ld/testsuite/
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
f31fef98 3 2004, 2005, 2006, 2007, 2008, 2009
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80/* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83static unsigned int marked_pr_dependency = 0;
84
85#endif /* OBJ_ELF */
86
4962c51a
MS
87/* Results from operand parsing worker functions. */
88
89typedef enum
90{
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94} parse_operand_result;
95
33a392fb
PB
96enum arm_float_abi
97{
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101};
102
c19d1205 103/* Types of processor to assemble for. */
b99bd4ef
NC
104#ifndef CPU_DEFAULT
105#if defined __XSCALE__
e74cfd16 106#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
107#else
108#if defined __thumb__
e74cfd16 109#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
110#endif
111#endif
112#endif
113
114#ifndef FPU_DEFAULT
c820d418
MM
115# ifdef TE_LINUX
116# define FPU_DEFAULT FPU_ARCH_FPA
117# elif defined (TE_NetBSD)
118# ifdef OBJ_ELF
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120# else
121 /* Legacy a.out format. */
122# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123# endif
4e7fd91e
PB
124# elif defined (TE_VXWORKS)
125# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
126# else
127 /* For backwards compatibility, default to FPA. */
128# define FPU_DEFAULT FPU_ARCH_FPA
129# endif
130#endif /* ifndef FPU_DEFAULT */
b99bd4ef 131
c19d1205 132#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 133
e74cfd16
PB
134static arm_feature_set cpu_variant;
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
03b1477f
RE
148
149/* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
e74cfd16
PB
152static const arm_feature_set *legacy_cpu = NULL;
153static const arm_feature_set *legacy_fpu = NULL;
154
155static const arm_feature_set *mcpu_cpu_opt = NULL;
156static const arm_feature_set *mcpu_fpu_opt = NULL;
157static const arm_feature_set *march_cpu_opt = NULL;
158static const arm_feature_set *march_fpu_opt = NULL;
159static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 160static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
161
162/* Constants for known architecture features. */
163static const arm_feature_set fpu_default = FPU_DEFAULT;
164static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
166static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
168static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173#ifdef CPU_DEFAULT
174static const arm_feature_set cpu_default = CPU_DEFAULT;
175#endif
176
177static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 195static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
7e806470
PB
196static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
198static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
7e806470
PB
202static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
204
205static const arm_feature_set arm_arch_any = ARM_ANY;
206static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
2d447fca
JM
210static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
212static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62 224static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
225static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
227static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
8e79c3df 230static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
e74cfd16 231
33a392fb 232static int mfloat_abi_opt = -1;
e74cfd16
PB
233/* Record user cpu selection for object attributes. */
234static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
235/* Must be long enough to hold any of the names in arm_cpus. */
236static char selected_cpu_name[16];
7cc69913 237#ifdef OBJ_ELF
deeaaff8
DJ
238# ifdef EABI_DEFAULT
239static int meabi_flags = EABI_DEFAULT;
240# else
d507cf36 241static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 242# endif
e1da3f5b 243
ee3c0378
AS
244static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
e1da3f5b 246bfd_boolean
5f4273c7 247arm_is_eabi (void)
e1da3f5b
PB
248{
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250}
7cc69913 251#endif
b99bd4ef 252
b99bd4ef 253#ifdef OBJ_ELF
c19d1205 254/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
255symbolS * GOT_symbol;
256#endif
257
b99bd4ef
NC
258/* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262static int thumb_mode = 0;
8dc2430f
NC
263/* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266#define MODE_RECORDED (1 << 4)
b99bd4ef 267
c19d1205
ZW
268/* If unified_syntax is true, we are processing the new unified
269 ARM/Thumb syntax. Important differences from the old ARM mode:
270
271 - Immediate operands do not require a # prefix.
272 - Conditional affixes always appear at the end of the
273 instruction. (For backward compatibility, those instructions
274 that formerly had them in the middle, continue to accept them
275 there.)
276 - The IT instruction may appear, and if it does is validated
277 against subsequent conditional affixes. It does not generate
278 machine code.
279
280 Important differences from the old Thumb mode:
281
282 - Immediate operands do not require a # prefix.
283 - Most of the V6T2 instructions are only available in unified mode.
284 - The .N and .W suffixes are recognized and honored (it is an error
285 if they cannot be honored).
286 - All instructions set the flags if and only if they have an 's' affix.
287 - Conditional affixes may be used. They are validated against
288 preceding IT instructions. Unlike ARM mode, you cannot use a
289 conditional affix except in the scope of an IT instruction. */
290
291static bfd_boolean unified_syntax = FALSE;
b99bd4ef 292
5287ad62
JB
293enum neon_el_type
294{
dcbf9037 295 NT_invtype,
5287ad62
JB
296 NT_untyped,
297 NT_integer,
298 NT_float,
299 NT_poly,
300 NT_signed,
dcbf9037 301 NT_unsigned
5287ad62
JB
302};
303
304struct neon_type_el
305{
306 enum neon_el_type type;
307 unsigned size;
308};
309
310#define NEON_MAX_TYPE_ELS 4
311
312struct neon_type
313{
314 struct neon_type_el el[NEON_MAX_TYPE_ELS];
315 unsigned elems;
316};
317
b99bd4ef
NC
318struct arm_it
319{
c19d1205 320 const char * error;
b99bd4ef 321 unsigned long instruction;
c19d1205
ZW
322 int size;
323 int size_req;
324 int cond;
037e8744
JB
325 /* "uncond_value" is set to the value in place of the conditional field in
326 unconditional versions of the instruction, or -1 if nothing is
327 appropriate. */
328 int uncond_value;
5287ad62 329 struct neon_type vectype;
0110f2b8
PB
330 /* Set to the opcode if the instruction needs relaxation.
331 Zero if the instruction is not relaxed. */
332 unsigned long relax;
b99bd4ef
NC
333 struct
334 {
335 bfd_reloc_code_real_type type;
c19d1205
ZW
336 expressionS exp;
337 int pc_rel;
b99bd4ef 338 } reloc;
b99bd4ef 339
c19d1205
ZW
340 struct
341 {
342 unsigned reg;
ca3f61f7 343 signed int imm;
dcbf9037 344 struct neon_type_el vectype;
ca3f61f7
NC
345 unsigned present : 1; /* Operand present. */
346 unsigned isreg : 1; /* Operand was a register. */
347 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
348 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
349 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 350 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
351 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
352 instructions. This allows us to disambiguate ARM <-> vector insns. */
353 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 354 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 355 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 356 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
357 unsigned hasreloc : 1; /* Operand has relocation suffix. */
358 unsigned writeback : 1; /* Operand has trailing ! */
359 unsigned preind : 1; /* Preindexed address. */
360 unsigned postind : 1; /* Postindexed address. */
361 unsigned negative : 1; /* Index register was negated. */
362 unsigned shifted : 1; /* Shift applied to operation. */
363 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 364 } operands[6];
b99bd4ef
NC
365};
366
c19d1205 367static struct arm_it inst;
b99bd4ef
NC
368
369#define NUM_FLOAT_VALS 8
370
05d2d07e 371const char * fp_const[] =
b99bd4ef
NC
372{
373 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
374};
375
c19d1205 376/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
377#define MAX_LITTLENUMS 6
378
379LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
380
381#define FAIL (-1)
382#define SUCCESS (0)
383
384#define SUFF_S 1
385#define SUFF_D 2
386#define SUFF_E 3
387#define SUFF_P 4
388
c19d1205
ZW
389#define CP_T_X 0x00008000
390#define CP_T_Y 0x00400000
b99bd4ef 391
c19d1205
ZW
392#define CONDS_BIT 0x00100000
393#define LOAD_BIT 0x00100000
b99bd4ef
NC
394
395#define DOUBLE_LOAD_FLAG 0x00000001
396
397struct asm_cond
398{
c19d1205 399 const char * template;
b99bd4ef
NC
400 unsigned long value;
401};
402
c19d1205 403#define COND_ALWAYS 0xE
b99bd4ef 404
b99bd4ef
NC
405struct asm_psr
406{
b34976b6 407 const char *template;
b99bd4ef
NC
408 unsigned long field;
409};
410
62b3e311
PB
411struct asm_barrier_opt
412{
413 const char *template;
414 unsigned long value;
415};
416
2d2255b5 417/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
418#define SPSR_BIT (1 << 22)
419
c19d1205
ZW
420/* The individual PSR flag bits. */
421#define PSR_c (1 << 16)
422#define PSR_x (1 << 17)
423#define PSR_s (1 << 18)
424#define PSR_f (1 << 19)
b99bd4ef 425
c19d1205 426struct reloc_entry
bfae80f2 427{
c19d1205
ZW
428 char *name;
429 bfd_reloc_code_real_type reloc;
bfae80f2
RE
430};
431
5287ad62 432enum vfp_reg_pos
bfae80f2 433{
5287ad62
JB
434 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
435 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
436};
437
438enum vfp_ldstm_type
439{
440 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
441};
442
dcbf9037
JB
443/* Bits for DEFINED field in neon_typed_alias. */
444#define NTA_HASTYPE 1
445#define NTA_HASINDEX 2
446
447struct neon_typed_alias
448{
449 unsigned char defined;
450 unsigned char index;
451 struct neon_type_el eltype;
452};
453
c19d1205
ZW
454/* ARM register categories. This includes coprocessor numbers and various
455 architecture extensions' registers. */
456enum arm_reg_type
bfae80f2 457{
c19d1205
ZW
458 REG_TYPE_RN,
459 REG_TYPE_CP,
460 REG_TYPE_CN,
461 REG_TYPE_FN,
462 REG_TYPE_VFS,
463 REG_TYPE_VFD,
5287ad62 464 REG_TYPE_NQ,
037e8744 465 REG_TYPE_VFSD,
5287ad62 466 REG_TYPE_NDQ,
037e8744 467 REG_TYPE_NSDQ,
c19d1205
ZW
468 REG_TYPE_VFC,
469 REG_TYPE_MVF,
470 REG_TYPE_MVD,
471 REG_TYPE_MVFX,
472 REG_TYPE_MVDX,
473 REG_TYPE_MVAX,
474 REG_TYPE_DSPSC,
475 REG_TYPE_MMXWR,
476 REG_TYPE_MMXWC,
477 REG_TYPE_MMXWCG,
478 REG_TYPE_XSCALE,
bfae80f2
RE
479};
480
dcbf9037
JB
481/* Structure for a hash table entry for a register.
482 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
483 information which states whether a vector type or index is specified (for a
484 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
485struct reg_entry
486{
dcbf9037
JB
487 const char *name;
488 unsigned char number;
489 unsigned char type;
490 unsigned char builtin;
491 struct neon_typed_alias *neon;
6c43fab6
RE
492};
493
c19d1205
ZW
494/* Diagnostics used when we don't get a register of the expected type. */
495const char *const reg_expected_msgs[] =
496{
497 N_("ARM register expected"),
498 N_("bad or missing co-processor number"),
499 N_("co-processor register expected"),
500 N_("FPA register expected"),
501 N_("VFP single precision register expected"),
5287ad62
JB
502 N_("VFP/Neon double precision register expected"),
503 N_("Neon quad precision register expected"),
037e8744 504 N_("VFP single or double precision register expected"),
5287ad62 505 N_("Neon double or quad precision register expected"),
037e8744 506 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
507 N_("VFP system register expected"),
508 N_("Maverick MVF register expected"),
509 N_("Maverick MVD register expected"),
510 N_("Maverick MVFX register expected"),
511 N_("Maverick MVDX register expected"),
512 N_("Maverick MVAX register expected"),
513 N_("Maverick DSPSC register expected"),
514 N_("iWMMXt data register expected"),
515 N_("iWMMXt control register expected"),
516 N_("iWMMXt scalar register expected"),
517 N_("XScale accumulator register expected"),
6c43fab6
RE
518};
519
c19d1205
ZW
520/* Some well known registers that we refer to directly elsewhere. */
521#define REG_SP 13
522#define REG_LR 14
523#define REG_PC 15
404ff6b5 524
b99bd4ef
NC
525/* ARM instructions take 4bytes in the object file, Thumb instructions
526 take 2: */
c19d1205 527#define INSN_SIZE 4
b99bd4ef
NC
528
529struct asm_opcode
530{
531 /* Basic string to match. */
c19d1205
ZW
532 const char *template;
533
534 /* Parameters to instruction. */
535 unsigned char operands[8];
536
537 /* Conditional tag - see opcode_lookup. */
538 unsigned int tag : 4;
b99bd4ef
NC
539
540 /* Basic instruction code. */
c19d1205 541 unsigned int avalue : 28;
b99bd4ef 542
c19d1205
ZW
543 /* Thumb-format instruction code. */
544 unsigned int tvalue;
b99bd4ef 545
90e4755a 546 /* Which architecture variant provides this instruction. */
e74cfd16
PB
547 const arm_feature_set *avariant;
548 const arm_feature_set *tvariant;
c19d1205
ZW
549
550 /* Function to call to encode instruction in ARM format. */
551 void (* aencode) (void);
b99bd4ef 552
c19d1205
ZW
553 /* Function to call to encode instruction in Thumb format. */
554 void (* tencode) (void);
b99bd4ef
NC
555};
556
a737bd4d
NC
557/* Defines for various bits that we will want to toggle. */
558#define INST_IMMEDIATE 0x02000000
559#define OFFSET_REG 0x02000000
c19d1205 560#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
561#define SHIFT_BY_REG 0x00000010
562#define PRE_INDEX 0x01000000
563#define INDEX_UP 0x00800000
564#define WRITE_BACK 0x00200000
565#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 566#define CPSI_MMOD 0x00020000
90e4755a 567
a737bd4d
NC
568#define LITERAL_MASK 0xf000f000
569#define OPCODE_MASK 0xfe1fffff
570#define V4_STR_BIT 0x00000020
90e4755a 571
efd81785
PB
572#define T2_SUBS_PC_LR 0xf3de8f00
573
a737bd4d 574#define DATA_OP_SHIFT 21
90e4755a 575
ef8d22e6
PB
576#define T2_OPCODE_MASK 0xfe1fffff
577#define T2_DATA_OP_SHIFT 21
578
a737bd4d
NC
579/* Codes to distinguish the arithmetic instructions. */
580#define OPCODE_AND 0
581#define OPCODE_EOR 1
582#define OPCODE_SUB 2
583#define OPCODE_RSB 3
584#define OPCODE_ADD 4
585#define OPCODE_ADC 5
586#define OPCODE_SBC 6
587#define OPCODE_RSC 7
588#define OPCODE_TST 8
589#define OPCODE_TEQ 9
590#define OPCODE_CMP 10
591#define OPCODE_CMN 11
592#define OPCODE_ORR 12
593#define OPCODE_MOV 13
594#define OPCODE_BIC 14
595#define OPCODE_MVN 15
90e4755a 596
ef8d22e6
PB
597#define T2_OPCODE_AND 0
598#define T2_OPCODE_BIC 1
599#define T2_OPCODE_ORR 2
600#define T2_OPCODE_ORN 3
601#define T2_OPCODE_EOR 4
602#define T2_OPCODE_ADD 8
603#define T2_OPCODE_ADC 10
604#define T2_OPCODE_SBC 11
605#define T2_OPCODE_SUB 13
606#define T2_OPCODE_RSB 14
607
a737bd4d
NC
608#define T_OPCODE_MUL 0x4340
609#define T_OPCODE_TST 0x4200
610#define T_OPCODE_CMN 0x42c0
611#define T_OPCODE_NEG 0x4240
612#define T_OPCODE_MVN 0x43c0
90e4755a 613
a737bd4d
NC
614#define T_OPCODE_ADD_R3 0x1800
615#define T_OPCODE_SUB_R3 0x1a00
616#define T_OPCODE_ADD_HI 0x4400
617#define T_OPCODE_ADD_ST 0xb000
618#define T_OPCODE_SUB_ST 0xb080
619#define T_OPCODE_ADD_SP 0xa800
620#define T_OPCODE_ADD_PC 0xa000
621#define T_OPCODE_ADD_I8 0x3000
622#define T_OPCODE_SUB_I8 0x3800
623#define T_OPCODE_ADD_I3 0x1c00
624#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 625
a737bd4d
NC
626#define T_OPCODE_ASR_R 0x4100
627#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
628#define T_OPCODE_LSR_R 0x40c0
629#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
630#define T_OPCODE_ASR_I 0x1000
631#define T_OPCODE_LSL_I 0x0000
632#define T_OPCODE_LSR_I 0x0800
b99bd4ef 633
a737bd4d
NC
634#define T_OPCODE_MOV_I8 0x2000
635#define T_OPCODE_CMP_I8 0x2800
636#define T_OPCODE_CMP_LR 0x4280
637#define T_OPCODE_MOV_HR 0x4600
638#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 639
a737bd4d
NC
640#define T_OPCODE_LDR_PC 0x4800
641#define T_OPCODE_LDR_SP 0x9800
642#define T_OPCODE_STR_SP 0x9000
643#define T_OPCODE_LDR_IW 0x6800
644#define T_OPCODE_STR_IW 0x6000
645#define T_OPCODE_LDR_IH 0x8800
646#define T_OPCODE_STR_IH 0x8000
647#define T_OPCODE_LDR_IB 0x7800
648#define T_OPCODE_STR_IB 0x7000
649#define T_OPCODE_LDR_RW 0x5800
650#define T_OPCODE_STR_RW 0x5000
651#define T_OPCODE_LDR_RH 0x5a00
652#define T_OPCODE_STR_RH 0x5200
653#define T_OPCODE_LDR_RB 0x5c00
654#define T_OPCODE_STR_RB 0x5400
c9b604bd 655
a737bd4d
NC
656#define T_OPCODE_PUSH 0xb400
657#define T_OPCODE_POP 0xbc00
b99bd4ef 658
2fc8bdac 659#define T_OPCODE_BRANCH 0xe000
b99bd4ef 660
a737bd4d 661#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 662#define THUMB_PP_PC_LR 0x0100
c19d1205 663#define THUMB_LOAD_BIT 0x0800
53365c0d 664#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
665
666#define BAD_ARGS _("bad arguments to instruction")
fdfde340 667#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
668#define BAD_PC _("r15 not allowed here")
669#define BAD_COND _("instruction cannot be conditional")
670#define BAD_OVERLAP _("registers may not be the same")
671#define BAD_HIREG _("lo register required")
672#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 673#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
674#define BAD_BRANCH _("branch must be last instruction in IT block")
675#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 676#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
677
678static struct hash_control *arm_ops_hsh;
679static struct hash_control *arm_cond_hsh;
680static struct hash_control *arm_shift_hsh;
681static struct hash_control *arm_psr_hsh;
62b3e311 682static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
683static struct hash_control *arm_reg_hsh;
684static struct hash_control *arm_reloc_hsh;
62b3e311 685static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 686
b99bd4ef
NC
687/* Stuff needed to resolve the label ambiguity
688 As:
689 ...
690 label: <insn>
691 may differ from:
692 ...
693 label:
5f4273c7 694 <insn> */
b99bd4ef
NC
695
696symbolS * last_label_seen;
b34976b6 697static int label_is_thumb_function_name = FALSE;
a737bd4d 698\f
3d0c9500
NC
699/* Literal pool structure. Held on a per-section
700 and per-sub-section basis. */
a737bd4d 701
c19d1205 702#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 703typedef struct literal_pool
b99bd4ef 704{
c19d1205
ZW
705 expressionS literals [MAX_LITERAL_POOL_SIZE];
706 unsigned int next_free_entry;
707 unsigned int id;
708 symbolS * symbol;
709 segT section;
710 subsegT sub_section;
61b5f74b 711 struct literal_pool * next;
3d0c9500 712} literal_pool;
b99bd4ef 713
3d0c9500
NC
714/* Pointer to a linked list of literal pools. */
715literal_pool * list_of_pools = NULL;
e27ec89e
PB
716
717/* State variables for IT block handling. */
718static bfd_boolean current_it_mask = 0;
719static int current_cc;
c19d1205
ZW
720\f
721/* Pure syntax. */
b99bd4ef 722
c19d1205
ZW
723/* This array holds the chars that always start a comment. If the
724 pre-processor is disabled, these aren't very useful. */
725const char comment_chars[] = "@";
3d0c9500 726
c19d1205
ZW
727/* This array holds the chars that only start a comment at the beginning of
728 a line. If the line seems to have the form '# 123 filename'
729 .line and .file directives will appear in the pre-processed output. */
730/* Note that input_file.c hand checks for '#' at the beginning of the
731 first line of the input file. This is because the compiler outputs
732 #NO_APP at the beginning of its output. */
733/* Also note that comments like this one will always work. */
734const char line_comment_chars[] = "#";
3d0c9500 735
c19d1205 736const char line_separator_chars[] = ";";
b99bd4ef 737
c19d1205
ZW
738/* Chars that can be used to separate mant
739 from exp in floating point numbers. */
740const char EXP_CHARS[] = "eE";
3d0c9500 741
c19d1205
ZW
742/* Chars that mean this number is a floating point constant. */
743/* As in 0f12.456 */
744/* or 0d1.2345e12 */
b99bd4ef 745
c19d1205 746const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 747
c19d1205
ZW
748/* Prefix characters that indicate the start of an immediate
749 value. */
750#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 751
c19d1205
ZW
752/* Separator character handling. */
753
754#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
755
756static inline int
757skip_past_char (char ** str, char c)
758{
759 if (**str == c)
760 {
761 (*str)++;
762 return SUCCESS;
3d0c9500 763 }
c19d1205
ZW
764 else
765 return FAIL;
766}
767#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 768
c19d1205
ZW
769/* Arithmetic expressions (possibly involving symbols). */
770
771/* Return TRUE if anything in the expression is a bignum. */
772
773static int
774walk_no_bignums (symbolS * sp)
775{
776 if (symbol_get_value_expression (sp)->X_op == O_big)
777 return 1;
778
779 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 780 {
c19d1205
ZW
781 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
782 || (symbol_get_value_expression (sp)->X_op_symbol
783 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
784 }
785
c19d1205 786 return 0;
3d0c9500
NC
787}
788
c19d1205
ZW
789static int in_my_get_expression = 0;
790
791/* Third argument to my_get_expression. */
792#define GE_NO_PREFIX 0
793#define GE_IMM_PREFIX 1
794#define GE_OPT_PREFIX 2
5287ad62
JB
795/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
796 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
797#define GE_OPT_PREFIX_BIG 3
a737bd4d 798
b99bd4ef 799static int
c19d1205 800my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 801{
c19d1205
ZW
802 char * save_in;
803 segT seg;
b99bd4ef 804
c19d1205
ZW
805 /* In unified syntax, all prefixes are optional. */
806 if (unified_syntax)
5287ad62
JB
807 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
808 : GE_OPT_PREFIX;
b99bd4ef 809
c19d1205 810 switch (prefix_mode)
b99bd4ef 811 {
c19d1205
ZW
812 case GE_NO_PREFIX: break;
813 case GE_IMM_PREFIX:
814 if (!is_immediate_prefix (**str))
815 {
816 inst.error = _("immediate expression requires a # prefix");
817 return FAIL;
818 }
819 (*str)++;
820 break;
821 case GE_OPT_PREFIX:
5287ad62 822 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
823 if (is_immediate_prefix (**str))
824 (*str)++;
825 break;
826 default: abort ();
827 }
b99bd4ef 828
c19d1205 829 memset (ep, 0, sizeof (expressionS));
b99bd4ef 830
c19d1205
ZW
831 save_in = input_line_pointer;
832 input_line_pointer = *str;
833 in_my_get_expression = 1;
834 seg = expression (ep);
835 in_my_get_expression = 0;
836
837 if (ep->X_op == O_illegal)
b99bd4ef 838 {
c19d1205
ZW
839 /* We found a bad expression in md_operand(). */
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 if (inst.error == NULL)
843 inst.error = _("bad expression");
844 return 1;
845 }
b99bd4ef 846
c19d1205
ZW
847#ifdef OBJ_AOUT
848 if (seg != absolute_section
849 && seg != text_section
850 && seg != data_section
851 && seg != bss_section
852 && seg != undefined_section)
853 {
854 inst.error = _("bad segment");
855 *str = input_line_pointer;
856 input_line_pointer = save_in;
857 return 1;
b99bd4ef 858 }
c19d1205 859#endif
b99bd4ef 860
c19d1205
ZW
861 /* Get rid of any bignums now, so that we don't generate an error for which
862 we can't establish a line number later on. Big numbers are never valid
863 in instructions, which is where this routine is always called. */
5287ad62
JB
864 if (prefix_mode != GE_OPT_PREFIX_BIG
865 && (ep->X_op == O_big
866 || (ep->X_add_symbol
867 && (walk_no_bignums (ep->X_add_symbol)
868 || (ep->X_op_symbol
869 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
870 {
871 inst.error = _("invalid constant");
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 1;
875 }
b99bd4ef 876
c19d1205
ZW
877 *str = input_line_pointer;
878 input_line_pointer = save_in;
879 return 0;
b99bd4ef
NC
880}
881
c19d1205
ZW
882/* Turn a string in input_line_pointer into a floating point constant
883 of type TYPE, and store the appropriate bytes in *LITP. The number
884 of LITTLENUMS emitted is stored in *SIZEP. An error message is
885 returned, or NULL on OK.
b99bd4ef 886
c19d1205
ZW
887 Note that fp constants aren't represent in the normal way on the ARM.
888 In big endian mode, things are as expected. However, in little endian
889 mode fp constants are big-endian word-wise, and little-endian byte-wise
890 within the words. For example, (double) 1.1 in big endian mode is
891 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
892 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 893
c19d1205 894 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 895
c19d1205
ZW
896char *
897md_atof (int type, char * litP, int * sizeP)
898{
899 int prec;
900 LITTLENUM_TYPE words[MAX_LITTLENUMS];
901 char *t;
902 int i;
b99bd4ef 903
c19d1205
ZW
904 switch (type)
905 {
906 case 'f':
907 case 'F':
908 case 's':
909 case 'S':
910 prec = 2;
911 break;
b99bd4ef 912
c19d1205
ZW
913 case 'd':
914 case 'D':
915 case 'r':
916 case 'R':
917 prec = 4;
918 break;
b99bd4ef 919
c19d1205
ZW
920 case 'x':
921 case 'X':
499ac353 922 prec = 5;
c19d1205 923 break;
b99bd4ef 924
c19d1205
ZW
925 case 'p':
926 case 'P':
499ac353 927 prec = 5;
c19d1205 928 break;
a737bd4d 929
c19d1205
ZW
930 default:
931 *sizeP = 0;
499ac353 932 return _("Unrecognized or unsupported floating point constant");
c19d1205 933 }
b99bd4ef 934
c19d1205
ZW
935 t = atof_ieee (input_line_pointer, type, words);
936 if (t)
937 input_line_pointer = t;
499ac353 938 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 939
c19d1205
ZW
940 if (target_big_endian)
941 {
942 for (i = 0; i < prec; i++)
943 {
499ac353
NC
944 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
945 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
946 }
947 }
948 else
949 {
e74cfd16 950 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
951 for (i = prec - 1; i >= 0; i--)
952 {
499ac353
NC
953 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
954 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
955 }
956 else
957 /* For a 4 byte float the order of elements in `words' is 1 0.
958 For an 8 byte float the order is 1 0 3 2. */
959 for (i = 0; i < prec; i += 2)
960 {
499ac353
NC
961 md_number_to_chars (litP, (valueT) words[i + 1],
962 sizeof (LITTLENUM_TYPE));
963 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
964 (valueT) words[i], sizeof (LITTLENUM_TYPE));
965 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
966 }
967 }
b99bd4ef 968
499ac353 969 return NULL;
c19d1205 970}
b99bd4ef 971
c19d1205
ZW
972/* We handle all bad expressions here, so that we can report the faulty
973 instruction in the error message. */
974void
975md_operand (expressionS * expr)
976{
977 if (in_my_get_expression)
978 expr->X_op = O_illegal;
b99bd4ef
NC
979}
980
c19d1205 981/* Immediate values. */
b99bd4ef 982
c19d1205
ZW
983/* Generic immediate-value read function for use in directives.
984 Accepts anything that 'expression' can fold to a constant.
985 *val receives the number. */
986#ifdef OBJ_ELF
987static int
988immediate_for_directive (int *val)
b99bd4ef 989{
c19d1205
ZW
990 expressionS exp;
991 exp.X_op = O_illegal;
b99bd4ef 992
c19d1205
ZW
993 if (is_immediate_prefix (*input_line_pointer))
994 {
995 input_line_pointer++;
996 expression (&exp);
997 }
b99bd4ef 998
c19d1205
ZW
999 if (exp.X_op != O_constant)
1000 {
1001 as_bad (_("expected #constant"));
1002 ignore_rest_of_line ();
1003 return FAIL;
1004 }
1005 *val = exp.X_add_number;
1006 return SUCCESS;
b99bd4ef 1007}
c19d1205 1008#endif
b99bd4ef 1009
c19d1205 1010/* Register parsing. */
b99bd4ef 1011
c19d1205
ZW
1012/* Generic register parser. CCP points to what should be the
1013 beginning of a register name. If it is indeed a valid register
1014 name, advance CCP over it and return the reg_entry structure;
1015 otherwise return NULL. Does not issue diagnostics. */
1016
1017static struct reg_entry *
1018arm_reg_parse_multi (char **ccp)
b99bd4ef 1019{
c19d1205
ZW
1020 char *start = *ccp;
1021 char *p;
1022 struct reg_entry *reg;
b99bd4ef 1023
c19d1205
ZW
1024#ifdef REGISTER_PREFIX
1025 if (*start != REGISTER_PREFIX)
01cfc07f 1026 return NULL;
c19d1205
ZW
1027 start++;
1028#endif
1029#ifdef OPTIONAL_REGISTER_PREFIX
1030 if (*start == OPTIONAL_REGISTER_PREFIX)
1031 start++;
1032#endif
b99bd4ef 1033
c19d1205
ZW
1034 p = start;
1035 if (!ISALPHA (*p) || !is_name_beginner (*p))
1036 return NULL;
b99bd4ef 1037
c19d1205
ZW
1038 do
1039 p++;
1040 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1041
1042 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1043
1044 if (!reg)
1045 return NULL;
1046
1047 *ccp = p;
1048 return reg;
b99bd4ef
NC
1049}
1050
1051static int
dcbf9037
JB
1052arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1053 enum arm_reg_type type)
b99bd4ef 1054{
c19d1205
ZW
1055 /* Alternative syntaxes are accepted for a few register classes. */
1056 switch (type)
1057 {
1058 case REG_TYPE_MVF:
1059 case REG_TYPE_MVD:
1060 case REG_TYPE_MVFX:
1061 case REG_TYPE_MVDX:
1062 /* Generic coprocessor register names are allowed for these. */
79134647 1063 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1064 return reg->number;
1065 break;
69b97547 1066
c19d1205
ZW
1067 case REG_TYPE_CP:
1068 /* For backward compatibility, a bare number is valid here. */
1069 {
1070 unsigned long processor = strtoul (start, ccp, 10);
1071 if (*ccp != start && processor <= 15)
1072 return processor;
1073 }
6057a28f 1074
c19d1205
ZW
1075 case REG_TYPE_MMXWC:
1076 /* WC includes WCG. ??? I'm not sure this is true for all
1077 instructions that take WC registers. */
79134647 1078 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1079 return reg->number;
6057a28f 1080 break;
c19d1205 1081
6057a28f 1082 default:
c19d1205 1083 break;
6057a28f
NC
1084 }
1085
dcbf9037
JB
1086 return FAIL;
1087}
1088
1089/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1090 return value is the register number or FAIL. */
1091
1092static int
1093arm_reg_parse (char **ccp, enum arm_reg_type type)
1094{
1095 char *start = *ccp;
1096 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1097 int ret;
1098
1099 /* Do not allow a scalar (reg+index) to parse as a register. */
1100 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1101 return FAIL;
1102
1103 if (reg && reg->type == type)
1104 return reg->number;
1105
1106 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1107 return ret;
1108
c19d1205
ZW
1109 *ccp = start;
1110 return FAIL;
1111}
69b97547 1112
dcbf9037
JB
1113/* Parse a Neon type specifier. *STR should point at the leading '.'
1114 character. Does no verification at this stage that the type fits the opcode
1115 properly. E.g.,
1116
1117 .i32.i32.s16
1118 .s32.f32
1119 .u16
1120
1121 Can all be legally parsed by this function.
1122
1123 Fills in neon_type struct pointer with parsed information, and updates STR
1124 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1125 type, FAIL if not. */
1126
1127static int
1128parse_neon_type (struct neon_type *type, char **str)
1129{
1130 char *ptr = *str;
1131
1132 if (type)
1133 type->elems = 0;
1134
1135 while (type->elems < NEON_MAX_TYPE_ELS)
1136 {
1137 enum neon_el_type thistype = NT_untyped;
1138 unsigned thissize = -1u;
1139
1140 if (*ptr != '.')
1141 break;
1142
1143 ptr++;
1144
1145 /* Just a size without an explicit type. */
1146 if (ISDIGIT (*ptr))
1147 goto parsesize;
1148
1149 switch (TOLOWER (*ptr))
1150 {
1151 case 'i': thistype = NT_integer; break;
1152 case 'f': thistype = NT_float; break;
1153 case 'p': thistype = NT_poly; break;
1154 case 's': thistype = NT_signed; break;
1155 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1156 case 'd':
1157 thistype = NT_float;
1158 thissize = 64;
1159 ptr++;
1160 goto done;
dcbf9037
JB
1161 default:
1162 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1163 return FAIL;
1164 }
1165
1166 ptr++;
1167
1168 /* .f is an abbreviation for .f32. */
1169 if (thistype == NT_float && !ISDIGIT (*ptr))
1170 thissize = 32;
1171 else
1172 {
1173 parsesize:
1174 thissize = strtoul (ptr, &ptr, 10);
1175
1176 if (thissize != 8 && thissize != 16 && thissize != 32
1177 && thissize != 64)
1178 {
1179 as_bad (_("bad size %d in type specifier"), thissize);
1180 return FAIL;
1181 }
1182 }
1183
037e8744 1184 done:
dcbf9037
JB
1185 if (type)
1186 {
1187 type->el[type->elems].type = thistype;
1188 type->el[type->elems].size = thissize;
1189 type->elems++;
1190 }
1191 }
1192
1193 /* Empty/missing type is not a successful parse. */
1194 if (type->elems == 0)
1195 return FAIL;
1196
1197 *str = ptr;
1198
1199 return SUCCESS;
1200}
1201
1202/* Errors may be set multiple times during parsing or bit encoding
1203 (particularly in the Neon bits), but usually the earliest error which is set
1204 will be the most meaningful. Avoid overwriting it with later (cascading)
1205 errors by calling this function. */
1206
1207static void
1208first_error (const char *err)
1209{
1210 if (!inst.error)
1211 inst.error = err;
1212}
1213
1214/* Parse a single type, e.g. ".s32", leading period included. */
1215static int
1216parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1217{
1218 char *str = *ccp;
1219 struct neon_type optype;
1220
1221 if (*str == '.')
1222 {
1223 if (parse_neon_type (&optype, &str) == SUCCESS)
1224 {
1225 if (optype.elems == 1)
1226 *vectype = optype.el[0];
1227 else
1228 {
1229 first_error (_("only one type should be specified for operand"));
1230 return FAIL;
1231 }
1232 }
1233 else
1234 {
1235 first_error (_("vector type expected"));
1236 return FAIL;
1237 }
1238 }
1239 else
1240 return FAIL;
5f4273c7 1241
dcbf9037 1242 *ccp = str;
5f4273c7 1243
dcbf9037
JB
1244 return SUCCESS;
1245}
1246
1247/* Special meanings for indices (which have a range of 0-7), which will fit into
1248 a 4-bit integer. */
1249
1250#define NEON_ALL_LANES 15
1251#define NEON_INTERLEAVE_LANES 14
1252
1253/* Parse either a register or a scalar, with an optional type. Return the
1254 register number, and optionally fill in the actual type of the register
1255 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1256 type/index information in *TYPEINFO. */
1257
1258static int
1259parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1260 enum arm_reg_type *rtype,
1261 struct neon_typed_alias *typeinfo)
1262{
1263 char *str = *ccp;
1264 struct reg_entry *reg = arm_reg_parse_multi (&str);
1265 struct neon_typed_alias atype;
1266 struct neon_type_el parsetype;
1267
1268 atype.defined = 0;
1269 atype.index = -1;
1270 atype.eltype.type = NT_invtype;
1271 atype.eltype.size = -1;
1272
1273 /* Try alternate syntax for some types of register. Note these are mutually
1274 exclusive with the Neon syntax extensions. */
1275 if (reg == NULL)
1276 {
1277 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1278 if (altreg != FAIL)
1279 *ccp = str;
1280 if (typeinfo)
1281 *typeinfo = atype;
1282 return altreg;
1283 }
1284
037e8744
JB
1285 /* Undo polymorphism when a set of register types may be accepted. */
1286 if ((type == REG_TYPE_NDQ
1287 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1288 || (type == REG_TYPE_VFSD
1289 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1290 || (type == REG_TYPE_NSDQ
1291 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1292 || reg->type == REG_TYPE_NQ))
1293 || (type == REG_TYPE_MMXWC
1294 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1295 type = reg->type;
1296
1297 if (type != reg->type)
1298 return FAIL;
1299
1300 if (reg->neon)
1301 atype = *reg->neon;
5f4273c7 1302
dcbf9037
JB
1303 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1304 {
1305 if ((atype.defined & NTA_HASTYPE) != 0)
1306 {
1307 first_error (_("can't redefine type for operand"));
1308 return FAIL;
1309 }
1310 atype.defined |= NTA_HASTYPE;
1311 atype.eltype = parsetype;
1312 }
5f4273c7 1313
dcbf9037
JB
1314 if (skip_past_char (&str, '[') == SUCCESS)
1315 {
1316 if (type != REG_TYPE_VFD)
1317 {
1318 first_error (_("only D registers may be indexed"));
1319 return FAIL;
1320 }
5f4273c7 1321
dcbf9037
JB
1322 if ((atype.defined & NTA_HASINDEX) != 0)
1323 {
1324 first_error (_("can't change index for operand"));
1325 return FAIL;
1326 }
1327
1328 atype.defined |= NTA_HASINDEX;
1329
1330 if (skip_past_char (&str, ']') == SUCCESS)
1331 atype.index = NEON_ALL_LANES;
1332 else
1333 {
1334 expressionS exp;
1335
1336 my_get_expression (&exp, &str, GE_NO_PREFIX);
1337
1338 if (exp.X_op != O_constant)
1339 {
1340 first_error (_("constant expression required"));
1341 return FAIL;
1342 }
1343
1344 if (skip_past_char (&str, ']') == FAIL)
1345 return FAIL;
1346
1347 atype.index = exp.X_add_number;
1348 }
1349 }
5f4273c7 1350
dcbf9037
JB
1351 if (typeinfo)
1352 *typeinfo = atype;
5f4273c7 1353
dcbf9037
JB
1354 if (rtype)
1355 *rtype = type;
5f4273c7 1356
dcbf9037 1357 *ccp = str;
5f4273c7 1358
dcbf9037
JB
1359 return reg->number;
1360}
1361
1362/* Like arm_reg_parse, but allow allow the following extra features:
1363 - If RTYPE is non-zero, return the (possibly restricted) type of the
1364 register (e.g. Neon double or quad reg when either has been requested).
1365 - If this is a Neon vector type with additional type information, fill
1366 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1367 This function will fault on encountering a scalar. */
dcbf9037
JB
1368
1369static int
1370arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1371 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1372{
1373 struct neon_typed_alias atype;
1374 char *str = *ccp;
1375 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1376
1377 if (reg == FAIL)
1378 return FAIL;
1379
1380 /* Do not allow a scalar (reg+index) to parse as a register. */
1381 if ((atype.defined & NTA_HASINDEX) != 0)
1382 {
1383 first_error (_("register operand expected, but got scalar"));
1384 return FAIL;
1385 }
1386
1387 if (vectype)
1388 *vectype = atype.eltype;
1389
1390 *ccp = str;
1391
1392 return reg;
1393}
1394
1395#define NEON_SCALAR_REG(X) ((X) >> 4)
1396#define NEON_SCALAR_INDEX(X) ((X) & 15)
1397
5287ad62
JB
1398/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1399 have enough information to be able to do a good job bounds-checking. So, we
1400 just do easy checks here, and do further checks later. */
1401
1402static int
dcbf9037 1403parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1404{
dcbf9037 1405 int reg;
5287ad62 1406 char *str = *ccp;
dcbf9037 1407 struct neon_typed_alias atype;
5f4273c7 1408
dcbf9037 1409 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1410
dcbf9037 1411 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1412 return FAIL;
5f4273c7 1413
dcbf9037 1414 if (atype.index == NEON_ALL_LANES)
5287ad62 1415 {
dcbf9037 1416 first_error (_("scalar must have an index"));
5287ad62
JB
1417 return FAIL;
1418 }
dcbf9037 1419 else if (atype.index >= 64 / elsize)
5287ad62 1420 {
dcbf9037 1421 first_error (_("scalar index out of range"));
5287ad62
JB
1422 return FAIL;
1423 }
5f4273c7 1424
dcbf9037
JB
1425 if (type)
1426 *type = atype.eltype;
5f4273c7 1427
5287ad62 1428 *ccp = str;
5f4273c7 1429
dcbf9037 1430 return reg * 16 + atype.index;
5287ad62
JB
1431}
1432
c19d1205
ZW
1433/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1434static long
1435parse_reg_list (char ** strp)
1436{
1437 char * str = * strp;
1438 long range = 0;
1439 int another_range;
a737bd4d 1440
c19d1205
ZW
1441 /* We come back here if we get ranges concatenated by '+' or '|'. */
1442 do
6057a28f 1443 {
c19d1205 1444 another_range = 0;
a737bd4d 1445
c19d1205
ZW
1446 if (*str == '{')
1447 {
1448 int in_range = 0;
1449 int cur_reg = -1;
a737bd4d 1450
c19d1205
ZW
1451 str++;
1452 do
1453 {
1454 int reg;
6057a28f 1455
dcbf9037 1456 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1457 {
dcbf9037 1458 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1459 return FAIL;
1460 }
a737bd4d 1461
c19d1205
ZW
1462 if (in_range)
1463 {
1464 int i;
a737bd4d 1465
c19d1205
ZW
1466 if (reg <= cur_reg)
1467 {
dcbf9037 1468 first_error (_("bad range in register list"));
c19d1205
ZW
1469 return FAIL;
1470 }
40a18ebd 1471
c19d1205
ZW
1472 for (i = cur_reg + 1; i < reg; i++)
1473 {
1474 if (range & (1 << i))
1475 as_tsktsk
1476 (_("Warning: duplicated register (r%d) in register list"),
1477 i);
1478 else
1479 range |= 1 << i;
1480 }
1481 in_range = 0;
1482 }
a737bd4d 1483
c19d1205
ZW
1484 if (range & (1 << reg))
1485 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1486 reg);
1487 else if (reg <= cur_reg)
1488 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1489
c19d1205
ZW
1490 range |= 1 << reg;
1491 cur_reg = reg;
1492 }
1493 while (skip_past_comma (&str) != FAIL
1494 || (in_range = 1, *str++ == '-'));
1495 str--;
a737bd4d 1496
c19d1205
ZW
1497 if (*str++ != '}')
1498 {
dcbf9037 1499 first_error (_("missing `}'"));
c19d1205
ZW
1500 return FAIL;
1501 }
1502 }
1503 else
1504 {
1505 expressionS expr;
40a18ebd 1506
c19d1205
ZW
1507 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1508 return FAIL;
40a18ebd 1509
c19d1205
ZW
1510 if (expr.X_op == O_constant)
1511 {
1512 if (expr.X_add_number
1513 != (expr.X_add_number & 0x0000ffff))
1514 {
1515 inst.error = _("invalid register mask");
1516 return FAIL;
1517 }
a737bd4d 1518
c19d1205
ZW
1519 if ((range & expr.X_add_number) != 0)
1520 {
1521 int regno = range & expr.X_add_number;
a737bd4d 1522
c19d1205
ZW
1523 regno &= -regno;
1524 regno = (1 << regno) - 1;
1525 as_tsktsk
1526 (_("Warning: duplicated register (r%d) in register list"),
1527 regno);
1528 }
a737bd4d 1529
c19d1205
ZW
1530 range |= expr.X_add_number;
1531 }
1532 else
1533 {
1534 if (inst.reloc.type != 0)
1535 {
1536 inst.error = _("expression too complex");
1537 return FAIL;
1538 }
a737bd4d 1539
c19d1205
ZW
1540 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1541 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1542 inst.reloc.pc_rel = 0;
1543 }
1544 }
a737bd4d 1545
c19d1205
ZW
1546 if (*str == '|' || *str == '+')
1547 {
1548 str++;
1549 another_range = 1;
1550 }
a737bd4d 1551 }
c19d1205 1552 while (another_range);
a737bd4d 1553
c19d1205
ZW
1554 *strp = str;
1555 return range;
a737bd4d
NC
1556}
1557
5287ad62
JB
1558/* Types of registers in a list. */
1559
1560enum reg_list_els
1561{
1562 REGLIST_VFP_S,
1563 REGLIST_VFP_D,
1564 REGLIST_NEON_D
1565};
1566
c19d1205
ZW
1567/* Parse a VFP register list. If the string is invalid return FAIL.
1568 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1569 register. Parses registers of type ETYPE.
1570 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1571 - Q registers can be used to specify pairs of D registers
1572 - { } can be omitted from around a singleton register list
1573 FIXME: This is not implemented, as it would require backtracking in
1574 some cases, e.g.:
1575 vtbl.8 d3,d4,d5
1576 This could be done (the meaning isn't really ambiguous), but doesn't
1577 fit in well with the current parsing framework.
dcbf9037
JB
1578 - 32 D registers may be used (also true for VFPv3).
1579 FIXME: Types are ignored in these register lists, which is probably a
1580 bug. */
6057a28f 1581
c19d1205 1582static int
037e8744 1583parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1584{
037e8744 1585 char *str = *ccp;
c19d1205
ZW
1586 int base_reg;
1587 int new_base;
5287ad62
JB
1588 enum arm_reg_type regtype = 0;
1589 int max_regs = 0;
c19d1205
ZW
1590 int count = 0;
1591 int warned = 0;
1592 unsigned long mask = 0;
a737bd4d 1593 int i;
6057a28f 1594
037e8744 1595 if (*str != '{')
5287ad62
JB
1596 {
1597 inst.error = _("expecting {");
1598 return FAIL;
1599 }
6057a28f 1600
037e8744 1601 str++;
6057a28f 1602
5287ad62 1603 switch (etype)
c19d1205 1604 {
5287ad62 1605 case REGLIST_VFP_S:
c19d1205
ZW
1606 regtype = REG_TYPE_VFS;
1607 max_regs = 32;
5287ad62 1608 break;
5f4273c7 1609
5287ad62
JB
1610 case REGLIST_VFP_D:
1611 regtype = REG_TYPE_VFD;
b7fc2769 1612 break;
5f4273c7 1613
b7fc2769
JB
1614 case REGLIST_NEON_D:
1615 regtype = REG_TYPE_NDQ;
1616 break;
1617 }
1618
1619 if (etype != REGLIST_VFP_S)
1620 {
b1cc4aeb
PB
1621 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1622 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1623 {
1624 max_regs = 32;
1625 if (thumb_mode)
1626 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1627 fpu_vfp_ext_d32);
5287ad62
JB
1628 else
1629 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1630 fpu_vfp_ext_d32);
5287ad62
JB
1631 }
1632 else
1633 max_regs = 16;
c19d1205 1634 }
6057a28f 1635
c19d1205 1636 base_reg = max_regs;
a737bd4d 1637
c19d1205
ZW
1638 do
1639 {
5287ad62 1640 int setmask = 1, addregs = 1;
dcbf9037 1641
037e8744 1642 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1643
c19d1205 1644 if (new_base == FAIL)
a737bd4d 1645 {
dcbf9037 1646 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1647 return FAIL;
1648 }
5f4273c7 1649
b7fc2769
JB
1650 if (new_base >= max_regs)
1651 {
1652 first_error (_("register out of range in list"));
1653 return FAIL;
1654 }
5f4273c7 1655
5287ad62
JB
1656 /* Note: a value of 2 * n is returned for the register Q<n>. */
1657 if (regtype == REG_TYPE_NQ)
1658 {
1659 setmask = 3;
1660 addregs = 2;
1661 }
1662
c19d1205
ZW
1663 if (new_base < base_reg)
1664 base_reg = new_base;
a737bd4d 1665
5287ad62 1666 if (mask & (setmask << new_base))
c19d1205 1667 {
dcbf9037 1668 first_error (_("invalid register list"));
c19d1205 1669 return FAIL;
a737bd4d 1670 }
a737bd4d 1671
c19d1205
ZW
1672 if ((mask >> new_base) != 0 && ! warned)
1673 {
1674 as_tsktsk (_("register list not in ascending order"));
1675 warned = 1;
1676 }
0bbf2aa4 1677
5287ad62
JB
1678 mask |= setmask << new_base;
1679 count += addregs;
0bbf2aa4 1680
037e8744 1681 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1682 {
1683 int high_range;
0bbf2aa4 1684
037e8744 1685 str++;
0bbf2aa4 1686
037e8744 1687 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1688 == FAIL)
c19d1205
ZW
1689 {
1690 inst.error = gettext (reg_expected_msgs[regtype]);
1691 return FAIL;
1692 }
0bbf2aa4 1693
b7fc2769
JB
1694 if (high_range >= max_regs)
1695 {
1696 first_error (_("register out of range in list"));
1697 return FAIL;
1698 }
1699
5287ad62
JB
1700 if (regtype == REG_TYPE_NQ)
1701 high_range = high_range + 1;
1702
c19d1205
ZW
1703 if (high_range <= new_base)
1704 {
1705 inst.error = _("register range not in ascending order");
1706 return FAIL;
1707 }
0bbf2aa4 1708
5287ad62 1709 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1710 {
5287ad62 1711 if (mask & (setmask << new_base))
0bbf2aa4 1712 {
c19d1205
ZW
1713 inst.error = _("invalid register list");
1714 return FAIL;
0bbf2aa4 1715 }
c19d1205 1716
5287ad62
JB
1717 mask |= setmask << new_base;
1718 count += addregs;
0bbf2aa4 1719 }
0bbf2aa4 1720 }
0bbf2aa4 1721 }
037e8744 1722 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1723
037e8744 1724 str++;
0bbf2aa4 1725
c19d1205
ZW
1726 /* Sanity check -- should have raised a parse error above. */
1727 if (count == 0 || count > max_regs)
1728 abort ();
1729
1730 *pbase = base_reg;
1731
1732 /* Final test -- the registers must be consecutive. */
1733 mask >>= base_reg;
1734 for (i = 0; i < count; i++)
1735 {
1736 if ((mask & (1u << i)) == 0)
1737 {
1738 inst.error = _("non-contiguous register range");
1739 return FAIL;
1740 }
1741 }
1742
037e8744
JB
1743 *ccp = str;
1744
c19d1205 1745 return count;
b99bd4ef
NC
1746}
1747
dcbf9037
JB
1748/* True if two alias types are the same. */
1749
1750static int
1751neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1752{
1753 if (!a && !b)
1754 return 1;
5f4273c7 1755
dcbf9037
JB
1756 if (!a || !b)
1757 return 0;
1758
1759 if (a->defined != b->defined)
1760 return 0;
5f4273c7 1761
dcbf9037
JB
1762 if ((a->defined & NTA_HASTYPE) != 0
1763 && (a->eltype.type != b->eltype.type
1764 || a->eltype.size != b->eltype.size))
1765 return 0;
1766
1767 if ((a->defined & NTA_HASINDEX) != 0
1768 && (a->index != b->index))
1769 return 0;
5f4273c7 1770
dcbf9037
JB
1771 return 1;
1772}
1773
5287ad62
JB
1774/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1775 The base register is put in *PBASE.
dcbf9037 1776 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1777 the return value.
1778 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1779 Bits [6:5] encode the list length (minus one).
1780 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1781
5287ad62 1782#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1783#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1784#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1785
1786static int
dcbf9037
JB
1787parse_neon_el_struct_list (char **str, unsigned *pbase,
1788 struct neon_type_el *eltype)
5287ad62
JB
1789{
1790 char *ptr = *str;
1791 int base_reg = -1;
1792 int reg_incr = -1;
1793 int count = 0;
1794 int lane = -1;
1795 int leading_brace = 0;
1796 enum arm_reg_type rtype = REG_TYPE_NDQ;
1797 int addregs = 1;
1798 const char *const incr_error = "register stride must be 1 or 2";
1799 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1800 struct neon_typed_alias firsttype;
5f4273c7 1801
5287ad62
JB
1802 if (skip_past_char (&ptr, '{') == SUCCESS)
1803 leading_brace = 1;
5f4273c7 1804
5287ad62
JB
1805 do
1806 {
dcbf9037
JB
1807 struct neon_typed_alias atype;
1808 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1809
5287ad62
JB
1810 if (getreg == FAIL)
1811 {
dcbf9037 1812 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1813 return FAIL;
1814 }
5f4273c7 1815
5287ad62
JB
1816 if (base_reg == -1)
1817 {
1818 base_reg = getreg;
1819 if (rtype == REG_TYPE_NQ)
1820 {
1821 reg_incr = 1;
1822 addregs = 2;
1823 }
dcbf9037 1824 firsttype = atype;
5287ad62
JB
1825 }
1826 else if (reg_incr == -1)
1827 {
1828 reg_incr = getreg - base_reg;
1829 if (reg_incr < 1 || reg_incr > 2)
1830 {
dcbf9037 1831 first_error (_(incr_error));
5287ad62
JB
1832 return FAIL;
1833 }
1834 }
1835 else if (getreg != base_reg + reg_incr * count)
1836 {
dcbf9037
JB
1837 first_error (_(incr_error));
1838 return FAIL;
1839 }
1840
1841 if (!neon_alias_types_same (&atype, &firsttype))
1842 {
1843 first_error (_(type_error));
5287ad62
JB
1844 return FAIL;
1845 }
5f4273c7 1846
5287ad62
JB
1847 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1848 modes. */
1849 if (ptr[0] == '-')
1850 {
dcbf9037 1851 struct neon_typed_alias htype;
5287ad62
JB
1852 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1853 if (lane == -1)
1854 lane = NEON_INTERLEAVE_LANES;
1855 else if (lane != NEON_INTERLEAVE_LANES)
1856 {
dcbf9037 1857 first_error (_(type_error));
5287ad62
JB
1858 return FAIL;
1859 }
1860 if (reg_incr == -1)
1861 reg_incr = 1;
1862 else if (reg_incr != 1)
1863 {
dcbf9037 1864 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1865 return FAIL;
1866 }
1867 ptr++;
dcbf9037 1868 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1869 if (hireg == FAIL)
1870 {
dcbf9037
JB
1871 first_error (_(reg_expected_msgs[rtype]));
1872 return FAIL;
1873 }
1874 if (!neon_alias_types_same (&htype, &firsttype))
1875 {
1876 first_error (_(type_error));
5287ad62
JB
1877 return FAIL;
1878 }
1879 count += hireg + dregs - getreg;
1880 continue;
1881 }
5f4273c7 1882
5287ad62
JB
1883 /* If we're using Q registers, we can't use [] or [n] syntax. */
1884 if (rtype == REG_TYPE_NQ)
1885 {
1886 count += 2;
1887 continue;
1888 }
5f4273c7 1889
dcbf9037 1890 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1891 {
dcbf9037
JB
1892 if (lane == -1)
1893 lane = atype.index;
1894 else if (lane != atype.index)
5287ad62 1895 {
dcbf9037
JB
1896 first_error (_(type_error));
1897 return FAIL;
5287ad62
JB
1898 }
1899 }
1900 else if (lane == -1)
1901 lane = NEON_INTERLEAVE_LANES;
1902 else if (lane != NEON_INTERLEAVE_LANES)
1903 {
dcbf9037 1904 first_error (_(type_error));
5287ad62
JB
1905 return FAIL;
1906 }
1907 count++;
1908 }
1909 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1910
5287ad62
JB
1911 /* No lane set by [x]. We must be interleaving structures. */
1912 if (lane == -1)
1913 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1914
5287ad62
JB
1915 /* Sanity check. */
1916 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1917 || (count > 1 && reg_incr == -1))
1918 {
dcbf9037 1919 first_error (_("error parsing element/structure list"));
5287ad62
JB
1920 return FAIL;
1921 }
1922
1923 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1924 {
dcbf9037 1925 first_error (_("expected }"));
5287ad62
JB
1926 return FAIL;
1927 }
5f4273c7 1928
5287ad62
JB
1929 if (reg_incr == -1)
1930 reg_incr = 1;
1931
dcbf9037
JB
1932 if (eltype)
1933 *eltype = firsttype.eltype;
1934
5287ad62
JB
1935 *pbase = base_reg;
1936 *str = ptr;
5f4273c7 1937
5287ad62
JB
1938 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1939}
1940
c19d1205
ZW
1941/* Parse an explicit relocation suffix on an expression. This is
1942 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1943 arm_reloc_hsh contains no entries, so this function can only
1944 succeed if there is no () after the word. Returns -1 on error,
1945 BFD_RELOC_UNUSED if there wasn't any suffix. */
1946static int
1947parse_reloc (char **str)
b99bd4ef 1948{
c19d1205
ZW
1949 struct reloc_entry *r;
1950 char *p, *q;
b99bd4ef 1951
c19d1205
ZW
1952 if (**str != '(')
1953 return BFD_RELOC_UNUSED;
b99bd4ef 1954
c19d1205
ZW
1955 p = *str + 1;
1956 q = p;
1957
1958 while (*q && *q != ')' && *q != ',')
1959 q++;
1960 if (*q != ')')
1961 return -1;
1962
1963 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1964 return -1;
1965
1966 *str = q + 1;
1967 return r->reloc;
b99bd4ef
NC
1968}
1969
c19d1205
ZW
1970/* Directives: register aliases. */
1971
dcbf9037 1972static struct reg_entry *
c19d1205 1973insert_reg_alias (char *str, int number, int type)
b99bd4ef 1974{
c19d1205
ZW
1975 struct reg_entry *new;
1976 const char *name;
b99bd4ef 1977
c19d1205
ZW
1978 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1979 {
1980 if (new->builtin)
1981 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1982
c19d1205
ZW
1983 /* Only warn about a redefinition if it's not defined as the
1984 same register. */
1985 else if (new->number != number || new->type != type)
1986 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1987
d929913e 1988 return NULL;
c19d1205 1989 }
b99bd4ef 1990
c19d1205
ZW
1991 name = xstrdup (str);
1992 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1993
c19d1205
ZW
1994 new->name = name;
1995 new->number = number;
1996 new->type = type;
1997 new->builtin = FALSE;
dcbf9037 1998 new->neon = NULL;
b99bd4ef 1999
5a49b8ac 2000 if (hash_insert (arm_reg_hsh, name, (void *) new))
c19d1205 2001 abort ();
5f4273c7 2002
dcbf9037
JB
2003 return new;
2004}
2005
2006static void
2007insert_neon_reg_alias (char *str, int number, int type,
2008 struct neon_typed_alias *atype)
2009{
2010 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2011
dcbf9037
JB
2012 if (!reg)
2013 {
2014 first_error (_("attempt to redefine typed alias"));
2015 return;
2016 }
5f4273c7 2017
dcbf9037
JB
2018 if (atype)
2019 {
2020 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2021 *reg->neon = *atype;
2022 }
c19d1205 2023}
b99bd4ef 2024
c19d1205 2025/* Look for the .req directive. This is of the form:
b99bd4ef 2026
c19d1205 2027 new_register_name .req existing_register_name
b99bd4ef 2028
c19d1205 2029 If we find one, or if it looks sufficiently like one that we want to
d929913e 2030 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2031
d929913e 2032static bfd_boolean
c19d1205
ZW
2033create_register_alias (char * newname, char *p)
2034{
2035 struct reg_entry *old;
2036 char *oldname, *nbuf;
2037 size_t nlen;
b99bd4ef 2038
c19d1205
ZW
2039 /* The input scrubber ensures that whitespace after the mnemonic is
2040 collapsed to single spaces. */
2041 oldname = p;
2042 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2043 return FALSE;
b99bd4ef 2044
c19d1205
ZW
2045 oldname += 6;
2046 if (*oldname == '\0')
d929913e 2047 return FALSE;
b99bd4ef 2048
c19d1205
ZW
2049 old = hash_find (arm_reg_hsh, oldname);
2050 if (!old)
b99bd4ef 2051 {
c19d1205 2052 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2053 return TRUE;
b99bd4ef
NC
2054 }
2055
c19d1205
ZW
2056 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2057 the desired alias name, and p points to its end. If not, then
2058 the desired alias name is in the global original_case_string. */
2059#ifdef TC_CASE_SENSITIVE
2060 nlen = p - newname;
2061#else
2062 newname = original_case_string;
2063 nlen = strlen (newname);
2064#endif
b99bd4ef 2065
c19d1205
ZW
2066 nbuf = alloca (nlen + 1);
2067 memcpy (nbuf, newname, nlen);
2068 nbuf[nlen] = '\0';
b99bd4ef 2069
c19d1205
ZW
2070 /* Create aliases under the new name as stated; an all-lowercase
2071 version of the new name; and an all-uppercase version of the new
2072 name. */
d929913e
NC
2073 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2074 {
2075 for (p = nbuf; *p; p++)
2076 *p = TOUPPER (*p);
c19d1205 2077
d929913e
NC
2078 if (strncmp (nbuf, newname, nlen))
2079 {
2080 /* If this attempt to create an additional alias fails, do not bother
2081 trying to create the all-lower case alias. We will fail and issue
2082 a second, duplicate error message. This situation arises when the
2083 programmer does something like:
2084 foo .req r0
2085 Foo .req r1
2086 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2087 the artificial FOO alias because it has already been created by the
d929913e
NC
2088 first .req. */
2089 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2090 return TRUE;
2091 }
c19d1205 2092
d929913e
NC
2093 for (p = nbuf; *p; p++)
2094 *p = TOLOWER (*p);
c19d1205 2095
d929913e
NC
2096 if (strncmp (nbuf, newname, nlen))
2097 insert_reg_alias (nbuf, old->number, old->type);
2098 }
c19d1205 2099
d929913e 2100 return TRUE;
b99bd4ef
NC
2101}
2102
dcbf9037
JB
2103/* Create a Neon typed/indexed register alias using directives, e.g.:
2104 X .dn d5.s32[1]
2105 Y .qn 6.s16
2106 Z .dn d7
2107 T .dn Z[0]
2108 These typed registers can be used instead of the types specified after the
2109 Neon mnemonic, so long as all operands given have types. Types can also be
2110 specified directly, e.g.:
5f4273c7 2111 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037
JB
2112
2113static int
2114create_neon_reg_alias (char *newname, char *p)
2115{
2116 enum arm_reg_type basetype;
2117 struct reg_entry *basereg;
2118 struct reg_entry mybasereg;
2119 struct neon_type ntype;
2120 struct neon_typed_alias typeinfo;
2121 char *namebuf, *nameend;
2122 int namelen;
5f4273c7 2123
dcbf9037
JB
2124 typeinfo.defined = 0;
2125 typeinfo.eltype.type = NT_invtype;
2126 typeinfo.eltype.size = -1;
2127 typeinfo.index = -1;
5f4273c7 2128
dcbf9037 2129 nameend = p;
5f4273c7 2130
dcbf9037
JB
2131 if (strncmp (p, " .dn ", 5) == 0)
2132 basetype = REG_TYPE_VFD;
2133 else if (strncmp (p, " .qn ", 5) == 0)
2134 basetype = REG_TYPE_NQ;
2135 else
2136 return 0;
5f4273c7 2137
dcbf9037 2138 p += 5;
5f4273c7 2139
dcbf9037
JB
2140 if (*p == '\0')
2141 return 0;
5f4273c7 2142
dcbf9037
JB
2143 basereg = arm_reg_parse_multi (&p);
2144
2145 if (basereg && basereg->type != basetype)
2146 {
2147 as_bad (_("bad type for register"));
2148 return 0;
2149 }
2150
2151 if (basereg == NULL)
2152 {
2153 expressionS exp;
2154 /* Try parsing as an integer. */
2155 my_get_expression (&exp, &p, GE_NO_PREFIX);
2156 if (exp.X_op != O_constant)
2157 {
2158 as_bad (_("expression must be constant"));
2159 return 0;
2160 }
2161 basereg = &mybasereg;
2162 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2163 : exp.X_add_number;
2164 basereg->neon = 0;
2165 }
2166
2167 if (basereg->neon)
2168 typeinfo = *basereg->neon;
2169
2170 if (parse_neon_type (&ntype, &p) == SUCCESS)
2171 {
2172 /* We got a type. */
2173 if (typeinfo.defined & NTA_HASTYPE)
2174 {
2175 as_bad (_("can't redefine the type of a register alias"));
2176 return 0;
2177 }
5f4273c7 2178
dcbf9037
JB
2179 typeinfo.defined |= NTA_HASTYPE;
2180 if (ntype.elems != 1)
2181 {
2182 as_bad (_("you must specify a single type only"));
2183 return 0;
2184 }
2185 typeinfo.eltype = ntype.el[0];
2186 }
5f4273c7 2187
dcbf9037
JB
2188 if (skip_past_char (&p, '[') == SUCCESS)
2189 {
2190 expressionS exp;
2191 /* We got a scalar index. */
5f4273c7 2192
dcbf9037
JB
2193 if (typeinfo.defined & NTA_HASINDEX)
2194 {
2195 as_bad (_("can't redefine the index of a scalar alias"));
2196 return 0;
2197 }
5f4273c7 2198
dcbf9037 2199 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2200
dcbf9037
JB
2201 if (exp.X_op != O_constant)
2202 {
2203 as_bad (_("scalar index must be constant"));
2204 return 0;
2205 }
5f4273c7 2206
dcbf9037
JB
2207 typeinfo.defined |= NTA_HASINDEX;
2208 typeinfo.index = exp.X_add_number;
5f4273c7 2209
dcbf9037
JB
2210 if (skip_past_char (&p, ']') == FAIL)
2211 {
2212 as_bad (_("expecting ]"));
2213 return 0;
2214 }
2215 }
2216
2217 namelen = nameend - newname;
2218 namebuf = alloca (namelen + 1);
2219 strncpy (namebuf, newname, namelen);
2220 namebuf[namelen] = '\0';
5f4273c7 2221
dcbf9037
JB
2222 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2223 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2224
dcbf9037
JB
2225 /* Insert name in all uppercase. */
2226 for (p = namebuf; *p; p++)
2227 *p = TOUPPER (*p);
5f4273c7 2228
dcbf9037
JB
2229 if (strncmp (namebuf, newname, namelen))
2230 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2231 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2232
dcbf9037
JB
2233 /* Insert name in all lowercase. */
2234 for (p = namebuf; *p; p++)
2235 *p = TOLOWER (*p);
5f4273c7 2236
dcbf9037
JB
2237 if (strncmp (namebuf, newname, namelen))
2238 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2239 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2240
dcbf9037
JB
2241 return 1;
2242}
2243
c19d1205
ZW
2244/* Should never be called, as .req goes between the alias and the
2245 register name, not at the beginning of the line. */
b99bd4ef 2246static void
c19d1205 2247s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2248{
c19d1205
ZW
2249 as_bad (_("invalid syntax for .req directive"));
2250}
b99bd4ef 2251
dcbf9037
JB
2252static void
2253s_dn (int a ATTRIBUTE_UNUSED)
2254{
2255 as_bad (_("invalid syntax for .dn directive"));
2256}
2257
2258static void
2259s_qn (int a ATTRIBUTE_UNUSED)
2260{
2261 as_bad (_("invalid syntax for .qn directive"));
2262}
2263
c19d1205
ZW
2264/* The .unreq directive deletes an alias which was previously defined
2265 by .req. For example:
b99bd4ef 2266
c19d1205
ZW
2267 my_alias .req r11
2268 .unreq my_alias */
b99bd4ef
NC
2269
2270static void
c19d1205 2271s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2272{
c19d1205
ZW
2273 char * name;
2274 char saved_char;
b99bd4ef 2275
c19d1205
ZW
2276 name = input_line_pointer;
2277
2278 while (*input_line_pointer != 0
2279 && *input_line_pointer != ' '
2280 && *input_line_pointer != '\n')
2281 ++input_line_pointer;
2282
2283 saved_char = *input_line_pointer;
2284 *input_line_pointer = 0;
2285
2286 if (!*name)
2287 as_bad (_("invalid syntax for .unreq directive"));
2288 else
2289 {
2290 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2291
2292 if (!reg)
2293 as_bad (_("unknown register alias '%s'"), name);
2294 else if (reg->builtin)
2295 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2296 name);
2297 else
2298 {
d929913e
NC
2299 char * p;
2300 char * nbuf;
2301
db0bc284 2302 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2303 free ((char *) reg->name);
dcbf9037
JB
2304 if (reg->neon)
2305 free (reg->neon);
c19d1205 2306 free (reg);
d929913e
NC
2307
2308 /* Also locate the all upper case and all lower case versions.
2309 Do not complain if we cannot find one or the other as it
2310 was probably deleted above. */
5f4273c7 2311
d929913e
NC
2312 nbuf = strdup (name);
2313 for (p = nbuf; *p; p++)
2314 *p = TOUPPER (*p);
2315 reg = hash_find (arm_reg_hsh, nbuf);
2316 if (reg)
2317 {
db0bc284 2318 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2319 free ((char *) reg->name);
2320 if (reg->neon)
2321 free (reg->neon);
2322 free (reg);
2323 }
2324
2325 for (p = nbuf; *p; p++)
2326 *p = TOLOWER (*p);
2327 reg = hash_find (arm_reg_hsh, nbuf);
2328 if (reg)
2329 {
db0bc284 2330 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2331 free ((char *) reg->name);
2332 if (reg->neon)
2333 free (reg->neon);
2334 free (reg);
2335 }
2336
2337 free (nbuf);
c19d1205
ZW
2338 }
2339 }
b99bd4ef 2340
c19d1205 2341 *input_line_pointer = saved_char;
b99bd4ef
NC
2342 demand_empty_rest_of_line ();
2343}
2344
c19d1205
ZW
2345/* Directives: Instruction set selection. */
2346
2347#ifdef OBJ_ELF
2348/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2349 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2350 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2351 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2352
2353static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2354
e821645d 2355void
c19d1205 2356mapping_state (enum mstate state)
b99bd4ef 2357{
a737bd4d 2358 symbolS * symbolP;
c19d1205
ZW
2359 const char * symname;
2360 int type;
b99bd4ef 2361
c19d1205
ZW
2362 if (mapstate == state)
2363 /* The mapping symbol has already been emitted.
2364 There is nothing else to do. */
2365 return;
b99bd4ef 2366
c19d1205 2367 mapstate = state;
b99bd4ef 2368
c19d1205 2369 switch (state)
b99bd4ef 2370 {
c19d1205
ZW
2371 case MAP_DATA:
2372 symname = "$d";
2373 type = BSF_NO_FLAGS;
2374 break;
2375 case MAP_ARM:
2376 symname = "$a";
2377 type = BSF_NO_FLAGS;
2378 break;
2379 case MAP_THUMB:
2380 symname = "$t";
2381 type = BSF_NO_FLAGS;
2382 break;
2383 case MAP_UNDEFINED:
2384 return;
2385 default:
2386 abort ();
2387 }
2388
2389 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2390
2391 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2392 symbol_table_insert (symbolP);
2393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2394
2395 switch (state)
2396 {
2397 case MAP_ARM:
2398 THUMB_SET_FUNC (symbolP, 0);
2399 ARM_SET_THUMB (symbolP, 0);
2400 ARM_SET_INTERWORK (symbolP, support_interwork);
2401 break;
2402
2403 case MAP_THUMB:
2404 THUMB_SET_FUNC (symbolP, 1);
2405 ARM_SET_THUMB (symbolP, 1);
2406 ARM_SET_INTERWORK (symbolP, support_interwork);
2407 break;
2408
2409 case MAP_DATA:
2410 default:
2411 return;
2412 }
2413}
2414#else
2415#define mapping_state(x) /* nothing */
2416#endif
2417
2418/* Find the real, Thumb encoded start of a Thumb function. */
2419
4343666d 2420#ifdef OBJ_COFF
c19d1205
ZW
2421static symbolS *
2422find_real_start (symbolS * symbolP)
2423{
2424 char * real_start;
2425 const char * name = S_GET_NAME (symbolP);
2426 symbolS * new_target;
2427
2428 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2429#define STUB_NAME ".real_start_of"
2430
2431 if (name == NULL)
2432 abort ();
2433
37f6032b
ZW
2434 /* The compiler may generate BL instructions to local labels because
2435 it needs to perform a branch to a far away location. These labels
2436 do not have a corresponding ".real_start_of" label. We check
2437 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2438 the ".real_start_of" convention for nonlocal branches. */
2439 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2440 return symbolP;
2441
37f6032b 2442 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2443 new_target = symbol_find (real_start);
2444
2445 if (new_target == NULL)
2446 {
bd3ba5d1 2447 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2448 new_target = symbolP;
2449 }
2450
c19d1205
ZW
2451 return new_target;
2452}
4343666d 2453#endif
c19d1205
ZW
2454
2455static void
2456opcode_select (int width)
2457{
2458 switch (width)
2459 {
2460 case 16:
2461 if (! thumb_mode)
2462 {
e74cfd16 2463 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2464 as_bad (_("selected processor does not support THUMB opcodes"));
2465
2466 thumb_mode = 1;
2467 /* No need to force the alignment, since we will have been
2468 coming from ARM mode, which is word-aligned. */
2469 record_alignment (now_seg, 1);
2470 }
2471 mapping_state (MAP_THUMB);
2472 break;
2473
2474 case 32:
2475 if (thumb_mode)
2476 {
e74cfd16 2477 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2478 as_bad (_("selected processor does not support ARM opcodes"));
2479
2480 thumb_mode = 0;
2481
2482 if (!need_pass_2)
2483 frag_align (2, 0, 0);
2484
2485 record_alignment (now_seg, 1);
2486 }
2487 mapping_state (MAP_ARM);
2488 break;
2489
2490 default:
2491 as_bad (_("invalid instruction size selected (%d)"), width);
2492 }
2493}
2494
2495static void
2496s_arm (int ignore ATTRIBUTE_UNUSED)
2497{
2498 opcode_select (32);
2499 demand_empty_rest_of_line ();
2500}
2501
2502static void
2503s_thumb (int ignore ATTRIBUTE_UNUSED)
2504{
2505 opcode_select (16);
2506 demand_empty_rest_of_line ();
2507}
2508
2509static void
2510s_code (int unused ATTRIBUTE_UNUSED)
2511{
2512 int temp;
2513
2514 temp = get_absolute_expression ();
2515 switch (temp)
2516 {
2517 case 16:
2518 case 32:
2519 opcode_select (temp);
2520 break;
2521
2522 default:
2523 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2524 }
2525}
2526
2527static void
2528s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2529{
2530 /* If we are not already in thumb mode go into it, EVEN if
2531 the target processor does not support thumb instructions.
2532 This is used by gcc/config/arm/lib1funcs.asm for example
2533 to compile interworking support functions even if the
2534 target processor should not support interworking. */
2535 if (! thumb_mode)
2536 {
2537 thumb_mode = 2;
2538 record_alignment (now_seg, 1);
2539 }
2540
2541 demand_empty_rest_of_line ();
2542}
2543
2544static void
2545s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2546{
2547 s_thumb (0);
2548
2549 /* The following label is the name/address of the start of a Thumb function.
2550 We need to know this for the interworking support. */
2551 label_is_thumb_function_name = TRUE;
2552}
2553
2554/* Perform a .set directive, but also mark the alias as
2555 being a thumb function. */
2556
2557static void
2558s_thumb_set (int equiv)
2559{
2560 /* XXX the following is a duplicate of the code for s_set() in read.c
2561 We cannot just call that code as we need to get at the symbol that
2562 is created. */
2563 char * name;
2564 char delim;
2565 char * end_name;
2566 symbolS * symbolP;
2567
2568 /* Especial apologies for the random logic:
2569 This just grew, and could be parsed much more simply!
2570 Dean - in haste. */
2571 name = input_line_pointer;
2572 delim = get_symbol_end ();
2573 end_name = input_line_pointer;
2574 *end_name = delim;
2575
2576 if (*input_line_pointer != ',')
2577 {
2578 *end_name = 0;
2579 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2580 *end_name = delim;
2581 ignore_rest_of_line ();
2582 return;
2583 }
2584
2585 input_line_pointer++;
2586 *end_name = 0;
2587
2588 if (name[0] == '.' && name[1] == '\0')
2589 {
2590 /* XXX - this should not happen to .thumb_set. */
2591 abort ();
2592 }
2593
2594 if ((symbolP = symbol_find (name)) == NULL
2595 && (symbolP = md_undefined_symbol (name)) == NULL)
2596 {
2597#ifndef NO_LISTING
2598 /* When doing symbol listings, play games with dummy fragments living
2599 outside the normal fragment chain to record the file and line info
c19d1205 2600 for this symbol. */
b99bd4ef
NC
2601 if (listing & LISTING_SYMBOLS)
2602 {
2603 extern struct list_info_struct * listing_tail;
a737bd4d 2604 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2605
2606 memset (dummy_frag, 0, sizeof (fragS));
2607 dummy_frag->fr_type = rs_fill;
2608 dummy_frag->line = listing_tail;
2609 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2610 dummy_frag->fr_symbol = symbolP;
2611 }
2612 else
2613#endif
2614 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2615
2616#ifdef OBJ_COFF
2617 /* "set" symbols are local unless otherwise specified. */
2618 SF_SET_LOCAL (symbolP);
2619#endif /* OBJ_COFF */
2620 } /* Make a new symbol. */
2621
2622 symbol_table_insert (symbolP);
2623
2624 * end_name = delim;
2625
2626 if (equiv
2627 && S_IS_DEFINED (symbolP)
2628 && S_GET_SEGMENT (symbolP) != reg_section)
2629 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2630
2631 pseudo_set (symbolP);
2632
2633 demand_empty_rest_of_line ();
2634
c19d1205 2635 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2636
2637 THUMB_SET_FUNC (symbolP, 1);
2638 ARM_SET_THUMB (symbolP, 1);
2639#if defined OBJ_ELF || defined OBJ_COFF
2640 ARM_SET_INTERWORK (symbolP, support_interwork);
2641#endif
2642}
2643
c19d1205 2644/* Directives: Mode selection. */
b99bd4ef 2645
c19d1205
ZW
2646/* .syntax [unified|divided] - choose the new unified syntax
2647 (same for Arm and Thumb encoding, modulo slight differences in what
2648 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2649static void
c19d1205 2650s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2651{
c19d1205
ZW
2652 char *name, delim;
2653
2654 name = input_line_pointer;
2655 delim = get_symbol_end ();
2656
2657 if (!strcasecmp (name, "unified"))
2658 unified_syntax = TRUE;
2659 else if (!strcasecmp (name, "divided"))
2660 unified_syntax = FALSE;
2661 else
2662 {
2663 as_bad (_("unrecognized syntax mode \"%s\""), name);
2664 return;
2665 }
2666 *input_line_pointer = delim;
b99bd4ef
NC
2667 demand_empty_rest_of_line ();
2668}
2669
c19d1205
ZW
2670/* Directives: sectioning and alignment. */
2671
2672/* Same as s_align_ptwo but align 0 => align 2. */
2673
b99bd4ef 2674static void
c19d1205 2675s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2676{
a737bd4d 2677 int temp;
dce323d1 2678 bfd_boolean fill_p;
c19d1205
ZW
2679 long temp_fill;
2680 long max_alignment = 15;
b99bd4ef
NC
2681
2682 temp = get_absolute_expression ();
c19d1205
ZW
2683 if (temp > max_alignment)
2684 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2685 else if (temp < 0)
b99bd4ef 2686 {
c19d1205
ZW
2687 as_bad (_("alignment negative. 0 assumed."));
2688 temp = 0;
2689 }
b99bd4ef 2690
c19d1205
ZW
2691 if (*input_line_pointer == ',')
2692 {
2693 input_line_pointer++;
2694 temp_fill = get_absolute_expression ();
dce323d1 2695 fill_p = TRUE;
b99bd4ef 2696 }
c19d1205 2697 else
dce323d1
PB
2698 {
2699 fill_p = FALSE;
2700 temp_fill = 0;
2701 }
b99bd4ef 2702
c19d1205
ZW
2703 if (!temp)
2704 temp = 2;
b99bd4ef 2705
c19d1205
ZW
2706 /* Only make a frag if we HAVE to. */
2707 if (temp && !need_pass_2)
dce323d1
PB
2708 {
2709 if (!fill_p && subseg_text_p (now_seg))
2710 frag_align_code (temp, 0);
2711 else
2712 frag_align (temp, (int) temp_fill, 0);
2713 }
c19d1205
ZW
2714 demand_empty_rest_of_line ();
2715
2716 record_alignment (now_seg, temp);
b99bd4ef
NC
2717}
2718
c19d1205
ZW
2719static void
2720s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 /* We don't support putting frags in the BSS segment, we fake it by
2723 marking in_bss, then looking at s_skip for clues. */
2724 subseg_set (bss_section, 0);
2725 demand_empty_rest_of_line ();
2726 mapping_state (MAP_DATA);
2727}
b99bd4ef 2728
c19d1205
ZW
2729static void
2730s_even (int ignore ATTRIBUTE_UNUSED)
2731{
2732 /* Never make frag if expect extra pass. */
2733 if (!need_pass_2)
2734 frag_align (1, 0, 0);
b99bd4ef 2735
c19d1205 2736 record_alignment (now_seg, 1);
b99bd4ef 2737
c19d1205 2738 demand_empty_rest_of_line ();
b99bd4ef
NC
2739}
2740
c19d1205 2741/* Directives: Literal pools. */
a737bd4d 2742
c19d1205
ZW
2743static literal_pool *
2744find_literal_pool (void)
a737bd4d 2745{
c19d1205 2746 literal_pool * pool;
a737bd4d 2747
c19d1205 2748 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2749 {
c19d1205
ZW
2750 if (pool->section == now_seg
2751 && pool->sub_section == now_subseg)
2752 break;
a737bd4d
NC
2753 }
2754
c19d1205 2755 return pool;
a737bd4d
NC
2756}
2757
c19d1205
ZW
2758static literal_pool *
2759find_or_make_literal_pool (void)
a737bd4d 2760{
c19d1205
ZW
2761 /* Next literal pool ID number. */
2762 static unsigned int latest_pool_num = 1;
2763 literal_pool * pool;
a737bd4d 2764
c19d1205 2765 pool = find_literal_pool ();
a737bd4d 2766
c19d1205 2767 if (pool == NULL)
a737bd4d 2768 {
c19d1205
ZW
2769 /* Create a new pool. */
2770 pool = xmalloc (sizeof (* pool));
2771 if (! pool)
2772 return NULL;
a737bd4d 2773
c19d1205
ZW
2774 pool->next_free_entry = 0;
2775 pool->section = now_seg;
2776 pool->sub_section = now_subseg;
2777 pool->next = list_of_pools;
2778 pool->symbol = NULL;
2779
2780 /* Add it to the list. */
2781 list_of_pools = pool;
a737bd4d 2782 }
a737bd4d 2783
c19d1205
ZW
2784 /* New pools, and emptied pools, will have a NULL symbol. */
2785 if (pool->symbol == NULL)
a737bd4d 2786 {
c19d1205
ZW
2787 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2788 (valueT) 0, &zero_address_frag);
2789 pool->id = latest_pool_num ++;
a737bd4d
NC
2790 }
2791
c19d1205
ZW
2792 /* Done. */
2793 return pool;
a737bd4d
NC
2794}
2795
c19d1205 2796/* Add the literal in the global 'inst'
5f4273c7 2797 structure to the relevant literal pool. */
b99bd4ef
NC
2798
2799static int
c19d1205 2800add_to_lit_pool (void)
b99bd4ef 2801{
c19d1205
ZW
2802 literal_pool * pool;
2803 unsigned int entry;
b99bd4ef 2804
c19d1205
ZW
2805 pool = find_or_make_literal_pool ();
2806
2807 /* Check if this literal value is already in the pool. */
2808 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2809 {
c19d1205
ZW
2810 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2811 && (inst.reloc.exp.X_op == O_constant)
2812 && (pool->literals[entry].X_add_number
2813 == inst.reloc.exp.X_add_number)
2814 && (pool->literals[entry].X_unsigned
2815 == inst.reloc.exp.X_unsigned))
2816 break;
2817
2818 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2819 && (inst.reloc.exp.X_op == O_symbol)
2820 && (pool->literals[entry].X_add_number
2821 == inst.reloc.exp.X_add_number)
2822 && (pool->literals[entry].X_add_symbol
2823 == inst.reloc.exp.X_add_symbol)
2824 && (pool->literals[entry].X_op_symbol
2825 == inst.reloc.exp.X_op_symbol))
2826 break;
b99bd4ef
NC
2827 }
2828
c19d1205
ZW
2829 /* Do we need to create a new entry? */
2830 if (entry == pool->next_free_entry)
2831 {
2832 if (entry >= MAX_LITERAL_POOL_SIZE)
2833 {
2834 inst.error = _("literal pool overflow");
2835 return FAIL;
2836 }
2837
2838 pool->literals[entry] = inst.reloc.exp;
2839 pool->next_free_entry += 1;
2840 }
b99bd4ef 2841
c19d1205
ZW
2842 inst.reloc.exp.X_op = O_symbol;
2843 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2844 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2845
c19d1205 2846 return SUCCESS;
b99bd4ef
NC
2847}
2848
c19d1205
ZW
2849/* Can't use symbol_new here, so have to create a symbol and then at
2850 a later date assign it a value. Thats what these functions do. */
e16bb312 2851
c19d1205
ZW
2852static void
2853symbol_locate (symbolS * symbolP,
2854 const char * name, /* It is copied, the caller can modify. */
2855 segT segment, /* Segment identifier (SEG_<something>). */
2856 valueT valu, /* Symbol value. */
2857 fragS * frag) /* Associated fragment. */
2858{
2859 unsigned int name_length;
2860 char * preserved_copy_of_name;
e16bb312 2861
c19d1205
ZW
2862 name_length = strlen (name) + 1; /* +1 for \0. */
2863 obstack_grow (&notes, name, name_length);
2864 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2865
c19d1205
ZW
2866#ifdef tc_canonicalize_symbol_name
2867 preserved_copy_of_name =
2868 tc_canonicalize_symbol_name (preserved_copy_of_name);
2869#endif
b99bd4ef 2870
c19d1205 2871 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2872
c19d1205
ZW
2873 S_SET_SEGMENT (symbolP, segment);
2874 S_SET_VALUE (symbolP, valu);
2875 symbol_clear_list_pointers (symbolP);
b99bd4ef 2876
c19d1205 2877 symbol_set_frag (symbolP, frag);
b99bd4ef 2878
c19d1205
ZW
2879 /* Link to end of symbol chain. */
2880 {
2881 extern int symbol_table_frozen;
b99bd4ef 2882
c19d1205
ZW
2883 if (symbol_table_frozen)
2884 abort ();
2885 }
b99bd4ef 2886
c19d1205 2887 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2888
c19d1205 2889 obj_symbol_new_hook (symbolP);
b99bd4ef 2890
c19d1205
ZW
2891#ifdef tc_symbol_new_hook
2892 tc_symbol_new_hook (symbolP);
2893#endif
2894
2895#ifdef DEBUG_SYMS
2896 verify_symbol_chain (symbol_rootP, symbol_lastP);
2897#endif /* DEBUG_SYMS */
b99bd4ef
NC
2898}
2899
b99bd4ef 2900
c19d1205
ZW
2901static void
2902s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2903{
c19d1205
ZW
2904 unsigned int entry;
2905 literal_pool * pool;
2906 char sym_name[20];
b99bd4ef 2907
c19d1205
ZW
2908 pool = find_literal_pool ();
2909 if (pool == NULL
2910 || pool->symbol == NULL
2911 || pool->next_free_entry == 0)
2912 return;
b99bd4ef 2913
c19d1205 2914 mapping_state (MAP_DATA);
b99bd4ef 2915
c19d1205
ZW
2916 /* Align pool as you have word accesses.
2917 Only make a frag if we have to. */
2918 if (!need_pass_2)
2919 frag_align (2, 0, 0);
b99bd4ef 2920
c19d1205 2921 record_alignment (now_seg, 2);
b99bd4ef 2922
c19d1205 2923 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2924
c19d1205
ZW
2925 symbol_locate (pool->symbol, sym_name, now_seg,
2926 (valueT) frag_now_fix (), frag_now);
2927 symbol_table_insert (pool->symbol);
b99bd4ef 2928
c19d1205 2929 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2930
c19d1205
ZW
2931#if defined OBJ_COFF || defined OBJ_ELF
2932 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2933#endif
6c43fab6 2934
c19d1205
ZW
2935 for (entry = 0; entry < pool->next_free_entry; entry ++)
2936 /* First output the expression in the instruction to the pool. */
2937 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2938
c19d1205
ZW
2939 /* Mark the pool as empty. */
2940 pool->next_free_entry = 0;
2941 pool->symbol = NULL;
b99bd4ef
NC
2942}
2943
c19d1205
ZW
2944#ifdef OBJ_ELF
2945/* Forward declarations for functions below, in the MD interface
2946 section. */
2947static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2948static valueT create_unwind_entry (int);
2949static void start_unwind_section (const segT, int);
2950static void add_unwind_opcode (valueT, int);
2951static void flush_pending_unwind (void);
b99bd4ef 2952
c19d1205 2953/* Directives: Data. */
b99bd4ef 2954
c19d1205
ZW
2955static void
2956s_arm_elf_cons (int nbytes)
2957{
2958 expressionS exp;
b99bd4ef 2959
c19d1205
ZW
2960#ifdef md_flush_pending_output
2961 md_flush_pending_output ();
2962#endif
b99bd4ef 2963
c19d1205 2964 if (is_it_end_of_statement ())
b99bd4ef 2965 {
c19d1205
ZW
2966 demand_empty_rest_of_line ();
2967 return;
b99bd4ef
NC
2968 }
2969
c19d1205
ZW
2970#ifdef md_cons_align
2971 md_cons_align (nbytes);
2972#endif
b99bd4ef 2973
c19d1205
ZW
2974 mapping_state (MAP_DATA);
2975 do
b99bd4ef 2976 {
c19d1205
ZW
2977 int reloc;
2978 char *base = input_line_pointer;
b99bd4ef 2979
c19d1205 2980 expression (& exp);
b99bd4ef 2981
c19d1205
ZW
2982 if (exp.X_op != O_symbol)
2983 emit_expr (&exp, (unsigned int) nbytes);
2984 else
2985 {
2986 char *before_reloc = input_line_pointer;
2987 reloc = parse_reloc (&input_line_pointer);
2988 if (reloc == -1)
2989 {
2990 as_bad (_("unrecognized relocation suffix"));
2991 ignore_rest_of_line ();
2992 return;
2993 }
2994 else if (reloc == BFD_RELOC_UNUSED)
2995 emit_expr (&exp, (unsigned int) nbytes);
2996 else
2997 {
2998 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2999 int size = bfd_get_reloc_size (howto);
b99bd4ef 3000
2fc8bdac
ZW
3001 if (reloc == BFD_RELOC_ARM_PLT32)
3002 {
3003 as_bad (_("(plt) is only valid on branch targets"));
3004 reloc = BFD_RELOC_UNUSED;
3005 size = 0;
3006 }
3007
c19d1205 3008 if (size > nbytes)
2fc8bdac 3009 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3010 howto->name, nbytes);
3011 else
3012 {
3013 /* We've parsed an expression stopping at O_symbol.
3014 But there may be more expression left now that we
3015 have parsed the relocation marker. Parse it again.
3016 XXX Surely there is a cleaner way to do this. */
3017 char *p = input_line_pointer;
3018 int offset;
3019 char *save_buf = alloca (input_line_pointer - base);
3020 memcpy (save_buf, base, input_line_pointer - base);
3021 memmove (base + (input_line_pointer - before_reloc),
3022 base, before_reloc - base);
3023
3024 input_line_pointer = base + (input_line_pointer-before_reloc);
3025 expression (&exp);
3026 memcpy (base, save_buf, p - base);
3027
3028 offset = nbytes - size;
3029 p = frag_more ((int) nbytes);
3030 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3031 size, &exp, 0, reloc);
3032 }
3033 }
3034 }
b99bd4ef 3035 }
c19d1205 3036 while (*input_line_pointer++ == ',');
b99bd4ef 3037
c19d1205
ZW
3038 /* Put terminator back into stream. */
3039 input_line_pointer --;
3040 demand_empty_rest_of_line ();
b99bd4ef
NC
3041}
3042
b99bd4ef 3043
c19d1205 3044/* Parse a .rel31 directive. */
b99bd4ef 3045
c19d1205
ZW
3046static void
3047s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3048{
3049 expressionS exp;
3050 char *p;
3051 valueT highbit;
b99bd4ef 3052
c19d1205
ZW
3053 highbit = 0;
3054 if (*input_line_pointer == '1')
3055 highbit = 0x80000000;
3056 else if (*input_line_pointer != '0')
3057 as_bad (_("expected 0 or 1"));
b99bd4ef 3058
c19d1205
ZW
3059 input_line_pointer++;
3060 if (*input_line_pointer != ',')
3061 as_bad (_("missing comma"));
3062 input_line_pointer++;
b99bd4ef 3063
c19d1205
ZW
3064#ifdef md_flush_pending_output
3065 md_flush_pending_output ();
3066#endif
b99bd4ef 3067
c19d1205
ZW
3068#ifdef md_cons_align
3069 md_cons_align (4);
3070#endif
b99bd4ef 3071
c19d1205 3072 mapping_state (MAP_DATA);
b99bd4ef 3073
c19d1205 3074 expression (&exp);
b99bd4ef 3075
c19d1205
ZW
3076 p = frag_more (4);
3077 md_number_to_chars (p, highbit, 4);
3078 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3079 BFD_RELOC_ARM_PREL31);
b99bd4ef 3080
c19d1205 3081 demand_empty_rest_of_line ();
b99bd4ef
NC
3082}
3083
c19d1205 3084/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3085
c19d1205 3086/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3087
c19d1205
ZW
3088static void
3089s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3090{
3091 demand_empty_rest_of_line ();
3092 /* Mark the start of the function. */
3093 unwind.proc_start = expr_build_dot ();
b99bd4ef 3094
c19d1205
ZW
3095 /* Reset the rest of the unwind info. */
3096 unwind.opcode_count = 0;
3097 unwind.table_entry = NULL;
3098 unwind.personality_routine = NULL;
3099 unwind.personality_index = -1;
3100 unwind.frame_size = 0;
3101 unwind.fp_offset = 0;
fdfde340 3102 unwind.fp_reg = REG_SP;
c19d1205
ZW
3103 unwind.fp_used = 0;
3104 unwind.sp_restored = 0;
3105}
b99bd4ef 3106
b99bd4ef 3107
c19d1205
ZW
3108/* Parse a handlerdata directive. Creates the exception handling table entry
3109 for the function. */
b99bd4ef 3110
c19d1205
ZW
3111static void
3112s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3113{
3114 demand_empty_rest_of_line ();
3115 if (unwind.table_entry)
6decc662 3116 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3117
c19d1205
ZW
3118 create_unwind_entry (1);
3119}
a737bd4d 3120
c19d1205 3121/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3122
c19d1205
ZW
3123static void
3124s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3125{
3126 long where;
3127 char *ptr;
3128 valueT val;
f02232aa 3129
c19d1205 3130 demand_empty_rest_of_line ();
f02232aa 3131
c19d1205
ZW
3132 /* Add eh table entry. */
3133 if (unwind.table_entry == NULL)
3134 val = create_unwind_entry (0);
3135 else
3136 val = 0;
f02232aa 3137
c19d1205
ZW
3138 /* Add index table entry. This is two words. */
3139 start_unwind_section (unwind.saved_seg, 1);
3140 frag_align (2, 0, 0);
3141 record_alignment (now_seg, 2);
b99bd4ef 3142
c19d1205
ZW
3143 ptr = frag_more (8);
3144 where = frag_now_fix () - 8;
f02232aa 3145
c19d1205
ZW
3146 /* Self relative offset of the function start. */
3147 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3148 BFD_RELOC_ARM_PREL31);
f02232aa 3149
c19d1205
ZW
3150 /* Indicate dependency on EHABI-defined personality routines to the
3151 linker, if it hasn't been done already. */
3152 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3153 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3154 {
5f4273c7
NC
3155 static const char *const name[] =
3156 {
3157 "__aeabi_unwind_cpp_pr0",
3158 "__aeabi_unwind_cpp_pr1",
3159 "__aeabi_unwind_cpp_pr2"
3160 };
c19d1205
ZW
3161 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3162 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3163 marked_pr_dependency |= 1 << unwind.personality_index;
3164 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3165 = marked_pr_dependency;
3166 }
f02232aa 3167
c19d1205
ZW
3168 if (val)
3169 /* Inline exception table entry. */
3170 md_number_to_chars (ptr + 4, val, 4);
3171 else
3172 /* Self relative offset of the table entry. */
3173 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3174 BFD_RELOC_ARM_PREL31);
f02232aa 3175
c19d1205
ZW
3176 /* Restore the original section. */
3177 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3178}
f02232aa 3179
f02232aa 3180
c19d1205 3181/* Parse an unwind_cantunwind directive. */
b99bd4ef 3182
c19d1205
ZW
3183static void
3184s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3185{
3186 demand_empty_rest_of_line ();
3187 if (unwind.personality_routine || unwind.personality_index != -1)
3188 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3189
c19d1205
ZW
3190 unwind.personality_index = -2;
3191}
b99bd4ef 3192
b99bd4ef 3193
c19d1205 3194/* Parse a personalityindex directive. */
b99bd4ef 3195
c19d1205
ZW
3196static void
3197s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3198{
3199 expressionS exp;
b99bd4ef 3200
c19d1205
ZW
3201 if (unwind.personality_routine || unwind.personality_index != -1)
3202 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3203
c19d1205 3204 expression (&exp);
b99bd4ef 3205
c19d1205
ZW
3206 if (exp.X_op != O_constant
3207 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3208 {
c19d1205
ZW
3209 as_bad (_("bad personality routine number"));
3210 ignore_rest_of_line ();
3211 return;
b99bd4ef
NC
3212 }
3213
c19d1205 3214 unwind.personality_index = exp.X_add_number;
b99bd4ef 3215
c19d1205
ZW
3216 demand_empty_rest_of_line ();
3217}
e16bb312 3218
e16bb312 3219
c19d1205 3220/* Parse a personality directive. */
e16bb312 3221
c19d1205
ZW
3222static void
3223s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3224{
3225 char *name, *p, c;
a737bd4d 3226
c19d1205
ZW
3227 if (unwind.personality_routine || unwind.personality_index != -1)
3228 as_bad (_("duplicate .personality directive"));
a737bd4d 3229
c19d1205
ZW
3230 name = input_line_pointer;
3231 c = get_symbol_end ();
3232 p = input_line_pointer;
3233 unwind.personality_routine = symbol_find_or_make (name);
3234 *p = c;
3235 demand_empty_rest_of_line ();
3236}
e16bb312 3237
e16bb312 3238
c19d1205 3239/* Parse a directive saving core registers. */
e16bb312 3240
c19d1205
ZW
3241static void
3242s_arm_unwind_save_core (void)
e16bb312 3243{
c19d1205
ZW
3244 valueT op;
3245 long range;
3246 int n;
e16bb312 3247
c19d1205
ZW
3248 range = parse_reg_list (&input_line_pointer);
3249 if (range == FAIL)
e16bb312 3250 {
c19d1205
ZW
3251 as_bad (_("expected register list"));
3252 ignore_rest_of_line ();
3253 return;
3254 }
e16bb312 3255
c19d1205 3256 demand_empty_rest_of_line ();
e16bb312 3257
c19d1205
ZW
3258 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3259 into .unwind_save {..., sp...}. We aren't bothered about the value of
3260 ip because it is clobbered by calls. */
3261 if (unwind.sp_restored && unwind.fp_reg == 12
3262 && (range & 0x3000) == 0x1000)
3263 {
3264 unwind.opcode_count--;
3265 unwind.sp_restored = 0;
3266 range = (range | 0x2000) & ~0x1000;
3267 unwind.pending_offset = 0;
3268 }
e16bb312 3269
01ae4198
DJ
3270 /* Pop r4-r15. */
3271 if (range & 0xfff0)
c19d1205 3272 {
01ae4198
DJ
3273 /* See if we can use the short opcodes. These pop a block of up to 8
3274 registers starting with r4, plus maybe r14. */
3275 for (n = 0; n < 8; n++)
3276 {
3277 /* Break at the first non-saved register. */
3278 if ((range & (1 << (n + 4))) == 0)
3279 break;
3280 }
3281 /* See if there are any other bits set. */
3282 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3283 {
3284 /* Use the long form. */
3285 op = 0x8000 | ((range >> 4) & 0xfff);
3286 add_unwind_opcode (op, 2);
3287 }
0dd132b6 3288 else
01ae4198
DJ
3289 {
3290 /* Use the short form. */
3291 if (range & 0x4000)
3292 op = 0xa8; /* Pop r14. */
3293 else
3294 op = 0xa0; /* Do not pop r14. */
3295 op |= (n - 1);
3296 add_unwind_opcode (op, 1);
3297 }
c19d1205 3298 }
0dd132b6 3299
c19d1205
ZW
3300 /* Pop r0-r3. */
3301 if (range & 0xf)
3302 {
3303 op = 0xb100 | (range & 0xf);
3304 add_unwind_opcode (op, 2);
0dd132b6
NC
3305 }
3306
c19d1205
ZW
3307 /* Record the number of bytes pushed. */
3308 for (n = 0; n < 16; n++)
3309 {
3310 if (range & (1 << n))
3311 unwind.frame_size += 4;
3312 }
0dd132b6
NC
3313}
3314
c19d1205
ZW
3315
3316/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3317
3318static void
c19d1205 3319s_arm_unwind_save_fpa (int reg)
b99bd4ef 3320{
c19d1205
ZW
3321 expressionS exp;
3322 int num_regs;
3323 valueT op;
b99bd4ef 3324
c19d1205
ZW
3325 /* Get Number of registers to transfer. */
3326 if (skip_past_comma (&input_line_pointer) != FAIL)
3327 expression (&exp);
3328 else
3329 exp.X_op = O_illegal;
b99bd4ef 3330
c19d1205 3331 if (exp.X_op != O_constant)
b99bd4ef 3332 {
c19d1205
ZW
3333 as_bad (_("expected , <constant>"));
3334 ignore_rest_of_line ();
b99bd4ef
NC
3335 return;
3336 }
3337
c19d1205
ZW
3338 num_regs = exp.X_add_number;
3339
3340 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3341 {
c19d1205
ZW
3342 as_bad (_("number of registers must be in the range [1:4]"));
3343 ignore_rest_of_line ();
b99bd4ef
NC
3344 return;
3345 }
3346
c19d1205 3347 demand_empty_rest_of_line ();
b99bd4ef 3348
c19d1205
ZW
3349 if (reg == 4)
3350 {
3351 /* Short form. */
3352 op = 0xb4 | (num_regs - 1);
3353 add_unwind_opcode (op, 1);
3354 }
b99bd4ef
NC
3355 else
3356 {
c19d1205
ZW
3357 /* Long form. */
3358 op = 0xc800 | (reg << 4) | (num_regs - 1);
3359 add_unwind_opcode (op, 2);
b99bd4ef 3360 }
c19d1205 3361 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3362}
3363
c19d1205 3364
fa073d69
MS
3365/* Parse a directive saving VFP registers for ARMv6 and above. */
3366
3367static void
3368s_arm_unwind_save_vfp_armv6 (void)
3369{
3370 int count;
3371 unsigned int start;
3372 valueT op;
3373 int num_vfpv3_regs = 0;
3374 int num_regs_below_16;
3375
3376 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3377 if (count == FAIL)
3378 {
3379 as_bad (_("expected register list"));
3380 ignore_rest_of_line ();
3381 return;
3382 }
3383
3384 demand_empty_rest_of_line ();
3385
3386 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3387 than FSTMX/FLDMX-style ones). */
3388
3389 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3390 if (start >= 16)
3391 num_vfpv3_regs = count;
3392 else if (start + count > 16)
3393 num_vfpv3_regs = start + count - 16;
3394
3395 if (num_vfpv3_regs > 0)
3396 {
3397 int start_offset = start > 16 ? start - 16 : 0;
3398 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3399 add_unwind_opcode (op, 2);
3400 }
3401
3402 /* Generate opcode for registers numbered in the range 0 .. 15. */
3403 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3404 assert (num_regs_below_16 + num_vfpv3_regs == count);
3405 if (num_regs_below_16 > 0)
3406 {
3407 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3408 add_unwind_opcode (op, 2);
3409 }
3410
3411 unwind.frame_size += count * 8;
3412}
3413
3414
3415/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3416
3417static void
c19d1205 3418s_arm_unwind_save_vfp (void)
b99bd4ef 3419{
c19d1205 3420 int count;
ca3f61f7 3421 unsigned int reg;
c19d1205 3422 valueT op;
b99bd4ef 3423
5287ad62 3424 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3425 if (count == FAIL)
b99bd4ef 3426 {
c19d1205
ZW
3427 as_bad (_("expected register list"));
3428 ignore_rest_of_line ();
b99bd4ef
NC
3429 return;
3430 }
3431
c19d1205 3432 demand_empty_rest_of_line ();
b99bd4ef 3433
c19d1205 3434 if (reg == 8)
b99bd4ef 3435 {
c19d1205
ZW
3436 /* Short form. */
3437 op = 0xb8 | (count - 1);
3438 add_unwind_opcode (op, 1);
b99bd4ef 3439 }
c19d1205 3440 else
b99bd4ef 3441 {
c19d1205
ZW
3442 /* Long form. */
3443 op = 0xb300 | (reg << 4) | (count - 1);
3444 add_unwind_opcode (op, 2);
b99bd4ef 3445 }
c19d1205
ZW
3446 unwind.frame_size += count * 8 + 4;
3447}
b99bd4ef 3448
b99bd4ef 3449
c19d1205
ZW
3450/* Parse a directive saving iWMMXt data registers. */
3451
3452static void
3453s_arm_unwind_save_mmxwr (void)
3454{
3455 int reg;
3456 int hi_reg;
3457 int i;
3458 unsigned mask = 0;
3459 valueT op;
b99bd4ef 3460
c19d1205
ZW
3461 if (*input_line_pointer == '{')
3462 input_line_pointer++;
b99bd4ef 3463
c19d1205 3464 do
b99bd4ef 3465 {
dcbf9037 3466 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3467
c19d1205 3468 if (reg == FAIL)
b99bd4ef 3469 {
9b7132d3 3470 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3471 goto error;
b99bd4ef
NC
3472 }
3473
c19d1205
ZW
3474 if (mask >> reg)
3475 as_tsktsk (_("register list not in ascending order"));
3476 mask |= 1 << reg;
b99bd4ef 3477
c19d1205
ZW
3478 if (*input_line_pointer == '-')
3479 {
3480 input_line_pointer++;
dcbf9037 3481 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3482 if (hi_reg == FAIL)
3483 {
9b7132d3 3484 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3485 goto error;
3486 }
3487 else if (reg >= hi_reg)
3488 {
3489 as_bad (_("bad register range"));
3490 goto error;
3491 }
3492 for (; reg < hi_reg; reg++)
3493 mask |= 1 << reg;
3494 }
3495 }
3496 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3497
c19d1205
ZW
3498 if (*input_line_pointer == '}')
3499 input_line_pointer++;
b99bd4ef 3500
c19d1205 3501 demand_empty_rest_of_line ();
b99bd4ef 3502
708587a4 3503 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3504 the list. */
3505 flush_pending_unwind ();
b99bd4ef 3506
c19d1205 3507 for (i = 0; i < 16; i++)
b99bd4ef 3508 {
c19d1205
ZW
3509 if (mask & (1 << i))
3510 unwind.frame_size += 8;
b99bd4ef
NC
3511 }
3512
c19d1205
ZW
3513 /* Attempt to combine with a previous opcode. We do this because gcc
3514 likes to output separate unwind directives for a single block of
3515 registers. */
3516 if (unwind.opcode_count > 0)
b99bd4ef 3517 {
c19d1205
ZW
3518 i = unwind.opcodes[unwind.opcode_count - 1];
3519 if ((i & 0xf8) == 0xc0)
3520 {
3521 i &= 7;
3522 /* Only merge if the blocks are contiguous. */
3523 if (i < 6)
3524 {
3525 if ((mask & 0xfe00) == (1 << 9))
3526 {
3527 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3528 unwind.opcode_count--;
3529 }
3530 }
3531 else if (i == 6 && unwind.opcode_count >= 2)
3532 {
3533 i = unwind.opcodes[unwind.opcode_count - 2];
3534 reg = i >> 4;
3535 i &= 0xf;
b99bd4ef 3536
c19d1205
ZW
3537 op = 0xffff << (reg - 1);
3538 if (reg > 0
87a1fd79 3539 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3540 {
3541 op = (1 << (reg + i + 1)) - 1;
3542 op &= ~((1 << reg) - 1);
3543 mask |= op;
3544 unwind.opcode_count -= 2;
3545 }
3546 }
3547 }
b99bd4ef
NC
3548 }
3549
c19d1205
ZW
3550 hi_reg = 15;
3551 /* We want to generate opcodes in the order the registers have been
3552 saved, ie. descending order. */
3553 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3554 {
c19d1205
ZW
3555 /* Save registers in blocks. */
3556 if (reg < 0
3557 || !(mask & (1 << reg)))
3558 {
3559 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3560 preceding block. */
c19d1205
ZW
3561 if (reg != hi_reg)
3562 {
3563 if (reg == 9)
3564 {
3565 /* Short form. */
3566 op = 0xc0 | (hi_reg - 10);
3567 add_unwind_opcode (op, 1);
3568 }
3569 else
3570 {
3571 /* Long form. */
3572 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3573 add_unwind_opcode (op, 2);
3574 }
3575 }
3576 hi_reg = reg - 1;
3577 }
b99bd4ef
NC
3578 }
3579
c19d1205
ZW
3580 return;
3581error:
3582 ignore_rest_of_line ();
b99bd4ef
NC
3583}
3584
3585static void
c19d1205 3586s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3587{
c19d1205
ZW
3588 int reg;
3589 int hi_reg;
3590 unsigned mask = 0;
3591 valueT op;
b99bd4ef 3592
c19d1205
ZW
3593 if (*input_line_pointer == '{')
3594 input_line_pointer++;
b99bd4ef 3595
c19d1205 3596 do
b99bd4ef 3597 {
dcbf9037 3598 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3599
c19d1205
ZW
3600 if (reg == FAIL)
3601 {
9b7132d3 3602 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3603 goto error;
3604 }
b99bd4ef 3605
c19d1205
ZW
3606 reg -= 8;
3607 if (mask >> reg)
3608 as_tsktsk (_("register list not in ascending order"));
3609 mask |= 1 << reg;
b99bd4ef 3610
c19d1205
ZW
3611 if (*input_line_pointer == '-')
3612 {
3613 input_line_pointer++;
dcbf9037 3614 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3615 if (hi_reg == FAIL)
3616 {
9b7132d3 3617 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3618 goto error;
3619 }
3620 else if (reg >= hi_reg)
3621 {
3622 as_bad (_("bad register range"));
3623 goto error;
3624 }
3625 for (; reg < hi_reg; reg++)
3626 mask |= 1 << reg;
3627 }
b99bd4ef 3628 }
c19d1205 3629 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3630
c19d1205
ZW
3631 if (*input_line_pointer == '}')
3632 input_line_pointer++;
b99bd4ef 3633
c19d1205
ZW
3634 demand_empty_rest_of_line ();
3635
708587a4 3636 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3637 the list. */
3638 flush_pending_unwind ();
b99bd4ef 3639
c19d1205 3640 for (reg = 0; reg < 16; reg++)
b99bd4ef 3641 {
c19d1205
ZW
3642 if (mask & (1 << reg))
3643 unwind.frame_size += 4;
b99bd4ef 3644 }
c19d1205
ZW
3645 op = 0xc700 | mask;
3646 add_unwind_opcode (op, 2);
3647 return;
3648error:
3649 ignore_rest_of_line ();
b99bd4ef
NC
3650}
3651
c19d1205 3652
fa073d69
MS
3653/* Parse an unwind_save directive.
3654 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3655
b99bd4ef 3656static void
fa073d69 3657s_arm_unwind_save (int arch_v6)
b99bd4ef 3658{
c19d1205
ZW
3659 char *peek;
3660 struct reg_entry *reg;
3661 bfd_boolean had_brace = FALSE;
b99bd4ef 3662
c19d1205
ZW
3663 /* Figure out what sort of save we have. */
3664 peek = input_line_pointer;
b99bd4ef 3665
c19d1205 3666 if (*peek == '{')
b99bd4ef 3667 {
c19d1205
ZW
3668 had_brace = TRUE;
3669 peek++;
b99bd4ef
NC
3670 }
3671
c19d1205 3672 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3673
c19d1205 3674 if (!reg)
b99bd4ef 3675 {
c19d1205
ZW
3676 as_bad (_("register expected"));
3677 ignore_rest_of_line ();
b99bd4ef
NC
3678 return;
3679 }
3680
c19d1205 3681 switch (reg->type)
b99bd4ef 3682 {
c19d1205
ZW
3683 case REG_TYPE_FN:
3684 if (had_brace)
3685 {
3686 as_bad (_("FPA .unwind_save does not take a register list"));
3687 ignore_rest_of_line ();
3688 return;
3689 }
93ac2687 3690 input_line_pointer = peek;
c19d1205 3691 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3692 return;
c19d1205
ZW
3693
3694 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3695 case REG_TYPE_VFD:
3696 if (arch_v6)
3697 s_arm_unwind_save_vfp_armv6 ();
3698 else
3699 s_arm_unwind_save_vfp ();
3700 return;
c19d1205
ZW
3701 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3702 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3703
3704 default:
3705 as_bad (_(".unwind_save does not support this kind of register"));
3706 ignore_rest_of_line ();
b99bd4ef 3707 }
c19d1205 3708}
b99bd4ef 3709
b99bd4ef 3710
c19d1205
ZW
3711/* Parse an unwind_movsp directive. */
3712
3713static void
3714s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3715{
3716 int reg;
3717 valueT op;
4fa3602b 3718 int offset;
c19d1205 3719
dcbf9037 3720 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3721 if (reg == FAIL)
b99bd4ef 3722 {
9b7132d3 3723 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 3724 ignore_rest_of_line ();
b99bd4ef
NC
3725 return;
3726 }
4fa3602b
PB
3727
3728 /* Optional constant. */
3729 if (skip_past_comma (&input_line_pointer) != FAIL)
3730 {
3731 if (immediate_for_directive (&offset) == FAIL)
3732 return;
3733 }
3734 else
3735 offset = 0;
3736
c19d1205 3737 demand_empty_rest_of_line ();
b99bd4ef 3738
c19d1205 3739 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3740 {
c19d1205 3741 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3742 return;
3743 }
3744
c19d1205
ZW
3745 if (unwind.fp_reg != REG_SP)
3746 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3747
c19d1205
ZW
3748 /* Generate opcode to restore the value. */
3749 op = 0x90 | reg;
3750 add_unwind_opcode (op, 1);
3751
3752 /* Record the information for later. */
3753 unwind.fp_reg = reg;
4fa3602b 3754 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3755 unwind.sp_restored = 1;
b05fe5cf
ZW
3756}
3757
c19d1205
ZW
3758/* Parse an unwind_pad directive. */
3759
b05fe5cf 3760static void
c19d1205 3761s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3762{
c19d1205 3763 int offset;
b05fe5cf 3764
c19d1205
ZW
3765 if (immediate_for_directive (&offset) == FAIL)
3766 return;
b99bd4ef 3767
c19d1205
ZW
3768 if (offset & 3)
3769 {
3770 as_bad (_("stack increment must be multiple of 4"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
b99bd4ef 3774
c19d1205
ZW
3775 /* Don't generate any opcodes, just record the details for later. */
3776 unwind.frame_size += offset;
3777 unwind.pending_offset += offset;
3778
3779 demand_empty_rest_of_line ();
3780}
3781
3782/* Parse an unwind_setfp directive. */
3783
3784static void
3785s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3786{
c19d1205
ZW
3787 int sp_reg;
3788 int fp_reg;
3789 int offset;
3790
dcbf9037 3791 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3792 if (skip_past_comma (&input_line_pointer) == FAIL)
3793 sp_reg = FAIL;
3794 else
dcbf9037 3795 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3796
c19d1205
ZW
3797 if (fp_reg == FAIL || sp_reg == FAIL)
3798 {
3799 as_bad (_("expected <reg>, <reg>"));
3800 ignore_rest_of_line ();
3801 return;
3802 }
b99bd4ef 3803
c19d1205
ZW
3804 /* Optional constant. */
3805 if (skip_past_comma (&input_line_pointer) != FAIL)
3806 {
3807 if (immediate_for_directive (&offset) == FAIL)
3808 return;
3809 }
3810 else
3811 offset = 0;
a737bd4d 3812
c19d1205 3813 demand_empty_rest_of_line ();
a737bd4d 3814
fdfde340 3815 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 3816 {
c19d1205
ZW
3817 as_bad (_("register must be either sp or set by a previous"
3818 "unwind_movsp directive"));
3819 return;
a737bd4d
NC
3820 }
3821
c19d1205
ZW
3822 /* Don't generate any opcodes, just record the information for later. */
3823 unwind.fp_reg = fp_reg;
3824 unwind.fp_used = 1;
fdfde340 3825 if (sp_reg == REG_SP)
c19d1205
ZW
3826 unwind.fp_offset = unwind.frame_size - offset;
3827 else
3828 unwind.fp_offset -= offset;
a737bd4d
NC
3829}
3830
c19d1205
ZW
3831/* Parse an unwind_raw directive. */
3832
3833static void
3834s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3835{
c19d1205 3836 expressionS exp;
708587a4 3837 /* This is an arbitrary limit. */
c19d1205
ZW
3838 unsigned char op[16];
3839 int count;
a737bd4d 3840
c19d1205
ZW
3841 expression (&exp);
3842 if (exp.X_op == O_constant
3843 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3844 {
c19d1205
ZW
3845 unwind.frame_size += exp.X_add_number;
3846 expression (&exp);
3847 }
3848 else
3849 exp.X_op = O_illegal;
a737bd4d 3850
c19d1205
ZW
3851 if (exp.X_op != O_constant)
3852 {
3853 as_bad (_("expected <offset>, <opcode>"));
3854 ignore_rest_of_line ();
3855 return;
3856 }
a737bd4d 3857
c19d1205 3858 count = 0;
a737bd4d 3859
c19d1205
ZW
3860 /* Parse the opcode. */
3861 for (;;)
3862 {
3863 if (count >= 16)
3864 {
3865 as_bad (_("unwind opcode too long"));
3866 ignore_rest_of_line ();
a737bd4d 3867 }
c19d1205 3868 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3869 {
c19d1205
ZW
3870 as_bad (_("invalid unwind opcode"));
3871 ignore_rest_of_line ();
3872 return;
a737bd4d 3873 }
c19d1205 3874 op[count++] = exp.X_add_number;
a737bd4d 3875
c19d1205
ZW
3876 /* Parse the next byte. */
3877 if (skip_past_comma (&input_line_pointer) == FAIL)
3878 break;
a737bd4d 3879
c19d1205
ZW
3880 expression (&exp);
3881 }
b99bd4ef 3882
c19d1205
ZW
3883 /* Add the opcode bytes in reverse order. */
3884 while (count--)
3885 add_unwind_opcode (op[count], 1);
b99bd4ef 3886
c19d1205 3887 demand_empty_rest_of_line ();
b99bd4ef 3888}
ee065d83
PB
3889
3890
3891/* Parse a .eabi_attribute directive. */
3892
3893static void
3894s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3895{
ee3c0378
AS
3896 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3897
3898 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3899 attributes_set_explicitly[tag] = 1;
ee065d83 3900}
8463be01 3901#endif /* OBJ_ELF */
ee065d83
PB
3902
3903static void s_arm_arch (int);
7a1d4c38 3904static void s_arm_object_arch (int);
ee065d83
PB
3905static void s_arm_cpu (int);
3906static void s_arm_fpu (int);
b99bd4ef 3907
f0927246
NC
3908#ifdef TE_PE
3909
3910static void
5f4273c7 3911pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
3912{
3913 expressionS exp;
3914
3915 do
3916 {
3917 expression (&exp);
3918 if (exp.X_op == O_symbol)
3919 exp.X_op = O_secrel;
3920
3921 emit_expr (&exp, 4);
3922 }
3923 while (*input_line_pointer++ == ',');
3924
3925 input_line_pointer--;
3926 demand_empty_rest_of_line ();
3927}
3928#endif /* TE_PE */
3929
c19d1205
ZW
3930/* This table describes all the machine specific pseudo-ops the assembler
3931 has to support. The fields are:
3932 pseudo-op name without dot
3933 function to call to execute this pseudo-op
3934 Integer arg to pass to the function. */
b99bd4ef 3935
c19d1205 3936const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3937{
c19d1205
ZW
3938 /* Never called because '.req' does not start a line. */
3939 { "req", s_req, 0 },
dcbf9037
JB
3940 /* Following two are likewise never called. */
3941 { "dn", s_dn, 0 },
3942 { "qn", s_qn, 0 },
c19d1205
ZW
3943 { "unreq", s_unreq, 0 },
3944 { "bss", s_bss, 0 },
3945 { "align", s_align, 0 },
3946 { "arm", s_arm, 0 },
3947 { "thumb", s_thumb, 0 },
3948 { "code", s_code, 0 },
3949 { "force_thumb", s_force_thumb, 0 },
3950 { "thumb_func", s_thumb_func, 0 },
3951 { "thumb_set", s_thumb_set, 0 },
3952 { "even", s_even, 0 },
3953 { "ltorg", s_ltorg, 0 },
3954 { "pool", s_ltorg, 0 },
3955 { "syntax", s_syntax, 0 },
8463be01
PB
3956 { "cpu", s_arm_cpu, 0 },
3957 { "arch", s_arm_arch, 0 },
7a1d4c38 3958 { "object_arch", s_arm_object_arch, 0 },
8463be01 3959 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3960#ifdef OBJ_ELF
3961 { "word", s_arm_elf_cons, 4 },
3962 { "long", s_arm_elf_cons, 4 },
3963 { "rel31", s_arm_rel31, 0 },
3964 { "fnstart", s_arm_unwind_fnstart, 0 },
3965 { "fnend", s_arm_unwind_fnend, 0 },
3966 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3967 { "personality", s_arm_unwind_personality, 0 },
3968 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3969 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3970 { "save", s_arm_unwind_save, 0 },
fa073d69 3971 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3972 { "movsp", s_arm_unwind_movsp, 0 },
3973 { "pad", s_arm_unwind_pad, 0 },
3974 { "setfp", s_arm_unwind_setfp, 0 },
3975 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3976 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3977#else
3978 { "word", cons, 4},
f0927246
NC
3979
3980 /* These are used for dwarf. */
3981 {"2byte", cons, 2},
3982 {"4byte", cons, 4},
3983 {"8byte", cons, 8},
3984 /* These are used for dwarf2. */
3985 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3986 { "loc", dwarf2_directive_loc, 0 },
3987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3988#endif
3989 { "extend", float_cons, 'x' },
3990 { "ldouble", float_cons, 'x' },
3991 { "packed", float_cons, 'p' },
f0927246
NC
3992#ifdef TE_PE
3993 {"secrel32", pe_directive_secrel, 0},
3994#endif
c19d1205
ZW
3995 { 0, 0, 0 }
3996};
3997\f
3998/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3999
c19d1205
ZW
4000/* Generic immediate-value read function for use in insn parsing.
4001 STR points to the beginning of the immediate (the leading #);
4002 VAL receives the value; if the value is outside [MIN, MAX]
4003 issue an error. PREFIX_OPT is true if the immediate prefix is
4004 optional. */
b99bd4ef 4005
c19d1205
ZW
4006static int
4007parse_immediate (char **str, int *val, int min, int max,
4008 bfd_boolean prefix_opt)
4009{
4010 expressionS exp;
4011 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4012 if (exp.X_op != O_constant)
b99bd4ef 4013 {
c19d1205
ZW
4014 inst.error = _("constant expression required");
4015 return FAIL;
4016 }
b99bd4ef 4017
c19d1205
ZW
4018 if (exp.X_add_number < min || exp.X_add_number > max)
4019 {
4020 inst.error = _("immediate value out of range");
4021 return FAIL;
4022 }
b99bd4ef 4023
c19d1205
ZW
4024 *val = exp.X_add_number;
4025 return SUCCESS;
4026}
b99bd4ef 4027
5287ad62 4028/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4029 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4030 instructions. Puts the result directly in inst.operands[i]. */
4031
4032static int
4033parse_big_immediate (char **str, int i)
4034{
4035 expressionS exp;
4036 char *ptr = *str;
4037
4038 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4039
4040 if (exp.X_op == O_constant)
036dc3f7
PB
4041 {
4042 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4043 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4044 O_constant. We have to be careful not to break compilation for
4045 32-bit X_add_number, though. */
4046 if ((exp.X_add_number & ~0xffffffffl) != 0)
4047 {
4048 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4049 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4050 inst.operands[i].regisimm = 1;
4051 }
4052 }
5287ad62
JB
4053 else if (exp.X_op == O_big
4054 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4055 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4056 {
4057 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4058 /* Bignums have their least significant bits in
4059 generic_bignum[0]. Make sure we put 32 bits in imm and
4060 32 bits in reg, in a (hopefully) portable way. */
4061 assert (parts != 0);
4062 inst.operands[i].imm = 0;
4063 for (j = 0; j < parts; j++, idx++)
4064 inst.operands[i].imm |= generic_bignum[idx]
4065 << (LITTLENUM_NUMBER_OF_BITS * j);
4066 inst.operands[i].reg = 0;
4067 for (j = 0; j < parts; j++, idx++)
4068 inst.operands[i].reg |= generic_bignum[idx]
4069 << (LITTLENUM_NUMBER_OF_BITS * j);
4070 inst.operands[i].regisimm = 1;
4071 }
4072 else
4073 return FAIL;
5f4273c7 4074
5287ad62
JB
4075 *str = ptr;
4076
4077 return SUCCESS;
4078}
4079
c19d1205
ZW
4080/* Returns the pseudo-register number of an FPA immediate constant,
4081 or FAIL if there isn't a valid constant here. */
b99bd4ef 4082
c19d1205
ZW
4083static int
4084parse_fpa_immediate (char ** str)
4085{
4086 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4087 char * save_in;
4088 expressionS exp;
4089 int i;
4090 int j;
b99bd4ef 4091
c19d1205
ZW
4092 /* First try and match exact strings, this is to guarantee
4093 that some formats will work even for cross assembly. */
b99bd4ef 4094
c19d1205
ZW
4095 for (i = 0; fp_const[i]; i++)
4096 {
4097 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4098 {
c19d1205 4099 char *start = *str;
b99bd4ef 4100
c19d1205
ZW
4101 *str += strlen (fp_const[i]);
4102 if (is_end_of_line[(unsigned char) **str])
4103 return i + 8;
4104 *str = start;
4105 }
4106 }
b99bd4ef 4107
c19d1205
ZW
4108 /* Just because we didn't get a match doesn't mean that the constant
4109 isn't valid, just that it is in a format that we don't
4110 automatically recognize. Try parsing it with the standard
4111 expression routines. */
b99bd4ef 4112
c19d1205 4113 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4114
c19d1205
ZW
4115 /* Look for a raw floating point number. */
4116 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4117 && is_end_of_line[(unsigned char) *save_in])
4118 {
4119 for (i = 0; i < NUM_FLOAT_VALS; i++)
4120 {
4121 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4122 {
c19d1205
ZW
4123 if (words[j] != fp_values[i][j])
4124 break;
b99bd4ef
NC
4125 }
4126
c19d1205 4127 if (j == MAX_LITTLENUMS)
b99bd4ef 4128 {
c19d1205
ZW
4129 *str = save_in;
4130 return i + 8;
b99bd4ef
NC
4131 }
4132 }
4133 }
b99bd4ef 4134
c19d1205
ZW
4135 /* Try and parse a more complex expression, this will probably fail
4136 unless the code uses a floating point prefix (eg "0f"). */
4137 save_in = input_line_pointer;
4138 input_line_pointer = *str;
4139 if (expression (&exp) == absolute_section
4140 && exp.X_op == O_big
4141 && exp.X_add_number < 0)
4142 {
4143 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4144 Ditto for 15. */
4145 if (gen_to_words (words, 5, (long) 15) == 0)
4146 {
4147 for (i = 0; i < NUM_FLOAT_VALS; i++)
4148 {
4149 for (j = 0; j < MAX_LITTLENUMS; j++)
4150 {
4151 if (words[j] != fp_values[i][j])
4152 break;
4153 }
b99bd4ef 4154
c19d1205
ZW
4155 if (j == MAX_LITTLENUMS)
4156 {
4157 *str = input_line_pointer;
4158 input_line_pointer = save_in;
4159 return i + 8;
4160 }
4161 }
4162 }
b99bd4ef
NC
4163 }
4164
c19d1205
ZW
4165 *str = input_line_pointer;
4166 input_line_pointer = save_in;
4167 inst.error = _("invalid FPA immediate expression");
4168 return FAIL;
b99bd4ef
NC
4169}
4170
136da414
JB
4171/* Returns 1 if a number has "quarter-precision" float format
4172 0baBbbbbbc defgh000 00000000 00000000. */
4173
4174static int
4175is_quarter_float (unsigned imm)
4176{
4177 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4178 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4179}
4180
4181/* Parse an 8-bit "quarter-precision" floating point number of the form:
4182 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4183 The zero and minus-zero cases need special handling, since they can't be
4184 encoded in the "quarter-precision" float format, but can nonetheless be
4185 loaded as integer constants. */
136da414
JB
4186
4187static unsigned
4188parse_qfloat_immediate (char **ccp, int *immed)
4189{
4190 char *str = *ccp;
c96612cc 4191 char *fpnum;
136da414 4192 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4193 int found_fpchar = 0;
5f4273c7 4194
136da414 4195 skip_past_char (&str, '#');
5f4273c7 4196
c96612cc
JB
4197 /* We must not accidentally parse an integer as a floating-point number. Make
4198 sure that the value we parse is not an integer by checking for special
4199 characters '.' or 'e'.
4200 FIXME: This is a horrible hack, but doing better is tricky because type
4201 information isn't in a very usable state at parse time. */
4202 fpnum = str;
4203 skip_whitespace (fpnum);
4204
4205 if (strncmp (fpnum, "0x", 2) == 0)
4206 return FAIL;
4207 else
4208 {
4209 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4210 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4211 {
4212 found_fpchar = 1;
4213 break;
4214 }
4215
4216 if (!found_fpchar)
4217 return FAIL;
4218 }
5f4273c7 4219
136da414
JB
4220 if ((str = atof_ieee (str, 's', words)) != NULL)
4221 {
4222 unsigned fpword = 0;
4223 int i;
5f4273c7 4224
136da414
JB
4225 /* Our FP word must be 32 bits (single-precision FP). */
4226 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4227 {
4228 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4229 fpword |= words[i];
4230 }
5f4273c7 4231
c96612cc 4232 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4233 *immed = fpword;
4234 else
4235 return FAIL;
4236
4237 *ccp = str;
5f4273c7 4238
136da414
JB
4239 return SUCCESS;
4240 }
5f4273c7 4241
136da414
JB
4242 return FAIL;
4243}
4244
c19d1205
ZW
4245/* Shift operands. */
4246enum shift_kind
b99bd4ef 4247{
c19d1205
ZW
4248 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4249};
b99bd4ef 4250
c19d1205
ZW
4251struct asm_shift_name
4252{
4253 const char *name;
4254 enum shift_kind kind;
4255};
b99bd4ef 4256
c19d1205
ZW
4257/* Third argument to parse_shift. */
4258enum parse_shift_mode
4259{
4260 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4261 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4262 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4263 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4264 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4265};
b99bd4ef 4266
c19d1205
ZW
4267/* Parse a <shift> specifier on an ARM data processing instruction.
4268 This has three forms:
b99bd4ef 4269
c19d1205
ZW
4270 (LSL|LSR|ASL|ASR|ROR) Rs
4271 (LSL|LSR|ASL|ASR|ROR) #imm
4272 RRX
b99bd4ef 4273
c19d1205
ZW
4274 Note that ASL is assimilated to LSL in the instruction encoding, and
4275 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4276
c19d1205
ZW
4277static int
4278parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4279{
c19d1205
ZW
4280 const struct asm_shift_name *shift_name;
4281 enum shift_kind shift;
4282 char *s = *str;
4283 char *p = s;
4284 int reg;
b99bd4ef 4285
c19d1205
ZW
4286 for (p = *str; ISALPHA (*p); p++)
4287 ;
b99bd4ef 4288
c19d1205 4289 if (p == *str)
b99bd4ef 4290 {
c19d1205
ZW
4291 inst.error = _("shift expression expected");
4292 return FAIL;
b99bd4ef
NC
4293 }
4294
c19d1205
ZW
4295 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4296
4297 if (shift_name == NULL)
b99bd4ef 4298 {
c19d1205
ZW
4299 inst.error = _("shift expression expected");
4300 return FAIL;
b99bd4ef
NC
4301 }
4302
c19d1205 4303 shift = shift_name->kind;
b99bd4ef 4304
c19d1205
ZW
4305 switch (mode)
4306 {
4307 case NO_SHIFT_RESTRICT:
4308 case SHIFT_IMMEDIATE: break;
b99bd4ef 4309
c19d1205
ZW
4310 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4311 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4312 {
4313 inst.error = _("'LSL' or 'ASR' required");
4314 return FAIL;
4315 }
4316 break;
b99bd4ef 4317
c19d1205
ZW
4318 case SHIFT_LSL_IMMEDIATE:
4319 if (shift != SHIFT_LSL)
4320 {
4321 inst.error = _("'LSL' required");
4322 return FAIL;
4323 }
4324 break;
b99bd4ef 4325
c19d1205
ZW
4326 case SHIFT_ASR_IMMEDIATE:
4327 if (shift != SHIFT_ASR)
4328 {
4329 inst.error = _("'ASR' required");
4330 return FAIL;
4331 }
4332 break;
b99bd4ef 4333
c19d1205
ZW
4334 default: abort ();
4335 }
b99bd4ef 4336
c19d1205
ZW
4337 if (shift != SHIFT_RRX)
4338 {
4339 /* Whitespace can appear here if the next thing is a bare digit. */
4340 skip_whitespace (p);
b99bd4ef 4341
c19d1205 4342 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4343 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4344 {
4345 inst.operands[i].imm = reg;
4346 inst.operands[i].immisreg = 1;
4347 }
4348 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4349 return FAIL;
4350 }
4351 inst.operands[i].shift_kind = shift;
4352 inst.operands[i].shifted = 1;
4353 *str = p;
4354 return SUCCESS;
b99bd4ef
NC
4355}
4356
c19d1205 4357/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4358
c19d1205
ZW
4359 #<immediate>
4360 #<immediate>, <rotate>
4361 <Rm>
4362 <Rm>, <shift>
b99bd4ef 4363
c19d1205
ZW
4364 where <shift> is defined by parse_shift above, and <rotate> is a
4365 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4366 is deferred to md_apply_fix. */
b99bd4ef 4367
c19d1205
ZW
4368static int
4369parse_shifter_operand (char **str, int i)
4370{
4371 int value;
4372 expressionS expr;
b99bd4ef 4373
dcbf9037 4374 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4375 {
4376 inst.operands[i].reg = value;
4377 inst.operands[i].isreg = 1;
b99bd4ef 4378
c19d1205
ZW
4379 /* parse_shift will override this if appropriate */
4380 inst.reloc.exp.X_op = O_constant;
4381 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4382
c19d1205
ZW
4383 if (skip_past_comma (str) == FAIL)
4384 return SUCCESS;
b99bd4ef 4385
c19d1205
ZW
4386 /* Shift operation on register. */
4387 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4388 }
4389
c19d1205
ZW
4390 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4391 return FAIL;
b99bd4ef 4392
c19d1205 4393 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4394 {
c19d1205
ZW
4395 /* #x, y -- ie explicit rotation by Y. */
4396 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4397 return FAIL;
b99bd4ef 4398
c19d1205
ZW
4399 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4400 {
4401 inst.error = _("constant expression expected");
4402 return FAIL;
4403 }
b99bd4ef 4404
c19d1205
ZW
4405 value = expr.X_add_number;
4406 if (value < 0 || value > 30 || value % 2 != 0)
4407 {
4408 inst.error = _("invalid rotation");
4409 return FAIL;
4410 }
4411 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4412 {
4413 inst.error = _("invalid constant");
4414 return FAIL;
4415 }
09d92015 4416
55cf6793 4417 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4418 inst.reloc.exp.X_add_number
4419 = (((inst.reloc.exp.X_add_number << (32 - value))
4420 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4421 }
4422
c19d1205
ZW
4423 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4424 inst.reloc.pc_rel = 0;
4425 return SUCCESS;
09d92015
MM
4426}
4427
4962c51a
MS
4428/* Group relocation information. Each entry in the table contains the
4429 textual name of the relocation as may appear in assembler source
4430 and must end with a colon.
4431 Along with this textual name are the relocation codes to be used if
4432 the corresponding instruction is an ALU instruction (ADD or SUB only),
4433 an LDR, an LDRS, or an LDC. */
4434
4435struct group_reloc_table_entry
4436{
4437 const char *name;
4438 int alu_code;
4439 int ldr_code;
4440 int ldrs_code;
4441 int ldc_code;
4442};
4443
4444typedef enum
4445{
4446 /* Varieties of non-ALU group relocation. */
4447
4448 GROUP_LDR,
4449 GROUP_LDRS,
4450 GROUP_LDC
4451} group_reloc_type;
4452
4453static struct group_reloc_table_entry group_reloc_table[] =
4454 { /* Program counter relative: */
4455 { "pc_g0_nc",
4456 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4457 0, /* LDR */
4458 0, /* LDRS */
4459 0 }, /* LDC */
4460 { "pc_g0",
4461 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4462 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4463 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4464 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4465 { "pc_g1_nc",
4466 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4467 0, /* LDR */
4468 0, /* LDRS */
4469 0 }, /* LDC */
4470 { "pc_g1",
4471 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4472 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4473 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4474 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4475 { "pc_g2",
4476 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4477 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4478 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4479 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4480 /* Section base relative */
4481 { "sb_g0_nc",
4482 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4483 0, /* LDR */
4484 0, /* LDRS */
4485 0 }, /* LDC */
4486 { "sb_g0",
4487 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4488 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4489 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4490 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4491 { "sb_g1_nc",
4492 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4493 0, /* LDR */
4494 0, /* LDRS */
4495 0 }, /* LDC */
4496 { "sb_g1",
4497 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4498 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4499 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4500 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4501 { "sb_g2",
4502 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4503 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4504 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4505 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4506
4507/* Given the address of a pointer pointing to the textual name of a group
4508 relocation as may appear in assembler source, attempt to find its details
4509 in group_reloc_table. The pointer will be updated to the character after
4510 the trailing colon. On failure, FAIL will be returned; SUCCESS
4511 otherwise. On success, *entry will be updated to point at the relevant
4512 group_reloc_table entry. */
4513
4514static int
4515find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4516{
4517 unsigned int i;
4518 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4519 {
4520 int length = strlen (group_reloc_table[i].name);
4521
5f4273c7
NC
4522 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4523 && (*str)[length] == ':')
4962c51a
MS
4524 {
4525 *out = &group_reloc_table[i];
4526 *str += (length + 1);
4527 return SUCCESS;
4528 }
4529 }
4530
4531 return FAIL;
4532}
4533
4534/* Parse a <shifter_operand> for an ARM data processing instruction
4535 (as for parse_shifter_operand) where group relocations are allowed:
4536
4537 #<immediate>
4538 #<immediate>, <rotate>
4539 #:<group_reloc>:<expression>
4540 <Rm>
4541 <Rm>, <shift>
4542
4543 where <group_reloc> is one of the strings defined in group_reloc_table.
4544 The hashes are optional.
4545
4546 Everything else is as for parse_shifter_operand. */
4547
4548static parse_operand_result
4549parse_shifter_operand_group_reloc (char **str, int i)
4550{
4551 /* Determine if we have the sequence of characters #: or just :
4552 coming next. If we do, then we check for a group relocation.
4553 If we don't, punt the whole lot to parse_shifter_operand. */
4554
4555 if (((*str)[0] == '#' && (*str)[1] == ':')
4556 || (*str)[0] == ':')
4557 {
4558 struct group_reloc_table_entry *entry;
4559
4560 if ((*str)[0] == '#')
4561 (*str) += 2;
4562 else
4563 (*str)++;
4564
4565 /* Try to parse a group relocation. Anything else is an error. */
4566 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4567 {
4568 inst.error = _("unknown group relocation");
4569 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4570 }
4571
4572 /* We now have the group relocation table entry corresponding to
4573 the name in the assembler source. Next, we parse the expression. */
4574 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4575 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4576
4577 /* Record the relocation type (always the ALU variant here). */
4578 inst.reloc.type = entry->alu_code;
4579 assert (inst.reloc.type != 0);
4580
4581 return PARSE_OPERAND_SUCCESS;
4582 }
4583 else
4584 return parse_shifter_operand (str, i) == SUCCESS
4585 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4586
4587 /* Never reached. */
4588}
4589
c19d1205
ZW
4590/* Parse all forms of an ARM address expression. Information is written
4591 to inst.operands[i] and/or inst.reloc.
09d92015 4592
c19d1205 4593 Preindexed addressing (.preind=1):
09d92015 4594
c19d1205
ZW
4595 [Rn, #offset] .reg=Rn .reloc.exp=offset
4596 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4597 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4598 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4599
c19d1205 4600 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4601
c19d1205 4602 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4603
c19d1205
ZW
4604 [Rn], #offset .reg=Rn .reloc.exp=offset
4605 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4606 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4607 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4608
c19d1205 4609 Unindexed addressing (.preind=0, .postind=0):
09d92015 4610
c19d1205 4611 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4612
c19d1205 4613 Other:
09d92015 4614
c19d1205
ZW
4615 [Rn]{!} shorthand for [Rn,#0]{!}
4616 =immediate .isreg=0 .reloc.exp=immediate
4617 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4618
c19d1205
ZW
4619 It is the caller's responsibility to check for addressing modes not
4620 supported by the instruction, and to set inst.reloc.type. */
4621
4962c51a
MS
4622static parse_operand_result
4623parse_address_main (char **str, int i, int group_relocations,
4624 group_reloc_type group_type)
09d92015 4625{
c19d1205
ZW
4626 char *p = *str;
4627 int reg;
09d92015 4628
c19d1205 4629 if (skip_past_char (&p, '[') == FAIL)
09d92015 4630 {
c19d1205
ZW
4631 if (skip_past_char (&p, '=') == FAIL)
4632 {
4633 /* bare address - translate to PC-relative offset */
4634 inst.reloc.pc_rel = 1;
4635 inst.operands[i].reg = REG_PC;
4636 inst.operands[i].isreg = 1;
4637 inst.operands[i].preind = 1;
4638 }
4639 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4640
c19d1205 4641 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4642 return PARSE_OPERAND_FAIL;
09d92015 4643
c19d1205 4644 *str = p;
4962c51a 4645 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4646 }
4647
dcbf9037 4648 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4649 {
c19d1205 4650 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4651 return PARSE_OPERAND_FAIL;
09d92015 4652 }
c19d1205
ZW
4653 inst.operands[i].reg = reg;
4654 inst.operands[i].isreg = 1;
09d92015 4655
c19d1205 4656 if (skip_past_comma (&p) == SUCCESS)
09d92015 4657 {
c19d1205 4658 inst.operands[i].preind = 1;
09d92015 4659
c19d1205
ZW
4660 if (*p == '+') p++;
4661 else if (*p == '-') p++, inst.operands[i].negative = 1;
4662
dcbf9037 4663 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4664 {
c19d1205
ZW
4665 inst.operands[i].imm = reg;
4666 inst.operands[i].immisreg = 1;
4667
4668 if (skip_past_comma (&p) == SUCCESS)
4669 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4670 return PARSE_OPERAND_FAIL;
c19d1205 4671 }
5287ad62
JB
4672 else if (skip_past_char (&p, ':') == SUCCESS)
4673 {
4674 /* FIXME: '@' should be used here, but it's filtered out by generic
4675 code before we get to see it here. This may be subject to
4676 change. */
4677 expressionS exp;
4678 my_get_expression (&exp, &p, GE_NO_PREFIX);
4679 if (exp.X_op != O_constant)
4680 {
4681 inst.error = _("alignment must be constant");
4962c51a 4682 return PARSE_OPERAND_FAIL;
5287ad62
JB
4683 }
4684 inst.operands[i].imm = exp.X_add_number << 8;
4685 inst.operands[i].immisalign = 1;
4686 /* Alignments are not pre-indexes. */
4687 inst.operands[i].preind = 0;
4688 }
c19d1205
ZW
4689 else
4690 {
4691 if (inst.operands[i].negative)
4692 {
4693 inst.operands[i].negative = 0;
4694 p--;
4695 }
4962c51a 4696
5f4273c7
NC
4697 if (group_relocations
4698 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
4699 {
4700 struct group_reloc_table_entry *entry;
4701
4702 /* Skip over the #: or : sequence. */
4703 if (*p == '#')
4704 p += 2;
4705 else
4706 p++;
4707
4708 /* Try to parse a group relocation. Anything else is an
4709 error. */
4710 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4711 {
4712 inst.error = _("unknown group relocation");
4713 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4714 }
4715
4716 /* We now have the group relocation table entry corresponding to
4717 the name in the assembler source. Next, we parse the
4718 expression. */
4719 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4720 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4721
4722 /* Record the relocation type. */
4723 switch (group_type)
4724 {
4725 case GROUP_LDR:
4726 inst.reloc.type = entry->ldr_code;
4727 break;
4728
4729 case GROUP_LDRS:
4730 inst.reloc.type = entry->ldrs_code;
4731 break;
4732
4733 case GROUP_LDC:
4734 inst.reloc.type = entry->ldc_code;
4735 break;
4736
4737 default:
4738 assert (0);
4739 }
4740
4741 if (inst.reloc.type == 0)
4742 {
4743 inst.error = _("this group relocation is not allowed on this instruction");
4744 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4745 }
4746 }
4747 else
4748 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4749 return PARSE_OPERAND_FAIL;
09d92015
MM
4750 }
4751 }
4752
c19d1205 4753 if (skip_past_char (&p, ']') == FAIL)
09d92015 4754 {
c19d1205 4755 inst.error = _("']' expected");
4962c51a 4756 return PARSE_OPERAND_FAIL;
09d92015
MM
4757 }
4758
c19d1205
ZW
4759 if (skip_past_char (&p, '!') == SUCCESS)
4760 inst.operands[i].writeback = 1;
09d92015 4761
c19d1205 4762 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4763 {
c19d1205
ZW
4764 if (skip_past_char (&p, '{') == SUCCESS)
4765 {
4766 /* [Rn], {expr} - unindexed, with option */
4767 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4768 0, 255, TRUE) == FAIL)
4962c51a 4769 return PARSE_OPERAND_FAIL;
09d92015 4770
c19d1205
ZW
4771 if (skip_past_char (&p, '}') == FAIL)
4772 {
4773 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4774 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4775 }
4776 if (inst.operands[i].preind)
4777 {
4778 inst.error = _("cannot combine index with option");
4962c51a 4779 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4780 }
4781 *str = p;
4962c51a 4782 return PARSE_OPERAND_SUCCESS;
09d92015 4783 }
c19d1205
ZW
4784 else
4785 {
4786 inst.operands[i].postind = 1;
4787 inst.operands[i].writeback = 1;
09d92015 4788
c19d1205
ZW
4789 if (inst.operands[i].preind)
4790 {
4791 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4792 return PARSE_OPERAND_FAIL;
c19d1205 4793 }
09d92015 4794
c19d1205
ZW
4795 if (*p == '+') p++;
4796 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4797
dcbf9037 4798 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4799 {
5287ad62
JB
4800 /* We might be using the immediate for alignment already. If we
4801 are, OR the register number into the low-order bits. */
4802 if (inst.operands[i].immisalign)
4803 inst.operands[i].imm |= reg;
4804 else
4805 inst.operands[i].imm = reg;
c19d1205 4806 inst.operands[i].immisreg = 1;
a737bd4d 4807
c19d1205
ZW
4808 if (skip_past_comma (&p) == SUCCESS)
4809 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4810 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4811 }
4812 else
4813 {
4814 if (inst.operands[i].negative)
4815 {
4816 inst.operands[i].negative = 0;
4817 p--;
4818 }
4819 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4820 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4821 }
4822 }
a737bd4d
NC
4823 }
4824
c19d1205
ZW
4825 /* If at this point neither .preind nor .postind is set, we have a
4826 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4827 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4828 {
4829 inst.operands[i].preind = 1;
4830 inst.reloc.exp.X_op = O_constant;
4831 inst.reloc.exp.X_add_number = 0;
4832 }
4833 *str = p;
4962c51a
MS
4834 return PARSE_OPERAND_SUCCESS;
4835}
4836
4837static int
4838parse_address (char **str, int i)
4839{
4840 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4841 ? SUCCESS : FAIL;
4842}
4843
4844static parse_operand_result
4845parse_address_group_reloc (char **str, int i, group_reloc_type type)
4846{
4847 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4848}
4849
b6895b4f
PB
4850/* Parse an operand for a MOVW or MOVT instruction. */
4851static int
4852parse_half (char **str)
4853{
4854 char * p;
5f4273c7 4855
b6895b4f
PB
4856 p = *str;
4857 skip_past_char (&p, '#');
5f4273c7 4858 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
4859 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4860 else if (strncasecmp (p, ":upper16:", 9) == 0)
4861 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4862
4863 if (inst.reloc.type != BFD_RELOC_UNUSED)
4864 {
4865 p += 9;
5f4273c7 4866 skip_whitespace (p);
b6895b4f
PB
4867 }
4868
4869 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4870 return FAIL;
4871
4872 if (inst.reloc.type == BFD_RELOC_UNUSED)
4873 {
4874 if (inst.reloc.exp.X_op != O_constant)
4875 {
4876 inst.error = _("constant expression expected");
4877 return FAIL;
4878 }
4879 if (inst.reloc.exp.X_add_number < 0
4880 || inst.reloc.exp.X_add_number > 0xffff)
4881 {
4882 inst.error = _("immediate value out of range");
4883 return FAIL;
4884 }
4885 }
4886 *str = p;
4887 return SUCCESS;
4888}
4889
c19d1205 4890/* Miscellaneous. */
a737bd4d 4891
c19d1205
ZW
4892/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4893 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4894static int
4895parse_psr (char **str)
09d92015 4896{
c19d1205
ZW
4897 char *p;
4898 unsigned long psr_field;
62b3e311
PB
4899 const struct asm_psr *psr;
4900 char *start;
09d92015 4901
c19d1205
ZW
4902 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4903 feature for ease of use and backwards compatibility. */
4904 p = *str;
62b3e311 4905 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4906 psr_field = SPSR_BIT;
62b3e311 4907 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4908 psr_field = 0;
4909 else
62b3e311
PB
4910 {
4911 start = p;
4912 do
4913 p++;
4914 while (ISALNUM (*p) || *p == '_');
4915
4916 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4917 if (!psr)
4918 return FAIL;
09d92015 4919
62b3e311
PB
4920 *str = p;
4921 return psr->field;
4922 }
09d92015 4923
62b3e311 4924 p += 4;
c19d1205
ZW
4925 if (*p == '_')
4926 {
4927 /* A suffix follows. */
c19d1205
ZW
4928 p++;
4929 start = p;
a737bd4d 4930
c19d1205
ZW
4931 do
4932 p++;
4933 while (ISALNUM (*p) || *p == '_');
a737bd4d 4934
c19d1205
ZW
4935 psr = hash_find_n (arm_psr_hsh, start, p - start);
4936 if (!psr)
4937 goto error;
a737bd4d 4938
c19d1205 4939 psr_field |= psr->field;
a737bd4d 4940 }
c19d1205 4941 else
a737bd4d 4942 {
c19d1205
ZW
4943 if (ISALNUM (*p))
4944 goto error; /* Garbage after "[CS]PSR". */
4945
4946 psr_field |= (PSR_c | PSR_f);
a737bd4d 4947 }
c19d1205
ZW
4948 *str = p;
4949 return psr_field;
a737bd4d 4950
c19d1205
ZW
4951 error:
4952 inst.error = _("flag for {c}psr instruction expected");
4953 return FAIL;
a737bd4d
NC
4954}
4955
c19d1205
ZW
4956/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4957 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4958
c19d1205
ZW
4959static int
4960parse_cps_flags (char **str)
a737bd4d 4961{
c19d1205
ZW
4962 int val = 0;
4963 int saw_a_flag = 0;
4964 char *s = *str;
a737bd4d 4965
c19d1205
ZW
4966 for (;;)
4967 switch (*s++)
4968 {
4969 case '\0': case ',':
4970 goto done;
a737bd4d 4971
c19d1205
ZW
4972 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4973 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4974 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4975
c19d1205
ZW
4976 default:
4977 inst.error = _("unrecognized CPS flag");
4978 return FAIL;
4979 }
a737bd4d 4980
c19d1205
ZW
4981 done:
4982 if (saw_a_flag == 0)
a737bd4d 4983 {
c19d1205
ZW
4984 inst.error = _("missing CPS flags");
4985 return FAIL;
a737bd4d 4986 }
a737bd4d 4987
c19d1205
ZW
4988 *str = s - 1;
4989 return val;
a737bd4d
NC
4990}
4991
c19d1205
ZW
4992/* Parse an endian specifier ("BE" or "LE", case insensitive);
4993 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4994
4995static int
c19d1205 4996parse_endian_specifier (char **str)
a737bd4d 4997{
c19d1205
ZW
4998 int little_endian;
4999 char *s = *str;
a737bd4d 5000
c19d1205
ZW
5001 if (strncasecmp (s, "BE", 2))
5002 little_endian = 0;
5003 else if (strncasecmp (s, "LE", 2))
5004 little_endian = 1;
5005 else
a737bd4d 5006 {
c19d1205 5007 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5008 return FAIL;
5009 }
5010
c19d1205 5011 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5012 {
c19d1205 5013 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5014 return FAIL;
5015 }
5016
c19d1205
ZW
5017 *str = s + 2;
5018 return little_endian;
5019}
a737bd4d 5020
c19d1205
ZW
5021/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5022 value suitable for poking into the rotate field of an sxt or sxta
5023 instruction, or FAIL on error. */
5024
5025static int
5026parse_ror (char **str)
5027{
5028 int rot;
5029 char *s = *str;
5030
5031 if (strncasecmp (s, "ROR", 3) == 0)
5032 s += 3;
5033 else
a737bd4d 5034 {
c19d1205 5035 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5036 return FAIL;
5037 }
c19d1205
ZW
5038
5039 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5040 return FAIL;
5041
5042 switch (rot)
a737bd4d 5043 {
c19d1205
ZW
5044 case 0: *str = s; return 0x0;
5045 case 8: *str = s; return 0x1;
5046 case 16: *str = s; return 0x2;
5047 case 24: *str = s; return 0x3;
5048
5049 default:
5050 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5051 return FAIL;
5052 }
c19d1205 5053}
a737bd4d 5054
c19d1205
ZW
5055/* Parse a conditional code (from conds[] below). The value returned is in the
5056 range 0 .. 14, or FAIL. */
5057static int
5058parse_cond (char **str)
5059{
c462b453 5060 char *q;
c19d1205 5061 const struct asm_cond *c;
c462b453
PB
5062 int n;
5063 /* Condition codes are always 2 characters, so matching up to
5064 3 characters is sufficient. */
5065 char cond[3];
a737bd4d 5066
c462b453
PB
5067 q = *str;
5068 n = 0;
5069 while (ISALPHA (*q) && n < 3)
5070 {
5071 cond[n] = TOLOWER(*q);
5072 q++;
5073 n++;
5074 }
a737bd4d 5075
c462b453 5076 c = hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5077 if (!c)
a737bd4d 5078 {
c19d1205 5079 inst.error = _("condition required");
a737bd4d
NC
5080 return FAIL;
5081 }
5082
c19d1205
ZW
5083 *str = q;
5084 return c->value;
5085}
5086
62b3e311
PB
5087/* Parse an option for a barrier instruction. Returns the encoding for the
5088 option, or FAIL. */
5089static int
5090parse_barrier (char **str)
5091{
5092 char *p, *q;
5093 const struct asm_barrier_opt *o;
5094
5095 p = q = *str;
5096 while (ISALPHA (*q))
5097 q++;
5098
5099 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5100 if (!o)
5101 return FAIL;
5102
5103 *str = q;
5104 return o->value;
5105}
5106
92e90b6e
PB
5107/* Parse the operands of a table branch instruction. Similar to a memory
5108 operand. */
5109static int
5110parse_tb (char **str)
5111{
5112 char * p = *str;
5113 int reg;
5114
5115 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5116 {
5117 inst.error = _("'[' expected");
5118 return FAIL;
5119 }
92e90b6e 5120
dcbf9037 5121 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5122 {
5123 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5124 return FAIL;
5125 }
5126 inst.operands[0].reg = reg;
5127
5128 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5129 {
5130 inst.error = _("',' expected");
5131 return FAIL;
5132 }
5f4273c7 5133
dcbf9037 5134 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5135 {
5136 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5137 return FAIL;
5138 }
5139 inst.operands[0].imm = reg;
5140
5141 if (skip_past_comma (&p) == SUCCESS)
5142 {
5143 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5144 return FAIL;
5145 if (inst.reloc.exp.X_add_number != 1)
5146 {
5147 inst.error = _("invalid shift");
5148 return FAIL;
5149 }
5150 inst.operands[0].shifted = 1;
5151 }
5152
5153 if (skip_past_char (&p, ']') == FAIL)
5154 {
5155 inst.error = _("']' expected");
5156 return FAIL;
5157 }
5158 *str = p;
5159 return SUCCESS;
5160}
5161
5287ad62
JB
5162/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5163 information on the types the operands can take and how they are encoded.
037e8744
JB
5164 Up to four operands may be read; this function handles setting the
5165 ".present" field for each read operand itself.
5287ad62
JB
5166 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5167 else returns FAIL. */
5168
5169static int
5170parse_neon_mov (char **str, int *which_operand)
5171{
5172 int i = *which_operand, val;
5173 enum arm_reg_type rtype;
5174 char *ptr = *str;
dcbf9037 5175 struct neon_type_el optype;
5f4273c7 5176
dcbf9037 5177 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5178 {
5179 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5180 inst.operands[i].reg = val;
5181 inst.operands[i].isscalar = 1;
dcbf9037 5182 inst.operands[i].vectype = optype;
5287ad62
JB
5183 inst.operands[i++].present = 1;
5184
5185 if (skip_past_comma (&ptr) == FAIL)
5186 goto wanted_comma;
5f4273c7 5187
dcbf9037 5188 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5189 goto wanted_arm;
5f4273c7 5190
5287ad62
JB
5191 inst.operands[i].reg = val;
5192 inst.operands[i].isreg = 1;
5193 inst.operands[i].present = 1;
5194 }
037e8744 5195 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5196 != FAIL)
5287ad62
JB
5197 {
5198 /* Cases 0, 1, 2, 3, 5 (D only). */
5199 if (skip_past_comma (&ptr) == FAIL)
5200 goto wanted_comma;
5f4273c7 5201
5287ad62
JB
5202 inst.operands[i].reg = val;
5203 inst.operands[i].isreg = 1;
5204 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5205 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5206 inst.operands[i].isvec = 1;
dcbf9037 5207 inst.operands[i].vectype = optype;
5287ad62
JB
5208 inst.operands[i++].present = 1;
5209
dcbf9037 5210 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5211 {
037e8744
JB
5212 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5213 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5214 inst.operands[i].reg = val;
5215 inst.operands[i].isreg = 1;
037e8744 5216 inst.operands[i].present = 1;
5287ad62
JB
5217
5218 if (rtype == REG_TYPE_NQ)
5219 {
dcbf9037 5220 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5221 return FAIL;
5222 }
037e8744
JB
5223 else if (rtype != REG_TYPE_VFS)
5224 {
5225 i++;
5226 if (skip_past_comma (&ptr) == FAIL)
5227 goto wanted_comma;
5228 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5229 goto wanted_arm;
5230 inst.operands[i].reg = val;
5231 inst.operands[i].isreg = 1;
5232 inst.operands[i].present = 1;
5233 }
5287ad62 5234 }
037e8744
JB
5235 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5236 &optype)) != FAIL)
5287ad62
JB
5237 {
5238 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5239 Case 1: VMOV<c><q> <Dd>, <Dm>
5240 Case 8: VMOV.F32 <Sd>, <Sm>
5241 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5242
5243 inst.operands[i].reg = val;
5244 inst.operands[i].isreg = 1;
5245 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5246 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5247 inst.operands[i].isvec = 1;
dcbf9037 5248 inst.operands[i].vectype = optype;
5287ad62 5249 inst.operands[i].present = 1;
5f4273c7 5250
037e8744
JB
5251 if (skip_past_comma (&ptr) == SUCCESS)
5252 {
5253 /* Case 15. */
5254 i++;
5255
5256 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5257 goto wanted_arm;
5258
5259 inst.operands[i].reg = val;
5260 inst.operands[i].isreg = 1;
5261 inst.operands[i++].present = 1;
5f4273c7 5262
037e8744
JB
5263 if (skip_past_comma (&ptr) == FAIL)
5264 goto wanted_comma;
5f4273c7 5265
037e8744
JB
5266 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5267 goto wanted_arm;
5f4273c7 5268
037e8744
JB
5269 inst.operands[i].reg = val;
5270 inst.operands[i].isreg = 1;
5271 inst.operands[i++].present = 1;
5272 }
5287ad62 5273 }
4641781c
PB
5274 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5275 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5276 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5277 Case 10: VMOV.F32 <Sd>, #<imm>
5278 Case 11: VMOV.F64 <Dd>, #<imm> */
5279 inst.operands[i].immisfloat = 1;
5280 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5281 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5282 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5283 ;
5287ad62
JB
5284 else
5285 {
dcbf9037 5286 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5287 return FAIL;
5288 }
5289 }
dcbf9037 5290 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5291 {
5292 /* Cases 6, 7. */
5293 inst.operands[i].reg = val;
5294 inst.operands[i].isreg = 1;
5295 inst.operands[i++].present = 1;
5f4273c7 5296
5287ad62
JB
5297 if (skip_past_comma (&ptr) == FAIL)
5298 goto wanted_comma;
5f4273c7 5299
dcbf9037 5300 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5301 {
5302 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5303 inst.operands[i].reg = val;
5304 inst.operands[i].isscalar = 1;
5305 inst.operands[i].present = 1;
dcbf9037 5306 inst.operands[i].vectype = optype;
5287ad62 5307 }
dcbf9037 5308 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5309 {
5310 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5311 inst.operands[i].reg = val;
5312 inst.operands[i].isreg = 1;
5313 inst.operands[i++].present = 1;
5f4273c7 5314
5287ad62
JB
5315 if (skip_past_comma (&ptr) == FAIL)
5316 goto wanted_comma;
5f4273c7 5317
037e8744 5318 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5319 == FAIL)
5287ad62 5320 {
037e8744 5321 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5322 return FAIL;
5323 }
5324
5325 inst.operands[i].reg = val;
5326 inst.operands[i].isreg = 1;
037e8744
JB
5327 inst.operands[i].isvec = 1;
5328 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5329 inst.operands[i].vectype = optype;
5287ad62 5330 inst.operands[i].present = 1;
5f4273c7 5331
037e8744
JB
5332 if (rtype == REG_TYPE_VFS)
5333 {
5334 /* Case 14. */
5335 i++;
5336 if (skip_past_comma (&ptr) == FAIL)
5337 goto wanted_comma;
5338 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5339 &optype)) == FAIL)
5340 {
5341 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5342 return FAIL;
5343 }
5344 inst.operands[i].reg = val;
5345 inst.operands[i].isreg = 1;
5346 inst.operands[i].isvec = 1;
5347 inst.operands[i].issingle = 1;
5348 inst.operands[i].vectype = optype;
5349 inst.operands[i].present = 1;
5350 }
5351 }
5352 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5353 != FAIL)
5354 {
5355 /* Case 13. */
5356 inst.operands[i].reg = val;
5357 inst.operands[i].isreg = 1;
5358 inst.operands[i].isvec = 1;
5359 inst.operands[i].issingle = 1;
5360 inst.operands[i].vectype = optype;
5361 inst.operands[i++].present = 1;
5287ad62
JB
5362 }
5363 }
5364 else
5365 {
dcbf9037 5366 first_error (_("parse error"));
5287ad62
JB
5367 return FAIL;
5368 }
5369
5370 /* Successfully parsed the operands. Update args. */
5371 *which_operand = i;
5372 *str = ptr;
5373 return SUCCESS;
5374
5f4273c7 5375 wanted_comma:
dcbf9037 5376 first_error (_("expected comma"));
5287ad62 5377 return FAIL;
5f4273c7
NC
5378
5379 wanted_arm:
dcbf9037 5380 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5381 return FAIL;
5287ad62
JB
5382}
5383
c19d1205
ZW
5384/* Matcher codes for parse_operands. */
5385enum operand_parse_code
5386{
5387 OP_stop, /* end of line */
5388
5389 OP_RR, /* ARM register */
5390 OP_RRnpc, /* ARM register, not r15 */
5391 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5392 OP_RRw, /* ARM register, not r15, optional trailing ! */
5393 OP_RCP, /* Coprocessor number */
5394 OP_RCN, /* Coprocessor register */
5395 OP_RF, /* FPA register */
5396 OP_RVS, /* VFP single precision register */
5287ad62
JB
5397 OP_RVD, /* VFP double precision register (0..15) */
5398 OP_RND, /* Neon double precision register (0..31) */
5399 OP_RNQ, /* Neon quad precision register */
037e8744 5400 OP_RVSD, /* VFP single or double precision register */
5287ad62 5401 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5402 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5403 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5404 OP_RVC, /* VFP control register */
5405 OP_RMF, /* Maverick F register */
5406 OP_RMD, /* Maverick D register */
5407 OP_RMFX, /* Maverick FX register */
5408 OP_RMDX, /* Maverick DX register */
5409 OP_RMAX, /* Maverick AX register */
5410 OP_RMDS, /* Maverick DSPSC register */
5411 OP_RIWR, /* iWMMXt wR register */
5412 OP_RIWC, /* iWMMXt wC register */
5413 OP_RIWG, /* iWMMXt wCG register */
5414 OP_RXA, /* XScale accumulator register */
5415
5416 OP_REGLST, /* ARM register list */
5417 OP_VRSLST, /* VFP single-precision register list */
5418 OP_VRDLST, /* VFP double-precision register list */
037e8744 5419 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5420 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5421 OP_NSTRLST, /* Neon element/structure list */
5422
5423 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5424 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5425 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5426 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5427 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5428 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5429 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5430 OP_VMOV, /* Neon VMOV operands. */
5431 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5432 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5433 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5434
5435 OP_I0, /* immediate zero */
c19d1205
ZW
5436 OP_I7, /* immediate value 0 .. 7 */
5437 OP_I15, /* 0 .. 15 */
5438 OP_I16, /* 1 .. 16 */
5287ad62 5439 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5440 OP_I31, /* 0 .. 31 */
5441 OP_I31w, /* 0 .. 31, optional trailing ! */
5442 OP_I32, /* 1 .. 32 */
5287ad62
JB
5443 OP_I32z, /* 0 .. 32 */
5444 OP_I63, /* 0 .. 63 */
c19d1205 5445 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5446 OP_I64, /* 1 .. 64 */
5447 OP_I64z, /* 0 .. 64 */
c19d1205 5448 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5449
5450 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5451 OP_I7b, /* 0 .. 7 */
5452 OP_I15b, /* 0 .. 15 */
5453 OP_I31b, /* 0 .. 31 */
5454
5455 OP_SH, /* shifter operand */
4962c51a 5456 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5457 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5458 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5459 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5460 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5461 OP_EXP, /* arbitrary expression */
5462 OP_EXPi, /* same, with optional immediate prefix */
5463 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5464 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5465
5466 OP_CPSF, /* CPS flags */
5467 OP_ENDI, /* Endianness specifier */
5468 OP_PSR, /* CPSR/SPSR mask for msr */
5469 OP_COND, /* conditional code */
92e90b6e 5470 OP_TB, /* Table branch. */
c19d1205 5471
037e8744
JB
5472 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5473 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5474
c19d1205
ZW
5475 OP_RRnpc_I0, /* ARM register or literal 0 */
5476 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5477 OP_RR_EXi, /* ARM register or expression with imm prefix */
5478 OP_RF_IF, /* FPA register or immediate */
5479 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5480 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5481
5482 /* Optional operands. */
5483 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5484 OP_oI31b, /* 0 .. 31 */
5287ad62 5485 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5486 OP_oIffffb, /* 0 .. 65535 */
5487 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5488
5489 OP_oRR, /* ARM register */
5490 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5491 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5492 OP_oRND, /* Optional Neon double precision register */
5493 OP_oRNQ, /* Optional Neon quad precision register */
5494 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5495 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5496 OP_oSHll, /* LSL immediate */
5497 OP_oSHar, /* ASR immediate */
5498 OP_oSHllar, /* LSL or ASR immediate */
5499 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5500 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5501
5502 OP_FIRST_OPTIONAL = OP_oI7b
5503};
a737bd4d 5504
c19d1205
ZW
5505/* Generic instruction operand parser. This does no encoding and no
5506 semantic validation; it merely squirrels values away in the inst
5507 structure. Returns SUCCESS or FAIL depending on whether the
5508 specified grammar matched. */
5509static int
ca3f61f7 5510parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5511{
5512 unsigned const char *upat = pattern;
5513 char *backtrack_pos = 0;
5514 const char *backtrack_error = 0;
5515 int i, val, backtrack_index = 0;
5287ad62 5516 enum arm_reg_type rtype;
4962c51a 5517 parse_operand_result result;
c19d1205
ZW
5518
5519#define po_char_or_fail(chr) do { \
5520 if (skip_past_char (&str, chr) == FAIL) \
5521 goto bad_args; \
5522} while (0)
5523
dcbf9037
JB
5524#define po_reg_or_fail(regtype) do { \
5525 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5526 &inst.operands[i].vectype); \
5527 if (val == FAIL) \
5528 { \
5529 first_error (_(reg_expected_msgs[regtype])); \
5530 goto failure; \
5531 } \
5532 inst.operands[i].reg = val; \
5533 inst.operands[i].isreg = 1; \
5534 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5535 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5536 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5537 || rtype == REG_TYPE_VFD \
5538 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5539} while (0)
5540
dcbf9037
JB
5541#define po_reg_or_goto(regtype, label) do { \
5542 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5543 &inst.operands[i].vectype); \
5544 if (val == FAIL) \
5545 goto label; \
5546 \
5547 inst.operands[i].reg = val; \
5548 inst.operands[i].isreg = 1; \
5549 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5550 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5551 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5552 || rtype == REG_TYPE_VFD \
5553 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5554} while (0)
5555
5556#define po_imm_or_fail(min, max, popt) do { \
5557 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5558 goto failure; \
5559 inst.operands[i].imm = val; \
5560} while (0)
5561
dcbf9037
JB
5562#define po_scalar_or_goto(elsz, label) do { \
5563 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5564 if (val == FAIL) \
5565 goto label; \
5566 inst.operands[i].reg = val; \
5567 inst.operands[i].isscalar = 1; \
5287ad62
JB
5568} while (0)
5569
c19d1205
ZW
5570#define po_misc_or_fail(expr) do { \
5571 if (expr) \
5572 goto failure; \
5573} while (0)
5574
4962c51a
MS
5575#define po_misc_or_fail_no_backtrack(expr) do { \
5576 result = expr; \
5577 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5578 backtrack_pos = 0; \
5579 if (result != PARSE_OPERAND_SUCCESS) \
5580 goto failure; \
5581} while (0)
5582
c19d1205
ZW
5583 skip_whitespace (str);
5584
5585 for (i = 0; upat[i] != OP_stop; i++)
5586 {
5587 if (upat[i] >= OP_FIRST_OPTIONAL)
5588 {
5589 /* Remember where we are in case we need to backtrack. */
5590 assert (!backtrack_pos);
5591 backtrack_pos = str;
5592 backtrack_error = inst.error;
5593 backtrack_index = i;
5594 }
5595
b6702015 5596 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5597 po_char_or_fail (',');
5598
5599 switch (upat[i])
5600 {
5601 /* Registers */
5602 case OP_oRRnpc:
5603 case OP_RRnpc:
5604 case OP_oRR:
5605 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5606 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5607 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5608 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5609 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5610 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5611 case OP_oRND:
5612 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5613 case OP_RVC:
5614 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5615 break;
5616 /* Also accept generic coprocessor regs for unknown registers. */
5617 coproc_reg:
5618 po_reg_or_fail (REG_TYPE_CN);
5619 break;
c19d1205
ZW
5620 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5621 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5622 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5623 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5624 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5625 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5626 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5627 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5628 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5629 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5630 case OP_oRNQ:
5631 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5632 case OP_oRNDQ:
5633 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5634 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5635 case OP_oRNSDQ:
5636 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5637
5638 /* Neon scalar. Using an element size of 8 means that some invalid
5639 scalars are accepted here, so deal with those in later code. */
5640 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5641
5642 /* WARNING: We can expand to two operands here. This has the potential
5643 to totally confuse the backtracking mechanism! It will be OK at
5644 least as long as we don't try to use optional args as well,
5645 though. */
5646 case OP_NILO:
5647 {
5648 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5649 inst.operands[i].present = 1;
5287ad62
JB
5650 i++;
5651 skip_past_comma (&str);
5652 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5653 break;
5654 one_reg_only:
5655 /* Optional register operand was omitted. Unfortunately, it's in
5656 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5657 here (this is a bit grotty). */
5658 inst.operands[i] = inst.operands[i-1];
5659 inst.operands[i-1].present = 0;
5660 break;
5661 try_imm:
036dc3f7
PB
5662 /* There's a possibility of getting a 64-bit immediate here, so
5663 we need special handling. */
5664 if (parse_big_immediate (&str, i) == FAIL)
5665 {
5666 inst.error = _("immediate value is out of range");
5667 goto failure;
5668 }
5287ad62
JB
5669 }
5670 break;
5671
5672 case OP_RNDQ_I0:
5673 {
5674 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5675 break;
5676 try_imm0:
5677 po_imm_or_fail (0, 0, TRUE);
5678 }
5679 break;
5680
037e8744
JB
5681 case OP_RVSD_I0:
5682 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5683 break;
5684
5287ad62
JB
5685 case OP_RR_RNSC:
5686 {
5687 po_scalar_or_goto (8, try_rr);
5688 break;
5689 try_rr:
5690 po_reg_or_fail (REG_TYPE_RN);
5691 }
5692 break;
5693
037e8744
JB
5694 case OP_RNSDQ_RNSC:
5695 {
5696 po_scalar_or_goto (8, try_nsdq);
5697 break;
5698 try_nsdq:
5699 po_reg_or_fail (REG_TYPE_NSDQ);
5700 }
5701 break;
5702
5287ad62
JB
5703 case OP_RNDQ_RNSC:
5704 {
5705 po_scalar_or_goto (8, try_ndq);
5706 break;
5707 try_ndq:
5708 po_reg_or_fail (REG_TYPE_NDQ);
5709 }
5710 break;
5711
5712 case OP_RND_RNSC:
5713 {
5714 po_scalar_or_goto (8, try_vfd);
5715 break;
5716 try_vfd:
5717 po_reg_or_fail (REG_TYPE_VFD);
5718 }
5719 break;
5720
5721 case OP_VMOV:
5722 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5723 not careful then bad things might happen. */
5724 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5725 break;
5726
5727 case OP_RNDQ_IMVNb:
5728 {
5729 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5730 break;
5731 try_mvnimm:
5732 /* There's a possibility of getting a 64-bit immediate here, so
5733 we need special handling. */
5734 if (parse_big_immediate (&str, i) == FAIL)
5735 {
5736 inst.error = _("immediate value is out of range");
5737 goto failure;
5738 }
5739 }
5740 break;
5741
5742 case OP_RNDQ_I63b:
5743 {
5744 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5745 break;
5746 try_shimm:
5747 po_imm_or_fail (0, 63, TRUE);
5748 }
5749 break;
c19d1205
ZW
5750
5751 case OP_RRnpcb:
5752 po_char_or_fail ('[');
5753 po_reg_or_fail (REG_TYPE_RN);
5754 po_char_or_fail (']');
5755 break;
a737bd4d 5756
c19d1205 5757 case OP_RRw:
b6702015 5758 case OP_oRRw:
c19d1205
ZW
5759 po_reg_or_fail (REG_TYPE_RN);
5760 if (skip_past_char (&str, '!') == SUCCESS)
5761 inst.operands[i].writeback = 1;
5762 break;
5763
5764 /* Immediates */
5765 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5766 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5767 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5768 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5769 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5770 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5771 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5772 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5773 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5774 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5775 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5776 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5777
5778 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5779 case OP_oI7b:
5780 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5781 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5782 case OP_oI31b:
5783 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5784 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5785 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5786
5787 /* Immediate variants */
5788 case OP_oI255c:
5789 po_char_or_fail ('{');
5790 po_imm_or_fail (0, 255, TRUE);
5791 po_char_or_fail ('}');
5792 break;
5793
5794 case OP_I31w:
5795 /* The expression parser chokes on a trailing !, so we have
5796 to find it first and zap it. */
5797 {
5798 char *s = str;
5799 while (*s && *s != ',')
5800 s++;
5801 if (s[-1] == '!')
5802 {
5803 s[-1] = '\0';
5804 inst.operands[i].writeback = 1;
5805 }
5806 po_imm_or_fail (0, 31, TRUE);
5807 if (str == s - 1)
5808 str = s;
5809 }
5810 break;
5811
5812 /* Expressions */
5813 case OP_EXPi: EXPi:
5814 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5815 GE_OPT_PREFIX));
5816 break;
5817
5818 case OP_EXP:
5819 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5820 GE_NO_PREFIX));
5821 break;
5822
5823 case OP_EXPr: EXPr:
5824 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5825 GE_NO_PREFIX));
5826 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5827 {
c19d1205
ZW
5828 val = parse_reloc (&str);
5829 if (val == -1)
5830 {
5831 inst.error = _("unrecognized relocation suffix");
5832 goto failure;
5833 }
5834 else if (val != BFD_RELOC_UNUSED)
5835 {
5836 inst.operands[i].imm = val;
5837 inst.operands[i].hasreloc = 1;
5838 }
a737bd4d 5839 }
c19d1205 5840 break;
a737bd4d 5841
b6895b4f
PB
5842 /* Operand for MOVW or MOVT. */
5843 case OP_HALF:
5844 po_misc_or_fail (parse_half (&str));
5845 break;
5846
c19d1205
ZW
5847 /* Register or expression */
5848 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5849 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5850
c19d1205
ZW
5851 /* Register or immediate */
5852 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5853 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5854
c19d1205
ZW
5855 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5856 IF:
5857 if (!is_immediate_prefix (*str))
5858 goto bad_args;
5859 str++;
5860 val = parse_fpa_immediate (&str);
5861 if (val == FAIL)
5862 goto failure;
5863 /* FPA immediates are encoded as registers 8-15.
5864 parse_fpa_immediate has already applied the offset. */
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 break;
09d92015 5868
2d447fca
JM
5869 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5870 I32z: po_imm_or_fail (0, 32, FALSE); break;
5871
c19d1205
ZW
5872 /* Two kinds of register */
5873 case OP_RIWR_RIWC:
5874 {
5875 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5876 if (!rege
5877 || (rege->type != REG_TYPE_MMXWR
5878 && rege->type != REG_TYPE_MMXWC
5879 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5880 {
5881 inst.error = _("iWMMXt data or control register expected");
5882 goto failure;
5883 }
5884 inst.operands[i].reg = rege->number;
5885 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5886 }
5887 break;
09d92015 5888
41adaa5c
JM
5889 case OP_RIWC_RIWG:
5890 {
5891 struct reg_entry *rege = arm_reg_parse_multi (&str);
5892 if (!rege
5893 || (rege->type != REG_TYPE_MMXWC
5894 && rege->type != REG_TYPE_MMXWCG))
5895 {
5896 inst.error = _("iWMMXt control register expected");
5897 goto failure;
5898 }
5899 inst.operands[i].reg = rege->number;
5900 inst.operands[i].isreg = 1;
5901 }
5902 break;
5903
c19d1205
ZW
5904 /* Misc */
5905 case OP_CPSF: val = parse_cps_flags (&str); break;
5906 case OP_ENDI: val = parse_endian_specifier (&str); break;
5907 case OP_oROR: val = parse_ror (&str); break;
5908 case OP_PSR: val = parse_psr (&str); break;
5909 case OP_COND: val = parse_cond (&str); break;
62b3e311 5910 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5911
037e8744
JB
5912 case OP_RVC_PSR:
5913 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5914 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5915 break;
5916 try_psr:
5917 val = parse_psr (&str);
5918 break;
5919
5920 case OP_APSR_RR:
5921 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5922 break;
5923 try_apsr:
5924 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5925 instruction). */
5926 if (strncasecmp (str, "APSR_", 5) == 0)
5927 {
5928 unsigned found = 0;
5929 str += 5;
5930 while (found < 15)
5931 switch (*str++)
5932 {
5933 case 'c': found = (found & 1) ? 16 : found | 1; break;
5934 case 'n': found = (found & 2) ? 16 : found | 2; break;
5935 case 'z': found = (found & 4) ? 16 : found | 4; break;
5936 case 'v': found = (found & 8) ? 16 : found | 8; break;
5937 default: found = 16;
5938 }
5939 if (found != 15)
5940 goto failure;
5941 inst.operands[i].isvec = 1;
5942 }
5943 else
5944 goto failure;
5945 break;
5946
92e90b6e
PB
5947 case OP_TB:
5948 po_misc_or_fail (parse_tb (&str));
5949 break;
5950
c19d1205
ZW
5951 /* Register lists */
5952 case OP_REGLST:
5953 val = parse_reg_list (&str);
5954 if (*str == '^')
5955 {
5956 inst.operands[1].writeback = 1;
5957 str++;
5958 }
5959 break;
09d92015 5960
c19d1205 5961 case OP_VRSLST:
5287ad62 5962 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5963 break;
09d92015 5964
c19d1205 5965 case OP_VRDLST:
5287ad62 5966 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5967 break;
a737bd4d 5968
037e8744
JB
5969 case OP_VRSDLST:
5970 /* Allow Q registers too. */
5971 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5972 REGLIST_NEON_D);
5973 if (val == FAIL)
5974 {
5975 inst.error = NULL;
5976 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5977 REGLIST_VFP_S);
5978 inst.operands[i].issingle = 1;
5979 }
5980 break;
5981
5287ad62
JB
5982 case OP_NRDLST:
5983 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5984 REGLIST_NEON_D);
5985 break;
5986
5987 case OP_NSTRLST:
dcbf9037
JB
5988 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5989 &inst.operands[i].vectype);
5287ad62
JB
5990 break;
5991
c19d1205
ZW
5992 /* Addressing modes */
5993 case OP_ADDR:
5994 po_misc_or_fail (parse_address (&str, i));
5995 break;
09d92015 5996
4962c51a
MS
5997 case OP_ADDRGLDR:
5998 po_misc_or_fail_no_backtrack (
5999 parse_address_group_reloc (&str, i, GROUP_LDR));
6000 break;
6001
6002 case OP_ADDRGLDRS:
6003 po_misc_or_fail_no_backtrack (
6004 parse_address_group_reloc (&str, i, GROUP_LDRS));
6005 break;
6006
6007 case OP_ADDRGLDC:
6008 po_misc_or_fail_no_backtrack (
6009 parse_address_group_reloc (&str, i, GROUP_LDC));
6010 break;
6011
c19d1205
ZW
6012 case OP_SH:
6013 po_misc_or_fail (parse_shifter_operand (&str, i));
6014 break;
09d92015 6015
4962c51a
MS
6016 case OP_SHG:
6017 po_misc_or_fail_no_backtrack (
6018 parse_shifter_operand_group_reloc (&str, i));
6019 break;
6020
c19d1205
ZW
6021 case OP_oSHll:
6022 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6023 break;
09d92015 6024
c19d1205
ZW
6025 case OP_oSHar:
6026 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6027 break;
09d92015 6028
c19d1205
ZW
6029 case OP_oSHllar:
6030 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6031 break;
09d92015 6032
c19d1205 6033 default:
bd3ba5d1 6034 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6035 }
09d92015 6036
c19d1205
ZW
6037 /* Various value-based sanity checks and shared operations. We
6038 do not signal immediate failures for the register constraints;
6039 this allows a syntax error to take precedence. */
6040 switch (upat[i])
6041 {
6042 case OP_oRRnpc:
6043 case OP_RRnpc:
6044 case OP_RRnpcb:
6045 case OP_RRw:
b6702015 6046 case OP_oRRw:
c19d1205
ZW
6047 case OP_RRnpc_I0:
6048 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6049 inst.error = BAD_PC;
6050 break;
09d92015 6051
c19d1205
ZW
6052 case OP_CPSF:
6053 case OP_ENDI:
6054 case OP_oROR:
6055 case OP_PSR:
037e8744 6056 case OP_RVC_PSR:
c19d1205 6057 case OP_COND:
62b3e311 6058 case OP_oBARRIER:
c19d1205
ZW
6059 case OP_REGLST:
6060 case OP_VRSLST:
6061 case OP_VRDLST:
037e8744 6062 case OP_VRSDLST:
5287ad62
JB
6063 case OP_NRDLST:
6064 case OP_NSTRLST:
c19d1205
ZW
6065 if (val == FAIL)
6066 goto failure;
6067 inst.operands[i].imm = val;
6068 break;
a737bd4d 6069
c19d1205
ZW
6070 default:
6071 break;
6072 }
09d92015 6073
c19d1205
ZW
6074 /* If we get here, this operand was successfully parsed. */
6075 inst.operands[i].present = 1;
6076 continue;
09d92015 6077
c19d1205 6078 bad_args:
09d92015 6079 inst.error = BAD_ARGS;
c19d1205
ZW
6080
6081 failure:
6082 if (!backtrack_pos)
d252fdde
PB
6083 {
6084 /* The parse routine should already have set inst.error, but set a
5f4273c7 6085 default here just in case. */
d252fdde
PB
6086 if (!inst.error)
6087 inst.error = _("syntax error");
6088 return FAIL;
6089 }
c19d1205
ZW
6090
6091 /* Do not backtrack over a trailing optional argument that
6092 absorbed some text. We will only fail again, with the
6093 'garbage following instruction' error message, which is
6094 probably less helpful than the current one. */
6095 if (backtrack_index == i && backtrack_pos != str
6096 && upat[i+1] == OP_stop)
d252fdde
PB
6097 {
6098 if (!inst.error)
6099 inst.error = _("syntax error");
6100 return FAIL;
6101 }
c19d1205
ZW
6102
6103 /* Try again, skipping the optional argument at backtrack_pos. */
6104 str = backtrack_pos;
6105 inst.error = backtrack_error;
6106 inst.operands[backtrack_index].present = 0;
6107 i = backtrack_index;
6108 backtrack_pos = 0;
09d92015 6109 }
09d92015 6110
c19d1205
ZW
6111 /* Check that we have parsed all the arguments. */
6112 if (*str != '\0' && !inst.error)
6113 inst.error = _("garbage following instruction");
09d92015 6114
c19d1205 6115 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6116}
6117
c19d1205
ZW
6118#undef po_char_or_fail
6119#undef po_reg_or_fail
6120#undef po_reg_or_goto
6121#undef po_imm_or_fail
5287ad62 6122#undef po_scalar_or_fail
c19d1205
ZW
6123\f
6124/* Shorthand macro for instruction encoding functions issuing errors. */
6125#define constraint(expr, err) do { \
6126 if (expr) \
6127 { \
6128 inst.error = err; \
6129 return; \
6130 } \
6131} while (0)
6132
fdfde340
JM
6133/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6134 instructions are unpredictable if these registers are used. This
6135 is the BadReg predicate in ARM's Thumb-2 documentation. */
6136#define reject_bad_reg(reg) \
6137 do \
6138 if (reg == REG_SP || reg == REG_PC) \
6139 { \
6140 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6141 return; \
6142 } \
6143 while (0)
6144
94206790
MM
6145/* If REG is R13 (the stack pointer), warn that its use is
6146 deprecated. */
6147#define warn_deprecated_sp(reg) \
6148 do \
6149 if (warn_on_deprecated && reg == REG_SP) \
6150 as_warn (_("use of r13 is deprecated")); \
6151 while (0)
6152
c19d1205
ZW
6153/* Functions for operand encoding. ARM, then Thumb. */
6154
6155#define rotate_left(v, n) (v << n | v >> (32 - n))
6156
6157/* If VAL can be encoded in the immediate field of an ARM instruction,
6158 return the encoded form. Otherwise, return FAIL. */
6159
6160static unsigned int
6161encode_arm_immediate (unsigned int val)
09d92015 6162{
c19d1205
ZW
6163 unsigned int a, i;
6164
6165 for (i = 0; i < 32; i += 2)
6166 if ((a = rotate_left (val, i)) <= 0xff)
6167 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6168
6169 return FAIL;
09d92015
MM
6170}
6171
c19d1205
ZW
6172/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6173 return the encoded form. Otherwise, return FAIL. */
6174static unsigned int
6175encode_thumb32_immediate (unsigned int val)
09d92015 6176{
c19d1205 6177 unsigned int a, i;
09d92015 6178
9c3c69f2 6179 if (val <= 0xff)
c19d1205 6180 return val;
a737bd4d 6181
9c3c69f2 6182 for (i = 1; i <= 24; i++)
09d92015 6183 {
9c3c69f2
PB
6184 a = val >> i;
6185 if ((val & ~(0xff << i)) == 0)
6186 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6187 }
a737bd4d 6188
c19d1205
ZW
6189 a = val & 0xff;
6190 if (val == ((a << 16) | a))
6191 return 0x100 | a;
6192 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6193 return 0x300 | a;
09d92015 6194
c19d1205
ZW
6195 a = val & 0xff00;
6196 if (val == ((a << 16) | a))
6197 return 0x200 | (a >> 8);
a737bd4d 6198
c19d1205 6199 return FAIL;
09d92015 6200}
5287ad62 6201/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6202
6203static void
5287ad62
JB
6204encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6205{
6206 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6207 && reg > 15)
6208 {
b1cc4aeb 6209 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6210 {
6211 if (thumb_mode)
6212 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6213 fpu_vfp_ext_d32);
5287ad62
JB
6214 else
6215 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6216 fpu_vfp_ext_d32);
5287ad62
JB
6217 }
6218 else
6219 {
dcbf9037 6220 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6221 return;
6222 }
6223 }
6224
c19d1205 6225 switch (pos)
09d92015 6226 {
c19d1205
ZW
6227 case VFP_REG_Sd:
6228 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6229 break;
6230
6231 case VFP_REG_Sn:
6232 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6233 break;
6234
6235 case VFP_REG_Sm:
6236 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6237 break;
6238
5287ad62
JB
6239 case VFP_REG_Dd:
6240 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6241 break;
5f4273c7 6242
5287ad62
JB
6243 case VFP_REG_Dn:
6244 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6245 break;
5f4273c7 6246
5287ad62
JB
6247 case VFP_REG_Dm:
6248 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6249 break;
6250
c19d1205
ZW
6251 default:
6252 abort ();
09d92015 6253 }
09d92015
MM
6254}
6255
c19d1205 6256/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6257 if any, is handled by md_apply_fix. */
09d92015 6258static void
c19d1205 6259encode_arm_shift (int i)
09d92015 6260{
c19d1205
ZW
6261 if (inst.operands[i].shift_kind == SHIFT_RRX)
6262 inst.instruction |= SHIFT_ROR << 5;
6263 else
09d92015 6264 {
c19d1205
ZW
6265 inst.instruction |= inst.operands[i].shift_kind << 5;
6266 if (inst.operands[i].immisreg)
6267 {
6268 inst.instruction |= SHIFT_BY_REG;
6269 inst.instruction |= inst.operands[i].imm << 8;
6270 }
6271 else
6272 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6273 }
c19d1205 6274}
09d92015 6275
c19d1205
ZW
6276static void
6277encode_arm_shifter_operand (int i)
6278{
6279 if (inst.operands[i].isreg)
09d92015 6280 {
c19d1205
ZW
6281 inst.instruction |= inst.operands[i].reg;
6282 encode_arm_shift (i);
09d92015 6283 }
c19d1205
ZW
6284 else
6285 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6286}
6287
c19d1205 6288/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6289static void
c19d1205 6290encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6291{
c19d1205
ZW
6292 assert (inst.operands[i].isreg);
6293 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6294
c19d1205 6295 if (inst.operands[i].preind)
09d92015 6296 {
c19d1205
ZW
6297 if (is_t)
6298 {
6299 inst.error = _("instruction does not accept preindexed addressing");
6300 return;
6301 }
6302 inst.instruction |= PRE_INDEX;
6303 if (inst.operands[i].writeback)
6304 inst.instruction |= WRITE_BACK;
09d92015 6305
c19d1205
ZW
6306 }
6307 else if (inst.operands[i].postind)
6308 {
6309 assert (inst.operands[i].writeback);
6310 if (is_t)
6311 inst.instruction |= WRITE_BACK;
6312 }
6313 else /* unindexed - only for coprocessor */
09d92015 6314 {
c19d1205 6315 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6316 return;
6317 }
6318
c19d1205
ZW
6319 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6320 && (((inst.instruction & 0x000f0000) >> 16)
6321 == ((inst.instruction & 0x0000f000) >> 12)))
6322 as_warn ((inst.instruction & LOAD_BIT)
6323 ? _("destination register same as write-back base")
6324 : _("source register same as write-back base"));
09d92015
MM
6325}
6326
c19d1205
ZW
6327/* inst.operands[i] was set up by parse_address. Encode it into an
6328 ARM-format mode 2 load or store instruction. If is_t is true,
6329 reject forms that cannot be used with a T instruction (i.e. not
6330 post-indexed). */
a737bd4d 6331static void
c19d1205 6332encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6333{
c19d1205 6334 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6335
c19d1205 6336 if (inst.operands[i].immisreg)
09d92015 6337 {
c19d1205
ZW
6338 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6339 inst.instruction |= inst.operands[i].imm;
6340 if (!inst.operands[i].negative)
6341 inst.instruction |= INDEX_UP;
6342 if (inst.operands[i].shifted)
6343 {
6344 if (inst.operands[i].shift_kind == SHIFT_RRX)
6345 inst.instruction |= SHIFT_ROR << 5;
6346 else
6347 {
6348 inst.instruction |= inst.operands[i].shift_kind << 5;
6349 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6350 }
6351 }
09d92015 6352 }
c19d1205 6353 else /* immediate offset in inst.reloc */
09d92015 6354 {
c19d1205
ZW
6355 if (inst.reloc.type == BFD_RELOC_UNUSED)
6356 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6357 }
09d92015
MM
6358}
6359
c19d1205
ZW
6360/* inst.operands[i] was set up by parse_address. Encode it into an
6361 ARM-format mode 3 load or store instruction. Reject forms that
6362 cannot be used with such instructions. If is_t is true, reject
6363 forms that cannot be used with a T instruction (i.e. not
6364 post-indexed). */
6365static void
6366encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6367{
c19d1205 6368 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6369 {
c19d1205
ZW
6370 inst.error = _("instruction does not accept scaled register index");
6371 return;
09d92015 6372 }
a737bd4d 6373
c19d1205 6374 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6375
c19d1205
ZW
6376 if (inst.operands[i].immisreg)
6377 {
6378 inst.instruction |= inst.operands[i].imm;
6379 if (!inst.operands[i].negative)
6380 inst.instruction |= INDEX_UP;
6381 }
6382 else /* immediate offset in inst.reloc */
6383 {
6384 inst.instruction |= HWOFFSET_IMM;
6385 if (inst.reloc.type == BFD_RELOC_UNUSED)
6386 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6387 }
a737bd4d
NC
6388}
6389
c19d1205
ZW
6390/* inst.operands[i] was set up by parse_address. Encode it into an
6391 ARM-format instruction. Reject all forms which cannot be encoded
6392 into a coprocessor load/store instruction. If wb_ok is false,
6393 reject use of writeback; if unind_ok is false, reject use of
6394 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6395 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6396 (in which case it is preserved). */
09d92015 6397
c19d1205
ZW
6398static int
6399encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6400{
c19d1205 6401 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6402
c19d1205 6403 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6404
c19d1205 6405 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6406 {
c19d1205
ZW
6407 assert (!inst.operands[i].writeback);
6408 if (!unind_ok)
6409 {
6410 inst.error = _("instruction does not support unindexed addressing");
6411 return FAIL;
6412 }
6413 inst.instruction |= inst.operands[i].imm;
6414 inst.instruction |= INDEX_UP;
6415 return SUCCESS;
09d92015 6416 }
a737bd4d 6417
c19d1205
ZW
6418 if (inst.operands[i].preind)
6419 inst.instruction |= PRE_INDEX;
a737bd4d 6420
c19d1205 6421 if (inst.operands[i].writeback)
09d92015 6422 {
c19d1205
ZW
6423 if (inst.operands[i].reg == REG_PC)
6424 {
6425 inst.error = _("pc may not be used with write-back");
6426 return FAIL;
6427 }
6428 if (!wb_ok)
6429 {
6430 inst.error = _("instruction does not support writeback");
6431 return FAIL;
6432 }
6433 inst.instruction |= WRITE_BACK;
09d92015 6434 }
a737bd4d 6435
c19d1205
ZW
6436 if (reloc_override)
6437 inst.reloc.type = reloc_override;
4962c51a
MS
6438 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6439 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6440 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6441 {
6442 if (thumb_mode)
6443 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6444 else
6445 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6446 }
6447
c19d1205
ZW
6448 return SUCCESS;
6449}
a737bd4d 6450
c19d1205
ZW
6451/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6452 Determine whether it can be performed with a move instruction; if
6453 it can, convert inst.instruction to that move instruction and
6454 return 1; if it can't, convert inst.instruction to a literal-pool
6455 load and return 0. If this is not a valid thing to do in the
6456 current context, set inst.error and return 1.
a737bd4d 6457
c19d1205
ZW
6458 inst.operands[i] describes the destination register. */
6459
6460static int
6461move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6462{
53365c0d
PB
6463 unsigned long tbit;
6464
6465 if (thumb_p)
6466 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6467 else
6468 tbit = LOAD_BIT;
6469
6470 if ((inst.instruction & tbit) == 0)
09d92015 6471 {
c19d1205
ZW
6472 inst.error = _("invalid pseudo operation");
6473 return 1;
09d92015 6474 }
c19d1205 6475 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6476 {
6477 inst.error = _("constant expression expected");
c19d1205 6478 return 1;
09d92015 6479 }
c19d1205 6480 if (inst.reloc.exp.X_op == O_constant)
09d92015 6481 {
c19d1205
ZW
6482 if (thumb_p)
6483 {
53365c0d 6484 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6485 {
6486 /* This can be done with a mov(1) instruction. */
6487 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6488 inst.instruction |= inst.reloc.exp.X_add_number;
6489 return 1;
6490 }
6491 }
6492 else
6493 {
6494 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6495 if (value != FAIL)
6496 {
6497 /* This can be done with a mov instruction. */
6498 inst.instruction &= LITERAL_MASK;
6499 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6500 inst.instruction |= value & 0xfff;
6501 return 1;
6502 }
09d92015 6503
c19d1205
ZW
6504 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6505 if (value != FAIL)
6506 {
6507 /* This can be done with a mvn instruction. */
6508 inst.instruction &= LITERAL_MASK;
6509 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6510 inst.instruction |= value & 0xfff;
6511 return 1;
6512 }
6513 }
09d92015
MM
6514 }
6515
c19d1205
ZW
6516 if (add_to_lit_pool () == FAIL)
6517 {
6518 inst.error = _("literal pool insertion failed");
6519 return 1;
6520 }
6521 inst.operands[1].reg = REG_PC;
6522 inst.operands[1].isreg = 1;
6523 inst.operands[1].preind = 1;
6524 inst.reloc.pc_rel = 1;
6525 inst.reloc.type = (thumb_p
6526 ? BFD_RELOC_ARM_THUMB_OFFSET
6527 : (mode_3
6528 ? BFD_RELOC_ARM_HWLITERAL
6529 : BFD_RELOC_ARM_LITERAL));
6530 return 0;
09d92015
MM
6531}
6532
5f4273c7 6533/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6534 First some generics; their names are taken from the conventional
6535 bit positions for register arguments in ARM format instructions. */
09d92015 6536
a737bd4d 6537static void
c19d1205 6538do_noargs (void)
09d92015 6539{
c19d1205 6540}
a737bd4d 6541
c19d1205
ZW
6542static void
6543do_rd (void)
6544{
6545 inst.instruction |= inst.operands[0].reg << 12;
6546}
a737bd4d 6547
c19d1205
ZW
6548static void
6549do_rd_rm (void)
6550{
6551 inst.instruction |= inst.operands[0].reg << 12;
6552 inst.instruction |= inst.operands[1].reg;
6553}
09d92015 6554
c19d1205
ZW
6555static void
6556do_rd_rn (void)
6557{
6558 inst.instruction |= inst.operands[0].reg << 12;
6559 inst.instruction |= inst.operands[1].reg << 16;
6560}
a737bd4d 6561
c19d1205
ZW
6562static void
6563do_rn_rd (void)
6564{
6565 inst.instruction |= inst.operands[0].reg << 16;
6566 inst.instruction |= inst.operands[1].reg << 12;
6567}
09d92015 6568
c19d1205
ZW
6569static void
6570do_rd_rm_rn (void)
6571{
9a64e435 6572 unsigned Rn = inst.operands[2].reg;
708587a4 6573 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6574 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6575 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6576 _("Rn must not overlap other operands"));
c19d1205
ZW
6577 inst.instruction |= inst.operands[0].reg << 12;
6578 inst.instruction |= inst.operands[1].reg;
9a64e435 6579 inst.instruction |= Rn << 16;
c19d1205 6580}
09d92015 6581
c19d1205
ZW
6582static void
6583do_rd_rn_rm (void)
6584{
6585 inst.instruction |= inst.operands[0].reg << 12;
6586 inst.instruction |= inst.operands[1].reg << 16;
6587 inst.instruction |= inst.operands[2].reg;
6588}
a737bd4d 6589
c19d1205
ZW
6590static void
6591do_rm_rd_rn (void)
6592{
6593 inst.instruction |= inst.operands[0].reg;
6594 inst.instruction |= inst.operands[1].reg << 12;
6595 inst.instruction |= inst.operands[2].reg << 16;
6596}
09d92015 6597
c19d1205
ZW
6598static void
6599do_imm0 (void)
6600{
6601 inst.instruction |= inst.operands[0].imm;
6602}
09d92015 6603
c19d1205
ZW
6604static void
6605do_rd_cpaddr (void)
6606{
6607 inst.instruction |= inst.operands[0].reg << 12;
6608 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6609}
a737bd4d 6610
c19d1205
ZW
6611/* ARM instructions, in alphabetical order by function name (except
6612 that wrapper functions appear immediately after the function they
6613 wrap). */
09d92015 6614
c19d1205
ZW
6615/* This is a pseudo-op of the form "adr rd, label" to be converted
6616 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6617
6618static void
c19d1205 6619do_adr (void)
09d92015 6620{
c19d1205 6621 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6622
c19d1205
ZW
6623 /* Frag hacking will turn this into a sub instruction if the offset turns
6624 out to be negative. */
6625 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6626 inst.reloc.pc_rel = 1;
2fc8bdac 6627 inst.reloc.exp.X_add_number -= 8;
c19d1205 6628}
b99bd4ef 6629
c19d1205
ZW
6630/* This is a pseudo-op of the form "adrl rd, label" to be converted
6631 into a relative address of the form:
6632 add rd, pc, #low(label-.-8)"
6633 add rd, rd, #high(label-.-8)" */
b99bd4ef 6634
c19d1205
ZW
6635static void
6636do_adrl (void)
6637{
6638 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6639
c19d1205
ZW
6640 /* Frag hacking will turn this into a sub instruction if the offset turns
6641 out to be negative. */
6642 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6643 inst.reloc.pc_rel = 1;
6644 inst.size = INSN_SIZE * 2;
2fc8bdac 6645 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6646}
6647
b99bd4ef 6648static void
c19d1205 6649do_arit (void)
b99bd4ef 6650{
c19d1205
ZW
6651 if (!inst.operands[1].present)
6652 inst.operands[1].reg = inst.operands[0].reg;
6653 inst.instruction |= inst.operands[0].reg << 12;
6654 inst.instruction |= inst.operands[1].reg << 16;
6655 encode_arm_shifter_operand (2);
6656}
b99bd4ef 6657
62b3e311
PB
6658static void
6659do_barrier (void)
6660{
6661 if (inst.operands[0].present)
6662 {
6663 constraint ((inst.instruction & 0xf0) != 0x40
6664 && inst.operands[0].imm != 0xf,
bd3ba5d1 6665 _("bad barrier type"));
62b3e311
PB
6666 inst.instruction |= inst.operands[0].imm;
6667 }
6668 else
6669 inst.instruction |= 0xf;
6670}
6671
c19d1205
ZW
6672static void
6673do_bfc (void)
6674{
6675 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6676 constraint (msb > 32, _("bit-field extends past end of register"));
6677 /* The instruction encoding stores the LSB and MSB,
6678 not the LSB and width. */
6679 inst.instruction |= inst.operands[0].reg << 12;
6680 inst.instruction |= inst.operands[1].imm << 7;
6681 inst.instruction |= (msb - 1) << 16;
6682}
b99bd4ef 6683
c19d1205
ZW
6684static void
6685do_bfi (void)
6686{
6687 unsigned int msb;
b99bd4ef 6688
c19d1205
ZW
6689 /* #0 in second position is alternative syntax for bfc, which is
6690 the same instruction but with REG_PC in the Rm field. */
6691 if (!inst.operands[1].isreg)
6692 inst.operands[1].reg = REG_PC;
b99bd4ef 6693
c19d1205
ZW
6694 msb = inst.operands[2].imm + inst.operands[3].imm;
6695 constraint (msb > 32, _("bit-field extends past end of register"));
6696 /* The instruction encoding stores the LSB and MSB,
6697 not the LSB and width. */
6698 inst.instruction |= inst.operands[0].reg << 12;
6699 inst.instruction |= inst.operands[1].reg;
6700 inst.instruction |= inst.operands[2].imm << 7;
6701 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6702}
6703
b99bd4ef 6704static void
c19d1205 6705do_bfx (void)
b99bd4ef 6706{
c19d1205
ZW
6707 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6708 _("bit-field extends past end of register"));
6709 inst.instruction |= inst.operands[0].reg << 12;
6710 inst.instruction |= inst.operands[1].reg;
6711 inst.instruction |= inst.operands[2].imm << 7;
6712 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6713}
09d92015 6714
c19d1205
ZW
6715/* ARM V5 breakpoint instruction (argument parse)
6716 BKPT <16 bit unsigned immediate>
6717 Instruction is not conditional.
6718 The bit pattern given in insns[] has the COND_ALWAYS condition,
6719 and it is an error if the caller tried to override that. */
b99bd4ef 6720
c19d1205
ZW
6721static void
6722do_bkpt (void)
6723{
6724 /* Top 12 of 16 bits to bits 19:8. */
6725 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6726
c19d1205
ZW
6727 /* Bottom 4 of 16 bits to bits 3:0. */
6728 inst.instruction |= inst.operands[0].imm & 0xf;
6729}
09d92015 6730
c19d1205
ZW
6731static void
6732encode_branch (int default_reloc)
6733{
6734 if (inst.operands[0].hasreloc)
6735 {
6736 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6737 _("the only suffix valid here is '(plt)'"));
6738 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6739 }
b99bd4ef 6740 else
c19d1205
ZW
6741 {
6742 inst.reloc.type = default_reloc;
c19d1205 6743 }
2fc8bdac 6744 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6745}
6746
b99bd4ef 6747static void
c19d1205 6748do_branch (void)
b99bd4ef 6749{
39b41c9c
PB
6750#ifdef OBJ_ELF
6751 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6752 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6753 else
6754#endif
6755 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6756}
6757
6758static void
6759do_bl (void)
6760{
6761#ifdef OBJ_ELF
6762 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6763 {
6764 if (inst.cond == COND_ALWAYS)
6765 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6766 else
6767 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6768 }
6769 else
6770#endif
6771 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6772}
b99bd4ef 6773
c19d1205
ZW
6774/* ARM V5 branch-link-exchange instruction (argument parse)
6775 BLX <target_addr> ie BLX(1)
6776 BLX{<condition>} <Rm> ie BLX(2)
6777 Unfortunately, there are two different opcodes for this mnemonic.
6778 So, the insns[].value is not used, and the code here zaps values
6779 into inst.instruction.
6780 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6781
c19d1205
ZW
6782static void
6783do_blx (void)
6784{
6785 if (inst.operands[0].isreg)
b99bd4ef 6786 {
c19d1205
ZW
6787 /* Arg is a register; the opcode provided by insns[] is correct.
6788 It is not illegal to do "blx pc", just useless. */
6789 if (inst.operands[0].reg == REG_PC)
6790 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6791
c19d1205
ZW
6792 inst.instruction |= inst.operands[0].reg;
6793 }
6794 else
b99bd4ef 6795 {
c19d1205
ZW
6796 /* Arg is an address; this instruction cannot be executed
6797 conditionally, and the opcode must be adjusted. */
6798 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6799 inst.instruction = 0xfa000000;
39b41c9c
PB
6800#ifdef OBJ_ELF
6801 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6802 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6803 else
6804#endif
6805 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6806 }
c19d1205
ZW
6807}
6808
6809static void
6810do_bx (void)
6811{
845b51d6
PB
6812 bfd_boolean want_reloc;
6813
c19d1205
ZW
6814 if (inst.operands[0].reg == REG_PC)
6815 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6816
c19d1205 6817 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
6818 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6819 it is for ARMv4t or earlier. */
6820 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6821 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6822 want_reloc = TRUE;
6823
5ad34203 6824#ifdef OBJ_ELF
845b51d6 6825 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 6826#endif
584206db 6827 want_reloc = FALSE;
845b51d6
PB
6828
6829 if (want_reloc)
6830 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
6831}
6832
c19d1205
ZW
6833
6834/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6835
6836static void
c19d1205 6837do_bxj (void)
a737bd4d 6838{
c19d1205
ZW
6839 if (inst.operands[0].reg == REG_PC)
6840 as_tsktsk (_("use of r15 in bxj is not really useful"));
6841
6842 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6843}
6844
c19d1205
ZW
6845/* Co-processor data operation:
6846 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6847 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6848static void
6849do_cdp (void)
6850{
6851 inst.instruction |= inst.operands[0].reg << 8;
6852 inst.instruction |= inst.operands[1].imm << 20;
6853 inst.instruction |= inst.operands[2].reg << 12;
6854 inst.instruction |= inst.operands[3].reg << 16;
6855 inst.instruction |= inst.operands[4].reg;
6856 inst.instruction |= inst.operands[5].imm << 5;
6857}
a737bd4d
NC
6858
6859static void
c19d1205 6860do_cmp (void)
a737bd4d 6861{
c19d1205
ZW
6862 inst.instruction |= inst.operands[0].reg << 16;
6863 encode_arm_shifter_operand (1);
a737bd4d
NC
6864}
6865
c19d1205
ZW
6866/* Transfer between coprocessor and ARM registers.
6867 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6868 MRC2
6869 MCR{cond}
6870 MCR2
6871
6872 No special properties. */
09d92015
MM
6873
6874static void
c19d1205 6875do_co_reg (void)
09d92015 6876{
fdfde340
JM
6877 unsigned Rd;
6878
6879 Rd = inst.operands[2].reg;
6880 if (thumb_mode)
6881 {
6882 if (inst.instruction == 0xee000010
6883 || inst.instruction == 0xfe000010)
6884 /* MCR, MCR2 */
6885 reject_bad_reg (Rd);
6886 else
6887 /* MRC, MRC2 */
6888 constraint (Rd == REG_SP, BAD_SP);
6889 }
6890 else
6891 {
6892 /* MCR */
6893 if (inst.instruction == 0xe000010)
6894 constraint (Rd == REG_PC, BAD_PC);
6895 }
6896
6897
c19d1205
ZW
6898 inst.instruction |= inst.operands[0].reg << 8;
6899 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 6900 inst.instruction |= Rd << 12;
c19d1205
ZW
6901 inst.instruction |= inst.operands[3].reg << 16;
6902 inst.instruction |= inst.operands[4].reg;
6903 inst.instruction |= inst.operands[5].imm << 5;
6904}
09d92015 6905
c19d1205
ZW
6906/* Transfer between coprocessor register and pair of ARM registers.
6907 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6908 MCRR2
6909 MRRC{cond}
6910 MRRC2
b99bd4ef 6911
c19d1205 6912 Two XScale instructions are special cases of these:
09d92015 6913
c19d1205
ZW
6914 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6915 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6916
5f4273c7 6917 Result unpredictable if Rd or Rn is R15. */
a737bd4d 6918
c19d1205
ZW
6919static void
6920do_co_reg2c (void)
6921{
fdfde340
JM
6922 unsigned Rd, Rn;
6923
6924 Rd = inst.operands[2].reg;
6925 Rn = inst.operands[3].reg;
6926
6927 if (thumb_mode)
6928 {
6929 reject_bad_reg (Rd);
6930 reject_bad_reg (Rn);
6931 }
6932 else
6933 {
6934 constraint (Rd == REG_PC, BAD_PC);
6935 constraint (Rn == REG_PC, BAD_PC);
6936 }
6937
c19d1205
ZW
6938 inst.instruction |= inst.operands[0].reg << 8;
6939 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
6940 inst.instruction |= Rd << 12;
6941 inst.instruction |= Rn << 16;
c19d1205 6942 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6943}
6944
c19d1205
ZW
6945static void
6946do_cpsi (void)
6947{
6948 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6949 if (inst.operands[1].present)
6950 {
6951 inst.instruction |= CPSI_MMOD;
6952 inst.instruction |= inst.operands[1].imm;
6953 }
c19d1205 6954}
b99bd4ef 6955
62b3e311
PB
6956static void
6957do_dbg (void)
6958{
6959 inst.instruction |= inst.operands[0].imm;
6960}
6961
b99bd4ef 6962static void
c19d1205 6963do_it (void)
b99bd4ef 6964{
c19d1205
ZW
6965 /* There is no IT instruction in ARM mode. We
6966 process it but do not generate code for it. */
6967 inst.size = 0;
09d92015 6968}
b99bd4ef 6969
09d92015 6970static void
c19d1205 6971do_ldmstm (void)
ea6ef066 6972{
c19d1205
ZW
6973 int base_reg = inst.operands[0].reg;
6974 int range = inst.operands[1].imm;
ea6ef066 6975
c19d1205
ZW
6976 inst.instruction |= base_reg << 16;
6977 inst.instruction |= range;
ea6ef066 6978
c19d1205
ZW
6979 if (inst.operands[1].writeback)
6980 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6981
c19d1205 6982 if (inst.operands[0].writeback)
ea6ef066 6983 {
c19d1205
ZW
6984 inst.instruction |= WRITE_BACK;
6985 /* Check for unpredictable uses of writeback. */
6986 if (inst.instruction & LOAD_BIT)
09d92015 6987 {
c19d1205
ZW
6988 /* Not allowed in LDM type 2. */
6989 if ((inst.instruction & LDM_TYPE_2_OR_3)
6990 && ((range & (1 << REG_PC)) == 0))
6991 as_warn (_("writeback of base register is UNPREDICTABLE"));
6992 /* Only allowed if base reg not in list for other types. */
6993 else if (range & (1 << base_reg))
6994 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6995 }
6996 else /* STM. */
6997 {
6998 /* Not allowed for type 2. */
6999 if (inst.instruction & LDM_TYPE_2_OR_3)
7000 as_warn (_("writeback of base register is UNPREDICTABLE"));
7001 /* Only allowed if base reg not in list, or first in list. */
7002 else if ((range & (1 << base_reg))
7003 && (range & ((1 << base_reg) - 1)))
7004 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7005 }
ea6ef066 7006 }
a737bd4d
NC
7007}
7008
c19d1205
ZW
7009/* ARMv5TE load-consecutive (argument parse)
7010 Mode is like LDRH.
7011
7012 LDRccD R, mode
7013 STRccD R, mode. */
7014
a737bd4d 7015static void
c19d1205 7016do_ldrd (void)
a737bd4d 7017{
c19d1205
ZW
7018 constraint (inst.operands[0].reg % 2 != 0,
7019 _("first destination register must be even"));
7020 constraint (inst.operands[1].present
7021 && inst.operands[1].reg != inst.operands[0].reg + 1,
7022 _("can only load two consecutive registers"));
7023 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7024 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7025
c19d1205
ZW
7026 if (!inst.operands[1].present)
7027 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7028
c19d1205 7029 if (inst.instruction & LOAD_BIT)
a737bd4d 7030 {
c19d1205
ZW
7031 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7032 register and the first register written; we have to diagnose
7033 overlap between the base and the second register written here. */
ea6ef066 7034
c19d1205
ZW
7035 if (inst.operands[2].reg == inst.operands[1].reg
7036 && (inst.operands[2].writeback || inst.operands[2].postind))
7037 as_warn (_("base register written back, and overlaps "
7038 "second destination register"));
b05fe5cf 7039
c19d1205
ZW
7040 /* For an index-register load, the index register must not overlap the
7041 destination (even if not write-back). */
7042 else if (inst.operands[2].immisreg
ca3f61f7
NC
7043 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7044 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7045 as_warn (_("index register overlaps destination register"));
b05fe5cf 7046 }
c19d1205
ZW
7047
7048 inst.instruction |= inst.operands[0].reg << 12;
7049 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7050}
7051
7052static void
c19d1205 7053do_ldrex (void)
b05fe5cf 7054{
c19d1205
ZW
7055 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7056 || inst.operands[1].postind || inst.operands[1].writeback
7057 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7058 || inst.operands[1].negative
7059 /* This can arise if the programmer has written
7060 strex rN, rM, foo
7061 or if they have mistakenly used a register name as the last
7062 operand, eg:
7063 strex rN, rM, rX
7064 It is very difficult to distinguish between these two cases
7065 because "rX" might actually be a label. ie the register
7066 name has been occluded by a symbol of the same name. So we
7067 just generate a general 'bad addressing mode' type error
7068 message and leave it up to the programmer to discover the
7069 true cause and fix their mistake. */
7070 || (inst.operands[1].reg == REG_PC),
7071 BAD_ADDR_MODE);
b05fe5cf 7072
c19d1205
ZW
7073 constraint (inst.reloc.exp.X_op != O_constant
7074 || inst.reloc.exp.X_add_number != 0,
7075 _("offset must be zero in ARM encoding"));
b05fe5cf 7076
c19d1205
ZW
7077 inst.instruction |= inst.operands[0].reg << 12;
7078 inst.instruction |= inst.operands[1].reg << 16;
7079 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7080}
7081
7082static void
c19d1205 7083do_ldrexd (void)
b05fe5cf 7084{
c19d1205
ZW
7085 constraint (inst.operands[0].reg % 2 != 0,
7086 _("even register required"));
7087 constraint (inst.operands[1].present
7088 && inst.operands[1].reg != inst.operands[0].reg + 1,
7089 _("can only load two consecutive registers"));
7090 /* If op 1 were present and equal to PC, this function wouldn't
7091 have been called in the first place. */
7092 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7093
c19d1205
ZW
7094 inst.instruction |= inst.operands[0].reg << 12;
7095 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7096}
7097
7098static void
c19d1205 7099do_ldst (void)
b05fe5cf 7100{
c19d1205
ZW
7101 inst.instruction |= inst.operands[0].reg << 12;
7102 if (!inst.operands[1].isreg)
7103 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7104 return;
c19d1205 7105 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7106}
7107
7108static void
c19d1205 7109do_ldstt (void)
b05fe5cf 7110{
c19d1205
ZW
7111 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7112 reject [Rn,...]. */
7113 if (inst.operands[1].preind)
b05fe5cf 7114 {
bd3ba5d1
NC
7115 constraint (inst.reloc.exp.X_op != O_constant
7116 || inst.reloc.exp.X_add_number != 0,
c19d1205 7117 _("this instruction requires a post-indexed address"));
b05fe5cf 7118
c19d1205
ZW
7119 inst.operands[1].preind = 0;
7120 inst.operands[1].postind = 1;
7121 inst.operands[1].writeback = 1;
b05fe5cf 7122 }
c19d1205
ZW
7123 inst.instruction |= inst.operands[0].reg << 12;
7124 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7125}
b05fe5cf 7126
c19d1205 7127/* Halfword and signed-byte load/store operations. */
b05fe5cf 7128
c19d1205
ZW
7129static void
7130do_ldstv4 (void)
7131{
7132 inst.instruction |= inst.operands[0].reg << 12;
7133 if (!inst.operands[1].isreg)
7134 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7135 return;
c19d1205 7136 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7137}
7138
7139static void
c19d1205 7140do_ldsttv4 (void)
b05fe5cf 7141{
c19d1205
ZW
7142 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7143 reject [Rn,...]. */
7144 if (inst.operands[1].preind)
b05fe5cf 7145 {
bd3ba5d1
NC
7146 constraint (inst.reloc.exp.X_op != O_constant
7147 || inst.reloc.exp.X_add_number != 0,
c19d1205 7148 _("this instruction requires a post-indexed address"));
b05fe5cf 7149
c19d1205
ZW
7150 inst.operands[1].preind = 0;
7151 inst.operands[1].postind = 1;
7152 inst.operands[1].writeback = 1;
b05fe5cf 7153 }
c19d1205
ZW
7154 inst.instruction |= inst.operands[0].reg << 12;
7155 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7156}
b05fe5cf 7157
c19d1205
ZW
7158/* Co-processor register load/store.
7159 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7160static void
7161do_lstc (void)
7162{
7163 inst.instruction |= inst.operands[0].reg << 8;
7164 inst.instruction |= inst.operands[1].reg << 12;
7165 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7166}
7167
b05fe5cf 7168static void
c19d1205 7169do_mlas (void)
b05fe5cf 7170{
8fb9d7b9 7171 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7172 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7173 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7174 && !(inst.instruction & 0x00400000))
8fb9d7b9 7175 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7176
c19d1205
ZW
7177 inst.instruction |= inst.operands[0].reg << 16;
7178 inst.instruction |= inst.operands[1].reg;
7179 inst.instruction |= inst.operands[2].reg << 8;
7180 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7181}
b05fe5cf 7182
c19d1205
ZW
7183static void
7184do_mov (void)
7185{
7186 inst.instruction |= inst.operands[0].reg << 12;
7187 encode_arm_shifter_operand (1);
7188}
b05fe5cf 7189
c19d1205
ZW
7190/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7191static void
7192do_mov16 (void)
7193{
b6895b4f
PB
7194 bfd_vma imm;
7195 bfd_boolean top;
7196
7197 top = (inst.instruction & 0x00400000) != 0;
7198 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7199 _(":lower16: not allowed this instruction"));
7200 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7201 _(":upper16: not allowed instruction"));
c19d1205 7202 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7203 if (inst.reloc.type == BFD_RELOC_UNUSED)
7204 {
7205 imm = inst.reloc.exp.X_add_number;
7206 /* The value is in two pieces: 0:11, 16:19. */
7207 inst.instruction |= (imm & 0x00000fff);
7208 inst.instruction |= (imm & 0x0000f000) << 4;
7209 }
b05fe5cf 7210}
b99bd4ef 7211
037e8744
JB
7212static void do_vfp_nsyn_opcode (const char *);
7213
7214static int
7215do_vfp_nsyn_mrs (void)
7216{
7217 if (inst.operands[0].isvec)
7218 {
7219 if (inst.operands[1].reg != 1)
7220 first_error (_("operand 1 must be FPSCR"));
7221 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7222 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7223 do_vfp_nsyn_opcode ("fmstat");
7224 }
7225 else if (inst.operands[1].isvec)
7226 do_vfp_nsyn_opcode ("fmrx");
7227 else
7228 return FAIL;
5f4273c7 7229
037e8744
JB
7230 return SUCCESS;
7231}
7232
7233static int
7234do_vfp_nsyn_msr (void)
7235{
7236 if (inst.operands[0].isvec)
7237 do_vfp_nsyn_opcode ("fmxr");
7238 else
7239 return FAIL;
7240
7241 return SUCCESS;
7242}
7243
b99bd4ef 7244static void
c19d1205 7245do_mrs (void)
b99bd4ef 7246{
037e8744
JB
7247 if (do_vfp_nsyn_mrs () == SUCCESS)
7248 return;
7249
c19d1205
ZW
7250 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7251 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7252 != (PSR_c|PSR_f),
7253 _("'CPSR' or 'SPSR' expected"));
7254 inst.instruction |= inst.operands[0].reg << 12;
7255 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7256}
b99bd4ef 7257
c19d1205
ZW
7258/* Two possible forms:
7259 "{C|S}PSR_<field>, Rm",
7260 "{C|S}PSR_f, #expression". */
b99bd4ef 7261
c19d1205
ZW
7262static void
7263do_msr (void)
7264{
037e8744
JB
7265 if (do_vfp_nsyn_msr () == SUCCESS)
7266 return;
7267
c19d1205
ZW
7268 inst.instruction |= inst.operands[0].imm;
7269 if (inst.operands[1].isreg)
7270 inst.instruction |= inst.operands[1].reg;
7271 else
b99bd4ef 7272 {
c19d1205
ZW
7273 inst.instruction |= INST_IMMEDIATE;
7274 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7275 inst.reloc.pc_rel = 0;
b99bd4ef 7276 }
b99bd4ef
NC
7277}
7278
c19d1205
ZW
7279static void
7280do_mul (void)
a737bd4d 7281{
c19d1205
ZW
7282 if (!inst.operands[2].present)
7283 inst.operands[2].reg = inst.operands[0].reg;
7284 inst.instruction |= inst.operands[0].reg << 16;
7285 inst.instruction |= inst.operands[1].reg;
7286 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7287
8fb9d7b9
MS
7288 if (inst.operands[0].reg == inst.operands[1].reg
7289 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7290 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7291}
7292
c19d1205
ZW
7293/* Long Multiply Parser
7294 UMULL RdLo, RdHi, Rm, Rs
7295 SMULL RdLo, RdHi, Rm, Rs
7296 UMLAL RdLo, RdHi, Rm, Rs
7297 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7298
7299static void
c19d1205 7300do_mull (void)
b99bd4ef 7301{
c19d1205
ZW
7302 inst.instruction |= inst.operands[0].reg << 12;
7303 inst.instruction |= inst.operands[1].reg << 16;
7304 inst.instruction |= inst.operands[2].reg;
7305 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7306
682b27ad
PB
7307 /* rdhi and rdlo must be different. */
7308 if (inst.operands[0].reg == inst.operands[1].reg)
7309 as_tsktsk (_("rdhi and rdlo must be different"));
7310
7311 /* rdhi, rdlo and rm must all be different before armv6. */
7312 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7313 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7314 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7315 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7316}
b99bd4ef 7317
c19d1205
ZW
7318static void
7319do_nop (void)
7320{
e7495e45
NS
7321 if (inst.operands[0].present
7322 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7323 {
7324 /* Architectural NOP hints are CPSR sets with no bits selected. */
7325 inst.instruction &= 0xf0000000;
e7495e45
NS
7326 inst.instruction |= 0x0320f000;
7327 if (inst.operands[0].present)
7328 inst.instruction |= inst.operands[0].imm;
c19d1205 7329 }
b99bd4ef
NC
7330}
7331
c19d1205
ZW
7332/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7333 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7334 Condition defaults to COND_ALWAYS.
7335 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7336
7337static void
c19d1205 7338do_pkhbt (void)
b99bd4ef 7339{
c19d1205
ZW
7340 inst.instruction |= inst.operands[0].reg << 12;
7341 inst.instruction |= inst.operands[1].reg << 16;
7342 inst.instruction |= inst.operands[2].reg;
7343 if (inst.operands[3].present)
7344 encode_arm_shift (3);
7345}
b99bd4ef 7346
c19d1205 7347/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7348
c19d1205
ZW
7349static void
7350do_pkhtb (void)
7351{
7352 if (!inst.operands[3].present)
b99bd4ef 7353 {
c19d1205
ZW
7354 /* If the shift specifier is omitted, turn the instruction
7355 into pkhbt rd, rm, rn. */
7356 inst.instruction &= 0xfff00010;
7357 inst.instruction |= inst.operands[0].reg << 12;
7358 inst.instruction |= inst.operands[1].reg;
7359 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7360 }
7361 else
7362 {
c19d1205
ZW
7363 inst.instruction |= inst.operands[0].reg << 12;
7364 inst.instruction |= inst.operands[1].reg << 16;
7365 inst.instruction |= inst.operands[2].reg;
7366 encode_arm_shift (3);
b99bd4ef
NC
7367 }
7368}
7369
c19d1205
ZW
7370/* ARMv5TE: Preload-Cache
7371
7372 PLD <addr_mode>
7373
7374 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7375
7376static void
c19d1205 7377do_pld (void)
b99bd4ef 7378{
c19d1205
ZW
7379 constraint (!inst.operands[0].isreg,
7380 _("'[' expected after PLD mnemonic"));
7381 constraint (inst.operands[0].postind,
7382 _("post-indexed expression used in preload instruction"));
7383 constraint (inst.operands[0].writeback,
7384 _("writeback used in preload instruction"));
7385 constraint (!inst.operands[0].preind,
7386 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7387 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7388}
b99bd4ef 7389
62b3e311
PB
7390/* ARMv7: PLI <addr_mode> */
7391static void
7392do_pli (void)
7393{
7394 constraint (!inst.operands[0].isreg,
7395 _("'[' expected after PLI mnemonic"));
7396 constraint (inst.operands[0].postind,
7397 _("post-indexed expression used in preload instruction"));
7398 constraint (inst.operands[0].writeback,
7399 _("writeback used in preload instruction"));
7400 constraint (!inst.operands[0].preind,
7401 _("unindexed addressing used in preload instruction"));
7402 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7403 inst.instruction &= ~PRE_INDEX;
7404}
7405
c19d1205
ZW
7406static void
7407do_push_pop (void)
7408{
7409 inst.operands[1] = inst.operands[0];
7410 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7411 inst.operands[0].isreg = 1;
7412 inst.operands[0].writeback = 1;
7413 inst.operands[0].reg = REG_SP;
7414 do_ldmstm ();
7415}
b99bd4ef 7416
c19d1205
ZW
7417/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7418 word at the specified address and the following word
7419 respectively.
7420 Unconditionally executed.
7421 Error if Rn is R15. */
b99bd4ef 7422
c19d1205
ZW
7423static void
7424do_rfe (void)
7425{
7426 inst.instruction |= inst.operands[0].reg << 16;
7427 if (inst.operands[0].writeback)
7428 inst.instruction |= WRITE_BACK;
7429}
b99bd4ef 7430
c19d1205 7431/* ARM V6 ssat (argument parse). */
b99bd4ef 7432
c19d1205
ZW
7433static void
7434do_ssat (void)
7435{
7436 inst.instruction |= inst.operands[0].reg << 12;
7437 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7438 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7439
c19d1205
ZW
7440 if (inst.operands[3].present)
7441 encode_arm_shift (3);
b99bd4ef
NC
7442}
7443
c19d1205 7444/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7445
7446static void
c19d1205 7447do_usat (void)
b99bd4ef 7448{
c19d1205
ZW
7449 inst.instruction |= inst.operands[0].reg << 12;
7450 inst.instruction |= inst.operands[1].imm << 16;
7451 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7452
c19d1205
ZW
7453 if (inst.operands[3].present)
7454 encode_arm_shift (3);
b99bd4ef
NC
7455}
7456
c19d1205 7457/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7458
7459static void
c19d1205 7460do_ssat16 (void)
09d92015 7461{
c19d1205
ZW
7462 inst.instruction |= inst.operands[0].reg << 12;
7463 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7464 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7465}
7466
c19d1205
ZW
7467static void
7468do_usat16 (void)
a737bd4d 7469{
c19d1205
ZW
7470 inst.instruction |= inst.operands[0].reg << 12;
7471 inst.instruction |= inst.operands[1].imm << 16;
7472 inst.instruction |= inst.operands[2].reg;
7473}
a737bd4d 7474
c19d1205
ZW
7475/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7476 preserving the other bits.
a737bd4d 7477
c19d1205
ZW
7478 setend <endian_specifier>, where <endian_specifier> is either
7479 BE or LE. */
a737bd4d 7480
c19d1205
ZW
7481static void
7482do_setend (void)
7483{
7484 if (inst.operands[0].imm)
7485 inst.instruction |= 0x200;
a737bd4d
NC
7486}
7487
7488static void
c19d1205 7489do_shift (void)
a737bd4d 7490{
c19d1205
ZW
7491 unsigned int Rm = (inst.operands[1].present
7492 ? inst.operands[1].reg
7493 : inst.operands[0].reg);
a737bd4d 7494
c19d1205
ZW
7495 inst.instruction |= inst.operands[0].reg << 12;
7496 inst.instruction |= Rm;
7497 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7498 {
c19d1205
ZW
7499 inst.instruction |= inst.operands[2].reg << 8;
7500 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7501 }
7502 else
c19d1205 7503 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7504}
7505
09d92015 7506static void
3eb17e6b 7507do_smc (void)
09d92015 7508{
3eb17e6b 7509 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7510 inst.reloc.pc_rel = 0;
09d92015
MM
7511}
7512
09d92015 7513static void
c19d1205 7514do_swi (void)
09d92015 7515{
c19d1205
ZW
7516 inst.reloc.type = BFD_RELOC_ARM_SWI;
7517 inst.reloc.pc_rel = 0;
09d92015
MM
7518}
7519
c19d1205
ZW
7520/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7521 SMLAxy{cond} Rd,Rm,Rs,Rn
7522 SMLAWy{cond} Rd,Rm,Rs,Rn
7523 Error if any register is R15. */
e16bb312 7524
c19d1205
ZW
7525static void
7526do_smla (void)
e16bb312 7527{
c19d1205
ZW
7528 inst.instruction |= inst.operands[0].reg << 16;
7529 inst.instruction |= inst.operands[1].reg;
7530 inst.instruction |= inst.operands[2].reg << 8;
7531 inst.instruction |= inst.operands[3].reg << 12;
7532}
a737bd4d 7533
c19d1205
ZW
7534/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7535 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7536 Error if any register is R15.
7537 Warning if Rdlo == Rdhi. */
a737bd4d 7538
c19d1205
ZW
7539static void
7540do_smlal (void)
7541{
7542 inst.instruction |= inst.operands[0].reg << 12;
7543 inst.instruction |= inst.operands[1].reg << 16;
7544 inst.instruction |= inst.operands[2].reg;
7545 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7546
c19d1205
ZW
7547 if (inst.operands[0].reg == inst.operands[1].reg)
7548 as_tsktsk (_("rdhi and rdlo must be different"));
7549}
a737bd4d 7550
c19d1205
ZW
7551/* ARM V5E (El Segundo) signed-multiply (argument parse)
7552 SMULxy{cond} Rd,Rm,Rs
7553 Error if any register is R15. */
a737bd4d 7554
c19d1205
ZW
7555static void
7556do_smul (void)
7557{
7558 inst.instruction |= inst.operands[0].reg << 16;
7559 inst.instruction |= inst.operands[1].reg;
7560 inst.instruction |= inst.operands[2].reg << 8;
7561}
a737bd4d 7562
b6702015
PB
7563/* ARM V6 srs (argument parse). The variable fields in the encoding are
7564 the same for both ARM and Thumb-2. */
a737bd4d 7565
c19d1205
ZW
7566static void
7567do_srs (void)
7568{
b6702015
PB
7569 int reg;
7570
7571 if (inst.operands[0].present)
7572 {
7573 reg = inst.operands[0].reg;
fdfde340 7574 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
7575 }
7576 else
fdfde340 7577 reg = REG_SP;
b6702015
PB
7578
7579 inst.instruction |= reg << 16;
7580 inst.instruction |= inst.operands[1].imm;
7581 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7582 inst.instruction |= WRITE_BACK;
7583}
a737bd4d 7584
c19d1205 7585/* ARM V6 strex (argument parse). */
a737bd4d 7586
c19d1205
ZW
7587static void
7588do_strex (void)
7589{
7590 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7591 || inst.operands[2].postind || inst.operands[2].writeback
7592 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7593 || inst.operands[2].negative
7594 /* See comment in do_ldrex(). */
7595 || (inst.operands[2].reg == REG_PC),
7596 BAD_ADDR_MODE);
a737bd4d 7597
c19d1205
ZW
7598 constraint (inst.operands[0].reg == inst.operands[1].reg
7599 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7600
c19d1205
ZW
7601 constraint (inst.reloc.exp.X_op != O_constant
7602 || inst.reloc.exp.X_add_number != 0,
7603 _("offset must be zero in ARM encoding"));
a737bd4d 7604
c19d1205
ZW
7605 inst.instruction |= inst.operands[0].reg << 12;
7606 inst.instruction |= inst.operands[1].reg;
7607 inst.instruction |= inst.operands[2].reg << 16;
7608 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7609}
7610
7611static void
c19d1205 7612do_strexd (void)
e16bb312 7613{
c19d1205
ZW
7614 constraint (inst.operands[1].reg % 2 != 0,
7615 _("even register required"));
7616 constraint (inst.operands[2].present
7617 && inst.operands[2].reg != inst.operands[1].reg + 1,
7618 _("can only store two consecutive registers"));
7619 /* If op 2 were present and equal to PC, this function wouldn't
7620 have been called in the first place. */
7621 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7622
c19d1205
ZW
7623 constraint (inst.operands[0].reg == inst.operands[1].reg
7624 || inst.operands[0].reg == inst.operands[1].reg + 1
7625 || inst.operands[0].reg == inst.operands[3].reg,
7626 BAD_OVERLAP);
e16bb312 7627
c19d1205
ZW
7628 inst.instruction |= inst.operands[0].reg << 12;
7629 inst.instruction |= inst.operands[1].reg;
7630 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7631}
7632
c19d1205
ZW
7633/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7634 extends it to 32-bits, and adds the result to a value in another
7635 register. You can specify a rotation by 0, 8, 16, or 24 bits
7636 before extracting the 16-bit value.
7637 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7638 Condition defaults to COND_ALWAYS.
7639 Error if any register uses R15. */
7640
e16bb312 7641static void
c19d1205 7642do_sxtah (void)
e16bb312 7643{
c19d1205
ZW
7644 inst.instruction |= inst.operands[0].reg << 12;
7645 inst.instruction |= inst.operands[1].reg << 16;
7646 inst.instruction |= inst.operands[2].reg;
7647 inst.instruction |= inst.operands[3].imm << 10;
7648}
e16bb312 7649
c19d1205 7650/* ARM V6 SXTH.
e16bb312 7651
c19d1205
ZW
7652 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7653 Condition defaults to COND_ALWAYS.
7654 Error if any register uses R15. */
e16bb312
NC
7655
7656static void
c19d1205 7657do_sxth (void)
e16bb312 7658{
c19d1205
ZW
7659 inst.instruction |= inst.operands[0].reg << 12;
7660 inst.instruction |= inst.operands[1].reg;
7661 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7662}
c19d1205
ZW
7663\f
7664/* VFP instructions. In a logical order: SP variant first, monad
7665 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7666
7667static void
c19d1205 7668do_vfp_sp_monadic (void)
e16bb312 7669{
5287ad62
JB
7670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7671 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7672}
7673
7674static void
c19d1205 7675do_vfp_sp_dyadic (void)
e16bb312 7676{
5287ad62
JB
7677 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7678 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7679 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7680}
7681
7682static void
c19d1205 7683do_vfp_sp_compare_z (void)
e16bb312 7684{
5287ad62 7685 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7686}
7687
7688static void
c19d1205 7689do_vfp_dp_sp_cvt (void)
e16bb312 7690{
5287ad62
JB
7691 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7692 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7693}
7694
7695static void
c19d1205 7696do_vfp_sp_dp_cvt (void)
e16bb312 7697{
5287ad62
JB
7698 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7699 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7700}
7701
7702static void
c19d1205 7703do_vfp_reg_from_sp (void)
e16bb312 7704{
c19d1205 7705 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7706 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7707}
7708
7709static void
c19d1205 7710do_vfp_reg2_from_sp2 (void)
e16bb312 7711{
c19d1205
ZW
7712 constraint (inst.operands[2].imm != 2,
7713 _("only two consecutive VFP SP registers allowed here"));
7714 inst.instruction |= inst.operands[0].reg << 12;
7715 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7716 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7717}
7718
7719static void
c19d1205 7720do_vfp_sp_from_reg (void)
e16bb312 7721{
5287ad62 7722 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7723 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7724}
7725
7726static void
c19d1205 7727do_vfp_sp2_from_reg2 (void)
e16bb312 7728{
c19d1205
ZW
7729 constraint (inst.operands[0].imm != 2,
7730 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7731 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7732 inst.instruction |= inst.operands[1].reg << 12;
7733 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7734}
7735
7736static void
c19d1205 7737do_vfp_sp_ldst (void)
e16bb312 7738{
5287ad62 7739 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7740 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7741}
7742
7743static void
c19d1205 7744do_vfp_dp_ldst (void)
e16bb312 7745{
5287ad62 7746 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7747 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7748}
7749
c19d1205 7750
e16bb312 7751static void
c19d1205 7752vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7753{
c19d1205
ZW
7754 if (inst.operands[0].writeback)
7755 inst.instruction |= WRITE_BACK;
7756 else
7757 constraint (ldstm_type != VFP_LDSTMIA,
7758 _("this addressing mode requires base-register writeback"));
7759 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7760 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7761 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7762}
7763
7764static void
c19d1205 7765vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7766{
c19d1205 7767 int count;
e16bb312 7768
c19d1205
ZW
7769 if (inst.operands[0].writeback)
7770 inst.instruction |= WRITE_BACK;
7771 else
7772 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7773 _("this addressing mode requires base-register writeback"));
e16bb312 7774
c19d1205 7775 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7776 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7777
c19d1205
ZW
7778 count = inst.operands[1].imm << 1;
7779 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7780 count += 1;
e16bb312 7781
c19d1205 7782 inst.instruction |= count;
e16bb312
NC
7783}
7784
7785static void
c19d1205 7786do_vfp_sp_ldstmia (void)
e16bb312 7787{
c19d1205 7788 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7789}
7790
7791static void
c19d1205 7792do_vfp_sp_ldstmdb (void)
e16bb312 7793{
c19d1205 7794 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7795}
7796
7797static void
c19d1205 7798do_vfp_dp_ldstmia (void)
e16bb312 7799{
c19d1205 7800 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7801}
7802
7803static void
c19d1205 7804do_vfp_dp_ldstmdb (void)
e16bb312 7805{
c19d1205 7806 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7807}
7808
7809static void
c19d1205 7810do_vfp_xp_ldstmia (void)
e16bb312 7811{
c19d1205
ZW
7812 vfp_dp_ldstm (VFP_LDSTMIAX);
7813}
e16bb312 7814
c19d1205
ZW
7815static void
7816do_vfp_xp_ldstmdb (void)
7817{
7818 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7819}
5287ad62
JB
7820
7821static void
7822do_vfp_dp_rd_rm (void)
7823{
7824 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7825 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7826}
7827
7828static void
7829do_vfp_dp_rn_rd (void)
7830{
7831 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7832 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7833}
7834
7835static void
7836do_vfp_dp_rd_rn (void)
7837{
7838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7839 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7840}
7841
7842static void
7843do_vfp_dp_rd_rn_rm (void)
7844{
7845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7846 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7847 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7848}
7849
7850static void
7851do_vfp_dp_rd (void)
7852{
7853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7854}
7855
7856static void
7857do_vfp_dp_rm_rd_rn (void)
7858{
7859 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7860 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7861 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7862}
7863
7864/* VFPv3 instructions. */
7865static void
7866do_vfp_sp_const (void)
7867{
7868 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7869 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7870 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7871}
7872
7873static void
7874do_vfp_dp_const (void)
7875{
7876 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7877 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7878 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7879}
7880
7881static void
7882vfp_conv (int srcsize)
7883{
7884 unsigned immbits = srcsize - inst.operands[1].imm;
7885 inst.instruction |= (immbits & 1) << 5;
7886 inst.instruction |= (immbits >> 1);
7887}
7888
7889static void
7890do_vfp_sp_conv_16 (void)
7891{
7892 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7893 vfp_conv (16);
7894}
7895
7896static void
7897do_vfp_dp_conv_16 (void)
7898{
7899 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7900 vfp_conv (16);
7901}
7902
7903static void
7904do_vfp_sp_conv_32 (void)
7905{
7906 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7907 vfp_conv (32);
7908}
7909
7910static void
7911do_vfp_dp_conv_32 (void)
7912{
7913 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7914 vfp_conv (32);
7915}
c19d1205
ZW
7916\f
7917/* FPA instructions. Also in a logical order. */
e16bb312 7918
c19d1205
ZW
7919static void
7920do_fpa_cmp (void)
7921{
7922 inst.instruction |= inst.operands[0].reg << 16;
7923 inst.instruction |= inst.operands[1].reg;
7924}
b99bd4ef
NC
7925
7926static void
c19d1205 7927do_fpa_ldmstm (void)
b99bd4ef 7928{
c19d1205
ZW
7929 inst.instruction |= inst.operands[0].reg << 12;
7930 switch (inst.operands[1].imm)
7931 {
7932 case 1: inst.instruction |= CP_T_X; break;
7933 case 2: inst.instruction |= CP_T_Y; break;
7934 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7935 case 4: break;
7936 default: abort ();
7937 }
b99bd4ef 7938
c19d1205
ZW
7939 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7940 {
7941 /* The instruction specified "ea" or "fd", so we can only accept
7942 [Rn]{!}. The instruction does not really support stacking or
7943 unstacking, so we have to emulate these by setting appropriate
7944 bits and offsets. */
7945 constraint (inst.reloc.exp.X_op != O_constant
7946 || inst.reloc.exp.X_add_number != 0,
7947 _("this instruction does not support indexing"));
b99bd4ef 7948
c19d1205
ZW
7949 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7950 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7951
c19d1205
ZW
7952 if (!(inst.instruction & INDEX_UP))
7953 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7954
c19d1205
ZW
7955 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7956 {
7957 inst.operands[2].preind = 0;
7958 inst.operands[2].postind = 1;
7959 }
7960 }
b99bd4ef 7961
c19d1205 7962 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7963}
c19d1205
ZW
7964\f
7965/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7966
c19d1205
ZW
7967static void
7968do_iwmmxt_tandorc (void)
7969{
7970 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7971}
b99bd4ef 7972
c19d1205
ZW
7973static void
7974do_iwmmxt_textrc (void)
7975{
7976 inst.instruction |= inst.operands[0].reg << 12;
7977 inst.instruction |= inst.operands[1].imm;
7978}
b99bd4ef
NC
7979
7980static void
c19d1205 7981do_iwmmxt_textrm (void)
b99bd4ef 7982{
c19d1205
ZW
7983 inst.instruction |= inst.operands[0].reg << 12;
7984 inst.instruction |= inst.operands[1].reg << 16;
7985 inst.instruction |= inst.operands[2].imm;
7986}
b99bd4ef 7987
c19d1205
ZW
7988static void
7989do_iwmmxt_tinsr (void)
7990{
7991 inst.instruction |= inst.operands[0].reg << 16;
7992 inst.instruction |= inst.operands[1].reg << 12;
7993 inst.instruction |= inst.operands[2].imm;
7994}
b99bd4ef 7995
c19d1205
ZW
7996static void
7997do_iwmmxt_tmia (void)
7998{
7999 inst.instruction |= inst.operands[0].reg << 5;
8000 inst.instruction |= inst.operands[1].reg;
8001 inst.instruction |= inst.operands[2].reg << 12;
8002}
b99bd4ef 8003
c19d1205
ZW
8004static void
8005do_iwmmxt_waligni (void)
8006{
8007 inst.instruction |= inst.operands[0].reg << 12;
8008 inst.instruction |= inst.operands[1].reg << 16;
8009 inst.instruction |= inst.operands[2].reg;
8010 inst.instruction |= inst.operands[3].imm << 20;
8011}
b99bd4ef 8012
2d447fca
JM
8013static void
8014do_iwmmxt_wmerge (void)
8015{
8016 inst.instruction |= inst.operands[0].reg << 12;
8017 inst.instruction |= inst.operands[1].reg << 16;
8018 inst.instruction |= inst.operands[2].reg;
8019 inst.instruction |= inst.operands[3].imm << 21;
8020}
8021
c19d1205
ZW
8022static void
8023do_iwmmxt_wmov (void)
8024{
8025 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8026 inst.instruction |= inst.operands[0].reg << 12;
8027 inst.instruction |= inst.operands[1].reg << 16;
8028 inst.instruction |= inst.operands[1].reg;
8029}
b99bd4ef 8030
c19d1205
ZW
8031static void
8032do_iwmmxt_wldstbh (void)
8033{
8f06b2d8 8034 int reloc;
c19d1205 8035 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8036 if (thumb_mode)
8037 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8038 else
8039 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8040 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8041}
8042
c19d1205
ZW
8043static void
8044do_iwmmxt_wldstw (void)
8045{
8046 /* RIWR_RIWC clears .isreg for a control register. */
8047 if (!inst.operands[0].isreg)
8048 {
8049 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8050 inst.instruction |= 0xf0000000;
8051 }
b99bd4ef 8052
c19d1205
ZW
8053 inst.instruction |= inst.operands[0].reg << 12;
8054 encode_arm_cp_address (1, TRUE, TRUE, 0);
8055}
b99bd4ef
NC
8056
8057static void
c19d1205 8058do_iwmmxt_wldstd (void)
b99bd4ef 8059{
c19d1205 8060 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8061 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8062 && inst.operands[1].immisreg)
8063 {
8064 inst.instruction &= ~0x1a000ff;
8065 inst.instruction |= (0xf << 28);
8066 if (inst.operands[1].preind)
8067 inst.instruction |= PRE_INDEX;
8068 if (!inst.operands[1].negative)
8069 inst.instruction |= INDEX_UP;
8070 if (inst.operands[1].writeback)
8071 inst.instruction |= WRITE_BACK;
8072 inst.instruction |= inst.operands[1].reg << 16;
8073 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8074 inst.instruction |= inst.operands[1].imm;
8075 }
8076 else
8077 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8078}
b99bd4ef 8079
c19d1205
ZW
8080static void
8081do_iwmmxt_wshufh (void)
8082{
8083 inst.instruction |= inst.operands[0].reg << 12;
8084 inst.instruction |= inst.operands[1].reg << 16;
8085 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8086 inst.instruction |= (inst.operands[2].imm & 0x0f);
8087}
b99bd4ef 8088
c19d1205
ZW
8089static void
8090do_iwmmxt_wzero (void)
8091{
8092 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8093 inst.instruction |= inst.operands[0].reg;
8094 inst.instruction |= inst.operands[0].reg << 12;
8095 inst.instruction |= inst.operands[0].reg << 16;
8096}
2d447fca
JM
8097
8098static void
8099do_iwmmxt_wrwrwr_or_imm5 (void)
8100{
8101 if (inst.operands[2].isreg)
8102 do_rd_rn_rm ();
8103 else {
8104 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8105 _("immediate operand requires iWMMXt2"));
8106 do_rd_rn ();
8107 if (inst.operands[2].imm == 0)
8108 {
8109 switch ((inst.instruction >> 20) & 0xf)
8110 {
8111 case 4:
8112 case 5:
8113 case 6:
5f4273c7 8114 case 7:
2d447fca
JM
8115 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8116 inst.operands[2].imm = 16;
8117 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8118 break;
8119 case 8:
8120 case 9:
8121 case 10:
8122 case 11:
8123 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8124 inst.operands[2].imm = 32;
8125 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8126 break;
8127 case 12:
8128 case 13:
8129 case 14:
8130 case 15:
8131 {
8132 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8133 unsigned long wrn;
8134 wrn = (inst.instruction >> 16) & 0xf;
8135 inst.instruction &= 0xff0fff0f;
8136 inst.instruction |= wrn;
8137 /* Bail out here; the instruction is now assembled. */
8138 return;
8139 }
8140 }
8141 }
8142 /* Map 32 -> 0, etc. */
8143 inst.operands[2].imm &= 0x1f;
8144 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8145 }
8146}
c19d1205
ZW
8147\f
8148/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8149 operations first, then control, shift, and load/store. */
b99bd4ef 8150
c19d1205 8151/* Insns like "foo X,Y,Z". */
b99bd4ef 8152
c19d1205
ZW
8153static void
8154do_mav_triple (void)
8155{
8156 inst.instruction |= inst.operands[0].reg << 16;
8157 inst.instruction |= inst.operands[1].reg;
8158 inst.instruction |= inst.operands[2].reg << 12;
8159}
b99bd4ef 8160
c19d1205
ZW
8161/* Insns like "foo W,X,Y,Z".
8162 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8163
c19d1205
ZW
8164static void
8165do_mav_quad (void)
8166{
8167 inst.instruction |= inst.operands[0].reg << 5;
8168 inst.instruction |= inst.operands[1].reg << 12;
8169 inst.instruction |= inst.operands[2].reg << 16;
8170 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8171}
8172
c19d1205
ZW
8173/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8174static void
8175do_mav_dspsc (void)
a737bd4d 8176{
c19d1205
ZW
8177 inst.instruction |= inst.operands[1].reg << 12;
8178}
a737bd4d 8179
c19d1205
ZW
8180/* Maverick shift immediate instructions.
8181 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8182 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8183
c19d1205
ZW
8184static void
8185do_mav_shift (void)
8186{
8187 int imm = inst.operands[2].imm;
a737bd4d 8188
c19d1205
ZW
8189 inst.instruction |= inst.operands[0].reg << 12;
8190 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8191
c19d1205
ZW
8192 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8193 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8194 Bit 4 should be 0. */
8195 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8196
c19d1205
ZW
8197 inst.instruction |= imm;
8198}
8199\f
8200/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8201
c19d1205
ZW
8202/* Xscale multiply-accumulate (argument parse)
8203 MIAcc acc0,Rm,Rs
8204 MIAPHcc acc0,Rm,Rs
8205 MIAxycc acc0,Rm,Rs. */
a737bd4d 8206
c19d1205
ZW
8207static void
8208do_xsc_mia (void)
8209{
8210 inst.instruction |= inst.operands[1].reg;
8211 inst.instruction |= inst.operands[2].reg << 12;
8212}
a737bd4d 8213
c19d1205 8214/* Xscale move-accumulator-register (argument parse)
a737bd4d 8215
c19d1205 8216 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8217
c19d1205
ZW
8218static void
8219do_xsc_mar (void)
8220{
8221 inst.instruction |= inst.operands[1].reg << 12;
8222 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8223}
8224
c19d1205 8225/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8226
c19d1205 8227 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8228
8229static void
c19d1205 8230do_xsc_mra (void)
b99bd4ef 8231{
c19d1205
ZW
8232 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8233 inst.instruction |= inst.operands[0].reg << 12;
8234 inst.instruction |= inst.operands[1].reg << 16;
8235}
8236\f
8237/* Encoding functions relevant only to Thumb. */
b99bd4ef 8238
c19d1205
ZW
8239/* inst.operands[i] is a shifted-register operand; encode
8240 it into inst.instruction in the format used by Thumb32. */
8241
8242static void
8243encode_thumb32_shifted_operand (int i)
8244{
8245 unsigned int value = inst.reloc.exp.X_add_number;
8246 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8247
9c3c69f2
PB
8248 constraint (inst.operands[i].immisreg,
8249 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8250 inst.instruction |= inst.operands[i].reg;
8251 if (shift == SHIFT_RRX)
8252 inst.instruction |= SHIFT_ROR << 4;
8253 else
b99bd4ef 8254 {
c19d1205
ZW
8255 constraint (inst.reloc.exp.X_op != O_constant,
8256 _("expression too complex"));
8257
8258 constraint (value > 32
8259 || (value == 32 && (shift == SHIFT_LSL
8260 || shift == SHIFT_ROR)),
8261 _("shift expression is too large"));
8262
8263 if (value == 0)
8264 shift = SHIFT_LSL;
8265 else if (value == 32)
8266 value = 0;
8267
8268 inst.instruction |= shift << 4;
8269 inst.instruction |= (value & 0x1c) << 10;
8270 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8271 }
c19d1205 8272}
b99bd4ef 8273
b99bd4ef 8274
c19d1205
ZW
8275/* inst.operands[i] was set up by parse_address. Encode it into a
8276 Thumb32 format load or store instruction. Reject forms that cannot
8277 be used with such instructions. If is_t is true, reject forms that
8278 cannot be used with a T instruction; if is_d is true, reject forms
8279 that cannot be used with a D instruction. */
b99bd4ef 8280
c19d1205
ZW
8281static void
8282encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8283{
8284 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8285
8286 constraint (!inst.operands[i].isreg,
53365c0d 8287 _("Instruction does not support =N addresses"));
b99bd4ef 8288
c19d1205
ZW
8289 inst.instruction |= inst.operands[i].reg << 16;
8290 if (inst.operands[i].immisreg)
b99bd4ef 8291 {
c19d1205
ZW
8292 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8293 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8294 constraint (inst.operands[i].negative,
8295 _("Thumb does not support negative register indexing"));
8296 constraint (inst.operands[i].postind,
8297 _("Thumb does not support register post-indexing"));
8298 constraint (inst.operands[i].writeback,
8299 _("Thumb does not support register indexing with writeback"));
8300 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8301 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8302
f40d1643 8303 inst.instruction |= inst.operands[i].imm;
c19d1205 8304 if (inst.operands[i].shifted)
b99bd4ef 8305 {
c19d1205
ZW
8306 constraint (inst.reloc.exp.X_op != O_constant,
8307 _("expression too complex"));
9c3c69f2
PB
8308 constraint (inst.reloc.exp.X_add_number < 0
8309 || inst.reloc.exp.X_add_number > 3,
c19d1205 8310 _("shift out of range"));
9c3c69f2 8311 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8312 }
8313 inst.reloc.type = BFD_RELOC_UNUSED;
8314 }
8315 else if (inst.operands[i].preind)
8316 {
8317 constraint (is_pc && inst.operands[i].writeback,
8318 _("cannot use writeback with PC-relative addressing"));
f40d1643 8319 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8320 _("cannot use writeback with this instruction"));
8321
8322 if (is_d)
8323 {
8324 inst.instruction |= 0x01000000;
8325 if (inst.operands[i].writeback)
8326 inst.instruction |= 0x00200000;
b99bd4ef 8327 }
c19d1205 8328 else
b99bd4ef 8329 {
c19d1205
ZW
8330 inst.instruction |= 0x00000c00;
8331 if (inst.operands[i].writeback)
8332 inst.instruction |= 0x00000100;
b99bd4ef 8333 }
c19d1205 8334 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8335 }
c19d1205 8336 else if (inst.operands[i].postind)
b99bd4ef 8337 {
c19d1205
ZW
8338 assert (inst.operands[i].writeback);
8339 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8340 constraint (is_t, _("cannot use post-indexing with this instruction"));
8341
8342 if (is_d)
8343 inst.instruction |= 0x00200000;
8344 else
8345 inst.instruction |= 0x00000900;
8346 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8347 }
8348 else /* unindexed - only for coprocessor */
8349 inst.error = _("instruction does not accept unindexed addressing");
8350}
8351
8352/* Table of Thumb instructions which exist in both 16- and 32-bit
8353 encodings (the latter only in post-V6T2 cores). The index is the
8354 value used in the insns table below. When there is more than one
8355 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8356 holds variant (1).
8357 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8358#define T16_32_TAB \
8359 X(adc, 4140, eb400000), \
8360 X(adcs, 4140, eb500000), \
8361 X(add, 1c00, eb000000), \
8362 X(adds, 1c00, eb100000), \
0110f2b8
PB
8363 X(addi, 0000, f1000000), \
8364 X(addis, 0000, f1100000), \
8365 X(add_pc,000f, f20f0000), \
8366 X(add_sp,000d, f10d0000), \
e9f89963 8367 X(adr, 000f, f20f0000), \
c19d1205
ZW
8368 X(and, 4000, ea000000), \
8369 X(ands, 4000, ea100000), \
8370 X(asr, 1000, fa40f000), \
8371 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8372 X(b, e000, f000b000), \
8373 X(bcond, d000, f0008000), \
c19d1205
ZW
8374 X(bic, 4380, ea200000), \
8375 X(bics, 4380, ea300000), \
8376 X(cmn, 42c0, eb100f00), \
8377 X(cmp, 2800, ebb00f00), \
8378 X(cpsie, b660, f3af8400), \
8379 X(cpsid, b670, f3af8600), \
8380 X(cpy, 4600, ea4f0000), \
155257ea 8381 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8382 X(eor, 4040, ea800000), \
8383 X(eors, 4040, ea900000), \
0110f2b8 8384 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8385 X(ldmia, c800, e8900000), \
8386 X(ldr, 6800, f8500000), \
8387 X(ldrb, 7800, f8100000), \
8388 X(ldrh, 8800, f8300000), \
8389 X(ldrsb, 5600, f9100000), \
8390 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8391 X(ldr_pc,4800, f85f0000), \
8392 X(ldr_pc2,4800, f85f0000), \
8393 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8394 X(lsl, 0000, fa00f000), \
8395 X(lsls, 0000, fa10f000), \
8396 X(lsr, 0800, fa20f000), \
8397 X(lsrs, 0800, fa30f000), \
8398 X(mov, 2000, ea4f0000), \
8399 X(movs, 2000, ea5f0000), \
8400 X(mul, 4340, fb00f000), \
8401 X(muls, 4340, ffffffff), /* no 32b muls */ \
8402 X(mvn, 43c0, ea6f0000), \
8403 X(mvns, 43c0, ea7f0000), \
8404 X(neg, 4240, f1c00000), /* rsb #0 */ \
8405 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8406 X(orr, 4300, ea400000), \
8407 X(orrs, 4300, ea500000), \
e9f89963
PB
8408 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8409 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8410 X(rev, ba00, fa90f080), \
8411 X(rev16, ba40, fa90f090), \
8412 X(revsh, bac0, fa90f0b0), \
8413 X(ror, 41c0, fa60f000), \
8414 X(rors, 41c0, fa70f000), \
8415 X(sbc, 4180, eb600000), \
8416 X(sbcs, 4180, eb700000), \
8417 X(stmia, c000, e8800000), \
8418 X(str, 6000, f8400000), \
8419 X(strb, 7000, f8000000), \
8420 X(strh, 8000, f8200000), \
0110f2b8 8421 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8422 X(sub, 1e00, eba00000), \
8423 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8424 X(subi, 8000, f1a00000), \
8425 X(subis, 8000, f1b00000), \
c19d1205
ZW
8426 X(sxtb, b240, fa4ff080), \
8427 X(sxth, b200, fa0ff080), \
8428 X(tst, 4200, ea100f00), \
8429 X(uxtb, b2c0, fa5ff080), \
8430 X(uxth, b280, fa1ff080), \
8431 X(nop, bf00, f3af8000), \
8432 X(yield, bf10, f3af8001), \
8433 X(wfe, bf20, f3af8002), \
8434 X(wfi, bf30, f3af8003), \
8435 X(sev, bf40, f3af9004), /* typo, 8004? */
8436
8437/* To catch errors in encoding functions, the codes are all offset by
8438 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8439 as 16-bit instructions. */
8440#define X(a,b,c) T_MNEM_##a
8441enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8442#undef X
8443
8444#define X(a,b,c) 0x##b
8445static const unsigned short thumb_op16[] = { T16_32_TAB };
8446#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8447#undef X
8448
8449#define X(a,b,c) 0x##c
8450static const unsigned int thumb_op32[] = { T16_32_TAB };
8451#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8452#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8453#undef X
8454#undef T16_32_TAB
8455
8456/* Thumb instruction encoders, in alphabetical order. */
8457
92e90b6e
PB
8458/* ADDW or SUBW. */
8459static void
8460do_t_add_sub_w (void)
8461{
8462 int Rd, Rn;
8463
8464 Rd = inst.operands[0].reg;
8465 Rn = inst.operands[1].reg;
8466
fdfde340
JM
8467 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this is the
8468 SP-{plus,minute}-immediate form of the instruction. */
8469 reject_bad_reg (Rd);
8470
92e90b6e
PB
8471 inst.instruction |= (Rn << 16) | (Rd << 8);
8472 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8473}
8474
c19d1205
ZW
8475/* Parse an add or subtract instruction. We get here with inst.instruction
8476 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8477
8478static void
8479do_t_add_sub (void)
8480{
8481 int Rd, Rs, Rn;
8482
8483 Rd = inst.operands[0].reg;
8484 Rs = (inst.operands[1].present
8485 ? inst.operands[1].reg /* Rd, Rs, foo */
8486 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8487
8488 if (unified_syntax)
8489 {
0110f2b8
PB
8490 bfd_boolean flags;
8491 bfd_boolean narrow;
8492 int opcode;
8493
8494 flags = (inst.instruction == T_MNEM_adds
8495 || inst.instruction == T_MNEM_subs);
8496 if (flags)
8497 narrow = (current_it_mask == 0);
8498 else
8499 narrow = (current_it_mask != 0);
c19d1205 8500 if (!inst.operands[2].isreg)
b99bd4ef 8501 {
16805f35
PB
8502 int add;
8503
fdfde340
JM
8504 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8505
16805f35
PB
8506 add = (inst.instruction == T_MNEM_add
8507 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8508 opcode = 0;
8509 if (inst.size_req != 4)
8510 {
0110f2b8
PB
8511 /* Attempt to use a narrow opcode, with relaxation if
8512 appropriate. */
8513 if (Rd == REG_SP && Rs == REG_SP && !flags)
8514 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8515 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8516 opcode = T_MNEM_add_sp;
8517 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8518 opcode = T_MNEM_add_pc;
8519 else if (Rd <= 7 && Rs <= 7 && narrow)
8520 {
8521 if (flags)
8522 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8523 else
8524 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8525 }
8526 if (opcode)
8527 {
8528 inst.instruction = THUMB_OP16(opcode);
8529 inst.instruction |= (Rd << 4) | Rs;
8530 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8531 if (inst.size_req != 2)
8532 inst.relax = opcode;
8533 }
8534 else
8535 constraint (inst.size_req == 2, BAD_HIREG);
8536 }
8537 if (inst.size_req == 4
8538 || (inst.size_req != 2 && !opcode))
8539 {
efd81785
PB
8540 if (Rd == REG_PC)
8541 {
fdfde340 8542 constraint (add, BAD_PC);
efd81785
PB
8543 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8544 _("only SUBS PC, LR, #const allowed"));
8545 constraint (inst.reloc.exp.X_op != O_constant,
8546 _("expression too complex"));
8547 constraint (inst.reloc.exp.X_add_number < 0
8548 || inst.reloc.exp.X_add_number > 0xff,
8549 _("immediate value out of range"));
8550 inst.instruction = T2_SUBS_PC_LR
8551 | inst.reloc.exp.X_add_number;
8552 inst.reloc.type = BFD_RELOC_UNUSED;
8553 return;
8554 }
8555 else if (Rs == REG_PC)
16805f35
PB
8556 {
8557 /* Always use addw/subw. */
8558 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8559 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8560 }
8561 else
8562 {
8563 inst.instruction = THUMB_OP32 (inst.instruction);
8564 inst.instruction = (inst.instruction & 0xe1ffffff)
8565 | 0x10000000;
8566 if (flags)
8567 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8568 else
8569 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8570 }
dc4503c6
PB
8571 inst.instruction |= Rd << 8;
8572 inst.instruction |= Rs << 16;
0110f2b8 8573 }
b99bd4ef 8574 }
c19d1205
ZW
8575 else
8576 {
8577 Rn = inst.operands[2].reg;
8578 /* See if we can do this with a 16-bit instruction. */
8579 if (!inst.operands[2].shifted && inst.size_req != 4)
8580 {
e27ec89e
PB
8581 if (Rd > 7 || Rs > 7 || Rn > 7)
8582 narrow = FALSE;
8583
8584 if (narrow)
c19d1205 8585 {
e27ec89e
PB
8586 inst.instruction = ((inst.instruction == T_MNEM_adds
8587 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8588 ? T_OPCODE_ADD_R3
8589 : T_OPCODE_SUB_R3);
8590 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8591 return;
8592 }
b99bd4ef 8593
7e806470 8594 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 8595 {
7e806470
PB
8596 /* Thumb-1 cores (except v6-M) require at least one high
8597 register in a narrow non flag setting add. */
8598 if (Rd > 7 || Rn > 7
8599 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8600 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 8601 {
7e806470
PB
8602 if (Rd == Rn)
8603 {
8604 Rn = Rs;
8605 Rs = Rd;
8606 }
c19d1205
ZW
8607 inst.instruction = T_OPCODE_ADD_HI;
8608 inst.instruction |= (Rd & 8) << 4;
8609 inst.instruction |= (Rd & 7);
8610 inst.instruction |= Rn << 3;
8611 return;
8612 }
c19d1205
ZW
8613 }
8614 }
fdfde340
JM
8615
8616 constraint (Rd == REG_PC, BAD_PC);
8617 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8618 constraint (Rs == REG_PC, BAD_PC);
8619 reject_bad_reg (Rn);
8620
c19d1205
ZW
8621 /* If we get here, it can't be done in 16 bits. */
8622 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8623 _("shift must be constant"));
8624 inst.instruction = THUMB_OP32 (inst.instruction);
8625 inst.instruction |= Rd << 8;
8626 inst.instruction |= Rs << 16;
8627 encode_thumb32_shifted_operand (2);
8628 }
8629 }
8630 else
8631 {
8632 constraint (inst.instruction == T_MNEM_adds
8633 || inst.instruction == T_MNEM_subs,
8634 BAD_THUMB32);
b99bd4ef 8635
c19d1205 8636 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8637 {
c19d1205
ZW
8638 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8639 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8640 BAD_HIREG);
8641
8642 inst.instruction = (inst.instruction == T_MNEM_add
8643 ? 0x0000 : 0x8000);
8644 inst.instruction |= (Rd << 4) | Rs;
8645 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8646 return;
8647 }
8648
c19d1205
ZW
8649 Rn = inst.operands[2].reg;
8650 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8651
c19d1205
ZW
8652 /* We now have Rd, Rs, and Rn set to registers. */
8653 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8654 {
c19d1205
ZW
8655 /* Can't do this for SUB. */
8656 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8657 inst.instruction = T_OPCODE_ADD_HI;
8658 inst.instruction |= (Rd & 8) << 4;
8659 inst.instruction |= (Rd & 7);
8660 if (Rs == Rd)
8661 inst.instruction |= Rn << 3;
8662 else if (Rn == Rd)
8663 inst.instruction |= Rs << 3;
8664 else
8665 constraint (1, _("dest must overlap one source register"));
8666 }
8667 else
8668 {
8669 inst.instruction = (inst.instruction == T_MNEM_add
8670 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8671 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8672 }
b99bd4ef 8673 }
b99bd4ef
NC
8674}
8675
c19d1205
ZW
8676static void
8677do_t_adr (void)
8678{
fdfde340
JM
8679 unsigned Rd;
8680
8681 Rd = inst.operands[0].reg;
8682 reject_bad_reg (Rd);
8683
8684 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
8685 {
8686 /* Defer to section relaxation. */
8687 inst.relax = inst.instruction;
8688 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 8689 inst.instruction |= Rd << 4;
0110f2b8
PB
8690 }
8691 else if (unified_syntax && inst.size_req != 2)
e9f89963 8692 {
0110f2b8 8693 /* Generate a 32-bit opcode. */
e9f89963 8694 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 8695 inst.instruction |= Rd << 8;
e9f89963
PB
8696 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8697 inst.reloc.pc_rel = 1;
8698 }
8699 else
8700 {
0110f2b8 8701 /* Generate a 16-bit opcode. */
e9f89963
PB
8702 inst.instruction = THUMB_OP16 (inst.instruction);
8703 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8704 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8705 inst.reloc.pc_rel = 1;
b99bd4ef 8706
fdfde340 8707 inst.instruction |= Rd << 4;
e9f89963 8708 }
c19d1205 8709}
b99bd4ef 8710
c19d1205
ZW
8711/* Arithmetic instructions for which there is just one 16-bit
8712 instruction encoding, and it allows only two low registers.
8713 For maximal compatibility with ARM syntax, we allow three register
8714 operands even when Thumb-32 instructions are not available, as long
8715 as the first two are identical. For instance, both "sbc r0,r1" and
8716 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8717static void
c19d1205 8718do_t_arit3 (void)
b99bd4ef 8719{
c19d1205 8720 int Rd, Rs, Rn;
b99bd4ef 8721
c19d1205
ZW
8722 Rd = inst.operands[0].reg;
8723 Rs = (inst.operands[1].present
8724 ? inst.operands[1].reg /* Rd, Rs, foo */
8725 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8726 Rn = inst.operands[2].reg;
b99bd4ef 8727
fdfde340
JM
8728 reject_bad_reg (Rd);
8729 reject_bad_reg (Rs);
8730 if (inst.operands[2].isreg)
8731 reject_bad_reg (Rn);
8732
c19d1205 8733 if (unified_syntax)
b99bd4ef 8734 {
c19d1205
ZW
8735 if (!inst.operands[2].isreg)
8736 {
8737 /* For an immediate, we always generate a 32-bit opcode;
8738 section relaxation will shrink it later if possible. */
8739 inst.instruction = THUMB_OP32 (inst.instruction);
8740 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8741 inst.instruction |= Rd << 8;
8742 inst.instruction |= Rs << 16;
8743 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8744 }
8745 else
8746 {
e27ec89e
PB
8747 bfd_boolean narrow;
8748
c19d1205 8749 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8750 if (THUMB_SETS_FLAGS (inst.instruction))
8751 narrow = current_it_mask == 0;
8752 else
8753 narrow = current_it_mask != 0;
8754
8755 if (Rd > 7 || Rn > 7 || Rs > 7)
8756 narrow = FALSE;
8757 if (inst.operands[2].shifted)
8758 narrow = FALSE;
8759 if (inst.size_req == 4)
8760 narrow = FALSE;
8761
8762 if (narrow
c19d1205
ZW
8763 && Rd == Rs)
8764 {
8765 inst.instruction = THUMB_OP16 (inst.instruction);
8766 inst.instruction |= Rd;
8767 inst.instruction |= Rn << 3;
8768 return;
8769 }
b99bd4ef 8770
c19d1205
ZW
8771 /* If we get here, it can't be done in 16 bits. */
8772 constraint (inst.operands[2].shifted
8773 && inst.operands[2].immisreg,
8774 _("shift must be constant"));
8775 inst.instruction = THUMB_OP32 (inst.instruction);
8776 inst.instruction |= Rd << 8;
8777 inst.instruction |= Rs << 16;
8778 encode_thumb32_shifted_operand (2);
8779 }
a737bd4d 8780 }
c19d1205 8781 else
b99bd4ef 8782 {
c19d1205
ZW
8783 /* On its face this is a lie - the instruction does set the
8784 flags. However, the only supported mnemonic in this mode
8785 says it doesn't. */
8786 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8787
c19d1205
ZW
8788 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8789 _("unshifted register required"));
8790 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8791 constraint (Rd != Rs,
8792 _("dest and source1 must be the same register"));
a737bd4d 8793
c19d1205
ZW
8794 inst.instruction = THUMB_OP16 (inst.instruction);
8795 inst.instruction |= Rd;
8796 inst.instruction |= Rn << 3;
b99bd4ef 8797 }
a737bd4d 8798}
b99bd4ef 8799
c19d1205
ZW
8800/* Similarly, but for instructions where the arithmetic operation is
8801 commutative, so we can allow either of them to be different from
8802 the destination operand in a 16-bit instruction. For instance, all
8803 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8804 accepted. */
8805static void
8806do_t_arit3c (void)
a737bd4d 8807{
c19d1205 8808 int Rd, Rs, Rn;
b99bd4ef 8809
c19d1205
ZW
8810 Rd = inst.operands[0].reg;
8811 Rs = (inst.operands[1].present
8812 ? inst.operands[1].reg /* Rd, Rs, foo */
8813 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8814 Rn = inst.operands[2].reg;
fdfde340
JM
8815
8816 reject_bad_reg (Rd);
8817 reject_bad_reg (Rs);
8818 if (inst.operands[2].isreg)
8819 reject_bad_reg (Rn);
a737bd4d 8820
c19d1205 8821 if (unified_syntax)
a737bd4d 8822 {
c19d1205 8823 if (!inst.operands[2].isreg)
b99bd4ef 8824 {
c19d1205
ZW
8825 /* For an immediate, we always generate a 32-bit opcode;
8826 section relaxation will shrink it later if possible. */
8827 inst.instruction = THUMB_OP32 (inst.instruction);
8828 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8829 inst.instruction |= Rd << 8;
8830 inst.instruction |= Rs << 16;
8831 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8832 }
c19d1205 8833 else
a737bd4d 8834 {
e27ec89e
PB
8835 bfd_boolean narrow;
8836
c19d1205 8837 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8838 if (THUMB_SETS_FLAGS (inst.instruction))
8839 narrow = current_it_mask == 0;
8840 else
8841 narrow = current_it_mask != 0;
8842
8843 if (Rd > 7 || Rn > 7 || Rs > 7)
8844 narrow = FALSE;
8845 if (inst.operands[2].shifted)
8846 narrow = FALSE;
8847 if (inst.size_req == 4)
8848 narrow = FALSE;
8849
8850 if (narrow)
a737bd4d 8851 {
c19d1205 8852 if (Rd == Rs)
a737bd4d 8853 {
c19d1205
ZW
8854 inst.instruction = THUMB_OP16 (inst.instruction);
8855 inst.instruction |= Rd;
8856 inst.instruction |= Rn << 3;
8857 return;
a737bd4d 8858 }
c19d1205 8859 if (Rd == Rn)
a737bd4d 8860 {
c19d1205
ZW
8861 inst.instruction = THUMB_OP16 (inst.instruction);
8862 inst.instruction |= Rd;
8863 inst.instruction |= Rs << 3;
8864 return;
a737bd4d
NC
8865 }
8866 }
c19d1205
ZW
8867
8868 /* If we get here, it can't be done in 16 bits. */
8869 constraint (inst.operands[2].shifted
8870 && inst.operands[2].immisreg,
8871 _("shift must be constant"));
8872 inst.instruction = THUMB_OP32 (inst.instruction);
8873 inst.instruction |= Rd << 8;
8874 inst.instruction |= Rs << 16;
8875 encode_thumb32_shifted_operand (2);
a737bd4d 8876 }
b99bd4ef 8877 }
c19d1205
ZW
8878 else
8879 {
8880 /* On its face this is a lie - the instruction does set the
8881 flags. However, the only supported mnemonic in this mode
8882 says it doesn't. */
8883 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8884
c19d1205
ZW
8885 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8886 _("unshifted register required"));
8887 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8888
8889 inst.instruction = THUMB_OP16 (inst.instruction);
8890 inst.instruction |= Rd;
8891
8892 if (Rd == Rs)
8893 inst.instruction |= Rn << 3;
8894 else if (Rd == Rn)
8895 inst.instruction |= Rs << 3;
8896 else
8897 constraint (1, _("dest must overlap one source register"));
8898 }
a737bd4d
NC
8899}
8900
62b3e311
PB
8901static void
8902do_t_barrier (void)
8903{
8904 if (inst.operands[0].present)
8905 {
8906 constraint ((inst.instruction & 0xf0) != 0x40
8907 && inst.operands[0].imm != 0xf,
bd3ba5d1 8908 _("bad barrier type"));
62b3e311
PB
8909 inst.instruction |= inst.operands[0].imm;
8910 }
8911 else
8912 inst.instruction |= 0xf;
8913}
8914
c19d1205
ZW
8915static void
8916do_t_bfc (void)
a737bd4d 8917{
fdfde340 8918 unsigned Rd;
c19d1205
ZW
8919 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8920 constraint (msb > 32, _("bit-field extends past end of register"));
8921 /* The instruction encoding stores the LSB and MSB,
8922 not the LSB and width. */
fdfde340
JM
8923 Rd = inst.operands[0].reg;
8924 reject_bad_reg (Rd);
8925 inst.instruction |= Rd << 8;
c19d1205
ZW
8926 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8927 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8928 inst.instruction |= msb - 1;
b99bd4ef
NC
8929}
8930
c19d1205
ZW
8931static void
8932do_t_bfi (void)
b99bd4ef 8933{
fdfde340 8934 int Rd, Rn;
c19d1205 8935 unsigned int msb;
b99bd4ef 8936
fdfde340
JM
8937 Rd = inst.operands[0].reg;
8938 reject_bad_reg (Rd);
8939
c19d1205
ZW
8940 /* #0 in second position is alternative syntax for bfc, which is
8941 the same instruction but with REG_PC in the Rm field. */
8942 if (!inst.operands[1].isreg)
fdfde340
JM
8943 Rn = REG_PC;
8944 else
8945 {
8946 Rn = inst.operands[1].reg;
8947 reject_bad_reg (Rn);
8948 }
b99bd4ef 8949
c19d1205
ZW
8950 msb = inst.operands[2].imm + inst.operands[3].imm;
8951 constraint (msb > 32, _("bit-field extends past end of register"));
8952 /* The instruction encoding stores the LSB and MSB,
8953 not the LSB and width. */
fdfde340
JM
8954 inst.instruction |= Rd << 8;
8955 inst.instruction |= Rn << 16;
c19d1205
ZW
8956 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8957 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8958 inst.instruction |= msb - 1;
b99bd4ef
NC
8959}
8960
c19d1205
ZW
8961static void
8962do_t_bfx (void)
b99bd4ef 8963{
fdfde340
JM
8964 unsigned Rd, Rn;
8965
8966 Rd = inst.operands[0].reg;
8967 Rn = inst.operands[1].reg;
8968
8969 reject_bad_reg (Rd);
8970 reject_bad_reg (Rn);
8971
c19d1205
ZW
8972 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8973 _("bit-field extends past end of register"));
fdfde340
JM
8974 inst.instruction |= Rd << 8;
8975 inst.instruction |= Rn << 16;
c19d1205
ZW
8976 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8977 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8978 inst.instruction |= inst.operands[3].imm - 1;
8979}
b99bd4ef 8980
c19d1205
ZW
8981/* ARM V5 Thumb BLX (argument parse)
8982 BLX <target_addr> which is BLX(1)
8983 BLX <Rm> which is BLX(2)
8984 Unfortunately, there are two different opcodes for this mnemonic.
8985 So, the insns[].value is not used, and the code here zaps values
8986 into inst.instruction.
b99bd4ef 8987
c19d1205
ZW
8988 ??? How to take advantage of the additional two bits of displacement
8989 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8990
c19d1205
ZW
8991static void
8992do_t_blx (void)
8993{
dfa9f0d5 8994 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8995 if (inst.operands[0].isreg)
fdfde340
JM
8996 {
8997 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8998 /* We have a register, so this is BLX(2). */
8999 inst.instruction |= inst.operands[0].reg << 3;
9000 }
b99bd4ef
NC
9001 else
9002 {
c19d1205 9003 /* No register. This must be BLX(1). */
2fc8bdac 9004 inst.instruction = 0xf000e800;
39b41c9c
PB
9005#ifdef OBJ_ELF
9006 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9007 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9008 else
9009#endif
9010 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9011 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9012 }
9013}
9014
c19d1205
ZW
9015static void
9016do_t_branch (void)
b99bd4ef 9017{
0110f2b8 9018 int opcode;
dfa9f0d5
PB
9019 int cond;
9020
9021 if (current_it_mask)
9022 {
9023 /* Conditional branches inside IT blocks are encoded as unconditional
9024 branches. */
9025 cond = COND_ALWAYS;
9026 /* A branch must be the last instruction in an IT block. */
9027 constraint (current_it_mask != 0x10, BAD_BRANCH);
9028 }
9029 else
9030 cond = inst.cond;
9031
9032 if (cond != COND_ALWAYS)
0110f2b8
PB
9033 opcode = T_MNEM_bcond;
9034 else
9035 opcode = inst.instruction;
9036
9037 if (unified_syntax && inst.size_req == 4)
c19d1205 9038 {
0110f2b8 9039 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9040 if (cond == COND_ALWAYS)
0110f2b8 9041 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9042 else
9043 {
dfa9f0d5
PB
9044 assert (cond != 0xF);
9045 inst.instruction |= cond << 22;
c19d1205
ZW
9046 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9047 }
9048 }
b99bd4ef
NC
9049 else
9050 {
0110f2b8 9051 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9052 if (cond == COND_ALWAYS)
c19d1205
ZW
9053 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9054 else
b99bd4ef 9055 {
dfa9f0d5 9056 inst.instruction |= cond << 8;
c19d1205 9057 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9058 }
0110f2b8
PB
9059 /* Allow section relaxation. */
9060 if (unified_syntax && inst.size_req != 2)
9061 inst.relax = opcode;
b99bd4ef 9062 }
c19d1205
ZW
9063
9064 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9065}
9066
9067static void
c19d1205 9068do_t_bkpt (void)
b99bd4ef 9069{
dfa9f0d5
PB
9070 constraint (inst.cond != COND_ALWAYS,
9071 _("instruction is always unconditional"));
c19d1205 9072 if (inst.operands[0].present)
b99bd4ef 9073 {
c19d1205
ZW
9074 constraint (inst.operands[0].imm > 255,
9075 _("immediate value out of range"));
9076 inst.instruction |= inst.operands[0].imm;
b99bd4ef 9077 }
b99bd4ef
NC
9078}
9079
9080static void
c19d1205 9081do_t_branch23 (void)
b99bd4ef 9082{
dfa9f0d5 9083 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 9084 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9085 inst.reloc.pc_rel = 1;
9086
4343666d 9087#if defined(OBJ_COFF)
c19d1205
ZW
9088 /* If the destination of the branch is a defined symbol which does not have
9089 the THUMB_FUNC attribute, then we must be calling a function which has
9090 the (interfacearm) attribute. We look for the Thumb entry point to that
9091 function and change the branch to refer to that function instead. */
9092 if ( inst.reloc.exp.X_op == O_symbol
9093 && inst.reloc.exp.X_add_symbol != NULL
9094 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9095 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9096 inst.reloc.exp.X_add_symbol =
9097 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9098#endif
90e4755a
RE
9099}
9100
9101static void
c19d1205 9102do_t_bx (void)
90e4755a 9103{
dfa9f0d5 9104 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
9105 inst.instruction |= inst.operands[0].reg << 3;
9106 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9107 should cause the alignment to be checked once it is known. This is
9108 because BX PC only works if the instruction is word aligned. */
9109}
90e4755a 9110
c19d1205
ZW
9111static void
9112do_t_bxj (void)
9113{
fdfde340 9114 int Rm;
90e4755a 9115
fdfde340
JM
9116 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9117 Rm = inst.operands[0].reg;
9118 reject_bad_reg (Rm);
9119 inst.instruction |= Rm << 16;
90e4755a
RE
9120}
9121
9122static void
c19d1205 9123do_t_clz (void)
90e4755a 9124{
fdfde340
JM
9125 unsigned Rd;
9126 unsigned Rm;
9127
9128 Rd = inst.operands[0].reg;
9129 Rm = inst.operands[1].reg;
9130
9131 reject_bad_reg (Rd);
9132 reject_bad_reg (Rm);
9133
9134 inst.instruction |= Rd << 8;
9135 inst.instruction |= Rm << 16;
9136 inst.instruction |= Rm;
c19d1205 9137}
90e4755a 9138
dfa9f0d5
PB
9139static void
9140do_t_cps (void)
9141{
9142 constraint (current_it_mask, BAD_NOT_IT);
9143 inst.instruction |= inst.operands[0].imm;
9144}
9145
c19d1205
ZW
9146static void
9147do_t_cpsi (void)
9148{
dfa9f0d5 9149 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 9150 if (unified_syntax
62b3e311
PB
9151 && (inst.operands[1].present || inst.size_req == 4)
9152 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9153 {
c19d1205
ZW
9154 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9155 inst.instruction = 0xf3af8000;
9156 inst.instruction |= imod << 9;
9157 inst.instruction |= inst.operands[0].imm << 5;
9158 if (inst.operands[1].present)
9159 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9160 }
c19d1205 9161 else
90e4755a 9162 {
62b3e311
PB
9163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9164 && (inst.operands[0].imm & 4),
9165 _("selected processor does not support 'A' form "
9166 "of this instruction"));
9167 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9168 _("Thumb does not support the 2-argument "
9169 "form of this instruction"));
9170 inst.instruction |= inst.operands[0].imm;
90e4755a 9171 }
90e4755a
RE
9172}
9173
c19d1205
ZW
9174/* THUMB CPY instruction (argument parse). */
9175
90e4755a 9176static void
c19d1205 9177do_t_cpy (void)
90e4755a 9178{
c19d1205 9179 if (inst.size_req == 4)
90e4755a 9180 {
c19d1205
ZW
9181 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9182 inst.instruction |= inst.operands[0].reg << 8;
9183 inst.instruction |= inst.operands[1].reg;
90e4755a 9184 }
c19d1205 9185 else
90e4755a 9186 {
c19d1205
ZW
9187 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9188 inst.instruction |= (inst.operands[0].reg & 0x7);
9189 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9190 }
90e4755a
RE
9191}
9192
90e4755a 9193static void
25fe350b 9194do_t_cbz (void)
90e4755a 9195{
dfa9f0d5 9196 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9197 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9198 inst.instruction |= inst.operands[0].reg;
9199 inst.reloc.pc_rel = 1;
9200 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9201}
90e4755a 9202
62b3e311
PB
9203static void
9204do_t_dbg (void)
9205{
9206 inst.instruction |= inst.operands[0].imm;
9207}
9208
9209static void
9210do_t_div (void)
9211{
fdfde340
JM
9212 unsigned Rd, Rn, Rm;
9213
9214 Rd = inst.operands[0].reg;
9215 Rn = (inst.operands[1].present
9216 ? inst.operands[1].reg : Rd);
9217 Rm = inst.operands[2].reg;
9218
9219 reject_bad_reg (Rd);
9220 reject_bad_reg (Rn);
9221 reject_bad_reg (Rm);
9222
9223 inst.instruction |= Rd << 8;
9224 inst.instruction |= Rn << 16;
9225 inst.instruction |= Rm;
62b3e311
PB
9226}
9227
c19d1205
ZW
9228static void
9229do_t_hint (void)
9230{
9231 if (unified_syntax && inst.size_req == 4)
9232 inst.instruction = THUMB_OP32 (inst.instruction);
9233 else
9234 inst.instruction = THUMB_OP16 (inst.instruction);
9235}
90e4755a 9236
c19d1205
ZW
9237static void
9238do_t_it (void)
9239{
9240 unsigned int cond = inst.operands[0].imm;
e27ec89e 9241
dfa9f0d5 9242 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9243 current_it_mask = (inst.instruction & 0xf) | 0x10;
9244 current_cc = cond;
9245
9246 /* If the condition is a negative condition, invert the mask. */
c19d1205 9247 if ((cond & 0x1) == 0x0)
90e4755a 9248 {
c19d1205 9249 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9250
c19d1205
ZW
9251 if ((mask & 0x7) == 0)
9252 /* no conversion needed */;
9253 else if ((mask & 0x3) == 0)
e27ec89e
PB
9254 mask ^= 0x8;
9255 else if ((mask & 0x1) == 0)
9256 mask ^= 0xC;
c19d1205 9257 else
e27ec89e 9258 mask ^= 0xE;
90e4755a 9259
e27ec89e
PB
9260 inst.instruction &= 0xfff0;
9261 inst.instruction |= mask;
c19d1205 9262 }
90e4755a 9263
c19d1205
ZW
9264 inst.instruction |= cond << 4;
9265}
90e4755a 9266
3c707909
PB
9267/* Helper function used for both push/pop and ldm/stm. */
9268static void
9269encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9270{
9271 bfd_boolean load;
9272
9273 load = (inst.instruction & (1 << 20)) != 0;
9274
9275 if (mask & (1 << 13))
9276 inst.error = _("SP not allowed in register list");
9277 if (load)
9278 {
9279 if (mask & (1 << 14)
9280 && mask & (1 << 15))
9281 inst.error = _("LR and PC should not both be in register list");
9282
9283 if ((mask & (1 << base)) != 0
9284 && writeback)
9285 as_warn (_("base register should not be in register list "
9286 "when written back"));
9287 }
9288 else
9289 {
9290 if (mask & (1 << 15))
9291 inst.error = _("PC not allowed in register list");
9292
9293 if (mask & (1 << base))
9294 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9295 }
9296
9297 if ((mask & (mask - 1)) == 0)
9298 {
9299 /* Single register transfers implemented as str/ldr. */
9300 if (writeback)
9301 {
9302 if (inst.instruction & (1 << 23))
9303 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9304 else
9305 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9306 }
9307 else
9308 {
9309 if (inst.instruction & (1 << 23))
9310 inst.instruction = 0x00800000; /* ia -> [base] */
9311 else
9312 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9313 }
9314
9315 inst.instruction |= 0xf8400000;
9316 if (load)
9317 inst.instruction |= 0x00100000;
9318
5f4273c7 9319 mask = ffs (mask) - 1;
3c707909
PB
9320 mask <<= 12;
9321 }
9322 else if (writeback)
9323 inst.instruction |= WRITE_BACK;
9324
9325 inst.instruction |= mask;
9326 inst.instruction |= base << 16;
9327}
9328
c19d1205
ZW
9329static void
9330do_t_ldmstm (void)
9331{
9332 /* This really doesn't seem worth it. */
9333 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9334 _("expression too complex"));
9335 constraint (inst.operands[1].writeback,
9336 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9337
c19d1205
ZW
9338 if (unified_syntax)
9339 {
3c707909
PB
9340 bfd_boolean narrow;
9341 unsigned mask;
9342
9343 narrow = FALSE;
c19d1205
ZW
9344 /* See if we can use a 16-bit instruction. */
9345 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9346 && inst.size_req != 4
3c707909 9347 && !(inst.operands[1].imm & ~0xff))
90e4755a 9348 {
3c707909 9349 mask = 1 << inst.operands[0].reg;
90e4755a 9350
3c707909
PB
9351 if (inst.operands[0].reg <= 7
9352 && (inst.instruction == T_MNEM_stmia
9353 ? inst.operands[0].writeback
9354 : (inst.operands[0].writeback
9355 == !(inst.operands[1].imm & mask))))
90e4755a 9356 {
3c707909
PB
9357 if (inst.instruction == T_MNEM_stmia
9358 && (inst.operands[1].imm & mask)
9359 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9360 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9361 inst.operands[0].reg);
3c707909
PB
9362
9363 inst.instruction = THUMB_OP16 (inst.instruction);
9364 inst.instruction |= inst.operands[0].reg << 8;
9365 inst.instruction |= inst.operands[1].imm;
9366 narrow = TRUE;
90e4755a 9367 }
3c707909
PB
9368 else if (inst.operands[0] .reg == REG_SP
9369 && inst.operands[0].writeback)
90e4755a 9370 {
3c707909
PB
9371 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9372 ? T_MNEM_push : T_MNEM_pop);
9373 inst.instruction |= inst.operands[1].imm;
9374 narrow = TRUE;
90e4755a 9375 }
3c707909
PB
9376 }
9377
9378 if (!narrow)
9379 {
c19d1205
ZW
9380 if (inst.instruction < 0xffff)
9381 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9382
5f4273c7
NC
9383 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9384 inst.operands[0].writeback);
90e4755a
RE
9385 }
9386 }
c19d1205 9387 else
90e4755a 9388 {
c19d1205
ZW
9389 constraint (inst.operands[0].reg > 7
9390 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9391 constraint (inst.instruction != T_MNEM_ldmia
9392 && inst.instruction != T_MNEM_stmia,
9393 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9394 if (inst.instruction == T_MNEM_stmia)
f03698e6 9395 {
c19d1205
ZW
9396 if (!inst.operands[0].writeback)
9397 as_warn (_("this instruction will write back the base register"));
9398 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9399 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9400 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9401 inst.operands[0].reg);
f03698e6 9402 }
c19d1205 9403 else
90e4755a 9404 {
c19d1205
ZW
9405 if (!inst.operands[0].writeback
9406 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9407 as_warn (_("this instruction will write back the base register"));
9408 else if (inst.operands[0].writeback
9409 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9410 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9411 }
9412
c19d1205
ZW
9413 inst.instruction = THUMB_OP16 (inst.instruction);
9414 inst.instruction |= inst.operands[0].reg << 8;
9415 inst.instruction |= inst.operands[1].imm;
9416 }
9417}
e28cd48c 9418
c19d1205
ZW
9419static void
9420do_t_ldrex (void)
9421{
9422 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9423 || inst.operands[1].postind || inst.operands[1].writeback
9424 || inst.operands[1].immisreg || inst.operands[1].shifted
9425 || inst.operands[1].negative,
01cfc07f 9426 BAD_ADDR_MODE);
e28cd48c 9427
c19d1205
ZW
9428 inst.instruction |= inst.operands[0].reg << 12;
9429 inst.instruction |= inst.operands[1].reg << 16;
9430 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9431}
e28cd48c 9432
c19d1205
ZW
9433static void
9434do_t_ldrexd (void)
9435{
9436 if (!inst.operands[1].present)
1cac9012 9437 {
c19d1205
ZW
9438 constraint (inst.operands[0].reg == REG_LR,
9439 _("r14 not allowed as first register "
9440 "when second register is omitted"));
9441 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9442 }
c19d1205
ZW
9443 constraint (inst.operands[0].reg == inst.operands[1].reg,
9444 BAD_OVERLAP);
b99bd4ef 9445
c19d1205
ZW
9446 inst.instruction |= inst.operands[0].reg << 12;
9447 inst.instruction |= inst.operands[1].reg << 8;
9448 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9449}
9450
9451static void
c19d1205 9452do_t_ldst (void)
b99bd4ef 9453{
0110f2b8
PB
9454 unsigned long opcode;
9455 int Rn;
9456
9457 opcode = inst.instruction;
c19d1205 9458 if (unified_syntax)
b99bd4ef 9459 {
53365c0d
PB
9460 if (!inst.operands[1].isreg)
9461 {
9462 if (opcode <= 0xffff)
9463 inst.instruction = THUMB_OP32 (opcode);
9464 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9465 return;
9466 }
0110f2b8
PB
9467 if (inst.operands[1].isreg
9468 && !inst.operands[1].writeback
c19d1205
ZW
9469 && !inst.operands[1].shifted && !inst.operands[1].postind
9470 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9471 && opcode <= 0xffff
9472 && inst.size_req != 4)
c19d1205 9473 {
0110f2b8
PB
9474 /* Insn may have a 16-bit form. */
9475 Rn = inst.operands[1].reg;
9476 if (inst.operands[1].immisreg)
9477 {
9478 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9479 /* [Rn, Rik] */
0110f2b8
PB
9480 if (Rn <= 7 && inst.operands[1].imm <= 7)
9481 goto op16;
9482 }
9483 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9484 && opcode != T_MNEM_ldrsb)
9485 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9486 || (Rn == REG_SP && opcode == T_MNEM_str))
9487 {
9488 /* [Rn, #const] */
9489 if (Rn > 7)
9490 {
9491 if (Rn == REG_PC)
9492 {
9493 if (inst.reloc.pc_rel)
9494 opcode = T_MNEM_ldr_pc2;
9495 else
9496 opcode = T_MNEM_ldr_pc;
9497 }
9498 else
9499 {
9500 if (opcode == T_MNEM_ldr)
9501 opcode = T_MNEM_ldr_sp;
9502 else
9503 opcode = T_MNEM_str_sp;
9504 }
9505 inst.instruction = inst.operands[0].reg << 8;
9506 }
9507 else
9508 {
9509 inst.instruction = inst.operands[0].reg;
9510 inst.instruction |= inst.operands[1].reg << 3;
9511 }
9512 inst.instruction |= THUMB_OP16 (opcode);
9513 if (inst.size_req == 2)
9514 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9515 else
9516 inst.relax = opcode;
9517 return;
9518 }
c19d1205 9519 }
0110f2b8
PB
9520 /* Definitely a 32-bit variant. */
9521 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9522 inst.instruction |= inst.operands[0].reg << 12;
9523 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9524 return;
9525 }
9526
c19d1205
ZW
9527 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9528
9529 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9530 {
c19d1205
ZW
9531 /* Only [Rn,Rm] is acceptable. */
9532 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9533 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9534 || inst.operands[1].postind || inst.operands[1].shifted
9535 || inst.operands[1].negative,
9536 _("Thumb does not support this addressing mode"));
9537 inst.instruction = THUMB_OP16 (inst.instruction);
9538 goto op16;
b99bd4ef 9539 }
5f4273c7 9540
c19d1205
ZW
9541 inst.instruction = THUMB_OP16 (inst.instruction);
9542 if (!inst.operands[1].isreg)
9543 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9544 return;
b99bd4ef 9545
c19d1205
ZW
9546 constraint (!inst.operands[1].preind
9547 || inst.operands[1].shifted
9548 || inst.operands[1].writeback,
9549 _("Thumb does not support this addressing mode"));
9550 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9551 {
c19d1205
ZW
9552 constraint (inst.instruction & 0x0600,
9553 _("byte or halfword not valid for base register"));
9554 constraint (inst.operands[1].reg == REG_PC
9555 && !(inst.instruction & THUMB_LOAD_BIT),
9556 _("r15 based store not allowed"));
9557 constraint (inst.operands[1].immisreg,
9558 _("invalid base register for register offset"));
b99bd4ef 9559
c19d1205
ZW
9560 if (inst.operands[1].reg == REG_PC)
9561 inst.instruction = T_OPCODE_LDR_PC;
9562 else if (inst.instruction & THUMB_LOAD_BIT)
9563 inst.instruction = T_OPCODE_LDR_SP;
9564 else
9565 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9566
c19d1205
ZW
9567 inst.instruction |= inst.operands[0].reg << 8;
9568 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9569 return;
9570 }
90e4755a 9571
c19d1205
ZW
9572 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9573 if (!inst.operands[1].immisreg)
9574 {
9575 /* Immediate offset. */
9576 inst.instruction |= inst.operands[0].reg;
9577 inst.instruction |= inst.operands[1].reg << 3;
9578 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9579 return;
9580 }
90e4755a 9581
c19d1205
ZW
9582 /* Register offset. */
9583 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9584 constraint (inst.operands[1].negative,
9585 _("Thumb does not support this addressing mode"));
90e4755a 9586
c19d1205
ZW
9587 op16:
9588 switch (inst.instruction)
9589 {
9590 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9591 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9592 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9593 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9594 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9595 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9596 case 0x5600 /* ldrsb */:
9597 case 0x5e00 /* ldrsh */: break;
9598 default: abort ();
9599 }
90e4755a 9600
c19d1205
ZW
9601 inst.instruction |= inst.operands[0].reg;
9602 inst.instruction |= inst.operands[1].reg << 3;
9603 inst.instruction |= inst.operands[1].imm << 6;
9604}
90e4755a 9605
c19d1205
ZW
9606static void
9607do_t_ldstd (void)
9608{
9609 if (!inst.operands[1].present)
b99bd4ef 9610 {
c19d1205
ZW
9611 inst.operands[1].reg = inst.operands[0].reg + 1;
9612 constraint (inst.operands[0].reg == REG_LR,
9613 _("r14 not allowed here"));
b99bd4ef 9614 }
c19d1205
ZW
9615 inst.instruction |= inst.operands[0].reg << 12;
9616 inst.instruction |= inst.operands[1].reg << 8;
9617 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
9618}
9619
c19d1205
ZW
9620static void
9621do_t_ldstt (void)
9622{
9623 inst.instruction |= inst.operands[0].reg << 12;
9624 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9625}
a737bd4d 9626
b99bd4ef 9627static void
c19d1205 9628do_t_mla (void)
b99bd4ef 9629{
fdfde340
JM
9630 unsigned Rd, Rn, Rm, Ra;
9631
9632 Rd = inst.operands[0].reg;
9633 Rn = inst.operands[1].reg;
9634 Rm = inst.operands[2].reg;
9635 Ra = inst.operands[3].reg;
9636
9637 reject_bad_reg (Rd);
9638 reject_bad_reg (Rn);
9639 reject_bad_reg (Rm);
9640 reject_bad_reg (Ra);
9641
9642 inst.instruction |= Rd << 8;
9643 inst.instruction |= Rn << 16;
9644 inst.instruction |= Rm;
9645 inst.instruction |= Ra << 12;
c19d1205 9646}
b99bd4ef 9647
c19d1205
ZW
9648static void
9649do_t_mlal (void)
9650{
fdfde340
JM
9651 unsigned RdLo, RdHi, Rn, Rm;
9652
9653 RdLo = inst.operands[0].reg;
9654 RdHi = inst.operands[1].reg;
9655 Rn = inst.operands[2].reg;
9656 Rm = inst.operands[3].reg;
9657
9658 reject_bad_reg (RdLo);
9659 reject_bad_reg (RdHi);
9660 reject_bad_reg (Rn);
9661 reject_bad_reg (Rm);
9662
9663 inst.instruction |= RdLo << 12;
9664 inst.instruction |= RdHi << 8;
9665 inst.instruction |= Rn << 16;
9666 inst.instruction |= Rm;
c19d1205 9667}
b99bd4ef 9668
c19d1205
ZW
9669static void
9670do_t_mov_cmp (void)
9671{
fdfde340
JM
9672 unsigned Rn, Rm;
9673
9674 Rn = inst.operands[0].reg;
9675 Rm = inst.operands[1].reg;
9676
c19d1205 9677 if (unified_syntax)
b99bd4ef 9678 {
c19d1205
ZW
9679 int r0off = (inst.instruction == T_MNEM_mov
9680 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9681 unsigned long opcode;
3d388997
PB
9682 bfd_boolean narrow;
9683 bfd_boolean low_regs;
9684
fdfde340 9685 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 9686 opcode = inst.instruction;
3d388997 9687 if (current_it_mask)
0110f2b8 9688 narrow = opcode != T_MNEM_movs;
3d388997 9689 else
0110f2b8 9690 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9691 if (inst.size_req == 4
9692 || inst.operands[1].shifted)
9693 narrow = FALSE;
9694
efd81785
PB
9695 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9696 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9697 && !inst.operands[1].shifted
fdfde340
JM
9698 && Rn == REG_PC
9699 && Rm == REG_LR)
efd81785
PB
9700 {
9701 inst.instruction = T2_SUBS_PC_LR;
9702 return;
9703 }
9704
fdfde340
JM
9705 if (opcode == T_MNEM_cmp)
9706 {
9707 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
9708 if (narrow)
9709 {
9710 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
9711 but valid. */
9712 warn_deprecated_sp (Rm);
9713 /* R15 was documented as a valid choice for Rm in ARMv6,
9714 but as UNPREDICTABLE in ARMv7. ARM's proprietary
9715 tools reject R15, so we do too. */
9716 constraint (Rm == REG_PC, BAD_PC);
9717 }
9718 else
9719 reject_bad_reg (Rm);
fdfde340
JM
9720 }
9721 else if (opcode == T_MNEM_mov
9722 || opcode == T_MNEM_movs)
9723 {
9724 if (inst.operands[1].isreg)
9725 {
9726 if (opcode == T_MNEM_movs)
9727 {
9728 reject_bad_reg (Rn);
9729 reject_bad_reg (Rm);
9730 }
9731 else if ((Rn == REG_SP || Rn == REG_PC)
9732 && (Rm == REG_SP || Rm == REG_PC))
9733 reject_bad_reg (Rm);
9734 }
9735 else
9736 reject_bad_reg (Rn);
9737 }
9738
c19d1205
ZW
9739 if (!inst.operands[1].isreg)
9740 {
0110f2b8
PB
9741 /* Immediate operand. */
9742 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9743 narrow = 0;
9744 if (low_regs && narrow)
9745 {
9746 inst.instruction = THUMB_OP16 (opcode);
fdfde340 9747 inst.instruction |= Rn << 8;
0110f2b8
PB
9748 if (inst.size_req == 2)
9749 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9750 else
9751 inst.relax = opcode;
9752 }
9753 else
9754 {
9755 inst.instruction = THUMB_OP32 (inst.instruction);
9756 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 9757 inst.instruction |= Rn << r0off;
0110f2b8
PB
9758 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9759 }
c19d1205 9760 }
728ca7c9
PB
9761 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9762 && (inst.instruction == T_MNEM_mov
9763 || inst.instruction == T_MNEM_movs))
9764 {
9765 /* Register shifts are encoded as separate shift instructions. */
9766 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9767
9768 if (current_it_mask)
9769 narrow = !flags;
9770 else
9771 narrow = flags;
9772
9773 if (inst.size_req == 4)
9774 narrow = FALSE;
9775
9776 if (!low_regs || inst.operands[1].imm > 7)
9777 narrow = FALSE;
9778
fdfde340 9779 if (Rn != Rm)
728ca7c9
PB
9780 narrow = FALSE;
9781
9782 switch (inst.operands[1].shift_kind)
9783 {
9784 case SHIFT_LSL:
9785 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9786 break;
9787 case SHIFT_ASR:
9788 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9789 break;
9790 case SHIFT_LSR:
9791 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9792 break;
9793 case SHIFT_ROR:
9794 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9795 break;
9796 default:
5f4273c7 9797 abort ();
728ca7c9
PB
9798 }
9799
9800 inst.instruction = opcode;
9801 if (narrow)
9802 {
fdfde340 9803 inst.instruction |= Rn;
728ca7c9
PB
9804 inst.instruction |= inst.operands[1].imm << 3;
9805 }
9806 else
9807 {
9808 if (flags)
9809 inst.instruction |= CONDS_BIT;
9810
fdfde340
JM
9811 inst.instruction |= Rn << 8;
9812 inst.instruction |= Rm << 16;
728ca7c9
PB
9813 inst.instruction |= inst.operands[1].imm;
9814 }
9815 }
3d388997 9816 else if (!narrow)
c19d1205 9817 {
728ca7c9
PB
9818 /* Some mov with immediate shift have narrow variants.
9819 Register shifts are handled above. */
9820 if (low_regs && inst.operands[1].shifted
9821 && (inst.instruction == T_MNEM_mov
9822 || inst.instruction == T_MNEM_movs))
9823 {
9824 if (current_it_mask)
9825 narrow = (inst.instruction == T_MNEM_mov);
9826 else
9827 narrow = (inst.instruction == T_MNEM_movs);
9828 }
9829
9830 if (narrow)
9831 {
9832 switch (inst.operands[1].shift_kind)
9833 {
9834 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9835 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9836 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9837 default: narrow = FALSE; break;
9838 }
9839 }
9840
9841 if (narrow)
9842 {
fdfde340
JM
9843 inst.instruction |= Rn;
9844 inst.instruction |= Rm << 3;
728ca7c9
PB
9845 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9846 }
9847 else
9848 {
9849 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9850 inst.instruction |= Rn << r0off;
728ca7c9
PB
9851 encode_thumb32_shifted_operand (1);
9852 }
c19d1205
ZW
9853 }
9854 else
9855 switch (inst.instruction)
9856 {
9857 case T_MNEM_mov:
9858 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
9859 inst.instruction |= (Rn & 0x8) << 4;
9860 inst.instruction |= (Rn & 0x7);
9861 inst.instruction |= Rm << 3;
c19d1205 9862 break;
b99bd4ef 9863
c19d1205
ZW
9864 case T_MNEM_movs:
9865 /* We know we have low registers at this point.
9866 Generate ADD Rd, Rs, #0. */
9867 inst.instruction = T_OPCODE_ADD_I3;
fdfde340
JM
9868 inst.instruction |= Rn;
9869 inst.instruction |= Rm << 3;
c19d1205
ZW
9870 break;
9871
9872 case T_MNEM_cmp:
3d388997 9873 if (low_regs)
c19d1205
ZW
9874 {
9875 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
9876 inst.instruction |= Rn;
9877 inst.instruction |= Rm << 3;
c19d1205
ZW
9878 }
9879 else
9880 {
9881 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
9882 inst.instruction |= (Rn & 0x8) << 4;
9883 inst.instruction |= (Rn & 0x7);
9884 inst.instruction |= Rm << 3;
c19d1205
ZW
9885 }
9886 break;
9887 }
b99bd4ef
NC
9888 return;
9889 }
9890
c19d1205
ZW
9891 inst.instruction = THUMB_OP16 (inst.instruction);
9892 if (inst.operands[1].isreg)
b99bd4ef 9893 {
fdfde340 9894 if (Rn < 8 && Rm < 8)
b99bd4ef 9895 {
c19d1205
ZW
9896 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9897 since a MOV instruction produces unpredictable results. */
9898 if (inst.instruction == T_OPCODE_MOV_I8)
9899 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9900 else
c19d1205 9901 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9902
fdfde340
JM
9903 inst.instruction |= Rn;
9904 inst.instruction |= Rm << 3;
b99bd4ef
NC
9905 }
9906 else
9907 {
c19d1205
ZW
9908 if (inst.instruction == T_OPCODE_MOV_I8)
9909 inst.instruction = T_OPCODE_MOV_HR;
9910 else
9911 inst.instruction = T_OPCODE_CMP_HR;
9912 do_t_cpy ();
b99bd4ef
NC
9913 }
9914 }
c19d1205 9915 else
b99bd4ef 9916 {
fdfde340 9917 constraint (Rn > 7,
c19d1205 9918 _("only lo regs allowed with immediate"));
fdfde340 9919 inst.instruction |= Rn << 8;
c19d1205
ZW
9920 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9921 }
9922}
b99bd4ef 9923
c19d1205
ZW
9924static void
9925do_t_mov16 (void)
9926{
fdfde340 9927 unsigned Rd;
b6895b4f
PB
9928 bfd_vma imm;
9929 bfd_boolean top;
9930
9931 top = (inst.instruction & 0x00800000) != 0;
9932 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9933 {
9934 constraint (top, _(":lower16: not allowed this instruction"));
9935 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9936 }
9937 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9938 {
9939 constraint (!top, _(":upper16: not allowed this instruction"));
9940 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9941 }
9942
fdfde340
JM
9943 Rd = inst.operands[0].reg;
9944 reject_bad_reg (Rd);
9945
9946 inst.instruction |= Rd << 8;
b6895b4f
PB
9947 if (inst.reloc.type == BFD_RELOC_UNUSED)
9948 {
9949 imm = inst.reloc.exp.X_add_number;
9950 inst.instruction |= (imm & 0xf000) << 4;
9951 inst.instruction |= (imm & 0x0800) << 15;
9952 inst.instruction |= (imm & 0x0700) << 4;
9953 inst.instruction |= (imm & 0x00ff);
9954 }
c19d1205 9955}
b99bd4ef 9956
c19d1205
ZW
9957static void
9958do_t_mvn_tst (void)
9959{
fdfde340
JM
9960 unsigned Rn, Rm;
9961
9962 Rn = inst.operands[0].reg;
9963 Rm = inst.operands[1].reg;
9964
9965 if (inst.instruction == T_MNEM_cmp
9966 || inst.instruction == T_MNEM_cmn)
9967 constraint (Rn == REG_PC, BAD_PC);
9968 else
9969 reject_bad_reg (Rn);
9970 reject_bad_reg (Rm);
9971
c19d1205
ZW
9972 if (unified_syntax)
9973 {
9974 int r0off = (inst.instruction == T_MNEM_mvn
9975 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9976 bfd_boolean narrow;
9977
9978 if (inst.size_req == 4
9979 || inst.instruction > 0xffff
9980 || inst.operands[1].shifted
fdfde340 9981 || Rn > 7 || Rm > 7)
3d388997
PB
9982 narrow = FALSE;
9983 else if (inst.instruction == T_MNEM_cmn)
9984 narrow = TRUE;
9985 else if (THUMB_SETS_FLAGS (inst.instruction))
9986 narrow = (current_it_mask == 0);
9987 else
9988 narrow = (current_it_mask != 0);
9989
c19d1205 9990 if (!inst.operands[1].isreg)
b99bd4ef 9991 {
c19d1205
ZW
9992 /* For an immediate, we always generate a 32-bit opcode;
9993 section relaxation will shrink it later if possible. */
9994 if (inst.instruction < 0xffff)
9995 inst.instruction = THUMB_OP32 (inst.instruction);
9996 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 9997 inst.instruction |= Rn << r0off;
c19d1205 9998 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9999 }
c19d1205 10000 else
b99bd4ef 10001 {
c19d1205 10002 /* See if we can do this with a 16-bit instruction. */
3d388997 10003 if (narrow)
b99bd4ef 10004 {
c19d1205 10005 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10006 inst.instruction |= Rn;
10007 inst.instruction |= Rm << 3;
b99bd4ef 10008 }
c19d1205 10009 else
b99bd4ef 10010 {
c19d1205
ZW
10011 constraint (inst.operands[1].shifted
10012 && inst.operands[1].immisreg,
10013 _("shift must be constant"));
10014 if (inst.instruction < 0xffff)
10015 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10016 inst.instruction |= Rn << r0off;
c19d1205 10017 encode_thumb32_shifted_operand (1);
b99bd4ef 10018 }
b99bd4ef
NC
10019 }
10020 }
10021 else
10022 {
c19d1205
ZW
10023 constraint (inst.instruction > 0xffff
10024 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10025 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10026 _("unshifted register required"));
fdfde340 10027 constraint (Rn > 7 || Rm > 7,
c19d1205 10028 BAD_HIREG);
b99bd4ef 10029
c19d1205 10030 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10031 inst.instruction |= Rn;
10032 inst.instruction |= Rm << 3;
b99bd4ef 10033 }
b99bd4ef
NC
10034}
10035
b05fe5cf 10036static void
c19d1205 10037do_t_mrs (void)
b05fe5cf 10038{
fdfde340 10039 unsigned Rd;
62b3e311 10040 int flags;
037e8744
JB
10041
10042 if (do_vfp_nsyn_mrs () == SUCCESS)
10043 return;
10044
62b3e311
PB
10045 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10046 if (flags == 0)
10047 {
7e806470 10048 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10049 _("selected processor does not support "
10050 "requested special purpose register"));
10051 }
10052 else
10053 {
10054 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10055 _("selected processor does not support "
44bf2362 10056 "requested special purpose register"));
62b3e311
PB
10057 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10058 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10059 _("'CPSR' or 'SPSR' expected"));
10060 }
5f4273c7 10061
fdfde340
JM
10062 Rd = inst.operands[0].reg;
10063 reject_bad_reg (Rd);
10064
10065 inst.instruction |= Rd << 8;
62b3e311
PB
10066 inst.instruction |= (flags & SPSR_BIT) >> 2;
10067 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10068}
b05fe5cf 10069
c19d1205
ZW
10070static void
10071do_t_msr (void)
10072{
62b3e311 10073 int flags;
fdfde340 10074 unsigned Rn;
62b3e311 10075
037e8744
JB
10076 if (do_vfp_nsyn_msr () == SUCCESS)
10077 return;
10078
c19d1205
ZW
10079 constraint (!inst.operands[1].isreg,
10080 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10081 flags = inst.operands[0].imm;
10082 if (flags & ~0xff)
10083 {
10084 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10085 _("selected processor does not support "
10086 "requested special purpose register"));
10087 }
10088 else
10089 {
7e806470 10090 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10091 _("selected processor does not support "
10092 "requested special purpose register"));
10093 flags |= PSR_f;
10094 }
fdfde340
JM
10095
10096 Rn = inst.operands[1].reg;
10097 reject_bad_reg (Rn);
10098
62b3e311
PB
10099 inst.instruction |= (flags & SPSR_BIT) >> 2;
10100 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10101 inst.instruction |= (flags & 0xff);
fdfde340 10102 inst.instruction |= Rn << 16;
c19d1205 10103}
b05fe5cf 10104
c19d1205
ZW
10105static void
10106do_t_mul (void)
10107{
17828f45 10108 bfd_boolean narrow;
fdfde340 10109 unsigned Rd, Rn, Rm;
17828f45 10110
c19d1205
ZW
10111 if (!inst.operands[2].present)
10112 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10113
fdfde340
JM
10114 Rd = inst.operands[0].reg;
10115 Rn = inst.operands[1].reg;
10116 Rm = inst.operands[2].reg;
10117
17828f45 10118 if (unified_syntax)
b05fe5cf 10119 {
17828f45 10120 if (inst.size_req == 4
fdfde340
JM
10121 || (Rd != Rn
10122 && Rd != Rm)
10123 || Rn > 7
10124 || Rm > 7)
17828f45
JM
10125 narrow = FALSE;
10126 else if (inst.instruction == T_MNEM_muls)
10127 narrow = (current_it_mask == 0);
10128 else
10129 narrow = (current_it_mask != 0);
b05fe5cf 10130 }
c19d1205 10131 else
b05fe5cf 10132 {
17828f45 10133 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10134 constraint (Rn > 7 || Rm > 7,
c19d1205 10135 BAD_HIREG);
17828f45
JM
10136 narrow = TRUE;
10137 }
b05fe5cf 10138
17828f45
JM
10139 if (narrow)
10140 {
10141 /* 16-bit MULS/Conditional MUL. */
c19d1205 10142 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10143 inst.instruction |= Rd;
b05fe5cf 10144
fdfde340
JM
10145 if (Rd == Rn)
10146 inst.instruction |= Rm << 3;
10147 else if (Rd == Rm)
10148 inst.instruction |= Rn << 3;
c19d1205
ZW
10149 else
10150 constraint (1, _("dest must overlap one source register"));
10151 }
17828f45
JM
10152 else
10153 {
10154 constraint(inst.instruction != T_MNEM_mul,
10155 _("Thumb-2 MUL must not set flags"));
10156 /* 32-bit MUL. */
10157 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10158 inst.instruction |= Rd << 8;
10159 inst.instruction |= Rn << 16;
10160 inst.instruction |= Rm << 0;
10161
10162 reject_bad_reg (Rd);
10163 reject_bad_reg (Rn);
10164 reject_bad_reg (Rm);
17828f45 10165 }
c19d1205 10166}
b05fe5cf 10167
c19d1205
ZW
10168static void
10169do_t_mull (void)
10170{
fdfde340 10171 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10172
fdfde340
JM
10173 RdLo = inst.operands[0].reg;
10174 RdHi = inst.operands[1].reg;
10175 Rn = inst.operands[2].reg;
10176 Rm = inst.operands[3].reg;
10177
10178 reject_bad_reg (RdLo);
10179 reject_bad_reg (RdHi);
10180 reject_bad_reg (Rn);
10181 reject_bad_reg (Rm);
10182
10183 inst.instruction |= RdLo << 12;
10184 inst.instruction |= RdHi << 8;
10185 inst.instruction |= Rn << 16;
10186 inst.instruction |= Rm;
10187
10188 if (RdLo == RdHi)
c19d1205
ZW
10189 as_tsktsk (_("rdhi and rdlo must be different"));
10190}
b05fe5cf 10191
c19d1205
ZW
10192static void
10193do_t_nop (void)
10194{
10195 if (unified_syntax)
10196 {
10197 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10198 {
c19d1205
ZW
10199 inst.instruction = THUMB_OP32 (inst.instruction);
10200 inst.instruction |= inst.operands[0].imm;
10201 }
10202 else
10203 {
bc2d1808
NC
10204 /* PR9722: Check for Thumb2 availability before
10205 generating a thumb2 nop instruction. */
10206 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10207 {
10208 inst.instruction = THUMB_OP16 (inst.instruction);
10209 inst.instruction |= inst.operands[0].imm << 4;
10210 }
10211 else
10212 inst.instruction = 0x46c0;
c19d1205
ZW
10213 }
10214 }
10215 else
10216 {
10217 constraint (inst.operands[0].present,
10218 _("Thumb does not support NOP with hints"));
10219 inst.instruction = 0x46c0;
10220 }
10221}
b05fe5cf 10222
c19d1205
ZW
10223static void
10224do_t_neg (void)
10225{
10226 if (unified_syntax)
10227 {
3d388997
PB
10228 bfd_boolean narrow;
10229
10230 if (THUMB_SETS_FLAGS (inst.instruction))
10231 narrow = (current_it_mask == 0);
10232 else
10233 narrow = (current_it_mask != 0);
10234 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10235 narrow = FALSE;
10236 if (inst.size_req == 4)
10237 narrow = FALSE;
10238
10239 if (!narrow)
c19d1205
ZW
10240 {
10241 inst.instruction = THUMB_OP32 (inst.instruction);
10242 inst.instruction |= inst.operands[0].reg << 8;
10243 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10244 }
10245 else
10246 {
c19d1205
ZW
10247 inst.instruction = THUMB_OP16 (inst.instruction);
10248 inst.instruction |= inst.operands[0].reg;
10249 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10250 }
10251 }
10252 else
10253 {
c19d1205
ZW
10254 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10255 BAD_HIREG);
10256 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10257
10258 inst.instruction = THUMB_OP16 (inst.instruction);
10259 inst.instruction |= inst.operands[0].reg;
10260 inst.instruction |= inst.operands[1].reg << 3;
10261 }
10262}
10263
1c444d06
JM
10264static void
10265do_t_orn (void)
10266{
10267 unsigned Rd, Rn;
10268
10269 Rd = inst.operands[0].reg;
10270 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10271
fdfde340
JM
10272 reject_bad_reg (Rd);
10273 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10274 reject_bad_reg (Rn);
10275
1c444d06
JM
10276 inst.instruction |= Rd << 8;
10277 inst.instruction |= Rn << 16;
10278
10279 if (!inst.operands[2].isreg)
10280 {
10281 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10282 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10283 }
10284 else
10285 {
10286 unsigned Rm;
10287
10288 Rm = inst.operands[2].reg;
fdfde340 10289 reject_bad_reg (Rm);
1c444d06
JM
10290
10291 constraint (inst.operands[2].shifted
10292 && inst.operands[2].immisreg,
10293 _("shift must be constant"));
10294 encode_thumb32_shifted_operand (2);
10295 }
10296}
10297
c19d1205
ZW
10298static void
10299do_t_pkhbt (void)
10300{
fdfde340
JM
10301 unsigned Rd, Rn, Rm;
10302
10303 Rd = inst.operands[0].reg;
10304 Rn = inst.operands[1].reg;
10305 Rm = inst.operands[2].reg;
10306
10307 reject_bad_reg (Rd);
10308 reject_bad_reg (Rn);
10309 reject_bad_reg (Rm);
10310
10311 inst.instruction |= Rd << 8;
10312 inst.instruction |= Rn << 16;
10313 inst.instruction |= Rm;
c19d1205
ZW
10314 if (inst.operands[3].present)
10315 {
10316 unsigned int val = inst.reloc.exp.X_add_number;
10317 constraint (inst.reloc.exp.X_op != O_constant,
10318 _("expression too complex"));
10319 inst.instruction |= (val & 0x1c) << 10;
10320 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10321 }
c19d1205 10322}
b05fe5cf 10323
c19d1205
ZW
10324static void
10325do_t_pkhtb (void)
10326{
10327 if (!inst.operands[3].present)
10328 inst.instruction &= ~0x00000020;
10329 do_t_pkhbt ();
b05fe5cf
ZW
10330}
10331
c19d1205
ZW
10332static void
10333do_t_pld (void)
10334{
fdfde340
JM
10335 if (inst.operands[0].immisreg)
10336 reject_bad_reg (inst.operands[0].imm);
10337
c19d1205
ZW
10338 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10339}
b05fe5cf 10340
c19d1205
ZW
10341static void
10342do_t_push_pop (void)
b99bd4ef 10343{
e9f89963 10344 unsigned mask;
5f4273c7 10345
c19d1205
ZW
10346 constraint (inst.operands[0].writeback,
10347 _("push/pop do not support {reglist}^"));
10348 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10349 _("expression too complex"));
b99bd4ef 10350
e9f89963
PB
10351 mask = inst.operands[0].imm;
10352 if ((mask & ~0xff) == 0)
3c707909 10353 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10354 else if ((inst.instruction == T_MNEM_push
e9f89963 10355 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10356 || (inst.instruction == T_MNEM_pop
e9f89963 10357 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10358 {
c19d1205
ZW
10359 inst.instruction = THUMB_OP16 (inst.instruction);
10360 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10361 inst.instruction |= mask & 0xff;
c19d1205
ZW
10362 }
10363 else if (unified_syntax)
10364 {
3c707909 10365 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10366 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10367 }
10368 else
10369 {
10370 inst.error = _("invalid register list to push/pop instruction");
10371 return;
10372 }
c19d1205 10373}
b99bd4ef 10374
c19d1205
ZW
10375static void
10376do_t_rbit (void)
10377{
fdfde340
JM
10378 unsigned Rd, Rm;
10379
10380 Rd = inst.operands[0].reg;
10381 Rm = inst.operands[1].reg;
10382
10383 reject_bad_reg (Rd);
10384 reject_bad_reg (Rm);
10385
10386 inst.instruction |= Rd << 8;
10387 inst.instruction |= Rm << 16;
10388 inst.instruction |= Rm;
c19d1205 10389}
b99bd4ef 10390
c19d1205
ZW
10391static void
10392do_t_rev (void)
10393{
fdfde340
JM
10394 unsigned Rd, Rm;
10395
10396 Rd = inst.operands[0].reg;
10397 Rm = inst.operands[1].reg;
10398
10399 reject_bad_reg (Rd);
10400 reject_bad_reg (Rm);
10401
10402 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
10403 && inst.size_req != 4)
10404 {
10405 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10406 inst.instruction |= Rd;
10407 inst.instruction |= Rm << 3;
c19d1205
ZW
10408 }
10409 else if (unified_syntax)
10410 {
10411 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10412 inst.instruction |= Rd << 8;
10413 inst.instruction |= Rm << 16;
10414 inst.instruction |= Rm;
c19d1205
ZW
10415 }
10416 else
10417 inst.error = BAD_HIREG;
10418}
b99bd4ef 10419
1c444d06
JM
10420static void
10421do_t_rrx (void)
10422{
10423 unsigned Rd, Rm;
10424
10425 Rd = inst.operands[0].reg;
10426 Rm = inst.operands[1].reg;
10427
fdfde340
JM
10428 reject_bad_reg (Rd);
10429 reject_bad_reg (Rm);
10430
1c444d06
JM
10431 inst.instruction |= Rd << 8;
10432 inst.instruction |= Rm;
10433}
10434
c19d1205
ZW
10435static void
10436do_t_rsb (void)
10437{
fdfde340 10438 unsigned Rd, Rs;
b99bd4ef 10439
c19d1205
ZW
10440 Rd = inst.operands[0].reg;
10441 Rs = (inst.operands[1].present
10442 ? inst.operands[1].reg /* Rd, Rs, foo */
10443 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10444
fdfde340
JM
10445 reject_bad_reg (Rd);
10446 reject_bad_reg (Rs);
10447 if (inst.operands[2].isreg)
10448 reject_bad_reg (inst.operands[2].reg);
10449
c19d1205
ZW
10450 inst.instruction |= Rd << 8;
10451 inst.instruction |= Rs << 16;
10452 if (!inst.operands[2].isreg)
10453 {
026d3abb
PB
10454 bfd_boolean narrow;
10455
10456 if ((inst.instruction & 0x00100000) != 0)
10457 narrow = (current_it_mask == 0);
10458 else
10459 narrow = (current_it_mask != 0);
10460
10461 if (Rd > 7 || Rs > 7)
10462 narrow = FALSE;
10463
10464 if (inst.size_req == 4 || !unified_syntax)
10465 narrow = FALSE;
10466
10467 if (inst.reloc.exp.X_op != O_constant
10468 || inst.reloc.exp.X_add_number != 0)
10469 narrow = FALSE;
10470
10471 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10472 relaxation, but it doesn't seem worth the hassle. */
10473 if (narrow)
10474 {
10475 inst.reloc.type = BFD_RELOC_UNUSED;
10476 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10477 inst.instruction |= Rs << 3;
10478 inst.instruction |= Rd;
10479 }
10480 else
10481 {
10482 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10483 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10484 }
c19d1205
ZW
10485 }
10486 else
10487 encode_thumb32_shifted_operand (2);
10488}
b99bd4ef 10489
c19d1205
ZW
10490static void
10491do_t_setend (void)
10492{
dfa9f0d5 10493 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
10494 if (inst.operands[0].imm)
10495 inst.instruction |= 0x8;
10496}
b99bd4ef 10497
c19d1205
ZW
10498static void
10499do_t_shift (void)
10500{
10501 if (!inst.operands[1].present)
10502 inst.operands[1].reg = inst.operands[0].reg;
10503
10504 if (unified_syntax)
10505 {
3d388997
PB
10506 bfd_boolean narrow;
10507 int shift_kind;
10508
10509 switch (inst.instruction)
10510 {
10511 case T_MNEM_asr:
10512 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10513 case T_MNEM_lsl:
10514 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10515 case T_MNEM_lsr:
10516 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10517 case T_MNEM_ror:
10518 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10519 default: abort ();
10520 }
10521
10522 if (THUMB_SETS_FLAGS (inst.instruction))
10523 narrow = (current_it_mask == 0);
10524 else
10525 narrow = (current_it_mask != 0);
10526 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10527 narrow = FALSE;
10528 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10529 narrow = FALSE;
10530 if (inst.operands[2].isreg
10531 && (inst.operands[1].reg != inst.operands[0].reg
10532 || inst.operands[2].reg > 7))
10533 narrow = FALSE;
10534 if (inst.size_req == 4)
10535 narrow = FALSE;
10536
fdfde340
JM
10537 reject_bad_reg (inst.operands[0].reg);
10538 reject_bad_reg (inst.operands[1].reg);
10539
3d388997 10540 if (!narrow)
c19d1205
ZW
10541 {
10542 if (inst.operands[2].isreg)
b99bd4ef 10543 {
fdfde340 10544 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
10545 inst.instruction = THUMB_OP32 (inst.instruction);
10546 inst.instruction |= inst.operands[0].reg << 8;
10547 inst.instruction |= inst.operands[1].reg << 16;
10548 inst.instruction |= inst.operands[2].reg;
10549 }
10550 else
10551 {
10552 inst.operands[1].shifted = 1;
3d388997 10553 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10554 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10555 ? T_MNEM_movs : T_MNEM_mov);
10556 inst.instruction |= inst.operands[0].reg << 8;
10557 encode_thumb32_shifted_operand (1);
10558 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10559 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10560 }
10561 }
10562 else
10563 {
c19d1205 10564 if (inst.operands[2].isreg)
b99bd4ef 10565 {
3d388997 10566 switch (shift_kind)
b99bd4ef 10567 {
3d388997
PB
10568 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10569 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10570 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10571 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10572 default: abort ();
b99bd4ef 10573 }
5f4273c7 10574
c19d1205
ZW
10575 inst.instruction |= inst.operands[0].reg;
10576 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10577 }
10578 else
10579 {
3d388997 10580 switch (shift_kind)
b99bd4ef 10581 {
3d388997
PB
10582 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10583 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10584 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10585 default: abort ();
b99bd4ef 10586 }
c19d1205
ZW
10587 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10588 inst.instruction |= inst.operands[0].reg;
10589 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10590 }
10591 }
c19d1205
ZW
10592 }
10593 else
10594 {
10595 constraint (inst.operands[0].reg > 7
10596 || inst.operands[1].reg > 7, BAD_HIREG);
10597 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10598
c19d1205
ZW
10599 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10600 {
10601 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10602 constraint (inst.operands[0].reg != inst.operands[1].reg,
10603 _("source1 and dest must be same register"));
b99bd4ef 10604
c19d1205
ZW
10605 switch (inst.instruction)
10606 {
10607 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10608 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10609 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10610 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10611 default: abort ();
10612 }
5f4273c7 10613
c19d1205
ZW
10614 inst.instruction |= inst.operands[0].reg;
10615 inst.instruction |= inst.operands[2].reg << 3;
10616 }
10617 else
b99bd4ef 10618 {
c19d1205
ZW
10619 switch (inst.instruction)
10620 {
10621 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10622 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10623 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10624 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10625 default: abort ();
10626 }
10627 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10628 inst.instruction |= inst.operands[0].reg;
10629 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10630 }
10631 }
b99bd4ef
NC
10632}
10633
10634static void
c19d1205 10635do_t_simd (void)
b99bd4ef 10636{
fdfde340
JM
10637 unsigned Rd, Rn, Rm;
10638
10639 Rd = inst.operands[0].reg;
10640 Rn = inst.operands[1].reg;
10641 Rm = inst.operands[2].reg;
10642
10643 reject_bad_reg (Rd);
10644 reject_bad_reg (Rn);
10645 reject_bad_reg (Rm);
10646
10647 inst.instruction |= Rd << 8;
10648 inst.instruction |= Rn << 16;
10649 inst.instruction |= Rm;
c19d1205 10650}
b99bd4ef 10651
c19d1205 10652static void
3eb17e6b 10653do_t_smc (void)
c19d1205
ZW
10654{
10655 unsigned int value = inst.reloc.exp.X_add_number;
10656 constraint (inst.reloc.exp.X_op != O_constant,
10657 _("expression too complex"));
10658 inst.reloc.type = BFD_RELOC_UNUSED;
10659 inst.instruction |= (value & 0xf000) >> 12;
10660 inst.instruction |= (value & 0x0ff0);
10661 inst.instruction |= (value & 0x000f) << 16;
10662}
b99bd4ef 10663
c19d1205
ZW
10664static void
10665do_t_ssat (void)
10666{
fdfde340
JM
10667 unsigned Rd, Rn;
10668
10669 Rd = inst.operands[0].reg;
10670 Rn = inst.operands[2].reg;
10671
10672 reject_bad_reg (Rd);
10673 reject_bad_reg (Rn);
10674
10675 inst.instruction |= Rd << 8;
c19d1205 10676 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 10677 inst.instruction |= Rn << 16;
b99bd4ef 10678
c19d1205 10679 if (inst.operands[3].present)
b99bd4ef 10680 {
c19d1205
ZW
10681 constraint (inst.reloc.exp.X_op != O_constant,
10682 _("expression too complex"));
b99bd4ef 10683
c19d1205 10684 if (inst.reloc.exp.X_add_number != 0)
6189168b 10685 {
c19d1205
ZW
10686 if (inst.operands[3].shift_kind == SHIFT_ASR)
10687 inst.instruction |= 0x00200000; /* sh bit */
10688 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10689 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10690 }
c19d1205 10691 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10692 }
b99bd4ef
NC
10693}
10694
0dd132b6 10695static void
c19d1205 10696do_t_ssat16 (void)
0dd132b6 10697{
fdfde340
JM
10698 unsigned Rd, Rn;
10699
10700 Rd = inst.operands[0].reg;
10701 Rn = inst.operands[2].reg;
10702
10703 reject_bad_reg (Rd);
10704 reject_bad_reg (Rn);
10705
10706 inst.instruction |= Rd << 8;
c19d1205 10707 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 10708 inst.instruction |= Rn << 16;
c19d1205 10709}
0dd132b6 10710
c19d1205
ZW
10711static void
10712do_t_strex (void)
10713{
10714 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10715 || inst.operands[2].postind || inst.operands[2].writeback
10716 || inst.operands[2].immisreg || inst.operands[2].shifted
10717 || inst.operands[2].negative,
01cfc07f 10718 BAD_ADDR_MODE);
0dd132b6 10719
c19d1205
ZW
10720 inst.instruction |= inst.operands[0].reg << 8;
10721 inst.instruction |= inst.operands[1].reg << 12;
10722 inst.instruction |= inst.operands[2].reg << 16;
10723 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10724}
10725
b99bd4ef 10726static void
c19d1205 10727do_t_strexd (void)
b99bd4ef 10728{
c19d1205
ZW
10729 if (!inst.operands[2].present)
10730 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10731
c19d1205
ZW
10732 constraint (inst.operands[0].reg == inst.operands[1].reg
10733 || inst.operands[0].reg == inst.operands[2].reg
10734 || inst.operands[0].reg == inst.operands[3].reg
10735 || inst.operands[1].reg == inst.operands[2].reg,
10736 BAD_OVERLAP);
b99bd4ef 10737
c19d1205
ZW
10738 inst.instruction |= inst.operands[0].reg;
10739 inst.instruction |= inst.operands[1].reg << 12;
10740 inst.instruction |= inst.operands[2].reg << 8;
10741 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10742}
10743
10744static void
c19d1205 10745do_t_sxtah (void)
b99bd4ef 10746{
fdfde340
JM
10747 unsigned Rd, Rn, Rm;
10748
10749 Rd = inst.operands[0].reg;
10750 Rn = inst.operands[1].reg;
10751 Rm = inst.operands[2].reg;
10752
10753 reject_bad_reg (Rd);
10754 reject_bad_reg (Rn);
10755 reject_bad_reg (Rm);
10756
10757 inst.instruction |= Rd << 8;
10758 inst.instruction |= Rn << 16;
10759 inst.instruction |= Rm;
c19d1205
ZW
10760 inst.instruction |= inst.operands[3].imm << 4;
10761}
b99bd4ef 10762
c19d1205
ZW
10763static void
10764do_t_sxth (void)
10765{
fdfde340
JM
10766 unsigned Rd, Rm;
10767
10768 Rd = inst.operands[0].reg;
10769 Rm = inst.operands[1].reg;
10770
10771 reject_bad_reg (Rd);
10772 reject_bad_reg (Rm);
10773
c19d1205 10774 if (inst.instruction <= 0xffff && inst.size_req != 4
fdfde340 10775 && Rd <= 7 && Rm <= 7
c19d1205 10776 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10777 {
c19d1205 10778 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10779 inst.instruction |= Rd;
10780 inst.instruction |= Rm << 3;
b99bd4ef 10781 }
c19d1205 10782 else if (unified_syntax)
b99bd4ef 10783 {
c19d1205
ZW
10784 if (inst.instruction <= 0xffff)
10785 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10786 inst.instruction |= Rd << 8;
10787 inst.instruction |= Rm;
c19d1205 10788 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10789 }
c19d1205 10790 else
b99bd4ef 10791 {
c19d1205
ZW
10792 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10793 _("Thumb encoding does not support rotation"));
10794 constraint (1, BAD_HIREG);
b99bd4ef 10795 }
c19d1205 10796}
b99bd4ef 10797
c19d1205
ZW
10798static void
10799do_t_swi (void)
10800{
10801 inst.reloc.type = BFD_RELOC_ARM_SWI;
10802}
b99bd4ef 10803
92e90b6e
PB
10804static void
10805do_t_tb (void)
10806{
fdfde340 10807 unsigned Rn, Rm;
92e90b6e
PB
10808 int half;
10809
10810 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10811 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10812 constraint (inst.operands[0].immisreg,
10813 _("instruction requires register index"));
fdfde340
JM
10814
10815 Rn = inst.operands[0].reg;
10816 Rm = inst.operands[0].imm;
10817
10818 constraint (Rn == REG_SP, BAD_SP);
10819 reject_bad_reg (Rm);
10820
92e90b6e
PB
10821 constraint (!half && inst.operands[0].shifted,
10822 _("instruction does not allow shifted index"));
fdfde340 10823 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
10824}
10825
c19d1205
ZW
10826static void
10827do_t_usat (void)
10828{
fdfde340
JM
10829 unsigned Rd, Rn;
10830
10831 Rd = inst.operands[0].reg;
10832 Rn = inst.operands[2].reg;
10833
10834 reject_bad_reg (Rd);
10835 reject_bad_reg (Rn);
10836
10837 inst.instruction |= Rd << 8;
c19d1205 10838 inst.instruction |= inst.operands[1].imm;
fdfde340 10839 inst.instruction |= Rn << 16;
b99bd4ef 10840
c19d1205 10841 if (inst.operands[3].present)
b99bd4ef 10842 {
c19d1205
ZW
10843 constraint (inst.reloc.exp.X_op != O_constant,
10844 _("expression too complex"));
10845 if (inst.reloc.exp.X_add_number != 0)
10846 {
10847 if (inst.operands[3].shift_kind == SHIFT_ASR)
10848 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10849
c19d1205
ZW
10850 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10851 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10852 }
10853 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10854 }
b99bd4ef
NC
10855}
10856
10857static void
c19d1205 10858do_t_usat16 (void)
b99bd4ef 10859{
fdfde340
JM
10860 unsigned Rd, Rn;
10861
10862 Rd = inst.operands[0].reg;
10863 Rn = inst.operands[2].reg;
10864
10865 reject_bad_reg (Rd);
10866 reject_bad_reg (Rn);
10867
10868 inst.instruction |= Rd << 8;
c19d1205 10869 inst.instruction |= inst.operands[1].imm;
fdfde340 10870 inst.instruction |= Rn << 16;
b99bd4ef 10871}
c19d1205 10872
5287ad62 10873/* Neon instruction encoder helpers. */
5f4273c7 10874
5287ad62 10875/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10876
5287ad62
JB
10877/* An "invalid" code for the following tables. */
10878#define N_INV -1u
10879
10880struct neon_tab_entry
b99bd4ef 10881{
5287ad62
JB
10882 unsigned integer;
10883 unsigned float_or_poly;
10884 unsigned scalar_or_imm;
10885};
5f4273c7 10886
5287ad62
JB
10887/* Map overloaded Neon opcodes to their respective encodings. */
10888#define NEON_ENC_TAB \
10889 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10890 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10891 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10892 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10893 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10894 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10895 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10896 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10897 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10898 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10899 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10900 /* Register variants of the following two instructions are encoded as
10901 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10902 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10903 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10904 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10905 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10906 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10907 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10908 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10909 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10910 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10911 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10912 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10913 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10914 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10915 X(vshl, 0x0000400, N_INV, 0x0800510), \
10916 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10917 X(vand, 0x0000110, N_INV, 0x0800030), \
10918 X(vbic, 0x0100110, N_INV, 0x0800030), \
10919 X(veor, 0x1000110, N_INV, N_INV), \
10920 X(vorn, 0x0300110, N_INV, 0x0800010), \
10921 X(vorr, 0x0200110, N_INV, 0x0800010), \
10922 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10923 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10924 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10925 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10926 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10927 X(vst1, 0x0000000, 0x0800000, N_INV), \
10928 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10929 X(vst2, 0x0000100, 0x0800100, N_INV), \
10930 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10931 X(vst3, 0x0000200, 0x0800200, N_INV), \
10932 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10933 X(vst4, 0x0000300, 0x0800300, N_INV), \
10934 X(vmovn, 0x1b20200, N_INV, N_INV), \
10935 X(vtrn, 0x1b20080, N_INV, N_INV), \
10936 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10937 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10938 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10939 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10940 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10941 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10942 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10943 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10944 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10945
10946enum neon_opc
10947{
10948#define X(OPC,I,F,S) N_MNEM_##OPC
10949NEON_ENC_TAB
10950#undef X
10951};
b99bd4ef 10952
5287ad62
JB
10953static const struct neon_tab_entry neon_enc_tab[] =
10954{
10955#define X(OPC,I,F,S) { (I), (F), (S) }
10956NEON_ENC_TAB
10957#undef X
10958};
b99bd4ef 10959
5287ad62
JB
10960#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10961#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10962#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10963#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10964#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10965#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10966#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10967#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10968#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10969#define NEON_ENC_SINGLE(X) \
10970 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10971#define NEON_ENC_DOUBLE(X) \
10972 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10973
037e8744
JB
10974/* Define shapes for instruction operands. The following mnemonic characters
10975 are used in this table:
5287ad62 10976
037e8744 10977 F - VFP S<n> register
5287ad62
JB
10978 D - Neon D<n> register
10979 Q - Neon Q<n> register
10980 I - Immediate
10981 S - Scalar
10982 R - ARM register
10983 L - D<n> register list
5f4273c7 10984
037e8744
JB
10985 This table is used to generate various data:
10986 - enumerations of the form NS_DDR to be used as arguments to
10987 neon_select_shape.
10988 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 10989 - a table used to drive neon_select_shape. */
b99bd4ef 10990
037e8744
JB
10991#define NEON_SHAPE_DEF \
10992 X(3, (D, D, D), DOUBLE), \
10993 X(3, (Q, Q, Q), QUAD), \
10994 X(3, (D, D, I), DOUBLE), \
10995 X(3, (Q, Q, I), QUAD), \
10996 X(3, (D, D, S), DOUBLE), \
10997 X(3, (Q, Q, S), QUAD), \
10998 X(2, (D, D), DOUBLE), \
10999 X(2, (Q, Q), QUAD), \
11000 X(2, (D, S), DOUBLE), \
11001 X(2, (Q, S), QUAD), \
11002 X(2, (D, R), DOUBLE), \
11003 X(2, (Q, R), QUAD), \
11004 X(2, (D, I), DOUBLE), \
11005 X(2, (Q, I), QUAD), \
11006 X(3, (D, L, D), DOUBLE), \
11007 X(2, (D, Q), MIXED), \
11008 X(2, (Q, D), MIXED), \
11009 X(3, (D, Q, I), MIXED), \
11010 X(3, (Q, D, I), MIXED), \
11011 X(3, (Q, D, D), MIXED), \
11012 X(3, (D, Q, Q), MIXED), \
11013 X(3, (Q, Q, D), MIXED), \
11014 X(3, (Q, D, S), MIXED), \
11015 X(3, (D, Q, S), MIXED), \
11016 X(4, (D, D, D, I), DOUBLE), \
11017 X(4, (Q, Q, Q, I), QUAD), \
11018 X(2, (F, F), SINGLE), \
11019 X(3, (F, F, F), SINGLE), \
11020 X(2, (F, I), SINGLE), \
11021 X(2, (F, D), MIXED), \
11022 X(2, (D, F), MIXED), \
11023 X(3, (F, F, I), MIXED), \
11024 X(4, (R, R, F, F), SINGLE), \
11025 X(4, (F, F, R, R), SINGLE), \
11026 X(3, (D, R, R), DOUBLE), \
11027 X(3, (R, R, D), DOUBLE), \
11028 X(2, (S, R), SINGLE), \
11029 X(2, (R, S), SINGLE), \
11030 X(2, (F, R), SINGLE), \
11031 X(2, (R, F), SINGLE)
11032
11033#define S2(A,B) NS_##A##B
11034#define S3(A,B,C) NS_##A##B##C
11035#define S4(A,B,C,D) NS_##A##B##C##D
11036
11037#define X(N, L, C) S##N L
11038
5287ad62
JB
11039enum neon_shape
11040{
037e8744
JB
11041 NEON_SHAPE_DEF,
11042 NS_NULL
5287ad62 11043};
b99bd4ef 11044
037e8744
JB
11045#undef X
11046#undef S2
11047#undef S3
11048#undef S4
11049
11050enum neon_shape_class
11051{
11052 SC_SINGLE,
11053 SC_DOUBLE,
11054 SC_QUAD,
11055 SC_MIXED
11056};
11057
11058#define X(N, L, C) SC_##C
11059
11060static enum neon_shape_class neon_shape_class[] =
11061{
11062 NEON_SHAPE_DEF
11063};
11064
11065#undef X
11066
11067enum neon_shape_el
11068{
11069 SE_F,
11070 SE_D,
11071 SE_Q,
11072 SE_I,
11073 SE_S,
11074 SE_R,
11075 SE_L
11076};
11077
11078/* Register widths of above. */
11079static unsigned neon_shape_el_size[] =
11080{
11081 32,
11082 64,
11083 128,
11084 0,
11085 32,
11086 32,
11087 0
11088};
11089
11090struct neon_shape_info
11091{
11092 unsigned els;
11093 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11094};
11095
11096#define S2(A,B) { SE_##A, SE_##B }
11097#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11098#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11099
11100#define X(N, L, C) { N, S##N L }
11101
11102static struct neon_shape_info neon_shape_tab[] =
11103{
11104 NEON_SHAPE_DEF
11105};
11106
11107#undef X
11108#undef S2
11109#undef S3
11110#undef S4
11111
5287ad62
JB
11112/* Bit masks used in type checking given instructions.
11113 'N_EQK' means the type must be the same as (or based on in some way) the key
11114 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11115 set, various other bits can be set as well in order to modify the meaning of
11116 the type constraint. */
11117
11118enum neon_type_mask
11119{
8e79c3df
CM
11120 N_S8 = 0x0000001,
11121 N_S16 = 0x0000002,
11122 N_S32 = 0x0000004,
11123 N_S64 = 0x0000008,
11124 N_U8 = 0x0000010,
11125 N_U16 = 0x0000020,
11126 N_U32 = 0x0000040,
11127 N_U64 = 0x0000080,
11128 N_I8 = 0x0000100,
11129 N_I16 = 0x0000200,
11130 N_I32 = 0x0000400,
11131 N_I64 = 0x0000800,
11132 N_8 = 0x0001000,
11133 N_16 = 0x0002000,
11134 N_32 = 0x0004000,
11135 N_64 = 0x0008000,
11136 N_P8 = 0x0010000,
11137 N_P16 = 0x0020000,
11138 N_F16 = 0x0040000,
11139 N_F32 = 0x0080000,
11140 N_F64 = 0x0100000,
11141 N_KEY = 0x1000000, /* key element (main type specifier). */
11142 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
11143 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11144 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
11145 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
11146 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
11147 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
11148 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
11149 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
11150 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 11151 N_UTYP = 0,
037e8744 11152 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11153};
11154
dcbf9037
JB
11155#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11156
5287ad62
JB
11157#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11158#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11159#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11160#define N_SUF_32 (N_SU_32 | N_F32)
11161#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11162#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11163
11164/* Pass this as the first type argument to neon_check_type to ignore types
11165 altogether. */
11166#define N_IGNORE_TYPE (N_KEY | N_EQK)
11167
037e8744
JB
11168/* Select a "shape" for the current instruction (describing register types or
11169 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11170 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11171 function of operand parsing, so this function doesn't need to be called.
11172 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11173
11174static enum neon_shape
037e8744 11175neon_select_shape (enum neon_shape shape, ...)
5287ad62 11176{
037e8744
JB
11177 va_list ap;
11178 enum neon_shape first_shape = shape;
5287ad62
JB
11179
11180 /* Fix missing optional operands. FIXME: we don't know at this point how
11181 many arguments we should have, so this makes the assumption that we have
11182 > 1. This is true of all current Neon opcodes, I think, but may not be
11183 true in the future. */
11184 if (!inst.operands[1].present)
11185 inst.operands[1] = inst.operands[0];
11186
037e8744 11187 va_start (ap, shape);
5f4273c7 11188
037e8744
JB
11189 for (; shape != NS_NULL; shape = va_arg (ap, int))
11190 {
11191 unsigned j;
11192 int matches = 1;
11193
11194 for (j = 0; j < neon_shape_tab[shape].els; j++)
11195 {
11196 if (!inst.operands[j].present)
11197 {
11198 matches = 0;
11199 break;
11200 }
11201
11202 switch (neon_shape_tab[shape].el[j])
11203 {
11204 case SE_F:
11205 if (!(inst.operands[j].isreg
11206 && inst.operands[j].isvec
11207 && inst.operands[j].issingle
11208 && !inst.operands[j].isquad))
11209 matches = 0;
11210 break;
11211
11212 case SE_D:
11213 if (!(inst.operands[j].isreg
11214 && inst.operands[j].isvec
11215 && !inst.operands[j].isquad
11216 && !inst.operands[j].issingle))
11217 matches = 0;
11218 break;
11219
11220 case SE_R:
11221 if (!(inst.operands[j].isreg
11222 && !inst.operands[j].isvec))
11223 matches = 0;
11224 break;
11225
11226 case SE_Q:
11227 if (!(inst.operands[j].isreg
11228 && inst.operands[j].isvec
11229 && inst.operands[j].isquad
11230 && !inst.operands[j].issingle))
11231 matches = 0;
11232 break;
11233
11234 case SE_I:
11235 if (!(!inst.operands[j].isreg
11236 && !inst.operands[j].isscalar))
11237 matches = 0;
11238 break;
11239
11240 case SE_S:
11241 if (!(!inst.operands[j].isreg
11242 && inst.operands[j].isscalar))
11243 matches = 0;
11244 break;
11245
11246 case SE_L:
11247 break;
11248 }
11249 }
11250 if (matches)
5287ad62 11251 break;
037e8744 11252 }
5f4273c7 11253
037e8744 11254 va_end (ap);
5287ad62 11255
037e8744
JB
11256 if (shape == NS_NULL && first_shape != NS_NULL)
11257 first_error (_("invalid instruction shape"));
5287ad62 11258
037e8744
JB
11259 return shape;
11260}
5287ad62 11261
037e8744
JB
11262/* True if SHAPE is predominantly a quadword operation (most of the time, this
11263 means the Q bit should be set). */
11264
11265static int
11266neon_quad (enum neon_shape shape)
11267{
11268 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11269}
037e8744 11270
5287ad62
JB
11271static void
11272neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11273 unsigned *g_size)
11274{
11275 /* Allow modification to be made to types which are constrained to be
11276 based on the key element, based on bits set alongside N_EQK. */
11277 if ((typebits & N_EQK) != 0)
11278 {
11279 if ((typebits & N_HLF) != 0)
11280 *g_size /= 2;
11281 else if ((typebits & N_DBL) != 0)
11282 *g_size *= 2;
11283 if ((typebits & N_SGN) != 0)
11284 *g_type = NT_signed;
11285 else if ((typebits & N_UNS) != 0)
11286 *g_type = NT_unsigned;
11287 else if ((typebits & N_INT) != 0)
11288 *g_type = NT_integer;
11289 else if ((typebits & N_FLT) != 0)
11290 *g_type = NT_float;
dcbf9037
JB
11291 else if ((typebits & N_SIZ) != 0)
11292 *g_type = NT_untyped;
5287ad62
JB
11293 }
11294}
5f4273c7 11295
5287ad62
JB
11296/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11297 operand type, i.e. the single type specified in a Neon instruction when it
11298 is the only one given. */
11299
11300static struct neon_type_el
11301neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11302{
11303 struct neon_type_el dest = *key;
5f4273c7 11304
5287ad62 11305 assert ((thisarg & N_EQK) != 0);
5f4273c7 11306
5287ad62
JB
11307 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11308
11309 return dest;
11310}
11311
11312/* Convert Neon type and size into compact bitmask representation. */
11313
11314static enum neon_type_mask
11315type_chk_of_el_type (enum neon_el_type type, unsigned size)
11316{
11317 switch (type)
11318 {
11319 case NT_untyped:
11320 switch (size)
11321 {
11322 case 8: return N_8;
11323 case 16: return N_16;
11324 case 32: return N_32;
11325 case 64: return N_64;
11326 default: ;
11327 }
11328 break;
11329
11330 case NT_integer:
11331 switch (size)
11332 {
11333 case 8: return N_I8;
11334 case 16: return N_I16;
11335 case 32: return N_I32;
11336 case 64: return N_I64;
11337 default: ;
11338 }
11339 break;
11340
11341 case NT_float:
037e8744
JB
11342 switch (size)
11343 {
8e79c3df 11344 case 16: return N_F16;
037e8744
JB
11345 case 32: return N_F32;
11346 case 64: return N_F64;
11347 default: ;
11348 }
5287ad62
JB
11349 break;
11350
11351 case NT_poly:
11352 switch (size)
11353 {
11354 case 8: return N_P8;
11355 case 16: return N_P16;
11356 default: ;
11357 }
11358 break;
11359
11360 case NT_signed:
11361 switch (size)
11362 {
11363 case 8: return N_S8;
11364 case 16: return N_S16;
11365 case 32: return N_S32;
11366 case 64: return N_S64;
11367 default: ;
11368 }
11369 break;
11370
11371 case NT_unsigned:
11372 switch (size)
11373 {
11374 case 8: return N_U8;
11375 case 16: return N_U16;
11376 case 32: return N_U32;
11377 case 64: return N_U64;
11378 default: ;
11379 }
11380 break;
11381
11382 default: ;
11383 }
5f4273c7 11384
5287ad62
JB
11385 return N_UTYP;
11386}
11387
11388/* Convert compact Neon bitmask type representation to a type and size. Only
11389 handles the case where a single bit is set in the mask. */
11390
dcbf9037 11391static int
5287ad62
JB
11392el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11393 enum neon_type_mask mask)
11394{
dcbf9037
JB
11395 if ((mask & N_EQK) != 0)
11396 return FAIL;
11397
5287ad62
JB
11398 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11399 *size = 8;
dcbf9037 11400 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 11401 *size = 16;
dcbf9037 11402 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 11403 *size = 32;
037e8744 11404 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 11405 *size = 64;
dcbf9037
JB
11406 else
11407 return FAIL;
11408
5287ad62
JB
11409 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11410 *type = NT_signed;
dcbf9037 11411 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 11412 *type = NT_unsigned;
dcbf9037 11413 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 11414 *type = NT_integer;
dcbf9037 11415 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 11416 *type = NT_untyped;
dcbf9037 11417 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 11418 *type = NT_poly;
037e8744 11419 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 11420 *type = NT_float;
dcbf9037
JB
11421 else
11422 return FAIL;
5f4273c7 11423
dcbf9037 11424 return SUCCESS;
5287ad62
JB
11425}
11426
11427/* Modify a bitmask of allowed types. This is only needed for type
11428 relaxation. */
11429
11430static unsigned
11431modify_types_allowed (unsigned allowed, unsigned mods)
11432{
11433 unsigned size;
11434 enum neon_el_type type;
11435 unsigned destmask;
11436 int i;
5f4273c7 11437
5287ad62 11438 destmask = 0;
5f4273c7 11439
5287ad62
JB
11440 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11441 {
dcbf9037
JB
11442 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11443 {
11444 neon_modify_type_size (mods, &type, &size);
11445 destmask |= type_chk_of_el_type (type, size);
11446 }
5287ad62 11447 }
5f4273c7 11448
5287ad62
JB
11449 return destmask;
11450}
11451
11452/* Check type and return type classification.
11453 The manual states (paraphrase): If one datatype is given, it indicates the
11454 type given in:
11455 - the second operand, if there is one
11456 - the operand, if there is no second operand
11457 - the result, if there are no operands.
11458 This isn't quite good enough though, so we use a concept of a "key" datatype
11459 which is set on a per-instruction basis, which is the one which matters when
11460 only one data type is written.
11461 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 11462 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
11463
11464static struct neon_type_el
11465neon_check_type (unsigned els, enum neon_shape ns, ...)
11466{
11467 va_list ap;
11468 unsigned i, pass, key_el = 0;
11469 unsigned types[NEON_MAX_TYPE_ELS];
11470 enum neon_el_type k_type = NT_invtype;
11471 unsigned k_size = -1u;
11472 struct neon_type_el badtype = {NT_invtype, -1};
11473 unsigned key_allowed = 0;
11474
11475 /* Optional registers in Neon instructions are always (not) in operand 1.
11476 Fill in the missing operand here, if it was omitted. */
11477 if (els > 1 && !inst.operands[1].present)
11478 inst.operands[1] = inst.operands[0];
11479
11480 /* Suck up all the varargs. */
11481 va_start (ap, ns);
11482 for (i = 0; i < els; i++)
11483 {
11484 unsigned thisarg = va_arg (ap, unsigned);
11485 if (thisarg == N_IGNORE_TYPE)
11486 {
11487 va_end (ap);
11488 return badtype;
11489 }
11490 types[i] = thisarg;
11491 if ((thisarg & N_KEY) != 0)
11492 key_el = i;
11493 }
11494 va_end (ap);
11495
dcbf9037
JB
11496 if (inst.vectype.elems > 0)
11497 for (i = 0; i < els; i++)
11498 if (inst.operands[i].vectype.type != NT_invtype)
11499 {
11500 first_error (_("types specified in both the mnemonic and operands"));
11501 return badtype;
11502 }
11503
5287ad62
JB
11504 /* Duplicate inst.vectype elements here as necessary.
11505 FIXME: No idea if this is exactly the same as the ARM assembler,
11506 particularly when an insn takes one register and one non-register
11507 operand. */
11508 if (inst.vectype.elems == 1 && els > 1)
11509 {
11510 unsigned j;
11511 inst.vectype.elems = els;
11512 inst.vectype.el[key_el] = inst.vectype.el[0];
11513 for (j = 0; j < els; j++)
dcbf9037
JB
11514 if (j != key_el)
11515 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11516 types[j]);
11517 }
11518 else if (inst.vectype.elems == 0 && els > 0)
11519 {
11520 unsigned j;
11521 /* No types were given after the mnemonic, so look for types specified
11522 after each operand. We allow some flexibility here; as long as the
11523 "key" operand has a type, we can infer the others. */
11524 for (j = 0; j < els; j++)
11525 if (inst.operands[j].vectype.type != NT_invtype)
11526 inst.vectype.el[j] = inst.operands[j].vectype;
11527
11528 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11529 {
dcbf9037
JB
11530 for (j = 0; j < els; j++)
11531 if (inst.operands[j].vectype.type == NT_invtype)
11532 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11533 types[j]);
11534 }
11535 else
11536 {
11537 first_error (_("operand types can't be inferred"));
11538 return badtype;
5287ad62
JB
11539 }
11540 }
11541 else if (inst.vectype.elems != els)
11542 {
dcbf9037 11543 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11544 return badtype;
11545 }
11546
11547 for (pass = 0; pass < 2; pass++)
11548 {
11549 for (i = 0; i < els; i++)
11550 {
11551 unsigned thisarg = types[i];
11552 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11553 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11554 enum neon_el_type g_type = inst.vectype.el[i].type;
11555 unsigned g_size = inst.vectype.el[i].size;
11556
11557 /* Decay more-specific signed & unsigned types to sign-insensitive
11558 integer types if sign-specific variants are unavailable. */
11559 if ((g_type == NT_signed || g_type == NT_unsigned)
11560 && (types_allowed & N_SU_ALL) == 0)
11561 g_type = NT_integer;
11562
11563 /* If only untyped args are allowed, decay any more specific types to
11564 them. Some instructions only care about signs for some element
11565 sizes, so handle that properly. */
11566 if ((g_size == 8 && (types_allowed & N_8) != 0)
11567 || (g_size == 16 && (types_allowed & N_16) != 0)
11568 || (g_size == 32 && (types_allowed & N_32) != 0)
11569 || (g_size == 64 && (types_allowed & N_64) != 0))
11570 g_type = NT_untyped;
11571
11572 if (pass == 0)
11573 {
11574 if ((thisarg & N_KEY) != 0)
11575 {
11576 k_type = g_type;
11577 k_size = g_size;
11578 key_allowed = thisarg & ~N_KEY;
11579 }
11580 }
11581 else
11582 {
037e8744
JB
11583 if ((thisarg & N_VFP) != 0)
11584 {
11585 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11586 unsigned regwidth = neon_shape_el_size[regshape], match;
11587
11588 /* In VFP mode, operands must match register widths. If we
11589 have a key operand, use its width, else use the width of
11590 the current operand. */
11591 if (k_size != -1u)
11592 match = k_size;
11593 else
11594 match = g_size;
11595
11596 if (regwidth != match)
11597 {
11598 first_error (_("operand size must match register width"));
11599 return badtype;
11600 }
11601 }
5f4273c7 11602
5287ad62
JB
11603 if ((thisarg & N_EQK) == 0)
11604 {
11605 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11606
11607 if ((given_type & types_allowed) == 0)
11608 {
dcbf9037 11609 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11610 return badtype;
11611 }
11612 }
11613 else
11614 {
11615 enum neon_el_type mod_k_type = k_type;
11616 unsigned mod_k_size = k_size;
11617 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11618 if (g_type != mod_k_type || g_size != mod_k_size)
11619 {
dcbf9037 11620 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11621 return badtype;
11622 }
11623 }
11624 }
11625 }
11626 }
11627
11628 return inst.vectype.el[key_el];
11629}
11630
037e8744 11631/* Neon-style VFP instruction forwarding. */
5287ad62 11632
037e8744
JB
11633/* Thumb VFP instructions have 0xE in the condition field. */
11634
11635static void
11636do_vfp_cond_or_thumb (void)
5287ad62
JB
11637{
11638 if (thumb_mode)
037e8744 11639 inst.instruction |= 0xe0000000;
5287ad62 11640 else
037e8744 11641 inst.instruction |= inst.cond << 28;
5287ad62
JB
11642}
11643
037e8744
JB
11644/* Look up and encode a simple mnemonic, for use as a helper function for the
11645 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11646 etc. It is assumed that operand parsing has already been done, and that the
11647 operands are in the form expected by the given opcode (this isn't necessarily
11648 the same as the form in which they were parsed, hence some massaging must
11649 take place before this function is called).
11650 Checks current arch version against that in the looked-up opcode. */
5287ad62 11651
037e8744
JB
11652static void
11653do_vfp_nsyn_opcode (const char *opname)
5287ad62 11654{
037e8744 11655 const struct asm_opcode *opcode;
5f4273c7 11656
037e8744 11657 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11658
037e8744
JB
11659 if (!opcode)
11660 abort ();
5287ad62 11661
037e8744
JB
11662 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11663 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11664 _(BAD_FPU));
5287ad62 11665
037e8744
JB
11666 if (thumb_mode)
11667 {
11668 inst.instruction = opcode->tvalue;
11669 opcode->tencode ();
11670 }
11671 else
11672 {
11673 inst.instruction = (inst.cond << 28) | opcode->avalue;
11674 opcode->aencode ();
11675 }
11676}
5287ad62
JB
11677
11678static void
037e8744 11679do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11680{
037e8744
JB
11681 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11682
11683 if (rs == NS_FFF)
11684 {
11685 if (is_add)
11686 do_vfp_nsyn_opcode ("fadds");
11687 else
11688 do_vfp_nsyn_opcode ("fsubs");
11689 }
11690 else
11691 {
11692 if (is_add)
11693 do_vfp_nsyn_opcode ("faddd");
11694 else
11695 do_vfp_nsyn_opcode ("fsubd");
11696 }
11697}
11698
11699/* Check operand types to see if this is a VFP instruction, and if so call
11700 PFN (). */
11701
11702static int
11703try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11704{
11705 enum neon_shape rs;
11706 struct neon_type_el et;
11707
11708 switch (args)
11709 {
11710 case 2:
11711 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11712 et = neon_check_type (2, rs,
11713 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11714 break;
5f4273c7 11715
037e8744
JB
11716 case 3:
11717 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11718 et = neon_check_type (3, rs,
11719 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11720 break;
11721
11722 default:
11723 abort ();
11724 }
11725
11726 if (et.type != NT_invtype)
11727 {
11728 pfn (rs);
11729 return SUCCESS;
11730 }
11731 else
11732 inst.error = NULL;
11733
11734 return FAIL;
11735}
11736
11737static void
11738do_vfp_nsyn_mla_mls (enum neon_shape rs)
11739{
11740 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 11741
037e8744
JB
11742 if (rs == NS_FFF)
11743 {
11744 if (is_mla)
11745 do_vfp_nsyn_opcode ("fmacs");
11746 else
11747 do_vfp_nsyn_opcode ("fmscs");
11748 }
11749 else
11750 {
11751 if (is_mla)
11752 do_vfp_nsyn_opcode ("fmacd");
11753 else
11754 do_vfp_nsyn_opcode ("fmscd");
11755 }
11756}
11757
11758static void
11759do_vfp_nsyn_mul (enum neon_shape rs)
11760{
11761 if (rs == NS_FFF)
11762 do_vfp_nsyn_opcode ("fmuls");
11763 else
11764 do_vfp_nsyn_opcode ("fmuld");
11765}
11766
11767static void
11768do_vfp_nsyn_abs_neg (enum neon_shape rs)
11769{
11770 int is_neg = (inst.instruction & 0x80) != 0;
11771 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11772
11773 if (rs == NS_FF)
11774 {
11775 if (is_neg)
11776 do_vfp_nsyn_opcode ("fnegs");
11777 else
11778 do_vfp_nsyn_opcode ("fabss");
11779 }
11780 else
11781 {
11782 if (is_neg)
11783 do_vfp_nsyn_opcode ("fnegd");
11784 else
11785 do_vfp_nsyn_opcode ("fabsd");
11786 }
11787}
11788
11789/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11790 insns belong to Neon, and are handled elsewhere. */
11791
11792static void
11793do_vfp_nsyn_ldm_stm (int is_dbmode)
11794{
11795 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11796 if (is_ldm)
11797 {
11798 if (is_dbmode)
11799 do_vfp_nsyn_opcode ("fldmdbs");
11800 else
11801 do_vfp_nsyn_opcode ("fldmias");
11802 }
11803 else
11804 {
11805 if (is_dbmode)
11806 do_vfp_nsyn_opcode ("fstmdbs");
11807 else
11808 do_vfp_nsyn_opcode ("fstmias");
11809 }
11810}
11811
037e8744
JB
11812static void
11813do_vfp_nsyn_sqrt (void)
11814{
11815 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11816 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11817
037e8744
JB
11818 if (rs == NS_FF)
11819 do_vfp_nsyn_opcode ("fsqrts");
11820 else
11821 do_vfp_nsyn_opcode ("fsqrtd");
11822}
11823
11824static void
11825do_vfp_nsyn_div (void)
11826{
11827 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11828 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11829 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11830
037e8744
JB
11831 if (rs == NS_FFF)
11832 do_vfp_nsyn_opcode ("fdivs");
11833 else
11834 do_vfp_nsyn_opcode ("fdivd");
11835}
11836
11837static void
11838do_vfp_nsyn_nmul (void)
11839{
11840 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11841 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11842 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11843
037e8744
JB
11844 if (rs == NS_FFF)
11845 {
11846 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11847 do_vfp_sp_dyadic ();
11848 }
11849 else
11850 {
11851 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11852 do_vfp_dp_rd_rn_rm ();
11853 }
11854 do_vfp_cond_or_thumb ();
11855}
11856
11857static void
11858do_vfp_nsyn_cmp (void)
11859{
11860 if (inst.operands[1].isreg)
11861 {
11862 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11863 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11864
037e8744
JB
11865 if (rs == NS_FF)
11866 {
11867 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11868 do_vfp_sp_monadic ();
11869 }
11870 else
11871 {
11872 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11873 do_vfp_dp_rd_rm ();
11874 }
11875 }
11876 else
11877 {
11878 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11879 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11880
11881 switch (inst.instruction & 0x0fffffff)
11882 {
11883 case N_MNEM_vcmp:
11884 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11885 break;
11886 case N_MNEM_vcmpe:
11887 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11888 break;
11889 default:
11890 abort ();
11891 }
5f4273c7 11892
037e8744
JB
11893 if (rs == NS_FI)
11894 {
11895 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11896 do_vfp_sp_compare_z ();
11897 }
11898 else
11899 {
11900 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11901 do_vfp_dp_rd ();
11902 }
11903 }
11904 do_vfp_cond_or_thumb ();
11905}
11906
11907static void
11908nsyn_insert_sp (void)
11909{
11910 inst.operands[1] = inst.operands[0];
11911 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 11912 inst.operands[0].reg = REG_SP;
037e8744
JB
11913 inst.operands[0].isreg = 1;
11914 inst.operands[0].writeback = 1;
11915 inst.operands[0].present = 1;
11916}
11917
11918static void
11919do_vfp_nsyn_push (void)
11920{
11921 nsyn_insert_sp ();
11922 if (inst.operands[1].issingle)
11923 do_vfp_nsyn_opcode ("fstmdbs");
11924 else
11925 do_vfp_nsyn_opcode ("fstmdbd");
11926}
11927
11928static void
11929do_vfp_nsyn_pop (void)
11930{
11931 nsyn_insert_sp ();
11932 if (inst.operands[1].issingle)
22b5b651 11933 do_vfp_nsyn_opcode ("fldmias");
037e8744 11934 else
22b5b651 11935 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11936}
11937
11938/* Fix up Neon data-processing instructions, ORing in the correct bits for
11939 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11940
11941static unsigned
11942neon_dp_fixup (unsigned i)
11943{
11944 if (thumb_mode)
11945 {
11946 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11947 if (i & (1 << 24))
11948 i |= 1 << 28;
5f4273c7 11949
037e8744 11950 i &= ~(1 << 24);
5f4273c7 11951
037e8744
JB
11952 i |= 0xef000000;
11953 }
11954 else
11955 i |= 0xf2000000;
5f4273c7 11956
037e8744
JB
11957 return i;
11958}
11959
11960/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11961 (0, 1, 2, 3). */
11962
11963static unsigned
11964neon_logbits (unsigned x)
11965{
11966 return ffs (x) - 4;
11967}
11968
11969#define LOW4(R) ((R) & 0xf)
11970#define HI1(R) (((R) >> 4) & 1)
11971
11972/* Encode insns with bit pattern:
11973
11974 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11975 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 11976
037e8744
JB
11977 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11978 different meaning for some instruction. */
11979
11980static void
11981neon_three_same (int isquad, int ubit, int size)
11982{
11983 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11984 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11985 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11986 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11987 inst.instruction |= LOW4 (inst.operands[2].reg);
11988 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11989 inst.instruction |= (isquad != 0) << 6;
11990 inst.instruction |= (ubit != 0) << 24;
11991 if (size != -1)
11992 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 11993
037e8744
JB
11994 inst.instruction = neon_dp_fixup (inst.instruction);
11995}
11996
11997/* Encode instructions of the form:
11998
11999 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12000 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12001
12002 Don't write size if SIZE == -1. */
12003
12004static void
12005neon_two_same (int qbit, int ubit, int size)
12006{
12007 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12008 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12009 inst.instruction |= LOW4 (inst.operands[1].reg);
12010 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12011 inst.instruction |= (qbit != 0) << 6;
12012 inst.instruction |= (ubit != 0) << 24;
12013
12014 if (size != -1)
12015 inst.instruction |= neon_logbits (size) << 18;
12016
12017 inst.instruction = neon_dp_fixup (inst.instruction);
12018}
12019
12020/* Neon instruction encoders, in approximate order of appearance. */
12021
12022static void
12023do_neon_dyadic_i_su (void)
12024{
037e8744 12025 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12026 struct neon_type_el et = neon_check_type (3, rs,
12027 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12028 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12029}
12030
12031static void
12032do_neon_dyadic_i64_su (void)
12033{
037e8744 12034 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12035 struct neon_type_el et = neon_check_type (3, rs,
12036 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12037 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12038}
12039
12040static void
12041neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12042 unsigned immbits)
12043{
12044 unsigned size = et.size >> 3;
12045 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12046 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12047 inst.instruction |= LOW4 (inst.operands[1].reg);
12048 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12049 inst.instruction |= (isquad != 0) << 6;
12050 inst.instruction |= immbits << 16;
12051 inst.instruction |= (size >> 3) << 7;
12052 inst.instruction |= (size & 0x7) << 19;
12053 if (write_ubit)
12054 inst.instruction |= (uval != 0) << 24;
12055
12056 inst.instruction = neon_dp_fixup (inst.instruction);
12057}
12058
12059static void
12060do_neon_shl_imm (void)
12061{
12062 if (!inst.operands[2].isreg)
12063 {
037e8744 12064 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12065 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12066 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12067 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12068 }
12069 else
12070 {
037e8744 12071 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12072 struct neon_type_el et = neon_check_type (3, rs,
12073 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12074 unsigned int tmp;
12075
12076 /* VSHL/VQSHL 3-register variants have syntax such as:
12077 vshl.xx Dd, Dm, Dn
12078 whereas other 3-register operations encoded by neon_three_same have
12079 syntax like:
12080 vadd.xx Dd, Dn, Dm
12081 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12082 here. */
12083 tmp = inst.operands[2].reg;
12084 inst.operands[2].reg = inst.operands[1].reg;
12085 inst.operands[1].reg = tmp;
5287ad62 12086 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12087 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12088 }
12089}
12090
12091static void
12092do_neon_qshl_imm (void)
12093{
12094 if (!inst.operands[2].isreg)
12095 {
037e8744 12096 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12097 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12098
5287ad62 12099 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12100 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12101 inst.operands[2].imm);
12102 }
12103 else
12104 {
037e8744 12105 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12106 struct neon_type_el et = neon_check_type (3, rs,
12107 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12108 unsigned int tmp;
12109
12110 /* See note in do_neon_shl_imm. */
12111 tmp = inst.operands[2].reg;
12112 inst.operands[2].reg = inst.operands[1].reg;
12113 inst.operands[1].reg = tmp;
5287ad62 12114 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12115 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12116 }
12117}
12118
627907b7
JB
12119static void
12120do_neon_rshl (void)
12121{
12122 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12123 struct neon_type_el et = neon_check_type (3, rs,
12124 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12125 unsigned int tmp;
12126
12127 tmp = inst.operands[2].reg;
12128 inst.operands[2].reg = inst.operands[1].reg;
12129 inst.operands[1].reg = tmp;
12130 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12131}
12132
5287ad62
JB
12133static int
12134neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12135{
036dc3f7
PB
12136 /* Handle .I8 pseudo-instructions. */
12137 if (size == 8)
5287ad62 12138 {
5287ad62
JB
12139 /* Unfortunately, this will make everything apart from zero out-of-range.
12140 FIXME is this the intended semantics? There doesn't seem much point in
12141 accepting .I8 if so. */
12142 immediate |= immediate << 8;
12143 size = 16;
036dc3f7
PB
12144 }
12145
12146 if (size >= 32)
12147 {
12148 if (immediate == (immediate & 0x000000ff))
12149 {
12150 *immbits = immediate;
12151 return 0x1;
12152 }
12153 else if (immediate == (immediate & 0x0000ff00))
12154 {
12155 *immbits = immediate >> 8;
12156 return 0x3;
12157 }
12158 else if (immediate == (immediate & 0x00ff0000))
12159 {
12160 *immbits = immediate >> 16;
12161 return 0x5;
12162 }
12163 else if (immediate == (immediate & 0xff000000))
12164 {
12165 *immbits = immediate >> 24;
12166 return 0x7;
12167 }
12168 if ((immediate & 0xffff) != (immediate >> 16))
12169 goto bad_immediate;
12170 immediate &= 0xffff;
5287ad62
JB
12171 }
12172
12173 if (immediate == (immediate & 0x000000ff))
12174 {
12175 *immbits = immediate;
036dc3f7 12176 return 0x9;
5287ad62
JB
12177 }
12178 else if (immediate == (immediate & 0x0000ff00))
12179 {
12180 *immbits = immediate >> 8;
036dc3f7 12181 return 0xb;
5287ad62
JB
12182 }
12183
12184 bad_immediate:
dcbf9037 12185 first_error (_("immediate value out of range"));
5287ad62
JB
12186 return FAIL;
12187}
12188
12189/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12190 A, B, C, D. */
12191
12192static int
12193neon_bits_same_in_bytes (unsigned imm)
12194{
12195 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12196 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12197 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12198 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12199}
12200
12201/* For immediate of above form, return 0bABCD. */
12202
12203static unsigned
12204neon_squash_bits (unsigned imm)
12205{
12206 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12207 | ((imm & 0x01000000) >> 21);
12208}
12209
136da414 12210/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12211
12212static unsigned
12213neon_qfloat_bits (unsigned imm)
12214{
136da414 12215 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12216}
12217
12218/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12219 the instruction. *OP is passed as the initial value of the op field, and
12220 may be set to a different value depending on the constant (i.e.
12221 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12222 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12223 try smaller element sizes. */
5287ad62
JB
12224
12225static int
c96612cc
JB
12226neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12227 unsigned *immbits, int *op, int size,
12228 enum neon_el_type type)
5287ad62 12229{
c96612cc
JB
12230 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12231 float. */
12232 if (type == NT_float && !float_p)
12233 return FAIL;
12234
136da414
JB
12235 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12236 {
12237 if (size != 32 || *op == 1)
12238 return FAIL;
12239 *immbits = neon_qfloat_bits (immlo);
12240 return 0xf;
12241 }
036dc3f7
PB
12242
12243 if (size == 64)
5287ad62 12244 {
036dc3f7
PB
12245 if (neon_bits_same_in_bytes (immhi)
12246 && neon_bits_same_in_bytes (immlo))
12247 {
12248 if (*op == 1)
12249 return FAIL;
12250 *immbits = (neon_squash_bits (immhi) << 4)
12251 | neon_squash_bits (immlo);
12252 *op = 1;
12253 return 0xe;
12254 }
12255
12256 if (immhi != immlo)
12257 return FAIL;
5287ad62 12258 }
036dc3f7
PB
12259
12260 if (size >= 32)
5287ad62 12261 {
036dc3f7
PB
12262 if (immlo == (immlo & 0x000000ff))
12263 {
12264 *immbits = immlo;
12265 return 0x0;
12266 }
12267 else if (immlo == (immlo & 0x0000ff00))
12268 {
12269 *immbits = immlo >> 8;
12270 return 0x2;
12271 }
12272 else if (immlo == (immlo & 0x00ff0000))
12273 {
12274 *immbits = immlo >> 16;
12275 return 0x4;
12276 }
12277 else if (immlo == (immlo & 0xff000000))
12278 {
12279 *immbits = immlo >> 24;
12280 return 0x6;
12281 }
12282 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12283 {
12284 *immbits = (immlo >> 8) & 0xff;
12285 return 0xc;
12286 }
12287 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12288 {
12289 *immbits = (immlo >> 16) & 0xff;
12290 return 0xd;
12291 }
12292
12293 if ((immlo & 0xffff) != (immlo >> 16))
12294 return FAIL;
12295 immlo &= 0xffff;
5287ad62 12296 }
036dc3f7
PB
12297
12298 if (size >= 16)
5287ad62 12299 {
036dc3f7
PB
12300 if (immlo == (immlo & 0x000000ff))
12301 {
12302 *immbits = immlo;
12303 return 0x8;
12304 }
12305 else if (immlo == (immlo & 0x0000ff00))
12306 {
12307 *immbits = immlo >> 8;
12308 return 0xa;
12309 }
12310
12311 if ((immlo & 0xff) != (immlo >> 8))
12312 return FAIL;
12313 immlo &= 0xff;
5287ad62 12314 }
036dc3f7
PB
12315
12316 if (immlo == (immlo & 0x000000ff))
5287ad62 12317 {
036dc3f7
PB
12318 /* Don't allow MVN with 8-bit immediate. */
12319 if (*op == 1)
12320 return FAIL;
12321 *immbits = immlo;
12322 return 0xe;
5287ad62 12323 }
5287ad62
JB
12324
12325 return FAIL;
12326}
12327
12328/* Write immediate bits [7:0] to the following locations:
12329
12330 |28/24|23 19|18 16|15 4|3 0|
12331 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12332
12333 This function is used by VMOV/VMVN/VORR/VBIC. */
12334
12335static void
12336neon_write_immbits (unsigned immbits)
12337{
12338 inst.instruction |= immbits & 0xf;
12339 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12340 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12341}
12342
12343/* Invert low-order SIZE bits of XHI:XLO. */
12344
12345static void
12346neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12347{
12348 unsigned immlo = xlo ? *xlo : 0;
12349 unsigned immhi = xhi ? *xhi : 0;
12350
12351 switch (size)
12352 {
12353 case 8:
12354 immlo = (~immlo) & 0xff;
12355 break;
12356
12357 case 16:
12358 immlo = (~immlo) & 0xffff;
12359 break;
12360
12361 case 64:
12362 immhi = (~immhi) & 0xffffffff;
12363 /* fall through. */
12364
12365 case 32:
12366 immlo = (~immlo) & 0xffffffff;
12367 break;
12368
12369 default:
12370 abort ();
12371 }
12372
12373 if (xlo)
12374 *xlo = immlo;
12375
12376 if (xhi)
12377 *xhi = immhi;
12378}
12379
12380static void
12381do_neon_logic (void)
12382{
12383 if (inst.operands[2].present && inst.operands[2].isreg)
12384 {
037e8744 12385 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12386 neon_check_type (3, rs, N_IGNORE_TYPE);
12387 /* U bit and size field were set as part of the bitmask. */
12388 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12389 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12390 }
12391 else
12392 {
037e8744
JB
12393 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12394 struct neon_type_el et = neon_check_type (2, rs,
12395 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
12396 enum neon_opc opcode = inst.instruction & 0x0fffffff;
12397 unsigned immbits;
12398 int cmode;
5f4273c7 12399
5287ad62
JB
12400 if (et.type == NT_invtype)
12401 return;
5f4273c7 12402
5287ad62
JB
12403 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12404
036dc3f7
PB
12405 immbits = inst.operands[1].imm;
12406 if (et.size == 64)
12407 {
12408 /* .i64 is a pseudo-op, so the immediate must be a repeating
12409 pattern. */
12410 if (immbits != (inst.operands[1].regisimm ?
12411 inst.operands[1].reg : 0))
12412 {
12413 /* Set immbits to an invalid constant. */
12414 immbits = 0xdeadbeef;
12415 }
12416 }
12417
5287ad62
JB
12418 switch (opcode)
12419 {
12420 case N_MNEM_vbic:
036dc3f7 12421 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12422 break;
5f4273c7 12423
5287ad62 12424 case N_MNEM_vorr:
036dc3f7 12425 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12426 break;
5f4273c7 12427
5287ad62
JB
12428 case N_MNEM_vand:
12429 /* Pseudo-instruction for VBIC. */
5287ad62
JB
12430 neon_invert_size (&immbits, 0, et.size);
12431 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12432 break;
5f4273c7 12433
5287ad62
JB
12434 case N_MNEM_vorn:
12435 /* Pseudo-instruction for VORR. */
5287ad62
JB
12436 neon_invert_size (&immbits, 0, et.size);
12437 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12438 break;
5f4273c7 12439
5287ad62
JB
12440 default:
12441 abort ();
12442 }
12443
12444 if (cmode == FAIL)
12445 return;
12446
037e8744 12447 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12448 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12449 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12450 inst.instruction |= cmode << 8;
12451 neon_write_immbits (immbits);
5f4273c7 12452
5287ad62
JB
12453 inst.instruction = neon_dp_fixup (inst.instruction);
12454 }
12455}
12456
12457static void
12458do_neon_bitfield (void)
12459{
037e8744 12460 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 12461 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 12462 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12463}
12464
12465static void
dcbf9037
JB
12466neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12467 unsigned destbits)
5287ad62 12468{
037e8744 12469 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12470 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12471 types | N_KEY);
5287ad62
JB
12472 if (et.type == NT_float)
12473 {
12474 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12475 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12476 }
12477 else
12478 {
12479 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12480 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12481 }
12482}
12483
12484static void
12485do_neon_dyadic_if_su (void)
12486{
dcbf9037 12487 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12488}
12489
12490static void
12491do_neon_dyadic_if_su_d (void)
12492{
12493 /* This version only allow D registers, but that constraint is enforced during
12494 operand parsing so we don't need to do anything extra here. */
dcbf9037 12495 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12496}
12497
5287ad62
JB
12498static void
12499do_neon_dyadic_if_i_d (void)
12500{
428e3f1f
PB
12501 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12502 affected if we specify unsigned args. */
12503 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12504}
12505
037e8744
JB
12506enum vfp_or_neon_is_neon_bits
12507{
12508 NEON_CHECK_CC = 1,
12509 NEON_CHECK_ARCH = 2
12510};
12511
12512/* Call this function if an instruction which may have belonged to the VFP or
12513 Neon instruction sets, but turned out to be a Neon instruction (due to the
12514 operand types involved, etc.). We have to check and/or fix-up a couple of
12515 things:
12516
12517 - Make sure the user hasn't attempted to make a Neon instruction
12518 conditional.
12519 - Alter the value in the condition code field if necessary.
12520 - Make sure that the arch supports Neon instructions.
12521
12522 Which of these operations take place depends on bits from enum
12523 vfp_or_neon_is_neon_bits.
12524
12525 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12526 current instruction's condition is COND_ALWAYS, the condition field is
12527 changed to inst.uncond_value. This is necessary because instructions shared
12528 between VFP and Neon may be conditional for the VFP variants only, and the
12529 unconditional Neon version must have, e.g., 0xF in the condition field. */
12530
12531static int
12532vfp_or_neon_is_neon (unsigned check)
12533{
12534 /* Conditions are always legal in Thumb mode (IT blocks). */
12535 if (!thumb_mode && (check & NEON_CHECK_CC))
12536 {
12537 if (inst.cond != COND_ALWAYS)
12538 {
12539 first_error (_(BAD_COND));
12540 return FAIL;
12541 }
12542 if (inst.uncond_value != -1)
12543 inst.instruction |= inst.uncond_value << 28;
12544 }
5f4273c7 12545
037e8744
JB
12546 if ((check & NEON_CHECK_ARCH)
12547 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12548 {
12549 first_error (_(BAD_FPU));
12550 return FAIL;
12551 }
5f4273c7 12552
037e8744
JB
12553 return SUCCESS;
12554}
12555
5287ad62
JB
12556static void
12557do_neon_addsub_if_i (void)
12558{
037e8744
JB
12559 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12560 return;
12561
12562 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12563 return;
12564
5287ad62
JB
12565 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12566 affected if we specify unsigned args. */
dcbf9037 12567 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12568}
12569
12570/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12571 result to be:
12572 V<op> A,B (A is operand 0, B is operand 2)
12573 to mean:
12574 V<op> A,B,A
12575 not:
12576 V<op> A,B,B
12577 so handle that case specially. */
12578
12579static void
12580neon_exchange_operands (void)
12581{
12582 void *scratch = alloca (sizeof (inst.operands[0]));
12583 if (inst.operands[1].present)
12584 {
12585 /* Swap operands[1] and operands[2]. */
12586 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12587 inst.operands[1] = inst.operands[2];
12588 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12589 }
12590 else
12591 {
12592 inst.operands[1] = inst.operands[2];
12593 inst.operands[2] = inst.operands[0];
12594 }
12595}
12596
12597static void
12598neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12599{
12600 if (inst.operands[2].isreg)
12601 {
12602 if (invert)
12603 neon_exchange_operands ();
dcbf9037 12604 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12605 }
12606 else
12607 {
037e8744 12608 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12609 struct neon_type_el et = neon_check_type (2, rs,
12610 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12611
12612 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12613 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12614 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12615 inst.instruction |= LOW4 (inst.operands[1].reg);
12616 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12617 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12618 inst.instruction |= (et.type == NT_float) << 10;
12619 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12620
5287ad62
JB
12621 inst.instruction = neon_dp_fixup (inst.instruction);
12622 }
12623}
12624
12625static void
12626do_neon_cmp (void)
12627{
12628 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12629}
12630
12631static void
12632do_neon_cmp_inv (void)
12633{
12634 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12635}
12636
12637static void
12638do_neon_ceq (void)
12639{
12640 neon_compare (N_IF_32, N_IF_32, FALSE);
12641}
12642
12643/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12644 scalars, which are encoded in 5 bits, M : Rm.
12645 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12646 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12647 index in M. */
12648
12649static unsigned
12650neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12651{
dcbf9037
JB
12652 unsigned regno = NEON_SCALAR_REG (scalar);
12653 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12654
12655 switch (elsize)
12656 {
12657 case 16:
12658 if (regno > 7 || elno > 3)
12659 goto bad_scalar;
12660 return regno | (elno << 3);
5f4273c7 12661
5287ad62
JB
12662 case 32:
12663 if (regno > 15 || elno > 1)
12664 goto bad_scalar;
12665 return regno | (elno << 4);
12666
12667 default:
12668 bad_scalar:
dcbf9037 12669 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12670 }
12671
12672 return 0;
12673}
12674
12675/* Encode multiply / multiply-accumulate scalar instructions. */
12676
12677static void
12678neon_mul_mac (struct neon_type_el et, int ubit)
12679{
dcbf9037
JB
12680 unsigned scalar;
12681
12682 /* Give a more helpful error message if we have an invalid type. */
12683 if (et.type == NT_invtype)
12684 return;
5f4273c7 12685
dcbf9037 12686 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12687 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12689 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12690 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12691 inst.instruction |= LOW4 (scalar);
12692 inst.instruction |= HI1 (scalar) << 5;
12693 inst.instruction |= (et.type == NT_float) << 8;
12694 inst.instruction |= neon_logbits (et.size) << 20;
12695 inst.instruction |= (ubit != 0) << 24;
12696
12697 inst.instruction = neon_dp_fixup (inst.instruction);
12698}
12699
12700static void
12701do_neon_mac_maybe_scalar (void)
12702{
037e8744
JB
12703 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12704 return;
12705
12706 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12707 return;
12708
5287ad62
JB
12709 if (inst.operands[2].isscalar)
12710 {
037e8744 12711 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12712 struct neon_type_el et = neon_check_type (3, rs,
12713 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12714 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12715 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12716 }
12717 else
428e3f1f
PB
12718 {
12719 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12720 affected if we specify unsigned args. */
12721 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12722 }
5287ad62
JB
12723}
12724
12725static void
12726do_neon_tst (void)
12727{
037e8744 12728 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12729 struct neon_type_el et = neon_check_type (3, rs,
12730 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12731 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12732}
12733
12734/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12735 same types as the MAC equivalents. The polynomial type for this instruction
12736 is encoded the same as the integer type. */
12737
12738static void
12739do_neon_mul (void)
12740{
037e8744
JB
12741 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12742 return;
12743
12744 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12745 return;
12746
5287ad62
JB
12747 if (inst.operands[2].isscalar)
12748 do_neon_mac_maybe_scalar ();
12749 else
dcbf9037 12750 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12751}
12752
12753static void
12754do_neon_qdmulh (void)
12755{
12756 if (inst.operands[2].isscalar)
12757 {
037e8744 12758 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12759 struct neon_type_el et = neon_check_type (3, rs,
12760 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12761 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12762 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12763 }
12764 else
12765 {
037e8744 12766 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12767 struct neon_type_el et = neon_check_type (3, rs,
12768 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12769 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12770 /* The U bit (rounding) comes from bit mask. */
037e8744 12771 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12772 }
12773}
12774
12775static void
12776do_neon_fcmp_absolute (void)
12777{
037e8744 12778 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12779 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12780 /* Size field comes from bit mask. */
037e8744 12781 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12782}
12783
12784static void
12785do_neon_fcmp_absolute_inv (void)
12786{
12787 neon_exchange_operands ();
12788 do_neon_fcmp_absolute ();
12789}
12790
12791static void
12792do_neon_step (void)
12793{
037e8744 12794 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12795 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12796 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12797}
12798
12799static void
12800do_neon_abs_neg (void)
12801{
037e8744
JB
12802 enum neon_shape rs;
12803 struct neon_type_el et;
5f4273c7 12804
037e8744
JB
12805 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12806 return;
12807
12808 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12809 return;
12810
12811 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12812 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 12813
5287ad62
JB
12814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12816 inst.instruction |= LOW4 (inst.operands[1].reg);
12817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12818 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12819 inst.instruction |= (et.type == NT_float) << 10;
12820 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12821
5287ad62
JB
12822 inst.instruction = neon_dp_fixup (inst.instruction);
12823}
12824
12825static void
12826do_neon_sli (void)
12827{
037e8744 12828 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12829 struct neon_type_el et = neon_check_type (2, rs,
12830 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12831 int imm = inst.operands[2].imm;
12832 constraint (imm < 0 || (unsigned)imm >= et.size,
12833 _("immediate out of range for insert"));
037e8744 12834 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12835}
12836
12837static void
12838do_neon_sri (void)
12839{
037e8744 12840 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12841 struct neon_type_el et = neon_check_type (2, rs,
12842 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12843 int imm = inst.operands[2].imm;
12844 constraint (imm < 1 || (unsigned)imm > et.size,
12845 _("immediate out of range for insert"));
037e8744 12846 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12847}
12848
12849static void
12850do_neon_qshlu_imm (void)
12851{
037e8744 12852 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12853 struct neon_type_el et = neon_check_type (2, rs,
12854 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12855 int imm = inst.operands[2].imm;
12856 constraint (imm < 0 || (unsigned)imm >= et.size,
12857 _("immediate out of range for shift"));
12858 /* Only encodes the 'U present' variant of the instruction.
12859 In this case, signed types have OP (bit 8) set to 0.
12860 Unsigned types have OP set to 1. */
12861 inst.instruction |= (et.type == NT_unsigned) << 8;
12862 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12863 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12864}
12865
12866static void
12867do_neon_qmovn (void)
12868{
12869 struct neon_type_el et = neon_check_type (2, NS_DQ,
12870 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12871 /* Saturating move where operands can be signed or unsigned, and the
12872 destination has the same signedness. */
12873 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12874 if (et.type == NT_unsigned)
12875 inst.instruction |= 0xc0;
12876 else
12877 inst.instruction |= 0x80;
12878 neon_two_same (0, 1, et.size / 2);
12879}
12880
12881static void
12882do_neon_qmovun (void)
12883{
12884 struct neon_type_el et = neon_check_type (2, NS_DQ,
12885 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12886 /* Saturating move with unsigned results. Operands must be signed. */
12887 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12888 neon_two_same (0, 1, et.size / 2);
12889}
12890
12891static void
12892do_neon_rshift_sat_narrow (void)
12893{
12894 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12895 or unsigned. If operands are unsigned, results must also be unsigned. */
12896 struct neon_type_el et = neon_check_type (2, NS_DQI,
12897 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12898 int imm = inst.operands[2].imm;
12899 /* This gets the bounds check, size encoding and immediate bits calculation
12900 right. */
12901 et.size /= 2;
5f4273c7 12902
5287ad62
JB
12903 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12904 VQMOVN.I<size> <Dd>, <Qm>. */
12905 if (imm == 0)
12906 {
12907 inst.operands[2].present = 0;
12908 inst.instruction = N_MNEM_vqmovn;
12909 do_neon_qmovn ();
12910 return;
12911 }
5f4273c7 12912
5287ad62
JB
12913 constraint (imm < 1 || (unsigned)imm > et.size,
12914 _("immediate out of range"));
12915 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12916}
12917
12918static void
12919do_neon_rshift_sat_narrow_u (void)
12920{
12921 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12922 or unsigned. If operands are unsigned, results must also be unsigned. */
12923 struct neon_type_el et = neon_check_type (2, NS_DQI,
12924 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12925 int imm = inst.operands[2].imm;
12926 /* This gets the bounds check, size encoding and immediate bits calculation
12927 right. */
12928 et.size /= 2;
12929
12930 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12931 VQMOVUN.I<size> <Dd>, <Qm>. */
12932 if (imm == 0)
12933 {
12934 inst.operands[2].present = 0;
12935 inst.instruction = N_MNEM_vqmovun;
12936 do_neon_qmovun ();
12937 return;
12938 }
12939
12940 constraint (imm < 1 || (unsigned)imm > et.size,
12941 _("immediate out of range"));
12942 /* FIXME: The manual is kind of unclear about what value U should have in
12943 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12944 must be 1. */
12945 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12946}
12947
12948static void
12949do_neon_movn (void)
12950{
12951 struct neon_type_el et = neon_check_type (2, NS_DQ,
12952 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12953 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12954 neon_two_same (0, 1, et.size / 2);
12955}
12956
12957static void
12958do_neon_rshift_narrow (void)
12959{
12960 struct neon_type_el et = neon_check_type (2, NS_DQI,
12961 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12962 int imm = inst.operands[2].imm;
12963 /* This gets the bounds check, size encoding and immediate bits calculation
12964 right. */
12965 et.size /= 2;
5f4273c7 12966
5287ad62
JB
12967 /* If immediate is zero then we are a pseudo-instruction for
12968 VMOVN.I<size> <Dd>, <Qm> */
12969 if (imm == 0)
12970 {
12971 inst.operands[2].present = 0;
12972 inst.instruction = N_MNEM_vmovn;
12973 do_neon_movn ();
12974 return;
12975 }
5f4273c7 12976
5287ad62
JB
12977 constraint (imm < 1 || (unsigned)imm > et.size,
12978 _("immediate out of range for narrowing operation"));
12979 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12980}
12981
12982static void
12983do_neon_shll (void)
12984{
12985 /* FIXME: Type checking when lengthening. */
12986 struct neon_type_el et = neon_check_type (2, NS_QDI,
12987 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12988 unsigned imm = inst.operands[2].imm;
12989
12990 if (imm == et.size)
12991 {
12992 /* Maximum shift variant. */
12993 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12994 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12995 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12996 inst.instruction |= LOW4 (inst.operands[1].reg);
12997 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12998 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12999
5287ad62
JB
13000 inst.instruction = neon_dp_fixup (inst.instruction);
13001 }
13002 else
13003 {
13004 /* A more-specific type check for non-max versions. */
13005 et = neon_check_type (2, NS_QDI,
13006 N_EQK | N_DBL, N_SU_32 | N_KEY);
13007 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13008 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13009 }
13010}
13011
037e8744 13012/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13013 the current instruction is. */
13014
13015static int
13016neon_cvt_flavour (enum neon_shape rs)
13017{
037e8744
JB
13018#define CVT_VAR(C,X,Y) \
13019 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13020 if (et.type != NT_invtype) \
13021 { \
13022 inst.error = NULL; \
13023 return (C); \
5287ad62
JB
13024 }
13025 struct neon_type_el et;
037e8744
JB
13026 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13027 || rs == NS_FF) ? N_VFP : 0;
13028 /* The instruction versions which take an immediate take one register
13029 argument, which is extended to the width of the full register. Thus the
13030 "source" and "destination" registers must have the same width. Hack that
13031 here by making the size equal to the key (wider, in this case) operand. */
13032 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13033
5287ad62
JB
13034 CVT_VAR (0, N_S32, N_F32);
13035 CVT_VAR (1, N_U32, N_F32);
13036 CVT_VAR (2, N_F32, N_S32);
13037 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13038 /* Half-precision conversions. */
13039 CVT_VAR (4, N_F32, N_F16);
13040 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13041
037e8744 13042 whole_reg = N_VFP;
5f4273c7 13043
037e8744 13044 /* VFP instructions. */
8e79c3df
CM
13045 CVT_VAR (6, N_F32, N_F64);
13046 CVT_VAR (7, N_F64, N_F32);
13047 CVT_VAR (8, N_S32, N_F64 | key);
13048 CVT_VAR (9, N_U32, N_F64 | key);
13049 CVT_VAR (10, N_F64 | key, N_S32);
13050 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13051 /* VFP instructions with bitshift. */
8e79c3df
CM
13052 CVT_VAR (12, N_F32 | key, N_S16);
13053 CVT_VAR (13, N_F32 | key, N_U16);
13054 CVT_VAR (14, N_F64 | key, N_S16);
13055 CVT_VAR (15, N_F64 | key, N_U16);
13056 CVT_VAR (16, N_S16, N_F32 | key);
13057 CVT_VAR (17, N_U16, N_F32 | key);
13058 CVT_VAR (18, N_S16, N_F64 | key);
13059 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13060
5287ad62
JB
13061 return -1;
13062#undef CVT_VAR
13063}
13064
037e8744
JB
13065/* Neon-syntax VFP conversions. */
13066
5287ad62 13067static void
037e8744 13068do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13069{
037e8744 13070 const char *opname = 0;
5f4273c7 13071
037e8744 13072 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13073 {
037e8744
JB
13074 /* Conversions with immediate bitshift. */
13075 const char *enc[] =
13076 {
13077 "ftosls",
13078 "ftouls",
13079 "fsltos",
13080 "fultos",
13081 NULL,
13082 NULL,
8e79c3df
CM
13083 NULL,
13084 NULL,
037e8744
JB
13085 "ftosld",
13086 "ftould",
13087 "fsltod",
13088 "fultod",
13089 "fshtos",
13090 "fuhtos",
13091 "fshtod",
13092 "fuhtod",
13093 "ftoshs",
13094 "ftouhs",
13095 "ftoshd",
13096 "ftouhd"
13097 };
13098
13099 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13100 {
13101 opname = enc[flavour];
13102 constraint (inst.operands[0].reg != inst.operands[1].reg,
13103 _("operands 0 and 1 must be the same register"));
13104 inst.operands[1] = inst.operands[2];
13105 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13106 }
5287ad62
JB
13107 }
13108 else
13109 {
037e8744
JB
13110 /* Conversions without bitshift. */
13111 const char *enc[] =
13112 {
13113 "ftosis",
13114 "ftouis",
13115 "fsitos",
13116 "fuitos",
8e79c3df
CM
13117 "NULL",
13118 "NULL",
037e8744
JB
13119 "fcvtsd",
13120 "fcvtds",
13121 "ftosid",
13122 "ftouid",
13123 "fsitod",
13124 "fuitod"
13125 };
13126
13127 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13128 opname = enc[flavour];
13129 }
13130
13131 if (opname)
13132 do_vfp_nsyn_opcode (opname);
13133}
13134
13135static void
13136do_vfp_nsyn_cvtz (void)
13137{
13138 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13139 int flavour = neon_cvt_flavour (rs);
13140 const char *enc[] =
13141 {
13142 "ftosizs",
13143 "ftouizs",
13144 NULL,
13145 NULL,
13146 NULL,
13147 NULL,
8e79c3df
CM
13148 NULL,
13149 NULL,
037e8744
JB
13150 "ftosizd",
13151 "ftouizd"
13152 };
13153
13154 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13155 do_vfp_nsyn_opcode (enc[flavour]);
13156}
f31fef98 13157
037e8744
JB
13158static void
13159do_neon_cvt (void)
13160{
13161 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13162 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13163 int flavour = neon_cvt_flavour (rs);
13164
13165 /* VFP rather than Neon conversions. */
8e79c3df 13166 if (flavour >= 6)
037e8744
JB
13167 {
13168 do_vfp_nsyn_cvt (rs, flavour);
13169 return;
13170 }
13171
13172 switch (rs)
13173 {
13174 case NS_DDI:
13175 case NS_QQI:
13176 {
35997600
NC
13177 unsigned immbits;
13178 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13179
037e8744
JB
13180 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13181 return;
13182
13183 /* Fixed-point conversion with #0 immediate is encoded as an
13184 integer conversion. */
13185 if (inst.operands[2].present && inst.operands[2].imm == 0)
13186 goto int_encode;
35997600 13187 immbits = 32 - inst.operands[2].imm;
037e8744
JB
13188 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13189 if (flavour != -1)
13190 inst.instruction |= enctab[flavour];
13191 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13192 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13193 inst.instruction |= LOW4 (inst.operands[1].reg);
13194 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13195 inst.instruction |= neon_quad (rs) << 6;
13196 inst.instruction |= 1 << 21;
13197 inst.instruction |= immbits << 16;
13198
13199 inst.instruction = neon_dp_fixup (inst.instruction);
13200 }
13201 break;
13202
13203 case NS_DD:
13204 case NS_QQ:
13205 int_encode:
13206 {
13207 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13208
13209 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13210
13211 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13212 return;
13213
13214 if (flavour != -1)
13215 inst.instruction |= enctab[flavour];
13216
13217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13219 inst.instruction |= LOW4 (inst.operands[1].reg);
13220 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13221 inst.instruction |= neon_quad (rs) << 6;
13222 inst.instruction |= 2 << 18;
13223
13224 inst.instruction = neon_dp_fixup (inst.instruction);
13225 }
13226 break;
13227
8e79c3df
CM
13228 /* Half-precision conversions for Advanced SIMD -- neon. */
13229 case NS_QD:
13230 case NS_DQ:
13231
13232 if ((rs == NS_DQ)
13233 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13234 {
13235 as_bad (_("operand size must match register width"));
13236 break;
13237 }
13238
13239 if ((rs == NS_QD)
13240 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13241 {
13242 as_bad (_("operand size must match register width"));
13243 break;
13244 }
13245
13246 if (rs == NS_DQ)
13247 inst.instruction = 0x3b60600;
13248 else
13249 inst.instruction = 0x3b60700;
13250
13251 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13252 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13253 inst.instruction |= LOW4 (inst.operands[1].reg);
13254 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13255 inst.instruction = neon_dp_fixup (inst.instruction);
13256 break;
13257
037e8744
JB
13258 default:
13259 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13260 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13261 }
5287ad62
JB
13262}
13263
8e79c3df
CM
13264static void
13265do_neon_cvtb (void)
13266{
13267 inst.instruction = 0xeb20a40;
13268
13269 /* The sizes are attached to the mnemonic. */
13270 if (inst.vectype.el[0].type != NT_invtype
13271 && inst.vectype.el[0].size == 16)
13272 inst.instruction |= 0x00010000;
13273
13274 /* Programmer's syntax: the sizes are attached to the operands. */
13275 else if (inst.operands[0].vectype.type != NT_invtype
13276 && inst.operands[0].vectype.size == 16)
13277 inst.instruction |= 0x00010000;
13278
13279 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13280 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13281 do_vfp_cond_or_thumb ();
13282}
13283
13284
13285static void
13286do_neon_cvtt (void)
13287{
13288 do_neon_cvtb ();
13289 inst.instruction |= 0x80;
13290}
13291
5287ad62
JB
13292static void
13293neon_move_immediate (void)
13294{
037e8744
JB
13295 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13296 struct neon_type_el et = neon_check_type (2, rs,
13297 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 13298 unsigned immlo, immhi = 0, immbits;
c96612cc 13299 int op, cmode, float_p;
5287ad62 13300
037e8744
JB
13301 constraint (et.type == NT_invtype,
13302 _("operand size must be specified for immediate VMOV"));
13303
5287ad62
JB
13304 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13305 op = (inst.instruction & (1 << 5)) != 0;
13306
13307 immlo = inst.operands[1].imm;
13308 if (inst.operands[1].regisimm)
13309 immhi = inst.operands[1].reg;
13310
13311 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13312 _("immediate has bits set outside the operand size"));
13313
c96612cc
JB
13314 float_p = inst.operands[1].immisfloat;
13315
13316 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 13317 et.size, et.type)) == FAIL)
5287ad62
JB
13318 {
13319 /* Invert relevant bits only. */
13320 neon_invert_size (&immlo, &immhi, et.size);
13321 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13322 with one or the other; those cases are caught by
13323 neon_cmode_for_move_imm. */
13324 op = !op;
c96612cc
JB
13325 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13326 &op, et.size, et.type)) == FAIL)
5287ad62 13327 {
dcbf9037 13328 first_error (_("immediate out of range"));
5287ad62
JB
13329 return;
13330 }
13331 }
13332
13333 inst.instruction &= ~(1 << 5);
13334 inst.instruction |= op << 5;
13335
13336 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13337 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 13338 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13339 inst.instruction |= cmode << 8;
13340
13341 neon_write_immbits (immbits);
13342}
13343
13344static void
13345do_neon_mvn (void)
13346{
13347 if (inst.operands[1].isreg)
13348 {
037e8744 13349 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 13350
5287ad62
JB
13351 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13352 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13353 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13354 inst.instruction |= LOW4 (inst.operands[1].reg);
13355 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13356 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13357 }
13358 else
13359 {
13360 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13361 neon_move_immediate ();
13362 }
13363
13364 inst.instruction = neon_dp_fixup (inst.instruction);
13365}
13366
13367/* Encode instructions of form:
13368
13369 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 13370 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
13371
13372static void
13373neon_mixed_length (struct neon_type_el et, unsigned size)
13374{
13375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13376 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13377 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13378 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13379 inst.instruction |= LOW4 (inst.operands[2].reg);
13380 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13381 inst.instruction |= (et.type == NT_unsigned) << 24;
13382 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13383
5287ad62
JB
13384 inst.instruction = neon_dp_fixup (inst.instruction);
13385}
13386
13387static void
13388do_neon_dyadic_long (void)
13389{
13390 /* FIXME: Type checking for lengthening op. */
13391 struct neon_type_el et = neon_check_type (3, NS_QDD,
13392 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13393 neon_mixed_length (et, et.size);
13394}
13395
13396static void
13397do_neon_abal (void)
13398{
13399 struct neon_type_el et = neon_check_type (3, NS_QDD,
13400 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13401 neon_mixed_length (et, et.size);
13402}
13403
13404static void
13405neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13406{
13407 if (inst.operands[2].isscalar)
13408 {
dcbf9037
JB
13409 struct neon_type_el et = neon_check_type (3, NS_QDS,
13410 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
13411 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13412 neon_mul_mac (et, et.type == NT_unsigned);
13413 }
13414 else
13415 {
13416 struct neon_type_el et = neon_check_type (3, NS_QDD,
13417 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13418 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13419 neon_mixed_length (et, et.size);
13420 }
13421}
13422
13423static void
13424do_neon_mac_maybe_scalar_long (void)
13425{
13426 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13427}
13428
13429static void
13430do_neon_dyadic_wide (void)
13431{
13432 struct neon_type_el et = neon_check_type (3, NS_QQD,
13433 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13434 neon_mixed_length (et, et.size);
13435}
13436
13437static void
13438do_neon_dyadic_narrow (void)
13439{
13440 struct neon_type_el et = neon_check_type (3, NS_QDD,
13441 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
13442 /* Operand sign is unimportant, and the U bit is part of the opcode,
13443 so force the operand type to integer. */
13444 et.type = NT_integer;
5287ad62
JB
13445 neon_mixed_length (et, et.size / 2);
13446}
13447
13448static void
13449do_neon_mul_sat_scalar_long (void)
13450{
13451 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13452}
13453
13454static void
13455do_neon_vmull (void)
13456{
13457 if (inst.operands[2].isscalar)
13458 do_neon_mac_maybe_scalar_long ();
13459 else
13460 {
13461 struct neon_type_el et = neon_check_type (3, NS_QDD,
13462 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13463 if (et.type == NT_poly)
13464 inst.instruction = NEON_ENC_POLY (inst.instruction);
13465 else
13466 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13467 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13468 zero. Should be OK as-is. */
13469 neon_mixed_length (et, et.size);
13470 }
13471}
13472
13473static void
13474do_neon_ext (void)
13475{
037e8744 13476 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
13477 struct neon_type_el et = neon_check_type (3, rs,
13478 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13479 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
13480
13481 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13482 _("shift out of range"));
5287ad62
JB
13483 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13484 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13485 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13486 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13487 inst.instruction |= LOW4 (inst.operands[2].reg);
13488 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 13489 inst.instruction |= neon_quad (rs) << 6;
5287ad62 13490 inst.instruction |= imm << 8;
5f4273c7 13491
5287ad62
JB
13492 inst.instruction = neon_dp_fixup (inst.instruction);
13493}
13494
13495static void
13496do_neon_rev (void)
13497{
037e8744 13498 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13499 struct neon_type_el et = neon_check_type (2, rs,
13500 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13501 unsigned op = (inst.instruction >> 7) & 3;
13502 /* N (width of reversed regions) is encoded as part of the bitmask. We
13503 extract it here to check the elements to be reversed are smaller.
13504 Otherwise we'd get a reserved instruction. */
13505 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13506 assert (elsize != 0);
13507 constraint (et.size >= elsize,
13508 _("elements must be smaller than reversal region"));
037e8744 13509 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13510}
13511
13512static void
13513do_neon_dup (void)
13514{
13515 if (inst.operands[1].isscalar)
13516 {
037e8744 13517 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
13518 struct neon_type_el et = neon_check_type (2, rs,
13519 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 13520 unsigned sizebits = et.size >> 3;
dcbf9037 13521 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 13522 int logsize = neon_logbits (et.size);
dcbf9037 13523 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
13524
13525 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13526 return;
13527
5287ad62
JB
13528 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13529 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13530 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13531 inst.instruction |= LOW4 (dm);
13532 inst.instruction |= HI1 (dm) << 5;
037e8744 13533 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13534 inst.instruction |= x << 17;
13535 inst.instruction |= sizebits << 16;
5f4273c7 13536
5287ad62
JB
13537 inst.instruction = neon_dp_fixup (inst.instruction);
13538 }
13539 else
13540 {
037e8744
JB
13541 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13542 struct neon_type_el et = neon_check_type (2, rs,
13543 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13544 /* Duplicate ARM register to lanes of vector. */
13545 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13546 switch (et.size)
13547 {
13548 case 8: inst.instruction |= 0x400000; break;
13549 case 16: inst.instruction |= 0x000020; break;
13550 case 32: inst.instruction |= 0x000000; break;
13551 default: break;
13552 }
13553 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13554 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13555 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13556 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13557 /* The encoding for this instruction is identical for the ARM and Thumb
13558 variants, except for the condition field. */
037e8744 13559 do_vfp_cond_or_thumb ();
5287ad62
JB
13560 }
13561}
13562
13563/* VMOV has particularly many variations. It can be one of:
13564 0. VMOV<c><q> <Qd>, <Qm>
13565 1. VMOV<c><q> <Dd>, <Dm>
13566 (Register operations, which are VORR with Rm = Rn.)
13567 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13568 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13569 (Immediate loads.)
13570 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13571 (ARM register to scalar.)
13572 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13573 (Two ARM registers to vector.)
13574 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13575 (Scalar to ARM register.)
13576 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13577 (Vector to two ARM registers.)
037e8744
JB
13578 8. VMOV.F32 <Sd>, <Sm>
13579 9. VMOV.F64 <Dd>, <Dm>
13580 (VFP register moves.)
13581 10. VMOV.F32 <Sd>, #imm
13582 11. VMOV.F64 <Dd>, #imm
13583 (VFP float immediate load.)
13584 12. VMOV <Rd>, <Sm>
13585 (VFP single to ARM reg.)
13586 13. VMOV <Sd>, <Rm>
13587 (ARM reg to VFP single.)
13588 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13589 (Two ARM regs to two VFP singles.)
13590 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13591 (Two VFP singles to two ARM regs.)
5f4273c7 13592
037e8744
JB
13593 These cases can be disambiguated using neon_select_shape, except cases 1/9
13594 and 3/11 which depend on the operand type too.
5f4273c7 13595
5287ad62 13596 All the encoded bits are hardcoded by this function.
5f4273c7 13597
b7fc2769
JB
13598 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13599 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 13600
5287ad62 13601 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 13602 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
13603
13604static void
13605do_neon_mov (void)
13606{
037e8744
JB
13607 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13608 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13609 NS_NULL);
13610 struct neon_type_el et;
13611 const char *ldconst = 0;
5287ad62 13612
037e8744 13613 switch (rs)
5287ad62 13614 {
037e8744
JB
13615 case NS_DD: /* case 1/9. */
13616 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13617 /* It is not an error here if no type is given. */
13618 inst.error = NULL;
13619 if (et.type == NT_float && et.size == 64)
5287ad62 13620 {
037e8744
JB
13621 do_vfp_nsyn_opcode ("fcpyd");
13622 break;
5287ad62 13623 }
037e8744 13624 /* fall through. */
5287ad62 13625
037e8744
JB
13626 case NS_QQ: /* case 0/1. */
13627 {
13628 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13629 return;
13630 /* The architecture manual I have doesn't explicitly state which
13631 value the U bit should have for register->register moves, but
13632 the equivalent VORR instruction has U = 0, so do that. */
13633 inst.instruction = 0x0200110;
13634 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13635 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13636 inst.instruction |= LOW4 (inst.operands[1].reg);
13637 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13638 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13639 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13640 inst.instruction |= neon_quad (rs) << 6;
13641
13642 inst.instruction = neon_dp_fixup (inst.instruction);
13643 }
13644 break;
5f4273c7 13645
037e8744
JB
13646 case NS_DI: /* case 3/11. */
13647 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13648 inst.error = NULL;
13649 if (et.type == NT_float && et.size == 64)
5287ad62 13650 {
037e8744
JB
13651 /* case 11 (fconstd). */
13652 ldconst = "fconstd";
13653 goto encode_fconstd;
5287ad62 13654 }
037e8744
JB
13655 /* fall through. */
13656
13657 case NS_QI: /* case 2/3. */
13658 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13659 return;
13660 inst.instruction = 0x0800010;
13661 neon_move_immediate ();
13662 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 13663 break;
5f4273c7 13664
037e8744
JB
13665 case NS_SR: /* case 4. */
13666 {
13667 unsigned bcdebits = 0;
13668 struct neon_type_el et = neon_check_type (2, NS_NULL,
13669 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13670 int logsize = neon_logbits (et.size);
13671 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13672 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13673
13674 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13675 _(BAD_FPU));
13676 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13677 && et.size != 32, _(BAD_FPU));
13678 constraint (et.type == NT_invtype, _("bad type for scalar"));
13679 constraint (x >= 64 / et.size, _("scalar index out of range"));
13680
13681 switch (et.size)
13682 {
13683 case 8: bcdebits = 0x8; break;
13684 case 16: bcdebits = 0x1; break;
13685 case 32: bcdebits = 0x0; break;
13686 default: ;
13687 }
13688
13689 bcdebits |= x << logsize;
13690
13691 inst.instruction = 0xe000b10;
13692 do_vfp_cond_or_thumb ();
13693 inst.instruction |= LOW4 (dn) << 16;
13694 inst.instruction |= HI1 (dn) << 7;
13695 inst.instruction |= inst.operands[1].reg << 12;
13696 inst.instruction |= (bcdebits & 3) << 5;
13697 inst.instruction |= (bcdebits >> 2) << 21;
13698 }
13699 break;
5f4273c7 13700
037e8744 13701 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13703 _(BAD_FPU));
b7fc2769 13704
037e8744
JB
13705 inst.instruction = 0xc400b10;
13706 do_vfp_cond_or_thumb ();
13707 inst.instruction |= LOW4 (inst.operands[0].reg);
13708 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13709 inst.instruction |= inst.operands[1].reg << 12;
13710 inst.instruction |= inst.operands[2].reg << 16;
13711 break;
5f4273c7 13712
037e8744
JB
13713 case NS_RS: /* case 6. */
13714 {
13715 struct neon_type_el et = neon_check_type (2, NS_NULL,
13716 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13717 unsigned logsize = neon_logbits (et.size);
13718 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13719 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13720 unsigned abcdebits = 0;
13721
13722 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13723 _(BAD_FPU));
13724 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13725 && et.size != 32, _(BAD_FPU));
13726 constraint (et.type == NT_invtype, _("bad type for scalar"));
13727 constraint (x >= 64 / et.size, _("scalar index out of range"));
13728
13729 switch (et.size)
13730 {
13731 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13732 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13733 case 32: abcdebits = 0x00; break;
13734 default: ;
13735 }
13736
13737 abcdebits |= x << logsize;
13738 inst.instruction = 0xe100b10;
13739 do_vfp_cond_or_thumb ();
13740 inst.instruction |= LOW4 (dn) << 16;
13741 inst.instruction |= HI1 (dn) << 7;
13742 inst.instruction |= inst.operands[0].reg << 12;
13743 inst.instruction |= (abcdebits & 3) << 5;
13744 inst.instruction |= (abcdebits >> 2) << 21;
13745 }
13746 break;
5f4273c7 13747
037e8744
JB
13748 case NS_RRD: /* case 7 (fmrrd). */
13749 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13750 _(BAD_FPU));
13751
13752 inst.instruction = 0xc500b10;
13753 do_vfp_cond_or_thumb ();
13754 inst.instruction |= inst.operands[0].reg << 12;
13755 inst.instruction |= inst.operands[1].reg << 16;
13756 inst.instruction |= LOW4 (inst.operands[2].reg);
13757 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13758 break;
5f4273c7 13759
037e8744
JB
13760 case NS_FF: /* case 8 (fcpys). */
13761 do_vfp_nsyn_opcode ("fcpys");
13762 break;
5f4273c7 13763
037e8744
JB
13764 case NS_FI: /* case 10 (fconsts). */
13765 ldconst = "fconsts";
13766 encode_fconstd:
13767 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13768 {
037e8744
JB
13769 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13770 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13771 }
13772 else
037e8744
JB
13773 first_error (_("immediate out of range"));
13774 break;
5f4273c7 13775
037e8744
JB
13776 case NS_RF: /* case 12 (fmrs). */
13777 do_vfp_nsyn_opcode ("fmrs");
13778 break;
5f4273c7 13779
037e8744
JB
13780 case NS_FR: /* case 13 (fmsr). */
13781 do_vfp_nsyn_opcode ("fmsr");
13782 break;
5f4273c7 13783
037e8744
JB
13784 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13785 (one of which is a list), but we have parsed four. Do some fiddling to
13786 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13787 expect. */
13788 case NS_RRFF: /* case 14 (fmrrs). */
13789 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13790 _("VFP registers must be adjacent"));
13791 inst.operands[2].imm = 2;
13792 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13793 do_vfp_nsyn_opcode ("fmrrs");
13794 break;
5f4273c7 13795
037e8744
JB
13796 case NS_FFRR: /* case 15 (fmsrr). */
13797 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13798 _("VFP registers must be adjacent"));
13799 inst.operands[1] = inst.operands[2];
13800 inst.operands[2] = inst.operands[3];
13801 inst.operands[0].imm = 2;
13802 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13803 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 13804 break;
5f4273c7 13805
5287ad62
JB
13806 default:
13807 abort ();
13808 }
13809}
13810
13811static void
13812do_neon_rshift_round_imm (void)
13813{
037e8744 13814 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13815 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13816 int imm = inst.operands[2].imm;
13817
13818 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13819 if (imm == 0)
13820 {
13821 inst.operands[2].present = 0;
13822 do_neon_mov ();
13823 return;
13824 }
13825
13826 constraint (imm < 1 || (unsigned)imm > et.size,
13827 _("immediate out of range for shift"));
037e8744 13828 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13829 et.size - imm);
13830}
13831
13832static void
13833do_neon_movl (void)
13834{
13835 struct neon_type_el et = neon_check_type (2, NS_QD,
13836 N_EQK | N_DBL, N_SU_32 | N_KEY);
13837 unsigned sizebits = et.size >> 3;
13838 inst.instruction |= sizebits << 19;
13839 neon_two_same (0, et.type == NT_unsigned, -1);
13840}
13841
13842static void
13843do_neon_trn (void)
13844{
037e8744 13845 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13846 struct neon_type_el et = neon_check_type (2, rs,
13847 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13848 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13849 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13850}
13851
13852static void
13853do_neon_zip_uzp (void)
13854{
037e8744 13855 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13856 struct neon_type_el et = neon_check_type (2, rs,
13857 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13858 if (rs == NS_DD && et.size == 32)
13859 {
13860 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13861 inst.instruction = N_MNEM_vtrn;
13862 do_neon_trn ();
13863 return;
13864 }
037e8744 13865 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13866}
13867
13868static void
13869do_neon_sat_abs_neg (void)
13870{
037e8744 13871 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13872 struct neon_type_el et = neon_check_type (2, rs,
13873 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13874 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13875}
13876
13877static void
13878do_neon_pair_long (void)
13879{
037e8744 13880 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13881 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13882 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13883 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13884 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13885}
13886
13887static void
13888do_neon_recip_est (void)
13889{
037e8744 13890 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13891 struct neon_type_el et = neon_check_type (2, rs,
13892 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13893 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13894 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13895}
13896
13897static void
13898do_neon_cls (void)
13899{
037e8744 13900 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13901 struct neon_type_el et = neon_check_type (2, rs,
13902 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13903 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13904}
13905
13906static void
13907do_neon_clz (void)
13908{
037e8744 13909 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13910 struct neon_type_el et = neon_check_type (2, rs,
13911 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13912 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13913}
13914
13915static void
13916do_neon_cnt (void)
13917{
037e8744 13918 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13919 struct neon_type_el et = neon_check_type (2, rs,
13920 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13921 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13922}
13923
13924static void
13925do_neon_swp (void)
13926{
037e8744
JB
13927 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13928 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13929}
13930
13931static void
13932do_neon_tbl_tbx (void)
13933{
13934 unsigned listlenbits;
dcbf9037 13935 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 13936
5287ad62
JB
13937 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13938 {
dcbf9037 13939 first_error (_("bad list length for table lookup"));
5287ad62
JB
13940 return;
13941 }
5f4273c7 13942
5287ad62
JB
13943 listlenbits = inst.operands[1].imm - 1;
13944 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13945 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13946 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13947 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13948 inst.instruction |= LOW4 (inst.operands[2].reg);
13949 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13950 inst.instruction |= listlenbits << 8;
5f4273c7 13951
5287ad62
JB
13952 inst.instruction = neon_dp_fixup (inst.instruction);
13953}
13954
13955static void
13956do_neon_ldm_stm (void)
13957{
13958 /* P, U and L bits are part of bitmask. */
13959 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13960 unsigned offsetbits = inst.operands[1].imm * 2;
13961
037e8744
JB
13962 if (inst.operands[1].issingle)
13963 {
13964 do_vfp_nsyn_ldm_stm (is_dbmode);
13965 return;
13966 }
13967
5287ad62
JB
13968 constraint (is_dbmode && !inst.operands[0].writeback,
13969 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13970
13971 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13972 _("register list must contain at least 1 and at most 16 "
13973 "registers"));
13974
13975 inst.instruction |= inst.operands[0].reg << 16;
13976 inst.instruction |= inst.operands[0].writeback << 21;
13977 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13978 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13979
13980 inst.instruction |= offsetbits;
5f4273c7 13981
037e8744 13982 do_vfp_cond_or_thumb ();
5287ad62
JB
13983}
13984
13985static void
13986do_neon_ldr_str (void)
13987{
5287ad62 13988 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 13989
037e8744
JB
13990 if (inst.operands[0].issingle)
13991 {
cd2f129f
JB
13992 if (is_ldr)
13993 do_vfp_nsyn_opcode ("flds");
13994 else
13995 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13996 }
13997 else
5287ad62 13998 {
cd2f129f
JB
13999 if (is_ldr)
14000 do_vfp_nsyn_opcode ("fldd");
5287ad62 14001 else
cd2f129f 14002 do_vfp_nsyn_opcode ("fstd");
5287ad62 14003 }
5287ad62
JB
14004}
14005
14006/* "interleave" version also handles non-interleaving register VLD1/VST1
14007 instructions. */
14008
14009static void
14010do_neon_ld_st_interleave (void)
14011{
037e8744 14012 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14013 N_8 | N_16 | N_32 | N_64);
14014 unsigned alignbits = 0;
14015 unsigned idx;
14016 /* The bits in this table go:
14017 0: register stride of one (0) or two (1)
14018 1,2: register list length, minus one (1, 2, 3, 4).
14019 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14020 We use -1 for invalid entries. */
14021 const int typetable[] =
14022 {
14023 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14024 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14025 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14026 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14027 };
14028 int typebits;
14029
dcbf9037
JB
14030 if (et.type == NT_invtype)
14031 return;
14032
5287ad62
JB
14033 if (inst.operands[1].immisalign)
14034 switch (inst.operands[1].imm >> 8)
14035 {
14036 case 64: alignbits = 1; break;
14037 case 128:
14038 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14039 goto bad_alignment;
14040 alignbits = 2;
14041 break;
14042 case 256:
14043 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14044 goto bad_alignment;
14045 alignbits = 3;
14046 break;
14047 default:
14048 bad_alignment:
dcbf9037 14049 first_error (_("bad alignment"));
5287ad62
JB
14050 return;
14051 }
14052
14053 inst.instruction |= alignbits << 4;
14054 inst.instruction |= neon_logbits (et.size) << 6;
14055
14056 /* Bits [4:6] of the immediate in a list specifier encode register stride
14057 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14058 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14059 up the right value for "type" in a table based on this value and the given
14060 list style, then stick it back. */
14061 idx = ((inst.operands[0].imm >> 4) & 7)
14062 | (((inst.instruction >> 8) & 3) << 3);
14063
14064 typebits = typetable[idx];
5f4273c7 14065
5287ad62
JB
14066 constraint (typebits == -1, _("bad list type for instruction"));
14067
14068 inst.instruction &= ~0xf00;
14069 inst.instruction |= typebits << 8;
14070}
14071
14072/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14073 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14074 otherwise. The variable arguments are a list of pairs of legal (size, align)
14075 values, terminated with -1. */
14076
14077static int
14078neon_alignment_bit (int size, int align, int *do_align, ...)
14079{
14080 va_list ap;
14081 int result = FAIL, thissize, thisalign;
5f4273c7 14082
5287ad62
JB
14083 if (!inst.operands[1].immisalign)
14084 {
14085 *do_align = 0;
14086 return SUCCESS;
14087 }
5f4273c7 14088
5287ad62
JB
14089 va_start (ap, do_align);
14090
14091 do
14092 {
14093 thissize = va_arg (ap, int);
14094 if (thissize == -1)
14095 break;
14096 thisalign = va_arg (ap, int);
14097
14098 if (size == thissize && align == thisalign)
14099 result = SUCCESS;
14100 }
14101 while (result != SUCCESS);
14102
14103 va_end (ap);
14104
14105 if (result == SUCCESS)
14106 *do_align = 1;
14107 else
dcbf9037 14108 first_error (_("unsupported alignment for instruction"));
5f4273c7 14109
5287ad62
JB
14110 return result;
14111}
14112
14113static void
14114do_neon_ld_st_lane (void)
14115{
037e8744 14116 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14117 int align_good, do_align = 0;
14118 int logsize = neon_logbits (et.size);
14119 int align = inst.operands[1].imm >> 8;
14120 int n = (inst.instruction >> 8) & 3;
14121 int max_el = 64 / et.size;
5f4273c7 14122
dcbf9037
JB
14123 if (et.type == NT_invtype)
14124 return;
5f4273c7 14125
5287ad62
JB
14126 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14127 _("bad list length"));
14128 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14129 _("scalar index out of range"));
14130 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14131 && et.size == 8,
14132 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14133
5287ad62
JB
14134 switch (n)
14135 {
14136 case 0: /* VLD1 / VST1. */
14137 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14138 32, 32, -1);
14139 if (align_good == FAIL)
14140 return;
14141 if (do_align)
14142 {
14143 unsigned alignbits = 0;
14144 switch (et.size)
14145 {
14146 case 16: alignbits = 0x1; break;
14147 case 32: alignbits = 0x3; break;
14148 default: ;
14149 }
14150 inst.instruction |= alignbits << 4;
14151 }
14152 break;
14153
14154 case 1: /* VLD2 / VST2. */
14155 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14156 32, 64, -1);
14157 if (align_good == FAIL)
14158 return;
14159 if (do_align)
14160 inst.instruction |= 1 << 4;
14161 break;
14162
14163 case 2: /* VLD3 / VST3. */
14164 constraint (inst.operands[1].immisalign,
14165 _("can't use alignment with this instruction"));
14166 break;
14167
14168 case 3: /* VLD4 / VST4. */
14169 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14170 16, 64, 32, 64, 32, 128, -1);
14171 if (align_good == FAIL)
14172 return;
14173 if (do_align)
14174 {
14175 unsigned alignbits = 0;
14176 switch (et.size)
14177 {
14178 case 8: alignbits = 0x1; break;
14179 case 16: alignbits = 0x1; break;
14180 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14181 default: ;
14182 }
14183 inst.instruction |= alignbits << 4;
14184 }
14185 break;
14186
14187 default: ;
14188 }
14189
14190 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14191 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14192 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14193
5287ad62
JB
14194 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14195 inst.instruction |= logsize << 10;
14196}
14197
14198/* Encode single n-element structure to all lanes VLD<n> instructions. */
14199
14200static void
14201do_neon_ld_dup (void)
14202{
037e8744 14203 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14204 int align_good, do_align = 0;
14205
dcbf9037
JB
14206 if (et.type == NT_invtype)
14207 return;
14208
5287ad62
JB
14209 switch ((inst.instruction >> 8) & 3)
14210 {
14211 case 0: /* VLD1. */
14212 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14213 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14214 &do_align, 16, 16, 32, 32, -1);
14215 if (align_good == FAIL)
14216 return;
14217 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14218 {
14219 case 1: break;
14220 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14221 default: first_error (_("bad list length")); return;
5287ad62
JB
14222 }
14223 inst.instruction |= neon_logbits (et.size) << 6;
14224 break;
14225
14226 case 1: /* VLD2. */
14227 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14228 &do_align, 8, 16, 16, 32, 32, 64, -1);
14229 if (align_good == FAIL)
14230 return;
14231 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14232 _("bad list length"));
14233 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14234 inst.instruction |= 1 << 5;
14235 inst.instruction |= neon_logbits (et.size) << 6;
14236 break;
14237
14238 case 2: /* VLD3. */
14239 constraint (inst.operands[1].immisalign,
14240 _("can't use alignment with this instruction"));
14241 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14242 _("bad list length"));
14243 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14244 inst.instruction |= 1 << 5;
14245 inst.instruction |= neon_logbits (et.size) << 6;
14246 break;
14247
14248 case 3: /* VLD4. */
14249 {
14250 int align = inst.operands[1].imm >> 8;
14251 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14252 16, 64, 32, 64, 32, 128, -1);
14253 if (align_good == FAIL)
14254 return;
14255 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14256 _("bad list length"));
14257 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14258 inst.instruction |= 1 << 5;
14259 if (et.size == 32 && align == 128)
14260 inst.instruction |= 0x3 << 6;
14261 else
14262 inst.instruction |= neon_logbits (et.size) << 6;
14263 }
14264 break;
14265
14266 default: ;
14267 }
14268
14269 inst.instruction |= do_align << 4;
14270}
14271
14272/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14273 apart from bits [11:4]. */
14274
14275static void
14276do_neon_ldx_stx (void)
14277{
14278 switch (NEON_LANE (inst.operands[0].imm))
14279 {
14280 case NEON_INTERLEAVE_LANES:
14281 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14282 do_neon_ld_st_interleave ();
14283 break;
5f4273c7 14284
5287ad62
JB
14285 case NEON_ALL_LANES:
14286 inst.instruction = NEON_ENC_DUP (inst.instruction);
14287 do_neon_ld_dup ();
14288 break;
5f4273c7 14289
5287ad62
JB
14290 default:
14291 inst.instruction = NEON_ENC_LANE (inst.instruction);
14292 do_neon_ld_st_lane ();
14293 }
14294
14295 /* L bit comes from bit mask. */
14296 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14297 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14298 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 14299
5287ad62
JB
14300 if (inst.operands[1].postind)
14301 {
14302 int postreg = inst.operands[1].imm & 0xf;
14303 constraint (!inst.operands[1].immisreg,
14304 _("post-index must be a register"));
14305 constraint (postreg == 0xd || postreg == 0xf,
14306 _("bad register for post-index"));
14307 inst.instruction |= postreg;
14308 }
14309 else if (inst.operands[1].writeback)
14310 {
14311 inst.instruction |= 0xd;
14312 }
14313 else
5f4273c7
NC
14314 inst.instruction |= 0xf;
14315
5287ad62
JB
14316 if (thumb_mode)
14317 inst.instruction |= 0xf9000000;
14318 else
14319 inst.instruction |= 0xf4000000;
14320}
5287ad62
JB
14321\f
14322/* Overall per-instruction processing. */
14323
14324/* We need to be able to fix up arbitrary expressions in some statements.
14325 This is so that we can handle symbols that are an arbitrary distance from
14326 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14327 which returns part of an address in a form which will be valid for
14328 a data instruction. We do this by pushing the expression into a symbol
14329 in the expr_section, and creating a fix for that. */
14330
14331static void
14332fix_new_arm (fragS * frag,
14333 int where,
14334 short int size,
14335 expressionS * exp,
14336 int pc_rel,
14337 int reloc)
14338{
14339 fixS * new_fix;
14340
14341 switch (exp->X_op)
14342 {
14343 case O_constant:
14344 case O_symbol:
14345 case O_add:
14346 case O_subtract:
14347 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
14348 break;
14349
14350 default:
14351 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
14352 pc_rel, reloc);
14353 break;
14354 }
14355
14356 /* Mark whether the fix is to a THUMB instruction, or an ARM
14357 instruction. */
14358 new_fix->tc_fix_data = thumb_mode;
14359}
14360
14361/* Create a frg for an instruction requiring relaxation. */
14362static void
14363output_relax_insn (void)
14364{
14365 char * to;
14366 symbolS *sym;
0110f2b8
PB
14367 int offset;
14368
6e1cb1a6
PB
14369 /* The size of the instruction is unknown, so tie the debug info to the
14370 start of the instruction. */
14371 dwarf2_emit_insn (0);
6e1cb1a6 14372
0110f2b8
PB
14373 switch (inst.reloc.exp.X_op)
14374 {
14375 case O_symbol:
14376 sym = inst.reloc.exp.X_add_symbol;
14377 offset = inst.reloc.exp.X_add_number;
14378 break;
14379 case O_constant:
14380 sym = NULL;
14381 offset = inst.reloc.exp.X_add_number;
14382 break;
14383 default:
14384 sym = make_expr_symbol (&inst.reloc.exp);
14385 offset = 0;
14386 break;
14387 }
14388 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14389 inst.relax, sym, offset, NULL/*offset, opcode*/);
14390 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
14391}
14392
14393/* Write a 32-bit thumb instruction to buf. */
14394static void
14395put_thumb32_insn (char * buf, unsigned long insn)
14396{
14397 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14398 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14399}
14400
b99bd4ef 14401static void
c19d1205 14402output_inst (const char * str)
b99bd4ef 14403{
c19d1205 14404 char * to = NULL;
b99bd4ef 14405
c19d1205 14406 if (inst.error)
b99bd4ef 14407 {
c19d1205 14408 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
14409 return;
14410 }
5f4273c7
NC
14411 if (inst.relax)
14412 {
14413 output_relax_insn ();
0110f2b8 14414 return;
5f4273c7 14415 }
c19d1205
ZW
14416 if (inst.size == 0)
14417 return;
b99bd4ef 14418
c19d1205 14419 to = frag_more (inst.size);
8dc2430f
NC
14420 /* PR 9814: Record the thumb mode into the current frag so that we know
14421 what type of NOP padding to use, if necessary. We override any previous
14422 setting so that if the mode has changed then the NOPS that we use will
14423 match the encoding of the last instruction in the frag. */
14424 frag_now->tc_frag_data = thumb_mode | MODE_RECORDED;
c19d1205
ZW
14425
14426 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 14427 {
c19d1205 14428 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 14429 put_thumb32_insn (to, inst.instruction);
b99bd4ef 14430 }
c19d1205 14431 else if (inst.size > INSN_SIZE)
b99bd4ef 14432 {
c19d1205
ZW
14433 assert (inst.size == (2 * INSN_SIZE));
14434 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14435 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 14436 }
c19d1205
ZW
14437 else
14438 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 14439
c19d1205
ZW
14440 if (inst.reloc.type != BFD_RELOC_UNUSED)
14441 fix_new_arm (frag_now, to - frag_now->fr_literal,
14442 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14443 inst.reloc.type);
b99bd4ef 14444
c19d1205 14445 dwarf2_emit_insn (inst.size);
c19d1205 14446}
b99bd4ef 14447
c19d1205
ZW
14448/* Tag values used in struct asm_opcode's tag field. */
14449enum opcode_tag
14450{
14451 OT_unconditional, /* Instruction cannot be conditionalized.
14452 The ARM condition field is still 0xE. */
14453 OT_unconditionalF, /* Instruction cannot be conditionalized
14454 and carries 0xF in its ARM condition field. */
14455 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
14456 OT_csuffixF, /* Some forms of the instruction take a conditional
14457 suffix, others place 0xF where the condition field
14458 would be. */
c19d1205
ZW
14459 OT_cinfix3, /* Instruction takes a conditional infix,
14460 beginning at character index 3. (In
14461 unified mode, it becomes a suffix.) */
088fa78e
KH
14462 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14463 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
14464 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14465 character index 3, even in unified mode. Used for
14466 legacy instructions where suffix and infix forms
14467 may be ambiguous. */
c19d1205 14468 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 14469 suffix or an infix at character index 3. */
c19d1205
ZW
14470 OT_odd_infix_unc, /* This is the unconditional variant of an
14471 instruction that takes a conditional infix
14472 at an unusual position. In unified mode,
14473 this variant will accept a suffix. */
14474 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14475 are the conditional variants of instructions that
14476 take conditional infixes in unusual positions.
14477 The infix appears at character index
14478 (tag - OT_odd_infix_0). These are not accepted
14479 in unified mode. */
14480};
b99bd4ef 14481
c19d1205
ZW
14482/* Subroutine of md_assemble, responsible for looking up the primary
14483 opcode from the mnemonic the user wrote. STR points to the
14484 beginning of the mnemonic.
14485
14486 This is not simply a hash table lookup, because of conditional
14487 variants. Most instructions have conditional variants, which are
14488 expressed with a _conditional affix_ to the mnemonic. If we were
14489 to encode each conditional variant as a literal string in the opcode
14490 table, it would have approximately 20,000 entries.
14491
14492 Most mnemonics take this affix as a suffix, and in unified syntax,
14493 'most' is upgraded to 'all'. However, in the divided syntax, some
14494 instructions take the affix as an infix, notably the s-variants of
14495 the arithmetic instructions. Of those instructions, all but six
14496 have the infix appear after the third character of the mnemonic.
14497
14498 Accordingly, the algorithm for looking up primary opcodes given
14499 an identifier is:
14500
14501 1. Look up the identifier in the opcode table.
14502 If we find a match, go to step U.
14503
14504 2. Look up the last two characters of the identifier in the
14505 conditions table. If we find a match, look up the first N-2
14506 characters of the identifier in the opcode table. If we
14507 find a match, go to step CE.
14508
14509 3. Look up the fourth and fifth characters of the identifier in
14510 the conditions table. If we find a match, extract those
14511 characters from the identifier, and look up the remaining
14512 characters in the opcode table. If we find a match, go
14513 to step CM.
14514
14515 4. Fail.
14516
14517 U. Examine the tag field of the opcode structure, in case this is
14518 one of the six instructions with its conditional infix in an
14519 unusual place. If it is, the tag tells us where to find the
14520 infix; look it up in the conditions table and set inst.cond
14521 accordingly. Otherwise, this is an unconditional instruction.
14522 Again set inst.cond accordingly. Return the opcode structure.
14523
14524 CE. Examine the tag field to make sure this is an instruction that
14525 should receive a conditional suffix. If it is not, fail.
14526 Otherwise, set inst.cond from the suffix we already looked up,
14527 and return the opcode structure.
14528
14529 CM. Examine the tag field to make sure this is an instruction that
14530 should receive a conditional infix after the third character.
14531 If it is not, fail. Otherwise, undo the edits to the current
14532 line of input and proceed as for case CE. */
14533
14534static const struct asm_opcode *
14535opcode_lookup (char **str)
14536{
14537 char *end, *base;
14538 char *affix;
14539 const struct asm_opcode *opcode;
14540 const struct asm_cond *cond;
e3cb604e 14541 char save[2];
267d2029 14542 bfd_boolean neon_supported;
5f4273c7 14543
267d2029 14544 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
14545
14546 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 14547 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 14548 for (base = end = *str; *end != '\0'; end++)
267d2029 14549 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 14550 break;
b99bd4ef 14551
c19d1205
ZW
14552 if (end == base)
14553 return 0;
b99bd4ef 14554
5287ad62 14555 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 14556 if (end[0] == '.')
b99bd4ef 14557 {
5287ad62 14558 int offset = 2;
5f4273c7 14559
267d2029
JB
14560 /* The .w and .n suffixes are only valid if the unified syntax is in
14561 use. */
14562 if (unified_syntax && end[1] == 'w')
c19d1205 14563 inst.size_req = 4;
267d2029 14564 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
14565 inst.size_req = 2;
14566 else
5287ad62
JB
14567 offset = 0;
14568
14569 inst.vectype.elems = 0;
14570
14571 *str = end + offset;
b99bd4ef 14572
5f4273c7 14573 if (end[offset] == '.')
5287ad62 14574 {
267d2029
JB
14575 /* See if we have a Neon type suffix (possible in either unified or
14576 non-unified ARM syntax mode). */
dcbf9037 14577 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
14578 return 0;
14579 }
14580 else if (end[offset] != '\0' && end[offset] != ' ')
14581 return 0;
b99bd4ef 14582 }
c19d1205
ZW
14583 else
14584 *str = end;
b99bd4ef 14585
c19d1205
ZW
14586 /* Look for unaffixed or special-case affixed mnemonic. */
14587 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14588 if (opcode)
b99bd4ef 14589 {
c19d1205
ZW
14590 /* step U */
14591 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 14592 {
c19d1205
ZW
14593 inst.cond = COND_ALWAYS;
14594 return opcode;
b99bd4ef 14595 }
b99bd4ef 14596
278df34e 14597 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
14598 as_warn (_("conditional infixes are deprecated in unified syntax"));
14599 affix = base + (opcode->tag - OT_odd_infix_0);
14600 cond = hash_find_n (arm_cond_hsh, affix, 2);
14601 assert (cond);
b99bd4ef 14602
c19d1205
ZW
14603 inst.cond = cond->value;
14604 return opcode;
14605 }
b99bd4ef 14606
c19d1205
ZW
14607 /* Cannot have a conditional suffix on a mnemonic of less than two
14608 characters. */
14609 if (end - base < 3)
14610 return 0;
b99bd4ef 14611
c19d1205
ZW
14612 /* Look for suffixed mnemonic. */
14613 affix = end - 2;
14614 cond = hash_find_n (arm_cond_hsh, affix, 2);
14615 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14616 if (opcode && cond)
14617 {
14618 /* step CE */
14619 switch (opcode->tag)
14620 {
e3cb604e
PB
14621 case OT_cinfix3_legacy:
14622 /* Ignore conditional suffixes matched on infix only mnemonics. */
14623 break;
14624
c19d1205 14625 case OT_cinfix3:
088fa78e 14626 case OT_cinfix3_deprecated:
c19d1205
ZW
14627 case OT_odd_infix_unc:
14628 if (!unified_syntax)
e3cb604e 14629 return 0;
c19d1205
ZW
14630 /* else fall through */
14631
14632 case OT_csuffix:
037e8744 14633 case OT_csuffixF:
c19d1205
ZW
14634 case OT_csuf_or_in3:
14635 inst.cond = cond->value;
14636 return opcode;
14637
14638 case OT_unconditional:
14639 case OT_unconditionalF:
dfa9f0d5
PB
14640 if (thumb_mode)
14641 {
14642 inst.cond = cond->value;
14643 }
14644 else
14645 {
14646 /* delayed diagnostic */
14647 inst.error = BAD_COND;
14648 inst.cond = COND_ALWAYS;
14649 }
c19d1205 14650 return opcode;
b99bd4ef 14651
c19d1205
ZW
14652 default:
14653 return 0;
14654 }
14655 }
b99bd4ef 14656
c19d1205
ZW
14657 /* Cannot have a usual-position infix on a mnemonic of less than
14658 six characters (five would be a suffix). */
14659 if (end - base < 6)
14660 return 0;
b99bd4ef 14661
c19d1205
ZW
14662 /* Look for infixed mnemonic in the usual position. */
14663 affix = base + 3;
14664 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
14665 if (!cond)
14666 return 0;
14667
14668 memcpy (save, affix, 2);
14669 memmove (affix, affix + 2, (end - affix) - 2);
14670 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14671 memmove (affix + 2, affix, (end - affix) - 2);
14672 memcpy (affix, save, 2);
14673
088fa78e
KH
14674 if (opcode
14675 && (opcode->tag == OT_cinfix3
14676 || opcode->tag == OT_cinfix3_deprecated
14677 || opcode->tag == OT_csuf_or_in3
14678 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14679 {
c19d1205 14680 /* step CM */
278df34e 14681 if (warn_on_deprecated && unified_syntax
088fa78e
KH
14682 && (opcode->tag == OT_cinfix3
14683 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14684 as_warn (_("conditional infixes are deprecated in unified syntax"));
14685
14686 inst.cond = cond->value;
14687 return opcode;
b99bd4ef
NC
14688 }
14689
c19d1205 14690 return 0;
b99bd4ef
NC
14691}
14692
c19d1205
ZW
14693void
14694md_assemble (char *str)
b99bd4ef 14695{
c19d1205
ZW
14696 char *p = str;
14697 const struct asm_opcode * opcode;
b99bd4ef 14698
c19d1205
ZW
14699 /* Align the previous label if needed. */
14700 if (last_label_seen != NULL)
b99bd4ef 14701 {
c19d1205
ZW
14702 symbol_set_frag (last_label_seen, frag_now);
14703 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14704 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14705 }
14706
c19d1205
ZW
14707 memset (&inst, '\0', sizeof (inst));
14708 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14709
c19d1205
ZW
14710 opcode = opcode_lookup (&p);
14711 if (!opcode)
b99bd4ef 14712 {
c19d1205 14713 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14714 the form alias .req reg, or a Neon .dn/.qn directive. */
14715 if (!create_register_alias (str, p)
14716 && !create_neon_reg_alias (str, p))
c19d1205 14717 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14718
b99bd4ef
NC
14719 return;
14720 }
14721
278df34e 14722 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
14723 as_warn (_("s suffix on comparison instruction is deprecated"));
14724
037e8744
JB
14725 /* The value which unconditional instructions should have in place of the
14726 condition field. */
14727 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14728
c19d1205 14729 if (thumb_mode)
b99bd4ef 14730 {
e74cfd16 14731 arm_feature_set variant;
8f06b2d8
PB
14732
14733 variant = cpu_variant;
14734 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14735 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14736 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14737 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14738 if (!opcode->tvariant
14739 || (thumb_mode == 1
14740 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14741 {
c19d1205 14742 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14743 return;
14744 }
c19d1205
ZW
14745 if (inst.cond != COND_ALWAYS && !unified_syntax
14746 && opcode->tencode != do_t_branch)
b99bd4ef 14747 {
c19d1205 14748 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14749 return;
14750 }
14751
076d447c
PB
14752 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14753 {
14754 /* Implicit require narrow instructions on Thumb-1. This avoids
14755 relaxation accidentally introducing Thumb-2 instructions. */
7e806470 14756 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
04e2c417
MM
14757 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
14758 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
076d447c
PB
14759 inst.size_req = 2;
14760 }
14761
e27ec89e
PB
14762 /* Check conditional suffixes. */
14763 if (current_it_mask)
14764 {
14765 int cond;
14766 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14767 current_it_mask <<= 1;
14768 current_it_mask &= 0x1f;
14769 /* The BKPT instruction is unconditional even in an IT block. */
14770 if (!inst.error
14771 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14772 {
14773 as_bad (_("incorrect condition in IT block"));
14774 return;
14775 }
e27ec89e
PB
14776 }
14777 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14778 {
6decc662 14779 as_bad (_("thumb conditional instruction not in IT block"));
e27ec89e
PB
14780 return;
14781 }
14782
c19d1205
ZW
14783 mapping_state (MAP_THUMB);
14784 inst.instruction = opcode->tvalue;
14785
14786 if (!parse_operands (p, opcode->operands))
14787 opcode->tencode ();
14788
e27ec89e
PB
14789 /* Clear current_it_mask at the end of an IT block. */
14790 if (current_it_mask == 0x10)
14791 current_it_mask = 0;
14792
0110f2b8 14793 if (!(inst.error || inst.relax))
b99bd4ef 14794 {
c19d1205
ZW
14795 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14796 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14797 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14798 {
c19d1205 14799 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14800 return;
14801 }
14802 }
076d447c
PB
14803
14804 /* Something has gone badly wrong if we try to relax a fixed size
14805 instruction. */
14806 assert (inst.size_req == 0 || !inst.relax);
14807
e74cfd16
PB
14808 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14809 *opcode->tvariant);
ee065d83 14810 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14811 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 14812 anything other than bl/blx and v6-M instructions.
ee065d83 14813 This is overly pessimistic for relaxable instructions. */
7e806470
PB
14814 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14815 || inst.relax)
04e2c417
MM
14816 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
14817 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
14818 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14819 arm_ext_v6t2);
c19d1205 14820 }
3e9e4fcf 14821 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 14822 {
845b51d6
PB
14823 bfd_boolean is_bx;
14824
14825 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14826 is_bx = (opcode->aencode == do_bx);
14827
c19d1205 14828 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
14829 if (!(is_bx && fix_v4bx)
14830 && !(opcode->avariant &&
14831 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 14832 {
c19d1205
ZW
14833 as_bad (_("selected processor does not support `%s'"), str);
14834 return;
b99bd4ef 14835 }
c19d1205 14836 if (inst.size_req)
b99bd4ef 14837 {
c19d1205
ZW
14838 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14839 return;
b99bd4ef
NC
14840 }
14841
c19d1205
ZW
14842 mapping_state (MAP_ARM);
14843 inst.instruction = opcode->avalue;
14844 if (opcode->tag == OT_unconditionalF)
14845 inst.instruction |= 0xF << 28;
14846 else
14847 inst.instruction |= inst.cond << 28;
14848 inst.size = INSN_SIZE;
14849 if (!parse_operands (p, opcode->operands))
14850 opcode->aencode ();
ee065d83
PB
14851 /* Arm mode bx is marked as both v4T and v5 because it's still required
14852 on a hypothetical non-thumb v5 core. */
845b51d6 14853 if (is_bx)
e74cfd16 14854 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14855 else
e74cfd16
PB
14856 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14857 *opcode->avariant);
b99bd4ef 14858 }
3e9e4fcf
JB
14859 else
14860 {
14861 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14862 "-- `%s'"), str);
14863 return;
14864 }
c19d1205
ZW
14865 output_inst (str);
14866}
b99bd4ef 14867
c19d1205
ZW
14868/* Various frobbings of labels and their addresses. */
14869
14870void
14871arm_start_line_hook (void)
14872{
14873 last_label_seen = NULL;
b99bd4ef
NC
14874}
14875
c19d1205
ZW
14876void
14877arm_frob_label (symbolS * sym)
b99bd4ef 14878{
c19d1205 14879 last_label_seen = sym;
b99bd4ef 14880
c19d1205 14881 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14882
c19d1205
ZW
14883#if defined OBJ_COFF || defined OBJ_ELF
14884 ARM_SET_INTERWORK (sym, support_interwork);
14885#endif
b99bd4ef 14886
5f4273c7 14887 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
14888 as Thumb functions. This is because these labels, whilst
14889 they exist inside Thumb code, are not the entry points for
14890 possible ARM->Thumb calls. Also, these labels can be used
14891 as part of a computed goto or switch statement. eg gcc
14892 can generate code that looks like this:
b99bd4ef 14893
c19d1205
ZW
14894 ldr r2, [pc, .Laaa]
14895 lsl r3, r3, #2
14896 ldr r2, [r3, r2]
14897 mov pc, r2
b99bd4ef 14898
c19d1205
ZW
14899 .Lbbb: .word .Lxxx
14900 .Lccc: .word .Lyyy
14901 ..etc...
14902 .Laaa: .word Lbbb
b99bd4ef 14903
c19d1205
ZW
14904 The first instruction loads the address of the jump table.
14905 The second instruction converts a table index into a byte offset.
14906 The third instruction gets the jump address out of the table.
14907 The fourth instruction performs the jump.
b99bd4ef 14908
c19d1205
ZW
14909 If the address stored at .Laaa is that of a symbol which has the
14910 Thumb_Func bit set, then the linker will arrange for this address
14911 to have the bottom bit set, which in turn would mean that the
14912 address computation performed by the third instruction would end
14913 up with the bottom bit set. Since the ARM is capable of unaligned
14914 word loads, the instruction would then load the incorrect address
14915 out of the jump table, and chaos would ensue. */
14916 if (label_is_thumb_function_name
14917 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14918 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14919 {
c19d1205
ZW
14920 /* When the address of a Thumb function is taken the bottom
14921 bit of that address should be set. This will allow
14922 interworking between Arm and Thumb functions to work
14923 correctly. */
b99bd4ef 14924
c19d1205 14925 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14926
c19d1205 14927 label_is_thumb_function_name = FALSE;
b99bd4ef 14928 }
07a53e5c 14929
07a53e5c 14930 dwarf2_emit_label (sym);
b99bd4ef
NC
14931}
14932
c19d1205
ZW
14933int
14934arm_data_in_code (void)
b99bd4ef 14935{
c19d1205 14936 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14937 {
c19d1205
ZW
14938 *input_line_pointer = '/';
14939 input_line_pointer += 5;
14940 *input_line_pointer = 0;
14941 return 1;
b99bd4ef
NC
14942 }
14943
c19d1205 14944 return 0;
b99bd4ef
NC
14945}
14946
c19d1205
ZW
14947char *
14948arm_canonicalize_symbol_name (char * name)
b99bd4ef 14949{
c19d1205 14950 int len;
b99bd4ef 14951
c19d1205
ZW
14952 if (thumb_mode && (len = strlen (name)) > 5
14953 && streq (name + len - 5, "/data"))
14954 *(name + len - 5) = 0;
b99bd4ef 14955
c19d1205 14956 return name;
b99bd4ef 14957}
c19d1205
ZW
14958\f
14959/* Table of all register names defined by default. The user can
14960 define additional names with .req. Note that all register names
14961 should appear in both upper and lowercase variants. Some registers
14962 also have mixed-case names. */
b99bd4ef 14963
dcbf9037 14964#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14965#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14966#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14967#define REGSET(p,t) \
14968 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14969 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14970 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14971 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14972#define REGSETH(p,t) \
14973 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14974 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14975 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14976 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14977#define REGSET2(p,t) \
14978 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14979 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14980 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14981 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14982
c19d1205 14983static const struct reg_entry reg_names[] =
7ed4c4c5 14984{
c19d1205
ZW
14985 /* ARM integer registers. */
14986 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14987
c19d1205
ZW
14988 /* ATPCS synonyms. */
14989 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14990 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14991 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14992
c19d1205
ZW
14993 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14994 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14995 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14996
c19d1205
ZW
14997 /* Well-known aliases. */
14998 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14999 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15000
15001 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15002 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15003
15004 /* Coprocessor numbers. */
15005 REGSET(p, CP), REGSET(P, CP),
15006
15007 /* Coprocessor register numbers. The "cr" variants are for backward
15008 compatibility. */
15009 REGSET(c, CN), REGSET(C, CN),
15010 REGSET(cr, CN), REGSET(CR, CN),
15011
15012 /* FPA registers. */
15013 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15014 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15015
15016 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15017 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15018
15019 /* VFP SP registers. */
5287ad62
JB
15020 REGSET(s,VFS), REGSET(S,VFS),
15021 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
15022
15023 /* VFP DP Registers. */
5287ad62
JB
15024 REGSET(d,VFD), REGSET(D,VFD),
15025 /* Extra Neon DP registers. */
15026 REGSETH(d,VFD), REGSETH(D,VFD),
15027
15028 /* Neon QP registers. */
15029 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
15030
15031 /* VFP control registers. */
15032 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15033 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
15034 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15035 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15036 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15037 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
15038
15039 /* Maverick DSP coprocessor registers. */
15040 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15041 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15042
15043 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15044 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15045 REGDEF(dspsc,0,DSPSC),
15046
15047 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15048 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15049 REGDEF(DSPSC,0,DSPSC),
15050
15051 /* iWMMXt data registers - p0, c0-15. */
15052 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15053
15054 /* iWMMXt control registers - p1, c0-3. */
15055 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15056 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15057 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15058 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15059
15060 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15061 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15062 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15063 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15064 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15065
15066 /* XScale accumulator registers. */
15067 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15068};
15069#undef REGDEF
15070#undef REGNUM
15071#undef REGSET
7ed4c4c5 15072
c19d1205
ZW
15073/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15074 within psr_required_here. */
15075static const struct asm_psr psrs[] =
15076{
15077 /* Backward compatibility notation. Note that "all" is no longer
15078 truly all possible PSR bits. */
15079 {"all", PSR_c | PSR_f},
15080 {"flg", PSR_f},
15081 {"ctl", PSR_c},
15082
15083 /* Individual flags. */
15084 {"f", PSR_f},
15085 {"c", PSR_c},
15086 {"x", PSR_x},
15087 {"s", PSR_s},
15088 /* Combinations of flags. */
15089 {"fs", PSR_f | PSR_s},
15090 {"fx", PSR_f | PSR_x},
15091 {"fc", PSR_f | PSR_c},
15092 {"sf", PSR_s | PSR_f},
15093 {"sx", PSR_s | PSR_x},
15094 {"sc", PSR_s | PSR_c},
15095 {"xf", PSR_x | PSR_f},
15096 {"xs", PSR_x | PSR_s},
15097 {"xc", PSR_x | PSR_c},
15098 {"cf", PSR_c | PSR_f},
15099 {"cs", PSR_c | PSR_s},
15100 {"cx", PSR_c | PSR_x},
15101 {"fsx", PSR_f | PSR_s | PSR_x},
15102 {"fsc", PSR_f | PSR_s | PSR_c},
15103 {"fxs", PSR_f | PSR_x | PSR_s},
15104 {"fxc", PSR_f | PSR_x | PSR_c},
15105 {"fcs", PSR_f | PSR_c | PSR_s},
15106 {"fcx", PSR_f | PSR_c | PSR_x},
15107 {"sfx", PSR_s | PSR_f | PSR_x},
15108 {"sfc", PSR_s | PSR_f | PSR_c},
15109 {"sxf", PSR_s | PSR_x | PSR_f},
15110 {"sxc", PSR_s | PSR_x | PSR_c},
15111 {"scf", PSR_s | PSR_c | PSR_f},
15112 {"scx", PSR_s | PSR_c | PSR_x},
15113 {"xfs", PSR_x | PSR_f | PSR_s},
15114 {"xfc", PSR_x | PSR_f | PSR_c},
15115 {"xsf", PSR_x | PSR_s | PSR_f},
15116 {"xsc", PSR_x | PSR_s | PSR_c},
15117 {"xcf", PSR_x | PSR_c | PSR_f},
15118 {"xcs", PSR_x | PSR_c | PSR_s},
15119 {"cfs", PSR_c | PSR_f | PSR_s},
15120 {"cfx", PSR_c | PSR_f | PSR_x},
15121 {"csf", PSR_c | PSR_s | PSR_f},
15122 {"csx", PSR_c | PSR_s | PSR_x},
15123 {"cxf", PSR_c | PSR_x | PSR_f},
15124 {"cxs", PSR_c | PSR_x | PSR_s},
15125 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15126 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15127 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15128 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15129 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15130 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15131 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15132 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15133 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15134 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15135 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15136 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15137 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15138 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15139 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15140 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15141 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15142 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15143 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15144 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15145 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15146 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15147 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15148 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15149};
15150
62b3e311
PB
15151/* Table of V7M psr names. */
15152static const struct asm_psr v7m_psrs[] =
15153{
2b744c99
PB
15154 {"apsr", 0 }, {"APSR", 0 },
15155 {"iapsr", 1 }, {"IAPSR", 1 },
15156 {"eapsr", 2 }, {"EAPSR", 2 },
15157 {"psr", 3 }, {"PSR", 3 },
15158 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15159 {"ipsr", 5 }, {"IPSR", 5 },
15160 {"epsr", 6 }, {"EPSR", 6 },
15161 {"iepsr", 7 }, {"IEPSR", 7 },
15162 {"msp", 8 }, {"MSP", 8 },
15163 {"psp", 9 }, {"PSP", 9 },
15164 {"primask", 16}, {"PRIMASK", 16},
15165 {"basepri", 17}, {"BASEPRI", 17},
15166 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15167 {"faultmask", 19}, {"FAULTMASK", 19},
15168 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
15169};
15170
c19d1205
ZW
15171/* Table of all shift-in-operand names. */
15172static const struct asm_shift_name shift_names [] =
b99bd4ef 15173{
c19d1205
ZW
15174 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15175 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15176 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15177 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15178 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15179 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15180};
b99bd4ef 15181
c19d1205
ZW
15182/* Table of all explicit relocation names. */
15183#ifdef OBJ_ELF
15184static struct reloc_entry reloc_names[] =
15185{
15186 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15187 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15188 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15189 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15190 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15191 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15192 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15193 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15194 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15195 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15196 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15197};
15198#endif
b99bd4ef 15199
c19d1205
ZW
15200/* Table of all conditional affixes. 0xF is not defined as a condition code. */
15201static const struct asm_cond conds[] =
15202{
15203 {"eq", 0x0},
15204 {"ne", 0x1},
15205 {"cs", 0x2}, {"hs", 0x2},
15206 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
15207 {"mi", 0x4},
15208 {"pl", 0x5},
15209 {"vs", 0x6},
15210 {"vc", 0x7},
15211 {"hi", 0x8},
15212 {"ls", 0x9},
15213 {"ge", 0xa},
15214 {"lt", 0xb},
15215 {"gt", 0xc},
15216 {"le", 0xd},
15217 {"al", 0xe}
15218};
bfae80f2 15219
62b3e311
PB
15220static struct asm_barrier_opt barrier_opt_names[] =
15221{
15222 { "sy", 0xf },
15223 { "un", 0x7 },
15224 { "st", 0xe },
15225 { "unst", 0x6 }
15226};
15227
c19d1205
ZW
15228/* Table of ARM-format instructions. */
15229
15230/* Macros for gluing together operand strings. N.B. In all cases
15231 other than OPS0, the trailing OP_stop comes from default
15232 zero-initialization of the unspecified elements of the array. */
15233#define OPS0() { OP_stop, }
15234#define OPS1(a) { OP_##a, }
15235#define OPS2(a,b) { OP_##a,OP_##b, }
15236#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
15237#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
15238#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
15239#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
15240
15241/* These macros abstract out the exact format of the mnemonic table and
15242 save some repeated characters. */
15243
15244/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
15245#define TxCE(mnem, op, top, nops, ops, ae, te) \
15246 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 15247 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15248
15249/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
15250 a T_MNEM_xyz enumerator. */
15251#define TCE(mnem, aop, top, nops, ops, ae, te) \
15252 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
15253#define tCE(mnem, aop, top, nops, ops, ae, te) \
15254 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15255
15256/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
15257 infix after the third character. */
15258#define TxC3(mnem, op, top, nops, ops, ae, te) \
15259 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 15260 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
15261#define TxC3w(mnem, op, top, nops, ops, ae, te) \
15262 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
15263 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15264#define TC3(mnem, aop, top, nops, ops, ae, te) \
15265 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
15266#define TC3w(mnem, aop, top, nops, ops, ae, te) \
15267 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
15268#define tC3(mnem, aop, top, nops, ops, ae, te) \
15269 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
15270#define tC3w(mnem, aop, top, nops, ops, ae, te) \
15271 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
15272
15273/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
15274 appear in the condition table. */
15275#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
15276 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 15277 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15278
15279#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
15280 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
15281 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
15282 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
15283 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
15284 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
15285 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
15286 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
15287 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
15288 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
15289 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
15290 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
15291 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
15292 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
15293 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
15294 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
15295 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
15296 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
15297 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
15298 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
15299
15300#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
15301 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
15302#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
15303 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
15304
15305/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
15306 field is still 0xE. Many of the Thumb variants can be executed
15307 conditionally, so this is checked separately. */
c19d1205
ZW
15308#define TUE(mnem, op, top, nops, ops, ae, te) \
15309 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 15310 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15311
15312/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
15313 condition code field. */
15314#define TUF(mnem, op, top, nops, ops, ae, te) \
15315 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 15316 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
15317
15318/* ARM-only variants of all the above. */
6a86118a
NC
15319#define CE(mnem, op, nops, ops, ae) \
15320 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15321
15322#define C3(mnem, op, nops, ops, ae) \
15323 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15324
e3cb604e
PB
15325/* Legacy mnemonics that always have conditional infix after the third
15326 character. */
15327#define CL(mnem, op, nops, ops, ae) \
15328 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15329 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15330
8f06b2d8
PB
15331/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
15332#define cCE(mnem, op, nops, ops, ae) \
15333 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15334
e3cb604e
PB
15335/* Legacy coprocessor instructions where conditional infix and conditional
15336 suffix are ambiguous. For consistency this includes all FPA instructions,
15337 not just the potentially ambiguous ones. */
15338#define cCL(mnem, op, nops, ops, ae) \
15339 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15340 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15341
15342/* Coprocessor, takes either a suffix or a position-3 infix
15343 (for an FPA corner case). */
15344#define C3E(mnem, op, nops, ops, ae) \
15345 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
15346 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 15347
6a86118a
NC
15348#define xCM_(m1, m2, m3, op, nops, ops, ae) \
15349 { #m1 #m2 #m3, OPS##nops ops, \
15350 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
15351 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15352
15353#define CM(m1, m2, op, nops, ops, ae) \
15354 xCM_(m1, , m2, op, nops, ops, ae), \
15355 xCM_(m1, eq, m2, op, nops, ops, ae), \
15356 xCM_(m1, ne, m2, op, nops, ops, ae), \
15357 xCM_(m1, cs, m2, op, nops, ops, ae), \
15358 xCM_(m1, hs, m2, op, nops, ops, ae), \
15359 xCM_(m1, cc, m2, op, nops, ops, ae), \
15360 xCM_(m1, ul, m2, op, nops, ops, ae), \
15361 xCM_(m1, lo, m2, op, nops, ops, ae), \
15362 xCM_(m1, mi, m2, op, nops, ops, ae), \
15363 xCM_(m1, pl, m2, op, nops, ops, ae), \
15364 xCM_(m1, vs, m2, op, nops, ops, ae), \
15365 xCM_(m1, vc, m2, op, nops, ops, ae), \
15366 xCM_(m1, hi, m2, op, nops, ops, ae), \
15367 xCM_(m1, ls, m2, op, nops, ops, ae), \
15368 xCM_(m1, ge, m2, op, nops, ops, ae), \
15369 xCM_(m1, lt, m2, op, nops, ops, ae), \
15370 xCM_(m1, gt, m2, op, nops, ops, ae), \
15371 xCM_(m1, le, m2, op, nops, ops, ae), \
15372 xCM_(m1, al, m2, op, nops, ops, ae)
15373
15374#define UE(mnem, op, nops, ops, ae) \
15375 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15376
15377#define UF(mnem, op, nops, ops, ae) \
15378 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15379
5287ad62
JB
15380/* Neon data-processing. ARM versions are unconditional with cond=0xf.
15381 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
15382 use the same encoding function for each. */
15383#define NUF(mnem, op, nops, ops, enc) \
15384 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
15385 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15386
15387/* Neon data processing, version which indirects through neon_enc_tab for
15388 the various overloaded versions of opcodes. */
15389#define nUF(mnem, op, nops, ops, enc) \
15390 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
15391 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15392
15393/* Neon insn with conditional suffix for the ARM version, non-overloaded
15394 version. */
037e8744
JB
15395#define NCE_tag(mnem, op, nops, ops, enc, tag) \
15396 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
15397 THUMB_VARIANT, do_##enc, do_##enc }
15398
037e8744
JB
15399#define NCE(mnem, op, nops, ops, enc) \
15400 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15401
15402#define NCEF(mnem, op, nops, ops, enc) \
15403 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15404
5287ad62 15405/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
15406#define nCE_tag(mnem, op, nops, ops, enc, tag) \
15407 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
15408 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15409
037e8744
JB
15410#define nCE(mnem, op, nops, ops, enc) \
15411 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15412
15413#define nCEF(mnem, op, nops, ops, enc) \
15414 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15415
c19d1205
ZW
15416#define do_0 0
15417
15418/* Thumb-only, unconditional. */
15419#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
15420
c19d1205 15421static const struct asm_opcode insns[] =
bfae80f2 15422{
e74cfd16
PB
15423#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
15424#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
15425 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
15426 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
15427 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15428 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15429 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15430 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
15431 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15432 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
15433 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15434 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15435 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15436 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15437 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15438 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15439 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15440 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15441
15442 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15443 for setting PSR flag bits. They are obsolete in V6 and do not
15444 have Thumb equivalents. */
15445 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15446 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15447 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 15448 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 15449 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 15450 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 15451 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15452 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15453 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
15454
15455 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15456 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15457 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15458 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15459
4962c51a
MS
15460 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15461 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15462 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15463 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 15464
f5208ef2 15465 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15466 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15467 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 15468 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15469 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15470 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15471
15472 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 15473 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 15474 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 15475 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 15476
c19d1205 15477 /* Pseudo ops. */
e9f89963 15478 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
15479 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15480 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
15481
15482 /* Thumb-compatibility pseudo ops. */
15483 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15484 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15485 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15486 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15487 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 15488 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
15489 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15490 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15491 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15492 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15493 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15494 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15495
16a4cf17
PB
15496 /* These may simplify to neg. */
15497 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15498 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15499
c19d1205 15500#undef THUMB_VARIANT
e74cfd16 15501#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 15502 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
15503
15504 /* V1 instructions with no Thumb analogue prior to V6T2. */
15505#undef THUMB_VARIANT
e74cfd16 15506#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15507 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15508 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15509 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
15510
15511 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15512 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15513 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15514 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15515
9c3c69f2
PB
15516 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15517 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 15518
9c3c69f2
PB
15519 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15520 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15521
15522 /* V1 instructions with no Thumb analogue at all. */
15523 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15524 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15525
15526 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15527 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15528 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15529 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15530 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15531 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15532 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15533 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15534
15535#undef ARM_VARIANT
e74cfd16 15536#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 15537#undef THUMB_VARIANT
e74cfd16 15538#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
15539 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15540 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15541
15542#undef THUMB_VARIANT
e74cfd16 15543#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15544 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15545 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15546
15547 /* Generic coprocessor instructions. */
15548 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
15549 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15550 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15551 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15552 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15553 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15554 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15555
15556#undef ARM_VARIANT
e74cfd16 15557#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
15558 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15559 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15560
15561#undef ARM_VARIANT
e74cfd16 15562#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
7e806470
PB
15563#undef THUMB_VARIANT
15564#define THUMB_VARIANT &arm_ext_msr
037e8744
JB
15565 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15566 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
15567
15568#undef ARM_VARIANT
e74cfd16 15569#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
7e806470
PB
15570#undef THUMB_VARIANT
15571#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15572 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15573 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15574 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15575 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15576 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15577 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15578 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15579 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15580
15581#undef ARM_VARIANT
e74cfd16 15582#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 15583#undef THUMB_VARIANT
e74cfd16 15584#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
15585 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15586 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15587 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15588 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15589 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15590 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
15591
15592#undef ARM_VARIANT
e74cfd16 15593#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
15594 /* ARM Architecture 4T. */
15595 /* Note: bx (and blx) are required on V5, even if the processor does
15596 not support Thumb. */
15597 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15598
15599#undef ARM_VARIANT
e74cfd16 15600#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 15601#undef THUMB_VARIANT
e74cfd16 15602#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
15603 /* Note: blx has 2 variants; the .value coded here is for
15604 BLX(2). Only this variant has conditional execution. */
15605 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15606 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15607
15608#undef THUMB_VARIANT
e74cfd16 15609#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15610 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
15611 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15612 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15613 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15614 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15615 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15616 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15617 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15618
15619#undef ARM_VARIANT
e74cfd16 15620#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
15621 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15622 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15623 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15624 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15625
15626 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15627 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15628
15629 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15630 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15631 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15632 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15633
15634 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15635 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15636 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15637 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15638
15639 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15640 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15641
087b80de
JM
15642 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15643 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15644 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15645 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
c19d1205
ZW
15646
15647#undef ARM_VARIANT
e74cfd16 15648#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 15649 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
79d49516
PB
15650 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15651 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
15652
15653 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15654 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15655
15656#undef ARM_VARIANT
e74cfd16 15657#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
15658 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15659
15660#undef ARM_VARIANT
e74cfd16 15661#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 15662#undef THUMB_VARIANT
e74cfd16 15663#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
15664 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15665 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15666 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15667 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15668 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15669 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15670 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15671 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15672 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15673 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15674
15675#undef THUMB_VARIANT
e74cfd16 15676#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15677 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
91568d08 15678 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
c19d1205
ZW
15679 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15680 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
15681
15682 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15683 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15684
15685/* ARM V6 not included in V7M (eg. integer SIMD). */
15686#undef THUMB_VARIANT
15687#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 15688 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
15689 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15690 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15691 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15692 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15693 TCE(qasx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15694 /* Old name for QASX. */
c19d1205 15695 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15696 TCE(qsax, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15697 /* Old name for QSAX. */
15698 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15699 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15700 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15701 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15702 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15703 TCE(sasx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15704 /* Old name for SASX. */
c19d1205
ZW
15705 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15706 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15707 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15708 TCE(shasx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15709 /* Old name for SHASX. */
c19d1205 15710 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15711 TCE(shsax, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15712 /* Old name for SHSAX. */
15713 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15714 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15715 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15716 TCE(ssax, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15717 /* Old name for SSAX. */
15718 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15719 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15720 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15721 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15722 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15723 TCE(uasx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15724 /* Old name for UASX. */
c19d1205
ZW
15725 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15726 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15727 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15728 TCE(uhasx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15729 /* Old name for UHASX. */
c19d1205 15730 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15731 TCE(uhsax, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15732 /* Old name for UHSAX. */
15733 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15734 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15735 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15736 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15737 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15738 TCE(uqasx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15739 /* Old name for UQASX. */
c19d1205 15740 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15741 TCE(uqsax, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15742 /* Old name for UQSAX. */
15743 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15744 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15745 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205 15746 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e
JM
15747 TCE(usax, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15748 /* Old name for USAX. */
c19d1205 15749 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 15750 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15751 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15752 UF(rfeib, 9900a00, 1, (RRw), rfe),
15753 UF(rfeda, 8100a00, 1, (RRw), rfe),
15754 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15755 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15756 UF(rfefa, 9900a00, 1, (RRw), rfe),
15757 UF(rfeea, 8100a00, 1, (RRw), rfe),
15758 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15759 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15760 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15761 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15762 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15763 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15764 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15765 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15766 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15767 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15768 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15769 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15770 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15771 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15772 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15773 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15774 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15775 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15776 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15777 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15778 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15779 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15780 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15781 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15782 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15783 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15784 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15785 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15786 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15787 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15788 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15789 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205 15790 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
c19d1205
ZW
15791 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15792 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15793 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15794 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15795
15796#undef ARM_VARIANT
e74cfd16 15797#define ARM_VARIANT &arm_ext_v6k
c19d1205 15798#undef THUMB_VARIANT
e74cfd16 15799#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15800 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15801 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15802 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15803 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15804
ebdca51a
PB
15805#undef THUMB_VARIANT
15806#define THUMB_VARIANT &arm_ext_v6_notm
15807 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15808 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15809
c19d1205 15810#undef THUMB_VARIANT
e74cfd16 15811#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15812 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15813 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15814 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15815 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15816 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15817
15818#undef ARM_VARIANT
e74cfd16 15819#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15820 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15821
15822#undef ARM_VARIANT
e74cfd16 15823#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15824 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15825 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15826 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15827 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15828
15829 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15830 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15831 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15832 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15833
15834 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15835 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15836 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15837 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15838
25fe350b
MS
15839 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15840 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15841 /* ARM does not really have an IT instruction, so always allow it. */
15842#undef ARM_VARIANT
15843#define ARM_VARIANT &arm_ext_v1
1c444d06
JM
15844 TUE(it, 0, bf08, 1, (COND), it, t_it),
15845 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15846 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15847 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15848 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15849 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15850 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15851 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15852 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15853 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15854 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15855 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15856 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15857 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15858 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15859 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
15860 TC3(rrx, 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
15861 TC3(rrxs, 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 15862
92e90b6e
PB
15863 /* Thumb2 only instructions. */
15864#undef ARM_VARIANT
e74cfd16 15865#define ARM_VARIANT NULL
92e90b6e
PB
15866
15867 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15868 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
1c444d06
JM
15869 TCE(orn, 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
15870 TCE(orns, 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
92e90b6e
PB
15871 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15872 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15873
62b3e311
PB
15874 /* Thumb-2 hardware division instructions (R and M profiles only). */
15875#undef THUMB_VARIANT
15876#define THUMB_VARIANT &arm_ext_div
15877 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15878 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15879
7e806470
PB
15880 /* ARM V6M/V7 instructions. */
15881#undef ARM_VARIANT
15882#define ARM_VARIANT &arm_ext_barrier
15883#undef THUMB_VARIANT
15884#define THUMB_VARIANT &arm_ext_barrier
15885 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15886 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15887 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15888
62b3e311
PB
15889 /* ARM V7 instructions. */
15890#undef ARM_VARIANT
15891#define ARM_VARIANT &arm_ext_v7
15892#undef THUMB_VARIANT
15893#define THUMB_VARIANT &arm_ext_v7
15894 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15895 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 15896
c19d1205 15897#undef ARM_VARIANT
e74cfd16 15898#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15899 cCE(wfs, e200110, 1, (RR), rd),
15900 cCE(rfs, e300110, 1, (RR), rd),
15901 cCE(wfc, e400110, 1, (RR), rd),
15902 cCE(rfc, e500110, 1, (RR), rd),
15903
4962c51a
MS
15904 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15905 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15906 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15907 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15908
4962c51a
MS
15909 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15910 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15911 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15912 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15913
15914 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15915 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15916 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15917 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15918 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15919 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15920 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15921 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15922 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15923 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15924 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15925 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15926
15927 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15928 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15929 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15930 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15931 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15932 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15933 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15934 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15935 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15936 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15937 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15938 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15939
15940 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15941 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15942 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15943 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15944 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15945 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15946 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15947 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15948 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15949 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15950 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15951 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15952
15953 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15954 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15955 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15956 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15957 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15958 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15959 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15960 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15961 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15962 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15963 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15964 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15965
15966 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15967 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15968 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15969 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15970 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15971 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15972 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15973 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15974 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15975 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15976 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15977 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15978
15979 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15980 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15981 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15982 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15983 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15984 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15985 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15986 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15987 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15988 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15989 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15990 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15991
15992 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15993 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15994 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15995 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15996 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15997 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15998 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15999 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
16000 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
16001 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
16002 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
16003 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
16004
16005 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
16006 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
16007 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
16008 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
16009 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
16010 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
16011 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
16012 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
16013 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
16014 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
16015 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
16016 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
16017
16018 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
16019 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
16020 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
16021 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
16022 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
16023 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
16024 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
16025 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
16026 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
16027 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
16028 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
16029 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
16030
16031 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
16032 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
16033 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
16034 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
16035 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
16036 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
16037 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
16038 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
16039 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
16040 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
16041 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
16042 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
16043
16044 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
16045 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
16046 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
16047 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
16048 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
16049 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
16050 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
16051 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
16052 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
16053 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
16054 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
16055 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
16056
16057 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
16058 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
16059 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
16060 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
16061 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
16062 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
16063 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
16064 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
16065 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
16066 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
16067 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
16068 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
16069
16070 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
16071 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
16072 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
16073 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
16074 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
16075 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
16076 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
16077 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
16078 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
16079 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
16080 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
16081 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
16082
16083 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
16084 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
16085 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
16086 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
16087 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
16088 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
16089 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
16090 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
16091 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
16092 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
16093 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
16094 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
16095
16096 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
16097 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
16098 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
16099 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
16100 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
16101 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
16102 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
16103 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
16104 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
16105 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
16106 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
16107 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
16108
16109 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
16110 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
16111 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
16112 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
16113 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
16114 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
16115 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
16116 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
16117 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
16118 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
16119 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
16120 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
16121
16122 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16123 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16124 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16125 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16126 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16127 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16128 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16129 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16130 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16131 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16132 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16133 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16134
16135 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16136 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16137 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16138 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16139 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16140 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16141 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16142 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16143 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16144 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16145 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16146 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16147
16148 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16149 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16150 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16151 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16152 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16153 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16154 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16155 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16156 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16157 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16158 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16159 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16160
16161 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16162 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16163 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16164 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16165 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16166 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16167 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16168 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16169 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16170 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16171 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16172 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16173
16174 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16175 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
16176 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
16177 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
16178 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
16179 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16180 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16181 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16182 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
16183 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
16184 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
16185 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
16186
16187 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
16188 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
16189 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
16190 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
16191 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
16192 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16193 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16194 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16195 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
16196 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
16197 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
16198 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
16199
16200 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
16201 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
16202 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
16203 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
16204 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
16205 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16206 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16207 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16208 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
16209 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
16210 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
16211 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
16212
16213 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
16214 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
16215 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
16216 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
16217 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
16218 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16219 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16220 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16221 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
16222 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
16223 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
16224 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
16225
16226 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
16227 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
16228 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
16229 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
16230 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
16231 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16232 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16233 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16234 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
16235 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
16236 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
16237 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
16238
16239 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
16240 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
16241 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
16242 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
16243 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
16244 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16245 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16246 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16247 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
16248 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
16249 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
16250 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
16251
16252 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16253 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16254 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16255 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16256 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16257 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16258 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16259 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16260 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16261 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16262 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16263 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16264
16265 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16266 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16267 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16268 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16269 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16270 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16271 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16272 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16273 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16274 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16275 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16276 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16277
16278 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16279 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16280 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16281 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16282 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16283 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16284 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16285 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16286 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16287 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16288 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16289 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
16290
16291 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 16292 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 16293 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
16294 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
16295
e3cb604e
PB
16296 cCL(flts, e000110, 2, (RF, RR), rn_rd),
16297 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
16298 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
16299 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
16300 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
16301 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
16302 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
16303 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
16304 cCL(flte, e080110, 2, (RF, RR), rn_rd),
16305 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
16306 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
16307 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 16308
c19d1205
ZW
16309 /* The implementation of the FIX instruction is broken on some
16310 assemblers, in that it accepts a precision specifier as well as a
16311 rounding specifier, despite the fact that this is meaningless.
16312 To be more compatible, we accept it as well, though of course it
16313 does not set any bits. */
8f06b2d8 16314 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
16315 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
16316 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
16317 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
16318 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
16319 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
16320 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
16321 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
16322 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
16323 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
16324 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
16325 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
16326 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 16327
c19d1205
ZW
16328 /* Instructions that were new with the real FPA, call them V2. */
16329#undef ARM_VARIANT
e74cfd16 16330#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 16331 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
16332 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16333 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 16334 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
16335 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16336 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
16337
16338#undef ARM_VARIANT
e74cfd16 16339#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 16340 /* Moves and type conversions. */
8f06b2d8
PB
16341 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
16342 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
16343 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
16344 cCE(fmstat, ef1fa10, 0, (), noargs),
16345 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
16346 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
16347 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
16348 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16349 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
16350 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16351 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
16352 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
16353
16354 /* Memory operations. */
4962c51a
MS
16355 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
16356 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
16357 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16358 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16359 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16360 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16361 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16362 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16363 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16364 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16365 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16366 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16367 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16368 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16369 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16370 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16371 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16372 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 16373
c19d1205 16374 /* Monadic operations. */
8f06b2d8
PB
16375 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
16376 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
16377 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
16378
16379 /* Dyadic operations. */
8f06b2d8
PB
16380 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16381 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16382 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16383 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16384 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16385 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16386 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16387 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16388 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 16389
c19d1205 16390 /* Comparisons. */
8f06b2d8
PB
16391 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
16392 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
16393 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
16394 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 16395
c19d1205 16396#undef ARM_VARIANT
e74cfd16 16397#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 16398 /* Moves and type conversions. */
5287ad62 16399 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
16400 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16401 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
16402 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
16403 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
16404 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
16405 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
16406 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16407 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
16408 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16409 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16410 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16411 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
16412
16413 /* Memory operations. */
4962c51a
MS
16414 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16415 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
16416 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16417 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16418 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16419 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16420 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16421 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16422 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16423 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 16424
c19d1205 16425 /* Monadic operations. */
5287ad62
JB
16426 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16427 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16428 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
16429
16430 /* Dyadic operations. */
5287ad62
JB
16431 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16432 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16433 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16434 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16435 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16436 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16437 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16438 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16439 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 16440
c19d1205 16441 /* Comparisons. */
5287ad62
JB
16442 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16443 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
16444 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16445 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
16446
16447#undef ARM_VARIANT
e74cfd16 16448#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
16449 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
16450 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
16451 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
16452 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
16453
037e8744
JB
16454/* Instructions which may belong to either the Neon or VFP instruction sets.
16455 Individual encoder functions perform additional architecture checks. */
16456#undef ARM_VARIANT
16457#define ARM_VARIANT &fpu_vfp_ext_v1xd
16458#undef THUMB_VARIANT
16459#define THUMB_VARIANT &fpu_vfp_ext_v1xd
16460 /* These mnemonics are unique to VFP. */
16461 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16462 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16463 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16464 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16465 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16466 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16467 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16468 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16469 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16470 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16471
16472 /* Mnemonics shared by Neon and VFP. */
16473 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16474 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16475 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16476
16477 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16478 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16479
16480 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16481 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16482
16483 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16484 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16485 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16486 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16487 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16488 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
16489 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16490 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
16491
16492 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
8e79c3df
CM
16493 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16494 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 16495
037e8744
JB
16496
16497 /* NOTE: All VMOV encoding is special-cased! */
16498 NCE(vmov, 0, 1, (VMOV), neon_mov),
16499 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16500
5287ad62
JB
16501#undef THUMB_VARIANT
16502#define THUMB_VARIANT &fpu_neon_ext_v1
16503#undef ARM_VARIANT
16504#define ARM_VARIANT &fpu_neon_ext_v1
16505 /* Data processing with three registers of the same length. */
16506 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16507 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16508 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16509 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16510 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16511 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16512 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16513 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16514 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16515 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16516 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16517 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16518 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16519 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
16520 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16521 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16522 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16523 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
16524 /* If not immediate, fall back to neon_dyadic_i64_su.
16525 shl_imm should accept I8 I16 I32 I64,
16526 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16527 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16528 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16529 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16530 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16531 /* Logic ops, types optional & ignored. */
16532 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16533 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16534 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16535 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16536 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16537 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16538 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16539 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16540 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16541 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16542 /* Bitfield ops, untyped. */
16543 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16544 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16545 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16546 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16547 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16548 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16549 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16550 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16551 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16552 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16553 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16554 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16555 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16556 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16557 back to neon_dyadic_if_su. */
16558 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16559 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16560 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16561 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16562 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16563 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16564 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16565 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 16566 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
16567 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16568 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16569 /* As above, D registers only. */
16570 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16571 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16572 /* Int and float variants, signedness unimportant. */
5287ad62 16573 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
16574 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16575 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16576 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 16577 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
16578 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16579 /* vtst takes sizes 8, 16, 32. */
16580 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16581 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16582 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 16583 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
16584 /* VQD{R}MULH takes S16 S32. */
16585 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16586 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16587 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16588 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16589 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16590 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16591 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16592 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
16593 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16594 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16595 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16596 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
16597 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16598 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16599 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16600 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16601
16602 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 16603 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
16604 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16605
16606 /* Data processing with two registers and a shift amount. */
16607 /* Right shifts, and variants with rounding.
16608 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16609 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16610 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16611 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16612 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16613 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16614 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16615 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16616 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16617 /* Shift and insert. Sizes accepted 8 16 32 64. */
16618 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16619 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16620 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16621 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16622 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16623 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16624 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16625 /* Right shift immediate, saturating & narrowing, with rounding variants.
16626 Types accepted S16 S32 S64 U16 U32 U64. */
16627 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16628 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16629 /* As above, unsigned. Types accepted S16 S32 S64. */
16630 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16631 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16632 /* Right shift narrowing. Types accepted I16 I32 I64. */
16633 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16634 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16635 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16636 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16637 /* CVT with optional immediate for fixed-point variant. */
037e8744 16638 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 16639
5287ad62
JB
16640 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16641 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16642
16643 /* Data processing, three registers of different lengths. */
16644 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16645 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16646 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16647 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16648 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16649 /* If not scalar, fall back to neon_dyadic_long.
16650 Vector types as above, scalar types S16 S32 U16 U32. */
16651 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16652 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16653 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16654 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16655 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16656 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16657 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16658 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16659 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16660 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16661 /* Saturating doubling multiplies. Types S16 S32. */
16662 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16663 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16664 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16665 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16666 S16 S32 U16 U32. */
16667 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16668
16669 /* Extract. Size 8. */
3b8d421e
PB
16670 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16671 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
16672
16673 /* Two registers, miscellaneous. */
16674 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16675 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16676 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16677 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16678 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16679 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16680 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16681 /* Vector replicate. Sizes 8 16 32. */
16682 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16683 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16684 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16685 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16686 /* VMOVN. Types I16 I32 I64. */
16687 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16688 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16689 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16690 /* VQMOVUN. Types S16 S32 S64. */
16691 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16692 /* VZIP / VUZP. Sizes 8 16 32. */
16693 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16694 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16695 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16696 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16697 /* VQABS / VQNEG. Types S8 S16 S32. */
16698 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16699 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16700 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16701 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16702 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16703 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16704 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16705 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16706 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16707 /* Reciprocal estimates. Types U32 F32. */
16708 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16709 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16710 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16711 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16712 /* VCLS. Types S8 S16 S32. */
16713 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16714 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16715 /* VCLZ. Types I8 I16 I32. */
16716 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16717 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16718 /* VCNT. Size 8. */
16719 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16720 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16721 /* Two address, untyped. */
16722 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16723 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16724 /* VTRN. Sizes 8 16 32. */
16725 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16726 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16727
16728 /* Table lookup. Size 8. */
16729 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16730 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16731
b7fc2769
JB
16732#undef THUMB_VARIANT
16733#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16734#undef ARM_VARIANT
16735#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
16736 /* Neon element/structure load/store. */
16737 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16738 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16739 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16740 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16741 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16742 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16743 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16744 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16745
16746#undef THUMB_VARIANT
16747#define THUMB_VARIANT &fpu_vfp_ext_v3
16748#undef ARM_VARIANT
16749#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16750 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16751 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16752 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16753 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16754 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16755 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16756 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16757 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16758 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16759 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16760 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16761 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16762 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16763 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16764 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16765 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16766 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16767 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16768
5287ad62 16769#undef THUMB_VARIANT
c19d1205 16770#undef ARM_VARIANT
e74cfd16 16771#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16772 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16773 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16774 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16775 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16776 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16777 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16778 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16779 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16780
16781#undef ARM_VARIANT
e74cfd16 16782#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16783 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16784 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16785 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16786 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16787 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16788 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16789 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16790 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16791 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16792 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16793 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16794 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16795 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16796 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16797 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16798 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16799 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16800 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16801 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16802 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16803 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16804 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16805 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16806 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16807 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16808 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16809 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16810 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16811 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16812 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16813 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16814 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16815 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16816 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16817 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16818 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16819 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16820 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16821 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16822 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16823 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16824 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16825 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16826 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16827 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16828 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16829 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16830 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16831 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16832 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16833 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16834 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16835 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16836 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16837 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16838 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16839 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16840 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16841 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16842 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16843 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16844 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16845 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16846 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16847 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16848 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16849 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16850 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16851 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16852 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16853 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16854 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16855 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16856 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16857 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16858 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16859 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16860 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16861 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16862 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16863 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16864 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16865 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16866 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16867 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16868 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16869 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16870 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16871 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16872 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16873 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16874 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16875 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16876 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16877 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16878 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16879 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16880 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16881 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16882 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16883 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16884 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16885 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16886 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16887 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16888 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16889 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16890 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16891 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16892 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16893 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16894 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16895 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16896 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16897 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16898 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16899 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16900 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16901 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16902 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16903 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16904 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16905 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16906 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16907 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16908 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16909 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16910 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16911 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16912 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16913 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16914 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16915 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16916 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16917 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16918 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16919 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16920 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16921 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16922 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16923 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16924 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16925 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16926 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16927 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16928 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16929 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16930 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16931 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16932 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16933 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16934 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16935 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16936 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16937 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16938 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16939 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16940 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16941 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16942 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16943 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16944 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16945
2d447fca
JM
16946#undef ARM_VARIANT
16947#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16948 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16949 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16950 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16951 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16952 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16953 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16954 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16955 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16956 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16957 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16958 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16959 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16960 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16961 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16962 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16963 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16964 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16965 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16966 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16967 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16968 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16969 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16970 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16971 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16972 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16973 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16974 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16975 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16976 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16977 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16978 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16979 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16980 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16981 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16982 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16983 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16984 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16985 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16986 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16987 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16988 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16989 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16990 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16991 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16992 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16993 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16994 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16995 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16996 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16997 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16998 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16999 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17000 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17001 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17002 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17003 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17004 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17005
c19d1205 17006#undef ARM_VARIANT
e74cfd16 17007#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
17008 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17009 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17010 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17011 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17012 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17013 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17014 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17015 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
17016 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
17017 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
17018 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
17019 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
17020 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
17021 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
17022 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
17023 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
17024 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
17025 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
17026 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
17027 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
17028 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
17029 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
17030 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
17031 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
17032 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
17033 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
17034 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
17035 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
17036 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17037 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
17038 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
17039 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
17040 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
17041 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
17042 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
17043 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
17044 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
17045 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
17046 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
17047 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
17048 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
17049 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
17050 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
17051 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
17052 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17053 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17054 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17055 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17056 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17057 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17058 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
17059 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
17060 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
17061 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
17062 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17063 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17064 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17065 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17066 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17067 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17068 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
17069 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
17070 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
17071 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
17072 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17073 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17074 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17075 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17076 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17077 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17078 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17079 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17080 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17081 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17082 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17083 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
17084};
17085#undef ARM_VARIANT
17086#undef THUMB_VARIANT
17087#undef TCE
17088#undef TCM
17089#undef TUE
17090#undef TUF
17091#undef TCC
8f06b2d8 17092#undef cCE
e3cb604e
PB
17093#undef cCL
17094#undef C3E
c19d1205
ZW
17095#undef CE
17096#undef CM
17097#undef UE
17098#undef UF
17099#undef UT
5287ad62
JB
17100#undef NUF
17101#undef nUF
17102#undef NCE
17103#undef nCE
c19d1205
ZW
17104#undef OPS0
17105#undef OPS1
17106#undef OPS2
17107#undef OPS3
17108#undef OPS4
17109#undef OPS5
17110#undef OPS6
17111#undef do_0
17112\f
17113/* MD interface: bits in the object file. */
bfae80f2 17114
c19d1205
ZW
17115/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17116 for use in the a.out file, and stores them in the array pointed to by buf.
17117 This knows about the endian-ness of the target machine and does
17118 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17119 2 (short) and 4 (long) Floating numbers are put out as a series of
17120 LITTLENUMS (shorts, here at least). */
b99bd4ef 17121
c19d1205
ZW
17122void
17123md_number_to_chars (char * buf, valueT val, int n)
17124{
17125 if (target_big_endian)
17126 number_to_chars_bigendian (buf, val, n);
17127 else
17128 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
17129}
17130
c19d1205
ZW
17131static valueT
17132md_chars_to_number (char * buf, int n)
bfae80f2 17133{
c19d1205
ZW
17134 valueT result = 0;
17135 unsigned char * where = (unsigned char *) buf;
bfae80f2 17136
c19d1205 17137 if (target_big_endian)
b99bd4ef 17138 {
c19d1205
ZW
17139 while (n--)
17140 {
17141 result <<= 8;
17142 result |= (*where++ & 255);
17143 }
b99bd4ef 17144 }
c19d1205 17145 else
b99bd4ef 17146 {
c19d1205
ZW
17147 while (n--)
17148 {
17149 result <<= 8;
17150 result |= (where[n] & 255);
17151 }
bfae80f2 17152 }
b99bd4ef 17153
c19d1205 17154 return result;
bfae80f2 17155}
b99bd4ef 17156
c19d1205 17157/* MD interface: Sections. */
b99bd4ef 17158
0110f2b8
PB
17159/* Estimate the size of a frag before relaxing. Assume everything fits in
17160 2 bytes. */
17161
c19d1205 17162int
0110f2b8 17163md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
17164 segT segtype ATTRIBUTE_UNUSED)
17165{
0110f2b8
PB
17166 fragp->fr_var = 2;
17167 return 2;
17168}
17169
17170/* Convert a machine dependent frag. */
17171
17172void
17173md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
17174{
17175 unsigned long insn;
17176 unsigned long old_op;
17177 char *buf;
17178 expressionS exp;
17179 fixS *fixp;
17180 int reloc_type;
17181 int pc_rel;
17182 int opcode;
17183
17184 buf = fragp->fr_literal + fragp->fr_fix;
17185
17186 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
17187 if (fragp->fr_symbol)
17188 {
0110f2b8
PB
17189 exp.X_op = O_symbol;
17190 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
17191 }
17192 else
17193 {
0110f2b8 17194 exp.X_op = O_constant;
5f4273c7 17195 }
0110f2b8
PB
17196 exp.X_add_number = fragp->fr_offset;
17197 opcode = fragp->fr_subtype;
17198 switch (opcode)
17199 {
17200 case T_MNEM_ldr_pc:
17201 case T_MNEM_ldr_pc2:
17202 case T_MNEM_ldr_sp:
17203 case T_MNEM_str_sp:
17204 case T_MNEM_ldr:
17205 case T_MNEM_ldrb:
17206 case T_MNEM_ldrh:
17207 case T_MNEM_str:
17208 case T_MNEM_strb:
17209 case T_MNEM_strh:
17210 if (fragp->fr_var == 4)
17211 {
5f4273c7 17212 insn = THUMB_OP32 (opcode);
0110f2b8
PB
17213 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
17214 {
17215 insn |= (old_op & 0x700) << 4;
17216 }
17217 else
17218 {
17219 insn |= (old_op & 7) << 12;
17220 insn |= (old_op & 0x38) << 13;
17221 }
17222 insn |= 0x00000c00;
17223 put_thumb32_insn (buf, insn);
17224 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
17225 }
17226 else
17227 {
17228 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
17229 }
17230 pc_rel = (opcode == T_MNEM_ldr_pc2);
17231 break;
17232 case T_MNEM_adr:
17233 if (fragp->fr_var == 4)
17234 {
17235 insn = THUMB_OP32 (opcode);
17236 insn |= (old_op & 0xf0) << 4;
17237 put_thumb32_insn (buf, insn);
17238 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
17239 }
17240 else
17241 {
17242 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17243 exp.X_add_number -= 4;
17244 }
17245 pc_rel = 1;
17246 break;
17247 case T_MNEM_mov:
17248 case T_MNEM_movs:
17249 case T_MNEM_cmp:
17250 case T_MNEM_cmn:
17251 if (fragp->fr_var == 4)
17252 {
17253 int r0off = (opcode == T_MNEM_mov
17254 || opcode == T_MNEM_movs) ? 0 : 8;
17255 insn = THUMB_OP32 (opcode);
17256 insn = (insn & 0xe1ffffff) | 0x10000000;
17257 insn |= (old_op & 0x700) << r0off;
17258 put_thumb32_insn (buf, insn);
17259 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17260 }
17261 else
17262 {
17263 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
17264 }
17265 pc_rel = 0;
17266 break;
17267 case T_MNEM_b:
17268 if (fragp->fr_var == 4)
17269 {
17270 insn = THUMB_OP32(opcode);
17271 put_thumb32_insn (buf, insn);
17272 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
17273 }
17274 else
17275 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
17276 pc_rel = 1;
17277 break;
17278 case T_MNEM_bcond:
17279 if (fragp->fr_var == 4)
17280 {
17281 insn = THUMB_OP32(opcode);
17282 insn |= (old_op & 0xf00) << 14;
17283 put_thumb32_insn (buf, insn);
17284 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
17285 }
17286 else
17287 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
17288 pc_rel = 1;
17289 break;
17290 case T_MNEM_add_sp:
17291 case T_MNEM_add_pc:
17292 case T_MNEM_inc_sp:
17293 case T_MNEM_dec_sp:
17294 if (fragp->fr_var == 4)
17295 {
17296 /* ??? Choose between add and addw. */
17297 insn = THUMB_OP32 (opcode);
17298 insn |= (old_op & 0xf0) << 4;
17299 put_thumb32_insn (buf, insn);
16805f35
PB
17300 if (opcode == T_MNEM_add_pc)
17301 reloc_type = BFD_RELOC_ARM_T32_IMM12;
17302 else
17303 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
17304 }
17305 else
17306 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17307 pc_rel = 0;
17308 break;
17309
17310 case T_MNEM_addi:
17311 case T_MNEM_addis:
17312 case T_MNEM_subi:
17313 case T_MNEM_subis:
17314 if (fragp->fr_var == 4)
17315 {
17316 insn = THUMB_OP32 (opcode);
17317 insn |= (old_op & 0xf0) << 4;
17318 insn |= (old_op & 0xf) << 16;
17319 put_thumb32_insn (buf, insn);
16805f35
PB
17320 if (insn & (1 << 20))
17321 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17322 else
17323 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
17324 }
17325 else
17326 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17327 pc_rel = 0;
17328 break;
17329 default:
5f4273c7 17330 abort ();
0110f2b8
PB
17331 }
17332 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
17333 reloc_type);
17334 fixp->fx_file = fragp->fr_file;
17335 fixp->fx_line = fragp->fr_line;
17336 fragp->fr_fix += fragp->fr_var;
17337}
17338
17339/* Return the size of a relaxable immediate operand instruction.
17340 SHIFT and SIZE specify the form of the allowable immediate. */
17341static int
17342relax_immediate (fragS *fragp, int size, int shift)
17343{
17344 offsetT offset;
17345 offsetT mask;
17346 offsetT low;
17347
17348 /* ??? Should be able to do better than this. */
17349 if (fragp->fr_symbol)
17350 return 4;
17351
17352 low = (1 << shift) - 1;
17353 mask = (1 << (shift + size)) - (1 << shift);
17354 offset = fragp->fr_offset;
17355 /* Force misaligned offsets to 32-bit variant. */
17356 if (offset & low)
5e77afaa 17357 return 4;
0110f2b8
PB
17358 if (offset & ~mask)
17359 return 4;
17360 return 2;
17361}
17362
5e77afaa
PB
17363/* Get the address of a symbol during relaxation. */
17364static addressT
5f4273c7 17365relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
17366{
17367 fragS *sym_frag;
17368 addressT addr;
17369 symbolS *sym;
17370
17371 sym = fragp->fr_symbol;
17372 sym_frag = symbol_get_frag (sym);
17373 know (S_GET_SEGMENT (sym) != absolute_section
17374 || sym_frag == &zero_address_frag);
17375 addr = S_GET_VALUE (sym) + fragp->fr_offset;
17376
17377 /* If frag has yet to be reached on this pass, assume it will
17378 move by STRETCH just as we did. If this is not so, it will
17379 be because some frag between grows, and that will force
17380 another pass. */
17381
17382 if (stretch != 0
17383 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
17384 {
17385 fragS *f;
17386
17387 /* Adjust stretch for any alignment frag. Note that if have
17388 been expanding the earlier code, the symbol may be
17389 defined in what appears to be an earlier frag. FIXME:
17390 This doesn't handle the fr_subtype field, which specifies
17391 a maximum number of bytes to skip when doing an
17392 alignment. */
17393 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17394 {
17395 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17396 {
17397 if (stretch < 0)
17398 stretch = - ((- stretch)
17399 & ~ ((1 << (int) f->fr_offset) - 1));
17400 else
17401 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17402 if (stretch == 0)
17403 break;
17404 }
17405 }
17406 if (f != NULL)
17407 addr += stretch;
17408 }
5e77afaa
PB
17409
17410 return addr;
17411}
17412
0110f2b8
PB
17413/* Return the size of a relaxable adr pseudo-instruction or PC-relative
17414 load. */
17415static int
5e77afaa 17416relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
17417{
17418 addressT addr;
17419 offsetT val;
17420
17421 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 17422 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
17423 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17424 return 4;
17425
5f4273c7 17426 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
17427 addr = fragp->fr_address + fragp->fr_fix;
17428 addr = (addr + 4) & ~3;
5e77afaa 17429 /* Force misaligned targets to 32-bit variant. */
0110f2b8 17430 if (val & 3)
5e77afaa 17431 return 4;
0110f2b8
PB
17432 val -= addr;
17433 if (val < 0 || val > 1020)
17434 return 4;
17435 return 2;
17436}
17437
17438/* Return the size of a relaxable add/sub immediate instruction. */
17439static int
17440relax_addsub (fragS *fragp, asection *sec)
17441{
17442 char *buf;
17443 int op;
17444
17445 buf = fragp->fr_literal + fragp->fr_fix;
17446 op = bfd_get_16(sec->owner, buf);
17447 if ((op & 0xf) == ((op >> 4) & 0xf))
17448 return relax_immediate (fragp, 8, 0);
17449 else
17450 return relax_immediate (fragp, 3, 0);
17451}
17452
17453
17454/* Return the size of a relaxable branch instruction. BITS is the
17455 size of the offset field in the narrow instruction. */
17456
17457static int
5e77afaa 17458relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
17459{
17460 addressT addr;
17461 offsetT val;
17462 offsetT limit;
17463
17464 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 17465 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
17466 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17467 return 4;
17468
5f4273c7 17469 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
17470 addr = fragp->fr_address + fragp->fr_fix + 4;
17471 val -= addr;
17472
17473 /* Offset is a signed value *2 */
17474 limit = 1 << bits;
17475 if (val >= limit || val < -limit)
17476 return 4;
17477 return 2;
17478}
17479
17480
17481/* Relax a machine dependent frag. This returns the amount by which
17482 the current size of the frag should change. */
17483
17484int
5e77afaa 17485arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
17486{
17487 int oldsize;
17488 int newsize;
17489
17490 oldsize = fragp->fr_var;
17491 switch (fragp->fr_subtype)
17492 {
17493 case T_MNEM_ldr_pc2:
5f4273c7 17494 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
17495 break;
17496 case T_MNEM_ldr_pc:
17497 case T_MNEM_ldr_sp:
17498 case T_MNEM_str_sp:
5f4273c7 17499 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
17500 break;
17501 case T_MNEM_ldr:
17502 case T_MNEM_str:
5f4273c7 17503 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
17504 break;
17505 case T_MNEM_ldrh:
17506 case T_MNEM_strh:
5f4273c7 17507 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
17508 break;
17509 case T_MNEM_ldrb:
17510 case T_MNEM_strb:
5f4273c7 17511 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
17512 break;
17513 case T_MNEM_adr:
5f4273c7 17514 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
17515 break;
17516 case T_MNEM_mov:
17517 case T_MNEM_movs:
17518 case T_MNEM_cmp:
17519 case T_MNEM_cmn:
5f4273c7 17520 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
17521 break;
17522 case T_MNEM_b:
5f4273c7 17523 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
17524 break;
17525 case T_MNEM_bcond:
5f4273c7 17526 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
17527 break;
17528 case T_MNEM_add_sp:
17529 case T_MNEM_add_pc:
17530 newsize = relax_immediate (fragp, 8, 2);
17531 break;
17532 case T_MNEM_inc_sp:
17533 case T_MNEM_dec_sp:
17534 newsize = relax_immediate (fragp, 7, 2);
17535 break;
17536 case T_MNEM_addi:
17537 case T_MNEM_addis:
17538 case T_MNEM_subi:
17539 case T_MNEM_subis:
17540 newsize = relax_addsub (fragp, sec);
17541 break;
17542 default:
5f4273c7 17543 abort ();
0110f2b8 17544 }
5e77afaa
PB
17545
17546 fragp->fr_var = newsize;
17547 /* Freeze wide instructions that are at or before the same location as
17548 in the previous pass. This avoids infinite loops.
5f4273c7
NC
17549 Don't freeze them unconditionally because targets may be artificially
17550 misaligned by the expansion of preceding frags. */
5e77afaa 17551 if (stretch <= 0 && newsize > 2)
0110f2b8 17552 {
0110f2b8 17553 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 17554 frag_wane (fragp);
0110f2b8 17555 }
5e77afaa 17556
0110f2b8 17557 return newsize - oldsize;
c19d1205 17558}
b99bd4ef 17559
c19d1205 17560/* Round up a section size to the appropriate boundary. */
b99bd4ef 17561
c19d1205
ZW
17562valueT
17563md_section_align (segT segment ATTRIBUTE_UNUSED,
17564 valueT size)
17565{
f0927246
NC
17566#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17567 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17568 {
17569 /* For a.out, force the section size to be aligned. If we don't do
17570 this, BFD will align it for us, but it will not write out the
17571 final bytes of the section. This may be a bug in BFD, but it is
17572 easier to fix it here since that is how the other a.out targets
17573 work. */
17574 int align;
17575
17576 align = bfd_get_section_alignment (stdoutput, segment);
17577 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17578 }
c19d1205 17579#endif
f0927246
NC
17580
17581 return size;
bfae80f2 17582}
b99bd4ef 17583
c19d1205
ZW
17584/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17585 of an rs_align_code fragment. */
17586
17587void
17588arm_handle_align (fragS * fragP)
bfae80f2 17589{
e7495e45
NS
17590 static char const arm_noop[2][2][4] =
17591 {
17592 { /* ARMv1 */
17593 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
17594 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
17595 },
17596 { /* ARMv6k */
17597 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
17598 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
17599 },
17600 };
17601 static char const thumb_noop[2][2][2] =
17602 {
17603 { /* Thumb-1 */
17604 {0xc0, 0x46}, /* LE */
17605 {0x46, 0xc0}, /* BE */
17606 },
17607 { /* Thumb-2 */
17608 {0x00, 0xbf}, /* LE */
17609 {0xbf, 0x00} /* BE */
17610 }
17611 };
17612 static char const wide_thumb_noop[2][4] =
17613 { /* Wide Thumb-2 */
17614 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
17615 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
17616 };
17617
17618 unsigned bytes, fix, noop_size;
c19d1205
ZW
17619 char * p;
17620 const char * noop;
e7495e45 17621 const char *narrow_noop = NULL;
bfae80f2 17622
c19d1205 17623 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
17624 return;
17625
c19d1205
ZW
17626 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17627 p = fragP->fr_literal + fragP->fr_fix;
17628 fix = 0;
bfae80f2 17629
c19d1205
ZW
17630 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17631 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 17632
8dc2430f
NC
17633 assert ((fragP->tc_frag_data & MODE_RECORDED) != 0);
17634
17635 if (fragP->tc_frag_data & (~ MODE_RECORDED))
a737bd4d 17636 {
e7495e45
NS
17637 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
17638 {
17639 narrow_noop = thumb_noop[1][target_big_endian];
17640 noop = wide_thumb_noop[target_big_endian];
17641 }
c19d1205 17642 else
e7495e45
NS
17643 noop = thumb_noop[0][target_big_endian];
17644 noop_size = 2;
7ed4c4c5
NC
17645 }
17646 else
17647 {
e7495e45
NS
17648 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
17649 [target_big_endian];
17650 noop_size = 4;
7ed4c4c5 17651 }
e7495e45
NS
17652
17653 fragP->fr_var = noop_size;
17654
c19d1205 17655 if (bytes & (noop_size - 1))
7ed4c4c5 17656 {
c19d1205
ZW
17657 fix = bytes & (noop_size - 1);
17658 memset (p, 0, fix);
17659 p += fix;
17660 bytes -= fix;
a737bd4d 17661 }
a737bd4d 17662
e7495e45
NS
17663 if (narrow_noop)
17664 {
17665 if (bytes & noop_size)
17666 {
17667 /* Insert a narrow noop. */
17668 memcpy (p, narrow_noop, noop_size);
17669 p += noop_size;
17670 bytes -= noop_size;
17671 fix += noop_size;
17672 }
17673
17674 /* Use wide noops for the remainder */
17675 noop_size = 4;
17676 }
17677
c19d1205 17678 while (bytes >= noop_size)
a737bd4d 17679 {
c19d1205
ZW
17680 memcpy (p, noop, noop_size);
17681 p += noop_size;
17682 bytes -= noop_size;
17683 fix += noop_size;
a737bd4d
NC
17684 }
17685
c19d1205 17686 fragP->fr_fix += fix;
a737bd4d
NC
17687}
17688
c19d1205
ZW
17689/* Called from md_do_align. Used to create an alignment
17690 frag in a code section. */
17691
17692void
17693arm_frag_align_code (int n, int max)
bfae80f2 17694{
c19d1205 17695 char * p;
7ed4c4c5 17696
c19d1205
ZW
17697 /* We assume that there will never be a requirement
17698 to support alignments greater than 32 bytes. */
17699 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17700 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 17701
c19d1205
ZW
17702 p = frag_var (rs_align_code,
17703 MAX_MEM_FOR_RS_ALIGN_CODE,
17704 1,
17705 (relax_substateT) max,
17706 (symbolS *) NULL,
17707 (offsetT) n,
17708 (char *) NULL);
17709 *p = 0;
17710}
bfae80f2 17711
8dc2430f
NC
17712/* Perform target specific initialisation of a frag.
17713 Note - despite the name this initialisation is not done when the frag
17714 is created, but only when its type is assigned. A frag can be created
17715 and used a long time before its type is set, so beware of assuming that
17716 this initialisationis performed first. */
bfae80f2 17717
c19d1205
ZW
17718void
17719arm_init_frag (fragS * fragP)
17720{
8dc2430f
NC
17721 /* If the current ARM vs THUMB mode has not already
17722 been recorded into this frag then do so now. */
17723 if ((fragP->tc_frag_data & MODE_RECORDED) == 0)
17724 fragP->tc_frag_data = thumb_mode | MODE_RECORDED;
bfae80f2
RE
17725}
17726
c19d1205
ZW
17727#ifdef OBJ_ELF
17728/* When we change sections we need to issue a new mapping symbol. */
17729
17730void
17731arm_elf_change_section (void)
bfae80f2 17732{
c19d1205
ZW
17733 flagword flags;
17734 segment_info_type *seginfo;
bfae80f2 17735
c19d1205
ZW
17736 /* Link an unlinked unwind index table section to the .text section. */
17737 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17738 && elf_linked_to_section (now_seg) == NULL)
17739 elf_linked_to_section (now_seg) = text_section;
17740
17741 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
17742 return;
17743
c19d1205
ZW
17744 flags = bfd_get_section_flags (stdoutput, now_seg);
17745
17746 /* We can ignore sections that only contain debug info. */
17747 if ((flags & SEC_ALLOC) == 0)
17748 return;
bfae80f2 17749
c19d1205
ZW
17750 seginfo = seg_info (now_seg);
17751 mapstate = seginfo->tc_segment_info_data.mapstate;
17752 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
17753}
17754
c19d1205
ZW
17755int
17756arm_elf_section_type (const char * str, size_t len)
e45d0630 17757{
c19d1205
ZW
17758 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17759 return SHT_ARM_EXIDX;
e45d0630 17760
c19d1205
ZW
17761 return -1;
17762}
17763\f
17764/* Code to deal with unwinding tables. */
e45d0630 17765
c19d1205 17766static void add_unwind_adjustsp (offsetT);
e45d0630 17767
5f4273c7 17768/* Generate any deferred unwind frame offset. */
e45d0630 17769
bfae80f2 17770static void
c19d1205 17771flush_pending_unwind (void)
bfae80f2 17772{
c19d1205 17773 offsetT offset;
bfae80f2 17774
c19d1205
ZW
17775 offset = unwind.pending_offset;
17776 unwind.pending_offset = 0;
17777 if (offset != 0)
17778 add_unwind_adjustsp (offset);
bfae80f2
RE
17779}
17780
c19d1205
ZW
17781/* Add an opcode to this list for this function. Two-byte opcodes should
17782 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17783 order. */
17784
bfae80f2 17785static void
c19d1205 17786add_unwind_opcode (valueT op, int length)
bfae80f2 17787{
c19d1205
ZW
17788 /* Add any deferred stack adjustment. */
17789 if (unwind.pending_offset)
17790 flush_pending_unwind ();
bfae80f2 17791
c19d1205 17792 unwind.sp_restored = 0;
bfae80f2 17793
c19d1205 17794 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 17795 {
c19d1205
ZW
17796 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17797 if (unwind.opcodes)
17798 unwind.opcodes = xrealloc (unwind.opcodes,
17799 unwind.opcode_alloc);
17800 else
17801 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 17802 }
c19d1205 17803 while (length > 0)
bfae80f2 17804 {
c19d1205
ZW
17805 length--;
17806 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17807 op >>= 8;
17808 unwind.opcode_count++;
bfae80f2 17809 }
bfae80f2
RE
17810}
17811
c19d1205
ZW
17812/* Add unwind opcodes to adjust the stack pointer. */
17813
bfae80f2 17814static void
c19d1205 17815add_unwind_adjustsp (offsetT offset)
bfae80f2 17816{
c19d1205 17817 valueT op;
bfae80f2 17818
c19d1205 17819 if (offset > 0x200)
bfae80f2 17820 {
c19d1205
ZW
17821 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17822 char bytes[5];
17823 int n;
17824 valueT o;
bfae80f2 17825
c19d1205
ZW
17826 /* Long form: 0xb2, uleb128. */
17827 /* This might not fit in a word so add the individual bytes,
17828 remembering the list is built in reverse order. */
17829 o = (valueT) ((offset - 0x204) >> 2);
17830 if (o == 0)
17831 add_unwind_opcode (0, 1);
bfae80f2 17832
c19d1205
ZW
17833 /* Calculate the uleb128 encoding of the offset. */
17834 n = 0;
17835 while (o)
17836 {
17837 bytes[n] = o & 0x7f;
17838 o >>= 7;
17839 if (o)
17840 bytes[n] |= 0x80;
17841 n++;
17842 }
17843 /* Add the insn. */
17844 for (; n; n--)
17845 add_unwind_opcode (bytes[n - 1], 1);
17846 add_unwind_opcode (0xb2, 1);
17847 }
17848 else if (offset > 0x100)
bfae80f2 17849 {
c19d1205
ZW
17850 /* Two short opcodes. */
17851 add_unwind_opcode (0x3f, 1);
17852 op = (offset - 0x104) >> 2;
17853 add_unwind_opcode (op, 1);
bfae80f2 17854 }
c19d1205
ZW
17855 else if (offset > 0)
17856 {
17857 /* Short opcode. */
17858 op = (offset - 4) >> 2;
17859 add_unwind_opcode (op, 1);
17860 }
17861 else if (offset < 0)
bfae80f2 17862 {
c19d1205
ZW
17863 offset = -offset;
17864 while (offset > 0x100)
bfae80f2 17865 {
c19d1205
ZW
17866 add_unwind_opcode (0x7f, 1);
17867 offset -= 0x100;
bfae80f2 17868 }
c19d1205
ZW
17869 op = ((offset - 4) >> 2) | 0x40;
17870 add_unwind_opcode (op, 1);
bfae80f2 17871 }
bfae80f2
RE
17872}
17873
c19d1205
ZW
17874/* Finish the list of unwind opcodes for this function. */
17875static void
17876finish_unwind_opcodes (void)
bfae80f2 17877{
c19d1205 17878 valueT op;
bfae80f2 17879
c19d1205 17880 if (unwind.fp_used)
bfae80f2 17881 {
708587a4 17882 /* Adjust sp as necessary. */
c19d1205
ZW
17883 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17884 flush_pending_unwind ();
bfae80f2 17885
c19d1205
ZW
17886 /* After restoring sp from the frame pointer. */
17887 op = 0x90 | unwind.fp_reg;
17888 add_unwind_opcode (op, 1);
17889 }
17890 else
17891 flush_pending_unwind ();
bfae80f2
RE
17892}
17893
bfae80f2 17894
c19d1205
ZW
17895/* Start an exception table entry. If idx is nonzero this is an index table
17896 entry. */
bfae80f2
RE
17897
17898static void
c19d1205 17899start_unwind_section (const segT text_seg, int idx)
bfae80f2 17900{
c19d1205
ZW
17901 const char * text_name;
17902 const char * prefix;
17903 const char * prefix_once;
17904 const char * group_name;
17905 size_t prefix_len;
17906 size_t text_len;
17907 char * sec_name;
17908 size_t sec_name_len;
17909 int type;
17910 int flags;
17911 int linkonce;
bfae80f2 17912
c19d1205 17913 if (idx)
bfae80f2 17914 {
c19d1205
ZW
17915 prefix = ELF_STRING_ARM_unwind;
17916 prefix_once = ELF_STRING_ARM_unwind_once;
17917 type = SHT_ARM_EXIDX;
bfae80f2 17918 }
c19d1205 17919 else
bfae80f2 17920 {
c19d1205
ZW
17921 prefix = ELF_STRING_ARM_unwind_info;
17922 prefix_once = ELF_STRING_ARM_unwind_info_once;
17923 type = SHT_PROGBITS;
bfae80f2
RE
17924 }
17925
c19d1205
ZW
17926 text_name = segment_name (text_seg);
17927 if (streq (text_name, ".text"))
17928 text_name = "";
17929
17930 if (strncmp (text_name, ".gnu.linkonce.t.",
17931 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17932 {
c19d1205
ZW
17933 prefix = prefix_once;
17934 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17935 }
17936
c19d1205
ZW
17937 prefix_len = strlen (prefix);
17938 text_len = strlen (text_name);
17939 sec_name_len = prefix_len + text_len;
17940 sec_name = xmalloc (sec_name_len + 1);
17941 memcpy (sec_name, prefix, prefix_len);
17942 memcpy (sec_name + prefix_len, text_name, text_len);
17943 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17944
c19d1205
ZW
17945 flags = SHF_ALLOC;
17946 linkonce = 0;
17947 group_name = 0;
bfae80f2 17948
c19d1205
ZW
17949 /* Handle COMDAT group. */
17950 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17951 {
c19d1205
ZW
17952 group_name = elf_group_name (text_seg);
17953 if (group_name == NULL)
17954 {
bd3ba5d1 17955 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
17956 segment_name (text_seg));
17957 ignore_rest_of_line ();
17958 return;
17959 }
17960 flags |= SHF_GROUP;
17961 linkonce = 1;
bfae80f2
RE
17962 }
17963
c19d1205 17964 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17965
5f4273c7 17966 /* Set the section link for index tables. */
c19d1205
ZW
17967 if (idx)
17968 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17969}
17970
bfae80f2 17971
c19d1205
ZW
17972/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17973 personality routine data. Returns zero, or the index table value for
17974 and inline entry. */
17975
17976static valueT
17977create_unwind_entry (int have_data)
bfae80f2 17978{
c19d1205
ZW
17979 int size;
17980 addressT where;
17981 char *ptr;
17982 /* The current word of data. */
17983 valueT data;
17984 /* The number of bytes left in this word. */
17985 int n;
bfae80f2 17986
c19d1205 17987 finish_unwind_opcodes ();
bfae80f2 17988
c19d1205
ZW
17989 /* Remember the current text section. */
17990 unwind.saved_seg = now_seg;
17991 unwind.saved_subseg = now_subseg;
bfae80f2 17992
c19d1205 17993 start_unwind_section (now_seg, 0);
bfae80f2 17994
c19d1205 17995 if (unwind.personality_routine == NULL)
bfae80f2 17996 {
c19d1205
ZW
17997 if (unwind.personality_index == -2)
17998 {
17999 if (have_data)
5f4273c7 18000 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
18001 return 1; /* EXIDX_CANTUNWIND. */
18002 }
bfae80f2 18003
c19d1205
ZW
18004 /* Use a default personality routine if none is specified. */
18005 if (unwind.personality_index == -1)
18006 {
18007 if (unwind.opcode_count > 3)
18008 unwind.personality_index = 1;
18009 else
18010 unwind.personality_index = 0;
18011 }
bfae80f2 18012
c19d1205
ZW
18013 /* Space for the personality routine entry. */
18014 if (unwind.personality_index == 0)
18015 {
18016 if (unwind.opcode_count > 3)
18017 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 18018
c19d1205
ZW
18019 if (!have_data)
18020 {
18021 /* All the data is inline in the index table. */
18022 data = 0x80;
18023 n = 3;
18024 while (unwind.opcode_count > 0)
18025 {
18026 unwind.opcode_count--;
18027 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18028 n--;
18029 }
bfae80f2 18030
c19d1205
ZW
18031 /* Pad with "finish" opcodes. */
18032 while (n--)
18033 data = (data << 8) | 0xb0;
bfae80f2 18034
c19d1205
ZW
18035 return data;
18036 }
18037 size = 0;
18038 }
18039 else
18040 /* We get two opcodes "free" in the first word. */
18041 size = unwind.opcode_count - 2;
18042 }
18043 else
18044 /* An extra byte is required for the opcode count. */
18045 size = unwind.opcode_count + 1;
bfae80f2 18046
c19d1205
ZW
18047 size = (size + 3) >> 2;
18048 if (size > 0xff)
18049 as_bad (_("too many unwind opcodes"));
bfae80f2 18050
c19d1205
ZW
18051 frag_align (2, 0, 0);
18052 record_alignment (now_seg, 2);
18053 unwind.table_entry = expr_build_dot ();
18054
18055 /* Allocate the table entry. */
18056 ptr = frag_more ((size << 2) + 4);
18057 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 18058
c19d1205 18059 switch (unwind.personality_index)
bfae80f2 18060 {
c19d1205
ZW
18061 case -1:
18062 /* ??? Should this be a PLT generating relocation? */
18063 /* Custom personality routine. */
18064 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18065 BFD_RELOC_ARM_PREL31);
bfae80f2 18066
c19d1205
ZW
18067 where += 4;
18068 ptr += 4;
bfae80f2 18069
c19d1205
ZW
18070 /* Set the first byte to the number of additional words. */
18071 data = size - 1;
18072 n = 3;
18073 break;
bfae80f2 18074
c19d1205
ZW
18075 /* ABI defined personality routines. */
18076 case 0:
18077 /* Three opcodes bytes are packed into the first word. */
18078 data = 0x80;
18079 n = 3;
18080 break;
bfae80f2 18081
c19d1205
ZW
18082 case 1:
18083 case 2:
18084 /* The size and first two opcode bytes go in the first word. */
18085 data = ((0x80 + unwind.personality_index) << 8) | size;
18086 n = 2;
18087 break;
bfae80f2 18088
c19d1205
ZW
18089 default:
18090 /* Should never happen. */
18091 abort ();
18092 }
bfae80f2 18093
c19d1205
ZW
18094 /* Pack the opcodes into words (MSB first), reversing the list at the same
18095 time. */
18096 while (unwind.opcode_count > 0)
18097 {
18098 if (n == 0)
18099 {
18100 md_number_to_chars (ptr, data, 4);
18101 ptr += 4;
18102 n = 4;
18103 data = 0;
18104 }
18105 unwind.opcode_count--;
18106 n--;
18107 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18108 }
18109
18110 /* Finish off the last word. */
18111 if (n < 4)
18112 {
18113 /* Pad with "finish" opcodes. */
18114 while (n--)
18115 data = (data << 8) | 0xb0;
18116
18117 md_number_to_chars (ptr, data, 4);
18118 }
18119
18120 if (!have_data)
18121 {
18122 /* Add an empty descriptor if there is no user-specified data. */
18123 ptr = frag_more (4);
18124 md_number_to_chars (ptr, 0, 4);
18125 }
18126
18127 return 0;
bfae80f2
RE
18128}
18129
f0927246
NC
18130
18131/* Initialize the DWARF-2 unwind information for this procedure. */
18132
18133void
18134tc_arm_frame_initial_instructions (void)
18135{
18136 cfi_add_CFA_def_cfa (REG_SP, 0);
18137}
18138#endif /* OBJ_ELF */
18139
c19d1205
ZW
18140/* Convert REGNAME to a DWARF-2 register number. */
18141
18142int
1df69f4f 18143tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 18144{
1df69f4f 18145 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
18146
18147 if (reg == FAIL)
18148 return -1;
18149
18150 return reg;
bfae80f2
RE
18151}
18152
f0927246 18153#ifdef TE_PE
c19d1205 18154void
f0927246 18155tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 18156{
f0927246 18157 expressionS expr;
bfae80f2 18158
f0927246
NC
18159 expr.X_op = O_secrel;
18160 expr.X_add_symbol = symbol;
18161 expr.X_add_number = 0;
18162 emit_expr (&expr, size);
18163}
18164#endif
bfae80f2 18165
c19d1205 18166/* MD interface: Symbol and relocation handling. */
bfae80f2 18167
2fc8bdac
ZW
18168/* Return the address within the segment that a PC-relative fixup is
18169 relative to. For ARM, PC-relative fixups applied to instructions
18170 are generally relative to the location of the fixup plus 8 bytes.
18171 Thumb branches are offset by 4, and Thumb loads relative to PC
18172 require special handling. */
bfae80f2 18173
c19d1205 18174long
2fc8bdac 18175md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 18176{
2fc8bdac
ZW
18177 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
18178
18179 /* If this is pc-relative and we are going to emit a relocation
18180 then we just want to put out any pipeline compensation that the linker
53baae48
NC
18181 will need. Otherwise we want to use the calculated base.
18182 For WinCE we skip the bias for externals as well, since this
18183 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 18184 if (fixP->fx_pcrel
2fc8bdac 18185 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
18186 || (arm_force_relocation (fixP)
18187#ifdef TE_WINCE
18188 && !S_IS_EXTERNAL (fixP->fx_addsy)
18189#endif
18190 )))
2fc8bdac 18191 base = 0;
bfae80f2 18192
c19d1205 18193 switch (fixP->fx_r_type)
bfae80f2 18194 {
2fc8bdac
ZW
18195 /* PC relative addressing on the Thumb is slightly odd as the
18196 bottom two bits of the PC are forced to zero for the
18197 calculation. This happens *after* application of the
18198 pipeline offset. However, Thumb adrl already adjusts for
18199 this, so we need not do it again. */
c19d1205 18200 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 18201 return base & ~3;
c19d1205
ZW
18202
18203 case BFD_RELOC_ARM_THUMB_OFFSET:
18204 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 18205 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 18206 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 18207 return (base + 4) & ~3;
c19d1205 18208
2fc8bdac
ZW
18209 /* Thumb branches are simply offset by +4. */
18210 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18211 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18212 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18213 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18214 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18215 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18216 case BFD_RELOC_THUMB_PCREL_BLX:
18217 return base + 4;
bfae80f2 18218
2fc8bdac
ZW
18219 /* ARM mode branches are offset by +8. However, the Windows CE
18220 loader expects the relocation not to take this into account. */
18221 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
18222 case BFD_RELOC_ARM_PCREL_CALL:
18223 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
18224 case BFD_RELOC_ARM_PCREL_BLX:
18225 case BFD_RELOC_ARM_PLT32:
c19d1205 18226#ifdef TE_WINCE
5f4273c7 18227 /* When handling fixups immediately, because we have already
53baae48
NC
18228 discovered the value of a symbol, or the address of the frag involved
18229 we must account for the offset by +8, as the OS loader will never see the reloc.
18230 see fixup_segment() in write.c
18231 The S_IS_EXTERNAL test handles the case of global symbols.
18232 Those need the calculated base, not just the pipe compensation the linker will need. */
18233 if (fixP->fx_pcrel
18234 && fixP->fx_addsy != NULL
18235 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
18236 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
18237 return base + 8;
2fc8bdac 18238 return base;
c19d1205 18239#else
2fc8bdac 18240 return base + 8;
c19d1205 18241#endif
2fc8bdac
ZW
18242
18243 /* ARM mode loads relative to PC are also offset by +8. Unlike
18244 branches, the Windows CE loader *does* expect the relocation
18245 to take this into account. */
18246 case BFD_RELOC_ARM_OFFSET_IMM:
18247 case BFD_RELOC_ARM_OFFSET_IMM8:
18248 case BFD_RELOC_ARM_HWLITERAL:
18249 case BFD_RELOC_ARM_LITERAL:
18250 case BFD_RELOC_ARM_CP_OFF_IMM:
18251 return base + 8;
18252
18253
18254 /* Other PC-relative relocations are un-offset. */
18255 default:
18256 return base;
18257 }
bfae80f2
RE
18258}
18259
c19d1205
ZW
18260/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
18261 Otherwise we have no need to default values of symbols. */
18262
18263symbolS *
18264md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 18265{
c19d1205
ZW
18266#ifdef OBJ_ELF
18267 if (name[0] == '_' && name[1] == 'G'
18268 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
18269 {
18270 if (!GOT_symbol)
18271 {
18272 if (symbol_find (name))
bd3ba5d1 18273 as_bad (_("GOT already in the symbol table"));
bfae80f2 18274
c19d1205
ZW
18275 GOT_symbol = symbol_new (name, undefined_section,
18276 (valueT) 0, & zero_address_frag);
18277 }
bfae80f2 18278
c19d1205 18279 return GOT_symbol;
bfae80f2 18280 }
c19d1205 18281#endif
bfae80f2 18282
c19d1205 18283 return 0;
bfae80f2
RE
18284}
18285
55cf6793 18286/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
18287 computed as two separate immediate values, added together. We
18288 already know that this value cannot be computed by just one ARM
18289 instruction. */
18290
18291static unsigned int
18292validate_immediate_twopart (unsigned int val,
18293 unsigned int * highpart)
bfae80f2 18294{
c19d1205
ZW
18295 unsigned int a;
18296 unsigned int i;
bfae80f2 18297
c19d1205
ZW
18298 for (i = 0; i < 32; i += 2)
18299 if (((a = rotate_left (val, i)) & 0xff) != 0)
18300 {
18301 if (a & 0xff00)
18302 {
18303 if (a & ~ 0xffff)
18304 continue;
18305 * highpart = (a >> 8) | ((i + 24) << 7);
18306 }
18307 else if (a & 0xff0000)
18308 {
18309 if (a & 0xff000000)
18310 continue;
18311 * highpart = (a >> 16) | ((i + 16) << 7);
18312 }
18313 else
18314 {
18315 assert (a & 0xff000000);
18316 * highpart = (a >> 24) | ((i + 8) << 7);
18317 }
bfae80f2 18318
c19d1205
ZW
18319 return (a & 0xff) | (i << 7);
18320 }
bfae80f2 18321
c19d1205 18322 return FAIL;
bfae80f2
RE
18323}
18324
c19d1205
ZW
18325static int
18326validate_offset_imm (unsigned int val, int hwse)
18327{
18328 if ((hwse && val > 255) || val > 4095)
18329 return FAIL;
18330 return val;
18331}
bfae80f2 18332
55cf6793 18333/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
18334 negative immediate constant by altering the instruction. A bit of
18335 a hack really.
18336 MOV <-> MVN
18337 AND <-> BIC
18338 ADC <-> SBC
18339 by inverting the second operand, and
18340 ADD <-> SUB
18341 CMP <-> CMN
18342 by negating the second operand. */
bfae80f2 18343
c19d1205
ZW
18344static int
18345negate_data_op (unsigned long * instruction,
18346 unsigned long value)
bfae80f2 18347{
c19d1205
ZW
18348 int op, new_inst;
18349 unsigned long negated, inverted;
bfae80f2 18350
c19d1205
ZW
18351 negated = encode_arm_immediate (-value);
18352 inverted = encode_arm_immediate (~value);
bfae80f2 18353
c19d1205
ZW
18354 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
18355 switch (op)
bfae80f2 18356 {
c19d1205
ZW
18357 /* First negates. */
18358 case OPCODE_SUB: /* ADD <-> SUB */
18359 new_inst = OPCODE_ADD;
18360 value = negated;
18361 break;
bfae80f2 18362
c19d1205
ZW
18363 case OPCODE_ADD:
18364 new_inst = OPCODE_SUB;
18365 value = negated;
18366 break;
bfae80f2 18367
c19d1205
ZW
18368 case OPCODE_CMP: /* CMP <-> CMN */
18369 new_inst = OPCODE_CMN;
18370 value = negated;
18371 break;
bfae80f2 18372
c19d1205
ZW
18373 case OPCODE_CMN:
18374 new_inst = OPCODE_CMP;
18375 value = negated;
18376 break;
bfae80f2 18377
c19d1205
ZW
18378 /* Now Inverted ops. */
18379 case OPCODE_MOV: /* MOV <-> MVN */
18380 new_inst = OPCODE_MVN;
18381 value = inverted;
18382 break;
bfae80f2 18383
c19d1205
ZW
18384 case OPCODE_MVN:
18385 new_inst = OPCODE_MOV;
18386 value = inverted;
18387 break;
bfae80f2 18388
c19d1205
ZW
18389 case OPCODE_AND: /* AND <-> BIC */
18390 new_inst = OPCODE_BIC;
18391 value = inverted;
18392 break;
bfae80f2 18393
c19d1205
ZW
18394 case OPCODE_BIC:
18395 new_inst = OPCODE_AND;
18396 value = inverted;
18397 break;
bfae80f2 18398
c19d1205
ZW
18399 case OPCODE_ADC: /* ADC <-> SBC */
18400 new_inst = OPCODE_SBC;
18401 value = inverted;
18402 break;
bfae80f2 18403
c19d1205
ZW
18404 case OPCODE_SBC:
18405 new_inst = OPCODE_ADC;
18406 value = inverted;
18407 break;
bfae80f2 18408
c19d1205
ZW
18409 /* We cannot do anything. */
18410 default:
18411 return FAIL;
b99bd4ef
NC
18412 }
18413
c19d1205
ZW
18414 if (value == (unsigned) FAIL)
18415 return FAIL;
18416
18417 *instruction &= OPCODE_MASK;
18418 *instruction |= new_inst << DATA_OP_SHIFT;
18419 return value;
b99bd4ef
NC
18420}
18421
ef8d22e6
PB
18422/* Like negate_data_op, but for Thumb-2. */
18423
18424static unsigned int
16dd5e42 18425thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
18426{
18427 int op, new_inst;
18428 int rd;
16dd5e42 18429 unsigned int negated, inverted;
ef8d22e6
PB
18430
18431 negated = encode_thumb32_immediate (-value);
18432 inverted = encode_thumb32_immediate (~value);
18433
18434 rd = (*instruction >> 8) & 0xf;
18435 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
18436 switch (op)
18437 {
18438 /* ADD <-> SUB. Includes CMP <-> CMN. */
18439 case T2_OPCODE_SUB:
18440 new_inst = T2_OPCODE_ADD;
18441 value = negated;
18442 break;
18443
18444 case T2_OPCODE_ADD:
18445 new_inst = T2_OPCODE_SUB;
18446 value = negated;
18447 break;
18448
18449 /* ORR <-> ORN. Includes MOV <-> MVN. */
18450 case T2_OPCODE_ORR:
18451 new_inst = T2_OPCODE_ORN;
18452 value = inverted;
18453 break;
18454
18455 case T2_OPCODE_ORN:
18456 new_inst = T2_OPCODE_ORR;
18457 value = inverted;
18458 break;
18459
18460 /* AND <-> BIC. TST has no inverted equivalent. */
18461 case T2_OPCODE_AND:
18462 new_inst = T2_OPCODE_BIC;
18463 if (rd == 15)
18464 value = FAIL;
18465 else
18466 value = inverted;
18467 break;
18468
18469 case T2_OPCODE_BIC:
18470 new_inst = T2_OPCODE_AND;
18471 value = inverted;
18472 break;
18473
18474 /* ADC <-> SBC */
18475 case T2_OPCODE_ADC:
18476 new_inst = T2_OPCODE_SBC;
18477 value = inverted;
18478 break;
18479
18480 case T2_OPCODE_SBC:
18481 new_inst = T2_OPCODE_ADC;
18482 value = inverted;
18483 break;
18484
18485 /* We cannot do anything. */
18486 default:
18487 return FAIL;
18488 }
18489
16dd5e42 18490 if (value == (unsigned int)FAIL)
ef8d22e6
PB
18491 return FAIL;
18492
18493 *instruction &= T2_OPCODE_MASK;
18494 *instruction |= new_inst << T2_DATA_OP_SHIFT;
18495 return value;
18496}
18497
8f06b2d8
PB
18498/* Read a 32-bit thumb instruction from buf. */
18499static unsigned long
18500get_thumb32_insn (char * buf)
18501{
18502 unsigned long insn;
18503 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
18504 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18505
18506 return insn;
18507}
18508
a8bc6c78
PB
18509
18510/* We usually want to set the low bit on the address of thumb function
18511 symbols. In particular .word foo - . should have the low bit set.
18512 Generic code tries to fold the difference of two symbols to
18513 a constant. Prevent this and force a relocation when the first symbols
18514 is a thumb function. */
18515int
18516arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18517{
18518 if (op == O_subtract
18519 && l->X_op == O_symbol
18520 && r->X_op == O_symbol
18521 && THUMB_IS_FUNC (l->X_add_symbol))
18522 {
18523 l->X_op = O_subtract;
18524 l->X_op_symbol = r->X_add_symbol;
18525 l->X_add_number -= r->X_add_number;
18526 return 1;
18527 }
18528 /* Process as normal. */
18529 return 0;
18530}
18531
c19d1205 18532void
55cf6793 18533md_apply_fix (fixS * fixP,
c19d1205
ZW
18534 valueT * valP,
18535 segT seg)
18536{
18537 offsetT value = * valP;
18538 offsetT newval;
18539 unsigned int newimm;
18540 unsigned long temp;
18541 int sign;
18542 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 18543
c19d1205 18544 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 18545
c19d1205 18546 /* Note whether this will delete the relocation. */
4962c51a 18547
c19d1205
ZW
18548 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18549 fixP->fx_done = 1;
b99bd4ef 18550
adbaf948 18551 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 18552 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
18553 for emit_reloc. */
18554 value &= 0xffffffff;
18555 value ^= 0x80000000;
5f4273c7 18556 value -= 0x80000000;
adbaf948
ZW
18557
18558 *valP = value;
c19d1205 18559 fixP->fx_addnumber = value;
b99bd4ef 18560
adbaf948
ZW
18561 /* Same treatment for fixP->fx_offset. */
18562 fixP->fx_offset &= 0xffffffff;
18563 fixP->fx_offset ^= 0x80000000;
18564 fixP->fx_offset -= 0x80000000;
18565
c19d1205 18566 switch (fixP->fx_r_type)
b99bd4ef 18567 {
c19d1205
ZW
18568 case BFD_RELOC_NONE:
18569 /* This will need to go in the object file. */
18570 fixP->fx_done = 0;
18571 break;
b99bd4ef 18572
c19d1205
ZW
18573 case BFD_RELOC_ARM_IMMEDIATE:
18574 /* We claim that this fixup has been processed here,
18575 even if in fact we generate an error because we do
18576 not have a reloc for it, so tc_gen_reloc will reject it. */
18577 fixP->fx_done = 1;
b99bd4ef 18578
c19d1205
ZW
18579 if (fixP->fx_addsy
18580 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 18581 {
c19d1205
ZW
18582 as_bad_where (fixP->fx_file, fixP->fx_line,
18583 _("undefined symbol %s used as an immediate value"),
18584 S_GET_NAME (fixP->fx_addsy));
18585 break;
b99bd4ef
NC
18586 }
18587
42e5fcbf
AS
18588 if (fixP->fx_addsy
18589 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18590 {
18591 as_bad_where (fixP->fx_file, fixP->fx_line,
18592 _("symbol %s is in a different section"),
18593 S_GET_NAME (fixP->fx_addsy));
18594 break;
18595 }
18596
c19d1205
ZW
18597 newimm = encode_arm_immediate (value);
18598 temp = md_chars_to_number (buf, INSN_SIZE);
18599
18600 /* If the instruction will fail, see if we can fix things up by
18601 changing the opcode. */
18602 if (newimm == (unsigned int) FAIL
18603 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 18604 {
c19d1205
ZW
18605 as_bad_where (fixP->fx_file, fixP->fx_line,
18606 _("invalid constant (%lx) after fixup"),
18607 (unsigned long) value);
18608 break;
b99bd4ef 18609 }
b99bd4ef 18610
c19d1205
ZW
18611 newimm |= (temp & 0xfffff000);
18612 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18613 break;
b99bd4ef 18614
c19d1205
ZW
18615 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18616 {
18617 unsigned int highpart = 0;
18618 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 18619
42e5fcbf
AS
18620 if (fixP->fx_addsy
18621 && ! S_IS_DEFINED (fixP->fx_addsy))
18622 {
18623 as_bad_where (fixP->fx_file, fixP->fx_line,
18624 _("undefined symbol %s used as an immediate value"),
18625 S_GET_NAME (fixP->fx_addsy));
18626 break;
18627 }
18628
18629 if (fixP->fx_addsy
18630 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18631 {
18632 as_bad_where (fixP->fx_file, fixP->fx_line,
18633 _("symbol %s is in a different section"),
18634 S_GET_NAME (fixP->fx_addsy));
18635 break;
18636 }
18637
c19d1205
ZW
18638 newimm = encode_arm_immediate (value);
18639 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 18640
c19d1205
ZW
18641 /* If the instruction will fail, see if we can fix things up by
18642 changing the opcode. */
18643 if (newimm == (unsigned int) FAIL
18644 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18645 {
18646 /* No ? OK - try using two ADD instructions to generate
18647 the value. */
18648 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 18649
c19d1205
ZW
18650 /* Yes - then make sure that the second instruction is
18651 also an add. */
18652 if (newimm != (unsigned int) FAIL)
18653 newinsn = temp;
18654 /* Still No ? Try using a negated value. */
18655 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18656 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18657 /* Otherwise - give up. */
18658 else
18659 {
18660 as_bad_where (fixP->fx_file, fixP->fx_line,
18661 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18662 (long) value);
18663 break;
18664 }
b99bd4ef 18665
c19d1205
ZW
18666 /* Replace the first operand in the 2nd instruction (which
18667 is the PC) with the destination register. We have
18668 already added in the PC in the first instruction and we
18669 do not want to do it again. */
18670 newinsn &= ~ 0xf0000;
18671 newinsn |= ((newinsn & 0x0f000) << 4);
18672 }
b99bd4ef 18673
c19d1205
ZW
18674 newimm |= (temp & 0xfffff000);
18675 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 18676
c19d1205
ZW
18677 highpart |= (newinsn & 0xfffff000);
18678 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18679 }
18680 break;
b99bd4ef 18681
c19d1205 18682 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18683 if (!fixP->fx_done && seg->use_rela_p)
18684 value = 0;
18685
c19d1205
ZW
18686 case BFD_RELOC_ARM_LITERAL:
18687 sign = value >= 0;
b99bd4ef 18688
c19d1205
ZW
18689 if (value < 0)
18690 value = - value;
b99bd4ef 18691
c19d1205 18692 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 18693 {
c19d1205
ZW
18694 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18695 as_bad_where (fixP->fx_file, fixP->fx_line,
18696 _("invalid literal constant: pool needs to be closer"));
18697 else
18698 as_bad_where (fixP->fx_file, fixP->fx_line,
18699 _("bad immediate value for offset (%ld)"),
18700 (long) value);
18701 break;
f03698e6
RE
18702 }
18703
c19d1205
ZW
18704 newval = md_chars_to_number (buf, INSN_SIZE);
18705 newval &= 0xff7ff000;
18706 newval |= value | (sign ? INDEX_UP : 0);
18707 md_number_to_chars (buf, newval, INSN_SIZE);
18708 break;
b99bd4ef 18709
c19d1205
ZW
18710 case BFD_RELOC_ARM_OFFSET_IMM8:
18711 case BFD_RELOC_ARM_HWLITERAL:
18712 sign = value >= 0;
b99bd4ef 18713
c19d1205
ZW
18714 if (value < 0)
18715 value = - value;
b99bd4ef 18716
c19d1205 18717 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 18718 {
c19d1205
ZW
18719 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18720 as_bad_where (fixP->fx_file, fixP->fx_line,
18721 _("invalid literal constant: pool needs to be closer"));
18722 else
f9d4405b 18723 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
18724 (long) value);
18725 break;
b99bd4ef
NC
18726 }
18727
c19d1205
ZW
18728 newval = md_chars_to_number (buf, INSN_SIZE);
18729 newval &= 0xff7ff0f0;
18730 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18731 md_number_to_chars (buf, newval, INSN_SIZE);
18732 break;
b99bd4ef 18733
c19d1205
ZW
18734 case BFD_RELOC_ARM_T32_OFFSET_U8:
18735 if (value < 0 || value > 1020 || value % 4 != 0)
18736 as_bad_where (fixP->fx_file, fixP->fx_line,
18737 _("bad immediate value for offset (%ld)"), (long) value);
18738 value /= 4;
b99bd4ef 18739
c19d1205 18740 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
18741 newval |= value;
18742 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18743 break;
b99bd4ef 18744
c19d1205
ZW
18745 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18746 /* This is a complicated relocation used for all varieties of Thumb32
18747 load/store instruction with immediate offset:
18748
18749 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18750 *4, optional writeback(W)
18751 (doubleword load/store)
18752
18753 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18754 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18755 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18756 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18757 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18758
18759 Uppercase letters indicate bits that are already encoded at
18760 this point. Lowercase letters are our problem. For the
18761 second block of instructions, the secondary opcode nybble
18762 (bits 8..11) is present, and bit 23 is zero, even if this is
18763 a PC-relative operation. */
18764 newval = md_chars_to_number (buf, THUMB_SIZE);
18765 newval <<= 16;
18766 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 18767
c19d1205 18768 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 18769 {
c19d1205
ZW
18770 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18771 if (value >= 0)
18772 newval |= (1 << 23);
18773 else
18774 value = -value;
18775 if (value % 4 != 0)
18776 {
18777 as_bad_where (fixP->fx_file, fixP->fx_line,
18778 _("offset not a multiple of 4"));
18779 break;
18780 }
18781 value /= 4;
216d22bc 18782 if (value > 0xff)
c19d1205
ZW
18783 {
18784 as_bad_where (fixP->fx_file, fixP->fx_line,
18785 _("offset out of range"));
18786 break;
18787 }
18788 newval &= ~0xff;
b99bd4ef 18789 }
c19d1205 18790 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 18791 {
c19d1205
ZW
18792 /* PC-relative, 12-bit offset. */
18793 if (value >= 0)
18794 newval |= (1 << 23);
18795 else
18796 value = -value;
216d22bc 18797 if (value > 0xfff)
c19d1205
ZW
18798 {
18799 as_bad_where (fixP->fx_file, fixP->fx_line,
18800 _("offset out of range"));
18801 break;
18802 }
18803 newval &= ~0xfff;
b99bd4ef 18804 }
c19d1205 18805 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 18806 {
c19d1205
ZW
18807 /* Writeback: 8-bit, +/- offset. */
18808 if (value >= 0)
18809 newval |= (1 << 9);
18810 else
18811 value = -value;
216d22bc 18812 if (value > 0xff)
c19d1205
ZW
18813 {
18814 as_bad_where (fixP->fx_file, fixP->fx_line,
18815 _("offset out of range"));
18816 break;
18817 }
18818 newval &= ~0xff;
b99bd4ef 18819 }
c19d1205 18820 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 18821 {
c19d1205 18822 /* T-instruction: positive 8-bit offset. */
216d22bc 18823 if (value < 0 || value > 0xff)
b99bd4ef 18824 {
c19d1205
ZW
18825 as_bad_where (fixP->fx_file, fixP->fx_line,
18826 _("offset out of range"));
18827 break;
b99bd4ef 18828 }
c19d1205
ZW
18829 newval &= ~0xff;
18830 newval |= value;
b99bd4ef
NC
18831 }
18832 else
b99bd4ef 18833 {
c19d1205
ZW
18834 /* Positive 12-bit or negative 8-bit offset. */
18835 int limit;
18836 if (value >= 0)
b99bd4ef 18837 {
c19d1205
ZW
18838 newval |= (1 << 23);
18839 limit = 0xfff;
18840 }
18841 else
18842 {
18843 value = -value;
18844 limit = 0xff;
18845 }
18846 if (value > limit)
18847 {
18848 as_bad_where (fixP->fx_file, fixP->fx_line,
18849 _("offset out of range"));
18850 break;
b99bd4ef 18851 }
c19d1205 18852 newval &= ~limit;
b99bd4ef 18853 }
b99bd4ef 18854
c19d1205
ZW
18855 newval |= value;
18856 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18857 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18858 break;
404ff6b5 18859
c19d1205
ZW
18860 case BFD_RELOC_ARM_SHIFT_IMM:
18861 newval = md_chars_to_number (buf, INSN_SIZE);
18862 if (((unsigned long) value) > 32
18863 || (value == 32
18864 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18865 {
18866 as_bad_where (fixP->fx_file, fixP->fx_line,
18867 _("shift expression is too large"));
18868 break;
18869 }
404ff6b5 18870
c19d1205
ZW
18871 if (value == 0)
18872 /* Shifts of zero must be done as lsl. */
18873 newval &= ~0x60;
18874 else if (value == 32)
18875 value = 0;
18876 newval &= 0xfffff07f;
18877 newval |= (value & 0x1f) << 7;
18878 md_number_to_chars (buf, newval, INSN_SIZE);
18879 break;
404ff6b5 18880
c19d1205 18881 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18882 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18883 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18884 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18885 /* We claim that this fixup has been processed here,
18886 even if in fact we generate an error because we do
18887 not have a reloc for it, so tc_gen_reloc will reject it. */
18888 fixP->fx_done = 1;
404ff6b5 18889
c19d1205
ZW
18890 if (fixP->fx_addsy
18891 && ! S_IS_DEFINED (fixP->fx_addsy))
18892 {
18893 as_bad_where (fixP->fx_file, fixP->fx_line,
18894 _("undefined symbol %s used as an immediate value"),
18895 S_GET_NAME (fixP->fx_addsy));
18896 break;
18897 }
404ff6b5 18898
c19d1205
ZW
18899 newval = md_chars_to_number (buf, THUMB_SIZE);
18900 newval <<= 16;
18901 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18902
16805f35
PB
18903 newimm = FAIL;
18904 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18905 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18906 {
18907 newimm = encode_thumb32_immediate (value);
18908 if (newimm == (unsigned int) FAIL)
18909 newimm = thumb32_negate_data_op (&newval, value);
18910 }
16805f35
PB
18911 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18912 && newimm == (unsigned int) FAIL)
92e90b6e 18913 {
16805f35
PB
18914 /* Turn add/sum into addw/subw. */
18915 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18916 newval = (newval & 0xfeffffff) | 0x02000000;
18917
e9f89963
PB
18918 /* 12 bit immediate for addw/subw. */
18919 if (value < 0)
18920 {
18921 value = -value;
18922 newval ^= 0x00a00000;
18923 }
92e90b6e
PB
18924 if (value > 0xfff)
18925 newimm = (unsigned int) FAIL;
18926 else
18927 newimm = value;
18928 }
cc8a6dd0 18929
c19d1205 18930 if (newimm == (unsigned int)FAIL)
3631a3c8 18931 {
c19d1205
ZW
18932 as_bad_where (fixP->fx_file, fixP->fx_line,
18933 _("invalid constant (%lx) after fixup"),
18934 (unsigned long) value);
18935 break;
3631a3c8
NC
18936 }
18937
c19d1205
ZW
18938 newval |= (newimm & 0x800) << 15;
18939 newval |= (newimm & 0x700) << 4;
18940 newval |= (newimm & 0x0ff);
cc8a6dd0 18941
c19d1205
ZW
18942 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18943 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18944 break;
a737bd4d 18945
3eb17e6b 18946 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18947 if (((unsigned long) value) > 0xffff)
18948 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18949 _("invalid smc expression"));
2fc8bdac 18950 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18951 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18952 md_number_to_chars (buf, newval, INSN_SIZE);
18953 break;
a737bd4d 18954
c19d1205 18955 case BFD_RELOC_ARM_SWI:
adbaf948 18956 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18957 {
18958 if (((unsigned long) value) > 0xff)
18959 as_bad_where (fixP->fx_file, fixP->fx_line,
18960 _("invalid swi expression"));
2fc8bdac 18961 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18962 newval |= value;
18963 md_number_to_chars (buf, newval, THUMB_SIZE);
18964 }
18965 else
18966 {
18967 if (((unsigned long) value) > 0x00ffffff)
18968 as_bad_where (fixP->fx_file, fixP->fx_line,
18969 _("invalid swi expression"));
2fc8bdac 18970 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18971 newval |= value;
18972 md_number_to_chars (buf, newval, INSN_SIZE);
18973 }
18974 break;
a737bd4d 18975
c19d1205
ZW
18976 case BFD_RELOC_ARM_MULTI:
18977 if (((unsigned long) value) > 0xffff)
18978 as_bad_where (fixP->fx_file, fixP->fx_line,
18979 _("invalid expression in load/store multiple"));
18980 newval = value | md_chars_to_number (buf, INSN_SIZE);
18981 md_number_to_chars (buf, newval, INSN_SIZE);
18982 break;
a737bd4d 18983
c19d1205 18984#ifdef OBJ_ELF
39b41c9c
PB
18985 case BFD_RELOC_ARM_PCREL_CALL:
18986 newval = md_chars_to_number (buf, INSN_SIZE);
18987 if ((newval & 0xf0000000) == 0xf0000000)
18988 temp = 1;
18989 else
18990 temp = 3;
18991 goto arm_branch_common;
18992
18993 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18994 case BFD_RELOC_ARM_PLT32:
c19d1205 18995#endif
39b41c9c
PB
18996 case BFD_RELOC_ARM_PCREL_BRANCH:
18997 temp = 3;
18998 goto arm_branch_common;
a737bd4d 18999
39b41c9c
PB
19000 case BFD_RELOC_ARM_PCREL_BLX:
19001 temp = 1;
19002 arm_branch_common:
c19d1205 19003 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
19004 instruction, in a 24 bit, signed field. Bits 26 through 32 either
19005 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
19006 also be be clear. */
19007 if (value & temp)
c19d1205 19008 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
19009 _("misaligned branch destination"));
19010 if ((value & (offsetT)0xfe000000) != (offsetT)0
19011 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
19012 as_bad_where (fixP->fx_file, fixP->fx_line,
19013 _("branch out of range"));
a737bd4d 19014
2fc8bdac 19015 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 19016 {
2fc8bdac
ZW
19017 newval = md_chars_to_number (buf, INSN_SIZE);
19018 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
19019 /* Set the H bit on BLX instructions. */
19020 if (temp == 1)
19021 {
19022 if (value & 2)
19023 newval |= 0x01000000;
19024 else
19025 newval &= ~0x01000000;
19026 }
2fc8bdac 19027 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 19028 }
c19d1205 19029 break;
a737bd4d 19030
25fe350b
MS
19031 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
19032 /* CBZ can only branch forward. */
a737bd4d 19033
738755b0
MS
19034 /* Attempts to use CBZ to branch to the next instruction
19035 (which, strictly speaking, are prohibited) will be turned into
19036 no-ops.
19037
19038 FIXME: It may be better to remove the instruction completely and
19039 perform relaxation. */
19040 if (value == -2)
2fc8bdac
ZW
19041 {
19042 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 19043 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
19044 md_number_to_chars (buf, newval, THUMB_SIZE);
19045 }
738755b0
MS
19046 else
19047 {
19048 if (value & ~0x7e)
19049 as_bad_where (fixP->fx_file, fixP->fx_line,
19050 _("branch out of range"));
19051
19052 if (fixP->fx_done || !seg->use_rela_p)
19053 {
19054 newval = md_chars_to_number (buf, THUMB_SIZE);
19055 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
19056 md_number_to_chars (buf, newval, THUMB_SIZE);
19057 }
19058 }
c19d1205 19059 break;
a737bd4d 19060
c19d1205 19061 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
19062 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
19063 as_bad_where (fixP->fx_file, fixP->fx_line,
19064 _("branch out of range"));
a737bd4d 19065
2fc8bdac
ZW
19066 if (fixP->fx_done || !seg->use_rela_p)
19067 {
19068 newval = md_chars_to_number (buf, THUMB_SIZE);
19069 newval |= (value & 0x1ff) >> 1;
19070 md_number_to_chars (buf, newval, THUMB_SIZE);
19071 }
c19d1205 19072 break;
a737bd4d 19073
c19d1205 19074 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
19075 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
19076 as_bad_where (fixP->fx_file, fixP->fx_line,
19077 _("branch out of range"));
a737bd4d 19078
2fc8bdac
ZW
19079 if (fixP->fx_done || !seg->use_rela_p)
19080 {
19081 newval = md_chars_to_number (buf, THUMB_SIZE);
19082 newval |= (value & 0xfff) >> 1;
19083 md_number_to_chars (buf, newval, THUMB_SIZE);
19084 }
c19d1205 19085 break;
a737bd4d 19086
c19d1205 19087 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
19088 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
19089 as_bad_where (fixP->fx_file, fixP->fx_line,
19090 _("conditional branch out of range"));
404ff6b5 19091
2fc8bdac
ZW
19092 if (fixP->fx_done || !seg->use_rela_p)
19093 {
19094 offsetT newval2;
19095 addressT S, J1, J2, lo, hi;
404ff6b5 19096
2fc8bdac
ZW
19097 S = (value & 0x00100000) >> 20;
19098 J2 = (value & 0x00080000) >> 19;
19099 J1 = (value & 0x00040000) >> 18;
19100 hi = (value & 0x0003f000) >> 12;
19101 lo = (value & 0x00000ffe) >> 1;
6c43fab6 19102
2fc8bdac
ZW
19103 newval = md_chars_to_number (buf, THUMB_SIZE);
19104 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19105 newval |= (S << 10) | hi;
19106 newval2 |= (J1 << 13) | (J2 << 11) | lo;
19107 md_number_to_chars (buf, newval, THUMB_SIZE);
19108 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19109 }
c19d1205 19110 break;
6c43fab6 19111
c19d1205
ZW
19112 case BFD_RELOC_THUMB_PCREL_BLX:
19113 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
19114 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
19115 as_bad_where (fixP->fx_file, fixP->fx_line,
19116 _("branch out of range"));
404ff6b5 19117
2fc8bdac
ZW
19118 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19119 /* For a BLX instruction, make sure that the relocation is rounded up
19120 to a word boundary. This follows the semantics of the instruction
19121 which specifies that bit 1 of the target address will come from bit
19122 1 of the base address. */
19123 value = (value + 1) & ~ 1;
404ff6b5 19124
2fc8bdac 19125 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 19126 {
2fc8bdac
ZW
19127 offsetT newval2;
19128
19129 newval = md_chars_to_number (buf, THUMB_SIZE);
19130 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19131 newval |= (value & 0x7fffff) >> 12;
19132 newval2 |= (value & 0xfff) >> 1;
19133 md_number_to_chars (buf, newval, THUMB_SIZE);
19134 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 19135 }
c19d1205 19136 break;
404ff6b5 19137
c19d1205 19138 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
19139 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
19140 as_bad_where (fixP->fx_file, fixP->fx_line,
19141 _("branch out of range"));
6c43fab6 19142
2fc8bdac
ZW
19143 if (fixP->fx_done || !seg->use_rela_p)
19144 {
19145 offsetT newval2;
19146 addressT S, I1, I2, lo, hi;
6c43fab6 19147
2fc8bdac
ZW
19148 S = (value & 0x01000000) >> 24;
19149 I1 = (value & 0x00800000) >> 23;
19150 I2 = (value & 0x00400000) >> 22;
19151 hi = (value & 0x003ff000) >> 12;
19152 lo = (value & 0x00000ffe) >> 1;
6c43fab6 19153
2fc8bdac
ZW
19154 I1 = !(I1 ^ S);
19155 I2 = !(I2 ^ S);
a737bd4d 19156
2fc8bdac
ZW
19157 newval = md_chars_to_number (buf, THUMB_SIZE);
19158 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19159 newval |= (S << 10) | hi;
19160 newval2 |= (I1 << 13) | (I2 << 11) | lo;
19161 md_number_to_chars (buf, newval, THUMB_SIZE);
19162 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19163 }
19164 break;
a737bd4d 19165
2fc8bdac
ZW
19166 case BFD_RELOC_8:
19167 if (fixP->fx_done || !seg->use_rela_p)
19168 md_number_to_chars (buf, value, 1);
c19d1205 19169 break;
a737bd4d 19170
c19d1205 19171 case BFD_RELOC_16:
2fc8bdac 19172 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 19173 md_number_to_chars (buf, value, 2);
c19d1205 19174 break;
a737bd4d 19175
c19d1205
ZW
19176#ifdef OBJ_ELF
19177 case BFD_RELOC_ARM_TLS_GD32:
19178 case BFD_RELOC_ARM_TLS_LE32:
19179 case BFD_RELOC_ARM_TLS_IE32:
19180 case BFD_RELOC_ARM_TLS_LDM32:
19181 case BFD_RELOC_ARM_TLS_LDO32:
19182 S_SET_THREAD_LOCAL (fixP->fx_addsy);
19183 /* fall through */
6c43fab6 19184
c19d1205
ZW
19185 case BFD_RELOC_ARM_GOT32:
19186 case BFD_RELOC_ARM_GOTOFF:
19187 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
19188 if (fixP->fx_done || !seg->use_rela_p)
19189 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
19190 break;
19191#endif
6c43fab6 19192
c19d1205
ZW
19193 case BFD_RELOC_RVA:
19194 case BFD_RELOC_32:
19195 case BFD_RELOC_ARM_TARGET1:
19196 case BFD_RELOC_ARM_ROSEGREL32:
19197 case BFD_RELOC_ARM_SBREL32:
19198 case BFD_RELOC_32_PCREL:
f0927246
NC
19199#ifdef TE_PE
19200 case BFD_RELOC_32_SECREL:
19201#endif
2fc8bdac 19202 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
19203#ifdef TE_WINCE
19204 /* For WinCE we only do this for pcrel fixups. */
19205 if (fixP->fx_done || fixP->fx_pcrel)
19206#endif
19207 md_number_to_chars (buf, value, 4);
c19d1205 19208 break;
6c43fab6 19209
c19d1205
ZW
19210#ifdef OBJ_ELF
19211 case BFD_RELOC_ARM_PREL31:
2fc8bdac 19212 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
19213 {
19214 newval = md_chars_to_number (buf, 4) & 0x80000000;
19215 if ((value ^ (value >> 1)) & 0x40000000)
19216 {
19217 as_bad_where (fixP->fx_file, fixP->fx_line,
19218 _("rel31 relocation overflow"));
19219 }
19220 newval |= value & 0x7fffffff;
19221 md_number_to_chars (buf, newval, 4);
19222 }
19223 break;
c19d1205 19224#endif
a737bd4d 19225
c19d1205 19226 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 19227 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
19228 if (value < -1023 || value > 1023 || (value & 3))
19229 as_bad_where (fixP->fx_file, fixP->fx_line,
19230 _("co-processor offset out of range"));
19231 cp_off_common:
19232 sign = value >= 0;
19233 if (value < 0)
19234 value = -value;
8f06b2d8
PB
19235 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19236 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19237 newval = md_chars_to_number (buf, INSN_SIZE);
19238 else
19239 newval = get_thumb32_insn (buf);
19240 newval &= 0xff7fff00;
c19d1205 19241 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
19242 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19243 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19244 md_number_to_chars (buf, newval, INSN_SIZE);
19245 else
19246 put_thumb32_insn (buf, newval);
c19d1205 19247 break;
a737bd4d 19248
c19d1205 19249 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 19250 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
19251 if (value < -255 || value > 255)
19252 as_bad_where (fixP->fx_file, fixP->fx_line,
19253 _("co-processor offset out of range"));
df7849c5 19254 value *= 4;
c19d1205 19255 goto cp_off_common;
6c43fab6 19256
c19d1205
ZW
19257 case BFD_RELOC_ARM_THUMB_OFFSET:
19258 newval = md_chars_to_number (buf, THUMB_SIZE);
19259 /* Exactly what ranges, and where the offset is inserted depends
19260 on the type of instruction, we can establish this from the
19261 top 4 bits. */
19262 switch (newval >> 12)
19263 {
19264 case 4: /* PC load. */
19265 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
19266 forced to zero for these loads; md_pcrel_from has already
19267 compensated for this. */
19268 if (value & 3)
19269 as_bad_where (fixP->fx_file, fixP->fx_line,
19270 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
19271 (((unsigned long) fixP->fx_frag->fr_address
19272 + (unsigned long) fixP->fx_where) & ~3)
19273 + (unsigned long) value);
a737bd4d 19274
c19d1205
ZW
19275 if (value & ~0x3fc)
19276 as_bad_where (fixP->fx_file, fixP->fx_line,
19277 _("invalid offset, value too big (0x%08lX)"),
19278 (long) value);
a737bd4d 19279
c19d1205
ZW
19280 newval |= value >> 2;
19281 break;
a737bd4d 19282
c19d1205
ZW
19283 case 9: /* SP load/store. */
19284 if (value & ~0x3fc)
19285 as_bad_where (fixP->fx_file, fixP->fx_line,
19286 _("invalid offset, value too big (0x%08lX)"),
19287 (long) value);
19288 newval |= value >> 2;
19289 break;
6c43fab6 19290
c19d1205
ZW
19291 case 6: /* Word load/store. */
19292 if (value & ~0x7c)
19293 as_bad_where (fixP->fx_file, fixP->fx_line,
19294 _("invalid offset, value too big (0x%08lX)"),
19295 (long) value);
19296 newval |= value << 4; /* 6 - 2. */
19297 break;
a737bd4d 19298
c19d1205
ZW
19299 case 7: /* Byte load/store. */
19300 if (value & ~0x1f)
19301 as_bad_where (fixP->fx_file, fixP->fx_line,
19302 _("invalid offset, value too big (0x%08lX)"),
19303 (long) value);
19304 newval |= value << 6;
19305 break;
a737bd4d 19306
c19d1205
ZW
19307 case 8: /* Halfword load/store. */
19308 if (value & ~0x3e)
19309 as_bad_where (fixP->fx_file, fixP->fx_line,
19310 _("invalid offset, value too big (0x%08lX)"),
19311 (long) value);
19312 newval |= value << 5; /* 6 - 1. */
19313 break;
a737bd4d 19314
c19d1205
ZW
19315 default:
19316 as_bad_where (fixP->fx_file, fixP->fx_line,
19317 "Unable to process relocation for thumb opcode: %lx",
19318 (unsigned long) newval);
19319 break;
19320 }
19321 md_number_to_chars (buf, newval, THUMB_SIZE);
19322 break;
a737bd4d 19323
c19d1205
ZW
19324 case BFD_RELOC_ARM_THUMB_ADD:
19325 /* This is a complicated relocation, since we use it for all of
19326 the following immediate relocations:
a737bd4d 19327
c19d1205
ZW
19328 3bit ADD/SUB
19329 8bit ADD/SUB
19330 9bit ADD/SUB SP word-aligned
19331 10bit ADD PC/SP word-aligned
a737bd4d 19332
c19d1205
ZW
19333 The type of instruction being processed is encoded in the
19334 instruction field:
a737bd4d 19335
c19d1205
ZW
19336 0x8000 SUB
19337 0x00F0 Rd
19338 0x000F Rs
19339 */
19340 newval = md_chars_to_number (buf, THUMB_SIZE);
19341 {
19342 int rd = (newval >> 4) & 0xf;
19343 int rs = newval & 0xf;
19344 int subtract = !!(newval & 0x8000);
a737bd4d 19345
c19d1205
ZW
19346 /* Check for HI regs, only very restricted cases allowed:
19347 Adjusting SP, and using PC or SP to get an address. */
19348 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
19349 || (rs > 7 && rs != REG_SP && rs != REG_PC))
19350 as_bad_where (fixP->fx_file, fixP->fx_line,
19351 _("invalid Hi register with immediate"));
a737bd4d 19352
c19d1205
ZW
19353 /* If value is negative, choose the opposite instruction. */
19354 if (value < 0)
19355 {
19356 value = -value;
19357 subtract = !subtract;
19358 if (value < 0)
19359 as_bad_where (fixP->fx_file, fixP->fx_line,
19360 _("immediate value out of range"));
19361 }
a737bd4d 19362
c19d1205
ZW
19363 if (rd == REG_SP)
19364 {
19365 if (value & ~0x1fc)
19366 as_bad_where (fixP->fx_file, fixP->fx_line,
19367 _("invalid immediate for stack address calculation"));
19368 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
19369 newval |= value >> 2;
19370 }
19371 else if (rs == REG_PC || rs == REG_SP)
19372 {
19373 if (subtract || value & ~0x3fc)
19374 as_bad_where (fixP->fx_file, fixP->fx_line,
19375 _("invalid immediate for address calculation (value = 0x%08lX)"),
19376 (unsigned long) value);
19377 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
19378 newval |= rd << 8;
19379 newval |= value >> 2;
19380 }
19381 else if (rs == rd)
19382 {
19383 if (value & ~0xff)
19384 as_bad_where (fixP->fx_file, fixP->fx_line,
19385 _("immediate value out of range"));
19386 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
19387 newval |= (rd << 8) | value;
19388 }
19389 else
19390 {
19391 if (value & ~0x7)
19392 as_bad_where (fixP->fx_file, fixP->fx_line,
19393 _("immediate value out of range"));
19394 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
19395 newval |= rd | (rs << 3) | (value << 6);
19396 }
19397 }
19398 md_number_to_chars (buf, newval, THUMB_SIZE);
19399 break;
a737bd4d 19400
c19d1205
ZW
19401 case BFD_RELOC_ARM_THUMB_IMM:
19402 newval = md_chars_to_number (buf, THUMB_SIZE);
19403 if (value < 0 || value > 255)
19404 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 19405 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
19406 (long) value);
19407 newval |= value;
19408 md_number_to_chars (buf, newval, THUMB_SIZE);
19409 break;
a737bd4d 19410
c19d1205
ZW
19411 case BFD_RELOC_ARM_THUMB_SHIFT:
19412 /* 5bit shift value (0..32). LSL cannot take 32. */
19413 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
19414 temp = newval & 0xf800;
19415 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
19416 as_bad_where (fixP->fx_file, fixP->fx_line,
19417 _("invalid shift value: %ld"), (long) value);
19418 /* Shifts of zero must be encoded as LSL. */
19419 if (value == 0)
19420 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
19421 /* Shifts of 32 are encoded as zero. */
19422 else if (value == 32)
19423 value = 0;
19424 newval |= value << 6;
19425 md_number_to_chars (buf, newval, THUMB_SIZE);
19426 break;
a737bd4d 19427
c19d1205
ZW
19428 case BFD_RELOC_VTABLE_INHERIT:
19429 case BFD_RELOC_VTABLE_ENTRY:
19430 fixP->fx_done = 0;
19431 return;
6c43fab6 19432
b6895b4f
PB
19433 case BFD_RELOC_ARM_MOVW:
19434 case BFD_RELOC_ARM_MOVT:
19435 case BFD_RELOC_ARM_THUMB_MOVW:
19436 case BFD_RELOC_ARM_THUMB_MOVT:
19437 if (fixP->fx_done || !seg->use_rela_p)
19438 {
19439 /* REL format relocations are limited to a 16-bit addend. */
19440 if (!fixP->fx_done)
19441 {
39623e12 19442 if (value < -0x8000 || value > 0x7fff)
b6895b4f 19443 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 19444 _("offset out of range"));
b6895b4f
PB
19445 }
19446 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19447 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19448 {
19449 value >>= 16;
19450 }
19451
19452 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19453 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19454 {
19455 newval = get_thumb32_insn (buf);
19456 newval &= 0xfbf08f00;
19457 newval |= (value & 0xf000) << 4;
19458 newval |= (value & 0x0800) << 15;
19459 newval |= (value & 0x0700) << 4;
19460 newval |= (value & 0x00ff);
19461 put_thumb32_insn (buf, newval);
19462 }
19463 else
19464 {
19465 newval = md_chars_to_number (buf, 4);
19466 newval &= 0xfff0f000;
19467 newval |= value & 0x0fff;
19468 newval |= (value & 0xf000) << 4;
19469 md_number_to_chars (buf, newval, 4);
19470 }
19471 }
19472 return;
19473
4962c51a
MS
19474 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19475 case BFD_RELOC_ARM_ALU_PC_G0:
19476 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19477 case BFD_RELOC_ARM_ALU_PC_G1:
19478 case BFD_RELOC_ARM_ALU_PC_G2:
19479 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19480 case BFD_RELOC_ARM_ALU_SB_G0:
19481 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19482 case BFD_RELOC_ARM_ALU_SB_G1:
19483 case BFD_RELOC_ARM_ALU_SB_G2:
19484 assert (!fixP->fx_done);
19485 if (!seg->use_rela_p)
19486 {
19487 bfd_vma insn;
19488 bfd_vma encoded_addend;
19489 bfd_vma addend_abs = abs (value);
19490
19491 /* Check that the absolute value of the addend can be
19492 expressed as an 8-bit constant plus a rotation. */
19493 encoded_addend = encode_arm_immediate (addend_abs);
19494 if (encoded_addend == (unsigned int) FAIL)
19495 as_bad_where (fixP->fx_file, fixP->fx_line,
19496 _("the offset 0x%08lX is not representable"),
495bde8e 19497 (unsigned long) addend_abs);
4962c51a
MS
19498
19499 /* Extract the instruction. */
19500 insn = md_chars_to_number (buf, INSN_SIZE);
19501
19502 /* If the addend is positive, use an ADD instruction.
19503 Otherwise use a SUB. Take care not to destroy the S bit. */
19504 insn &= 0xff1fffff;
19505 if (value < 0)
19506 insn |= 1 << 22;
19507 else
19508 insn |= 1 << 23;
19509
19510 /* Place the encoded addend into the first 12 bits of the
19511 instruction. */
19512 insn &= 0xfffff000;
19513 insn |= encoded_addend;
5f4273c7
NC
19514
19515 /* Update the instruction. */
4962c51a
MS
19516 md_number_to_chars (buf, insn, INSN_SIZE);
19517 }
19518 break;
19519
19520 case BFD_RELOC_ARM_LDR_PC_G0:
19521 case BFD_RELOC_ARM_LDR_PC_G1:
19522 case BFD_RELOC_ARM_LDR_PC_G2:
19523 case BFD_RELOC_ARM_LDR_SB_G0:
19524 case BFD_RELOC_ARM_LDR_SB_G1:
19525 case BFD_RELOC_ARM_LDR_SB_G2:
19526 assert (!fixP->fx_done);
19527 if (!seg->use_rela_p)
19528 {
19529 bfd_vma insn;
19530 bfd_vma addend_abs = abs (value);
19531
19532 /* Check that the absolute value of the addend can be
19533 encoded in 12 bits. */
19534 if (addend_abs >= 0x1000)
19535 as_bad_where (fixP->fx_file, fixP->fx_line,
19536 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 19537 (unsigned long) addend_abs);
4962c51a
MS
19538
19539 /* Extract the instruction. */
19540 insn = md_chars_to_number (buf, INSN_SIZE);
19541
19542 /* If the addend is negative, clear bit 23 of the instruction.
19543 Otherwise set it. */
19544 if (value < 0)
19545 insn &= ~(1 << 23);
19546 else
19547 insn |= 1 << 23;
19548
19549 /* Place the absolute value of the addend into the first 12 bits
19550 of the instruction. */
19551 insn &= 0xfffff000;
19552 insn |= addend_abs;
5f4273c7
NC
19553
19554 /* Update the instruction. */
4962c51a
MS
19555 md_number_to_chars (buf, insn, INSN_SIZE);
19556 }
19557 break;
19558
19559 case BFD_RELOC_ARM_LDRS_PC_G0:
19560 case BFD_RELOC_ARM_LDRS_PC_G1:
19561 case BFD_RELOC_ARM_LDRS_PC_G2:
19562 case BFD_RELOC_ARM_LDRS_SB_G0:
19563 case BFD_RELOC_ARM_LDRS_SB_G1:
19564 case BFD_RELOC_ARM_LDRS_SB_G2:
19565 assert (!fixP->fx_done);
19566 if (!seg->use_rela_p)
19567 {
19568 bfd_vma insn;
19569 bfd_vma addend_abs = abs (value);
19570
19571 /* Check that the absolute value of the addend can be
19572 encoded in 8 bits. */
19573 if (addend_abs >= 0x100)
19574 as_bad_where (fixP->fx_file, fixP->fx_line,
19575 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 19576 (unsigned long) addend_abs);
4962c51a
MS
19577
19578 /* Extract the instruction. */
19579 insn = md_chars_to_number (buf, INSN_SIZE);
19580
19581 /* If the addend is negative, clear bit 23 of the instruction.
19582 Otherwise set it. */
19583 if (value < 0)
19584 insn &= ~(1 << 23);
19585 else
19586 insn |= 1 << 23;
19587
19588 /* Place the first four bits of the absolute value of the addend
19589 into the first 4 bits of the instruction, and the remaining
19590 four into bits 8 .. 11. */
19591 insn &= 0xfffff0f0;
19592 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
19593
19594 /* Update the instruction. */
4962c51a
MS
19595 md_number_to_chars (buf, insn, INSN_SIZE);
19596 }
19597 break;
19598
19599 case BFD_RELOC_ARM_LDC_PC_G0:
19600 case BFD_RELOC_ARM_LDC_PC_G1:
19601 case BFD_RELOC_ARM_LDC_PC_G2:
19602 case BFD_RELOC_ARM_LDC_SB_G0:
19603 case BFD_RELOC_ARM_LDC_SB_G1:
19604 case BFD_RELOC_ARM_LDC_SB_G2:
19605 assert (!fixP->fx_done);
19606 if (!seg->use_rela_p)
19607 {
19608 bfd_vma insn;
19609 bfd_vma addend_abs = abs (value);
19610
19611 /* Check that the absolute value of the addend is a multiple of
19612 four and, when divided by four, fits in 8 bits. */
19613 if (addend_abs & 0x3)
19614 as_bad_where (fixP->fx_file, fixP->fx_line,
19615 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 19616 (unsigned long) addend_abs);
4962c51a
MS
19617
19618 if ((addend_abs >> 2) > 0xff)
19619 as_bad_where (fixP->fx_file, fixP->fx_line,
19620 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 19621 (unsigned long) addend_abs);
4962c51a
MS
19622
19623 /* Extract the instruction. */
19624 insn = md_chars_to_number (buf, INSN_SIZE);
19625
19626 /* If the addend is negative, clear bit 23 of the instruction.
19627 Otherwise set it. */
19628 if (value < 0)
19629 insn &= ~(1 << 23);
19630 else
19631 insn |= 1 << 23;
19632
19633 /* Place the addend (divided by four) into the first eight
19634 bits of the instruction. */
19635 insn &= 0xfffffff0;
19636 insn |= addend_abs >> 2;
5f4273c7
NC
19637
19638 /* Update the instruction. */
4962c51a
MS
19639 md_number_to_chars (buf, insn, INSN_SIZE);
19640 }
19641 break;
19642
845b51d6
PB
19643 case BFD_RELOC_ARM_V4BX:
19644 /* This will need to go in the object file. */
19645 fixP->fx_done = 0;
19646 break;
19647
c19d1205
ZW
19648 case BFD_RELOC_UNUSED:
19649 default:
19650 as_bad_where (fixP->fx_file, fixP->fx_line,
19651 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19652 }
6c43fab6
RE
19653}
19654
c19d1205
ZW
19655/* Translate internal representation of relocation info to BFD target
19656 format. */
a737bd4d 19657
c19d1205 19658arelent *
00a97672 19659tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 19660{
c19d1205
ZW
19661 arelent * reloc;
19662 bfd_reloc_code_real_type code;
a737bd4d 19663
c19d1205 19664 reloc = xmalloc (sizeof (arelent));
a737bd4d 19665
c19d1205
ZW
19666 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19667 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19668 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 19669
2fc8bdac 19670 if (fixp->fx_pcrel)
00a97672
RS
19671 {
19672 if (section->use_rela_p)
19673 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19674 else
19675 fixp->fx_offset = reloc->address;
19676 }
c19d1205 19677 reloc->addend = fixp->fx_offset;
a737bd4d 19678
c19d1205 19679 switch (fixp->fx_r_type)
a737bd4d 19680 {
c19d1205
ZW
19681 case BFD_RELOC_8:
19682 if (fixp->fx_pcrel)
19683 {
19684 code = BFD_RELOC_8_PCREL;
19685 break;
19686 }
a737bd4d 19687
c19d1205
ZW
19688 case BFD_RELOC_16:
19689 if (fixp->fx_pcrel)
19690 {
19691 code = BFD_RELOC_16_PCREL;
19692 break;
19693 }
6c43fab6 19694
c19d1205
ZW
19695 case BFD_RELOC_32:
19696 if (fixp->fx_pcrel)
19697 {
19698 code = BFD_RELOC_32_PCREL;
19699 break;
19700 }
a737bd4d 19701
b6895b4f
PB
19702 case BFD_RELOC_ARM_MOVW:
19703 if (fixp->fx_pcrel)
19704 {
19705 code = BFD_RELOC_ARM_MOVW_PCREL;
19706 break;
19707 }
19708
19709 case BFD_RELOC_ARM_MOVT:
19710 if (fixp->fx_pcrel)
19711 {
19712 code = BFD_RELOC_ARM_MOVT_PCREL;
19713 break;
19714 }
19715
19716 case BFD_RELOC_ARM_THUMB_MOVW:
19717 if (fixp->fx_pcrel)
19718 {
19719 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19720 break;
19721 }
19722
19723 case BFD_RELOC_ARM_THUMB_MOVT:
19724 if (fixp->fx_pcrel)
19725 {
19726 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19727 break;
19728 }
19729
c19d1205
ZW
19730 case BFD_RELOC_NONE:
19731 case BFD_RELOC_ARM_PCREL_BRANCH:
19732 case BFD_RELOC_ARM_PCREL_BLX:
19733 case BFD_RELOC_RVA:
19734 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19735 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19736 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19737 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19738 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19739 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19740 case BFD_RELOC_THUMB_PCREL_BLX:
19741 case BFD_RELOC_VTABLE_ENTRY:
19742 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
19743#ifdef TE_PE
19744 case BFD_RELOC_32_SECREL:
19745#endif
c19d1205
ZW
19746 code = fixp->fx_r_type;
19747 break;
a737bd4d 19748
c19d1205
ZW
19749 case BFD_RELOC_ARM_LITERAL:
19750 case BFD_RELOC_ARM_HWLITERAL:
19751 /* If this is called then the a literal has
19752 been referenced across a section boundary. */
19753 as_bad_where (fixp->fx_file, fixp->fx_line,
19754 _("literal referenced across section boundary"));
19755 return NULL;
a737bd4d 19756
c19d1205
ZW
19757#ifdef OBJ_ELF
19758 case BFD_RELOC_ARM_GOT32:
19759 case BFD_RELOC_ARM_GOTOFF:
19760 case BFD_RELOC_ARM_PLT32:
19761 case BFD_RELOC_ARM_TARGET1:
19762 case BFD_RELOC_ARM_ROSEGREL32:
19763 case BFD_RELOC_ARM_SBREL32:
19764 case BFD_RELOC_ARM_PREL31:
19765 case BFD_RELOC_ARM_TARGET2:
19766 case BFD_RELOC_ARM_TLS_LE32:
19767 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
19768 case BFD_RELOC_ARM_PCREL_CALL:
19769 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
19770 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19771 case BFD_RELOC_ARM_ALU_PC_G0:
19772 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19773 case BFD_RELOC_ARM_ALU_PC_G1:
19774 case BFD_RELOC_ARM_ALU_PC_G2:
19775 case BFD_RELOC_ARM_LDR_PC_G0:
19776 case BFD_RELOC_ARM_LDR_PC_G1:
19777 case BFD_RELOC_ARM_LDR_PC_G2:
19778 case BFD_RELOC_ARM_LDRS_PC_G0:
19779 case BFD_RELOC_ARM_LDRS_PC_G1:
19780 case BFD_RELOC_ARM_LDRS_PC_G2:
19781 case BFD_RELOC_ARM_LDC_PC_G0:
19782 case BFD_RELOC_ARM_LDC_PC_G1:
19783 case BFD_RELOC_ARM_LDC_PC_G2:
19784 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19785 case BFD_RELOC_ARM_ALU_SB_G0:
19786 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19787 case BFD_RELOC_ARM_ALU_SB_G1:
19788 case BFD_RELOC_ARM_ALU_SB_G2:
19789 case BFD_RELOC_ARM_LDR_SB_G0:
19790 case BFD_RELOC_ARM_LDR_SB_G1:
19791 case BFD_RELOC_ARM_LDR_SB_G2:
19792 case BFD_RELOC_ARM_LDRS_SB_G0:
19793 case BFD_RELOC_ARM_LDRS_SB_G1:
19794 case BFD_RELOC_ARM_LDRS_SB_G2:
19795 case BFD_RELOC_ARM_LDC_SB_G0:
19796 case BFD_RELOC_ARM_LDC_SB_G1:
19797 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 19798 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
19799 code = fixp->fx_r_type;
19800 break;
a737bd4d 19801
c19d1205
ZW
19802 case BFD_RELOC_ARM_TLS_GD32:
19803 case BFD_RELOC_ARM_TLS_IE32:
19804 case BFD_RELOC_ARM_TLS_LDM32:
19805 /* BFD will include the symbol's address in the addend.
19806 But we don't want that, so subtract it out again here. */
19807 if (!S_IS_COMMON (fixp->fx_addsy))
19808 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19809 code = fixp->fx_r_type;
19810 break;
19811#endif
a737bd4d 19812
c19d1205
ZW
19813 case BFD_RELOC_ARM_IMMEDIATE:
19814 as_bad_where (fixp->fx_file, fixp->fx_line,
19815 _("internal relocation (type: IMMEDIATE) not fixed up"));
19816 return NULL;
a737bd4d 19817
c19d1205
ZW
19818 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19819 as_bad_where (fixp->fx_file, fixp->fx_line,
19820 _("ADRL used for a symbol not defined in the same file"));
19821 return NULL;
a737bd4d 19822
c19d1205 19823 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19824 if (section->use_rela_p)
19825 {
19826 code = fixp->fx_r_type;
19827 break;
19828 }
19829
c19d1205
ZW
19830 if (fixp->fx_addsy != NULL
19831 && !S_IS_DEFINED (fixp->fx_addsy)
19832 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 19833 {
c19d1205
ZW
19834 as_bad_where (fixp->fx_file, fixp->fx_line,
19835 _("undefined local label `%s'"),
19836 S_GET_NAME (fixp->fx_addsy));
19837 return NULL;
a737bd4d
NC
19838 }
19839
c19d1205
ZW
19840 as_bad_where (fixp->fx_file, fixp->fx_line,
19841 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19842 return NULL;
a737bd4d 19843
c19d1205
ZW
19844 default:
19845 {
19846 char * type;
6c43fab6 19847
c19d1205
ZW
19848 switch (fixp->fx_r_type)
19849 {
19850 case BFD_RELOC_NONE: type = "NONE"; break;
19851 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19852 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19853 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19854 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19855 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19856 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19857 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19858 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19859 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19860 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19861 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19862 default: type = _("<unknown>"); break;
19863 }
19864 as_bad_where (fixp->fx_file, fixp->fx_line,
19865 _("cannot represent %s relocation in this object file format"),
19866 type);
19867 return NULL;
19868 }
a737bd4d 19869 }
6c43fab6 19870
c19d1205
ZW
19871#ifdef OBJ_ELF
19872 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19873 && GOT_symbol
19874 && fixp->fx_addsy == GOT_symbol)
19875 {
19876 code = BFD_RELOC_ARM_GOTPC;
19877 reloc->addend = fixp->fx_offset = reloc->address;
19878 }
19879#endif
6c43fab6 19880
c19d1205 19881 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19882
c19d1205
ZW
19883 if (reloc->howto == NULL)
19884 {
19885 as_bad_where (fixp->fx_file, fixp->fx_line,
19886 _("cannot represent %s relocation in this object file format"),
19887 bfd_get_reloc_code_name (code));
19888 return NULL;
19889 }
6c43fab6 19890
c19d1205
ZW
19891 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19892 vtable entry to be used in the relocation's section offset. */
19893 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19894 reloc->address = fixp->fx_offset;
6c43fab6 19895
c19d1205 19896 return reloc;
6c43fab6
RE
19897}
19898
c19d1205 19899/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19900
c19d1205
ZW
19901void
19902cons_fix_new_arm (fragS * frag,
19903 int where,
19904 int size,
19905 expressionS * exp)
6c43fab6 19906{
c19d1205
ZW
19907 bfd_reloc_code_real_type type;
19908 int pcrel = 0;
6c43fab6 19909
c19d1205
ZW
19910 /* Pick a reloc.
19911 FIXME: @@ Should look at CPU word size. */
19912 switch (size)
19913 {
19914 case 1:
19915 type = BFD_RELOC_8;
19916 break;
19917 case 2:
19918 type = BFD_RELOC_16;
19919 break;
19920 case 4:
19921 default:
19922 type = BFD_RELOC_32;
19923 break;
19924 case 8:
19925 type = BFD_RELOC_64;
19926 break;
19927 }
6c43fab6 19928
f0927246
NC
19929#ifdef TE_PE
19930 if (exp->X_op == O_secrel)
19931 {
19932 exp->X_op = O_symbol;
19933 type = BFD_RELOC_32_SECREL;
19934 }
19935#endif
19936
c19d1205
ZW
19937 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19938}
6c43fab6 19939
4343666d 19940#if defined (OBJ_COFF)
c19d1205
ZW
19941void
19942arm_validate_fix (fixS * fixP)
6c43fab6 19943{
c19d1205
ZW
19944 /* If the destination of the branch is a defined symbol which does not have
19945 the THUMB_FUNC attribute, then we must be calling a function which has
19946 the (interfacearm) attribute. We look for the Thumb entry point to that
19947 function and change the branch to refer to that function instead. */
19948 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19949 && fixP->fx_addsy != NULL
19950 && S_IS_DEFINED (fixP->fx_addsy)
19951 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19952 {
c19d1205 19953 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19954 }
c19d1205
ZW
19955}
19956#endif
6c43fab6 19957
c19d1205
ZW
19958int
19959arm_force_relocation (struct fix * fixp)
19960{
19961#if defined (OBJ_COFF) && defined (TE_PE)
19962 if (fixp->fx_r_type == BFD_RELOC_RVA)
19963 return 1;
19964#endif
6c43fab6 19965
c19d1205
ZW
19966 /* Resolve these relocations even if the symbol is extern or weak. */
19967 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19968 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19969 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19970 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19971 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19972 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19973 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19974 return 0;
a737bd4d 19975
4962c51a
MS
19976 /* Always leave these relocations for the linker. */
19977 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19978 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19979 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19980 return 1;
19981
f0291e4c
PB
19982 /* Always generate relocations against function symbols. */
19983 if (fixp->fx_r_type == BFD_RELOC_32
19984 && fixp->fx_addsy
19985 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19986 return 1;
19987
c19d1205 19988 return generic_force_reloc (fixp);
404ff6b5
AH
19989}
19990
0ffdc86c 19991#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19992/* Relocations against function names must be left unadjusted,
19993 so that the linker can use this information to generate interworking
19994 stubs. The MIPS version of this function
c19d1205
ZW
19995 also prevents relocations that are mips-16 specific, but I do not
19996 know why it does this.
404ff6b5 19997
c19d1205
ZW
19998 FIXME:
19999 There is one other problem that ought to be addressed here, but
20000 which currently is not: Taking the address of a label (rather
20001 than a function) and then later jumping to that address. Such
20002 addresses also ought to have their bottom bit set (assuming that
20003 they reside in Thumb code), but at the moment they will not. */
404ff6b5 20004
c19d1205
ZW
20005bfd_boolean
20006arm_fix_adjustable (fixS * fixP)
404ff6b5 20007{
c19d1205
ZW
20008 if (fixP->fx_addsy == NULL)
20009 return 1;
404ff6b5 20010
e28387c3
PB
20011 /* Preserve relocations against symbols with function type. */
20012 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
20013 return 0;
20014
c19d1205
ZW
20015 if (THUMB_IS_FUNC (fixP->fx_addsy)
20016 && fixP->fx_subsy == NULL)
20017 return 0;
a737bd4d 20018
c19d1205
ZW
20019 /* We need the symbol name for the VTABLE entries. */
20020 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
20021 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20022 return 0;
404ff6b5 20023
c19d1205
ZW
20024 /* Don't allow symbols to be discarded on GOT related relocs. */
20025 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
20026 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
20027 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
20028 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
20029 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
20030 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
20031 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
20032 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
20033 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
20034 return 0;
a737bd4d 20035
4962c51a
MS
20036 /* Similarly for group relocations. */
20037 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
20038 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
20039 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
20040 return 0;
20041
79947c54
CD
20042 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
20043 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
20044 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20045 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
20046 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
20047 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20048 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
20049 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
20050 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
20051 return 0;
20052
c19d1205 20053 return 1;
a737bd4d 20054}
0ffdc86c
NC
20055#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
20056
20057#ifdef OBJ_ELF
404ff6b5 20058
c19d1205
ZW
20059const char *
20060elf32_arm_target_format (void)
404ff6b5 20061{
c19d1205
ZW
20062#ifdef TE_SYMBIAN
20063 return (target_big_endian
20064 ? "elf32-bigarm-symbian"
20065 : "elf32-littlearm-symbian");
20066#elif defined (TE_VXWORKS)
20067 return (target_big_endian
20068 ? "elf32-bigarm-vxworks"
20069 : "elf32-littlearm-vxworks");
20070#else
20071 if (target_big_endian)
20072 return "elf32-bigarm";
20073 else
20074 return "elf32-littlearm";
20075#endif
404ff6b5
AH
20076}
20077
c19d1205
ZW
20078void
20079armelf_frob_symbol (symbolS * symp,
20080 int * puntp)
404ff6b5 20081{
c19d1205
ZW
20082 elf_frob_symbol (symp, puntp);
20083}
20084#endif
404ff6b5 20085
c19d1205 20086/* MD interface: Finalization. */
a737bd4d 20087
c19d1205
ZW
20088/* A good place to do this, although this was probably not intended
20089 for this kind of use. We need to dump the literal pool before
20090 references are made to a null symbol pointer. */
a737bd4d 20091
c19d1205
ZW
20092void
20093arm_cleanup (void)
20094{
20095 literal_pool * pool;
a737bd4d 20096
c19d1205
ZW
20097 for (pool = list_of_pools; pool; pool = pool->next)
20098 {
5f4273c7 20099 /* Put it at the end of the relevant section. */
c19d1205
ZW
20100 subseg_set (pool->section, pool->sub_section);
20101#ifdef OBJ_ELF
20102 arm_elf_change_section ();
20103#endif
20104 s_ltorg (0);
20105 }
404ff6b5
AH
20106}
20107
c19d1205
ZW
20108/* Adjust the symbol table. This marks Thumb symbols as distinct from
20109 ARM ones. */
404ff6b5 20110
c19d1205
ZW
20111void
20112arm_adjust_symtab (void)
404ff6b5 20113{
c19d1205
ZW
20114#ifdef OBJ_COFF
20115 symbolS * sym;
404ff6b5 20116
c19d1205
ZW
20117 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20118 {
20119 if (ARM_IS_THUMB (sym))
20120 {
20121 if (THUMB_IS_FUNC (sym))
20122 {
20123 /* Mark the symbol as a Thumb function. */
20124 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
20125 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
20126 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 20127
c19d1205
ZW
20128 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
20129 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
20130 else
20131 as_bad (_("%s: unexpected function type: %d"),
20132 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
20133 }
20134 else switch (S_GET_STORAGE_CLASS (sym))
20135 {
20136 case C_EXT:
20137 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
20138 break;
20139 case C_STAT:
20140 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
20141 break;
20142 case C_LABEL:
20143 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
20144 break;
20145 default:
20146 /* Do nothing. */
20147 break;
20148 }
20149 }
a737bd4d 20150
c19d1205
ZW
20151 if (ARM_IS_INTERWORK (sym))
20152 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 20153 }
c19d1205
ZW
20154#endif
20155#ifdef OBJ_ELF
20156 symbolS * sym;
20157 char bind;
404ff6b5 20158
c19d1205 20159 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 20160 {
c19d1205
ZW
20161 if (ARM_IS_THUMB (sym))
20162 {
20163 elf_symbol_type * elf_sym;
404ff6b5 20164
c19d1205
ZW
20165 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
20166 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 20167
b0796911
PB
20168 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
20169 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
20170 {
20171 /* If it's a .thumb_func, declare it as so,
20172 otherwise tag label as .code 16. */
20173 if (THUMB_IS_FUNC (sym))
20174 elf_sym->internal_elf_sym.st_info =
20175 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 20176 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
20177 elf_sym->internal_elf_sym.st_info =
20178 ELF_ST_INFO (bind, STT_ARM_16BIT);
20179 }
20180 }
20181 }
20182#endif
404ff6b5
AH
20183}
20184
c19d1205 20185/* MD interface: Initialization. */
404ff6b5 20186
a737bd4d 20187static void
c19d1205 20188set_constant_flonums (void)
a737bd4d 20189{
c19d1205 20190 int i;
404ff6b5 20191
c19d1205
ZW
20192 for (i = 0; i < NUM_FLOAT_VALS; i++)
20193 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
20194 abort ();
a737bd4d 20195}
404ff6b5 20196
3e9e4fcf
JB
20197/* Auto-select Thumb mode if it's the only available instruction set for the
20198 given architecture. */
20199
20200static void
20201autoselect_thumb_from_cpu_variant (void)
20202{
20203 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
20204 opcode_select (16);
20205}
20206
c19d1205
ZW
20207void
20208md_begin (void)
a737bd4d 20209{
c19d1205
ZW
20210 unsigned mach;
20211 unsigned int i;
404ff6b5 20212
c19d1205
ZW
20213 if ( (arm_ops_hsh = hash_new ()) == NULL
20214 || (arm_cond_hsh = hash_new ()) == NULL
20215 || (arm_shift_hsh = hash_new ()) == NULL
20216 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 20217 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 20218 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
20219 || (arm_reloc_hsh = hash_new ()) == NULL
20220 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
20221 as_fatal (_("virtual memory exhausted"));
20222
20223 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
5a49b8ac 20224 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
c19d1205 20225 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
5a49b8ac 20226 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
c19d1205 20227 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 20228 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 20229 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
5a49b8ac 20230 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
62b3e311 20231 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
5a49b8ac 20232 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
c19d1205 20233 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 20234 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
20235 for (i = 0;
20236 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
20237 i++)
20238 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
5a49b8ac 20239 (void *) (barrier_opt_names + i));
c19d1205
ZW
20240#ifdef OBJ_ELF
20241 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 20242 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
20243#endif
20244
20245 set_constant_flonums ();
404ff6b5 20246
c19d1205
ZW
20247 /* Set the cpu variant based on the command-line options. We prefer
20248 -mcpu= over -march= if both are set (as for GCC); and we prefer
20249 -mfpu= over any other way of setting the floating point unit.
20250 Use of legacy options with new options are faulted. */
e74cfd16 20251 if (legacy_cpu)
404ff6b5 20252 {
e74cfd16 20253 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
20254 as_bad (_("use of old and new-style options to set CPU type"));
20255
20256 mcpu_cpu_opt = legacy_cpu;
404ff6b5 20257 }
e74cfd16 20258 else if (!mcpu_cpu_opt)
c19d1205 20259 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 20260
e74cfd16 20261 if (legacy_fpu)
c19d1205 20262 {
e74cfd16 20263 if (mfpu_opt)
c19d1205 20264 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
20265
20266 mfpu_opt = legacy_fpu;
20267 }
e74cfd16 20268 else if (!mfpu_opt)
03b1477f 20269 {
c19d1205 20270#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
20271 /* Some environments specify a default FPU. If they don't, infer it
20272 from the processor. */
e74cfd16 20273 if (mcpu_fpu_opt)
03b1477f
RE
20274 mfpu_opt = mcpu_fpu_opt;
20275 else
20276 mfpu_opt = march_fpu_opt;
39c2da32 20277#else
e74cfd16 20278 mfpu_opt = &fpu_default;
39c2da32 20279#endif
03b1477f
RE
20280 }
20281
e74cfd16 20282 if (!mfpu_opt)
03b1477f 20283 {
493cb6ef 20284 if (mcpu_cpu_opt != NULL)
e74cfd16 20285 mfpu_opt = &fpu_default;
493cb6ef 20286 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 20287 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 20288 else
e74cfd16 20289 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
20290 }
20291
ee065d83 20292#ifdef CPU_DEFAULT
e74cfd16 20293 if (!mcpu_cpu_opt)
ee065d83 20294 {
e74cfd16
PB
20295 mcpu_cpu_opt = &cpu_default;
20296 selected_cpu = cpu_default;
ee065d83 20297 }
e74cfd16
PB
20298#else
20299 if (mcpu_cpu_opt)
20300 selected_cpu = *mcpu_cpu_opt;
ee065d83 20301 else
e74cfd16 20302 mcpu_cpu_opt = &arm_arch_any;
ee065d83 20303#endif
03b1477f 20304
e74cfd16 20305 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 20306
3e9e4fcf
JB
20307 autoselect_thumb_from_cpu_variant ();
20308
e74cfd16 20309 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 20310
f17c130b 20311#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 20312 {
7cc69913
NC
20313 unsigned int flags = 0;
20314
20315#if defined OBJ_ELF
20316 flags = meabi_flags;
d507cf36
PB
20317
20318 switch (meabi_flags)
33a392fb 20319 {
d507cf36 20320 case EF_ARM_EABI_UNKNOWN:
7cc69913 20321#endif
d507cf36
PB
20322 /* Set the flags in the private structure. */
20323 if (uses_apcs_26) flags |= F_APCS26;
20324 if (support_interwork) flags |= F_INTERWORK;
20325 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 20326 if (pic_code) flags |= F_PIC;
e74cfd16 20327 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
20328 flags |= F_SOFT_FLOAT;
20329
d507cf36
PB
20330 switch (mfloat_abi_opt)
20331 {
20332 case ARM_FLOAT_ABI_SOFT:
20333 case ARM_FLOAT_ABI_SOFTFP:
20334 flags |= F_SOFT_FLOAT;
20335 break;
33a392fb 20336
d507cf36
PB
20337 case ARM_FLOAT_ABI_HARD:
20338 if (flags & F_SOFT_FLOAT)
20339 as_bad (_("hard-float conflicts with specified fpu"));
20340 break;
20341 }
03b1477f 20342
e74cfd16
PB
20343 /* Using pure-endian doubles (even if soft-float). */
20344 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 20345 flags |= F_VFP_FLOAT;
f17c130b 20346
fde78edd 20347#if defined OBJ_ELF
e74cfd16 20348 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 20349 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
20350 break;
20351
8cb51566 20352 case EF_ARM_EABI_VER4:
3a4a14e9 20353 case EF_ARM_EABI_VER5:
c19d1205 20354 /* No additional flags to set. */
d507cf36
PB
20355 break;
20356
20357 default:
20358 abort ();
20359 }
7cc69913 20360#endif
b99bd4ef
NC
20361 bfd_set_private_flags (stdoutput, flags);
20362
20363 /* We have run out flags in the COFF header to encode the
20364 status of ATPCS support, so instead we create a dummy,
c19d1205 20365 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
20366 if (atpcs)
20367 {
20368 asection * sec;
20369
20370 sec = bfd_make_section (stdoutput, ".arm.atpcs");
20371
20372 if (sec != NULL)
20373 {
20374 bfd_set_section_flags
20375 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
20376 bfd_set_section_size (stdoutput, sec, 0);
20377 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
20378 }
20379 }
7cc69913 20380 }
f17c130b 20381#endif
b99bd4ef
NC
20382
20383 /* Record the CPU type as well. */
2d447fca
JM
20384 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
20385 mach = bfd_mach_arm_iWMMXt2;
20386 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 20387 mach = bfd_mach_arm_iWMMXt;
e74cfd16 20388 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 20389 mach = bfd_mach_arm_XScale;
e74cfd16 20390 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 20391 mach = bfd_mach_arm_ep9312;
e74cfd16 20392 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 20393 mach = bfd_mach_arm_5TE;
e74cfd16 20394 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 20395 {
e74cfd16 20396 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
20397 mach = bfd_mach_arm_5T;
20398 else
20399 mach = bfd_mach_arm_5;
20400 }
e74cfd16 20401 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 20402 {
e74cfd16 20403 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
20404 mach = bfd_mach_arm_4T;
20405 else
20406 mach = bfd_mach_arm_4;
20407 }
e74cfd16 20408 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 20409 mach = bfd_mach_arm_3M;
e74cfd16
PB
20410 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
20411 mach = bfd_mach_arm_3;
20412 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
20413 mach = bfd_mach_arm_2a;
20414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
20415 mach = bfd_mach_arm_2;
20416 else
20417 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
20418
20419 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
20420}
20421
c19d1205 20422/* Command line processing. */
b99bd4ef 20423
c19d1205
ZW
20424/* md_parse_option
20425 Invocation line includes a switch not recognized by the base assembler.
20426 See if it's a processor-specific option.
b99bd4ef 20427
c19d1205
ZW
20428 This routine is somewhat complicated by the need for backwards
20429 compatibility (since older releases of gcc can't be changed).
20430 The new options try to make the interface as compatible as
20431 possible with GCC.
b99bd4ef 20432
c19d1205 20433 New options (supported) are:
b99bd4ef 20434
c19d1205
ZW
20435 -mcpu=<cpu name> Assemble for selected processor
20436 -march=<architecture name> Assemble for selected architecture
20437 -mfpu=<fpu architecture> Assemble for selected FPU.
20438 -EB/-mbig-endian Big-endian
20439 -EL/-mlittle-endian Little-endian
20440 -k Generate PIC code
20441 -mthumb Start in Thumb mode
20442 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 20443
278df34e
NS
20444 -m[no-]warn-deprecated Warn about deprecated features
20445
c19d1205 20446 For now we will also provide support for:
b99bd4ef 20447
c19d1205
ZW
20448 -mapcs-32 32-bit Program counter
20449 -mapcs-26 26-bit Program counter
20450 -macps-float Floats passed in FP registers
20451 -mapcs-reentrant Reentrant code
20452 -matpcs
20453 (sometime these will probably be replaced with -mapcs=<list of options>
20454 and -matpcs=<list of options>)
b99bd4ef 20455
c19d1205
ZW
20456 The remaining options are only supported for back-wards compatibility.
20457 Cpu variants, the arm part is optional:
20458 -m[arm]1 Currently not supported.
20459 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
20460 -m[arm]3 Arm 3 processor
20461 -m[arm]6[xx], Arm 6 processors
20462 -m[arm]7[xx][t][[d]m] Arm 7 processors
20463 -m[arm]8[10] Arm 8 processors
20464 -m[arm]9[20][tdmi] Arm 9 processors
20465 -mstrongarm[110[0]] StrongARM processors
20466 -mxscale XScale processors
20467 -m[arm]v[2345[t[e]]] Arm architectures
20468 -mall All (except the ARM1)
20469 FP variants:
20470 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
20471 -mfpe-old (No float load/store multiples)
20472 -mvfpxd VFP Single precision
20473 -mvfp All VFP
20474 -mno-fpu Disable all floating point instructions
b99bd4ef 20475
c19d1205
ZW
20476 The following CPU names are recognized:
20477 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
20478 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
20479 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
20480 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
20481 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
20482 arm10t arm10e, arm1020t, arm1020e, arm10200e,
20483 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 20484
c19d1205 20485 */
b99bd4ef 20486
c19d1205 20487const char * md_shortopts = "m:k";
b99bd4ef 20488
c19d1205
ZW
20489#ifdef ARM_BI_ENDIAN
20490#define OPTION_EB (OPTION_MD_BASE + 0)
20491#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 20492#else
c19d1205
ZW
20493#if TARGET_BYTES_BIG_ENDIAN
20494#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 20495#else
c19d1205
ZW
20496#define OPTION_EL (OPTION_MD_BASE + 1)
20497#endif
b99bd4ef 20498#endif
845b51d6 20499#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 20500
c19d1205 20501struct option md_longopts[] =
b99bd4ef 20502{
c19d1205
ZW
20503#ifdef OPTION_EB
20504 {"EB", no_argument, NULL, OPTION_EB},
20505#endif
20506#ifdef OPTION_EL
20507 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 20508#endif
845b51d6 20509 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
20510 {NULL, no_argument, NULL, 0}
20511};
b99bd4ef 20512
c19d1205 20513size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 20514
c19d1205 20515struct arm_option_table
b99bd4ef 20516{
c19d1205
ZW
20517 char *option; /* Option name to match. */
20518 char *help; /* Help information. */
20519 int *var; /* Variable to change. */
20520 int value; /* What to change it to. */
20521 char *deprecated; /* If non-null, print this message. */
20522};
b99bd4ef 20523
c19d1205
ZW
20524struct arm_option_table arm_opts[] =
20525{
20526 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
20527 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
20528 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
20529 &support_interwork, 1, NULL},
20530 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
20531 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
20532 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20533 1, NULL},
20534 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20535 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20536 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20537 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20538 NULL},
b99bd4ef 20539
c19d1205
ZW
20540 /* These are recognized by the assembler, but have no affect on code. */
20541 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20542 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
20543
20544 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20545 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20546 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
20547 {NULL, NULL, NULL, 0, NULL}
20548};
20549
20550struct arm_legacy_option_table
20551{
20552 char *option; /* Option name to match. */
20553 const arm_feature_set **var; /* Variable to change. */
20554 const arm_feature_set value; /* What to change it to. */
20555 char *deprecated; /* If non-null, print this message. */
20556};
b99bd4ef 20557
e74cfd16
PB
20558const struct arm_legacy_option_table arm_legacy_opts[] =
20559{
c19d1205
ZW
20560 /* DON'T add any new processors to this list -- we want the whole list
20561 to go away... Add them to the processors table instead. */
e74cfd16
PB
20562 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20563 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20564 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20565 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20566 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20567 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20568 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20569 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20570 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20571 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20572 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20573 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20574 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20575 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20576 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20577 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20578 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20579 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20580 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20581 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20582 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20583 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20584 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20585 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20586 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20587 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20588 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20589 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20590 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20591 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20592 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20593 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20594 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20595 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20596 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20597 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20598 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20599 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20600 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20601 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20602 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20603 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20604 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20605 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20606 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20607 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20608 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20609 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20610 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20611 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20612 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20613 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20614 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20615 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20616 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20617 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20618 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20619 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20620 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20621 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20622 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20623 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20624 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20625 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20626 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20627 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20628 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20629 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20630 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20631 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20632 N_("use -mcpu=strongarm110")},
e74cfd16 20633 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20634 N_("use -mcpu=strongarm1100")},
e74cfd16 20635 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20636 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
20637 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20638 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20639 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 20640
c19d1205 20641 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
20642 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20643 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20644 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20645 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20646 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20647 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20648 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20649 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20650 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20651 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20652 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20653 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20654 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20655 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20656 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20657 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20658 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20659 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 20660
c19d1205 20661 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
20662 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20663 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20664 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20665 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 20666 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 20667
e74cfd16 20668 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 20669};
7ed4c4c5 20670
c19d1205 20671struct arm_cpu_option_table
7ed4c4c5 20672{
c19d1205 20673 char *name;
e74cfd16 20674 const arm_feature_set value;
c19d1205
ZW
20675 /* For some CPUs we assume an FPU unless the user explicitly sets
20676 -mfpu=... */
e74cfd16 20677 const arm_feature_set default_fpu;
ee065d83
PB
20678 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20679 case. */
20680 const char *canonical_name;
c19d1205 20681};
7ed4c4c5 20682
c19d1205
ZW
20683/* This list should, at a minimum, contain all the cpu names
20684 recognized by GCC. */
e74cfd16 20685static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 20686{
ee065d83
PB
20687 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20688 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20689 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20690 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20691 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20692 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20693 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20694 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20695 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20696 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20697 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20698 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20699 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20700 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20701 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20702 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20703 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20704 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20705 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20706 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20707 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20708 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20709 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20710 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20711 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20712 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20713 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20714 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20715 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20716 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20717 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20718 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20719 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20720 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20721 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20722 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20723 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20724 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20725 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20726 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20727 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20728 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20729 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20730 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
20731 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20732 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
20733 /* For V5 or later processors we default to using VFP; but the user
20734 should really set the FPU type explicitly. */
ee065d83
PB
20735 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20736 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20737 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20738 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20739 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20740 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20741 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20742 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20743 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20744 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20745 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20746 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20747 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20748 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20749 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20750 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20751 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20752 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20753 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20754 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20755 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
20756 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20757 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
20758 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20759 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20760 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20761 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20762 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20763 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20764 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20765 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20766 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20767 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
20768 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20769 | FPU_NEON_EXT_V1),
15290f0a
PB
20770 NULL},
20771 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20772 | FPU_NEON_EXT_V1),
5287ad62 20773 NULL},
62b3e311
PB
20774 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20775 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 20776 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
5b19eaba 20777 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 20778 /* ??? XSCALE is really an architecture. */
ee065d83 20779 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20780 /* ??? iwmmxt is not a processor. */
ee065d83 20781 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 20782 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 20783 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20784 /* Maverick */
e74cfd16
PB
20785 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20786 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 20787};
7ed4c4c5 20788
c19d1205 20789struct arm_arch_option_table
7ed4c4c5 20790{
c19d1205 20791 char *name;
e74cfd16
PB
20792 const arm_feature_set value;
20793 const arm_feature_set default_fpu;
c19d1205 20794};
7ed4c4c5 20795
c19d1205
ZW
20796/* This list should, at a minimum, contain all the architecture names
20797 recognized by GCC. */
e74cfd16 20798static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
20799{
20800 {"all", ARM_ANY, FPU_ARCH_FPA},
20801 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20802 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20803 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20804 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20805 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20806 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20807 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20808 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20809 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20810 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20811 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20812 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20813 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20814 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20815 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20816 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20817 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20818 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20819 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20820 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20821 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20822 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20823 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20824 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20825 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 20826 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 20827 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
20828 /* The official spelling of the ARMv7 profile variants is the dashed form.
20829 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
20830 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20831 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20832 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
20833 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20834 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20835 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
20836 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20837 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 20838 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 20839 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 20840};
7ed4c4c5 20841
c19d1205 20842/* ISA extensions in the co-processor space. */
e74cfd16 20843struct arm_option_cpu_value_table
c19d1205
ZW
20844{
20845 char *name;
e74cfd16 20846 const arm_feature_set value;
c19d1205 20847};
7ed4c4c5 20848
e74cfd16 20849static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 20850{
e74cfd16
PB
20851 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20852 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20853 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 20854 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 20855 {NULL, ARM_ARCH_NONE}
c19d1205 20856};
7ed4c4c5 20857
c19d1205
ZW
20858/* This list should, at a minimum, contain all the fpu names
20859 recognized by GCC. */
e74cfd16 20860static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
20861{
20862 {"softfpa", FPU_NONE},
20863 {"fpe", FPU_ARCH_FPE},
20864 {"fpe2", FPU_ARCH_FPE},
20865 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20866 {"fpa", FPU_ARCH_FPA},
20867 {"fpa10", FPU_ARCH_FPA},
20868 {"fpa11", FPU_ARCH_FPA},
20869 {"arm7500fe", FPU_ARCH_FPA},
20870 {"softvfp", FPU_ARCH_VFP},
20871 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20872 {"vfp", FPU_ARCH_VFP_V2},
20873 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 20874 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
20875 {"vfp10", FPU_ARCH_VFP_V2},
20876 {"vfp10-r0", FPU_ARCH_VFP_V1},
20877 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
20878 {"vfpv2", FPU_ARCH_VFP_V2},
20879 {"vfpv3", FPU_ARCH_VFP_V3},
20880 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
c19d1205
ZW
20881 {"arm1020t", FPU_ARCH_VFP_V1},
20882 {"arm1020e", FPU_ARCH_VFP_V2},
20883 {"arm1136jfs", FPU_ARCH_VFP_V2},
20884 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20885 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20886 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 20887 {"neon-fp16", FPU_ARCH_NEON_FP16},
e74cfd16
PB
20888 {NULL, ARM_ARCH_NONE}
20889};
20890
20891struct arm_option_value_table
20892{
20893 char *name;
20894 long value;
c19d1205 20895};
7ed4c4c5 20896
e74cfd16 20897static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20898{
20899 {"hard", ARM_FLOAT_ABI_HARD},
20900 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20901 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20902 {NULL, 0}
c19d1205 20903};
7ed4c4c5 20904
c19d1205 20905#ifdef OBJ_ELF
3a4a14e9 20906/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20907static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20908{
20909 {"gnu", EF_ARM_EABI_UNKNOWN},
20910 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20911 {"5", EF_ARM_EABI_VER5},
e74cfd16 20912 {NULL, 0}
c19d1205
ZW
20913};
20914#endif
7ed4c4c5 20915
c19d1205
ZW
20916struct arm_long_option_table
20917{
20918 char * option; /* Substring to match. */
20919 char * help; /* Help information. */
20920 int (* func) (char * subopt); /* Function to decode sub-option. */
20921 char * deprecated; /* If non-null, print this message. */
20922};
7ed4c4c5
NC
20923
20924static int
e74cfd16 20925arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20926{
e74cfd16
PB
20927 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20928
20929 /* Copy the feature set, so that we can modify it. */
20930 *ext_set = **opt_p;
20931 *opt_p = ext_set;
20932
c19d1205 20933 while (str != NULL && *str != 0)
7ed4c4c5 20934 {
e74cfd16 20935 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20936 char * ext;
20937 int optlen;
7ed4c4c5 20938
c19d1205
ZW
20939 if (*str != '+')
20940 {
20941 as_bad (_("invalid architectural extension"));
20942 return 0;
20943 }
7ed4c4c5 20944
c19d1205
ZW
20945 str++;
20946 ext = strchr (str, '+');
7ed4c4c5 20947
c19d1205
ZW
20948 if (ext != NULL)
20949 optlen = ext - str;
20950 else
20951 optlen = strlen (str);
7ed4c4c5 20952
c19d1205
ZW
20953 if (optlen == 0)
20954 {
20955 as_bad (_("missing architectural extension"));
20956 return 0;
20957 }
7ed4c4c5 20958
c19d1205
ZW
20959 for (opt = arm_extensions; opt->name != NULL; opt++)
20960 if (strncmp (opt->name, str, optlen) == 0)
20961 {
e74cfd16 20962 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20963 break;
20964 }
7ed4c4c5 20965
c19d1205
ZW
20966 if (opt->name == NULL)
20967 {
5f4273c7 20968 as_bad (_("unknown architectural extension `%s'"), str);
c19d1205
ZW
20969 return 0;
20970 }
7ed4c4c5 20971
c19d1205
ZW
20972 str = ext;
20973 };
7ed4c4c5 20974
c19d1205
ZW
20975 return 1;
20976}
7ed4c4c5 20977
c19d1205
ZW
20978static int
20979arm_parse_cpu (char * str)
7ed4c4c5 20980{
e74cfd16 20981 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20982 char * ext = strchr (str, '+');
20983 int optlen;
7ed4c4c5 20984
c19d1205
ZW
20985 if (ext != NULL)
20986 optlen = ext - str;
7ed4c4c5 20987 else
c19d1205 20988 optlen = strlen (str);
7ed4c4c5 20989
c19d1205 20990 if (optlen == 0)
7ed4c4c5 20991 {
c19d1205
ZW
20992 as_bad (_("missing cpu name `%s'"), str);
20993 return 0;
7ed4c4c5
NC
20994 }
20995
c19d1205
ZW
20996 for (opt = arm_cpus; opt->name != NULL; opt++)
20997 if (strncmp (opt->name, str, optlen) == 0)
20998 {
e74cfd16
PB
20999 mcpu_cpu_opt = &opt->value;
21000 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 21001 if (opt->canonical_name)
5f4273c7 21002 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
21003 else
21004 {
21005 int i;
21006 for (i = 0; i < optlen; i++)
21007 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21008 selected_cpu_name[i] = 0;
21009 }
7ed4c4c5 21010
c19d1205
ZW
21011 if (ext != NULL)
21012 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 21013
c19d1205
ZW
21014 return 1;
21015 }
7ed4c4c5 21016
c19d1205
ZW
21017 as_bad (_("unknown cpu `%s'"), str);
21018 return 0;
7ed4c4c5
NC
21019}
21020
c19d1205
ZW
21021static int
21022arm_parse_arch (char * str)
7ed4c4c5 21023{
e74cfd16 21024 const struct arm_arch_option_table *opt;
c19d1205
ZW
21025 char *ext = strchr (str, '+');
21026 int optlen;
7ed4c4c5 21027
c19d1205
ZW
21028 if (ext != NULL)
21029 optlen = ext - str;
7ed4c4c5 21030 else
c19d1205 21031 optlen = strlen (str);
7ed4c4c5 21032
c19d1205 21033 if (optlen == 0)
7ed4c4c5 21034 {
c19d1205
ZW
21035 as_bad (_("missing architecture name `%s'"), str);
21036 return 0;
7ed4c4c5
NC
21037 }
21038
c19d1205
ZW
21039 for (opt = arm_archs; opt->name != NULL; opt++)
21040 if (streq (opt->name, str))
21041 {
e74cfd16
PB
21042 march_cpu_opt = &opt->value;
21043 march_fpu_opt = &opt->default_fpu;
5f4273c7 21044 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 21045
c19d1205
ZW
21046 if (ext != NULL)
21047 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 21048
c19d1205
ZW
21049 return 1;
21050 }
21051
21052 as_bad (_("unknown architecture `%s'\n"), str);
21053 return 0;
7ed4c4c5 21054}
eb043451 21055
c19d1205
ZW
21056static int
21057arm_parse_fpu (char * str)
21058{
e74cfd16 21059 const struct arm_option_cpu_value_table * opt;
b99bd4ef 21060
c19d1205
ZW
21061 for (opt = arm_fpus; opt->name != NULL; opt++)
21062 if (streq (opt->name, str))
21063 {
e74cfd16 21064 mfpu_opt = &opt->value;
c19d1205
ZW
21065 return 1;
21066 }
b99bd4ef 21067
c19d1205
ZW
21068 as_bad (_("unknown floating point format `%s'\n"), str);
21069 return 0;
21070}
21071
21072static int
21073arm_parse_float_abi (char * str)
b99bd4ef 21074{
e74cfd16 21075 const struct arm_option_value_table * opt;
b99bd4ef 21076
c19d1205
ZW
21077 for (opt = arm_float_abis; opt->name != NULL; opt++)
21078 if (streq (opt->name, str))
21079 {
21080 mfloat_abi_opt = opt->value;
21081 return 1;
21082 }
cc8a6dd0 21083
c19d1205
ZW
21084 as_bad (_("unknown floating point abi `%s'\n"), str);
21085 return 0;
21086}
b99bd4ef 21087
c19d1205
ZW
21088#ifdef OBJ_ELF
21089static int
21090arm_parse_eabi (char * str)
21091{
e74cfd16 21092 const struct arm_option_value_table *opt;
cc8a6dd0 21093
c19d1205
ZW
21094 for (opt = arm_eabis; opt->name != NULL; opt++)
21095 if (streq (opt->name, str))
21096 {
21097 meabi_flags = opt->value;
21098 return 1;
21099 }
21100 as_bad (_("unknown EABI `%s'\n"), str);
21101 return 0;
21102}
21103#endif
cc8a6dd0 21104
c19d1205
ZW
21105struct arm_long_option_table arm_long_opts[] =
21106{
21107 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
21108 arm_parse_cpu, NULL},
21109 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
21110 arm_parse_arch, NULL},
21111 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
21112 arm_parse_fpu, NULL},
21113 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
21114 arm_parse_float_abi, NULL},
21115#ifdef OBJ_ELF
7fac0536 21116 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
21117 arm_parse_eabi, NULL},
21118#endif
21119 {NULL, NULL, 0, NULL}
21120};
cc8a6dd0 21121
c19d1205
ZW
21122int
21123md_parse_option (int c, char * arg)
21124{
21125 struct arm_option_table *opt;
e74cfd16 21126 const struct arm_legacy_option_table *fopt;
c19d1205 21127 struct arm_long_option_table *lopt;
b99bd4ef 21128
c19d1205 21129 switch (c)
b99bd4ef 21130 {
c19d1205
ZW
21131#ifdef OPTION_EB
21132 case OPTION_EB:
21133 target_big_endian = 1;
21134 break;
21135#endif
cc8a6dd0 21136
c19d1205
ZW
21137#ifdef OPTION_EL
21138 case OPTION_EL:
21139 target_big_endian = 0;
21140 break;
21141#endif
b99bd4ef 21142
845b51d6
PB
21143 case OPTION_FIX_V4BX:
21144 fix_v4bx = TRUE;
21145 break;
21146
c19d1205
ZW
21147 case 'a':
21148 /* Listing option. Just ignore these, we don't support additional
21149 ones. */
21150 return 0;
b99bd4ef 21151
c19d1205
ZW
21152 default:
21153 for (opt = arm_opts; opt->option != NULL; opt++)
21154 {
21155 if (c == opt->option[0]
21156 && ((arg == NULL && opt->option[1] == 0)
21157 || streq (arg, opt->option + 1)))
21158 {
c19d1205 21159 /* If the option is deprecated, tell the user. */
278df34e 21160 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
21161 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21162 arg ? arg : "", _(opt->deprecated));
b99bd4ef 21163
c19d1205
ZW
21164 if (opt->var != NULL)
21165 *opt->var = opt->value;
cc8a6dd0 21166
c19d1205
ZW
21167 return 1;
21168 }
21169 }
b99bd4ef 21170
e74cfd16
PB
21171 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
21172 {
21173 if (c == fopt->option[0]
21174 && ((arg == NULL && fopt->option[1] == 0)
21175 || streq (arg, fopt->option + 1)))
21176 {
e74cfd16 21177 /* If the option is deprecated, tell the user. */
278df34e 21178 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
21179 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21180 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
21181
21182 if (fopt->var != NULL)
21183 *fopt->var = &fopt->value;
21184
21185 return 1;
21186 }
21187 }
21188
c19d1205
ZW
21189 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21190 {
21191 /* These options are expected to have an argument. */
21192 if (c == lopt->option[0]
21193 && arg != NULL
21194 && strncmp (arg, lopt->option + 1,
21195 strlen (lopt->option + 1)) == 0)
21196 {
c19d1205 21197 /* If the option is deprecated, tell the user. */
278df34e 21198 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
21199 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
21200 _(lopt->deprecated));
b99bd4ef 21201
c19d1205
ZW
21202 /* Call the sup-option parser. */
21203 return lopt->func (arg + strlen (lopt->option) - 1);
21204 }
21205 }
a737bd4d 21206
c19d1205
ZW
21207 return 0;
21208 }
a394c00f 21209
c19d1205
ZW
21210 return 1;
21211}
a394c00f 21212
c19d1205
ZW
21213void
21214md_show_usage (FILE * fp)
a394c00f 21215{
c19d1205
ZW
21216 struct arm_option_table *opt;
21217 struct arm_long_option_table *lopt;
a394c00f 21218
c19d1205 21219 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 21220
c19d1205
ZW
21221 for (opt = arm_opts; opt->option != NULL; opt++)
21222 if (opt->help != NULL)
21223 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 21224
c19d1205
ZW
21225 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21226 if (lopt->help != NULL)
21227 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 21228
c19d1205
ZW
21229#ifdef OPTION_EB
21230 fprintf (fp, _("\
21231 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
21232#endif
21233
c19d1205
ZW
21234#ifdef OPTION_EL
21235 fprintf (fp, _("\
21236 -EL assemble code for a little-endian cpu\n"));
a737bd4d 21237#endif
845b51d6
PB
21238
21239 fprintf (fp, _("\
21240 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 21241}
ee065d83
PB
21242
21243
21244#ifdef OBJ_ELF
62b3e311
PB
21245typedef struct
21246{
21247 int val;
21248 arm_feature_set flags;
21249} cpu_arch_ver_table;
21250
21251/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
21252 least features first. */
21253static const cpu_arch_ver_table cpu_arch_ver[] =
21254{
21255 {1, ARM_ARCH_V4},
21256 {2, ARM_ARCH_V4T},
21257 {3, ARM_ARCH_V5},
ee3c0378 21258 {3, ARM_ARCH_V5T},
62b3e311
PB
21259 {4, ARM_ARCH_V5TE},
21260 {5, ARM_ARCH_V5TEJ},
21261 {6, ARM_ARCH_V6},
21262 {7, ARM_ARCH_V6Z},
7e806470 21263 {9, ARM_ARCH_V6K},
91e22acd 21264 {11, ARM_ARCH_V6M},
7e806470 21265 {8, ARM_ARCH_V6T2},
62b3e311
PB
21266 {10, ARM_ARCH_V7A},
21267 {10, ARM_ARCH_V7R},
21268 {10, ARM_ARCH_V7M},
21269 {0, ARM_ARCH_NONE}
21270};
21271
ee3c0378
AS
21272/* Set an attribute if it has not already been set by the user. */
21273static void
21274aeabi_set_attribute_int (int tag, int value)
21275{
21276 if (tag < 1
21277 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21278 || !attributes_set_explicitly[tag])
21279 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
21280}
21281
21282static void
21283aeabi_set_attribute_string (int tag, const char *value)
21284{
21285 if (tag < 1
21286 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21287 || !attributes_set_explicitly[tag])
21288 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
21289}
21290
ee065d83
PB
21291/* Set the public EABI object attributes. */
21292static void
21293aeabi_set_public_attributes (void)
21294{
21295 int arch;
e74cfd16 21296 arm_feature_set flags;
62b3e311
PB
21297 arm_feature_set tmp;
21298 const cpu_arch_ver_table *p;
ee065d83
PB
21299
21300 /* Choose the architecture based on the capabilities of the requested cpu
21301 (if any) and/or the instructions actually used. */
e74cfd16
PB
21302 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
21303 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
21304 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
21305 /*Allow the user to override the reported architecture. */
21306 if (object_arch)
21307 {
21308 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
21309 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
21310 }
21311
62b3e311
PB
21312 tmp = flags;
21313 arch = 0;
21314 for (p = cpu_arch_ver; p->val; p++)
21315 {
21316 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
21317 {
21318 arch = p->val;
21319 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
21320 }
21321 }
ee065d83
PB
21322
21323 /* Tag_CPU_name. */
21324 if (selected_cpu_name[0])
21325 {
21326 char *p;
21327
21328 p = selected_cpu_name;
5f4273c7 21329 if (strncmp (p, "armv", 4) == 0)
ee065d83
PB
21330 {
21331 int i;
5f4273c7 21332
ee065d83
PB
21333 p += 4;
21334 for (i = 0; p[i]; i++)
21335 p[i] = TOUPPER (p[i]);
21336 }
ee3c0378 21337 aeabi_set_attribute_string (Tag_CPU_name, p);
ee065d83
PB
21338 }
21339 /* Tag_CPU_arch. */
ee3c0378 21340 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62b3e311
PB
21341 /* Tag_CPU_arch_profile. */
21342 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 21343 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 21344 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 21345 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 21346 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 21347 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
ee065d83 21348 /* Tag_ARM_ISA_use. */
ee3c0378
AS
21349 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
21350 || arch == 0)
21351 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
ee065d83 21352 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
21353 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
21354 || arch == 0)
21355 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
21356 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
ee065d83 21357 /* Tag_VFP_arch. */
ee3c0378
AS
21358 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
21359 aeabi_set_attribute_int (Tag_VFP_arch, 3);
21360 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
21361 aeabi_set_attribute_int (Tag_VFP_arch, 4);
21362 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
21363 aeabi_set_attribute_int (Tag_VFP_arch, 2);
21364 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
21365 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
21366 aeabi_set_attribute_int (Tag_VFP_arch, 1);
ee065d83 21367 /* Tag_WMMX_arch. */
ee3c0378
AS
21368 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
21369 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
21370 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
21371 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
21372 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 21373 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
ee3c0378
AS
21374 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
21375 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
8e79c3df 21376 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
ee3c0378 21377 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
ee065d83
PB
21378}
21379
104d59d1 21380/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
21381void
21382arm_md_end (void)
21383{
ee065d83
PB
21384 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21385 return;
21386
21387 aeabi_set_public_attributes ();
ee065d83 21388}
8463be01 21389#endif /* OBJ_ELF */
ee065d83
PB
21390
21391
21392/* Parse a .cpu directive. */
21393
21394static void
21395s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
21396{
e74cfd16 21397 const struct arm_cpu_option_table *opt;
ee065d83
PB
21398 char *name;
21399 char saved_char;
21400
21401 name = input_line_pointer;
5f4273c7 21402 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
21403 input_line_pointer++;
21404 saved_char = *input_line_pointer;
21405 *input_line_pointer = 0;
21406
21407 /* Skip the first "all" entry. */
21408 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
21409 if (streq (opt->name, name))
21410 {
e74cfd16
PB
21411 mcpu_cpu_opt = &opt->value;
21412 selected_cpu = opt->value;
ee065d83 21413 if (opt->canonical_name)
5f4273c7 21414 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
21415 else
21416 {
21417 int i;
21418 for (i = 0; opt->name[i]; i++)
21419 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21420 selected_cpu_name[i] = 0;
21421 }
e74cfd16 21422 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
21423 *input_line_pointer = saved_char;
21424 demand_empty_rest_of_line ();
21425 return;
21426 }
21427 as_bad (_("unknown cpu `%s'"), name);
21428 *input_line_pointer = saved_char;
21429 ignore_rest_of_line ();
21430}
21431
21432
21433/* Parse a .arch directive. */
21434
21435static void
21436s_arm_arch (int ignored ATTRIBUTE_UNUSED)
21437{
e74cfd16 21438 const struct arm_arch_option_table *opt;
ee065d83
PB
21439 char saved_char;
21440 char *name;
21441
21442 name = input_line_pointer;
5f4273c7 21443 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
21444 input_line_pointer++;
21445 saved_char = *input_line_pointer;
21446 *input_line_pointer = 0;
21447
21448 /* Skip the first "all" entry. */
21449 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21450 if (streq (opt->name, name))
21451 {
e74cfd16
PB
21452 mcpu_cpu_opt = &opt->value;
21453 selected_cpu = opt->value;
5f4273c7 21454 strcpy (selected_cpu_name, opt->name);
e74cfd16 21455 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
21456 *input_line_pointer = saved_char;
21457 demand_empty_rest_of_line ();
21458 return;
21459 }
21460
21461 as_bad (_("unknown architecture `%s'\n"), name);
21462 *input_line_pointer = saved_char;
21463 ignore_rest_of_line ();
21464}
21465
21466
7a1d4c38
PB
21467/* Parse a .object_arch directive. */
21468
21469static void
21470s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
21471{
21472 const struct arm_arch_option_table *opt;
21473 char saved_char;
21474 char *name;
21475
21476 name = input_line_pointer;
5f4273c7 21477 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
21478 input_line_pointer++;
21479 saved_char = *input_line_pointer;
21480 *input_line_pointer = 0;
21481
21482 /* Skip the first "all" entry. */
21483 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21484 if (streq (opt->name, name))
21485 {
21486 object_arch = &opt->value;
21487 *input_line_pointer = saved_char;
21488 demand_empty_rest_of_line ();
21489 return;
21490 }
21491
21492 as_bad (_("unknown architecture `%s'\n"), name);
21493 *input_line_pointer = saved_char;
21494 ignore_rest_of_line ();
21495}
21496
ee065d83
PB
21497/* Parse a .fpu directive. */
21498
21499static void
21500s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
21501{
e74cfd16 21502 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
21503 char saved_char;
21504 char *name;
21505
21506 name = input_line_pointer;
5f4273c7 21507 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
21508 input_line_pointer++;
21509 saved_char = *input_line_pointer;
21510 *input_line_pointer = 0;
5f4273c7 21511
ee065d83
PB
21512 for (opt = arm_fpus; opt->name != NULL; opt++)
21513 if (streq (opt->name, name))
21514 {
e74cfd16
PB
21515 mfpu_opt = &opt->value;
21516 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
21517 *input_line_pointer = saved_char;
21518 demand_empty_rest_of_line ();
21519 return;
21520 }
21521
21522 as_bad (_("unknown floating point format `%s'\n"), name);
21523 *input_line_pointer = saved_char;
21524 ignore_rest_of_line ();
21525}
ee065d83 21526
794ba86a 21527/* Copy symbol information. */
f31fef98 21528
794ba86a
DJ
21529void
21530arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
21531{
21532 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
21533}
e04befd0 21534
f31fef98 21535#ifdef OBJ_ELF
e04befd0
AS
21536/* Given a symbolic attribute NAME, return the proper integer value.
21537 Returns -1 if the attribute is not known. */
f31fef98 21538
e04befd0
AS
21539int
21540arm_convert_symbolic_attribute (const char *name)
21541{
f31fef98
NC
21542 static const struct
21543 {
21544 const char * name;
21545 const int tag;
21546 }
21547 attribute_table[] =
21548 {
21549 /* When you modify this table you should
21550 also modify the list in doc/c-arm.texi. */
e04befd0 21551#define T(tag) {#tag, tag}
f31fef98
NC
21552 T (Tag_CPU_raw_name),
21553 T (Tag_CPU_name),
21554 T (Tag_CPU_arch),
21555 T (Tag_CPU_arch_profile),
21556 T (Tag_ARM_ISA_use),
21557 T (Tag_THUMB_ISA_use),
21558 T (Tag_VFP_arch),
21559 T (Tag_WMMX_arch),
21560 T (Tag_Advanced_SIMD_arch),
21561 T (Tag_PCS_config),
21562 T (Tag_ABI_PCS_R9_use),
21563 T (Tag_ABI_PCS_RW_data),
21564 T (Tag_ABI_PCS_RO_data),
21565 T (Tag_ABI_PCS_GOT_use),
21566 T (Tag_ABI_PCS_wchar_t),
21567 T (Tag_ABI_FP_rounding),
21568 T (Tag_ABI_FP_denormal),
21569 T (Tag_ABI_FP_exceptions),
21570 T (Tag_ABI_FP_user_exceptions),
21571 T (Tag_ABI_FP_number_model),
21572 T (Tag_ABI_align8_needed),
21573 T (Tag_ABI_align8_preserved),
21574 T (Tag_ABI_enum_size),
21575 T (Tag_ABI_HardFP_use),
21576 T (Tag_ABI_VFP_args),
21577 T (Tag_ABI_WMMX_args),
21578 T (Tag_ABI_optimization_goals),
21579 T (Tag_ABI_FP_optimization_goals),
21580 T (Tag_compatibility),
21581 T (Tag_CPU_unaligned_access),
21582 T (Tag_VFP_HP_extension),
21583 T (Tag_ABI_FP_16bit_format),
21584 T (Tag_nodefaults),
21585 T (Tag_also_compatible_with),
21586 T (Tag_conformance),
21587 T (Tag_T2EE_use),
21588 T (Tag_Virtualization_use),
21589 T (Tag_MPextension_use)
e04befd0 21590#undef T
f31fef98 21591 };
e04befd0
AS
21592 unsigned int i;
21593
21594 if (name == NULL)
21595 return -1;
21596
f31fef98 21597 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
e04befd0
AS
21598 if (strcmp (name, attribute_table[i].name) == 0)
21599 return attribute_table[i].tag;
21600
21601 return -1;
21602}
f31fef98 21603#endif /* OBJ_ELF */
This page took 1.959632 seconds and 4 git commands to generate.