }
31530 }
fa94de6b 31531
a7ad558c
AV
31532 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31533 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31534 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31535 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31536
ee3c0378 31537 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31538 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31539 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31540
69239280
MGD
31541 /* Tag_DIV_use.
31542
31543 We set Tag_DIV_use to two when integer divide instructions have been used
31544 in ARM state, or when Thumb integer divide instructions have been used,
31545 but we have no architecture profile set, nor have we any ARM instructions.
31546
4ed7ed8d
TP
31547 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31548 by the base architecture.
bca38921 31549
69239280 31550 For new architectures we will have to check these tests. */
031254f2 31551 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31552 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31553 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31554 aeabi_set_attribute_int (Tag_DIV_use, 0);
31555 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31556 || (profile == '\0'
31557 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31558 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31559 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31560
31561 /* Tag_MP_extension_use. */
31562 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31563 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31564
31565 /* Tag Virtualization_use. */
31566 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31567 virt_sec |= 1;
31568 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31569 virt_sec |= 2;
31570 if (virt_sec != 0)
31571 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31572}
31573
c168ce07
TP
31574/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31575 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31576
c168ce07
TP
31577void
31578arm_md_post_relax (void)
31579{
31580 aeabi_set_public_attributes ();
4d354d8b
TP
31581 XDELETE (mcpu_ext_opt);
31582 mcpu_ext_opt = NULL;
31583 XDELETE (march_ext_opt);
31584 march_ext_opt = NULL;
c168ce07
TP
31585}
31586
104d59d1 31587/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31588
ee065d83
PB
31589void
31590arm_md_end (void)
31591{
ee065d83
PB
31592 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31593 return;
31594
31595 aeabi_set_public_attributes ();
ee065d83 31596}
8463be01 31597#endif /* OBJ_ELF */
ee065d83 31598
ee065d83
PB
31599/* Parse a .cpu directive. */
31600
31601static void
31602s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31603{
e74cfd16 31604 const struct arm_cpu_option_table *opt;
ee065d83
PB
31605 char *name;
31606 char saved_char;
31607
31608 name = input_line_pointer;
5f4273c7 31609 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31610 input_line_pointer++;
31611 saved_char = *input_line_pointer;
31612 *input_line_pointer = 0;
31613
31614 /* Skip the first "all" entry. */
31615 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31616 if (streq (opt->name, name))
31617 {
4d354d8b
TP
31618 selected_arch = opt->value;
31619 selected_ext = opt->ext;
31620 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31621 if (opt->canonical_name)
5f4273c7 31622 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31623 else
31624 {
31625 int i;
31626 for (i = 0; opt->name[i]; i++)
31627 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31628
ee065d83
PB
31629 selected_cpu_name[i] = 0;
31630 }
4d354d8b
TP
31631 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31632
ee065d83
PB
31633 *input_line_pointer = saved_char;
31634 demand_empty_rest_of_line ();
31635 return;
31636 }
31637 as_bad (_("unknown cpu `%s'"), name);
31638 *input_line_pointer = saved_char;
31639 ignore_rest_of_line ();
31640}
31641
ee065d83
PB
31642/* Parse a .arch directive. */
31643
31644static void
31645s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31646{
e74cfd16 31647 const struct arm_arch_option_table *opt;
ee065d83
PB
31648 char saved_char;
31649 char *name;
31650
31651 name = input_line_pointer;
5f4273c7 31652 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31653 input_line_pointer++;
31654 saved_char = *input_line_pointer;
31655 *input_line_pointer = 0;
31656
31657 /* Skip the first "all" entry. */
31658 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31659 if (streq (opt->name, name))
31660 {
4d354d8b
TP
31661 selected_arch = opt->value;
31662 selected_ext = arm_arch_none;
31663 selected_cpu = selected_arch;
5f4273c7 31664 strcpy (selected_cpu_name, opt->name);
4d354d8b 31665 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31666 *input_line_pointer = saved_char;
31667 demand_empty_rest_of_line ();
31668 return;
31669 }
31670
31671 as_bad (_("unknown architecture `%s'\n"), name);
31672 *input_line_pointer = saved_char;
31673 ignore_rest_of_line ();
31674}
31675
7a1d4c38
PB
31676/* Parse a .object_arch directive. */
31677
31678static void
31679s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31680{
31681 const struct arm_arch_option_table *opt;
31682 char saved_char;
31683 char *name;
31684
31685 name = input_line_pointer;
5f4273c7 31686 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31687 input_line_pointer++;
31688 saved_char = *input_line_pointer;
31689 *input_line_pointer = 0;
31690
31691 /* Skip the first "all" entry. */
31692 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31693 if (streq (opt->name, name))
31694 {
4d354d8b 31695 selected_object_arch = opt->value;
7a1d4c38
PB
31696 *input_line_pointer = saved_char;
31697 demand_empty_rest_of_line ();
31698 return;
31699 }
31700
31701 as_bad (_("unknown architecture `%s'\n"), name);
31702 *input_line_pointer = saved_char;
31703 ignore_rest_of_line ();
31704}
31705
69133863
MGD
31706/* Parse a .arch_extension directive. */
31707
31708static void
31709s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31710{
31711 const struct arm_option_extension_value_table *opt;
31712 char saved_char;
31713 char *name;
31714 int adding_value = 1;
31715
31716 name = input_line_pointer;
31717 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31718 input_line_pointer++;
31719 saved_char = *input_line_pointer;
31720 *input_line_pointer = 0;
31721
31722 if (strlen (name) >= 2
31723 && strncmp (name, "no", 2) == 0)
31724 {
31725 adding_value = 0;
31726 name += 2;
31727 }
31728
31729 for (opt = arm_extensions; opt->name != NULL; opt++)
31730 if (streq (opt->name, name))
31731 {
d942732e
TP
31732 int i, nb_allowed_archs =
31733 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31734 for (i = 0; i < nb_allowed_archs; i++)
31735 {
31736 /* Empty entry. */
4d354d8b 31737 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31738 continue;
4d354d8b 31739 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31740 break;
31741 }
31742
31743 if (i == nb_allowed_archs)
69133863
MGD
31744 {
31745 as_bad (_("architectural extension `%s' is not allowed for the "
31746 "current base architecture"), name);
31747 break;
31748 }
31749
31750 if (adding_value)
4d354d8b 31751 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31752 opt->merge_value);
69133863 31753 else
4d354d8b 31754 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31755
4d354d8b
TP
31756 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31757 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31758 *input_line_pointer = saved_char;
31759 demand_empty_rest_of_line ();
3d030cdb
TP
31760 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31761 on this return so that duplicate extensions (extensions with the
31762 same name as a previous extension in the list) are not considered
31763 for command-line parsing. */
69133863
MGD
31764 return;
31765 }
31766
31767 if (opt->name == NULL)
e673710a 31768 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31769
31770 *input_line_pointer = saved_char;
31771 ignore_rest_of_line ();
31772}
31773
ee065d83
PB
31774/* Parse a .fpu directive. */
31775
31776static void
31777s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31778{
69133863 31779 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31780 char saved_char;
31781 char *name;
31782
31783 name = input_line_pointer;
5f4273c7 31784 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31785 input_line_pointer++;
31786 saved_char = *input_line_pointer;
31787 *input_line_pointer = 0;
5f4273c7 31788
ee065d83
PB
31789 for (opt = arm_fpus; opt->name != NULL; opt++)
31790 if (streq (opt->name, name))
31791 {
4d354d8b
TP
31792 selected_fpu = opt->value;
31793#ifndef CPU_DEFAULT
31794 if (no_cpu_selected ())
31795 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31796 else
31797#endif
31798 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31799 *input_line_pointer = saved_char;
31800 demand_empty_rest_of_line ();
31801 return;
31802 }
31803
31804 as_bad (_("unknown floating point format `%s'\n"), name);
31805 *input_line_pointer = saved_char;
31806 ignore_rest_of_line ();
31807}
ee065d83 31808
794ba86a 31809/* Copy symbol information. */
f31fef98 31810
794ba86a
DJ
31811void
31812arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31813{
31814 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31815}
e04befd0 31816
f31fef98 31817#ifdef OBJ_ELF
e04befd0
AS
31818/* Given a symbolic attribute NAME, return the proper integer value.
31819 Returns -1 if the attribute is not known. */
f31fef98 31820
e04befd0
AS
31821int
31822arm_convert_symbolic_attribute (const char *name)
31823{
f31fef98
NC
31824 static const struct
31825 {
31826 const char * name;
31827 const int tag;
31828 }
31829 attribute_table[] =
31830 {
31831 /* When you modify this table you should
31832 also modify the list in doc/c-arm.texi. */
e04befd0 31833#define T(tag) {#tag, tag}
f31fef98
NC
31834 T (Tag_CPU_raw_name),
31835 T (Tag_CPU_name),
31836 T (Tag_CPU_arch),
31837 T (Tag_CPU_arch_profile),
31838 T (Tag_ARM_ISA_use),
31839 T (Tag_THUMB_ISA_use),
75375b3e 31840 T (Tag_FP_arch),
f31fef98
NC
31841 T (Tag_VFP_arch),
31842 T (Tag_WMMX_arch),
31843 T (Tag_Advanced_SIMD_arch),
31844 T (Tag_PCS_config),
31845 T (Tag_ABI_PCS_R9_use),
31846 T (Tag_ABI_PCS_RW_data),
31847 T (Tag_ABI_PCS_RO_data),
31848 T (Tag_ABI_PCS_GOT_use),
31849 T (Tag_ABI_PCS_wchar_t),
31850 T (Tag_ABI_FP_rounding),
31851 T (Tag_ABI_FP_denormal),
31852 T (Tag_ABI_FP_exceptions),
31853 T (Tag_ABI_FP_user_exceptions),
31854 T (Tag_ABI_FP_number_model),
75375b3e 31855 T (Tag_ABI_align_needed),
f31fef98 31856 T (Tag_ABI_align8_needed),
75375b3e 31857 T (Tag_ABI_align_preserved),
f31fef98
NC
31858 T (Tag_ABI_align8_preserved),
31859 T (Tag_ABI_enum_size),
31860 T (Tag_ABI_HardFP_use),
31861 T (Tag_ABI_VFP_args),
31862 T (Tag_ABI_WMMX_args),
31863 T (Tag_ABI_optimization_goals),
31864 T (Tag_ABI_FP_optimization_goals),
31865 T (Tag_compatibility),
31866 T (Tag_CPU_unaligned_access),
75375b3e 31867 T (Tag_FP_HP_extension),
f31fef98
NC
31868 T (Tag_VFP_HP_extension),
31869 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31870 T (Tag_MPextension_use),
31871 T (Tag_DIV_use),
f31fef98
NC
31872 T (Tag_nodefaults),
31873 T (Tag_also_compatible_with),
31874 T (Tag_conformance),
31875 T (Tag_T2EE_use),
31876 T (Tag_Virtualization_use),
15afaa63 31877 T (Tag_DSP_extension),
a7ad558c 31878 T (Tag_MVE_arch),
cd21e546 31879 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31880#undef T
f31fef98 31881 };
e04befd0
AS
31882 unsigned int i;
31883
31884 if (name == NULL)
31885 return -1;
31886
f31fef98 31887 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31888 if (streq (name, attribute_table[i].name))
e04befd0
AS
31889 return attribute_table[i].tag;
31890
31891 return -1;
31892}
267bf995 31893
93ef582d
NC
31894/* Apply sym value for relocations only in the case that they are for
31895 local symbols in the same segment as the fixup and you have the
31896 respective architectural feature for blx and simple switches. */
0198d5e6 31897
267bf995 31898int
93ef582d 31899arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31900{
31901 if (fixP->fx_addsy
31902 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31903 /* PR 17444: If the local symbol is in a different section then a reloc
31904 will always be generated for it, so applying the symbol value now
31905 will result in a double offset being stored in the relocation. */
31906 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31907 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31908 {
31909 switch (fixP->fx_r_type)
31910 {
31911 case BFD_RELOC_ARM_PCREL_BLX:
31912 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31913 if (ARM_IS_FUNC (fixP->fx_addsy))
31914 return 1;
31915 break;
31916
31917 case BFD_RELOC_ARM_PCREL_CALL:
31918 case BFD_RELOC_THUMB_PCREL_BLX:
31919 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31920 return 1;
267bf995
RR
31921 break;
31922
31923 default:
31924 break;
31925 }
31926
31927 }
31928 return 0;
31929}
f31fef98 31930#endif /* OBJ_ELF */
This page took 4.283511 seconds and 4 git commands to generate.