* gas/config/tc-arm.c (neon_type_mask): Add P64 type.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
fa94de6b 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3 100/* The code that was here used to select a default CPU depending on compiler
fa94de6b 101 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
bca38921 198static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
7e806470 199static const arm_feature_set arm_ext_m =
b2a5fbdc 200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 201static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 202static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 203static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 204static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 205static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
206
207static const arm_feature_set arm_arch_any = ARM_ANY;
208static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 211static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 212
2d447fca
JM
213static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
215static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 227static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 228static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
229static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
231static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
234static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
bca38921
MGD
237static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
e74cfd16 243
33a392fb 244static int mfloat_abi_opt = -1;
e74cfd16
PB
245/* Record user cpu selection for object attributes. */
246static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
247/* Must be long enough to hold any of the names in arm_cpus. */
248static char selected_cpu_name[16];
8d67f500
NC
249
250/* Return if no cpu was selected on command-line. */
251static bfd_boolean
252no_cpu_selected (void)
253{
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256}
257
7cc69913 258#ifdef OBJ_ELF
deeaaff8
DJ
259# ifdef EABI_DEFAULT
260static int meabi_flags = EABI_DEFAULT;
261# else
d507cf36 262static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 263# endif
e1da3f5b 264
ee3c0378
AS
265static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
e1da3f5b 267bfd_boolean
5f4273c7 268arm_is_eabi (void)
e1da3f5b
PB
269{
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271}
7cc69913 272#endif
b99bd4ef 273
b99bd4ef 274#ifdef OBJ_ELF
c19d1205 275/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
276symbolS * GOT_symbol;
277#endif
278
b99bd4ef
NC
279/* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283static int thumb_mode = 0;
8dc2430f
NC
284/* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287#define MODE_RECORDED (1 << 4)
b99bd4ef 288
e07e6e58
NC
289/* Specifies the intrinsic IT insn behavior mode. */
290enum implicit_it_mode
291{
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296};
297static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
c19d1205
ZW
299/* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322static bfd_boolean unified_syntax = FALSE;
b99bd4ef 323
5287ad62
JB
324enum neon_el_type
325{
dcbf9037 326 NT_invtype,
5287ad62
JB
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
dcbf9037 332 NT_unsigned
5287ad62
JB
333};
334
335struct neon_type_el
336{
337 enum neon_el_type type;
338 unsigned size;
339};
340
341#define NEON_MAX_TYPE_ELS 4
342
343struct neon_type
344{
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347};
348
e07e6e58
NC
349enum it_instruction_type
350{
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359};
360
ad6cec43
MGD
361/* The maximum number of operands we need. */
362#define ARM_IT_MAX_OPERANDS 6
363
b99bd4ef
NC
364struct arm_it
365{
c19d1205 366 const char * error;
b99bd4ef 367 unsigned long instruction;
c19d1205
ZW
368 int size;
369 int size_req;
370 int cond;
037e8744
JB
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
5287ad62 375 struct neon_type vectype;
88714cb8
DG
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
0110f2b8
PB
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
b99bd4ef
NC
382 struct
383 {
384 bfd_reloc_code_real_type type;
c19d1205
ZW
385 expressionS exp;
386 int pc_rel;
b99bd4ef 387 } reloc;
b99bd4ef 388
e07e6e58
NC
389 enum it_instruction_type it_insn_type;
390
c19d1205
ZW
391 struct
392 {
393 unsigned reg;
ca3f61f7 394 signed int imm;
dcbf9037 395 struct neon_type_el vectype;
ca3f61f7
NC
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 415 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
416};
417
c19d1205 418static struct arm_it inst;
b99bd4ef
NC
419
420#define NUM_FLOAT_VALS 8
421
05d2d07e 422const char * fp_const[] =
b99bd4ef
NC
423{
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425};
426
c19d1205 427/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
428#define MAX_LITTLENUMS 6
429
430LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432#define FAIL (-1)
433#define SUCCESS (0)
434
435#define SUFF_S 1
436#define SUFF_D 2
437#define SUFF_E 3
438#define SUFF_P 4
439
c19d1205
ZW
440#define CP_T_X 0x00008000
441#define CP_T_Y 0x00400000
b99bd4ef 442
c19d1205
ZW
443#define CONDS_BIT 0x00100000
444#define LOAD_BIT 0x00100000
b99bd4ef
NC
445
446#define DOUBLE_LOAD_FLAG 0x00000001
447
448struct asm_cond
449{
d3ce72d0 450 const char * template_name;
c921be7d 451 unsigned long value;
b99bd4ef
NC
452};
453
c19d1205 454#define COND_ALWAYS 0xE
b99bd4ef 455
b99bd4ef
NC
456struct asm_psr
457{
d3ce72d0 458 const char * template_name;
c921be7d 459 unsigned long field;
b99bd4ef
NC
460};
461
62b3e311
PB
462struct asm_barrier_opt
463{
e797f7e0
MGD
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
62b3e311
PB
467};
468
2d2255b5 469/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
470#define SPSR_BIT (1 << 22)
471
c19d1205
ZW
472/* The individual PSR flag bits. */
473#define PSR_c (1 << 16)
474#define PSR_x (1 << 17)
475#define PSR_s (1 << 18)
476#define PSR_f (1 << 19)
b99bd4ef 477
c19d1205 478struct reloc_entry
bfae80f2 479{
c921be7d
NC
480 char * name;
481 bfd_reloc_code_real_type reloc;
bfae80f2
RE
482};
483
5287ad62 484enum vfp_reg_pos
bfae80f2 485{
5287ad62
JB
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
488};
489
490enum vfp_ldstm_type
491{
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493};
494
dcbf9037
JB
495/* Bits for DEFINED field in neon_typed_alias. */
496#define NTA_HASTYPE 1
497#define NTA_HASINDEX 2
498
499struct neon_typed_alias
500{
c921be7d
NC
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
dcbf9037
JB
504};
505
c19d1205
ZW
506/* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508enum arm_reg_type
bfae80f2 509{
c19d1205
ZW
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
5287ad62 516 REG_TYPE_NQ,
037e8744 517 REG_TYPE_VFSD,
5287ad62 518 REG_TYPE_NDQ,
037e8744 519 REG_TYPE_NSDQ,
c19d1205
ZW
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
90ec0d68 531 REG_TYPE_RNB
bfae80f2
RE
532};
533
dcbf9037
JB
534/* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
538struct reg_entry
539{
c921be7d 540 const char * name;
90ec0d68 541 unsigned int number;
c921be7d
NC
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
6c43fab6
RE
545};
546
c19d1205 547/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 548const char * const reg_expected_msgs[] =
c19d1205
ZW
549{
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
5287ad62
JB
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
037e8744 557 N_("VFP single or double precision register expected"),
5287ad62 558 N_("Neon double or quad precision register expected"),
037e8744 559 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
6c43fab6
RE
571};
572
c19d1205 573/* Some well known registers that we refer to directly elsewhere. */
bd340a04 574#define REG_R12 12
c19d1205
ZW
575#define REG_SP 13
576#define REG_LR 14
577#define REG_PC 15
404ff6b5 578
b99bd4ef
NC
579/* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
c19d1205 581#define INSN_SIZE 4
b99bd4ef
NC
582
583struct asm_opcode
584{
585 /* Basic string to match. */
d3ce72d0 586 const char * template_name;
c19d1205
ZW
587
588 /* Parameters to instruction. */
5be8be5d 589 unsigned int operands[8];
c19d1205
ZW
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
b99bd4ef
NC
593
594 /* Basic instruction code. */
c19d1205 595 unsigned int avalue : 28;
b99bd4ef 596
c19d1205
ZW
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
b99bd4ef 599
90e4755a 600 /* Which architecture variant provides this instruction. */
c921be7d
NC
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
c19d1205
ZW
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
b99bd4ef 606
c19d1205
ZW
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
b99bd4ef
NC
609};
610
a737bd4d
NC
611/* Defines for various bits that we will want to toggle. */
612#define INST_IMMEDIATE 0x02000000
613#define OFFSET_REG 0x02000000
c19d1205 614#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
615#define SHIFT_BY_REG 0x00000010
616#define PRE_INDEX 0x01000000
617#define INDEX_UP 0x00800000
618#define WRITE_BACK 0x00200000
619#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 620#define CPSI_MMOD 0x00020000
90e4755a 621
a737bd4d
NC
622#define LITERAL_MASK 0xf000f000
623#define OPCODE_MASK 0xfe1fffff
624#define V4_STR_BIT 0x00000020
90e4755a 625
efd81785
PB
626#define T2_SUBS_PC_LR 0xf3de8f00
627
a737bd4d 628#define DATA_OP_SHIFT 21
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_MASK 0xfe1fffff
631#define T2_DATA_OP_SHIFT 21
632
6530b175
NC
633#define A_COND_MASK 0xf0000000
634#define A_PUSH_POP_OP_MASK 0x0fff0000
635
636/* Opcodes for pushing/poping registers to/from the stack. */
637#define A1_OPCODE_PUSH 0x092d0000
638#define A2_OPCODE_PUSH 0x052d0004
639#define A2_OPCODE_POP 0x049d0004
640
a737bd4d
NC
641/* Codes to distinguish the arithmetic instructions. */
642#define OPCODE_AND 0
643#define OPCODE_EOR 1
644#define OPCODE_SUB 2
645#define OPCODE_RSB 3
646#define OPCODE_ADD 4
647#define OPCODE_ADC 5
648#define OPCODE_SBC 6
649#define OPCODE_RSC 7
650#define OPCODE_TST 8
651#define OPCODE_TEQ 9
652#define OPCODE_CMP 10
653#define OPCODE_CMN 11
654#define OPCODE_ORR 12
655#define OPCODE_MOV 13
656#define OPCODE_BIC 14
657#define OPCODE_MVN 15
90e4755a 658
ef8d22e6
PB
659#define T2_OPCODE_AND 0
660#define T2_OPCODE_BIC 1
661#define T2_OPCODE_ORR 2
662#define T2_OPCODE_ORN 3
663#define T2_OPCODE_EOR 4
664#define T2_OPCODE_ADD 8
665#define T2_OPCODE_ADC 10
666#define T2_OPCODE_SBC 11
667#define T2_OPCODE_SUB 13
668#define T2_OPCODE_RSB 14
669
a737bd4d
NC
670#define T_OPCODE_MUL 0x4340
671#define T_OPCODE_TST 0x4200
672#define T_OPCODE_CMN 0x42c0
673#define T_OPCODE_NEG 0x4240
674#define T_OPCODE_MVN 0x43c0
90e4755a 675
a737bd4d
NC
676#define T_OPCODE_ADD_R3 0x1800
677#define T_OPCODE_SUB_R3 0x1a00
678#define T_OPCODE_ADD_HI 0x4400
679#define T_OPCODE_ADD_ST 0xb000
680#define T_OPCODE_SUB_ST 0xb080
681#define T_OPCODE_ADD_SP 0xa800
682#define T_OPCODE_ADD_PC 0xa000
683#define T_OPCODE_ADD_I8 0x3000
684#define T_OPCODE_SUB_I8 0x3800
685#define T_OPCODE_ADD_I3 0x1c00
686#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 687
a737bd4d
NC
688#define T_OPCODE_ASR_R 0x4100
689#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
690#define T_OPCODE_LSR_R 0x40c0
691#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
692#define T_OPCODE_ASR_I 0x1000
693#define T_OPCODE_LSL_I 0x0000
694#define T_OPCODE_LSR_I 0x0800
b99bd4ef 695
a737bd4d
NC
696#define T_OPCODE_MOV_I8 0x2000
697#define T_OPCODE_CMP_I8 0x2800
698#define T_OPCODE_CMP_LR 0x4280
699#define T_OPCODE_MOV_HR 0x4600
700#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 701
a737bd4d
NC
702#define T_OPCODE_LDR_PC 0x4800
703#define T_OPCODE_LDR_SP 0x9800
704#define T_OPCODE_STR_SP 0x9000
705#define T_OPCODE_LDR_IW 0x6800
706#define T_OPCODE_STR_IW 0x6000
707#define T_OPCODE_LDR_IH 0x8800
708#define T_OPCODE_STR_IH 0x8000
709#define T_OPCODE_LDR_IB 0x7800
710#define T_OPCODE_STR_IB 0x7000
711#define T_OPCODE_LDR_RW 0x5800
712#define T_OPCODE_STR_RW 0x5000
713#define T_OPCODE_LDR_RH 0x5a00
714#define T_OPCODE_STR_RH 0x5200
715#define T_OPCODE_LDR_RB 0x5c00
716#define T_OPCODE_STR_RB 0x5400
c9b604bd 717
a737bd4d
NC
718#define T_OPCODE_PUSH 0xb400
719#define T_OPCODE_POP 0xbc00
b99bd4ef 720
2fc8bdac 721#define T_OPCODE_BRANCH 0xe000
b99bd4ef 722
a737bd4d 723#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 724#define THUMB_PP_PC_LR 0x0100
c19d1205 725#define THUMB_LOAD_BIT 0x0800
53365c0d 726#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
727
728#define BAD_ARGS _("bad arguments to instruction")
fdfde340 729#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
730#define BAD_PC _("r15 not allowed here")
731#define BAD_COND _("instruction cannot be conditional")
732#define BAD_OVERLAP _("registers may not be the same")
733#define BAD_HIREG _("lo register required")
734#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 735#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
736#define BAD_BRANCH _("branch must be last instruction in IT block")
737#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 738#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
739#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740#define BAD_IT_COND _("incorrect condition in IT block")
741#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 742#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
743#define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745#define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
08f10d51 747#define BAD_RANGE _("branch out of range")
c19d1205 748
c921be7d
NC
749static struct hash_control * arm_ops_hsh;
750static struct hash_control * arm_cond_hsh;
751static struct hash_control * arm_shift_hsh;
752static struct hash_control * arm_psr_hsh;
753static struct hash_control * arm_v7m_psr_hsh;
754static struct hash_control * arm_reg_hsh;
755static struct hash_control * arm_reloc_hsh;
756static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 757
b99bd4ef
NC
758/* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
5f4273c7 765 <insn> */
b99bd4ef
NC
766
767symbolS * last_label_seen;
b34976b6 768static int label_is_thumb_function_name = FALSE;
e07e6e58 769
3d0c9500
NC
770/* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
a737bd4d 772
c19d1205 773#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 774typedef struct literal_pool
b99bd4ef 775{
c921be7d
NC
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
a8040cf2
NC
782#ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784#endif
c921be7d 785 struct literal_pool * next;
3d0c9500 786} literal_pool;
b99bd4ef 787
3d0c9500
NC
788/* Pointer to a linked list of literal pools. */
789literal_pool * list_of_pools = NULL;
e27ec89e 790
e07e6e58
NC
791#ifdef OBJ_ELF
792# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793#else
794static struct current_it now_it;
795#endif
796
797static inline int
798now_it_compatible (int cond)
799{
800 return (cond & ~1) == (now_it.cc & ~1);
801}
802
803static inline int
804conditional_insn (void)
805{
806 return inst.cond != COND_ALWAYS;
807}
808
809static int in_it_block (void);
810
811static int handle_it_state (void);
812
813static void force_automatic_it_block_close (void);
814
c921be7d
NC
815static void it_fsm_post_encode (void);
816
e07e6e58
NC
817#define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
c921be7d
NC
826#define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
e07e6e58
NC
835#define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
c19d1205 845/* Pure syntax. */
b99bd4ef 846
c19d1205
ZW
847/* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849const char comment_chars[] = "@";
3d0c9500 850
c19d1205
ZW
851/* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854/* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857/* Also note that comments like this one will always work. */
858const char line_comment_chars[] = "#";
3d0c9500 859
c19d1205 860const char line_separator_chars[] = ";";
b99bd4ef 861
c19d1205
ZW
862/* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864const char EXP_CHARS[] = "eE";
3d0c9500 865
c19d1205
ZW
866/* Chars that mean this number is a floating point constant. */
867/* As in 0f12.456 */
868/* or 0d1.2345e12 */
b99bd4ef 869
c19d1205 870const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 871
c19d1205
ZW
872/* Prefix characters that indicate the start of an immediate
873 value. */
874#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 875
c19d1205
ZW
876/* Separator character handling. */
877
878#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880static inline int
881skip_past_char (char ** str, char c)
882{
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
3d0c9500 887 }
c19d1205
ZW
888 else
889 return FAIL;
890}
c921be7d 891
c19d1205 892#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 893
c19d1205
ZW
894/* Arithmetic expressions (possibly involving symbols). */
895
896/* Return TRUE if anything in the expression is a bignum. */
897
898static int
899walk_no_bignums (symbolS * sp)
900{
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 905 {
c19d1205
ZW
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
909 }
910
c19d1205 911 return 0;
3d0c9500
NC
912}
913
c19d1205
ZW
914static int in_my_get_expression = 0;
915
916/* Third argument to my_get_expression. */
917#define GE_NO_PREFIX 0
918#define GE_IMM_PREFIX 1
919#define GE_OPT_PREFIX 2
5287ad62
JB
920/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922#define GE_OPT_PREFIX_BIG 3
a737bd4d 923
b99bd4ef 924static int
c19d1205 925my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 926{
c19d1205
ZW
927 char * save_in;
928 segT seg;
b99bd4ef 929
c19d1205
ZW
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
5287ad62
JB
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
b99bd4ef 934
c19d1205 935 switch (prefix_mode)
b99bd4ef 936 {
c19d1205
ZW
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
5287ad62 947 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
b99bd4ef 953
c19d1205 954 memset (ep, 0, sizeof (expressionS));
b99bd4ef 955
c19d1205
ZW
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
f86adc07 962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 963 {
f86adc07 964 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
f86adc07
NS
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
970 return 1;
971 }
b99bd4ef 972
c19d1205
ZW
973#ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
b99bd4ef 984 }
87975d2a
AM
985#else
986 (void) seg;
c19d1205 987#endif
b99bd4ef 988
c19d1205
ZW
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
5287ad62
JB
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
b99bd4ef 1004
c19d1205
ZW
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
b99bd4ef
NC
1008}
1009
c19d1205
ZW
1010/* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
b99bd4ef 1014
c19d1205
ZW
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1021
c19d1205 1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1023
c19d1205
ZW
1024char *
1025md_atof (int type, char * litP, int * sizeP)
1026{
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
b99bd4ef 1031
c19d1205
ZW
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
b99bd4ef 1040
c19d1205
ZW
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
b99bd4ef 1047
c19d1205
ZW
1048 case 'x':
1049 case 'X':
499ac353 1050 prec = 5;
c19d1205 1051 break;
b99bd4ef 1052
c19d1205
ZW
1053 case 'p':
1054 case 'P':
499ac353 1055 prec = 5;
c19d1205 1056 break;
a737bd4d 1057
c19d1205
ZW
1058 default:
1059 *sizeP = 0;
499ac353 1060 return _("Unrecognized or unsupported floating point constant");
c19d1205 1061 }
b99bd4ef 1062
c19d1205
ZW
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
499ac353 1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1067
c19d1205
ZW
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
499ac353
NC
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
1076 else
1077 {
e74cfd16 1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1079 for (i = prec - 1; i >= 0; i--)
1080 {
499ac353
NC
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
499ac353
NC
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1094 }
1095 }
b99bd4ef 1096
499ac353 1097 return NULL;
c19d1205 1098}
b99bd4ef 1099
c19d1205
ZW
1100/* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102void
91d6fa6a 1103md_operand (expressionS * exp)
c19d1205
ZW
1104{
1105 if (in_my_get_expression)
91d6fa6a 1106 exp->X_op = O_illegal;
b99bd4ef
NC
1107}
1108
c19d1205 1109/* Immediate values. */
b99bd4ef 1110
c19d1205
ZW
1111/* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114#ifdef OBJ_ELF
1115static int
1116immediate_for_directive (int *val)
b99bd4ef 1117{
c19d1205
ZW
1118 expressionS exp;
1119 exp.X_op = O_illegal;
b99bd4ef 1120
c19d1205
ZW
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
b99bd4ef 1126
c19d1205
ZW
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
b99bd4ef 1135}
c19d1205 1136#endif
b99bd4ef 1137
c19d1205 1138/* Register parsing. */
b99bd4ef 1139
c19d1205
ZW
1140/* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145static struct reg_entry *
1146arm_reg_parse_multi (char **ccp)
b99bd4ef 1147{
c19d1205
ZW
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
b99bd4ef 1151
c19d1205
ZW
1152#ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
01cfc07f 1154 return NULL;
c19d1205
ZW
1155 start++;
1156#endif
1157#ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160#endif
b99bd4ef 1161
c19d1205
ZW
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
b99bd4ef 1165
c19d1205
ZW
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
b99bd4ef
NC
1177}
1178
1179static int
dcbf9037
JB
1180arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
b99bd4ef 1182{
c19d1205
ZW
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
79134647 1191 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1192 return reg->number;
1193 break;
69b97547 1194
c19d1205
ZW
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
6057a28f 1202
c19d1205
ZW
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
79134647 1206 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1207 return reg->number;
6057a28f 1208 break;
c19d1205 1209
6057a28f 1210 default:
c19d1205 1211 break;
6057a28f
NC
1212 }
1213
dcbf9037
JB
1214 return FAIL;
1215}
1216
1217/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220static int
1221arm_reg_parse (char **ccp, enum arm_reg_type type)
1222{
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
c19d1205
ZW
1237 *ccp = start;
1238 return FAIL;
1239}
69b97547 1240
dcbf9037
JB
1241/* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255static int
1256parse_neon_type (struct neon_type *type, char **str)
1257{
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
dcbf9037
JB
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
037e8744 1312 done:
dcbf9037
JB
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328}
1329
1330/* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335static void
1336first_error (const char *err)
1337{
1338 if (!inst.error)
1339 inst.error = err;
1340}
1341
1342/* Parse a single type, e.g. ".s32", leading period included. */
1343static int
1344parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345{
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
5f4273c7 1369
dcbf9037 1370 *ccp = str;
5f4273c7 1371
dcbf9037
JB
1372 return SUCCESS;
1373}
1374
1375/* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378#define NEON_ALL_LANES 15
1379#define NEON_INTERLEAVE_LANES 14
1380
1381/* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386static int
1387parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390{
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
037e8744
JB
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1423 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
5f4273c7 1430
dcbf9037
JB
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
5f4273c7 1441
dcbf9037
JB
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
5f4273c7 1449
dcbf9037
JB
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
5f4273c7 1478
dcbf9037
JB
1479 if (typeinfo)
1480 *typeinfo = atype;
5f4273c7 1481
dcbf9037
JB
1482 if (rtype)
1483 *rtype = type;
5f4273c7 1484
dcbf9037 1485 *ccp = str;
5f4273c7 1486
dcbf9037
JB
1487 return reg->number;
1488}
1489
1490/* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1495 This function will fault on encountering a scalar. */
dcbf9037
JB
1496
1497static int
1498arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500{
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
0855e32b
NS
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
dcbf9037
JB
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525}
1526
1527#define NEON_SCALAR_REG(X) ((X) >> 4)
1528#define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
5287ad62
JB
1530/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534static int
dcbf9037 1535parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1536{
dcbf9037 1537 int reg;
5287ad62 1538 char *str = *ccp;
dcbf9037 1539 struct neon_typed_alias atype;
5f4273c7 1540
dcbf9037 1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1542
dcbf9037 1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1544 return FAIL;
5f4273c7 1545
dcbf9037 1546 if (atype.index == NEON_ALL_LANES)
5287ad62 1547 {
dcbf9037 1548 first_error (_("scalar must have an index"));
5287ad62
JB
1549 return FAIL;
1550 }
dcbf9037 1551 else if (atype.index >= 64 / elsize)
5287ad62 1552 {
dcbf9037 1553 first_error (_("scalar index out of range"));
5287ad62
JB
1554 return FAIL;
1555 }
5f4273c7 1556
dcbf9037
JB
1557 if (type)
1558 *type = atype.eltype;
5f4273c7 1559
5287ad62 1560 *ccp = str;
5f4273c7 1561
dcbf9037 1562 return reg * 16 + atype.index;
5287ad62
JB
1563}
1564
c19d1205 1565/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1566
c19d1205
ZW
1567static long
1568parse_reg_list (char ** strp)
1569{
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
a737bd4d 1573
c19d1205
ZW
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
6057a28f 1576 {
c19d1205 1577 another_range = 0;
a737bd4d 1578
c19d1205
ZW
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
a737bd4d 1583
c19d1205
ZW
1584 str++;
1585 do
1586 {
1587 int reg;
6057a28f 1588
dcbf9037 1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1590 {
dcbf9037 1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1592 return FAIL;
1593 }
a737bd4d 1594
c19d1205
ZW
1595 if (in_range)
1596 {
1597 int i;
a737bd4d 1598
c19d1205
ZW
1599 if (reg <= cur_reg)
1600 {
dcbf9037 1601 first_error (_("bad range in register list"));
c19d1205
ZW
1602 return FAIL;
1603 }
40a18ebd 1604
c19d1205
ZW
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
a737bd4d 1616
c19d1205
ZW
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1622
c19d1205
ZW
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
a737bd4d 1629
c19d1205
ZW
1630 if (*str++ != '}')
1631 {
dcbf9037 1632 first_error (_("missing `}'"));
c19d1205
ZW
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
91d6fa6a 1638 expressionS exp;
40a18ebd 1639
91d6fa6a 1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1641 return FAIL;
40a18ebd 1642
91d6fa6a 1643 if (exp.X_op == O_constant)
c19d1205 1644 {
91d6fa6a
NC
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
a737bd4d 1651
91d6fa6a 1652 if ((range & exp.X_add_number) != 0)
c19d1205 1653 {
91d6fa6a 1654 int regno = range & exp.X_add_number;
a737bd4d 1655
c19d1205
ZW
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
a737bd4d 1662
91d6fa6a 1663 range |= exp.X_add_number;
c19d1205
ZW
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
a737bd4d 1672
91d6fa6a 1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
a737bd4d 1678
c19d1205
ZW
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
a737bd4d 1684 }
c19d1205 1685 while (another_range);
a737bd4d 1686
c19d1205
ZW
1687 *strp = str;
1688 return range;
a737bd4d
NC
1689}
1690
5287ad62
JB
1691/* Types of registers in a list. */
1692
1693enum reg_list_els
1694{
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698};
1699
c19d1205
ZW
1700/* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
dcbf9037
JB
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
6057a28f 1714
c19d1205 1715static int
037e8744 1716parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1717{
037e8744 1718 char *str = *ccp;
c19d1205
ZW
1719 int base_reg;
1720 int new_base;
21d799b5 1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1722 int max_regs = 0;
c19d1205
ZW
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
a737bd4d 1726 int i;
6057a28f 1727
037e8744 1728 if (*str != '{')
5287ad62
JB
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
6057a28f 1733
037e8744 1734 str++;
6057a28f 1735
5287ad62 1736 switch (etype)
c19d1205 1737 {
5287ad62 1738 case REGLIST_VFP_S:
c19d1205
ZW
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
5287ad62 1741 break;
5f4273c7 1742
5287ad62
JB
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
b7fc2769 1745 break;
5f4273c7 1746
b7fc2769
JB
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
b1cc4aeb
PB
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1760 fpu_vfp_ext_d32);
5287ad62
JB
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1763 fpu_vfp_ext_d32);
5287ad62
JB
1764 }
1765 else
1766 max_regs = 16;
c19d1205 1767 }
6057a28f 1768
c19d1205 1769 base_reg = max_regs;
a737bd4d 1770
c19d1205
ZW
1771 do
1772 {
5287ad62 1773 int setmask = 1, addregs = 1;
dcbf9037 1774
037e8744 1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1776
c19d1205 1777 if (new_base == FAIL)
a737bd4d 1778 {
dcbf9037 1779 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1780 return FAIL;
1781 }
5f4273c7 1782
b7fc2769
JB
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
5f4273c7 1788
5287ad62
JB
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
c19d1205
ZW
1796 if (new_base < base_reg)
1797 base_reg = new_base;
a737bd4d 1798
5287ad62 1799 if (mask & (setmask << new_base))
c19d1205 1800 {
dcbf9037 1801 first_error (_("invalid register list"));
c19d1205 1802 return FAIL;
a737bd4d 1803 }
a737bd4d 1804
c19d1205
ZW
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
0bbf2aa4 1810
5287ad62
JB
1811 mask |= setmask << new_base;
1812 count += addregs;
0bbf2aa4 1813
037e8744 1814 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1815 {
1816 int high_range;
0bbf2aa4 1817
037e8744 1818 str++;
0bbf2aa4 1819
037e8744 1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1821 == FAIL)
c19d1205
ZW
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
0bbf2aa4 1826
b7fc2769
JB
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
5287ad62
JB
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
c19d1205
ZW
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
0bbf2aa4 1841
5287ad62 1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1843 {
5287ad62 1844 if (mask & (setmask << new_base))
0bbf2aa4 1845 {
c19d1205
ZW
1846 inst.error = _("invalid register list");
1847 return FAIL;
0bbf2aa4 1848 }
c19d1205 1849
5287ad62
JB
1850 mask |= setmask << new_base;
1851 count += addregs;
0bbf2aa4 1852 }
0bbf2aa4 1853 }
0bbf2aa4 1854 }
037e8744 1855 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1856
037e8744 1857 str++;
0bbf2aa4 1858
c19d1205
ZW
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
037e8744
JB
1876 *ccp = str;
1877
c19d1205 1878 return count;
b99bd4ef
NC
1879}
1880
dcbf9037
JB
1881/* True if two alias types are the same. */
1882
c921be7d 1883static bfd_boolean
dcbf9037
JB
1884neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885{
1886 if (!a && !b)
c921be7d 1887 return TRUE;
5f4273c7 1888
dcbf9037 1889 if (!a || !b)
c921be7d 1890 return FALSE;
dcbf9037
JB
1891
1892 if (a->defined != b->defined)
c921be7d 1893 return FALSE;
5f4273c7 1894
dcbf9037
JB
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
c921be7d 1898 return FALSE;
dcbf9037
JB
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
c921be7d 1902 return FALSE;
5f4273c7 1903
c921be7d 1904 return TRUE;
dcbf9037
JB
1905}
1906
5287ad62
JB
1907/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
dcbf9037 1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1914
5287ad62 1915#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1916#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1917#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919static int
dcbf9037
JB
1920parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
5287ad62
JB
1922{
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1932 struct neon_typed_alias firsttype;
5f4273c7 1933
5287ad62
JB
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
5f4273c7 1936
5287ad62
JB
1937 do
1938 {
dcbf9037
JB
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
5287ad62
JB
1942 if (getreg == FAIL)
1943 {
dcbf9037 1944 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1945 return FAIL;
1946 }
5f4273c7 1947
5287ad62
JB
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
5287ad62 1954 }
dcbf9037 1955 firsttype = atype;
5287ad62
JB
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
dcbf9037 1962 first_error (_(incr_error));
5287ad62
JB
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
dcbf9037
JB
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
c921be7d 1972 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1973 {
1974 first_error (_(type_error));
5287ad62
JB
1975 return FAIL;
1976 }
5f4273c7 1977
5287ad62
JB
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
dcbf9037 1982 struct neon_typed_alias htype;
5287ad62
JB
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
dcbf9037 1988 first_error (_(type_error));
5287ad62
JB
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
dcbf9037 1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1996 return FAIL;
1997 }
1998 ptr++;
dcbf9037 1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
2000 if (hireg == FAIL)
2001 {
dcbf9037
JB
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
c921be7d 2005 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
2006 {
2007 first_error (_(type_error));
5287ad62
JB
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
5f4273c7 2013
5287ad62
JB
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
5f4273c7 2020
dcbf9037 2021 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2022 {
dcbf9037
JB
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
5287ad62 2026 {
dcbf9037
JB
2027 first_error (_(type_error));
2028 return FAIL;
5287ad62
JB
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
dcbf9037 2035 first_error (_(type_error));
5287ad62
JB
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2041
5287ad62
JB
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2045
5287ad62
JB
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
dcbf9037 2050 first_error (_("error parsing element/structure list"));
5287ad62
JB
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
dcbf9037 2056 first_error (_("expected }"));
5287ad62
JB
2057 return FAIL;
2058 }
5f4273c7 2059
5287ad62
JB
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
dcbf9037
JB
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
5287ad62
JB
2066 *pbase = base_reg;
2067 *str = ptr;
5f4273c7 2068
5287ad62
JB
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070}
2071
c19d1205
ZW
2072/* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2077
c19d1205
ZW
2078static int
2079parse_reloc (char **str)
b99bd4ef 2080{
c19d1205
ZW
2081 struct reloc_entry *r;
2082 char *p, *q;
b99bd4ef 2083
c19d1205
ZW
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
b99bd4ef 2086
c19d1205
ZW
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
21d799b5
NC
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
b99bd4ef
NC
2101}
2102
c19d1205
ZW
2103/* Directives: register aliases. */
2104
dcbf9037 2105static struct reg_entry *
90ec0d68 2106insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2107{
d3ce72d0 2108 struct reg_entry *new_reg;
c19d1205 2109 const char *name;
b99bd4ef 2110
d3ce72d0 2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2112 {
d3ce72d0 2113 if (new_reg->builtin)
c19d1205 2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2115
c19d1205
ZW
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
d3ce72d0 2118 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2120
d929913e 2121 return NULL;
c19d1205 2122 }
b99bd4ef 2123
c19d1205 2124 name = xstrdup (str);
d3ce72d0 2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2126
d3ce72d0
NC
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
b99bd4ef 2132
d3ce72d0 2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2134 abort ();
5f4273c7 2135
d3ce72d0 2136 return new_reg;
dcbf9037
JB
2137}
2138
2139static void
2140insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142{
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2144
dcbf9037
JB
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
5f4273c7 2150
dcbf9037
JB
2151 if (atype)
2152 {
21d799b5
NC
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2155 *reg->neon = *atype;
2156 }
c19d1205 2157}
b99bd4ef 2158
c19d1205 2159/* Look for the .req directive. This is of the form:
b99bd4ef 2160
c19d1205 2161 new_register_name .req existing_register_name
b99bd4ef 2162
c19d1205 2163 If we find one, or if it looks sufficiently like one that we want to
d929913e 2164 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2165
d929913e 2166static bfd_boolean
c19d1205
ZW
2167create_register_alias (char * newname, char *p)
2168{
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
b99bd4ef 2172
c19d1205
ZW
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2177 return FALSE;
b99bd4ef 2178
c19d1205
ZW
2179 oldname += 6;
2180 if (*oldname == '\0')
d929913e 2181 return FALSE;
b99bd4ef 2182
21d799b5 2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2184 if (!old)
b99bd4ef 2185 {
c19d1205 2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2187 return TRUE;
b99bd4ef
NC
2188 }
2189
c19d1205
ZW
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193#ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195#else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198#endif
b99bd4ef 2199
21d799b5 2200 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
b99bd4ef 2203
c19d1205
ZW
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
d929913e
NC
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
c19d1205 2211
d929913e
NC
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2221 the artificial FOO alias because it has already been created by the
d929913e
NC
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
c19d1205 2226
d929913e
NC
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
c19d1205 2229
d929913e
NC
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
c19d1205 2233
d929913e 2234 return TRUE;
b99bd4ef
NC
2235}
2236
dcbf9037
JB
2237/* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
5f4273c7 2245 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2246
c921be7d 2247static bfd_boolean
dcbf9037
JB
2248create_neon_reg_alias (char *newname, char *p)
2249{
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
12d6b0b7 2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2256 int namelen;
5f4273c7 2257
dcbf9037
JB
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
5f4273c7 2262
dcbf9037 2263 nameend = p;
5f4273c7 2264
dcbf9037
JB
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
c921be7d 2270 return FALSE;
5f4273c7 2271
dcbf9037 2272 p += 5;
5f4273c7 2273
dcbf9037 2274 if (*p == '\0')
c921be7d 2275 return FALSE;
5f4273c7 2276
dcbf9037
JB
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
c921be7d 2282 return FALSE;
dcbf9037
JB
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
c921be7d 2293 return FALSE;
dcbf9037
JB
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037
JB
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
c921be7d 2317 return FALSE;
dcbf9037
JB
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
5f4273c7 2321
dcbf9037
JB
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
5f4273c7 2326
dcbf9037
JB
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2330 return FALSE;
dcbf9037 2331 }
5f4273c7 2332
dcbf9037 2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2334
dcbf9037
JB
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
c921be7d 2338 return FALSE;
dcbf9037 2339 }
5f4273c7 2340
dcbf9037
JB
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
5f4273c7 2343
dcbf9037
JB
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
c921be7d 2347 return FALSE;
dcbf9037
JB
2348 }
2349 }
2350
15735687
NS
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354#ifdef TC_CASE_SENSITIVE
dcbf9037 2355 namelen = nameend - newname;
15735687
NS
2356#else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359#endif
2360
21d799b5 2361 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
5f4273c7 2364
dcbf9037
JB
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2367
dcbf9037
JB
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
5f4273c7 2371
dcbf9037
JB
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2375
dcbf9037
JB
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
5f4273c7 2379
dcbf9037
JB
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2383
c921be7d 2384 return TRUE;
dcbf9037
JB
2385}
2386
c19d1205
ZW
2387/* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
c921be7d 2389
b99bd4ef 2390static void
c19d1205 2391s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2392{
c19d1205
ZW
2393 as_bad (_("invalid syntax for .req directive"));
2394}
b99bd4ef 2395
dcbf9037
JB
2396static void
2397s_dn (int a ATTRIBUTE_UNUSED)
2398{
2399 as_bad (_("invalid syntax for .dn directive"));
2400}
2401
2402static void
2403s_qn (int a ATTRIBUTE_UNUSED)
2404{
2405 as_bad (_("invalid syntax for .qn directive"));
2406}
2407
c19d1205
ZW
2408/* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
b99bd4ef 2410
c19d1205
ZW
2411 my_alias .req r11
2412 .unreq my_alias */
b99bd4ef
NC
2413
2414static void
c19d1205 2415s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2416{
c19d1205
ZW
2417 char * name;
2418 char saved_char;
b99bd4ef 2419
c19d1205
ZW
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
21d799b5
NC
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
c19d1205
ZW
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
a1727c1a 2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2441 name);
2442 else
2443 {
d929913e
NC
2444 char * p;
2445 char * nbuf;
2446
db0bc284 2447 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2448 free ((char *) reg->name);
dcbf9037
JB
2449 if (reg->neon)
2450 free (reg->neon);
c19d1205 2451 free (reg);
d929913e
NC
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
5f4273c7 2456
d929913e
NC
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
21d799b5 2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2461 if (reg)
2462 {
db0bc284 2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
21d799b5 2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2473 if (reg)
2474 {
db0bc284 2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
c19d1205
ZW
2483 }
2484 }
b99bd4ef 2485
c19d1205 2486 *input_line_pointer = saved_char;
b99bd4ef
NC
2487 demand_empty_rest_of_line ();
2488}
2489
c19d1205
ZW
2490/* Directives: Instruction set selection. */
2491
2492#ifdef OBJ_ELF
2493/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
cd000bff
DJ
2498/* Create a new mapping symbol for the transition to STATE. */
2499
2500static void
2501make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2502{
a737bd4d 2503 symbolS * symbolP;
c19d1205
ZW
2504 const char * symname;
2505 int type;
b99bd4ef 2506
c19d1205 2507 switch (state)
b99bd4ef 2508 {
c19d1205
ZW
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
c19d1205
ZW
2521 default:
2522 abort ();
2523 }
2524
cd000bff 2525 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
cd000bff
DJ
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2de7820f
JZ
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2556 if (value == 0)
2557 {
2de7820f
JZ
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
cd000bff
DJ
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
cd000bff
DJ
2571 frag->tc_frag_data.last_map = symbolP;
2572}
2573
2574/* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578static void
2579insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581{
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2595 }
cd000bff
DJ
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599}
2600
2601static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603/* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606void
2607mapping_state (enum mstate state)
2608{
940b5ce0
DJ
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
cd000bff
DJ
2611#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
49c62a33
NC
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652#undef TRANSITION
2653}
2654
2655/* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658static void
2659mapping_state_2 (enum mstate state, int max_chars)
2660{
940b5ce0
DJ
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
cd000bff
DJ
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
cd000bff
DJ
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2673}
2674#else
d3106081
NS
2675#define mapping_state(x) ((void)0)
2676#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2677#endif
2678
2679/* Find the real, Thumb encoded start of a Thumb function. */
2680
4343666d 2681#ifdef OBJ_COFF
c19d1205
ZW
2682static symbolS *
2683find_real_start (symbolS * symbolP)
2684{
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690#define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
37f6032b
ZW
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2701 return symbolP;
2702
37f6032b 2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
bd3ba5d1 2708 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2709 new_target = symbolP;
2710 }
2711
c19d1205
ZW
2712 return new_target;
2713}
4343666d 2714#endif
c19d1205
ZW
2715
2716static void
2717opcode_select (int width)
2718{
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
e74cfd16 2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
c19d1205
ZW
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
e74cfd16 2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
c19d1205
ZW
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752}
2753
2754static void
2755s_arm (int ignore ATTRIBUTE_UNUSED)
2756{
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb (int ignore ATTRIBUTE_UNUSED)
2763{
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766}
2767
2768static void
2769s_code (int unused ATTRIBUTE_UNUSED)
2770{
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784}
2785
2786static void
2787s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788{
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801}
2802
2803static void
2804s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805{
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811}
2812
2813/* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816static void
2817s_thumb_set (int equiv)
2818{
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856#ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
c19d1205 2859 for this symbol. */
b99bd4ef
NC
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
21d799b5 2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872#endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875#ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878#endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
c19d1205 2894 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898#if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900#endif
2901}
2902
c19d1205 2903/* Directives: Mode selection. */
b99bd4ef 2904
c19d1205
ZW
2905/* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2908static void
c19d1205 2909s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2910{
c19d1205
ZW
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
b99bd4ef
NC
2926 demand_empty_rest_of_line ();
2927}
2928
c19d1205
ZW
2929/* Directives: sectioning and alignment. */
2930
2931/* Same as s_align_ptwo but align 0 => align 2. */
2932
b99bd4ef 2933static void
c19d1205 2934s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2935{
a737bd4d 2936 int temp;
dce323d1 2937 bfd_boolean fill_p;
c19d1205
ZW
2938 long temp_fill;
2939 long max_alignment = 15;
b99bd4ef
NC
2940
2941 temp = get_absolute_expression ();
c19d1205
ZW
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
b99bd4ef 2945 {
c19d1205
ZW
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
b99bd4ef 2949
c19d1205
ZW
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
dce323d1 2954 fill_p = TRUE;
b99bd4ef 2955 }
c19d1205 2956 else
dce323d1
PB
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
b99bd4ef 2961
c19d1205
ZW
2962 if (!temp)
2963 temp = 2;
b99bd4ef 2964
c19d1205
ZW
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
dce323d1
PB
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
c19d1205
ZW
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
b99bd4ef
NC
2976}
2977
c19d1205
ZW
2978static void
2979s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2980{
c19d1205
ZW
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
cd000bff
DJ
2985
2986#ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988#endif
c19d1205 2989}
b99bd4ef 2990
c19d1205
ZW
2991static void
2992s_even (int ignore ATTRIBUTE_UNUSED)
2993{
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
b99bd4ef 2997
c19d1205 2998 record_alignment (now_seg, 1);
b99bd4ef 2999
c19d1205 3000 demand_empty_rest_of_line ();
b99bd4ef
NC
3001}
3002
c19d1205 3003/* Directives: Literal pools. */
a737bd4d 3004
c19d1205
ZW
3005static literal_pool *
3006find_literal_pool (void)
a737bd4d 3007{
c19d1205 3008 literal_pool * pool;
a737bd4d 3009
c19d1205 3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3011 {
c19d1205
ZW
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
a737bd4d
NC
3015 }
3016
c19d1205 3017 return pool;
a737bd4d
NC
3018}
3019
c19d1205
ZW
3020static literal_pool *
3021find_or_make_literal_pool (void)
a737bd4d 3022{
c19d1205
ZW
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
a737bd4d 3026
c19d1205 3027 pool = find_literal_pool ();
a737bd4d 3028
c19d1205 3029 if (pool == NULL)
a737bd4d 3030 {
c19d1205 3031 /* Create a new pool. */
21d799b5 3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3033 if (! pool)
3034 return NULL;
a737bd4d 3035
c19d1205
ZW
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
a737bd4d 3044 }
a737bd4d 3045
c19d1205
ZW
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
a737bd4d 3048 {
c19d1205
ZW
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
a737bd4d
NC
3052 }
3053
c19d1205
ZW
3054 /* Done. */
3055 return pool;
a737bd4d
NC
3056}
3057
c19d1205 3058/* Add the literal in the global 'inst'
5f4273c7 3059 structure to the relevant literal pool. */
b99bd4ef
NC
3060
3061static int
c19d1205 3062add_to_lit_pool (void)
b99bd4ef 3063{
c19d1205
ZW
3064 literal_pool * pool;
3065 unsigned int entry;
b99bd4ef 3066
c19d1205
ZW
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3071 {
c19d1205
ZW
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
b99bd4ef
NC
3089 }
3090
c19d1205
ZW
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3101#ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108#endif
c19d1205
ZW
3109 pool->next_free_entry += 1;
3110 }
b99bd4ef 3111
c19d1205
ZW
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3115
c19d1205 3116 return SUCCESS;
b99bd4ef
NC
3117}
3118
c19d1205
ZW
3119/* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
e16bb312 3121
c19d1205
ZW
3122static void
3123symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128{
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
e16bb312 3131
c19d1205
ZW
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
21d799b5 3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3135
c19d1205
ZW
3136#ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139#endif
b99bd4ef 3140
c19d1205 3141 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3142
c19d1205
ZW
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
b99bd4ef 3146
c19d1205 3147 symbol_set_frag (symbolP, frag);
b99bd4ef 3148
c19d1205
ZW
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
b99bd4ef 3152
c19d1205
ZW
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
b99bd4ef 3156
c19d1205 3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3158
c19d1205 3159 obj_symbol_new_hook (symbolP);
b99bd4ef 3160
c19d1205
ZW
3161#ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163#endif
3164
3165#ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167#endif /* DEBUG_SYMS */
b99bd4ef
NC
3168}
3169
b99bd4ef 3170
c19d1205
ZW
3171static void
3172s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3173{
c19d1205
ZW
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
b99bd4ef 3177
c19d1205
ZW
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
b99bd4ef 3183
c19d1205 3184 mapping_state (MAP_DATA);
b99bd4ef 3185
c19d1205
ZW
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
b99bd4ef 3190
c19d1205 3191 record_alignment (now_seg, 2);
b99bd4ef 3192
c19d1205 3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3194
c19d1205
ZW
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
b99bd4ef 3198
c19d1205 3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3200
c19d1205
ZW
3201#if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203#endif
6c43fab6 3204
c19d1205 3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3206 {
3207#ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210#endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
b99bd4ef 3214
c19d1205
ZW
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
b99bd4ef
NC
3218}
3219
c19d1205
ZW
3220#ifdef OBJ_ELF
3221/* Forward declarations for functions below, in the MD interface
3222 section. */
3223static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224static valueT create_unwind_entry (int);
3225static void start_unwind_section (const segT, int);
3226static void add_unwind_opcode (valueT, int);
3227static void flush_pending_unwind (void);
b99bd4ef 3228
c19d1205 3229/* Directives: Data. */
b99bd4ef 3230
c19d1205
ZW
3231static void
3232s_arm_elf_cons (int nbytes)
3233{
3234 expressionS exp;
b99bd4ef 3235
c19d1205
ZW
3236#ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238#endif
b99bd4ef 3239
c19d1205 3240 if (is_it_end_of_statement ())
b99bd4ef 3241 {
c19d1205
ZW
3242 demand_empty_rest_of_line ();
3243 return;
b99bd4ef
NC
3244 }
3245
c19d1205
ZW
3246#ifdef md_cons_align
3247 md_cons_align (nbytes);
3248#endif
b99bd4ef 3249
c19d1205
ZW
3250 mapping_state (MAP_DATA);
3251 do
b99bd4ef 3252 {
c19d1205
ZW
3253 int reloc;
3254 char *base = input_line_pointer;
b99bd4ef 3255
c19d1205 3256 expression (& exp);
b99bd4ef 3257
c19d1205
ZW
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
21d799b5
NC
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
c19d1205 3277 int size = bfd_get_reloc_size (howto);
b99bd4ef 3278
2fc8bdac
ZW
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
c19d1205 3286 if (size > nbytes)
2fc8bdac 3287 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
21d799b5 3297 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3310 }
3311 }
3312 }
b99bd4ef 3313 }
c19d1205 3314 while (*input_line_pointer++ == ',');
b99bd4ef 3315
c19d1205
ZW
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
b99bd4ef
NC
3319}
3320
c921be7d
NC
3321/* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324static void
3325emit_thumb32_expr (expressionS * exp)
3326{
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333}
3334
3335/* Guess the instruction size based on the opcode. */
3336
3337static int
3338thumb_insn_size (int opcode)
3339{
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346}
3347
3348static bfd_boolean
3349emit_insn (expressionS *exp, int nbytes)
3350{
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391}
3392
3393/* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396static void
3397s_arm_elf_inst (int nbytes)
3398{
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441}
b99bd4ef 3442
c19d1205 3443/* Parse a .rel31 directive. */
b99bd4ef 3444
c19d1205
ZW
3445static void
3446s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447{
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
b99bd4ef 3451
c19d1205
ZW
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
b99bd4ef 3457
c19d1205
ZW
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
b99bd4ef 3462
c19d1205
ZW
3463#ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465#endif
b99bd4ef 3466
c19d1205
ZW
3467#ifdef md_cons_align
3468 md_cons_align (4);
3469#endif
b99bd4ef 3470
c19d1205 3471 mapping_state (MAP_DATA);
b99bd4ef 3472
c19d1205 3473 expression (&exp);
b99bd4ef 3474
c19d1205
ZW
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
b99bd4ef 3479
c19d1205 3480 demand_empty_rest_of_line ();
b99bd4ef
NC
3481}
3482
c19d1205 3483/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3484
c19d1205 3485/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3486
c19d1205
ZW
3487static void
3488s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489{
3490 demand_empty_rest_of_line ();
921e5f0a
PB
3491 if (unwind.proc_start)
3492 {
c921be7d 3493 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3494 return;
3495 }
3496
c19d1205
ZW
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
b99bd4ef 3499
c19d1205
ZW
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
fdfde340 3507 unwind.fp_reg = REG_SP;
c19d1205
ZW
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510}
b99bd4ef 3511
b99bd4ef 3512
c19d1205
ZW
3513/* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205 3523 if (unwind.table_entry)
6decc662 3524 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3525
c19d1205
ZW
3526 create_unwind_entry (1);
3527}
a737bd4d 3528
c19d1205 3529/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3530
c19d1205
ZW
3531static void
3532s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533{
3534 long where;
3535 char *ptr;
3536 valueT val;
940b5ce0 3537 unsigned int marked_pr_dependency;
f02232aa 3538
c19d1205 3539 demand_empty_rest_of_line ();
f02232aa 3540
921e5f0a
PB
3541 if (!unwind.proc_start)
3542 {
c921be7d 3543 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3544 return;
3545 }
3546
c19d1205
ZW
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
f02232aa 3552
c19d1205
ZW
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
b99bd4ef 3557
c19d1205 3558 ptr = frag_more (8);
5011093d 3559 memset (ptr, 0, 8);
c19d1205 3560 where = frag_now_fix () - 8;
f02232aa 3561
c19d1205
ZW
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
f02232aa 3565
c19d1205
ZW
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
940b5ce0
DJ
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
5f4273c7
NC
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
c19d1205
ZW
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3582 |= 1 << unwind.personality_index;
c19d1205 3583 }
f02232aa 3584
c19d1205
ZW
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
f02232aa 3592
c19d1205
ZW
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3595
3596 unwind.proc_start = NULL;
c19d1205 3597}
f02232aa 3598
f02232aa 3599
c19d1205 3600/* Parse an unwind_cantunwind directive. */
b99bd4ef 3601
c19d1205
ZW
3602static void
3603s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604{
3605 demand_empty_rest_of_line ();
921e5f0a 3606 if (!unwind.proc_start)
c921be7d 3607 as_bad (MISSING_FNSTART);
921e5f0a 3608
c19d1205
ZW
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3611
c19d1205
ZW
3612 unwind.personality_index = -2;
3613}
b99bd4ef 3614
b99bd4ef 3615
c19d1205 3616/* Parse a personalityindex directive. */
b99bd4ef 3617
c19d1205
ZW
3618static void
3619s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620{
3621 expressionS exp;
b99bd4ef 3622
921e5f0a 3623 if (!unwind.proc_start)
c921be7d 3624 as_bad (MISSING_FNSTART);
921e5f0a 3625
c19d1205
ZW
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3628
c19d1205 3629 expression (&exp);
b99bd4ef 3630
c19d1205
ZW
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3633 {
c19d1205
ZW
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
b99bd4ef
NC
3637 }
3638
c19d1205 3639 unwind.personality_index = exp.X_add_number;
b99bd4ef 3640
c19d1205
ZW
3641 demand_empty_rest_of_line ();
3642}
e16bb312 3643
e16bb312 3644
c19d1205 3645/* Parse a personality directive. */
e16bb312 3646
c19d1205
ZW
3647static void
3648s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649{
3650 char *name, *p, c;
a737bd4d 3651
921e5f0a 3652 if (!unwind.proc_start)
c921be7d 3653 as_bad (MISSING_FNSTART);
921e5f0a 3654
c19d1205
ZW
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
a737bd4d 3657
c19d1205
ZW
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664}
e16bb312 3665
e16bb312 3666
c19d1205 3667/* Parse a directive saving core registers. */
e16bb312 3668
c19d1205
ZW
3669static void
3670s_arm_unwind_save_core (void)
e16bb312 3671{
c19d1205
ZW
3672 valueT op;
3673 long range;
3674 int n;
e16bb312 3675
c19d1205
ZW
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
e16bb312 3678 {
c19d1205
ZW
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
e16bb312 3683
c19d1205 3684 demand_empty_rest_of_line ();
e16bb312 3685
c19d1205
ZW
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
e16bb312 3697
01ae4198
DJ
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
c19d1205 3700 {
01ae4198
DJ
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
0dd132b6 3716 else
01ae4198
DJ
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
c19d1205 3726 }
0dd132b6 3727
c19d1205
ZW
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
0dd132b6
NC
3733 }
3734
c19d1205
ZW
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
0dd132b6
NC
3741}
3742
c19d1205
ZW
3743
3744/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3745
3746static void
c19d1205 3747s_arm_unwind_save_fpa (int reg)
b99bd4ef 3748{
c19d1205
ZW
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
b99bd4ef 3752
c19d1205
ZW
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
b99bd4ef 3758
c19d1205 3759 if (exp.X_op != O_constant)
b99bd4ef 3760 {
c19d1205
ZW
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
b99bd4ef
NC
3763 return;
3764 }
3765
c19d1205
ZW
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3769 {
c19d1205
ZW
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
b99bd4ef
NC
3772 return;
3773 }
3774
c19d1205 3775 demand_empty_rest_of_line ();
b99bd4ef 3776
c19d1205
ZW
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
b99bd4ef
NC
3783 else
3784 {
c19d1205
ZW
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
b99bd4ef 3788 }
c19d1205 3789 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3790}
3791
c19d1205 3792
fa073d69
MS
3793/* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795static void
3796s_arm_unwind_save_vfp_armv6 (void)
3797{
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840}
3841
3842
3843/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3844
3845static void
c19d1205 3846s_arm_unwind_save_vfp (void)
b99bd4ef 3847{
c19d1205 3848 int count;
ca3f61f7 3849 unsigned int reg;
c19d1205 3850 valueT op;
b99bd4ef 3851
5287ad62 3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3853 if (count == FAIL)
b99bd4ef 3854 {
c19d1205
ZW
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
b99bd4ef
NC
3857 return;
3858 }
3859
c19d1205 3860 demand_empty_rest_of_line ();
b99bd4ef 3861
c19d1205 3862 if (reg == 8)
b99bd4ef 3863 {
c19d1205
ZW
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
b99bd4ef 3867 }
c19d1205 3868 else
b99bd4ef 3869 {
c19d1205
ZW
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
b99bd4ef 3873 }
c19d1205
ZW
3874 unwind.frame_size += count * 8 + 4;
3875}
b99bd4ef 3876
b99bd4ef 3877
c19d1205
ZW
3878/* Parse a directive saving iWMMXt data registers. */
3879
3880static void
3881s_arm_unwind_save_mmxwr (void)
3882{
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
b99bd4ef 3888
c19d1205
ZW
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
b99bd4ef 3891
c19d1205 3892 do
b99bd4ef 3893 {
dcbf9037 3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3895
c19d1205 3896 if (reg == FAIL)
b99bd4ef 3897 {
9b7132d3 3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3899 goto error;
b99bd4ef
NC
3900 }
3901
c19d1205
ZW
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
b99bd4ef 3905
c19d1205
ZW
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
dcbf9037 3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3910 if (hi_reg == FAIL)
3911 {
9b7132d3 3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3925
c19d1205
ZW
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
b99bd4ef 3928
c19d1205 3929 demand_empty_rest_of_line ();
b99bd4ef 3930
708587a4 3931 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3932 the list. */
3933 flush_pending_unwind ();
b99bd4ef 3934
c19d1205 3935 for (i = 0; i < 16; i++)
b99bd4ef 3936 {
c19d1205
ZW
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
b99bd4ef
NC
3939 }
3940
c19d1205
ZW
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
b99bd4ef 3945 {
c19d1205
ZW
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
b99bd4ef 3964
c19d1205
ZW
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
87a1fd79 3967 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
b99bd4ef
NC
3976 }
3977
c19d1205
ZW
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3982 {
c19d1205
ZW
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3988 preceding block. */
c19d1205
ZW
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
b99bd4ef
NC
4006 }
4007
c19d1205
ZW
4008 return;
4009error:
4010 ignore_rest_of_line ();
b99bd4ef
NC
4011}
4012
4013static void
c19d1205 4014s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4015{
c19d1205
ZW
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
b99bd4ef 4020
c19d1205
ZW
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
b99bd4ef 4023
c19d1205 4024 do
b99bd4ef 4025 {
dcbf9037 4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4027
c19d1205
ZW
4028 if (reg == FAIL)
4029 {
9b7132d3 4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4031 goto error;
4032 }
b99bd4ef 4033
c19d1205
ZW
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
b99bd4ef 4038
c19d1205
ZW
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
dcbf9037 4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4043 if (hi_reg == FAIL)
4044 {
9b7132d3 4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
b99bd4ef 4056 }
c19d1205 4057 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4058
c19d1205
ZW
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
b99bd4ef 4061
c19d1205
ZW
4062 demand_empty_rest_of_line ();
4063
708587a4 4064 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4065 the list. */
4066 flush_pending_unwind ();
b99bd4ef 4067
c19d1205 4068 for (reg = 0; reg < 16; reg++)
b99bd4ef 4069 {
c19d1205
ZW
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
b99bd4ef 4072 }
c19d1205
ZW
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076error:
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078}
4079
c19d1205 4080
fa073d69
MS
4081/* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4083
b99bd4ef 4084static void
fa073d69 4085s_arm_unwind_save (int arch_v6)
b99bd4ef 4086{
c19d1205
ZW
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
b99bd4ef 4090
921e5f0a 4091 if (!unwind.proc_start)
c921be7d 4092 as_bad (MISSING_FNSTART);
921e5f0a 4093
c19d1205
ZW
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
b99bd4ef 4096
c19d1205 4097 if (*peek == '{')
b99bd4ef 4098 {
c19d1205
ZW
4099 had_brace = TRUE;
4100 peek++;
b99bd4ef
NC
4101 }
4102
c19d1205 4103 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4104
c19d1205 4105 if (!reg)
b99bd4ef 4106 {
c19d1205
ZW
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
b99bd4ef
NC
4109 return;
4110 }
4111
c19d1205 4112 switch (reg->type)
b99bd4ef 4113 {
c19d1205
ZW
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
93ac2687 4121 input_line_pointer = peek;
c19d1205 4122 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4123 return;
c19d1205
ZW
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
c19d1205
ZW
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
b99bd4ef 4138 }
c19d1205 4139}
b99bd4ef 4140
b99bd4ef 4141
c19d1205
ZW
4142/* Parse an unwind_movsp directive. */
4143
4144static void
4145s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146{
4147 int reg;
4148 valueT op;
4fa3602b 4149 int offset;
c19d1205 4150
921e5f0a 4151 if (!unwind.proc_start)
c921be7d 4152 as_bad (MISSING_FNSTART);
921e5f0a 4153
dcbf9037 4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4155 if (reg == FAIL)
b99bd4ef 4156 {
9b7132d3 4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4158 ignore_rest_of_line ();
b99bd4ef
NC
4159 return;
4160 }
4fa3602b
PB
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
c19d1205 4171 demand_empty_rest_of_line ();
b99bd4ef 4172
c19d1205 4173 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4174 {
c19d1205 4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4176 return;
4177 }
4178
c19d1205
ZW
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4181
c19d1205
ZW
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4fa3602b 4188 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4189 unwind.sp_restored = 1;
b05fe5cf
ZW
4190}
4191
c19d1205
ZW
4192/* Parse an unwind_pad directive. */
4193
b05fe5cf 4194static void
c19d1205 4195s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4196{
c19d1205 4197 int offset;
b05fe5cf 4198
921e5f0a 4199 if (!unwind.proc_start)
c921be7d 4200 as_bad (MISSING_FNSTART);
921e5f0a 4201
c19d1205
ZW
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
b99bd4ef 4204
c19d1205
ZW
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
b99bd4ef 4211
c19d1205
ZW
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217}
4218
4219/* Parse an unwind_setfp directive. */
4220
4221static void
4222s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4223{
c19d1205
ZW
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
921e5f0a 4228 if (!unwind.proc_start)
c921be7d 4229 as_bad (MISSING_FNSTART);
921e5f0a 4230
dcbf9037 4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
dcbf9037 4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4236
c19d1205
ZW
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
b99bd4ef 4243
c19d1205
ZW
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
a737bd4d 4252
c19d1205 4253 demand_empty_rest_of_line ();
a737bd4d 4254
fdfde340 4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4256 {
c19d1205
ZW
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
a737bd4d
NC
4260 }
4261
c19d1205
ZW
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
fdfde340 4265 if (sp_reg == REG_SP)
c19d1205
ZW
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
a737bd4d
NC
4269}
4270
c19d1205
ZW
4271/* Parse an unwind_raw directive. */
4272
4273static void
4274s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4275{
c19d1205 4276 expressionS exp;
708587a4 4277 /* This is an arbitrary limit. */
c19d1205
ZW
4278 unsigned char op[16];
4279 int count;
a737bd4d 4280
921e5f0a 4281 if (!unwind.proc_start)
c921be7d 4282 as_bad (MISSING_FNSTART);
921e5f0a 4283
c19d1205
ZW
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4287 {
c19d1205
ZW
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
a737bd4d 4293
c19d1205
ZW
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
a737bd4d 4300
c19d1205 4301 count = 0;
a737bd4d 4302
c19d1205
ZW
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
a737bd4d 4310 }
c19d1205 4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4312 {
c19d1205
ZW
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
a737bd4d 4316 }
c19d1205 4317 op[count++] = exp.X_add_number;
a737bd4d 4318
c19d1205
ZW
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
a737bd4d 4322
c19d1205
ZW
4323 expression (&exp);
4324 }
b99bd4ef 4325
c19d1205
ZW
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
b99bd4ef 4329
c19d1205 4330 demand_empty_rest_of_line ();
b99bd4ef 4331}
ee065d83
PB
4332
4333
4334/* Parse a .eabi_attribute directive. */
4335
4336static void
4337s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338{
ee3c0378
AS
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4343}
4344
0855e32b
NS
4345/* Emit a tls fix for the symbol. */
4346
4347static void
4348s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349{
4350 char *p;
4351 expressionS exp;
4352#ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354#endif
4355
4356#ifdef md_cons_align
4357 md_cons_align (4);
4358#endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367}
cdf9ccec 4368#endif /* OBJ_ELF */
0855e32b 4369
ee065d83 4370static void s_arm_arch (int);
7a1d4c38 4371static void s_arm_object_arch (int);
ee065d83
PB
4372static void s_arm_cpu (int);
4373static void s_arm_fpu (int);
69133863 4374static void s_arm_arch_extension (int);
b99bd4ef 4375
f0927246
NC
4376#ifdef TE_PE
4377
4378static void
5f4273c7 4379pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4380{
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395}
4396#endif /* TE_PE */
4397
c19d1205
ZW
4398/* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
b99bd4ef 4403
c19d1205 4404const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4405{
c19d1205
ZW
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
dcbf9037
JB
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
c19d1205
ZW
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
8463be01
PB
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
7a1d4c38 4426 { "object_arch", s_arm_object_arch, 0 },
8463be01 4427 { "fpu", s_arm_fpu, 0 },
69133863 4428 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4429#ifdef OBJ_ELF
c921be7d
NC
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
fa073d69 4443 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4450#else
4451 { "word", cons, 4},
f0927246
NC
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4461#endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
f0927246
NC
4465#ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467#endif
c19d1205
ZW
4468 { 0, 0, 0 }
4469};
4470\f
4471/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4472
c19d1205
ZW
4473/* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
b99bd4ef 4478
c19d1205
ZW
4479static int
4480parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482{
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
b99bd4ef 4486 {
c19d1205
ZW
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
b99bd4ef 4490
c19d1205
ZW
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
b99bd4ef 4496
c19d1205
ZW
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499}
b99bd4ef 4500
5287ad62 4501/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505static int
4506parse_big_immediate (char **str, int i)
4507{
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
036dc3f7
PB
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
58ad575f 4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
5287ad62 4526 else if (exp.X_op == O_big
95b75c01 4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4530
5287ad62
JB
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4534 gas_assert (parts != 0);
95b75c01
NC
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
5287ad62
JB
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
5f4273c7 4565
5287ad62
JB
4566 *str = ptr;
4567
4568 return SUCCESS;
4569}
4570
c19d1205
ZW
4571/* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
b99bd4ef 4573
c19d1205
ZW
4574static int
4575parse_fpa_immediate (char ** str)
4576{
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
b99bd4ef 4582
c19d1205
ZW
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
b99bd4ef 4585
c19d1205
ZW
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4589 {
c19d1205 4590 char *start = *str;
b99bd4ef 4591
c19d1205
ZW
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
b99bd4ef 4598
c19d1205
ZW
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
b99bd4ef 4603
c19d1205 4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4605
c19d1205
ZW
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4613 {
c19d1205
ZW
4614 if (words[j] != fp_values[i][j])
4615 break;
b99bd4ef
NC
4616 }
4617
c19d1205 4618 if (j == MAX_LITTLENUMS)
b99bd4ef 4619 {
c19d1205
ZW
4620 *str = save_in;
4621 return i + 8;
b99bd4ef
NC
4622 }
4623 }
4624 }
b99bd4ef 4625
c19d1205
ZW
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
b99bd4ef 4645
c19d1205
ZW
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
b99bd4ef
NC
4654 }
4655
c19d1205
ZW
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
b99bd4ef
NC
4660}
4661
136da414
JB
4662/* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665static int
4666is_quarter_float (unsigned imm)
4667{
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670}
4671
4672/* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
136da414
JB
4677
4678static unsigned
4679parse_qfloat_immediate (char **ccp, int *immed)
4680{
4681 char *str = *ccp;
c96612cc 4682 char *fpnum;
136da414 4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4684 int found_fpchar = 0;
5f4273c7 4685
136da414 4686 skip_past_char (&str, '#');
5f4273c7 4687
c96612cc
JB
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
5f4273c7 4710
136da414
JB
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
5f4273c7 4715
136da414
JB
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
5f4273c7 4722
c96612cc 4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
5f4273c7 4729
136da414
JB
4730 return SUCCESS;
4731 }
5f4273c7 4732
136da414
JB
4733 return FAIL;
4734}
4735
c19d1205
ZW
4736/* Shift operands. */
4737enum shift_kind
b99bd4ef 4738{
c19d1205
ZW
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740};
b99bd4ef 4741
c19d1205
ZW
4742struct asm_shift_name
4743{
4744 const char *name;
4745 enum shift_kind kind;
4746};
b99bd4ef 4747
c19d1205
ZW
4748/* Third argument to parse_shift. */
4749enum parse_shift_mode
4750{
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756};
b99bd4ef 4757
c19d1205
ZW
4758/* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
b99bd4ef 4760
c19d1205
ZW
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
b99bd4ef 4764
c19d1205
ZW
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4767
c19d1205
ZW
4768static int
4769parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4770{
c19d1205
ZW
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
b99bd4ef 4776
c19d1205
ZW
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
b99bd4ef 4779
c19d1205 4780 if (p == *str)
b99bd4ef 4781 {
c19d1205
ZW
4782 inst.error = _("shift expression expected");
4783 return FAIL;
b99bd4ef
NC
4784 }
4785
21d799b5
NC
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
c19d1205
ZW
4788
4789 if (shift_name == NULL)
b99bd4ef 4790 {
c19d1205
ZW
4791 inst.error = _("shift expression expected");
4792 return FAIL;
b99bd4ef
NC
4793 }
4794
c19d1205 4795 shift = shift_name->kind;
b99bd4ef 4796
c19d1205
ZW
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
b99bd4ef 4801
c19d1205
ZW
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
b99bd4ef 4809
c19d1205
ZW
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
b99bd4ef 4817
c19d1205
ZW
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
b99bd4ef 4825
c19d1205
ZW
4826 default: abort ();
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
b99bd4ef 4833
c19d1205 4834 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
b99bd4ef
NC
4847}
4848
c19d1205 4849/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4850
c19d1205
ZW
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
b99bd4ef 4855
c19d1205
ZW
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4858 is deferred to md_apply_fix. */
b99bd4ef 4859
c19d1205
ZW
4860static int
4861parse_shifter_operand (char **str, int i)
4862{
4863 int value;
91d6fa6a 4864 expressionS exp;
b99bd4ef 4865
dcbf9037 4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
b99bd4ef 4870
c19d1205
ZW
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4874
c19d1205
ZW
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
b99bd4ef 4877
c19d1205
ZW
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4880 }
4881
c19d1205
ZW
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
b99bd4ef 4884
c19d1205 4885 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4886 {
c19d1205 4887 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4889 return FAIL;
b99bd4ef 4890
91d6fa6a 4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
b99bd4ef 4896
91d6fa6a 4897 value = exp.X_add_number;
c19d1205
ZW
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
09d92015 4908
a415b1cd
JB
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
09d92015
MM
4912 }
4913
c19d1205
ZW
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
09d92015
MM
4917}
4918
4962c51a
MS
4919/* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926struct group_reloc_table_entry
4927{
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933};
4934
4935typedef enum
4936{
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942} group_reloc_type;
4943
4944static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998/* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005static int
5006find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007{
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5f4273c7
NC
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
4962c51a
MS
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023}
5024
5025/* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039static parse_operand_result
5040parse_shifter_operand_group_reloc (char **str, int i)
5041{
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
21d799b5 5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5070 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079}
5080
8e560766
MGD
5081/* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5083
8e560766
MGD
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085static parse_operand_result
5086parse_neon_alignment (char **str, int i)
5087{
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106}
5107
c19d1205
ZW
5108/* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
09d92015 5110
c19d1205 5111 Preindexed addressing (.preind=1):
09d92015 5112
c19d1205
ZW
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5117
c19d1205 5118 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5119
c19d1205 5120 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5121
c19d1205
ZW
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5126
c19d1205 5127 Unindexed addressing (.preind=0, .postind=0):
09d92015 5128
c19d1205 5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5130
c19d1205 5131 Other:
09d92015 5132
c19d1205
ZW
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5136
c19d1205
ZW
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
4962c51a
MS
5140static parse_operand_result
5141parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
09d92015 5143{
c19d1205
ZW
5144 char *p = *str;
5145 int reg;
09d92015 5146
c19d1205 5147 if (skip_past_char (&p, '[') == FAIL)
09d92015 5148 {
c19d1205
ZW
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
974da60d 5151 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
974da60d 5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5158
c19d1205 5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5160 return PARSE_OPERAND_FAIL;
09d92015 5161
c19d1205 5162 *str = p;
4962c51a 5163 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5164 }
5165
dcbf9037 5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5167 {
c19d1205 5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5169 return PARSE_OPERAND_FAIL;
09d92015 5170 }
c19d1205
ZW
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
09d92015 5173
c19d1205 5174 if (skip_past_comma (&p) == SUCCESS)
09d92015 5175 {
c19d1205 5176 inst.operands[i].preind = 1;
09d92015 5177
c19d1205
ZW
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
dcbf9037 5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5182 {
c19d1205
ZW
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5188 return PARSE_OPERAND_FAIL;
c19d1205 5189 }
5287ad62 5190 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5196
8e560766
MGD
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
c19d1205
ZW
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
4962c51a 5207
5f4273c7
NC
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
21d799b5 5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5238 break;
5239
5240 case GROUP_LDRS:
21d799b5 5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5242 break;
5243
5244 case GROUP_LDC:
21d799b5 5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5246 break;
5247
5248 default:
9c2799c2 5249 gas_assert (0);
4962c51a
MS
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
26d97720
NS
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
09d92015
MM
5277 }
5278 }
8e560766
MGD
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5284
8e560766
MGD
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
09d92015 5288
c19d1205 5289 if (skip_past_char (&p, ']') == FAIL)
09d92015 5290 {
c19d1205 5291 inst.error = _("']' expected");
4962c51a 5292 return PARSE_OPERAND_FAIL;
09d92015
MM
5293 }
5294
c19d1205
ZW
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
09d92015 5297
c19d1205 5298 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5299 {
c19d1205
ZW
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5304 0, 255, TRUE) == FAIL)
4962c51a 5305 return PARSE_OPERAND_FAIL;
09d92015 5306
c19d1205
ZW
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5310 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
4962c51a 5315 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5316 }
5317 *str = p;
4962c51a 5318 return PARSE_OPERAND_SUCCESS;
09d92015 5319 }
c19d1205
ZW
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
09d92015 5324
c19d1205
ZW
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5328 return PARSE_OPERAND_FAIL;
c19d1205 5329 }
09d92015 5330
c19d1205
ZW
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5333
dcbf9037 5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5335 {
5287ad62
JB
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
c19d1205 5342 inst.operands[i].immisreg = 1;
a737bd4d 5343
c19d1205
ZW
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5346 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5347 }
5348 else
5349 {
26d97720 5350 char *q = p;
c19d1205
ZW
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5357 return PARSE_OPERAND_FAIL;
26d97720
NS
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
c19d1205
ZW
5371 }
5372 }
a737bd4d
NC
5373 }
5374
c19d1205
ZW
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
4962c51a
MS
5384 return PARSE_OPERAND_SUCCESS;
5385}
5386
5387static int
5388parse_address (char **str, int i)
5389{
21d799b5 5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5391 ? SUCCESS : FAIL;
5392}
5393
5394static parse_operand_result
5395parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396{
5397 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5398}
5399
b6895b4f
PB
5400/* Parse an operand for a MOVW or MOVT instruction. */
5401static int
5402parse_half (char **str)
5403{
5404 char * p;
5f4273c7 5405
b6895b4f
PB
5406 p = *str;
5407 skip_past_char (&p, '#');
5f4273c7 5408 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5f4273c7 5416 skip_whitespace (p);
b6895b4f
PB
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438}
5439
c19d1205 5440/* Miscellaneous. */
a737bd4d 5441
c19d1205
ZW
5442/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444static int
d2cd1205 5445parse_psr (char **str, bfd_boolean lhs)
09d92015 5446{
c19d1205
ZW
5447 char *p;
5448 unsigned long psr_field;
62b3e311
PB
5449 const struct asm_psr *psr;
5450 char *start;
d2cd1205 5451 bfd_boolean is_apsr = FALSE;
ac7f631b 5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5453
a4482bb6
NC
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
c19d1205
ZW
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
62b3e311 5463 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
fa94de6b 5467
d2cd1205
JB
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
62b3e311
PB
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
d2cd1205
JB
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
21d799b5
NC
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
d2cd1205 5499
62b3e311
PB
5500 if (!psr)
5501 return FAIL;
09d92015 5502
d2cd1205
JB
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
62b3e311 5512 *str = p;
d2cd1205
JB
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5518 }
d2cd1205
JB
5519 else
5520 goto unsupported_psr;
09d92015 5521
62b3e311 5522 p += 4;
d2cd1205 5523check_suffix:
c19d1205
ZW
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
c19d1205
ZW
5527 p++;
5528 start = p;
a737bd4d 5529
c19d1205
ZW
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
a737bd4d 5533
d2cd1205
JB
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
fa94de6b 5540
d2cd1205
JB
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
fa94de6b 5560
d2cd1205
JB
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
fa94de6b 5564
d2cd1205
JB
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
fa94de6b 5568
d2cd1205
JB
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
fa94de6b 5574
d2cd1205
JB
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
fa94de6b 5577
d2cd1205
JB
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
fa94de6b 5589
d2cd1205
JB
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
a737bd4d 5604
d2cd1205
JB
5605 psr_field |= psr->field;
5606 }
a737bd4d 5607 }
c19d1205 5608 else
a737bd4d 5609 {
c19d1205
ZW
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
d2cd1205
JB
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
a737bd4d 5625 }
c19d1205
ZW
5626 *str = p;
5627 return psr_field;
a737bd4d 5628
d2cd1205
JB
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
c19d1205
ZW
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
a737bd4d
NC
5637}
5638
c19d1205
ZW
5639/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5641
c19d1205
ZW
5642static int
5643parse_cps_flags (char **str)
a737bd4d 5644{
c19d1205
ZW
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
a737bd4d 5648
c19d1205
ZW
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
a737bd4d 5654
c19d1205
ZW
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5658
c19d1205
ZW
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
a737bd4d 5663
c19d1205
ZW
5664 done:
5665 if (saw_a_flag == 0)
a737bd4d 5666 {
c19d1205
ZW
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
a737bd4d 5669 }
a737bd4d 5670
c19d1205
ZW
5671 *str = s - 1;
5672 return val;
a737bd4d
NC
5673}
5674
c19d1205
ZW
5675/* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5677
5678static int
c19d1205 5679parse_endian_specifier (char **str)
a737bd4d 5680{
c19d1205
ZW
5681 int little_endian;
5682 char *s = *str;
a737bd4d 5683
c19d1205
ZW
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
a737bd4d 5689 {
c19d1205 5690 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5691 return FAIL;
5692 }
5693
c19d1205 5694 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5695 {
c19d1205 5696 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5697 return FAIL;
5698 }
5699
c19d1205
ZW
5700 *str = s + 2;
5701 return little_endian;
5702}
a737bd4d 5703
c19d1205
ZW
5704/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708static int
5709parse_ror (char **str)
5710{
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
a737bd4d 5717 {
c19d1205 5718 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5719 return FAIL;
5720 }
c19d1205
ZW
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
a737bd4d 5726 {
c19d1205
ZW
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5734 return FAIL;
5735 }
c19d1205 5736}
a737bd4d 5737
c19d1205
ZW
5738/* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740static int
5741parse_cond (char **str)
5742{
c462b453 5743 char *q;
c19d1205 5744 const struct asm_cond *c;
c462b453
PB
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
a737bd4d 5749
c462b453
PB
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
e07e6e58 5754 cond[n] = TOLOWER (*q);
c462b453
PB
5755 q++;
5756 n++;
5757 }
a737bd4d 5758
21d799b5 5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5760 if (!c)
a737bd4d 5761 {
c19d1205 5762 inst.error = _("condition required");
a737bd4d
NC
5763 return FAIL;
5764 }
5765
c19d1205
ZW
5766 *str = q;
5767 return c->value;
5768}
5769
e797f7e0
MGD
5770/* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772static bfd_boolean
5773mark_feature_used (const arm_feature_set *feature)
5774{
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787}
5788
62b3e311
PB
5789/* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791static int
5792parse_barrier (char **str)
5793{
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
21d799b5
NC
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
62b3e311
PB
5803 if (!o)
5804 return FAIL;
5805
e797f7e0
MGD
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
62b3e311
PB
5809 *str = q;
5810 return o->value;
5811}
5812
92e90b6e
PB
5813/* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815static int
5816parse_tb (char **str)
5817{
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
92e90b6e 5826
dcbf9037 5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5f4273c7 5839
dcbf9037 5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866}
5867
5287ad62
JB
5868/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
037e8744
JB
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5287ad62
JB
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875static int
5876parse_neon_mov (char **str, int *which_operand)
5877{
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
dcbf9037 5881 struct neon_type_el optype;
5f4273c7 5882
dcbf9037 5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
dcbf9037 5888 inst.operands[i].vectype = optype;
5287ad62
JB
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
dcbf9037 5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5895 goto wanted_arm;
5f4273c7 5896
5287ad62
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
037e8744 5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5902 != FAIL)
5287ad62
JB
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5f4273c7 5907
5287ad62
JB
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
dcbf9037 5913 inst.operands[i].vectype = optype;
5287ad62
JB
5914 inst.operands[i++].present = 1;
5915
dcbf9037 5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5917 {
037e8744
JB
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
037e8744 5922 inst.operands[i].present = 1;
5287ad62
JB
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
dcbf9037 5926 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5927 return FAIL;
5928 }
037e8744
JB
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5287ad62 5940 }
037e8744
JB
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5287ad62
JB
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
dcbf9037 5954 inst.operands[i].vectype = optype;
5287ad62 5955 inst.operands[i].present = 1;
5f4273c7 5956
037e8744
JB
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5f4273c7 5968
037e8744
JB
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5f4273c7 5971
037e8744
JB
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5f4273c7 5974
037e8744
JB
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
1b11b49f 5977 inst.operands[i].present = 1;
037e8744 5978 }
5287ad62 5979 }
4641781c
PB
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5287ad62
JB
5990 else
5991 {
dcbf9037 5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5993 return FAIL;
5994 }
5995 }
dcbf9037 5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
5f4273c7 6002
5287ad62
JB
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
5f4273c7 6005
dcbf9037 6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
dcbf9037 6012 inst.operands[i].vectype = optype;
5287ad62 6013 }
dcbf9037 6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
5f4273c7 6020
5287ad62
JB
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
5f4273c7 6023
037e8744 6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 6025 == FAIL)
5287ad62 6026 {
037e8744 6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
037e8744
JB
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 6035 inst.operands[i].vectype = optype;
5287ad62 6036 inst.operands[i].present = 1;
5f4273c7 6037
037e8744
JB
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
1b11b49f 6067 inst.operands[i].present = 1;
5287ad62
JB
6068 }
6069 }
6070 else
6071 {
dcbf9037 6072 first_error (_("parse error"));
5287ad62
JB
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
5f4273c7 6081 wanted_comma:
dcbf9037 6082 first_error (_("expected comma"));
5287ad62 6083 return FAIL;
5f4273c7
NC
6084
6085 wanted_arm:
dcbf9037 6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6087 return FAIL;
5287ad62
JB
6088}
6089
5be8be5d
DG
6090/* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
c19d1205
ZW
6095/* Matcher codes for parse_operands. */
6096enum operand_parse_code
6097{
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6105 optional trailing ! */
c19d1205
ZW
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
5287ad62
JB
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
037e8744 6114 OP_RVSD, /* VFP single or double precision register */
5287ad62 6115 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6116 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6117 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
037e8744 6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
5287ad62 6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6147
6148 OP_I0, /* immediate zero */
c19d1205
ZW
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
5287ad62 6152 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
5287ad62
JB
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
c19d1205 6158 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
c19d1205 6161 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
4962c51a 6169 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6170 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6183 OP_COND, /* conditional code */
92e90b6e 6184 OP_TB, /* Table branch. */
c19d1205 6185
037e8744
JB
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
c19d1205
ZW
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
5287ad62 6198 OP_oI32b, /* 1 .. 32 */
5f1af56b 6199 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6216
5be8be5d
DG
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
c19d1205
ZW
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223};
a737bd4d 6224
c19d1205
ZW
6225/* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229static int
5be8be5d 6230parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6231{
5be8be5d 6232 unsigned const int *upat = pattern;
c19d1205
ZW
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
99aad254 6235 int i, val = 0, backtrack_index = 0;
5287ad62 6236 enum arm_reg_type rtype;
4962c51a 6237 parse_operand_result result;
5be8be5d 6238 unsigned int op_parse_code;
c19d1205 6239
e07e6e58
NC
6240#define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
c19d1205 6247
e07e6e58
NC
6248#define po_reg_or_fail(regtype) \
6249 do \
dcbf9037 6250 { \
e07e6e58
NC
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
dcbf9037 6265 } \
e07e6e58
NC
6266 while (0)
6267
6268#define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
dcbf9037 6275 \
e07e6e58
NC
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286#define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295#define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306#define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314#define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
4962c51a 6324
52e7f43d
RE
6325#define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
c19d1205
ZW
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
5be8be5d
DG
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6359 {
6360 /* Remember where we are in case we need to backtrack. */
9c2799c2 6361 gas_assert (!backtrack_pos);
c19d1205
ZW
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
b6702015 6367 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6368 po_char_or_fail (',');
6369
5be8be5d 6370 switch (op_parse_code)
c19d1205
ZW
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
5be8be5d 6374 case OP_oRRnpcsp:
c19d1205 6375 case OP_RRnpc:
5be8be5d 6376 case OP_RRnpcsp:
c19d1205
ZW
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
c19d1205
ZW
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
5287ad62
JB
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
037e8744
JB
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
5287ad62
JB
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
037e8744
JB
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
5287ad62
JB
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
4316f0d2 6470 case OP_RNDQ_Ibig:
5287ad62 6471 {
4316f0d2 6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6473 break;
4316f0d2 6474 try_immbig:
5287ad62
JB
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
c19d1205
ZW
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
a737bd4d 6499
55881a11 6500 case OP_RRnpctw:
c19d1205 6501 case OP_RRw:
b6702015 6502 case OP_oRRw:
c19d1205
ZW
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6572 {
c19d1205
ZW
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
a737bd4d 6584 }
c19d1205 6585 break;
a737bd4d 6586
b6895b4f
PB
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
e07e6e58 6592 /* Register or expression. */
c19d1205
ZW
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6595
e07e6e58 6596 /* Register or immediate. */
c19d1205
ZW
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6599
c19d1205
ZW
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
09d92015 6613
2d447fca
JM
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
e07e6e58 6617 /* Two kinds of register. */
c19d1205
ZW
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
09d92015 6633
41adaa5c
JM
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
c19d1205
ZW
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6653 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
c19d1205 6660
fa94de6b 6661 case OP_wPSR:
d2cd1205 6662 case OP_rPSR:
90ec0d68
MGD
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
d2cd1205
JB
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
037e8744
JB
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
f7c21dc7
NC
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
037e8744
JB
6699 }
6700 else
6701 goto failure;
6702 break;
6703
92e90b6e
PB
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
e07e6e58 6708 /* Register lists. */
c19d1205
ZW
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
09d92015 6717
c19d1205 6718 case OP_VRSLST:
5287ad62 6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6720 break;
09d92015 6721
c19d1205 6722 case OP_VRDLST:
5287ad62 6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6724 break;
a737bd4d 6725
037e8744
JB
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
5287ad62
JB
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
dcbf9037
JB
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
5287ad62
JB
6747 break;
6748
c19d1205
ZW
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
09d92015 6753
4962c51a
MS
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
c19d1205
ZW
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
09d92015 6772
4962c51a
MS
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
c19d1205
ZW
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
09d92015 6781
c19d1205
ZW
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
09d92015 6785
c19d1205
ZW
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
09d92015 6789
c19d1205 6790 default:
5be8be5d 6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6792 }
09d92015 6793
c19d1205
ZW
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
5be8be5d 6797 switch (op_parse_code)
c19d1205
ZW
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
b6702015 6803 case OP_oRRw:
c19d1205
ZW
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
09d92015 6808
5be8be5d
DG
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
55881a11 6820 case OP_RRnpctw:
fa94de6b
RM
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
55881a11
MGD
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
c19d1205
ZW
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
d2cd1205
JB
6830 case OP_wPSR:
6831 case OP_rPSR:
c19d1205 6832 case OP_COND:
52e7f43d 6833 case OP_oBARRIER_I15:
c19d1205
ZW
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
037e8744 6837 case OP_VRSDLST:
5287ad62
JB
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
c19d1205
ZW
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
a737bd4d 6844
c19d1205
ZW
6845 default:
6846 break;
6847 }
09d92015 6848
c19d1205
ZW
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
09d92015 6852
c19d1205 6853 bad_args:
09d92015 6854 inst.error = BAD_ARGS;
c19d1205
ZW
6855
6856 failure:
6857 if (!backtrack_pos)
d252fdde
PB
6858 {
6859 /* The parse routine should already have set inst.error, but set a
5f4273c7 6860 default here just in case. */
d252fdde
PB
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
c19d1205
ZW
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
d252fdde
PB
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
c19d1205
ZW
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
09d92015 6884 }
09d92015 6885
c19d1205
ZW
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
09d92015 6889
c19d1205 6890 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6891}
6892
c19d1205
ZW
6893#undef po_char_or_fail
6894#undef po_reg_or_fail
6895#undef po_reg_or_goto
6896#undef po_imm_or_fail
5287ad62 6897#undef po_scalar_or_fail
52e7f43d 6898#undef po_barrier_or_imm
e07e6e58 6899
c19d1205 6900/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6901#define constraint(expr, err) \
6902 do \
c19d1205 6903 { \
e07e6e58
NC
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
c19d1205 6909 } \
e07e6e58 6910 while (0)
c19d1205 6911
fdfde340
JM
6912/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915#define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
94206790
MM
6924/* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926#define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
c19d1205
ZW
6932/* Functions for operand encoding. ARM, then Thumb. */
6933
6934#define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936/* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939static unsigned int
6940encode_arm_immediate (unsigned int val)
09d92015 6941{
c19d1205
ZW
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
09d92015
MM
6949}
6950
c19d1205
ZW
6951/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953static unsigned int
6954encode_thumb32_immediate (unsigned int val)
09d92015 6955{
c19d1205 6956 unsigned int a, i;
09d92015 6957
9c3c69f2 6958 if (val <= 0xff)
c19d1205 6959 return val;
a737bd4d 6960
9c3c69f2 6961 for (i = 1; i <= 24; i++)
09d92015 6962 {
9c3c69f2
PB
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6966 }
a737bd4d 6967
c19d1205
ZW
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
09d92015 6973
c19d1205
ZW
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
a737bd4d 6977
c19d1205 6978 return FAIL;
09d92015 6979}
5287ad62 6980/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6981
6982static void
5287ad62
JB
6983encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984{
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
b1cc4aeb 6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6992 fpu_vfp_ext_d32);
5287ad62
JB
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6995 fpu_vfp_ext_d32);
5287ad62
JB
6996 }
6997 else
6998 {
dcbf9037 6999 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
7000 return;
7001 }
7002 }
7003
c19d1205 7004 switch (pos)
09d92015 7005 {
c19d1205
ZW
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
5287ad62
JB
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
5f4273c7 7021
5287ad62
JB
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
5f4273c7 7025
5287ad62
JB
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
c19d1205
ZW
7030 default:
7031 abort ();
09d92015 7032 }
09d92015
MM
7033}
7034
c19d1205 7035/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7036 if any, is handled by md_apply_fix. */
09d92015 7037static void
c19d1205 7038encode_arm_shift (int i)
09d92015 7039{
c19d1205
ZW
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
09d92015 7043 {
c19d1205
ZW
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7052 }
c19d1205 7053}
09d92015 7054
c19d1205
ZW
7055static void
7056encode_arm_shifter_operand (int i)
7057{
7058 if (inst.operands[i].isreg)
09d92015 7059 {
c19d1205
ZW
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
09d92015 7062 }
c19d1205 7063 else
a415b1cd
JB
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
09d92015
MM
7069}
7070
c19d1205 7071/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7072static void
c19d1205 7073encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7074{
2b2f5df9
NC
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
c19d1205 7080 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7081
c19d1205 7082 if (inst.operands[i].preind)
09d92015 7083 {
c19d1205
ZW
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
09d92015 7092
c19d1205
ZW
7093 }
7094 else if (inst.operands[i].postind)
7095 {
9c2799c2 7096 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
09d92015 7101 {
c19d1205 7102 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7103 return;
7104 }
7105
c19d1205
ZW
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
09d92015
MM
7112}
7113
c19d1205
ZW
7114/* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
a737bd4d 7118static void
c19d1205 7119encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7120{
5be8be5d
DG
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
c19d1205 7123 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7124
c19d1205 7125 if (inst.operands[i].immisreg)
09d92015 7126 {
5be8be5d
DG
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
c19d1205
ZW
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
09d92015 7144 }
c19d1205 7145 else /* immediate offset in inst.reloc */
09d92015 7146 {
5be8be5d
DG
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7155 BAD_PC_ADDRESSING);
23a10334 7156
dc5ec521 7157 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7162 }
7163
c19d1205 7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
09d92015 7171 }
09d92015
MM
7172}
7173
c19d1205
ZW
7174/* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179static void
7180encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7181{
c19d1205 7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7183 {
c19d1205
ZW
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
09d92015 7186 }
a737bd4d 7187
c19d1205 7188 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7189
c19d1205
ZW
7190 if (inst.operands[i].immisreg)
7191 {
5be8be5d
DG
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
c19d1205
ZW
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
5be8be5d
DG
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
c19d1205
ZW
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
c19d1205 7213 }
a737bd4d
NC
7214}
7215
c19d1205
ZW
7216/* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
09d92015 7223
c19d1205
ZW
7224static int
7225encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7226{
c19d1205 7227 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7228
9c2799c2 7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7230
c19d1205 7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7232 {
9c2799c2 7233 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
09d92015 7242 }
a737bd4d 7243
c19d1205
ZW
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
a737bd4d 7246
c19d1205 7247 if (inst.operands[i].writeback)
09d92015 7248 {
c19d1205
ZW
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
09d92015 7260 }
a737bd4d 7261
c19d1205 7262 if (reloc_override)
21d799b5 7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
26d97720
NS
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
c19d1205
ZW
7278 return SUCCESS;
7279}
a737bd4d 7280
c19d1205
ZW
7281/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
a737bd4d 7287
c19d1205
ZW
7288 inst.operands[i] describes the destination register. */
7289
c921be7d 7290static bfd_boolean
c19d1205
ZW
7291move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292{
53365c0d
PB
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
09d92015 7301 {
c19d1205 7302 inst.error = _("invalid pseudo operation");
c921be7d 7303 return TRUE;
09d92015 7304 }
c19d1205 7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7306 {
7307 inst.error = _("constant expression expected");
c921be7d 7308 return TRUE;
09d92015 7309 }
c19d1205 7310 if (inst.reloc.exp.X_op == O_constant)
09d92015 7311 {
c19d1205
ZW
7312 if (thumb_p)
7313 {
53365c0d 7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7319 return TRUE;
c19d1205
ZW
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
c921be7d 7331 return TRUE;
c19d1205 7332 }
09d92015 7333
c19d1205
ZW
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
c921be7d 7341 return TRUE;
c19d1205
ZW
7342 }
7343 }
09d92015
MM
7344 }
7345
c19d1205
ZW
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
c921be7d 7349 return TRUE;
c19d1205
ZW
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
c921be7d 7360 return FALSE;
09d92015
MM
7361}
7362
5f4273c7 7363/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
09d92015 7366
a737bd4d 7367static void
c19d1205 7368do_noargs (void)
09d92015 7369{
c19d1205 7370}
a737bd4d 7371
c19d1205
ZW
7372static void
7373do_rd (void)
7374{
7375 inst.instruction |= inst.operands[0].reg << 12;
7376}
a737bd4d 7377
c19d1205
ZW
7378static void
7379do_rd_rm (void)
7380{
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383}
09d92015 7384
9eb6c0f1
MGD
7385static void
7386do_rm_rn (void)
7387{
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390}
7391
c19d1205
ZW
7392static void
7393do_rd_rn (void)
7394{
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397}
a737bd4d 7398
c19d1205
ZW
7399static void
7400do_rn_rd (void)
7401{
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404}
09d92015 7405
59d09be6
MGD
7406static bfd_boolean
7407check_obsolete (const arm_feature_set *feature, const char *msg)
7408{
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421}
7422
c19d1205
ZW
7423static void
7424do_rd_rm_rn (void)
7425{
9a64e435 7426 unsigned Rn = inst.operands[2].reg;
708587a4 7427 /* Enforce restrictions on SWP instruction. */
9a64e435 7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
59d09be6
MGD
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 7440 }
59d09be6 7441
c19d1205
ZW
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
9a64e435 7444 inst.instruction |= Rn << 16;
c19d1205 7445}
09d92015 7446
c19d1205
ZW
7447static void
7448do_rd_rn_rm (void)
7449{
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453}
a737bd4d 7454
c19d1205
ZW
7455static void
7456do_rm_rd_rn (void)
7457{
5be8be5d
DG
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
c19d1205
ZW
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466}
09d92015 7467
c19d1205
ZW
7468static void
7469do_imm0 (void)
7470{
7471 inst.instruction |= inst.operands[0].imm;
7472}
09d92015 7473
c19d1205
ZW
7474static void
7475do_rd_cpaddr (void)
7476{
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7479}
a737bd4d 7480
c19d1205
ZW
7481/* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
09d92015 7484
c19d1205
ZW
7485/* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7487
7488static void
c19d1205 7489do_adr (void)
09d92015 7490{
c19d1205 7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7492
c19d1205
ZW
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7496 inst.reloc.pc_rel = 1;
2fc8bdac 7497 inst.reloc.exp.X_add_number -= 8;
c19d1205 7498}
b99bd4ef 7499
c19d1205
ZW
7500/* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
b99bd4ef 7504
c19d1205
ZW
7505static void
7506do_adrl (void)
7507{
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7509
c19d1205
ZW
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
2fc8bdac 7515 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7516}
7517
b99bd4ef 7518static void
c19d1205 7519do_arit (void)
b99bd4ef 7520{
c19d1205
ZW
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526}
b99bd4ef 7527
62b3e311
PB
7528static void
7529do_barrier (void)
7530{
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
bd3ba5d1 7536 _("bad barrier type"));
62b3e311
PB
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541}
7542
c19d1205
ZW
7543static void
7544do_bfc (void)
7545{
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553}
b99bd4ef 7554
c19d1205
ZW
7555static void
7556do_bfi (void)
7557{
7558 unsigned int msb;
b99bd4ef 7559
c19d1205
ZW
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
b99bd4ef 7564
c19d1205
ZW
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7573}
7574
b99bd4ef 7575static void
c19d1205 7576do_bfx (void)
b99bd4ef 7577{
c19d1205
ZW
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584}
09d92015 7585
c19d1205
ZW
7586/* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
b99bd4ef 7591
c19d1205
ZW
7592static void
7593do_bkpt (void)
7594{
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7597
c19d1205
ZW
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600}
09d92015 7601
c19d1205
ZW
7602static void
7603encode_branch (int default_reloc)
7604{
7605 if (inst.operands[0].hasreloc)
7606 {
0855e32b
NS
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7613 }
b99bd4ef 7614 else
9ae92b05 7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7616 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7617}
7618
b99bd4ef 7619static void
c19d1205 7620do_branch (void)
b99bd4ef 7621{
39b41c9c
PB
7622#ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626#endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628}
7629
7630static void
7631do_bl (void)
7632{
7633#ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642#endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7644}
b99bd4ef 7645
c19d1205
ZW
7646/* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7653
c19d1205
ZW
7654static void
7655do_blx (void)
7656{
7657 if (inst.operands[0].isreg)
b99bd4ef 7658 {
c19d1205
ZW
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7663
c19d1205
ZW
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
b99bd4ef 7667 {
c19d1205 7668 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7673 inst.instruction = 0xfa000000;
267bf995 7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7675 }
c19d1205
ZW
7676}
7677
7678static void
7679do_bx (void)
7680{
845b51d6
PB
7681 bfd_boolean want_reloc;
7682
c19d1205
ZW
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7685
c19d1205 7686 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
5ad34203 7693#ifdef OBJ_ELF
845b51d6 7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7695#endif
584206db 7696 want_reloc = FALSE;
845b51d6
PB
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7700}
7701
c19d1205
ZW
7702
7703/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7704
7705static void
c19d1205 7706do_bxj (void)
a737bd4d 7707{
c19d1205
ZW
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7712}
7713
c19d1205
ZW
7714/* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717static void
7718do_cdp (void)
7719{
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726}
a737bd4d
NC
7727
7728static void
c19d1205 7729do_cmp (void)
a737bd4d 7730{
c19d1205
ZW
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
a737bd4d
NC
7733}
7734
c19d1205
ZW
7735/* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
09d92015 7742
dcbd0d71
MGD
7743struct deprecated_coproc_regs_s
7744{
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754};
7755
7756#define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759/* Table of all deprecated coprocessor registers. */
7760static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761{
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777};
7778
7779#undef DEPR_ACCESS_V8
7780
7781static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
09d92015 7784static void
c19d1205 7785do_co_reg (void)
09d92015 7786{
fdfde340 7787 unsigned Rd;
dcbd0d71 7788 size_t i;
fdfde340
JM
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
dcbd0d71
MGD
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
fdfde340 7825
c19d1205
ZW
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7828 inst.instruction |= Rd << 12;
c19d1205
ZW
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832}
09d92015 7833
c19d1205
ZW
7834/* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
b99bd4ef 7839
c19d1205 7840 Two XScale instructions are special cases of these:
09d92015 7841
c19d1205
ZW
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7844
5f4273c7 7845 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7846
c19d1205
ZW
7847static void
7848do_co_reg2c (void)
7849{
fdfde340
JM
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
c19d1205
ZW
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
c19d1205 7870 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7871}
7872
c19d1205
ZW
7873static void
7874do_cpsi (void)
7875{
7876 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
c19d1205 7882}
b99bd4ef 7883
62b3e311
PB
7884static void
7885do_dbg (void)
7886{
7887 inst.instruction |= inst.operands[0].imm;
7888}
7889
eea54501
MGD
7890static void
7891do_div (void)
7892{
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907}
7908
b99bd4ef 7909static void
c19d1205 7910do_it (void)
b99bd4ef 7911{
c19d1205 7912 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
c19d1205 7917 inst.size = 0;
e07e6e58
NC
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
09d92015 7924}
b99bd4ef 7925
6530b175
NC
7926/* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928static int
7929only_one_reg_in_list (int range)
7930{
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933}
7934
09d92015 7935static void
6530b175 7936encode_ldmstm(int from_push_pop_mnem)
ea6ef066 7937{
c19d1205
ZW
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
6530b175 7940 int one_reg;
ea6ef066 7941
c19d1205
ZW
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
ea6ef066 7944
c19d1205
ZW
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7947
c19d1205 7948 if (inst.operands[0].writeback)
ea6ef066 7949 {
c19d1205
ZW
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
09d92015 7953 {
c19d1205
ZW
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7971 }
ea6ef066 7972 }
6530b175
NC
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984}
7985
7986static void
7987do_ldmstm (void)
7988{
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
7990}
7991
c19d1205
ZW
7992/* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
a737bd4d 7998static void
c19d1205 7999do_ldrd (void)
a737bd4d 8000{
c19d1205 8001 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8002 _("first transfer register must be even"));
c19d1205
ZW
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8005 _("can only transfer two consecutive registers"));
c19d1205
ZW
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8008
c19d1205
ZW
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8011
c56791bb
RE
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
ea6ef066 8015
c56791bb
RE
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
b05fe5cf 8020
c56791bb
RE
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
c19d1205 8023 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8029 }
c19d1205
ZW
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8032}
8033
8034static void
c19d1205 8035do_ldrex (void)
b05fe5cf 8036{
c19d1205
ZW
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
b05fe5cf 8054
c19d1205
ZW
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
b05fe5cf 8058
5be8be5d
DG
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
c19d1205
ZW
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
8064}
8065
8066static void
c19d1205 8067do_ldrexd (void)
b05fe5cf 8068{
c19d1205
ZW
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 8077
c19d1205
ZW
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
8080}
8081
1be5fd2e
NC
8082/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084static void
8085check_ldr_r15_aligned (void)
8086{
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092}
8093
b05fe5cf 8094static void
c19d1205 8095do_ldst (void)
b05fe5cf 8096{
c19d1205
ZW
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 8100 return;
c19d1205 8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 8102 check_ldr_r15_aligned ();
b05fe5cf
ZW
8103}
8104
8105static void
c19d1205 8106do_ldstt (void)
b05fe5cf 8107{
c19d1205
ZW
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
b05fe5cf 8111 {
bd3ba5d1
NC
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
c19d1205 8114 _("this instruction requires a post-indexed address"));
b05fe5cf 8115
c19d1205
ZW
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
b05fe5cf 8119 }
c19d1205
ZW
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122}
b05fe5cf 8123
c19d1205 8124/* Halfword and signed-byte load/store operations. */
b05fe5cf 8125
c19d1205
ZW
8126static void
8127do_ldstv4 (void)
8128{
ff4a8d2b 8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 8133 return;
c19d1205 8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
8135}
8136
8137static void
c19d1205 8138do_ldsttv4 (void)
b05fe5cf 8139{
c19d1205
ZW
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
b05fe5cf 8143 {
bd3ba5d1
NC
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
c19d1205 8146 _("this instruction requires a post-indexed address"));
b05fe5cf 8147
c19d1205
ZW
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
b05fe5cf 8151 }
c19d1205
ZW
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154}
b05fe5cf 8155
c19d1205
ZW
8156/* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158static void
8159do_lstc (void)
8160{
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8164}
8165
b05fe5cf 8166static void
c19d1205 8167do_mlas (void)
b05fe5cf 8168{
8fb9d7b9 8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8170 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8172 && !(inst.instruction & 0x00400000))
8fb9d7b9 8173 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8174
c19d1205
ZW
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8179}
b05fe5cf 8180
c19d1205
ZW
8181static void
8182do_mov (void)
8183{
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186}
b05fe5cf 8187
c19d1205
ZW
8188/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189static void
8190do_mov16 (void)
8191{
b6895b4f
PB
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
c19d1205 8200 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
b05fe5cf 8208}
b99bd4ef 8209
037e8744
JB
8210static void do_vfp_nsyn_opcode (const char *);
8211
8212static int
8213do_vfp_nsyn_mrs (void)
8214{
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
5f4273c7 8227
037e8744
JB
8228 return SUCCESS;
8229}
8230
8231static int
8232do_vfp_nsyn_msr (void)
8233{
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240}
8241
f7c21dc7
NC
8242static void
8243do_vmrs (void)
8244{
8245 unsigned Rt = inst.operands[0].reg;
fa94de6b 8246
f7c21dc7
NC
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
7465e07a
NC
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
f7c21dc7
NC
8272
8273 inst.instruction |= (Rt << 12);
8274}
8275
8276static void
8277do_vmsr (void)
8278{
8279 unsigned Rt = inst.operands[1].reg;
fa94de6b 8280
f7c21dc7
NC
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
7465e07a
NC
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
f7c21dc7
NC
8299
8300 inst.instruction |= (Rt << 12);
8301}
8302
b99bd4ef 8303static void
c19d1205 8304do_mrs (void)
b99bd4ef 8305{
90ec0d68
MGD
8306 unsigned br;
8307
037e8744
JB
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
ff4a8d2b 8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8312 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
d2cd1205 8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
c19d1205 8330}
b99bd4ef 8331
c19d1205
ZW
8332/* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
b99bd4ef 8335
c19d1205
ZW
8336static void
8337do_msr (void)
8338{
037e8744
JB
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
c19d1205
ZW
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
b99bd4ef 8346 {
c19d1205
ZW
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
b99bd4ef 8350 }
b99bd4ef
NC
8351}
8352
c19d1205
ZW
8353static void
8354do_mul (void)
a737bd4d 8355{
ff4a8d2b
NC
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
c19d1205
ZW
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8363
8fb9d7b9
MS
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8367}
8368
c19d1205
ZW
8369/* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8374
8375static void
c19d1205 8376do_mull (void)
b99bd4ef 8377{
c19d1205
ZW
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8382
682b27ad
PB
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8389 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392}
b99bd4ef 8393
c19d1205
ZW
8394static void
8395do_nop (void)
8396{
e7495e45
NS
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
e7495e45
NS
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
c19d1205 8405 }
b99bd4ef
NC
8406}
8407
c19d1205
ZW
8408/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8412
8413static void
c19d1205 8414do_pkhbt (void)
b99bd4ef 8415{
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421}
b99bd4ef 8422
c19d1205 8423/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8424
c19d1205
ZW
8425static void
8426do_pkhtb (void)
8427{
8428 if (!inst.operands[3].present)
b99bd4ef 8429 {
c19d1205
ZW
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8436 }
8437 else
8438 {
c19d1205
ZW
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
b99bd4ef
NC
8443 }
8444}
8445
c19d1205 8446/* ARMv5TE: Preload-Cache
60e5ef9f 8447 MP Extensions: Preload for write
c19d1205 8448
60e5ef9f 8449 PLD(W) <addr_mode>
c19d1205
ZW
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8452
8453static void
c19d1205 8454do_pld (void)
b99bd4ef 8455{
c19d1205
ZW
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465}
b99bd4ef 8466
62b3e311
PB
8467/* ARMv7: PLI <addr_mode> */
8468static void
8469do_pli (void)
8470{
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481}
8482
c19d1205
ZW
8483static void
8484do_push_pop (void)
8485{
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
6530b175 8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 8492}
b99bd4ef 8493
c19d1205
ZW
8494/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
b99bd4ef 8499
c19d1205
ZW
8500static void
8501do_rfe (void)
8502{
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506}
b99bd4ef 8507
c19d1205 8508/* ARM V6 ssat (argument parse). */
b99bd4ef 8509
c19d1205
ZW
8510static void
8511do_ssat (void)
8512{
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8516
c19d1205
ZW
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
b99bd4ef
NC
8519}
8520
c19d1205 8521/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8522
8523static void
c19d1205 8524do_usat (void)
b99bd4ef 8525{
c19d1205
ZW
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8529
c19d1205
ZW
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
b99bd4ef
NC
8532}
8533
c19d1205 8534/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8535
8536static void
c19d1205 8537do_ssat16 (void)
09d92015 8538{
c19d1205
ZW
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8542}
8543
c19d1205
ZW
8544static void
8545do_usat16 (void)
a737bd4d 8546{
c19d1205
ZW
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550}
a737bd4d 8551
c19d1205
ZW
8552/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
a737bd4d 8554
c19d1205
ZW
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
a737bd4d 8557
c19d1205
ZW
8558static void
8559do_setend (void)
8560{
12e37cbc
MGD
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
c19d1205
ZW
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
a737bd4d
NC
8567}
8568
8569static void
c19d1205 8570do_shift (void)
a737bd4d 8571{
c19d1205
ZW
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
a737bd4d 8575
c19d1205
ZW
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8579 {
c19d1205
ZW
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8585 }
8586 else
c19d1205 8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8588}
8589
09d92015 8590static void
3eb17e6b 8591do_smc (void)
09d92015 8592{
3eb17e6b 8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8594 inst.reloc.pc_rel = 0;
09d92015
MM
8595}
8596
90ec0d68
MGD
8597static void
8598do_hvc (void)
8599{
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602}
8603
09d92015 8604static void
c19d1205 8605do_swi (void)
09d92015 8606{
c19d1205
ZW
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
09d92015
MM
8609}
8610
c19d1205
ZW
8611/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
e16bb312 8615
c19d1205
ZW
8616static void
8617do_smla (void)
e16bb312 8618{
c19d1205
ZW
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623}
a737bd4d 8624
c19d1205
ZW
8625/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
a737bd4d 8629
c19d1205
ZW
8630static void
8631do_smlal (void)
8632{
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8637
c19d1205
ZW
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640}
a737bd4d 8641
c19d1205
ZW
8642/* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
a737bd4d 8645
c19d1205
ZW
8646static void
8647do_smul (void)
8648{
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652}
a737bd4d 8653
b6702015
PB
8654/* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
a737bd4d 8656
c19d1205
ZW
8657static void
8658do_srs (void)
8659{
b6702015
PB
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
fdfde340 8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8666 }
8667 else
fdfde340 8668 reg = REG_SP;
b6702015
PB
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8673 inst.instruction |= WRITE_BACK;
8674}
a737bd4d 8675
c19d1205 8676/* ARM V6 strex (argument parse). */
a737bd4d 8677
c19d1205
ZW
8678static void
8679do_strex (void)
8680{
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
a737bd4d 8688
c19d1205
ZW
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8691
c19d1205
ZW
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
a737bd4d 8695
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8700}
8701
877807f8
NC
8702static void
8703do_t_strexbh (void)
8704{
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715}
8716
e16bb312 8717static void
c19d1205 8718do_strexd (void)
e16bb312 8719{
c19d1205
ZW
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8728
c19d1205
ZW
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
e16bb312 8733
c19d1205
ZW
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8737}
8738
9eb6c0f1
MGD
8739/* ARM V8 STRL. */
8740static void
8741do_strlex (void)
8742{
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747}
8748
8749static void
8750do_t_strlex (void)
8751{
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756}
8757
c19d1205
ZW
8758/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
e16bb312 8766static void
c19d1205 8767do_sxtah (void)
e16bb312 8768{
c19d1205
ZW
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773}
e16bb312 8774
c19d1205 8775/* ARM V6 SXTH.
e16bb312 8776
c19d1205
ZW
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
e16bb312
NC
8780
8781static void
c19d1205 8782do_sxth (void)
e16bb312 8783{
c19d1205
ZW
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8787}
c19d1205
ZW
8788\f
8789/* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8791
8792static void
c19d1205 8793do_vfp_sp_monadic (void)
e16bb312 8794{
5287ad62
JB
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8797}
8798
8799static void
c19d1205 8800do_vfp_sp_dyadic (void)
e16bb312 8801{
5287ad62
JB
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8805}
8806
8807static void
c19d1205 8808do_vfp_sp_compare_z (void)
e16bb312 8809{
5287ad62 8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8811}
8812
8813static void
c19d1205 8814do_vfp_dp_sp_cvt (void)
e16bb312 8815{
5287ad62
JB
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8818}
8819
8820static void
c19d1205 8821do_vfp_sp_dp_cvt (void)
e16bb312 8822{
5287ad62
JB
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8825}
8826
8827static void
c19d1205 8828do_vfp_reg_from_sp (void)
e16bb312 8829{
c19d1205 8830 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8832}
8833
8834static void
c19d1205 8835do_vfp_reg2_from_sp2 (void)
e16bb312 8836{
c19d1205
ZW
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8842}
8843
8844static void
c19d1205 8845do_vfp_sp_from_reg (void)
e16bb312 8846{
5287ad62 8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8848 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8849}
8850
8851static void
c19d1205 8852do_vfp_sp2_from_reg2 (void)
e16bb312 8853{
c19d1205
ZW
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8859}
8860
8861static void
c19d1205 8862do_vfp_sp_ldst (void)
e16bb312 8863{
5287ad62 8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8866}
8867
8868static void
c19d1205 8869do_vfp_dp_ldst (void)
e16bb312 8870{
5287ad62 8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8873}
8874
c19d1205 8875
e16bb312 8876static void
c19d1205 8877vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8878{
c19d1205
ZW
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8886 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8887}
8888
8889static void
c19d1205 8890vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8891{
c19d1205 8892 int count;
e16bb312 8893
c19d1205
ZW
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
e16bb312 8899
c19d1205 8900 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8902
c19d1205
ZW
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
e16bb312 8906
c19d1205 8907 inst.instruction |= count;
e16bb312
NC
8908}
8909
8910static void
c19d1205 8911do_vfp_sp_ldstmia (void)
e16bb312 8912{
c19d1205 8913 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8914}
8915
8916static void
c19d1205 8917do_vfp_sp_ldstmdb (void)
e16bb312 8918{
c19d1205 8919 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8920}
8921
8922static void
c19d1205 8923do_vfp_dp_ldstmia (void)
e16bb312 8924{
c19d1205 8925 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8926}
8927
8928static void
c19d1205 8929do_vfp_dp_ldstmdb (void)
e16bb312 8930{
c19d1205 8931 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8932}
8933
8934static void
c19d1205 8935do_vfp_xp_ldstmia (void)
e16bb312 8936{
c19d1205
ZW
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938}
e16bb312 8939
c19d1205
ZW
8940static void
8941do_vfp_xp_ldstmdb (void)
8942{
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8944}
5287ad62
JB
8945
8946static void
8947do_vfp_dp_rd_rm (void)
8948{
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951}
8952
8953static void
8954do_vfp_dp_rn_rd (void)
8955{
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958}
8959
8960static void
8961do_vfp_dp_rd_rn (void)
8962{
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965}
8966
8967static void
8968do_vfp_dp_rd_rn_rm (void)
8969{
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973}
8974
8975static void
8976do_vfp_dp_rd (void)
8977{
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979}
8980
8981static void
8982do_vfp_dp_rm_rd_rn (void)
8983{
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987}
8988
8989/* VFPv3 instructions. */
8990static void
8991do_vfp_sp_const (void)
8992{
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8996}
8997
8998static void
8999do_vfp_dp_const (void)
9000{
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9004}
9005
9006static void
9007vfp_conv (int srcsize)
9008{
5f1af56b
MGD
9009 int immbits = srcsize - inst.operands[1].imm;
9010
fa94de6b
RM
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
5f1af56b
MGD
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
fa94de6b 9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
5287ad62
JB
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028}
9029
9030static void
9031do_vfp_sp_conv_16 (void)
9032{
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035}
9036
9037static void
9038do_vfp_dp_conv_16 (void)
9039{
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042}
9043
9044static void
9045do_vfp_sp_conv_32 (void)
9046{
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049}
9050
9051static void
9052do_vfp_dp_conv_32 (void)
9053{
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056}
c19d1205
ZW
9057\f
9058/* FPA instructions. Also in a logical order. */
e16bb312 9059
c19d1205
ZW
9060static void
9061do_fpa_cmp (void)
9062{
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065}
b99bd4ef
NC
9066
9067static void
c19d1205 9068do_fpa_ldmstm (void)
b99bd4ef 9069{
c19d1205
ZW
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
b99bd4ef 9079
c19d1205
ZW
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
b99bd4ef 9089
c19d1205
ZW
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 9092
c19d1205
ZW
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 9095
c19d1205
ZW
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
b99bd4ef 9102
c19d1205 9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 9104}
c19d1205
ZW
9105\f
9106/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 9107
c19d1205
ZW
9108static void
9109do_iwmmxt_tandorc (void)
9110{
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112}
b99bd4ef 9113
c19d1205
ZW
9114static void
9115do_iwmmxt_textrc (void)
9116{
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119}
b99bd4ef
NC
9120
9121static void
c19d1205 9122do_iwmmxt_textrm (void)
b99bd4ef 9123{
c19d1205
ZW
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127}
b99bd4ef 9128
c19d1205
ZW
9129static void
9130do_iwmmxt_tinsr (void)
9131{
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135}
b99bd4ef 9136
c19d1205
ZW
9137static void
9138do_iwmmxt_tmia (void)
9139{
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143}
b99bd4ef 9144
c19d1205
ZW
9145static void
9146do_iwmmxt_waligni (void)
9147{
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152}
b99bd4ef 9153
2d447fca
JM
9154static void
9155do_iwmmxt_wmerge (void)
9156{
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161}
9162
c19d1205
ZW
9163static void
9164do_iwmmxt_wmov (void)
9165{
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170}
b99bd4ef 9171
c19d1205
ZW
9172static void
9173do_iwmmxt_wldstbh (void)
9174{
8f06b2d8 9175 int reloc;
c19d1205 9176 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
9182}
9183
c19d1205
ZW
9184static void
9185do_iwmmxt_wldstw (void)
9186{
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
b99bd4ef 9193
c19d1205
ZW
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196}
b99bd4ef
NC
9197
9198static void
c19d1205 9199do_iwmmxt_wldstd (void)
b99bd4ef 9200{
c19d1205 9201 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9219}
b99bd4ef 9220
c19d1205
ZW
9221static void
9222do_iwmmxt_wshufh (void)
9223{
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228}
b99bd4ef 9229
c19d1205
ZW
9230static void
9231do_iwmmxt_wzero (void)
9232{
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237}
2d447fca
JM
9238
9239static void
9240do_iwmmxt_wrwrwr_or_imm5 (void)
9241{
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
5f4273c7 9255 case 7:
2d447fca
JM
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287}
c19d1205
ZW
9288\f
9289/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
b99bd4ef 9291
c19d1205 9292/* Insns like "foo X,Y,Z". */
b99bd4ef 9293
c19d1205
ZW
9294static void
9295do_mav_triple (void)
9296{
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300}
b99bd4ef 9301
c19d1205
ZW
9302/* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9304
c19d1205
ZW
9305static void
9306do_mav_quad (void)
9307{
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9312}
9313
c19d1205
ZW
9314/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315static void
9316do_mav_dspsc (void)
a737bd4d 9317{
c19d1205
ZW
9318 inst.instruction |= inst.operands[1].reg << 12;
9319}
a737bd4d 9320
c19d1205
ZW
9321/* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9324
c19d1205
ZW
9325static void
9326do_mav_shift (void)
9327{
9328 int imm = inst.operands[2].imm;
a737bd4d 9329
c19d1205
ZW
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9332
c19d1205
ZW
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9337
c19d1205
ZW
9338 inst.instruction |= imm;
9339}
9340\f
9341/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9342
c19d1205
ZW
9343/* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
a737bd4d 9347
c19d1205
ZW
9348static void
9349do_xsc_mia (void)
9350{
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353}
a737bd4d 9354
c19d1205 9355/* Xscale move-accumulator-register (argument parse)
a737bd4d 9356
c19d1205 9357 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9358
c19d1205
ZW
9359static void
9360do_xsc_mar (void)
9361{
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9364}
9365
c19d1205 9366/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9367
c19d1205 9368 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9369
9370static void
c19d1205 9371do_xsc_mra (void)
b99bd4ef 9372{
c19d1205
ZW
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376}
9377\f
9378/* Encoding functions relevant only to Thumb. */
b99bd4ef 9379
c19d1205
ZW
9380/* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383static void
9384encode_thumb32_shifted_operand (int i)
9385{
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9388
9c3c69f2
PB
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
b99bd4ef 9395 {
c19d1205
ZW
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9412 }
c19d1205 9413}
b99bd4ef 9414
b99bd4ef 9415
c19d1205
ZW
9416/* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
b99bd4ef 9422
c19d1205
ZW
9423static void
9424encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425{
5be8be5d 9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9427
9428 constraint (!inst.operands[i].isreg,
53365c0d 9429 _("Instruction does not support =N addresses"));
b99bd4ef 9430
c19d1205
ZW
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
b99bd4ef 9433 {
5be8be5d 9434 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9444
f40d1643 9445 inst.instruction |= inst.operands[i].imm;
c19d1205 9446 if (inst.operands[i].shifted)
b99bd4ef 9447 {
c19d1205
ZW
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9c3c69f2
PB
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
c19d1205 9452 _("shift out of range"));
9c3c69f2 9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
5be8be5d 9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9460 constraint (is_t && inst.operands[i].writeback,
c19d1205 9461 _("cannot use writeback with this instruction"));
5be8be5d
DG
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
b99bd4ef 9470 }
c19d1205 9471 else
b99bd4ef 9472 {
c19d1205
ZW
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
b99bd4ef 9476 }
c19d1205 9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9478 }
c19d1205 9479 else if (inst.operands[i].postind)
b99bd4ef 9480 {
9c2799c2 9481 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493}
9494
9495/* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9501#define T16_32_TAB \
21d799b5
NC
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
53c4b28b
MGD
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
c19d1205
ZW
9580
9581/* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
21d799b5 9584#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9585enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586#undef X
9587
9588#define X(a,b,c) 0x##b
9589static const unsigned short thumb_op16[] = { T16_32_TAB };
9590#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591#undef X
9592
9593#define X(a,b,c) 0x##c
9594static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9595#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9597#undef X
9598#undef T16_32_TAB
9599
9600/* Thumb instruction encoders, in alphabetical order. */
9601
92e90b6e 9602/* ADDW or SUBW. */
c921be7d 9603
92e90b6e
PB
9604static void
9605do_t_add_sub_w (void)
9606{
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
539d4391
NC
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
fdfde340 9618
92e90b6e
PB
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621}
9622
c19d1205
ZW
9623/* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626static void
9627do_t_add_sub (void)
9628{
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
e07e6e58
NC
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
c19d1205
ZW
9639 if (unified_syntax)
9640 {
0110f2b8
PB
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
e07e6e58 9648 narrow = !in_it_block ();
0110f2b8 9649 else
e07e6e58 9650 narrow = in_it_block ();
c19d1205 9651 if (!inst.operands[2].isreg)
b99bd4ef 9652 {
16805f35
PB
9653 int add;
9654
fdfde340
JM
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
16805f35
PB
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
0110f2b8
PB
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
efd81785
PB
9691 if (Rd == REG_PC)
9692 {
fdfde340 9693 constraint (add, BAD_PC);
efd81785
PB
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
16805f35
PB
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
dc4503c6
PB
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
0110f2b8 9724 }
b99bd4ef 9725 }
c19d1205
ZW
9726 else
9727 {
5f4cb198
NC
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
c19d1205
ZW
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
e27ec89e
PB
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
c19d1205 9739 {
e27ec89e
PB
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
b99bd4ef 9747
7e806470 9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9749 {
7e806470
PB
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9755 {
7e806470
PB
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
c19d1205
ZW
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
c19d1205
ZW
9767 }
9768 }
c921be7d 9769
fdfde340
JM
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
c19d1205
ZW
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
5f4cb198
NC
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
b99bd4ef 9793
c19d1205 9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9795 {
c19d1205
ZW
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9804 return;
9805 }
9806
c19d1205
ZW
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9809
c19d1205
ZW
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9812 {
c19d1205
ZW
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9830 }
b99bd4ef 9831 }
b99bd4ef
NC
9832}
9833
c19d1205
ZW
9834static void
9835do_t_adr (void)
9836{
fdfde340
JM
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9847 inst.instruction |= Rd << 4;
0110f2b8
PB
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
e9f89963 9850 {
0110f2b8 9851 /* Generate a 32-bit opcode. */
e9f89963 9852 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9853 inst.instruction |= Rd << 8;
e9f89963
PB
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
0110f2b8 9859 /* Generate a 16-bit opcode. */
e9f89963
PB
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
b99bd4ef 9864
fdfde340 9865 inst.instruction |= Rd << 4;
e9f89963 9866 }
c19d1205 9867}
b99bd4ef 9868
c19d1205
ZW
9869/* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9875static void
c19d1205 9876do_t_arit3 (void)
b99bd4ef 9877{
c19d1205 9878 int Rd, Rs, Rn;
b99bd4ef 9879
c19d1205
ZW
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
b99bd4ef 9885
fdfde340
JM
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
c19d1205 9891 if (unified_syntax)
b99bd4ef 9892 {
c19d1205
ZW
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
e27ec89e
PB
9905 bfd_boolean narrow;
9906
c19d1205 9907 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9908 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9909 narrow = !in_it_block ();
e27ec89e 9910 else
e07e6e58 9911 narrow = in_it_block ();
e27ec89e
PB
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
c19d1205
ZW
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
b99bd4ef 9928
c19d1205
ZW
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
a737bd4d 9938 }
c19d1205 9939 else
b99bd4ef 9940 {
c19d1205
ZW
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9945
c19d1205
ZW
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
a737bd4d 9951
c19d1205
ZW
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
b99bd4ef 9955 }
a737bd4d 9956}
b99bd4ef 9957
c19d1205
ZW
9958/* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963static void
9964do_t_arit3c (void)
a737bd4d 9965{
c19d1205 9966 int Rd, Rs, Rn;
b99bd4ef 9967
c19d1205
ZW
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
c921be7d 9973
fdfde340
JM
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
a737bd4d 9978
c19d1205 9979 if (unified_syntax)
a737bd4d 9980 {
c19d1205 9981 if (!inst.operands[2].isreg)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9990 }
c19d1205 9991 else
a737bd4d 9992 {
e27ec89e
PB
9993 bfd_boolean narrow;
9994
c19d1205 9995 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9996 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9997 narrow = !in_it_block ();
e27ec89e 9998 else
e07e6e58 9999 narrow = in_it_block ();
e27ec89e
PB
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
a737bd4d 10009 {
c19d1205 10010 if (Rd == Rs)
a737bd4d 10011 {
c19d1205
ZW
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
a737bd4d 10016 }
c19d1205 10017 if (Rd == Rn)
a737bd4d 10018 {
c19d1205
ZW
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
a737bd4d
NC
10023 }
10024 }
c19d1205
ZW
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
a737bd4d 10034 }
b99bd4ef 10035 }
c19d1205
ZW
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10042
c19d1205
ZW
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
a737bd4d
NC
10057}
10058
62b3e311
PB
10059static void
10060do_t_barrier (void)
10061{
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
bd3ba5d1 10067 _("bad barrier type"));
62b3e311
PB
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072}
10073
c19d1205
ZW
10074static void
10075do_t_bfc (void)
a737bd4d 10076{
fdfde340 10077 unsigned Rd;
c19d1205
ZW
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
fdfde340
JM
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
c19d1205
ZW
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
b99bd4ef
NC
10088}
10089
c19d1205
ZW
10090static void
10091do_t_bfi (void)
b99bd4ef 10092{
fdfde340 10093 int Rd, Rn;
c19d1205 10094 unsigned int msb;
b99bd4ef 10095
fdfde340
JM
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
c19d1205
ZW
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
fdfde340
JM
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
b99bd4ef 10108
c19d1205
ZW
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
fdfde340
JM
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
c19d1205
ZW
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
b99bd4ef
NC
10118}
10119
c19d1205
ZW
10120static void
10121do_t_bfx (void)
b99bd4ef 10122{
fdfde340
JM
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
c19d1205
ZW
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
fdfde340
JM
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
c19d1205
ZW
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138}
b99bd4ef 10139
c19d1205
ZW
10140/* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
b99bd4ef 10146
c19d1205
ZW
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
b99bd4ef 10149
c19d1205
ZW
10150static void
10151do_t_blx (void)
10152{
e07e6e58
NC
10153 set_it_insn_type_last ();
10154
c19d1205 10155 if (inst.operands[0].isreg)
fdfde340
JM
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
b99bd4ef
NC
10161 else
10162 {
c19d1205 10163 /* No register. This must be BLX(1). */
2fc8bdac 10164 inst.instruction = 0xf000e800;
0855e32b 10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
10166 }
10167}
10168
c19d1205
ZW
10169static void
10170do_t_branch (void)
b99bd4ef 10171{
0110f2b8 10172 int opcode;
dfa9f0d5 10173 int cond;
9ae92b05 10174 int reloc;
dfa9f0d5 10175
e07e6e58
NC
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
dfa9f0d5
PB
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
dfa9f0d5
PB
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
0110f2b8
PB
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
12d6b0b7
RS
10193 if (unified_syntax
10194 && (inst.size_req == 4
10960bfb
PB
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
c19d1205 10198 {
0110f2b8 10199 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 10200 if (cond == COND_ALWAYS)
9ae92b05 10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10202 else
10203 {
9c2799c2 10204 gas_assert (cond != 0xF);
dfa9f0d5 10205 inst.instruction |= cond << 22;
9ae92b05 10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10207 }
10208 }
b99bd4ef
NC
10209 else
10210 {
0110f2b8 10211 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10212 if (cond == COND_ALWAYS)
9ae92b05 10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10214 else
b99bd4ef 10215 {
dfa9f0d5 10216 inst.instruction |= cond << 8;
9ae92b05 10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10218 }
0110f2b8
PB
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
b99bd4ef 10222 }
9ae92b05 10223 inst.reloc.type = reloc;
c19d1205 10224 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10225}
10226
8884b720
MGD
10227/* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
b99bd4ef 10230static void
8884b720 10231do_t_bkpt_hlt1 (int range)
b99bd4ef 10232{
dfa9f0d5
PB
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
c19d1205 10235 if (inst.operands[0].present)
b99bd4ef 10236 {
8884b720 10237 constraint (inst.operands[0].imm > range,
c19d1205
ZW
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
b99bd4ef 10240 }
8884b720
MGD
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243}
10244
10245static void
10246do_t_hlt (void)
10247{
10248 do_t_bkpt_hlt1 (63);
10249}
10250
10251static void
10252do_t_bkpt (void)
10253{
10254 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
10255}
10256
10257static void
c19d1205 10258do_t_branch23 (void)
b99bd4ef 10259{
e07e6e58 10260 set_it_insn_type_last ();
0855e32b 10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 10262
0855e32b
NS
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10270
4343666d 10271#if defined(OBJ_COFF)
c19d1205
ZW
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10282#endif
90e4755a
RE
10283}
10284
10285static void
c19d1205 10286do_t_bx (void)
90e4755a 10287{
e07e6e58 10288 set_it_insn_type_last ();
c19d1205
ZW
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293}
90e4755a 10294
c19d1205
ZW
10295static void
10296do_t_bxj (void)
10297{
fdfde340 10298 int Rm;
90e4755a 10299
e07e6e58 10300 set_it_insn_type_last ();
fdfde340
JM
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
90e4755a
RE
10304}
10305
10306static void
c19d1205 10307do_t_clz (void)
90e4755a 10308{
fdfde340
JM
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
c19d1205 10321}
90e4755a 10322
dfa9f0d5
PB
10323static void
10324do_t_cps (void)
10325{
e07e6e58 10326 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10327 inst.instruction |= inst.operands[0].imm;
10328}
10329
c19d1205
ZW
10330static void
10331do_t_cpsi (void)
10332{
e07e6e58 10333 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10334 if (unified_syntax
62b3e311
PB
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10337 {
c19d1205
ZW
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10344 }
c19d1205 10345 else
90e4755a 10346 {
62b3e311
PB
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
90e4755a 10355 }
90e4755a
RE
10356}
10357
c19d1205
ZW
10358/* THUMB CPY instruction (argument parse). */
10359
90e4755a 10360static void
c19d1205 10361do_t_cpy (void)
90e4755a 10362{
c19d1205 10363 if (inst.size_req == 4)
90e4755a 10364 {
c19d1205
ZW
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
90e4755a 10368 }
c19d1205 10369 else
90e4755a 10370 {
c19d1205
ZW
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10374 }
90e4755a
RE
10375}
10376
90e4755a 10377static void
25fe350b 10378do_t_cbz (void)
90e4755a 10379{
e07e6e58 10380 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385}
90e4755a 10386
62b3e311
PB
10387static void
10388do_t_dbg (void)
10389{
10390 inst.instruction |= inst.operands[0].imm;
10391}
10392
10393static void
10394do_t_div (void)
10395{
fdfde340
JM
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
62b3e311
PB
10410}
10411
c19d1205
ZW
10412static void
10413do_t_hint (void)
10414{
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419}
90e4755a 10420
c19d1205
ZW
10421static void
10422do_t_it (void)
10423{
10424 unsigned int cond = inst.operands[0].imm;
e27ec89e 10425
e07e6e58
NC
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
5a01bb1d 10429 now_it.warn_deprecated = FALSE;
e27ec89e
PB
10430
10431 /* If the condition is a negative condition, invert the mask. */
c19d1205 10432 if ((cond & 0x1) == 0x0)
90e4755a 10433 {
c19d1205 10434 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10435
c19d1205 10436 if ((mask & 0x7) == 0)
5a01bb1d
MGD
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
c19d1205 10441 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
e27ec89e 10446 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
c19d1205 10451 else
5a01bb1d
MGD
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
90e4755a 10456
e27ec89e
PB
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
c19d1205 10459 }
90e4755a 10460
c19d1205
ZW
10461 inst.instruction |= cond << 4;
10462}
90e4755a 10463
3c707909
PB
10464/* Helper function used for both push/pop and ldm/stm. */
10465static void
10466encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467{
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
3c707909
PB
10480 if (load)
10481 {
e07e6e58
NC
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
3c707909
PB
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
3c707909
PB
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
5f4273c7 10518 mask = ffs (mask) - 1;
3c707909
PB
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526}
10527
c19d1205
ZW
10528static void
10529do_t_ldmstm (void)
10530{
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10536
c19d1205
ZW
10537 if (unified_syntax)
10538 {
3c707909
PB
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
c19d1205
ZW
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
3c707909 10546 && !(inst.operands[1].imm & ~0xff))
90e4755a 10547 {
3c707909 10548 mask = 1 << inst.operands[0].reg;
90e4755a 10549
eab4f823 10550 if (inst.operands[0].reg <= 7)
90e4755a 10551 {
3c707909 10552 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
3c707909 10562
eab4f823
MGD
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
fa94de6b 10582 inst.error =
eab4f823
MGD
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
fa94de6b
RM
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
90e4755a 10593 }
eab4f823 10594 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10595 {
eab4f823
MGD
10596 if (inst.operands[0].writeback)
10597 {
fa94de6b 10598 inst.instruction =
eab4f823
MGD
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
fa94de6b 10606 inst.instruction =
eab4f823
MGD
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
90e4755a 10612 }
3c707909
PB
10613 }
10614
10615 if (!narrow)
10616 {
c19d1205
ZW
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10619
5f4273c7
NC
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
90e4755a
RE
10622 }
10623 }
c19d1205 10624 else
90e4755a 10625 {
c19d1205
ZW
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10631 if (inst.instruction == T_MNEM_stmia)
f03698e6 10632 {
c19d1205
ZW
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10637 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10638 inst.operands[0].reg);
f03698e6 10639 }
c19d1205 10640 else
90e4755a 10641 {
c19d1205
ZW
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10648 }
10649
c19d1205
ZW
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654}
e28cd48c 10655
c19d1205
ZW
10656static void
10657do_t_ldrex (void)
10658{
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
01cfc07f 10663 BAD_ADDR_MODE);
e28cd48c 10664
5be8be5d
DG
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670}
e28cd48c 10671
c19d1205
ZW
10672static void
10673do_t_ldrexd (void)
10674{
10675 if (!inst.operands[1].present)
1cac9012 10676 {
c19d1205
ZW
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10681 }
c19d1205
ZW
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
b99bd4ef 10684
c19d1205
ZW
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10688}
10689
10690static void
c19d1205 10691do_t_ldst (void)
b99bd4ef 10692{
0110f2b8
PB
10693 unsigned long opcode;
10694 int Rn;
10695
e07e6e58
NC
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
0110f2b8 10701 opcode = inst.instruction;
c19d1205 10702 if (unified_syntax)
b99bd4ef 10703 {
53365c0d
PB
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
0110f2b8
PB
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
c19d1205
ZW
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
c19d1205 10717 {
0110f2b8
PB
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10723 /* [Rn, Rik] */
0110f2b8
PB
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
5be8be5d
DG
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
c19d1205 10765 }
0110f2b8 10766 /* Definitely a 32-bit variant. */
5be8be5d 10767
8d67f500
NC
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
5be8be5d 10783 /* Do some validations regarding addressing modes. */
1be5fd2e 10784 if (inst.operands[1].immisreg)
5be8be5d
DG
10785 reject_bad_reg (inst.operands[1].imm);
10786
1be5fd2e
NC
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
0110f2b8 10791 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10794 check_ldr_r15_aligned ();
b99bd4ef
NC
10795 return;
10796 }
10797
c19d1205
ZW
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10801 {
c19d1205
ZW
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
b99bd4ef 10810 }
5f4273c7 10811
c19d1205
ZW
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
b99bd4ef 10816
c19d1205
ZW
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10822 {
c19d1205
ZW
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
b99bd4ef 10830
c19d1205
ZW
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10837
c19d1205
ZW
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
90e4755a 10842
c19d1205
ZW
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
90e4755a 10852
c19d1205
ZW
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
90e4755a 10857
c19d1205
ZW
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
90e4755a 10871
c19d1205
ZW
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875}
90e4755a 10876
c19d1205
ZW
10877static void
10878do_t_ldstd (void)
10879{
10880 if (!inst.operands[1].present)
b99bd4ef 10881 {
c19d1205
ZW
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
bd340a04
MGD
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
b99bd4ef 10887 }
bd340a04
MGD
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
c19d1205
ZW
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10898}
10899
c19d1205
ZW
10900static void
10901do_t_ldstt (void)
10902{
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905}
a737bd4d 10906
b99bd4ef 10907static void
c19d1205 10908do_t_mla (void)
b99bd4ef 10909{
fdfde340 10910 unsigned Rd, Rn, Rm, Ra;
c921be7d 10911
fdfde340
JM
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
c19d1205 10926}
b99bd4ef 10927
c19d1205
ZW
10928static void
10929do_t_mlal (void)
10930{
fdfde340
JM
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
c19d1205 10947}
b99bd4ef 10948
c19d1205
ZW
10949static void
10950do_t_mov_cmp (void)
10951{
fdfde340
JM
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
e07e6e58
NC
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
c19d1205 10960 if (unified_syntax)
b99bd4ef 10961 {
c19d1205
ZW
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10964 unsigned long opcode;
3d388997
PB
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
fdfde340 10968 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10969 opcode = inst.instruction;
e07e6e58 10970 if (in_it_block ())
0110f2b8 10971 narrow = opcode != T_MNEM_movs;
3d388997 10972 else
0110f2b8 10973 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
efd81785
PB
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
fdfde340
JM
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
efd81785
PB
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
fdfde340
JM
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
fdfde340
JM
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
76fa04a4
MGD
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
fdfde340
JM
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
c19d1205
ZW
11037 if (!inst.operands[1].isreg)
11038 {
0110f2b8 11039 /* Immediate operand. */
e07e6e58 11040 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
fdfde340 11045 inst.instruction |= Rn << 8;
0110f2b8
PB
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11055 inst.instruction |= Rn << r0off;
0110f2b8
PB
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
c19d1205 11058 }
728ca7c9
PB
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
e07e6e58 11066 if (in_it_block ())
728ca7c9
PB
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
fdfde340 11077 if (Rn != Rm)
728ca7c9
PB
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
5f4273c7 11095 abort ();
728ca7c9
PB
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
fdfde340 11101 inst.instruction |= Rn;
728ca7c9
PB
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
fdfde340
JM
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
728ca7c9
PB
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
3d388997 11114 else if (!narrow)
c19d1205 11115 {
728ca7c9
PB
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
e07e6e58 11122 if (in_it_block ())
728ca7c9
PB
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
fdfde340
JM
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
728ca7c9
PB
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11148 inst.instruction |= Rn << r0off;
728ca7c9
PB
11149 encode_thumb32_shifted_operand (1);
11150 }
c19d1205
ZW
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
837b3435 11156 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
fa94de6b 11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
11164 arm_ext_v6);
11165 }
11166
c19d1205 11167 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
c19d1205 11171 break;
b99bd4ef 11172
c19d1205
ZW
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
941a8a52
MGD
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
c19d1205
ZW
11179 break;
11180
11181 case T_MNEM_cmp:
3d388997 11182 if (low_regs)
c19d1205
ZW
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
c19d1205
ZW
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
c19d1205
ZW
11194 }
11195 break;
11196 }
b99bd4ef
NC
11197 return;
11198 }
11199
c19d1205 11200 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
c19d1205 11206 if (inst.operands[1].isreg)
b99bd4ef 11207 {
fdfde340 11208 if (Rn < 8 && Rm < 8)
b99bd4ef 11209 {
c19d1205
ZW
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 11214 else
c19d1205 11215 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 11216
fdfde340
JM
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
b99bd4ef
NC
11219 }
11220 else
11221 {
c19d1205
ZW
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
b99bd4ef
NC
11227 }
11228 }
c19d1205 11229 else
b99bd4ef 11230 {
fdfde340 11231 constraint (Rn > 7,
c19d1205 11232 _("only lo regs allowed with immediate"));
fdfde340 11233 inst.instruction |= Rn << 8;
c19d1205
ZW
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236}
b99bd4ef 11237
c19d1205
ZW
11238static void
11239do_t_mov16 (void)
11240{
fdfde340 11241 unsigned Rd;
b6895b4f
PB
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
fdfde340
JM
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
b6895b4f
PB
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
c19d1205 11269}
b99bd4ef 11270
c19d1205
ZW
11271static void
11272do_t_mvn_tst (void)
11273{
fdfde340 11274 unsigned Rn, Rm;
c921be7d 11275
fdfde340
JM
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
c19d1205
ZW
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
fdfde340 11295 || Rn > 7 || Rm > 7)
3d388997
PB
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11300 narrow = !in_it_block ();
3d388997 11301 else
e07e6e58 11302 narrow = in_it_block ();
3d388997 11303
c19d1205 11304 if (!inst.operands[1].isreg)
b99bd4ef 11305 {
c19d1205
ZW
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11311 inst.instruction |= Rn << r0off;
c19d1205 11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11313 }
c19d1205 11314 else
b99bd4ef 11315 {
c19d1205 11316 /* See if we can do this with a 16-bit instruction. */
3d388997 11317 if (narrow)
b99bd4ef 11318 {
c19d1205 11319 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
b99bd4ef 11322 }
c19d1205 11323 else
b99bd4ef 11324 {
c19d1205
ZW
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11330 inst.instruction |= Rn << r0off;
c19d1205 11331 encode_thumb32_shifted_operand (1);
b99bd4ef 11332 }
b99bd4ef
NC
11333 }
11334 }
11335 else
11336 {
c19d1205
ZW
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
fdfde340 11341 constraint (Rn > 7 || Rm > 7,
c19d1205 11342 BAD_HIREG);
b99bd4ef 11343
c19d1205 11344 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
b99bd4ef 11347 }
b99bd4ef
NC
11348}
11349
b05fe5cf 11350static void
c19d1205 11351do_t_mrs (void)
b05fe5cf 11352{
fdfde340 11353 unsigned Rd;
037e8744
JB
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
90ec0d68
MGD
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
62b3e311 11363 {
90ec0d68
MGD
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11371 }
11372 else
11373 {
90ec0d68 11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11375
d2cd1205 11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
90ec0d68 11385 else
d2cd1205
JB
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11390
90ec0d68
MGD
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
c19d1205 11395}
b05fe5cf 11396
c19d1205
ZW
11397static void
11398do_t_msr (void)
11399{
62b3e311 11400 int flags;
fdfde340 11401 unsigned Rn;
62b3e311 11402
037e8744
JB
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
c19d1205
ZW
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
d2cd1205 11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11415 {
d2cd1205
JB
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
1a43faaf
NC
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
62b3e311
PB
11428 }
11429 else
d2cd1205
JB
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
c921be7d 11432
fdfde340
JM
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
62b3e311 11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11439 inst.instruction |= (flags & 0xff);
fdfde340 11440 inst.instruction |= Rn << 16;
c19d1205 11441}
b05fe5cf 11442
c19d1205
ZW
11443static void
11444do_t_mul (void)
11445{
17828f45 11446 bfd_boolean narrow;
fdfde340 11447 unsigned Rd, Rn, Rm;
17828f45 11448
c19d1205
ZW
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11451
fdfde340
JM
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
17828f45 11456 if (unified_syntax)
b05fe5cf 11457 {
17828f45 11458 if (inst.size_req == 4
fdfde340
JM
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
17828f45
JM
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11465 narrow = !in_it_block ();
17828f45 11466 else
e07e6e58 11467 narrow = in_it_block ();
b05fe5cf 11468 }
c19d1205 11469 else
b05fe5cf 11470 {
17828f45 11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11472 constraint (Rn > 7 || Rm > 7,
c19d1205 11473 BAD_HIREG);
17828f45
JM
11474 narrow = TRUE;
11475 }
b05fe5cf 11476
17828f45
JM
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
c19d1205 11480 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11481 inst.instruction |= Rd;
b05fe5cf 11482
fdfde340
JM
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
c19d1205
ZW
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
17828f45
JM
11490 else
11491 {
e07e6e58
NC
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
17828f45 11503 }
c19d1205 11504}
b05fe5cf 11505
c19d1205
ZW
11506static void
11507do_t_mull (void)
11508{
fdfde340 11509 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11510
fdfde340
JM
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
c19d1205
ZW
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528}
b05fe5cf 11529
c19d1205
ZW
11530static void
11531do_t_nop (void)
11532{
e07e6e58
NC
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
c19d1205
ZW
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11538 {
c19d1205
ZW
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
bc2d1808
NC
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
afa62d5e 11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
c19d1205
ZW
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561}
b05fe5cf 11562
c19d1205
ZW
11563static void
11564do_t_neg (void)
11565{
11566 if (unified_syntax)
11567 {
3d388997
PB
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11571 narrow = !in_it_block ();
3d388997 11572 else
e07e6e58 11573 narrow = in_it_block ();
3d388997
PB
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
c19d1205
ZW
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11584 }
11585 else
11586 {
c19d1205
ZW
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11590 }
11591 }
11592 else
11593 {
c19d1205
ZW
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602}
11603
1c444d06
JM
11604static void
11605do_t_orn (void)
11606{
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
fdfde340
JM
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
1c444d06
JM
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
fdfde340 11629 reject_bad_reg (Rm);
1c444d06
JM
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636}
11637
c19d1205
ZW
11638static void
11639do_t_pkhbt (void)
11640{
fdfde340
JM
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
c19d1205
ZW
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11661 }
c19d1205 11662}
b05fe5cf 11663
c19d1205
ZW
11664static void
11665do_t_pkhtb (void)
11666{
11667 if (!inst.operands[3].present)
1ef52f49
NC
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
c19d1205 11678 do_t_pkhbt ();
b05fe5cf
ZW
11679}
11680
c19d1205
ZW
11681static void
11682do_t_pld (void)
11683{
fdfde340
JM
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
c19d1205
ZW
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688}
b05fe5cf 11689
c19d1205
ZW
11690static void
11691do_t_push_pop (void)
b99bd4ef 11692{
e9f89963 11693 unsigned mask;
5f4273c7 11694
c19d1205
ZW
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
b99bd4ef 11699
e9f89963
PB
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
3c707909 11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11703 else if ((inst.instruction == T_MNEM_push
e9f89963 11704 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11705 || (inst.instruction == T_MNEM_pop
e9f89963 11706 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11707 {
c19d1205
ZW
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11710 inst.instruction |= mask & 0xff;
c19d1205
ZW
11711 }
11712 else if (unified_syntax)
11713 {
3c707909 11714 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11715 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
c19d1205 11722}
b99bd4ef 11723
c19d1205
ZW
11724static void
11725do_t_rbit (void)
11726{
fdfde340
JM
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
c19d1205 11738}
b99bd4ef 11739
c19d1205
ZW
11740static void
11741do_t_rev (void)
11742{
fdfde340
JM
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
c19d1205
ZW
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
c19d1205
ZW
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767}
b99bd4ef 11768
1c444d06
JM
11769static void
11770do_t_rrx (void)
11771{
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
fdfde340
JM
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
c921be7d 11779
1c444d06
JM
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782}
11783
c19d1205
ZW
11784static void
11785do_t_rsb (void)
11786{
fdfde340 11787 unsigned Rd, Rs;
b99bd4ef 11788
c19d1205
ZW
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11793
fdfde340
JM
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
c19d1205
ZW
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
026d3abb
PB
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11806 narrow = !in_it_block ();
026d3abb 11807 else
e07e6e58 11808 narrow = in_it_block ();
026d3abb
PB
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
c19d1205
ZW
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837}
b99bd4ef 11838
c19d1205
ZW
11839static void
11840do_t_setend (void)
11841{
12e37cbc
MGD
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
e07e6e58 11846 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849}
b99bd4ef 11850
c19d1205
ZW
11851static void
11852do_t_shift (void)
11853{
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
3d388997
PB
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11876 narrow = !in_it_block ();
3d388997 11877 else
e07e6e58 11878 narrow = in_it_block ();
3d388997
PB
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
fdfde340
JM
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
c921be7d 11892
3d388997 11893 if (!narrow)
c19d1205
ZW
11894 {
11895 if (inst.operands[2].isreg)
b99bd4ef 11896 {
fdfde340 11897 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
3d388997 11910 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11917 }
11918 }
11919 else
11920 {
c19d1205 11921 if (inst.operands[2].isreg)
b99bd4ef 11922 {
3d388997 11923 switch (shift_kind)
b99bd4ef 11924 {
3d388997
PB
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11929 default: abort ();
b99bd4ef 11930 }
5f4273c7 11931
c19d1205
ZW
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11938 }
11939 else
11940 {
3d388997 11941 switch (shift_kind)
b99bd4ef 11942 {
3d388997
PB
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11946 default: abort ();
b99bd4ef 11947 }
c19d1205
ZW
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11951 }
11952 }
c19d1205
ZW
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11959
c19d1205
ZW
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
b99bd4ef 11965
c19d1205
ZW
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
5f4273c7 11974
c19d1205
ZW
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11981 }
11982 else
b99bd4ef 11983 {
c19d1205
ZW
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11995 }
11996 }
b99bd4ef
NC
11997}
11998
11999static void
c19d1205 12000do_t_simd (void)
b99bd4ef 12001{
fdfde340
JM
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
c19d1205 12015}
b99bd4ef 12016
03ee1b7f
NC
12017static void
12018do_t_simd2 (void)
12019{
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033}
12034
c19d1205 12035static void
3eb17e6b 12036do_t_smc (void)
c19d1205
ZW
12037{
12038 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
c19d1205
ZW
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047}
b99bd4ef 12048
90ec0d68
MGD
12049static void
12050do_t_hvc (void)
12051{
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057}
12058
c19d1205 12059static void
3a21c15a 12060do_t_ssat_usat (int bias)
c19d1205 12061{
fdfde340
JM
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
3a21c15a 12071 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 12072 inst.instruction |= Rn << 16;
b99bd4ef 12073
c19d1205 12074 if (inst.operands[3].present)
b99bd4ef 12075 {
3a21c15a
NC
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
c19d1205
ZW
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
b99bd4ef 12082
3a21c15a 12083 if (shift_amount != 0)
6189168b 12084 {
3a21c15a
NC
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
c19d1205 12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
12093 }
12094 }
b99bd4ef 12095}
c921be7d 12096
3a21c15a
NC
12097static void
12098do_t_ssat (void)
12099{
12100 do_t_ssat_usat (1);
12101}
b99bd4ef 12102
0dd132b6 12103static void
c19d1205 12104do_t_ssat16 (void)
0dd132b6 12105{
fdfde340
JM
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
c19d1205 12115 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 12116 inst.instruction |= Rn << 16;
c19d1205 12117}
0dd132b6 12118
c19d1205
ZW
12119static void
12120do_t_strex (void)
12121{
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
01cfc07f 12126 BAD_ADDR_MODE);
0dd132b6 12127
5be8be5d
DG
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
c19d1205
ZW
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
12134}
12135
b99bd4ef 12136static void
c19d1205 12137do_t_strexd (void)
b99bd4ef 12138{
c19d1205
ZW
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 12141
c19d1205
ZW
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 12144 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 12145 BAD_OVERLAP);
b99bd4ef 12146
c19d1205
ZW
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
12151}
12152
12153static void
c19d1205 12154do_t_sxtah (void)
b99bd4ef 12155{
fdfde340
JM
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
c19d1205
ZW
12169 inst.instruction |= inst.operands[3].imm << 4;
12170}
b99bd4ef 12171
c19d1205
ZW
12172static void
12173do_t_sxth (void)
12174{
fdfde340
JM
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
c921be7d
NC
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
fdfde340 12185 && Rd <= 7 && Rm <= 7
c19d1205 12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 12187 {
c19d1205 12188 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
b99bd4ef 12191 }
c19d1205 12192 else if (unified_syntax)
b99bd4ef 12193 {
c19d1205
ZW
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
c19d1205 12198 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 12199 }
c19d1205 12200 else
b99bd4ef 12201 {
c19d1205
ZW
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
b99bd4ef 12205 }
c19d1205 12206}
b99bd4ef 12207
c19d1205
ZW
12208static void
12209do_t_swi (void)
12210{
b2a5fbdc
MGD
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
ac7f631b
NC
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
c19d1205
ZW
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223}
b99bd4ef 12224
92e90b6e
PB
12225static void
12226do_t_tb (void)
12227{
fdfde340 12228 unsigned Rn, Rm;
92e90b6e
PB
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
e07e6e58 12232 set_it_insn_type_last ();
dfa9f0d5
PB
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
fdfde340
JM
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
c921be7d 12238
fdfde340
JM
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
92e90b6e
PB
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
fdfde340 12244 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
12245}
12246
c19d1205
ZW
12247static void
12248do_t_usat (void)
12249{
3a21c15a 12250 do_t_ssat_usat (0);
b99bd4ef
NC
12251}
12252
12253static void
c19d1205 12254do_t_usat16 (void)
b99bd4ef 12255{
fdfde340
JM
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
c19d1205 12265 inst.instruction |= inst.operands[1].imm;
fdfde340 12266 inst.instruction |= Rn << 16;
b99bd4ef 12267}
c19d1205 12268
5287ad62 12269/* Neon instruction encoder helpers. */
5f4273c7 12270
5287ad62 12271/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12272
5287ad62
JB
12273/* An "invalid" code for the following tables. */
12274#define N_INV -1u
12275
12276struct neon_tab_entry
b99bd4ef 12277{
5287ad62
JB
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281};
5f4273c7 12282
5287ad62
JB
12283/* Map overloaded Neon opcodes to their respective encodings. */
12284#define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
e07e6e58 12297 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
12348 X(vselgt, 0xe300a00, N_INV, N_INV), \
12349 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 12350 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
12351 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12352 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894
MGD
12353 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
12354 X(aes, 0x3b00300, N_INV, N_INV)
5287ad62
JB
12355
12356enum neon_opc
12357{
12358#define X(OPC,I,F,S) N_MNEM_##OPC
12359NEON_ENC_TAB
12360#undef X
12361};
b99bd4ef 12362
5287ad62
JB
12363static const struct neon_tab_entry neon_enc_tab[] =
12364{
12365#define X(OPC,I,F,S) { (I), (F), (S) }
12366NEON_ENC_TAB
12367#undef X
12368};
b99bd4ef 12369
88714cb8
DG
12370/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12371#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12372#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12373#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12374#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12375#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12376#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12377#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12378#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12379#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12380#define NEON_ENC_SINGLE_(X) \
037e8744 12381 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12382#define NEON_ENC_DOUBLE_(X) \
037e8744 12383 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
12384#define NEON_ENC_FPV8_(X) \
12385 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 12386
88714cb8
DG
12387#define NEON_ENCODE(type, inst) \
12388 do \
12389 { \
12390 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12391 inst.is_neon = 1; \
12392 } \
12393 while (0)
12394
12395#define check_neon_suffixes \
12396 do \
12397 { \
12398 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12399 { \
12400 as_bad (_("invalid neon suffix for non neon instruction")); \
12401 return; \
12402 } \
12403 } \
12404 while (0)
12405
037e8744
JB
12406/* Define shapes for instruction operands. The following mnemonic characters
12407 are used in this table:
5287ad62 12408
037e8744 12409 F - VFP S<n> register
5287ad62
JB
12410 D - Neon D<n> register
12411 Q - Neon Q<n> register
12412 I - Immediate
12413 S - Scalar
12414 R - ARM register
12415 L - D<n> register list
5f4273c7 12416
037e8744
JB
12417 This table is used to generate various data:
12418 - enumerations of the form NS_DDR to be used as arguments to
12419 neon_select_shape.
12420 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12421 - a table used to drive neon_select_shape. */
b99bd4ef 12422
037e8744
JB
12423#define NEON_SHAPE_DEF \
12424 X(3, (D, D, D), DOUBLE), \
12425 X(3, (Q, Q, Q), QUAD), \
12426 X(3, (D, D, I), DOUBLE), \
12427 X(3, (Q, Q, I), QUAD), \
12428 X(3, (D, D, S), DOUBLE), \
12429 X(3, (Q, Q, S), QUAD), \
12430 X(2, (D, D), DOUBLE), \
12431 X(2, (Q, Q), QUAD), \
12432 X(2, (D, S), DOUBLE), \
12433 X(2, (Q, S), QUAD), \
12434 X(2, (D, R), DOUBLE), \
12435 X(2, (Q, R), QUAD), \
12436 X(2, (D, I), DOUBLE), \
12437 X(2, (Q, I), QUAD), \
12438 X(3, (D, L, D), DOUBLE), \
12439 X(2, (D, Q), MIXED), \
12440 X(2, (Q, D), MIXED), \
12441 X(3, (D, Q, I), MIXED), \
12442 X(3, (Q, D, I), MIXED), \
12443 X(3, (Q, D, D), MIXED), \
12444 X(3, (D, Q, Q), MIXED), \
12445 X(3, (Q, Q, D), MIXED), \
12446 X(3, (Q, D, S), MIXED), \
12447 X(3, (D, Q, S), MIXED), \
12448 X(4, (D, D, D, I), DOUBLE), \
12449 X(4, (Q, Q, Q, I), QUAD), \
12450 X(2, (F, F), SINGLE), \
12451 X(3, (F, F, F), SINGLE), \
12452 X(2, (F, I), SINGLE), \
12453 X(2, (F, D), MIXED), \
12454 X(2, (D, F), MIXED), \
12455 X(3, (F, F, I), MIXED), \
12456 X(4, (R, R, F, F), SINGLE), \
12457 X(4, (F, F, R, R), SINGLE), \
12458 X(3, (D, R, R), DOUBLE), \
12459 X(3, (R, R, D), DOUBLE), \
12460 X(2, (S, R), SINGLE), \
12461 X(2, (R, S), SINGLE), \
12462 X(2, (F, R), SINGLE), \
12463 X(2, (R, F), SINGLE)
12464
12465#define S2(A,B) NS_##A##B
12466#define S3(A,B,C) NS_##A##B##C
12467#define S4(A,B,C,D) NS_##A##B##C##D
12468
12469#define X(N, L, C) S##N L
12470
5287ad62
JB
12471enum neon_shape
12472{
037e8744
JB
12473 NEON_SHAPE_DEF,
12474 NS_NULL
5287ad62 12475};
b99bd4ef 12476
037e8744
JB
12477#undef X
12478#undef S2
12479#undef S3
12480#undef S4
12481
12482enum neon_shape_class
12483{
12484 SC_SINGLE,
12485 SC_DOUBLE,
12486 SC_QUAD,
12487 SC_MIXED
12488};
12489
12490#define X(N, L, C) SC_##C
12491
12492static enum neon_shape_class neon_shape_class[] =
12493{
12494 NEON_SHAPE_DEF
12495};
12496
12497#undef X
12498
12499enum neon_shape_el
12500{
12501 SE_F,
12502 SE_D,
12503 SE_Q,
12504 SE_I,
12505 SE_S,
12506 SE_R,
12507 SE_L
12508};
12509
12510/* Register widths of above. */
12511static unsigned neon_shape_el_size[] =
12512{
12513 32,
12514 64,
12515 128,
12516 0,
12517 32,
12518 32,
12519 0
12520};
12521
12522struct neon_shape_info
12523{
12524 unsigned els;
12525 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12526};
12527
12528#define S2(A,B) { SE_##A, SE_##B }
12529#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12530#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12531
12532#define X(N, L, C) { N, S##N L }
12533
12534static struct neon_shape_info neon_shape_tab[] =
12535{
12536 NEON_SHAPE_DEF
12537};
12538
12539#undef X
12540#undef S2
12541#undef S3
12542#undef S4
12543
5287ad62
JB
12544/* Bit masks used in type checking given instructions.
12545 'N_EQK' means the type must be the same as (or based on in some way) the key
12546 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12547 set, various other bits can be set as well in order to modify the meaning of
12548 the type constraint. */
12549
12550enum neon_type_mask
12551{
8e79c3df
CM
12552 N_S8 = 0x0000001,
12553 N_S16 = 0x0000002,
12554 N_S32 = 0x0000004,
12555 N_S64 = 0x0000008,
12556 N_U8 = 0x0000010,
12557 N_U16 = 0x0000020,
12558 N_U32 = 0x0000040,
12559 N_U64 = 0x0000080,
12560 N_I8 = 0x0000100,
12561 N_I16 = 0x0000200,
12562 N_I32 = 0x0000400,
12563 N_I64 = 0x0000800,
12564 N_8 = 0x0001000,
12565 N_16 = 0x0002000,
12566 N_32 = 0x0004000,
12567 N_64 = 0x0008000,
12568 N_P8 = 0x0010000,
12569 N_P16 = 0x0020000,
12570 N_F16 = 0x0040000,
12571 N_F32 = 0x0080000,
12572 N_F64 = 0x0100000,
4f51b4bd 12573 N_P64 = 0x0200000,
c921be7d
NC
12574 N_KEY = 0x1000000, /* Key element (main type specifier). */
12575 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12576 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 12577 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
12578 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12579 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12580 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12581 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12582 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12583 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12584 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12585 N_UTYP = 0,
4f51b4bd 12586 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
12587};
12588
dcbf9037
JB
12589#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12590
5287ad62
JB
12591#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12592#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12593#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12594#define N_SUF_32 (N_SU_32 | N_F32)
12595#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12596#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12597
12598/* Pass this as the first type argument to neon_check_type to ignore types
12599 altogether. */
12600#define N_IGNORE_TYPE (N_KEY | N_EQK)
12601
037e8744
JB
12602/* Select a "shape" for the current instruction (describing register types or
12603 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12604 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12605 function of operand parsing, so this function doesn't need to be called.
12606 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12607
12608static enum neon_shape
037e8744 12609neon_select_shape (enum neon_shape shape, ...)
5287ad62 12610{
037e8744
JB
12611 va_list ap;
12612 enum neon_shape first_shape = shape;
5287ad62
JB
12613
12614 /* Fix missing optional operands. FIXME: we don't know at this point how
12615 many arguments we should have, so this makes the assumption that we have
12616 > 1. This is true of all current Neon opcodes, I think, but may not be
12617 true in the future. */
12618 if (!inst.operands[1].present)
12619 inst.operands[1] = inst.operands[0];
12620
037e8744 12621 va_start (ap, shape);
5f4273c7 12622
21d799b5 12623 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12624 {
12625 unsigned j;
12626 int matches = 1;
12627
12628 for (j = 0; j < neon_shape_tab[shape].els; j++)
12629 {
12630 if (!inst.operands[j].present)
12631 {
12632 matches = 0;
12633 break;
12634 }
12635
12636 switch (neon_shape_tab[shape].el[j])
12637 {
12638 case SE_F:
12639 if (!(inst.operands[j].isreg
12640 && inst.operands[j].isvec
12641 && inst.operands[j].issingle
12642 && !inst.operands[j].isquad))
12643 matches = 0;
12644 break;
12645
12646 case SE_D:
12647 if (!(inst.operands[j].isreg
12648 && inst.operands[j].isvec
12649 && !inst.operands[j].isquad
12650 && !inst.operands[j].issingle))
12651 matches = 0;
12652 break;
12653
12654 case SE_R:
12655 if (!(inst.operands[j].isreg
12656 && !inst.operands[j].isvec))
12657 matches = 0;
12658 break;
12659
12660 case SE_Q:
12661 if (!(inst.operands[j].isreg
12662 && inst.operands[j].isvec
12663 && inst.operands[j].isquad
12664 && !inst.operands[j].issingle))
12665 matches = 0;
12666 break;
12667
12668 case SE_I:
12669 if (!(!inst.operands[j].isreg
12670 && !inst.operands[j].isscalar))
12671 matches = 0;
12672 break;
12673
12674 case SE_S:
12675 if (!(!inst.operands[j].isreg
12676 && inst.operands[j].isscalar))
12677 matches = 0;
12678 break;
12679
12680 case SE_L:
12681 break;
12682 }
3fde54a2
JZ
12683 if (!matches)
12684 break;
037e8744 12685 }
ad6cec43
MGD
12686 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12687 /* We've matched all the entries in the shape table, and we don't
12688 have any left over operands which have not been matched. */
5287ad62 12689 break;
037e8744 12690 }
5f4273c7 12691
037e8744 12692 va_end (ap);
5287ad62 12693
037e8744
JB
12694 if (shape == NS_NULL && first_shape != NS_NULL)
12695 first_error (_("invalid instruction shape"));
5287ad62 12696
037e8744
JB
12697 return shape;
12698}
5287ad62 12699
037e8744
JB
12700/* True if SHAPE is predominantly a quadword operation (most of the time, this
12701 means the Q bit should be set). */
12702
12703static int
12704neon_quad (enum neon_shape shape)
12705{
12706 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12707}
037e8744 12708
5287ad62
JB
12709static void
12710neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12711 unsigned *g_size)
12712{
12713 /* Allow modification to be made to types which are constrained to be
12714 based on the key element, based on bits set alongside N_EQK. */
12715 if ((typebits & N_EQK) != 0)
12716 {
12717 if ((typebits & N_HLF) != 0)
12718 *g_size /= 2;
12719 else if ((typebits & N_DBL) != 0)
12720 *g_size *= 2;
12721 if ((typebits & N_SGN) != 0)
12722 *g_type = NT_signed;
12723 else if ((typebits & N_UNS) != 0)
12724 *g_type = NT_unsigned;
12725 else if ((typebits & N_INT) != 0)
12726 *g_type = NT_integer;
12727 else if ((typebits & N_FLT) != 0)
12728 *g_type = NT_float;
dcbf9037
JB
12729 else if ((typebits & N_SIZ) != 0)
12730 *g_type = NT_untyped;
5287ad62
JB
12731 }
12732}
5f4273c7 12733
5287ad62
JB
12734/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12735 operand type, i.e. the single type specified in a Neon instruction when it
12736 is the only one given. */
12737
12738static struct neon_type_el
12739neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12740{
12741 struct neon_type_el dest = *key;
5f4273c7 12742
9c2799c2 12743 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12744
5287ad62
JB
12745 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12746
12747 return dest;
12748}
12749
12750/* Convert Neon type and size into compact bitmask representation. */
12751
12752static enum neon_type_mask
12753type_chk_of_el_type (enum neon_el_type type, unsigned size)
12754{
12755 switch (type)
12756 {
12757 case NT_untyped:
12758 switch (size)
12759 {
12760 case 8: return N_8;
12761 case 16: return N_16;
12762 case 32: return N_32;
12763 case 64: return N_64;
12764 default: ;
12765 }
12766 break;
12767
12768 case NT_integer:
12769 switch (size)
12770 {
12771 case 8: return N_I8;
12772 case 16: return N_I16;
12773 case 32: return N_I32;
12774 case 64: return N_I64;
12775 default: ;
12776 }
12777 break;
12778
12779 case NT_float:
037e8744
JB
12780 switch (size)
12781 {
8e79c3df 12782 case 16: return N_F16;
037e8744
JB
12783 case 32: return N_F32;
12784 case 64: return N_F64;
12785 default: ;
12786 }
5287ad62
JB
12787 break;
12788
12789 case NT_poly:
12790 switch (size)
12791 {
12792 case 8: return N_P8;
12793 case 16: return N_P16;
4f51b4bd 12794 case 64: return N_P64;
5287ad62
JB
12795 default: ;
12796 }
12797 break;
12798
12799 case NT_signed:
12800 switch (size)
12801 {
12802 case 8: return N_S8;
12803 case 16: return N_S16;
12804 case 32: return N_S32;
12805 case 64: return N_S64;
12806 default: ;
12807 }
12808 break;
12809
12810 case NT_unsigned:
12811 switch (size)
12812 {
12813 case 8: return N_U8;
12814 case 16: return N_U16;
12815 case 32: return N_U32;
12816 case 64: return N_U64;
12817 default: ;
12818 }
12819 break;
12820
12821 default: ;
12822 }
5f4273c7 12823
5287ad62
JB
12824 return N_UTYP;
12825}
12826
12827/* Convert compact Neon bitmask type representation to a type and size. Only
12828 handles the case where a single bit is set in the mask. */
12829
dcbf9037 12830static int
5287ad62
JB
12831el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12832 enum neon_type_mask mask)
12833{
dcbf9037
JB
12834 if ((mask & N_EQK) != 0)
12835 return FAIL;
12836
5287ad62
JB
12837 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12838 *size = 8;
c70a8987 12839 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 12840 *size = 16;
dcbf9037 12841 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12842 *size = 32;
4f51b4bd 12843 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 12844 *size = 64;
dcbf9037
JB
12845 else
12846 return FAIL;
12847
5287ad62
JB
12848 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12849 *type = NT_signed;
dcbf9037 12850 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12851 *type = NT_unsigned;
dcbf9037 12852 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12853 *type = NT_integer;
dcbf9037 12854 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12855 *type = NT_untyped;
4f51b4bd 12856 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 12857 *type = NT_poly;
c70a8987 12858 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
5287ad62 12859 *type = NT_float;
dcbf9037
JB
12860 else
12861 return FAIL;
5f4273c7 12862
dcbf9037 12863 return SUCCESS;
5287ad62
JB
12864}
12865
12866/* Modify a bitmask of allowed types. This is only needed for type
12867 relaxation. */
12868
12869static unsigned
12870modify_types_allowed (unsigned allowed, unsigned mods)
12871{
12872 unsigned size;
12873 enum neon_el_type type;
12874 unsigned destmask;
12875 int i;
5f4273c7 12876
5287ad62 12877 destmask = 0;
5f4273c7 12878
5287ad62
JB
12879 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12880 {
21d799b5
NC
12881 if (el_type_of_type_chk (&type, &size,
12882 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12883 {
12884 neon_modify_type_size (mods, &type, &size);
12885 destmask |= type_chk_of_el_type (type, size);
12886 }
5287ad62 12887 }
5f4273c7 12888
5287ad62
JB
12889 return destmask;
12890}
12891
12892/* Check type and return type classification.
12893 The manual states (paraphrase): If one datatype is given, it indicates the
12894 type given in:
12895 - the second operand, if there is one
12896 - the operand, if there is no second operand
12897 - the result, if there are no operands.
12898 This isn't quite good enough though, so we use a concept of a "key" datatype
12899 which is set on a per-instruction basis, which is the one which matters when
12900 only one data type is written.
12901 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12902 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12903
12904static struct neon_type_el
12905neon_check_type (unsigned els, enum neon_shape ns, ...)
12906{
12907 va_list ap;
12908 unsigned i, pass, key_el = 0;
12909 unsigned types[NEON_MAX_TYPE_ELS];
12910 enum neon_el_type k_type = NT_invtype;
12911 unsigned k_size = -1u;
12912 struct neon_type_el badtype = {NT_invtype, -1};
12913 unsigned key_allowed = 0;
12914
12915 /* Optional registers in Neon instructions are always (not) in operand 1.
12916 Fill in the missing operand here, if it was omitted. */
12917 if (els > 1 && !inst.operands[1].present)
12918 inst.operands[1] = inst.operands[0];
12919
12920 /* Suck up all the varargs. */
12921 va_start (ap, ns);
12922 for (i = 0; i < els; i++)
12923 {
12924 unsigned thisarg = va_arg (ap, unsigned);
12925 if (thisarg == N_IGNORE_TYPE)
12926 {
12927 va_end (ap);
12928 return badtype;
12929 }
12930 types[i] = thisarg;
12931 if ((thisarg & N_KEY) != 0)
12932 key_el = i;
12933 }
12934 va_end (ap);
12935
dcbf9037
JB
12936 if (inst.vectype.elems > 0)
12937 for (i = 0; i < els; i++)
12938 if (inst.operands[i].vectype.type != NT_invtype)
12939 {
12940 first_error (_("types specified in both the mnemonic and operands"));
12941 return badtype;
12942 }
12943
5287ad62
JB
12944 /* Duplicate inst.vectype elements here as necessary.
12945 FIXME: No idea if this is exactly the same as the ARM assembler,
12946 particularly when an insn takes one register and one non-register
12947 operand. */
12948 if (inst.vectype.elems == 1 && els > 1)
12949 {
12950 unsigned j;
12951 inst.vectype.elems = els;
12952 inst.vectype.el[key_el] = inst.vectype.el[0];
12953 for (j = 0; j < els; j++)
dcbf9037
JB
12954 if (j != key_el)
12955 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12956 types[j]);
12957 }
12958 else if (inst.vectype.elems == 0 && els > 0)
12959 {
12960 unsigned j;
12961 /* No types were given after the mnemonic, so look for types specified
12962 after each operand. We allow some flexibility here; as long as the
12963 "key" operand has a type, we can infer the others. */
12964 for (j = 0; j < els; j++)
12965 if (inst.operands[j].vectype.type != NT_invtype)
12966 inst.vectype.el[j] = inst.operands[j].vectype;
12967
12968 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12969 {
dcbf9037
JB
12970 for (j = 0; j < els; j++)
12971 if (inst.operands[j].vectype.type == NT_invtype)
12972 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12973 types[j]);
12974 }
12975 else
12976 {
12977 first_error (_("operand types can't be inferred"));
12978 return badtype;
5287ad62
JB
12979 }
12980 }
12981 else if (inst.vectype.elems != els)
12982 {
dcbf9037 12983 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12984 return badtype;
12985 }
12986
12987 for (pass = 0; pass < 2; pass++)
12988 {
12989 for (i = 0; i < els; i++)
12990 {
12991 unsigned thisarg = types[i];
12992 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12993 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12994 enum neon_el_type g_type = inst.vectype.el[i].type;
12995 unsigned g_size = inst.vectype.el[i].size;
12996
12997 /* Decay more-specific signed & unsigned types to sign-insensitive
12998 integer types if sign-specific variants are unavailable. */
12999 if ((g_type == NT_signed || g_type == NT_unsigned)
13000 && (types_allowed & N_SU_ALL) == 0)
13001 g_type = NT_integer;
13002
13003 /* If only untyped args are allowed, decay any more specific types to
13004 them. Some instructions only care about signs for some element
13005 sizes, so handle that properly. */
91ff7894
MGD
13006 if (((types_allowed & N_UNT) == 0)
13007 && ((g_size == 8 && (types_allowed & N_8) != 0)
13008 || (g_size == 16 && (types_allowed & N_16) != 0)
13009 || (g_size == 32 && (types_allowed & N_32) != 0)
13010 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
13011 g_type = NT_untyped;
13012
13013 if (pass == 0)
13014 {
13015 if ((thisarg & N_KEY) != 0)
13016 {
13017 k_type = g_type;
13018 k_size = g_size;
13019 key_allowed = thisarg & ~N_KEY;
13020 }
13021 }
13022 else
13023 {
037e8744
JB
13024 if ((thisarg & N_VFP) != 0)
13025 {
99b253c5
NC
13026 enum neon_shape_el regshape;
13027 unsigned regwidth, match;
13028
13029 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13030 if (ns == NS_NULL)
13031 {
13032 first_error (_("invalid instruction shape"));
13033 return badtype;
13034 }
13035 regshape = neon_shape_tab[ns].el[i];
13036 regwidth = neon_shape_el_size[regshape];
037e8744
JB
13037
13038 /* In VFP mode, operands must match register widths. If we
13039 have a key operand, use its width, else use the width of
13040 the current operand. */
13041 if (k_size != -1u)
13042 match = k_size;
13043 else
13044 match = g_size;
13045
13046 if (regwidth != match)
13047 {
13048 first_error (_("operand size must match register width"));
13049 return badtype;
13050 }
13051 }
5f4273c7 13052
5287ad62
JB
13053 if ((thisarg & N_EQK) == 0)
13054 {
13055 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13056
13057 if ((given_type & types_allowed) == 0)
13058 {
dcbf9037 13059 first_error (_("bad type in Neon instruction"));
5287ad62
JB
13060 return badtype;
13061 }
13062 }
13063 else
13064 {
13065 enum neon_el_type mod_k_type = k_type;
13066 unsigned mod_k_size = k_size;
13067 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13068 if (g_type != mod_k_type || g_size != mod_k_size)
13069 {
dcbf9037 13070 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
13071 return badtype;
13072 }
13073 }
13074 }
13075 }
13076 }
13077
13078 return inst.vectype.el[key_el];
13079}
13080
037e8744 13081/* Neon-style VFP instruction forwarding. */
5287ad62 13082
037e8744
JB
13083/* Thumb VFP instructions have 0xE in the condition field. */
13084
13085static void
13086do_vfp_cond_or_thumb (void)
5287ad62 13087{
88714cb8
DG
13088 inst.is_neon = 1;
13089
5287ad62 13090 if (thumb_mode)
037e8744 13091 inst.instruction |= 0xe0000000;
5287ad62 13092 else
037e8744 13093 inst.instruction |= inst.cond << 28;
5287ad62
JB
13094}
13095
037e8744
JB
13096/* Look up and encode a simple mnemonic, for use as a helper function for the
13097 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13098 etc. It is assumed that operand parsing has already been done, and that the
13099 operands are in the form expected by the given opcode (this isn't necessarily
13100 the same as the form in which they were parsed, hence some massaging must
13101 take place before this function is called).
13102 Checks current arch version against that in the looked-up opcode. */
5287ad62 13103
037e8744
JB
13104static void
13105do_vfp_nsyn_opcode (const char *opname)
5287ad62 13106{
037e8744 13107 const struct asm_opcode *opcode;
5f4273c7 13108
21d799b5 13109 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 13110
037e8744
JB
13111 if (!opcode)
13112 abort ();
5287ad62 13113
037e8744
JB
13114 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13115 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13116 _(BAD_FPU));
5287ad62 13117
88714cb8
DG
13118 inst.is_neon = 1;
13119
037e8744
JB
13120 if (thumb_mode)
13121 {
13122 inst.instruction = opcode->tvalue;
13123 opcode->tencode ();
13124 }
13125 else
13126 {
13127 inst.instruction = (inst.cond << 28) | opcode->avalue;
13128 opcode->aencode ();
13129 }
13130}
5287ad62
JB
13131
13132static void
037e8744 13133do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 13134{
037e8744
JB
13135 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13136
13137 if (rs == NS_FFF)
13138 {
13139 if (is_add)
13140 do_vfp_nsyn_opcode ("fadds");
13141 else
13142 do_vfp_nsyn_opcode ("fsubs");
13143 }
13144 else
13145 {
13146 if (is_add)
13147 do_vfp_nsyn_opcode ("faddd");
13148 else
13149 do_vfp_nsyn_opcode ("fsubd");
13150 }
13151}
13152
13153/* Check operand types to see if this is a VFP instruction, and if so call
13154 PFN (). */
13155
13156static int
13157try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13158{
13159 enum neon_shape rs;
13160 struct neon_type_el et;
13161
13162 switch (args)
13163 {
13164 case 2:
13165 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13166 et = neon_check_type (2, rs,
13167 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13168 break;
5f4273c7 13169
037e8744
JB
13170 case 3:
13171 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13172 et = neon_check_type (3, rs,
13173 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13174 break;
13175
13176 default:
13177 abort ();
13178 }
13179
13180 if (et.type != NT_invtype)
13181 {
13182 pfn (rs);
13183 return SUCCESS;
13184 }
037e8744 13185
99b253c5 13186 inst.error = NULL;
037e8744
JB
13187 return FAIL;
13188}
13189
13190static void
13191do_vfp_nsyn_mla_mls (enum neon_shape rs)
13192{
13193 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 13194
037e8744
JB
13195 if (rs == NS_FFF)
13196 {
13197 if (is_mla)
13198 do_vfp_nsyn_opcode ("fmacs");
13199 else
1ee69515 13200 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
13201 }
13202 else
13203 {
13204 if (is_mla)
13205 do_vfp_nsyn_opcode ("fmacd");
13206 else
1ee69515 13207 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
13208 }
13209}
13210
62f3b8c8
PB
13211static void
13212do_vfp_nsyn_fma_fms (enum neon_shape rs)
13213{
13214 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13215
13216 if (rs == NS_FFF)
13217 {
13218 if (is_fma)
13219 do_vfp_nsyn_opcode ("ffmas");
13220 else
13221 do_vfp_nsyn_opcode ("ffnmas");
13222 }
13223 else
13224 {
13225 if (is_fma)
13226 do_vfp_nsyn_opcode ("ffmad");
13227 else
13228 do_vfp_nsyn_opcode ("ffnmad");
13229 }
13230}
13231
037e8744
JB
13232static void
13233do_vfp_nsyn_mul (enum neon_shape rs)
13234{
13235 if (rs == NS_FFF)
13236 do_vfp_nsyn_opcode ("fmuls");
13237 else
13238 do_vfp_nsyn_opcode ("fmuld");
13239}
13240
13241static void
13242do_vfp_nsyn_abs_neg (enum neon_shape rs)
13243{
13244 int is_neg = (inst.instruction & 0x80) != 0;
13245 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13246
13247 if (rs == NS_FF)
13248 {
13249 if (is_neg)
13250 do_vfp_nsyn_opcode ("fnegs");
13251 else
13252 do_vfp_nsyn_opcode ("fabss");
13253 }
13254 else
13255 {
13256 if (is_neg)
13257 do_vfp_nsyn_opcode ("fnegd");
13258 else
13259 do_vfp_nsyn_opcode ("fabsd");
13260 }
13261}
13262
13263/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13264 insns belong to Neon, and are handled elsewhere. */
13265
13266static void
13267do_vfp_nsyn_ldm_stm (int is_dbmode)
13268{
13269 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13270 if (is_ldm)
13271 {
13272 if (is_dbmode)
13273 do_vfp_nsyn_opcode ("fldmdbs");
13274 else
13275 do_vfp_nsyn_opcode ("fldmias");
13276 }
13277 else
13278 {
13279 if (is_dbmode)
13280 do_vfp_nsyn_opcode ("fstmdbs");
13281 else
13282 do_vfp_nsyn_opcode ("fstmias");
13283 }
13284}
13285
037e8744
JB
13286static void
13287do_vfp_nsyn_sqrt (void)
13288{
13289 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13290 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13291
037e8744
JB
13292 if (rs == NS_FF)
13293 do_vfp_nsyn_opcode ("fsqrts");
13294 else
13295 do_vfp_nsyn_opcode ("fsqrtd");
13296}
13297
13298static void
13299do_vfp_nsyn_div (void)
13300{
13301 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13302 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13303 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13304
037e8744
JB
13305 if (rs == NS_FFF)
13306 do_vfp_nsyn_opcode ("fdivs");
13307 else
13308 do_vfp_nsyn_opcode ("fdivd");
13309}
13310
13311static void
13312do_vfp_nsyn_nmul (void)
13313{
13314 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13315 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13316 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13317
037e8744
JB
13318 if (rs == NS_FFF)
13319 {
88714cb8 13320 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13321 do_vfp_sp_dyadic ();
13322 }
13323 else
13324 {
88714cb8 13325 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13326 do_vfp_dp_rd_rn_rm ();
13327 }
13328 do_vfp_cond_or_thumb ();
13329}
13330
13331static void
13332do_vfp_nsyn_cmp (void)
13333{
13334 if (inst.operands[1].isreg)
13335 {
13336 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13337 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13338
037e8744
JB
13339 if (rs == NS_FF)
13340 {
88714cb8 13341 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13342 do_vfp_sp_monadic ();
13343 }
13344 else
13345 {
88714cb8 13346 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13347 do_vfp_dp_rd_rm ();
13348 }
13349 }
13350 else
13351 {
13352 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13353 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13354
13355 switch (inst.instruction & 0x0fffffff)
13356 {
13357 case N_MNEM_vcmp:
13358 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13359 break;
13360 case N_MNEM_vcmpe:
13361 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13362 break;
13363 default:
13364 abort ();
13365 }
5f4273c7 13366
037e8744
JB
13367 if (rs == NS_FI)
13368 {
88714cb8 13369 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13370 do_vfp_sp_compare_z ();
13371 }
13372 else
13373 {
88714cb8 13374 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13375 do_vfp_dp_rd ();
13376 }
13377 }
13378 do_vfp_cond_or_thumb ();
13379}
13380
13381static void
13382nsyn_insert_sp (void)
13383{
13384 inst.operands[1] = inst.operands[0];
13385 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13386 inst.operands[0].reg = REG_SP;
037e8744
JB
13387 inst.operands[0].isreg = 1;
13388 inst.operands[0].writeback = 1;
13389 inst.operands[0].present = 1;
13390}
13391
13392static void
13393do_vfp_nsyn_push (void)
13394{
13395 nsyn_insert_sp ();
13396 if (inst.operands[1].issingle)
13397 do_vfp_nsyn_opcode ("fstmdbs");
13398 else
13399 do_vfp_nsyn_opcode ("fstmdbd");
13400}
13401
13402static void
13403do_vfp_nsyn_pop (void)
13404{
13405 nsyn_insert_sp ();
13406 if (inst.operands[1].issingle)
22b5b651 13407 do_vfp_nsyn_opcode ("fldmias");
037e8744 13408 else
22b5b651 13409 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13410}
13411
13412/* Fix up Neon data-processing instructions, ORing in the correct bits for
13413 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13414
88714cb8
DG
13415static void
13416neon_dp_fixup (struct arm_it* insn)
037e8744 13417{
88714cb8
DG
13418 unsigned int i = insn->instruction;
13419 insn->is_neon = 1;
13420
037e8744
JB
13421 if (thumb_mode)
13422 {
13423 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13424 if (i & (1 << 24))
13425 i |= 1 << 28;
5f4273c7 13426
037e8744 13427 i &= ~(1 << 24);
5f4273c7 13428
037e8744
JB
13429 i |= 0xef000000;
13430 }
13431 else
13432 i |= 0xf2000000;
5f4273c7 13433
88714cb8 13434 insn->instruction = i;
037e8744
JB
13435}
13436
13437/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13438 (0, 1, 2, 3). */
13439
13440static unsigned
13441neon_logbits (unsigned x)
13442{
13443 return ffs (x) - 4;
13444}
13445
13446#define LOW4(R) ((R) & 0xf)
13447#define HI1(R) (((R) >> 4) & 1)
13448
13449/* Encode insns with bit pattern:
13450
13451 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13452 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13453
037e8744
JB
13454 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13455 different meaning for some instruction. */
13456
13457static void
13458neon_three_same (int isquad, int ubit, int size)
13459{
13460 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13461 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13462 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13463 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13464 inst.instruction |= LOW4 (inst.operands[2].reg);
13465 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13466 inst.instruction |= (isquad != 0) << 6;
13467 inst.instruction |= (ubit != 0) << 24;
13468 if (size != -1)
13469 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13470
88714cb8 13471 neon_dp_fixup (&inst);
037e8744
JB
13472}
13473
13474/* Encode instructions of the form:
13475
13476 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13477 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13478
13479 Don't write size if SIZE == -1. */
13480
13481static void
13482neon_two_same (int qbit, int ubit, int size)
13483{
13484 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13485 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13486 inst.instruction |= LOW4 (inst.operands[1].reg);
13487 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13488 inst.instruction |= (qbit != 0) << 6;
13489 inst.instruction |= (ubit != 0) << 24;
13490
13491 if (size != -1)
13492 inst.instruction |= neon_logbits (size) << 18;
13493
88714cb8 13494 neon_dp_fixup (&inst);
5287ad62
JB
13495}
13496
13497/* Neon instruction encoders, in approximate order of appearance. */
13498
13499static void
13500do_neon_dyadic_i_su (void)
13501{
037e8744 13502 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13503 struct neon_type_el et = neon_check_type (3, rs,
13504 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13505 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13506}
13507
13508static void
13509do_neon_dyadic_i64_su (void)
13510{
037e8744 13511 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13512 struct neon_type_el et = neon_check_type (3, rs,
13513 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13514 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13515}
13516
13517static void
13518neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13519 unsigned immbits)
13520{
13521 unsigned size = et.size >> 3;
13522 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13524 inst.instruction |= LOW4 (inst.operands[1].reg);
13525 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13526 inst.instruction |= (isquad != 0) << 6;
13527 inst.instruction |= immbits << 16;
13528 inst.instruction |= (size >> 3) << 7;
13529 inst.instruction |= (size & 0x7) << 19;
13530 if (write_ubit)
13531 inst.instruction |= (uval != 0) << 24;
13532
88714cb8 13533 neon_dp_fixup (&inst);
5287ad62
JB
13534}
13535
13536static void
13537do_neon_shl_imm (void)
13538{
13539 if (!inst.operands[2].isreg)
13540 {
037e8744 13541 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13542 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13543 NEON_ENCODE (IMMED, inst);
037e8744 13544 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13545 }
13546 else
13547 {
037e8744 13548 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13549 struct neon_type_el et = neon_check_type (3, rs,
13550 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13551 unsigned int tmp;
13552
13553 /* VSHL/VQSHL 3-register variants have syntax such as:
13554 vshl.xx Dd, Dm, Dn
13555 whereas other 3-register operations encoded by neon_three_same have
13556 syntax like:
13557 vadd.xx Dd, Dn, Dm
13558 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13559 here. */
13560 tmp = inst.operands[2].reg;
13561 inst.operands[2].reg = inst.operands[1].reg;
13562 inst.operands[1].reg = tmp;
88714cb8 13563 NEON_ENCODE (INTEGER, inst);
037e8744 13564 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13565 }
13566}
13567
13568static void
13569do_neon_qshl_imm (void)
13570{
13571 if (!inst.operands[2].isreg)
13572 {
037e8744 13573 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13574 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13575
88714cb8 13576 NEON_ENCODE (IMMED, inst);
037e8744 13577 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13578 inst.operands[2].imm);
13579 }
13580 else
13581 {
037e8744 13582 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13583 struct neon_type_el et = neon_check_type (3, rs,
13584 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13585 unsigned int tmp;
13586
13587 /* See note in do_neon_shl_imm. */
13588 tmp = inst.operands[2].reg;
13589 inst.operands[2].reg = inst.operands[1].reg;
13590 inst.operands[1].reg = tmp;
88714cb8 13591 NEON_ENCODE (INTEGER, inst);
037e8744 13592 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13593 }
13594}
13595
627907b7
JB
13596static void
13597do_neon_rshl (void)
13598{
13599 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13600 struct neon_type_el et = neon_check_type (3, rs,
13601 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13602 unsigned int tmp;
13603
13604 tmp = inst.operands[2].reg;
13605 inst.operands[2].reg = inst.operands[1].reg;
13606 inst.operands[1].reg = tmp;
13607 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13608}
13609
5287ad62
JB
13610static int
13611neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13612{
036dc3f7
PB
13613 /* Handle .I8 pseudo-instructions. */
13614 if (size == 8)
5287ad62 13615 {
5287ad62
JB
13616 /* Unfortunately, this will make everything apart from zero out-of-range.
13617 FIXME is this the intended semantics? There doesn't seem much point in
13618 accepting .I8 if so. */
13619 immediate |= immediate << 8;
13620 size = 16;
036dc3f7
PB
13621 }
13622
13623 if (size >= 32)
13624 {
13625 if (immediate == (immediate & 0x000000ff))
13626 {
13627 *immbits = immediate;
13628 return 0x1;
13629 }
13630 else if (immediate == (immediate & 0x0000ff00))
13631 {
13632 *immbits = immediate >> 8;
13633 return 0x3;
13634 }
13635 else if (immediate == (immediate & 0x00ff0000))
13636 {
13637 *immbits = immediate >> 16;
13638 return 0x5;
13639 }
13640 else if (immediate == (immediate & 0xff000000))
13641 {
13642 *immbits = immediate >> 24;
13643 return 0x7;
13644 }
13645 if ((immediate & 0xffff) != (immediate >> 16))
13646 goto bad_immediate;
13647 immediate &= 0xffff;
5287ad62
JB
13648 }
13649
13650 if (immediate == (immediate & 0x000000ff))
13651 {
13652 *immbits = immediate;
036dc3f7 13653 return 0x9;
5287ad62
JB
13654 }
13655 else if (immediate == (immediate & 0x0000ff00))
13656 {
13657 *immbits = immediate >> 8;
036dc3f7 13658 return 0xb;
5287ad62
JB
13659 }
13660
13661 bad_immediate:
dcbf9037 13662 first_error (_("immediate value out of range"));
5287ad62
JB
13663 return FAIL;
13664}
13665
13666/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13667 A, B, C, D. */
13668
13669static int
13670neon_bits_same_in_bytes (unsigned imm)
13671{
13672 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13673 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13674 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13675 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13676}
13677
13678/* For immediate of above form, return 0bABCD. */
13679
13680static unsigned
13681neon_squash_bits (unsigned imm)
13682{
13683 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13684 | ((imm & 0x01000000) >> 21);
13685}
13686
136da414 13687/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13688
13689static unsigned
13690neon_qfloat_bits (unsigned imm)
13691{
136da414 13692 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13693}
13694
13695/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13696 the instruction. *OP is passed as the initial value of the op field, and
13697 may be set to a different value depending on the constant (i.e.
13698 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13699 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13700 try smaller element sizes. */
5287ad62
JB
13701
13702static int
c96612cc
JB
13703neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13704 unsigned *immbits, int *op, int size,
13705 enum neon_el_type type)
5287ad62 13706{
c96612cc
JB
13707 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13708 float. */
13709 if (type == NT_float && !float_p)
13710 return FAIL;
13711
136da414
JB
13712 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13713 {
13714 if (size != 32 || *op == 1)
13715 return FAIL;
13716 *immbits = neon_qfloat_bits (immlo);
13717 return 0xf;
13718 }
036dc3f7
PB
13719
13720 if (size == 64)
5287ad62 13721 {
036dc3f7
PB
13722 if (neon_bits_same_in_bytes (immhi)
13723 && neon_bits_same_in_bytes (immlo))
13724 {
13725 if (*op == 1)
13726 return FAIL;
13727 *immbits = (neon_squash_bits (immhi) << 4)
13728 | neon_squash_bits (immlo);
13729 *op = 1;
13730 return 0xe;
13731 }
13732
13733 if (immhi != immlo)
13734 return FAIL;
5287ad62 13735 }
036dc3f7
PB
13736
13737 if (size >= 32)
5287ad62 13738 {
036dc3f7
PB
13739 if (immlo == (immlo & 0x000000ff))
13740 {
13741 *immbits = immlo;
13742 return 0x0;
13743 }
13744 else if (immlo == (immlo & 0x0000ff00))
13745 {
13746 *immbits = immlo >> 8;
13747 return 0x2;
13748 }
13749 else if (immlo == (immlo & 0x00ff0000))
13750 {
13751 *immbits = immlo >> 16;
13752 return 0x4;
13753 }
13754 else if (immlo == (immlo & 0xff000000))
13755 {
13756 *immbits = immlo >> 24;
13757 return 0x6;
13758 }
13759 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13760 {
13761 *immbits = (immlo >> 8) & 0xff;
13762 return 0xc;
13763 }
13764 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13765 {
13766 *immbits = (immlo >> 16) & 0xff;
13767 return 0xd;
13768 }
13769
13770 if ((immlo & 0xffff) != (immlo >> 16))
13771 return FAIL;
13772 immlo &= 0xffff;
5287ad62 13773 }
036dc3f7
PB
13774
13775 if (size >= 16)
5287ad62 13776 {
036dc3f7
PB
13777 if (immlo == (immlo & 0x000000ff))
13778 {
13779 *immbits = immlo;
13780 return 0x8;
13781 }
13782 else if (immlo == (immlo & 0x0000ff00))
13783 {
13784 *immbits = immlo >> 8;
13785 return 0xa;
13786 }
13787
13788 if ((immlo & 0xff) != (immlo >> 8))
13789 return FAIL;
13790 immlo &= 0xff;
5287ad62 13791 }
036dc3f7
PB
13792
13793 if (immlo == (immlo & 0x000000ff))
5287ad62 13794 {
036dc3f7
PB
13795 /* Don't allow MVN with 8-bit immediate. */
13796 if (*op == 1)
13797 return FAIL;
13798 *immbits = immlo;
13799 return 0xe;
5287ad62 13800 }
5287ad62
JB
13801
13802 return FAIL;
13803}
13804
13805/* Write immediate bits [7:0] to the following locations:
13806
13807 |28/24|23 19|18 16|15 4|3 0|
13808 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13809
13810 This function is used by VMOV/VMVN/VORR/VBIC. */
13811
13812static void
13813neon_write_immbits (unsigned immbits)
13814{
13815 inst.instruction |= immbits & 0xf;
13816 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13817 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13818}
13819
13820/* Invert low-order SIZE bits of XHI:XLO. */
13821
13822static void
13823neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13824{
13825 unsigned immlo = xlo ? *xlo : 0;
13826 unsigned immhi = xhi ? *xhi : 0;
13827
13828 switch (size)
13829 {
13830 case 8:
13831 immlo = (~immlo) & 0xff;
13832 break;
13833
13834 case 16:
13835 immlo = (~immlo) & 0xffff;
13836 break;
13837
13838 case 64:
13839 immhi = (~immhi) & 0xffffffff;
13840 /* fall through. */
13841
13842 case 32:
13843 immlo = (~immlo) & 0xffffffff;
13844 break;
13845
13846 default:
13847 abort ();
13848 }
13849
13850 if (xlo)
13851 *xlo = immlo;
13852
13853 if (xhi)
13854 *xhi = immhi;
13855}
13856
13857static void
13858do_neon_logic (void)
13859{
13860 if (inst.operands[2].present && inst.operands[2].isreg)
13861 {
037e8744 13862 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13863 neon_check_type (3, rs, N_IGNORE_TYPE);
13864 /* U bit and size field were set as part of the bitmask. */
88714cb8 13865 NEON_ENCODE (INTEGER, inst);
037e8744 13866 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13867 }
13868 else
13869 {
4316f0d2
DG
13870 const int three_ops_form = (inst.operands[2].present
13871 && !inst.operands[2].isreg);
13872 const int immoperand = (three_ops_form ? 2 : 1);
13873 enum neon_shape rs = (three_ops_form
13874 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13875 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13876 struct neon_type_el et = neon_check_type (2, rs,
13877 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13878 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13879 unsigned immbits;
13880 int cmode;
5f4273c7 13881
5287ad62
JB
13882 if (et.type == NT_invtype)
13883 return;
5f4273c7 13884
4316f0d2
DG
13885 if (three_ops_form)
13886 constraint (inst.operands[0].reg != inst.operands[1].reg,
13887 _("first and second operands shall be the same register"));
13888
88714cb8 13889 NEON_ENCODE (IMMED, inst);
5287ad62 13890
4316f0d2 13891 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13892 if (et.size == 64)
13893 {
13894 /* .i64 is a pseudo-op, so the immediate must be a repeating
13895 pattern. */
4316f0d2
DG
13896 if (immbits != (inst.operands[immoperand].regisimm ?
13897 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13898 {
13899 /* Set immbits to an invalid constant. */
13900 immbits = 0xdeadbeef;
13901 }
13902 }
13903
5287ad62
JB
13904 switch (opcode)
13905 {
13906 case N_MNEM_vbic:
036dc3f7 13907 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13908 break;
5f4273c7 13909
5287ad62 13910 case N_MNEM_vorr:
036dc3f7 13911 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13912 break;
5f4273c7 13913
5287ad62
JB
13914 case N_MNEM_vand:
13915 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13916 neon_invert_size (&immbits, 0, et.size);
13917 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13918 break;
5f4273c7 13919
5287ad62
JB
13920 case N_MNEM_vorn:
13921 /* Pseudo-instruction for VORR. */
5287ad62
JB
13922 neon_invert_size (&immbits, 0, et.size);
13923 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13924 break;
5f4273c7 13925
5287ad62
JB
13926 default:
13927 abort ();
13928 }
13929
13930 if (cmode == FAIL)
13931 return;
13932
037e8744 13933 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13934 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13936 inst.instruction |= cmode << 8;
13937 neon_write_immbits (immbits);
5f4273c7 13938
88714cb8 13939 neon_dp_fixup (&inst);
5287ad62
JB
13940 }
13941}
13942
13943static void
13944do_neon_bitfield (void)
13945{
037e8744 13946 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13947 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13948 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13949}
13950
13951static void
dcbf9037
JB
13952neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13953 unsigned destbits)
5287ad62 13954{
037e8744 13955 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13956 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13957 types | N_KEY);
5287ad62
JB
13958 if (et.type == NT_float)
13959 {
88714cb8 13960 NEON_ENCODE (FLOAT, inst);
037e8744 13961 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13962 }
13963 else
13964 {
88714cb8 13965 NEON_ENCODE (INTEGER, inst);
037e8744 13966 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13967 }
13968}
13969
13970static void
13971do_neon_dyadic_if_su (void)
13972{
dcbf9037 13973 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13974}
13975
13976static void
13977do_neon_dyadic_if_su_d (void)
13978{
13979 /* This version only allow D registers, but that constraint is enforced during
13980 operand parsing so we don't need to do anything extra here. */
dcbf9037 13981 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13982}
13983
5287ad62
JB
13984static void
13985do_neon_dyadic_if_i_d (void)
13986{
428e3f1f
PB
13987 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13988 affected if we specify unsigned args. */
13989 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13990}
13991
037e8744
JB
13992enum vfp_or_neon_is_neon_bits
13993{
13994 NEON_CHECK_CC = 1,
73924fbc
MGD
13995 NEON_CHECK_ARCH = 2,
13996 NEON_CHECK_ARCH8 = 4
037e8744
JB
13997};
13998
13999/* Call this function if an instruction which may have belonged to the VFP or
14000 Neon instruction sets, but turned out to be a Neon instruction (due to the
14001 operand types involved, etc.). We have to check and/or fix-up a couple of
14002 things:
14003
14004 - Make sure the user hasn't attempted to make a Neon instruction
14005 conditional.
14006 - Alter the value in the condition code field if necessary.
14007 - Make sure that the arch supports Neon instructions.
14008
14009 Which of these operations take place depends on bits from enum
14010 vfp_or_neon_is_neon_bits.
14011
14012 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14013 current instruction's condition is COND_ALWAYS, the condition field is
14014 changed to inst.uncond_value. This is necessary because instructions shared
14015 between VFP and Neon may be conditional for the VFP variants only, and the
14016 unconditional Neon version must have, e.g., 0xF in the condition field. */
14017
14018static int
14019vfp_or_neon_is_neon (unsigned check)
14020{
14021 /* Conditions are always legal in Thumb mode (IT blocks). */
14022 if (!thumb_mode && (check & NEON_CHECK_CC))
14023 {
14024 if (inst.cond != COND_ALWAYS)
14025 {
14026 first_error (_(BAD_COND));
14027 return FAIL;
14028 }
14029 if (inst.uncond_value != -1)
14030 inst.instruction |= inst.uncond_value << 28;
14031 }
5f4273c7 14032
037e8744 14033 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
14034 && !mark_feature_used (&fpu_neon_ext_v1))
14035 {
14036 first_error (_(BAD_FPU));
14037 return FAIL;
14038 }
14039
14040 if ((check & NEON_CHECK_ARCH8)
14041 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
14042 {
14043 first_error (_(BAD_FPU));
14044 return FAIL;
14045 }
5f4273c7 14046
037e8744
JB
14047 return SUCCESS;
14048}
14049
5287ad62
JB
14050static void
14051do_neon_addsub_if_i (void)
14052{
037e8744
JB
14053 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14054 return;
14055
14056 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14057 return;
14058
5287ad62
JB
14059 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14060 affected if we specify unsigned args. */
dcbf9037 14061 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
14062}
14063
14064/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14065 result to be:
14066 V<op> A,B (A is operand 0, B is operand 2)
14067 to mean:
14068 V<op> A,B,A
14069 not:
14070 V<op> A,B,B
14071 so handle that case specially. */
14072
14073static void
14074neon_exchange_operands (void)
14075{
14076 void *scratch = alloca (sizeof (inst.operands[0]));
14077 if (inst.operands[1].present)
14078 {
14079 /* Swap operands[1] and operands[2]. */
14080 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14081 inst.operands[1] = inst.operands[2];
14082 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14083 }
14084 else
14085 {
14086 inst.operands[1] = inst.operands[2];
14087 inst.operands[2] = inst.operands[0];
14088 }
14089}
14090
14091static void
14092neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14093{
14094 if (inst.operands[2].isreg)
14095 {
14096 if (invert)
14097 neon_exchange_operands ();
dcbf9037 14098 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
14099 }
14100 else
14101 {
037e8744 14102 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
14103 struct neon_type_el et = neon_check_type (2, rs,
14104 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 14105
88714cb8 14106 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14107 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14108 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14109 inst.instruction |= LOW4 (inst.operands[1].reg);
14110 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14111 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14112 inst.instruction |= (et.type == NT_float) << 10;
14113 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14114
88714cb8 14115 neon_dp_fixup (&inst);
5287ad62
JB
14116 }
14117}
14118
14119static void
14120do_neon_cmp (void)
14121{
14122 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14123}
14124
14125static void
14126do_neon_cmp_inv (void)
14127{
14128 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14129}
14130
14131static void
14132do_neon_ceq (void)
14133{
14134 neon_compare (N_IF_32, N_IF_32, FALSE);
14135}
14136
14137/* For multiply instructions, we have the possibility of 16-bit or 32-bit
14138 scalars, which are encoded in 5 bits, M : Rm.
14139 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14140 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14141 index in M. */
14142
14143static unsigned
14144neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14145{
dcbf9037
JB
14146 unsigned regno = NEON_SCALAR_REG (scalar);
14147 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
14148
14149 switch (elsize)
14150 {
14151 case 16:
14152 if (regno > 7 || elno > 3)
14153 goto bad_scalar;
14154 return regno | (elno << 3);
5f4273c7 14155
5287ad62
JB
14156 case 32:
14157 if (regno > 15 || elno > 1)
14158 goto bad_scalar;
14159 return regno | (elno << 4);
14160
14161 default:
14162 bad_scalar:
dcbf9037 14163 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
14164 }
14165
14166 return 0;
14167}
14168
14169/* Encode multiply / multiply-accumulate scalar instructions. */
14170
14171static void
14172neon_mul_mac (struct neon_type_el et, int ubit)
14173{
dcbf9037
JB
14174 unsigned scalar;
14175
14176 /* Give a more helpful error message if we have an invalid type. */
14177 if (et.type == NT_invtype)
14178 return;
5f4273c7 14179
dcbf9037 14180 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
14181 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14182 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14183 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14184 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14185 inst.instruction |= LOW4 (scalar);
14186 inst.instruction |= HI1 (scalar) << 5;
14187 inst.instruction |= (et.type == NT_float) << 8;
14188 inst.instruction |= neon_logbits (et.size) << 20;
14189 inst.instruction |= (ubit != 0) << 24;
14190
88714cb8 14191 neon_dp_fixup (&inst);
5287ad62
JB
14192}
14193
14194static void
14195do_neon_mac_maybe_scalar (void)
14196{
037e8744
JB
14197 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14198 return;
14199
14200 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14201 return;
14202
5287ad62
JB
14203 if (inst.operands[2].isscalar)
14204 {
037e8744 14205 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14206 struct neon_type_el et = neon_check_type (3, rs,
14207 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 14208 NEON_ENCODE (SCALAR, inst);
037e8744 14209 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14210 }
14211 else
428e3f1f
PB
14212 {
14213 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14214 affected if we specify unsigned args. */
14215 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14216 }
5287ad62
JB
14217}
14218
62f3b8c8
PB
14219static void
14220do_neon_fmac (void)
14221{
14222 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14223 return;
14224
14225 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14226 return;
14227
14228 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14229}
14230
5287ad62
JB
14231static void
14232do_neon_tst (void)
14233{
037e8744 14234 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14235 struct neon_type_el et = neon_check_type (3, rs,
14236 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 14237 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14238}
14239
14240/* VMUL with 3 registers allows the P8 type. The scalar version supports the
14241 same types as the MAC equivalents. The polynomial type for this instruction
14242 is encoded the same as the integer type. */
14243
14244static void
14245do_neon_mul (void)
14246{
037e8744
JB
14247 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14248 return;
14249
14250 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14251 return;
14252
5287ad62
JB
14253 if (inst.operands[2].isscalar)
14254 do_neon_mac_maybe_scalar ();
14255 else
dcbf9037 14256 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
14257}
14258
14259static void
14260do_neon_qdmulh (void)
14261{
14262 if (inst.operands[2].isscalar)
14263 {
037e8744 14264 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14265 struct neon_type_el et = neon_check_type (3, rs,
14266 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14267 NEON_ENCODE (SCALAR, inst);
037e8744 14268 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14269 }
14270 else
14271 {
037e8744 14272 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14273 struct neon_type_el et = neon_check_type (3, rs,
14274 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14275 NEON_ENCODE (INTEGER, inst);
5287ad62 14276 /* The U bit (rounding) comes from bit mask. */
037e8744 14277 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14278 }
14279}
14280
14281static void
14282do_neon_fcmp_absolute (void)
14283{
037e8744 14284 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14285 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14286 /* Size field comes from bit mask. */
037e8744 14287 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14288}
14289
14290static void
14291do_neon_fcmp_absolute_inv (void)
14292{
14293 neon_exchange_operands ();
14294 do_neon_fcmp_absolute ();
14295}
14296
14297static void
14298do_neon_step (void)
14299{
037e8744 14300 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14301 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14302 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14303}
14304
14305static void
14306do_neon_abs_neg (void)
14307{
037e8744
JB
14308 enum neon_shape rs;
14309 struct neon_type_el et;
5f4273c7 14310
037e8744
JB
14311 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14312 return;
14313
14314 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14315 return;
14316
14317 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14318 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14319
5287ad62
JB
14320 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14321 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14322 inst.instruction |= LOW4 (inst.operands[1].reg);
14323 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14324 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14325 inst.instruction |= (et.type == NT_float) << 10;
14326 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14327
88714cb8 14328 neon_dp_fixup (&inst);
5287ad62
JB
14329}
14330
14331static void
14332do_neon_sli (void)
14333{
037e8744 14334 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14335 struct neon_type_el et = neon_check_type (2, rs,
14336 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14337 int imm = inst.operands[2].imm;
14338 constraint (imm < 0 || (unsigned)imm >= et.size,
14339 _("immediate out of range for insert"));
037e8744 14340 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14341}
14342
14343static void
14344do_neon_sri (void)
14345{
037e8744 14346 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14347 struct neon_type_el et = neon_check_type (2, rs,
14348 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14349 int imm = inst.operands[2].imm;
14350 constraint (imm < 1 || (unsigned)imm > et.size,
14351 _("immediate out of range for insert"));
037e8744 14352 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14353}
14354
14355static void
14356do_neon_qshlu_imm (void)
14357{
037e8744 14358 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14359 struct neon_type_el et = neon_check_type (2, rs,
14360 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14361 int imm = inst.operands[2].imm;
14362 constraint (imm < 0 || (unsigned)imm >= et.size,
14363 _("immediate out of range for shift"));
14364 /* Only encodes the 'U present' variant of the instruction.
14365 In this case, signed types have OP (bit 8) set to 0.
14366 Unsigned types have OP set to 1. */
14367 inst.instruction |= (et.type == NT_unsigned) << 8;
14368 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14369 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14370}
14371
14372static void
14373do_neon_qmovn (void)
14374{
14375 struct neon_type_el et = neon_check_type (2, NS_DQ,
14376 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14377 /* Saturating move where operands can be signed or unsigned, and the
14378 destination has the same signedness. */
88714cb8 14379 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14380 if (et.type == NT_unsigned)
14381 inst.instruction |= 0xc0;
14382 else
14383 inst.instruction |= 0x80;
14384 neon_two_same (0, 1, et.size / 2);
14385}
14386
14387static void
14388do_neon_qmovun (void)
14389{
14390 struct neon_type_el et = neon_check_type (2, NS_DQ,
14391 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14392 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14393 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14394 neon_two_same (0, 1, et.size / 2);
14395}
14396
14397static void
14398do_neon_rshift_sat_narrow (void)
14399{
14400 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14401 or unsigned. If operands are unsigned, results must also be unsigned. */
14402 struct neon_type_el et = neon_check_type (2, NS_DQI,
14403 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14404 int imm = inst.operands[2].imm;
14405 /* This gets the bounds check, size encoding and immediate bits calculation
14406 right. */
14407 et.size /= 2;
5f4273c7 14408
5287ad62
JB
14409 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14410 VQMOVN.I<size> <Dd>, <Qm>. */
14411 if (imm == 0)
14412 {
14413 inst.operands[2].present = 0;
14414 inst.instruction = N_MNEM_vqmovn;
14415 do_neon_qmovn ();
14416 return;
14417 }
5f4273c7 14418
5287ad62
JB
14419 constraint (imm < 1 || (unsigned)imm > et.size,
14420 _("immediate out of range"));
14421 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14422}
14423
14424static void
14425do_neon_rshift_sat_narrow_u (void)
14426{
14427 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14428 or unsigned. If operands are unsigned, results must also be unsigned. */
14429 struct neon_type_el et = neon_check_type (2, NS_DQI,
14430 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14431 int imm = inst.operands[2].imm;
14432 /* This gets the bounds check, size encoding and immediate bits calculation
14433 right. */
14434 et.size /= 2;
14435
14436 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14437 VQMOVUN.I<size> <Dd>, <Qm>. */
14438 if (imm == 0)
14439 {
14440 inst.operands[2].present = 0;
14441 inst.instruction = N_MNEM_vqmovun;
14442 do_neon_qmovun ();
14443 return;
14444 }
14445
14446 constraint (imm < 1 || (unsigned)imm > et.size,
14447 _("immediate out of range"));
14448 /* FIXME: The manual is kind of unclear about what value U should have in
14449 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14450 must be 1. */
14451 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14452}
14453
14454static void
14455do_neon_movn (void)
14456{
14457 struct neon_type_el et = neon_check_type (2, NS_DQ,
14458 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14459 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14460 neon_two_same (0, 1, et.size / 2);
14461}
14462
14463static void
14464do_neon_rshift_narrow (void)
14465{
14466 struct neon_type_el et = neon_check_type (2, NS_DQI,
14467 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14468 int imm = inst.operands[2].imm;
14469 /* This gets the bounds check, size encoding and immediate bits calculation
14470 right. */
14471 et.size /= 2;
5f4273c7 14472
5287ad62
JB
14473 /* If immediate is zero then we are a pseudo-instruction for
14474 VMOVN.I<size> <Dd>, <Qm> */
14475 if (imm == 0)
14476 {
14477 inst.operands[2].present = 0;
14478 inst.instruction = N_MNEM_vmovn;
14479 do_neon_movn ();
14480 return;
14481 }
5f4273c7 14482
5287ad62
JB
14483 constraint (imm < 1 || (unsigned)imm > et.size,
14484 _("immediate out of range for narrowing operation"));
14485 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14486}
14487
14488static void
14489do_neon_shll (void)
14490{
14491 /* FIXME: Type checking when lengthening. */
14492 struct neon_type_el et = neon_check_type (2, NS_QDI,
14493 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14494 unsigned imm = inst.operands[2].imm;
14495
14496 if (imm == et.size)
14497 {
14498 /* Maximum shift variant. */
88714cb8 14499 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14500 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14501 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14502 inst.instruction |= LOW4 (inst.operands[1].reg);
14503 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14504 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14505
88714cb8 14506 neon_dp_fixup (&inst);
5287ad62
JB
14507 }
14508 else
14509 {
14510 /* A more-specific type check for non-max versions. */
14511 et = neon_check_type (2, NS_QDI,
14512 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14513 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14514 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14515 }
14516}
14517
037e8744 14518/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14519 the current instruction is. */
14520
6b9a8b67
MGD
14521#define CVT_FLAVOUR_VAR \
14522 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14523 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14524 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14525 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14526 /* Half-precision conversions. */ \
14527 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14528 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14529 /* VFP instructions. */ \
14530 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14531 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14532 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14533 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14534 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14535 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14536 /* VFP instructions with bitshift. */ \
14537 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14538 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14539 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14540 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14541 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14542 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14543 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14544 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14545
14546#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14547 neon_cvt_flavour_##C,
14548
14549/* The different types of conversions we can do. */
14550enum neon_cvt_flavour
14551{
14552 CVT_FLAVOUR_VAR
14553 neon_cvt_flavour_invalid,
14554 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14555};
14556
14557#undef CVT_VAR
14558
14559static enum neon_cvt_flavour
14560get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 14561{
6b9a8b67
MGD
14562#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14563 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14564 if (et.type != NT_invtype) \
14565 { \
14566 inst.error = NULL; \
14567 return (neon_cvt_flavour_##C); \
5287ad62 14568 }
6b9a8b67 14569
5287ad62 14570 struct neon_type_el et;
037e8744
JB
14571 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14572 || rs == NS_FF) ? N_VFP : 0;
14573 /* The instruction versions which take an immediate take one register
14574 argument, which is extended to the width of the full register. Thus the
14575 "source" and "destination" registers must have the same width. Hack that
14576 here by making the size equal to the key (wider, in this case) operand. */
14577 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14578
6b9a8b67
MGD
14579 CVT_FLAVOUR_VAR;
14580
14581 return neon_cvt_flavour_invalid;
5287ad62
JB
14582#undef CVT_VAR
14583}
14584
7e8e6784
MGD
14585enum neon_cvt_mode
14586{
14587 neon_cvt_mode_a,
14588 neon_cvt_mode_n,
14589 neon_cvt_mode_p,
14590 neon_cvt_mode_m,
14591 neon_cvt_mode_z,
30bdf752
MGD
14592 neon_cvt_mode_x,
14593 neon_cvt_mode_r
7e8e6784
MGD
14594};
14595
037e8744
JB
14596/* Neon-syntax VFP conversions. */
14597
5287ad62 14598static void
6b9a8b67 14599do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 14600{
037e8744 14601 const char *opname = 0;
5f4273c7 14602
037e8744 14603 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14604 {
037e8744
JB
14605 /* Conversions with immediate bitshift. */
14606 const char *enc[] =
14607 {
6b9a8b67
MGD
14608#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14609 CVT_FLAVOUR_VAR
14610 NULL
14611#undef CVT_VAR
037e8744
JB
14612 };
14613
6b9a8b67 14614 if (flavour < (int) ARRAY_SIZE (enc))
037e8744
JB
14615 {
14616 opname = enc[flavour];
14617 constraint (inst.operands[0].reg != inst.operands[1].reg,
14618 _("operands 0 and 1 must be the same register"));
14619 inst.operands[1] = inst.operands[2];
14620 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14621 }
5287ad62
JB
14622 }
14623 else
14624 {
037e8744
JB
14625 /* Conversions without bitshift. */
14626 const char *enc[] =
14627 {
6b9a8b67
MGD
14628#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14629 CVT_FLAVOUR_VAR
14630 NULL
14631#undef CVT_VAR
037e8744
JB
14632 };
14633
6b9a8b67 14634 if (flavour < (int) ARRAY_SIZE (enc))
037e8744
JB
14635 opname = enc[flavour];
14636 }
14637
14638 if (opname)
14639 do_vfp_nsyn_opcode (opname);
14640}
14641
14642static void
14643do_vfp_nsyn_cvtz (void)
14644{
14645 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
6b9a8b67 14646 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
14647 const char *enc[] =
14648 {
6b9a8b67
MGD
14649#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14650 CVT_FLAVOUR_VAR
14651 NULL
14652#undef CVT_VAR
037e8744
JB
14653 };
14654
6b9a8b67 14655 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
14656 do_vfp_nsyn_opcode (enc[flavour]);
14657}
f31fef98 14658
037e8744 14659static void
7e8e6784
MGD
14660do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14661 enum neon_cvt_mode mode)
14662{
14663 int sz, op;
14664 int rm;
14665
14666 set_it_insn_type (OUTSIDE_IT_INSN);
14667
14668 switch (flavour)
14669 {
14670 case neon_cvt_flavour_s32_f64:
14671 sz = 1;
14672 op = 0;
14673 break;
14674 case neon_cvt_flavour_s32_f32:
14675 sz = 0;
14676 op = 1;
14677 break;
14678 case neon_cvt_flavour_u32_f64:
14679 sz = 1;
14680 op = 0;
14681 break;
14682 case neon_cvt_flavour_u32_f32:
14683 sz = 0;
14684 op = 0;
14685 break;
14686 default:
14687 first_error (_("invalid instruction shape"));
14688 return;
14689 }
14690
14691 switch (mode)
14692 {
14693 case neon_cvt_mode_a: rm = 0; break;
14694 case neon_cvt_mode_n: rm = 1; break;
14695 case neon_cvt_mode_p: rm = 2; break;
14696 case neon_cvt_mode_m: rm = 3; break;
14697 default: first_error (_("invalid rounding mode")); return;
14698 }
14699
14700 NEON_ENCODE (FPV8, inst);
14701 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14702 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14703 inst.instruction |= sz << 8;
14704 inst.instruction |= op << 7;
14705 inst.instruction |= rm << 16;
14706 inst.instruction |= 0xf0000000;
14707 inst.is_neon = TRUE;
14708}
14709
14710static void
14711do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
14712{
14713 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14714 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
6b9a8b67 14715 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 14716
e3e535bc 14717 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 14718 if (mode == neon_cvt_mode_z
e3e535bc 14719 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
6b9a8b67
MGD
14720 && (flavour == neon_cvt_flavour_s32_f32
14721 || flavour == neon_cvt_flavour_u32_f32
14722 || flavour == neon_cvt_flavour_s32_f64
14723 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
14724 && (rs == NS_FD || rs == NS_FF))
14725 {
14726 do_vfp_nsyn_cvtz ();
14727 return;
14728 }
14729
037e8744 14730 /* VFP rather than Neon conversions. */
6b9a8b67 14731 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 14732 {
7e8e6784
MGD
14733 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14734 do_vfp_nsyn_cvt (rs, flavour);
14735 else
14736 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14737
037e8744
JB
14738 return;
14739 }
14740
14741 switch (rs)
14742 {
14743 case NS_DDI:
14744 case NS_QQI:
14745 {
35997600
NC
14746 unsigned immbits;
14747 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14748
037e8744
JB
14749 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14750 return;
14751
14752 /* Fixed-point conversion with #0 immediate is encoded as an
14753 integer conversion. */
14754 if (inst.operands[2].present && inst.operands[2].imm == 0)
14755 goto int_encode;
35997600 14756 immbits = 32 - inst.operands[2].imm;
88714cb8 14757 NEON_ENCODE (IMMED, inst);
6b9a8b67 14758 if (flavour != neon_cvt_flavour_invalid)
037e8744
JB
14759 inst.instruction |= enctab[flavour];
14760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14762 inst.instruction |= LOW4 (inst.operands[1].reg);
14763 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14764 inst.instruction |= neon_quad (rs) << 6;
14765 inst.instruction |= 1 << 21;
14766 inst.instruction |= immbits << 16;
14767
88714cb8 14768 neon_dp_fixup (&inst);
037e8744
JB
14769 }
14770 break;
14771
14772 case NS_DD:
14773 case NS_QQ:
7e8e6784
MGD
14774 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14775 {
14776 NEON_ENCODE (FLOAT, inst);
14777 set_it_insn_type (OUTSIDE_IT_INSN);
14778
14779 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14780 return;
14781
14782 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14783 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14784 inst.instruction |= LOW4 (inst.operands[1].reg);
14785 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14786 inst.instruction |= neon_quad (rs) << 6;
14787 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14788 inst.instruction |= mode << 8;
14789 if (thumb_mode)
14790 inst.instruction |= 0xfc000000;
14791 else
14792 inst.instruction |= 0xf0000000;
14793 }
14794 else
14795 {
037e8744 14796 int_encode:
7e8e6784
MGD
14797 {
14798 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
037e8744 14799
7e8e6784 14800 NEON_ENCODE (INTEGER, inst);
037e8744 14801
7e8e6784
MGD
14802 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14803 return;
037e8744 14804
7e8e6784
MGD
14805 if (flavour != neon_cvt_flavour_invalid)
14806 inst.instruction |= enctab[flavour];
037e8744 14807
7e8e6784
MGD
14808 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14809 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14810 inst.instruction |= LOW4 (inst.operands[1].reg);
14811 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14812 inst.instruction |= neon_quad (rs) << 6;
14813 inst.instruction |= 2 << 18;
037e8744 14814
7e8e6784
MGD
14815 neon_dp_fixup (&inst);
14816 }
14817 }
14818 break;
037e8744 14819
8e79c3df
CM
14820 /* Half-precision conversions for Advanced SIMD -- neon. */
14821 case NS_QD:
14822 case NS_DQ:
14823
14824 if ((rs == NS_DQ)
14825 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14826 {
14827 as_bad (_("operand size must match register width"));
14828 break;
14829 }
14830
14831 if ((rs == NS_QD)
14832 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14833 {
14834 as_bad (_("operand size must match register width"));
14835 break;
14836 }
14837
14838 if (rs == NS_DQ)
14839 inst.instruction = 0x3b60600;
14840 else
14841 inst.instruction = 0x3b60700;
14842
14843 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14844 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14845 inst.instruction |= LOW4 (inst.operands[1].reg);
14846 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14847 neon_dp_fixup (&inst);
8e79c3df
CM
14848 break;
14849
037e8744
JB
14850 default:
14851 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
14852 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14853 do_vfp_nsyn_cvt (rs, flavour);
14854 else
14855 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 14856 }
5287ad62
JB
14857}
14858
e3e535bc
NC
14859static void
14860do_neon_cvtr (void)
14861{
7e8e6784 14862 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
14863}
14864
14865static void
14866do_neon_cvt (void)
14867{
7e8e6784
MGD
14868 do_neon_cvt_1 (neon_cvt_mode_z);
14869}
14870
14871static void
14872do_neon_cvta (void)
14873{
14874 do_neon_cvt_1 (neon_cvt_mode_a);
14875}
14876
14877static void
14878do_neon_cvtn (void)
14879{
14880 do_neon_cvt_1 (neon_cvt_mode_n);
14881}
14882
14883static void
14884do_neon_cvtp (void)
14885{
14886 do_neon_cvt_1 (neon_cvt_mode_p);
14887}
14888
14889static void
14890do_neon_cvtm (void)
14891{
14892 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
14893}
14894
8e79c3df 14895static void
c70a8987 14896do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 14897{
c70a8987
MGD
14898 if (is_double)
14899 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 14900
c70a8987
MGD
14901 encode_arm_vfp_reg (inst.operands[0].reg,
14902 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
14903 encode_arm_vfp_reg (inst.operands[1].reg,
14904 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
14905 inst.instruction |= to ? 0x10000 : 0;
14906 inst.instruction |= t ? 0x80 : 0;
14907 inst.instruction |= is_double ? 0x100 : 0;
14908 do_vfp_cond_or_thumb ();
14909}
8e79c3df 14910
c70a8987
MGD
14911static void
14912do_neon_cvttb_1 (bfd_boolean t)
14913{
14914 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
8e79c3df 14915
c70a8987
MGD
14916 if (rs == NS_NULL)
14917 return;
14918 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
14919 {
14920 inst.error = NULL;
14921 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
14922 }
14923 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
14924 {
14925 inst.error = NULL;
14926 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
14927 }
14928 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
14929 {
14930 inst.error = NULL;
14931 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
14932 }
14933 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
14934 {
14935 inst.error = NULL;
14936 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
14937 }
14938 else
14939 return;
14940}
14941
14942static void
14943do_neon_cvtb (void)
14944{
14945 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
14946}
14947
14948
14949static void
14950do_neon_cvtt (void)
14951{
c70a8987 14952 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
14953}
14954
5287ad62
JB
14955static void
14956neon_move_immediate (void)
14957{
037e8744
JB
14958 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14959 struct neon_type_el et = neon_check_type (2, rs,
14960 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14961 unsigned immlo, immhi = 0, immbits;
c96612cc 14962 int op, cmode, float_p;
5287ad62 14963
037e8744
JB
14964 constraint (et.type == NT_invtype,
14965 _("operand size must be specified for immediate VMOV"));
14966
5287ad62
JB
14967 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14968 op = (inst.instruction & (1 << 5)) != 0;
14969
14970 immlo = inst.operands[1].imm;
14971 if (inst.operands[1].regisimm)
14972 immhi = inst.operands[1].reg;
14973
14974 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14975 _("immediate has bits set outside the operand size"));
14976
c96612cc
JB
14977 float_p = inst.operands[1].immisfloat;
14978
14979 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14980 et.size, et.type)) == FAIL)
5287ad62
JB
14981 {
14982 /* Invert relevant bits only. */
14983 neon_invert_size (&immlo, &immhi, et.size);
14984 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14985 with one or the other; those cases are caught by
14986 neon_cmode_for_move_imm. */
14987 op = !op;
c96612cc
JB
14988 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14989 &op, et.size, et.type)) == FAIL)
5287ad62 14990 {
dcbf9037 14991 first_error (_("immediate out of range"));
5287ad62
JB
14992 return;
14993 }
14994 }
14995
14996 inst.instruction &= ~(1 << 5);
14997 inst.instruction |= op << 5;
14998
14999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15000 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 15001 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15002 inst.instruction |= cmode << 8;
15003
15004 neon_write_immbits (immbits);
15005}
15006
15007static void
15008do_neon_mvn (void)
15009{
15010 if (inst.operands[1].isreg)
15011 {
037e8744 15012 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 15013
88714cb8 15014 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15016 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15017 inst.instruction |= LOW4 (inst.operands[1].reg);
15018 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15019 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15020 }
15021 else
15022 {
88714cb8 15023 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15024 neon_move_immediate ();
15025 }
15026
88714cb8 15027 neon_dp_fixup (&inst);
5287ad62
JB
15028}
15029
15030/* Encode instructions of form:
15031
15032 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 15033 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
15034
15035static void
15036neon_mixed_length (struct neon_type_el et, unsigned size)
15037{
15038 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15039 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15040 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15041 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15042 inst.instruction |= LOW4 (inst.operands[2].reg);
15043 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15044 inst.instruction |= (et.type == NT_unsigned) << 24;
15045 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15046
88714cb8 15047 neon_dp_fixup (&inst);
5287ad62
JB
15048}
15049
15050static void
15051do_neon_dyadic_long (void)
15052{
15053 /* FIXME: Type checking for lengthening op. */
15054 struct neon_type_el et = neon_check_type (3, NS_QDD,
15055 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15056 neon_mixed_length (et, et.size);
15057}
15058
15059static void
15060do_neon_abal (void)
15061{
15062 struct neon_type_el et = neon_check_type (3, NS_QDD,
15063 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15064 neon_mixed_length (et, et.size);
15065}
15066
15067static void
15068neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15069{
15070 if (inst.operands[2].isscalar)
15071 {
dcbf9037
JB
15072 struct neon_type_el et = neon_check_type (3, NS_QDS,
15073 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 15074 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15075 neon_mul_mac (et, et.type == NT_unsigned);
15076 }
15077 else
15078 {
15079 struct neon_type_el et = neon_check_type (3, NS_QDD,
15080 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 15081 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15082 neon_mixed_length (et, et.size);
15083 }
15084}
15085
15086static void
15087do_neon_mac_maybe_scalar_long (void)
15088{
15089 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15090}
15091
15092static void
15093do_neon_dyadic_wide (void)
15094{
15095 struct neon_type_el et = neon_check_type (3, NS_QQD,
15096 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15097 neon_mixed_length (et, et.size);
15098}
15099
15100static void
15101do_neon_dyadic_narrow (void)
15102{
15103 struct neon_type_el et = neon_check_type (3, NS_QDD,
15104 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
15105 /* Operand sign is unimportant, and the U bit is part of the opcode,
15106 so force the operand type to integer. */
15107 et.type = NT_integer;
5287ad62
JB
15108 neon_mixed_length (et, et.size / 2);
15109}
15110
15111static void
15112do_neon_mul_sat_scalar_long (void)
15113{
15114 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15115}
15116
15117static void
15118do_neon_vmull (void)
15119{
15120 if (inst.operands[2].isscalar)
15121 do_neon_mac_maybe_scalar_long ();
15122 else
15123 {
15124 struct neon_type_el et = neon_check_type (3, NS_QDD,
4f51b4bd
MGD
15125 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15126
5287ad62 15127 if (et.type == NT_poly)
88714cb8 15128 NEON_ENCODE (POLY, inst);
5287ad62 15129 else
88714cb8 15130 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
15131
15132 /* For polynomial encoding the U bit must be zero, and the size must
15133 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15134 obviously, as 0b10). */
15135 if (et.size == 64)
15136 {
15137 /* Check we're on the correct architecture. */
15138 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15139 inst.error =
15140 _("Instruction form not available on this architecture.");
15141
15142 et.size = 32;
15143 }
15144
5287ad62
JB
15145 neon_mixed_length (et, et.size);
15146 }
15147}
15148
15149static void
15150do_neon_ext (void)
15151{
037e8744 15152 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
15153 struct neon_type_el et = neon_check_type (3, rs,
15154 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15155 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
15156
15157 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15158 _("shift out of range"));
5287ad62
JB
15159 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15160 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15161 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15162 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15163 inst.instruction |= LOW4 (inst.operands[2].reg);
15164 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 15165 inst.instruction |= neon_quad (rs) << 6;
5287ad62 15166 inst.instruction |= imm << 8;
5f4273c7 15167
88714cb8 15168 neon_dp_fixup (&inst);
5287ad62
JB
15169}
15170
15171static void
15172do_neon_rev (void)
15173{
037e8744 15174 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15175 struct neon_type_el et = neon_check_type (2, rs,
15176 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15177 unsigned op = (inst.instruction >> 7) & 3;
15178 /* N (width of reversed regions) is encoded as part of the bitmask. We
15179 extract it here to check the elements to be reversed are smaller.
15180 Otherwise we'd get a reserved instruction. */
15181 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 15182 gas_assert (elsize != 0);
5287ad62
JB
15183 constraint (et.size >= elsize,
15184 _("elements must be smaller than reversal region"));
037e8744 15185 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15186}
15187
15188static void
15189do_neon_dup (void)
15190{
15191 if (inst.operands[1].isscalar)
15192 {
037e8744 15193 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
15194 struct neon_type_el et = neon_check_type (2, rs,
15195 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 15196 unsigned sizebits = et.size >> 3;
dcbf9037 15197 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 15198 int logsize = neon_logbits (et.size);
dcbf9037 15199 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
15200
15201 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15202 return;
15203
88714cb8 15204 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15207 inst.instruction |= LOW4 (dm);
15208 inst.instruction |= HI1 (dm) << 5;
037e8744 15209 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15210 inst.instruction |= x << 17;
15211 inst.instruction |= sizebits << 16;
5f4273c7 15212
88714cb8 15213 neon_dp_fixup (&inst);
5287ad62
JB
15214 }
15215 else
15216 {
037e8744
JB
15217 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15218 struct neon_type_el et = neon_check_type (2, rs,
15219 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 15220 /* Duplicate ARM register to lanes of vector. */
88714cb8 15221 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
15222 switch (et.size)
15223 {
15224 case 8: inst.instruction |= 0x400000; break;
15225 case 16: inst.instruction |= 0x000020; break;
15226 case 32: inst.instruction |= 0x000000; break;
15227 default: break;
15228 }
15229 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15230 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15231 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 15232 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
15233 /* The encoding for this instruction is identical for the ARM and Thumb
15234 variants, except for the condition field. */
037e8744 15235 do_vfp_cond_or_thumb ();
5287ad62
JB
15236 }
15237}
15238
15239/* VMOV has particularly many variations. It can be one of:
15240 0. VMOV<c><q> <Qd>, <Qm>
15241 1. VMOV<c><q> <Dd>, <Dm>
15242 (Register operations, which are VORR with Rm = Rn.)
15243 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15244 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15245 (Immediate loads.)
15246 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15247 (ARM register to scalar.)
15248 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15249 (Two ARM registers to vector.)
15250 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15251 (Scalar to ARM register.)
15252 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15253 (Vector to two ARM registers.)
037e8744
JB
15254 8. VMOV.F32 <Sd>, <Sm>
15255 9. VMOV.F64 <Dd>, <Dm>
15256 (VFP register moves.)
15257 10. VMOV.F32 <Sd>, #imm
15258 11. VMOV.F64 <Dd>, #imm
15259 (VFP float immediate load.)
15260 12. VMOV <Rd>, <Sm>
15261 (VFP single to ARM reg.)
15262 13. VMOV <Sd>, <Rm>
15263 (ARM reg to VFP single.)
15264 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15265 (Two ARM regs to two VFP singles.)
15266 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15267 (Two VFP singles to two ARM regs.)
5f4273c7 15268
037e8744
JB
15269 These cases can be disambiguated using neon_select_shape, except cases 1/9
15270 and 3/11 which depend on the operand type too.
5f4273c7 15271
5287ad62 15272 All the encoded bits are hardcoded by this function.
5f4273c7 15273
b7fc2769
JB
15274 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15275 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 15276
5287ad62 15277 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 15278 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
15279
15280static void
15281do_neon_mov (void)
15282{
037e8744
JB
15283 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15284 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15285 NS_NULL);
15286 struct neon_type_el et;
15287 const char *ldconst = 0;
5287ad62 15288
037e8744 15289 switch (rs)
5287ad62 15290 {
037e8744
JB
15291 case NS_DD: /* case 1/9. */
15292 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15293 /* It is not an error here if no type is given. */
15294 inst.error = NULL;
15295 if (et.type == NT_float && et.size == 64)
5287ad62 15296 {
037e8744
JB
15297 do_vfp_nsyn_opcode ("fcpyd");
15298 break;
5287ad62 15299 }
037e8744 15300 /* fall through. */
5287ad62 15301
037e8744
JB
15302 case NS_QQ: /* case 0/1. */
15303 {
15304 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15305 return;
15306 /* The architecture manual I have doesn't explicitly state which
15307 value the U bit should have for register->register moves, but
15308 the equivalent VORR instruction has U = 0, so do that. */
15309 inst.instruction = 0x0200110;
15310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15312 inst.instruction |= LOW4 (inst.operands[1].reg);
15313 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15314 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15315 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15316 inst.instruction |= neon_quad (rs) << 6;
15317
88714cb8 15318 neon_dp_fixup (&inst);
037e8744
JB
15319 }
15320 break;
5f4273c7 15321
037e8744
JB
15322 case NS_DI: /* case 3/11. */
15323 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15324 inst.error = NULL;
15325 if (et.type == NT_float && et.size == 64)
5287ad62 15326 {
037e8744
JB
15327 /* case 11 (fconstd). */
15328 ldconst = "fconstd";
15329 goto encode_fconstd;
5287ad62 15330 }
037e8744
JB
15331 /* fall through. */
15332
15333 case NS_QI: /* case 2/3. */
15334 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15335 return;
15336 inst.instruction = 0x0800010;
15337 neon_move_immediate ();
88714cb8 15338 neon_dp_fixup (&inst);
5287ad62 15339 break;
5f4273c7 15340
037e8744
JB
15341 case NS_SR: /* case 4. */
15342 {
15343 unsigned bcdebits = 0;
91d6fa6a 15344 int logsize;
037e8744
JB
15345 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15346 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15347
91d6fa6a
NC
15348 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15349 logsize = neon_logbits (et.size);
15350
037e8744
JB
15351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15352 _(BAD_FPU));
15353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15354 && et.size != 32, _(BAD_FPU));
15355 constraint (et.type == NT_invtype, _("bad type for scalar"));
15356 constraint (x >= 64 / et.size, _("scalar index out of range"));
15357
15358 switch (et.size)
15359 {
15360 case 8: bcdebits = 0x8; break;
15361 case 16: bcdebits = 0x1; break;
15362 case 32: bcdebits = 0x0; break;
15363 default: ;
15364 }
15365
15366 bcdebits |= x << logsize;
15367
15368 inst.instruction = 0xe000b10;
15369 do_vfp_cond_or_thumb ();
15370 inst.instruction |= LOW4 (dn) << 16;
15371 inst.instruction |= HI1 (dn) << 7;
15372 inst.instruction |= inst.operands[1].reg << 12;
15373 inst.instruction |= (bcdebits & 3) << 5;
15374 inst.instruction |= (bcdebits >> 2) << 21;
15375 }
15376 break;
5f4273c7 15377
037e8744 15378 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 15379 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 15380 _(BAD_FPU));
b7fc2769 15381
037e8744
JB
15382 inst.instruction = 0xc400b10;
15383 do_vfp_cond_or_thumb ();
15384 inst.instruction |= LOW4 (inst.operands[0].reg);
15385 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15386 inst.instruction |= inst.operands[1].reg << 12;
15387 inst.instruction |= inst.operands[2].reg << 16;
15388 break;
5f4273c7 15389
037e8744
JB
15390 case NS_RS: /* case 6. */
15391 {
91d6fa6a 15392 unsigned logsize;
037e8744
JB
15393 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15394 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15395 unsigned abcdebits = 0;
15396
91d6fa6a
NC
15397 et = neon_check_type (2, NS_NULL,
15398 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15399 logsize = neon_logbits (et.size);
15400
037e8744
JB
15401 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15402 _(BAD_FPU));
15403 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15404 && et.size != 32, _(BAD_FPU));
15405 constraint (et.type == NT_invtype, _("bad type for scalar"));
15406 constraint (x >= 64 / et.size, _("scalar index out of range"));
15407
15408 switch (et.size)
15409 {
15410 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15411 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15412 case 32: abcdebits = 0x00; break;
15413 default: ;
15414 }
15415
15416 abcdebits |= x << logsize;
15417 inst.instruction = 0xe100b10;
15418 do_vfp_cond_or_thumb ();
15419 inst.instruction |= LOW4 (dn) << 16;
15420 inst.instruction |= HI1 (dn) << 7;
15421 inst.instruction |= inst.operands[0].reg << 12;
15422 inst.instruction |= (abcdebits & 3) << 5;
15423 inst.instruction |= (abcdebits >> 2) << 21;
15424 }
15425 break;
5f4273c7 15426
037e8744
JB
15427 case NS_RRD: /* case 7 (fmrrd). */
15428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15429 _(BAD_FPU));
15430
15431 inst.instruction = 0xc500b10;
15432 do_vfp_cond_or_thumb ();
15433 inst.instruction |= inst.operands[0].reg << 12;
15434 inst.instruction |= inst.operands[1].reg << 16;
15435 inst.instruction |= LOW4 (inst.operands[2].reg);
15436 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15437 break;
5f4273c7 15438
037e8744
JB
15439 case NS_FF: /* case 8 (fcpys). */
15440 do_vfp_nsyn_opcode ("fcpys");
15441 break;
5f4273c7 15442
037e8744
JB
15443 case NS_FI: /* case 10 (fconsts). */
15444 ldconst = "fconsts";
15445 encode_fconstd:
15446 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15447 {
037e8744
JB
15448 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15449 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15450 }
15451 else
037e8744
JB
15452 first_error (_("immediate out of range"));
15453 break;
5f4273c7 15454
037e8744
JB
15455 case NS_RF: /* case 12 (fmrs). */
15456 do_vfp_nsyn_opcode ("fmrs");
15457 break;
5f4273c7 15458
037e8744
JB
15459 case NS_FR: /* case 13 (fmsr). */
15460 do_vfp_nsyn_opcode ("fmsr");
15461 break;
5f4273c7 15462
037e8744
JB
15463 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15464 (one of which is a list), but we have parsed four. Do some fiddling to
15465 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15466 expect. */
15467 case NS_RRFF: /* case 14 (fmrrs). */
15468 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15469 _("VFP registers must be adjacent"));
15470 inst.operands[2].imm = 2;
15471 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15472 do_vfp_nsyn_opcode ("fmrrs");
15473 break;
5f4273c7 15474
037e8744
JB
15475 case NS_FFRR: /* case 15 (fmsrr). */
15476 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15477 _("VFP registers must be adjacent"));
15478 inst.operands[1] = inst.operands[2];
15479 inst.operands[2] = inst.operands[3];
15480 inst.operands[0].imm = 2;
15481 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15482 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15483 break;
5f4273c7 15484
5287ad62
JB
15485 default:
15486 abort ();
15487 }
15488}
15489
15490static void
15491do_neon_rshift_round_imm (void)
15492{
037e8744 15493 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15494 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15495 int imm = inst.operands[2].imm;
15496
15497 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15498 if (imm == 0)
15499 {
15500 inst.operands[2].present = 0;
15501 do_neon_mov ();
15502 return;
15503 }
15504
15505 constraint (imm < 1 || (unsigned)imm > et.size,
15506 _("immediate out of range for shift"));
037e8744 15507 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15508 et.size - imm);
15509}
15510
15511static void
15512do_neon_movl (void)
15513{
15514 struct neon_type_el et = neon_check_type (2, NS_QD,
15515 N_EQK | N_DBL, N_SU_32 | N_KEY);
15516 unsigned sizebits = et.size >> 3;
15517 inst.instruction |= sizebits << 19;
15518 neon_two_same (0, et.type == NT_unsigned, -1);
15519}
15520
15521static void
15522do_neon_trn (void)
15523{
037e8744 15524 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15525 struct neon_type_el et = neon_check_type (2, rs,
15526 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15527 NEON_ENCODE (INTEGER, inst);
037e8744 15528 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15529}
15530
15531static void
15532do_neon_zip_uzp (void)
15533{
037e8744 15534 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15535 struct neon_type_el et = neon_check_type (2, rs,
15536 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15537 if (rs == NS_DD && et.size == 32)
15538 {
15539 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15540 inst.instruction = N_MNEM_vtrn;
15541 do_neon_trn ();
15542 return;
15543 }
037e8744 15544 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15545}
15546
15547static void
15548do_neon_sat_abs_neg (void)
15549{
037e8744 15550 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15551 struct neon_type_el et = neon_check_type (2, rs,
15552 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15553 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15554}
15555
15556static void
15557do_neon_pair_long (void)
15558{
037e8744 15559 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15560 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15561 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15562 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15563 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15564}
15565
15566static void
15567do_neon_recip_est (void)
15568{
037e8744 15569 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15570 struct neon_type_el et = neon_check_type (2, rs,
15571 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15572 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15573 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15574}
15575
15576static void
15577do_neon_cls (void)
15578{
037e8744 15579 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15580 struct neon_type_el et = neon_check_type (2, rs,
15581 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15582 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15583}
15584
15585static void
15586do_neon_clz (void)
15587{
037e8744 15588 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15589 struct neon_type_el et = neon_check_type (2, rs,
15590 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15591 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15592}
15593
15594static void
15595do_neon_cnt (void)
15596{
037e8744 15597 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15598 struct neon_type_el et = neon_check_type (2, rs,
15599 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15600 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15601}
15602
15603static void
15604do_neon_swp (void)
15605{
037e8744
JB
15606 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15607 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15608}
15609
15610static void
15611do_neon_tbl_tbx (void)
15612{
15613 unsigned listlenbits;
dcbf9037 15614 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15615
5287ad62
JB
15616 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15617 {
dcbf9037 15618 first_error (_("bad list length for table lookup"));
5287ad62
JB
15619 return;
15620 }
5f4273c7 15621
5287ad62
JB
15622 listlenbits = inst.operands[1].imm - 1;
15623 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15624 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15625 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15626 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15627 inst.instruction |= LOW4 (inst.operands[2].reg);
15628 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15629 inst.instruction |= listlenbits << 8;
5f4273c7 15630
88714cb8 15631 neon_dp_fixup (&inst);
5287ad62
JB
15632}
15633
15634static void
15635do_neon_ldm_stm (void)
15636{
15637 /* P, U and L bits are part of bitmask. */
15638 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15639 unsigned offsetbits = inst.operands[1].imm * 2;
15640
037e8744
JB
15641 if (inst.operands[1].issingle)
15642 {
15643 do_vfp_nsyn_ldm_stm (is_dbmode);
15644 return;
15645 }
15646
5287ad62
JB
15647 constraint (is_dbmode && !inst.operands[0].writeback,
15648 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15649
15650 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15651 _("register list must contain at least 1 and at most 16 "
15652 "registers"));
15653
15654 inst.instruction |= inst.operands[0].reg << 16;
15655 inst.instruction |= inst.operands[0].writeback << 21;
15656 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15657 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15658
15659 inst.instruction |= offsetbits;
5f4273c7 15660
037e8744 15661 do_vfp_cond_or_thumb ();
5287ad62
JB
15662}
15663
15664static void
15665do_neon_ldr_str (void)
15666{
5287ad62 15667 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15668
6844b2c2
MGD
15669 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15670 And is UNPREDICTABLE in thumb mode. */
fa94de6b 15671 if (!is_ldr
6844b2c2
MGD
15672 && inst.operands[1].reg == REG_PC
15673 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15674 {
15675 if (!thumb_mode && warn_on_deprecated)
15676 as_warn (_("Use of PC here is deprecated"));
15677 else
15678 inst.error = _("Use of PC here is UNPREDICTABLE");
15679 }
15680
037e8744
JB
15681 if (inst.operands[0].issingle)
15682 {
cd2f129f
JB
15683 if (is_ldr)
15684 do_vfp_nsyn_opcode ("flds");
15685 else
15686 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15687 }
15688 else
5287ad62 15689 {
cd2f129f
JB
15690 if (is_ldr)
15691 do_vfp_nsyn_opcode ("fldd");
5287ad62 15692 else
cd2f129f 15693 do_vfp_nsyn_opcode ("fstd");
5287ad62 15694 }
5287ad62
JB
15695}
15696
15697/* "interleave" version also handles non-interleaving register VLD1/VST1
15698 instructions. */
15699
15700static void
15701do_neon_ld_st_interleave (void)
15702{
037e8744 15703 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15704 N_8 | N_16 | N_32 | N_64);
15705 unsigned alignbits = 0;
15706 unsigned idx;
15707 /* The bits in this table go:
15708 0: register stride of one (0) or two (1)
15709 1,2: register list length, minus one (1, 2, 3, 4).
15710 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15711 We use -1 for invalid entries. */
15712 const int typetable[] =
15713 {
15714 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15715 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15716 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15717 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15718 };
15719 int typebits;
15720
dcbf9037
JB
15721 if (et.type == NT_invtype)
15722 return;
15723
5287ad62
JB
15724 if (inst.operands[1].immisalign)
15725 switch (inst.operands[1].imm >> 8)
15726 {
15727 case 64: alignbits = 1; break;
15728 case 128:
e23c0ad8
JZ
15729 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15730 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15731 goto bad_alignment;
15732 alignbits = 2;
15733 break;
15734 case 256:
e23c0ad8 15735 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15736 goto bad_alignment;
15737 alignbits = 3;
15738 break;
15739 default:
15740 bad_alignment:
dcbf9037 15741 first_error (_("bad alignment"));
5287ad62
JB
15742 return;
15743 }
15744
15745 inst.instruction |= alignbits << 4;
15746 inst.instruction |= neon_logbits (et.size) << 6;
15747
15748 /* Bits [4:6] of the immediate in a list specifier encode register stride
15749 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15750 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15751 up the right value for "type" in a table based on this value and the given
15752 list style, then stick it back. */
15753 idx = ((inst.operands[0].imm >> 4) & 7)
15754 | (((inst.instruction >> 8) & 3) << 3);
15755
15756 typebits = typetable[idx];
5f4273c7 15757
5287ad62
JB
15758 constraint (typebits == -1, _("bad list type for instruction"));
15759
15760 inst.instruction &= ~0xf00;
15761 inst.instruction |= typebits << 8;
15762}
15763
15764/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15765 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15766 otherwise. The variable arguments are a list of pairs of legal (size, align)
15767 values, terminated with -1. */
15768
15769static int
15770neon_alignment_bit (int size, int align, int *do_align, ...)
15771{
15772 va_list ap;
15773 int result = FAIL, thissize, thisalign;
5f4273c7 15774
5287ad62
JB
15775 if (!inst.operands[1].immisalign)
15776 {
15777 *do_align = 0;
15778 return SUCCESS;
15779 }
5f4273c7 15780
5287ad62
JB
15781 va_start (ap, do_align);
15782
15783 do
15784 {
15785 thissize = va_arg (ap, int);
15786 if (thissize == -1)
15787 break;
15788 thisalign = va_arg (ap, int);
15789
15790 if (size == thissize && align == thisalign)
15791 result = SUCCESS;
15792 }
15793 while (result != SUCCESS);
15794
15795 va_end (ap);
15796
15797 if (result == SUCCESS)
15798 *do_align = 1;
15799 else
dcbf9037 15800 first_error (_("unsupported alignment for instruction"));
5f4273c7 15801
5287ad62
JB
15802 return result;
15803}
15804
15805static void
15806do_neon_ld_st_lane (void)
15807{
037e8744 15808 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15809 int align_good, do_align = 0;
15810 int logsize = neon_logbits (et.size);
15811 int align = inst.operands[1].imm >> 8;
15812 int n = (inst.instruction >> 8) & 3;
15813 int max_el = 64 / et.size;
5f4273c7 15814
dcbf9037
JB
15815 if (et.type == NT_invtype)
15816 return;
5f4273c7 15817
5287ad62
JB
15818 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15819 _("bad list length"));
15820 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15821 _("scalar index out of range"));
15822 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15823 && et.size == 8,
15824 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15825
5287ad62
JB
15826 switch (n)
15827 {
15828 case 0: /* VLD1 / VST1. */
15829 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15830 32, 32, -1);
15831 if (align_good == FAIL)
15832 return;
15833 if (do_align)
15834 {
15835 unsigned alignbits = 0;
15836 switch (et.size)
15837 {
15838 case 16: alignbits = 0x1; break;
15839 case 32: alignbits = 0x3; break;
15840 default: ;
15841 }
15842 inst.instruction |= alignbits << 4;
15843 }
15844 break;
15845
15846 case 1: /* VLD2 / VST2. */
15847 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15848 32, 64, -1);
15849 if (align_good == FAIL)
15850 return;
15851 if (do_align)
15852 inst.instruction |= 1 << 4;
15853 break;
15854
15855 case 2: /* VLD3 / VST3. */
15856 constraint (inst.operands[1].immisalign,
15857 _("can't use alignment with this instruction"));
15858 break;
15859
15860 case 3: /* VLD4 / VST4. */
15861 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15862 16, 64, 32, 64, 32, 128, -1);
15863 if (align_good == FAIL)
15864 return;
15865 if (do_align)
15866 {
15867 unsigned alignbits = 0;
15868 switch (et.size)
15869 {
15870 case 8: alignbits = 0x1; break;
15871 case 16: alignbits = 0x1; break;
15872 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15873 default: ;
15874 }
15875 inst.instruction |= alignbits << 4;
15876 }
15877 break;
15878
15879 default: ;
15880 }
15881
15882 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15883 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15884 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15885
5287ad62
JB
15886 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15887 inst.instruction |= logsize << 10;
15888}
15889
15890/* Encode single n-element structure to all lanes VLD<n> instructions. */
15891
15892static void
15893do_neon_ld_dup (void)
15894{
037e8744 15895 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15896 int align_good, do_align = 0;
15897
dcbf9037
JB
15898 if (et.type == NT_invtype)
15899 return;
15900
5287ad62
JB
15901 switch ((inst.instruction >> 8) & 3)
15902 {
15903 case 0: /* VLD1. */
9c2799c2 15904 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15905 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15906 &do_align, 16, 16, 32, 32, -1);
15907 if (align_good == FAIL)
15908 return;
15909 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15910 {
15911 case 1: break;
15912 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15913 default: first_error (_("bad list length")); return;
5287ad62
JB
15914 }
15915 inst.instruction |= neon_logbits (et.size) << 6;
15916 break;
15917
15918 case 1: /* VLD2. */
15919 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15920 &do_align, 8, 16, 16, 32, 32, 64, -1);
15921 if (align_good == FAIL)
15922 return;
15923 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15924 _("bad list length"));
15925 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15926 inst.instruction |= 1 << 5;
15927 inst.instruction |= neon_logbits (et.size) << 6;
15928 break;
15929
15930 case 2: /* VLD3. */
15931 constraint (inst.operands[1].immisalign,
15932 _("can't use alignment with this instruction"));
15933 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15934 _("bad list length"));
15935 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15936 inst.instruction |= 1 << 5;
15937 inst.instruction |= neon_logbits (et.size) << 6;
15938 break;
15939
15940 case 3: /* VLD4. */
15941 {
15942 int align = inst.operands[1].imm >> 8;
15943 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15944 16, 64, 32, 64, 32, 128, -1);
15945 if (align_good == FAIL)
15946 return;
15947 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15948 _("bad list length"));
15949 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15950 inst.instruction |= 1 << 5;
15951 if (et.size == 32 && align == 128)
15952 inst.instruction |= 0x3 << 6;
15953 else
15954 inst.instruction |= neon_logbits (et.size) << 6;
15955 }
15956 break;
15957
15958 default: ;
15959 }
15960
15961 inst.instruction |= do_align << 4;
15962}
15963
15964/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15965 apart from bits [11:4]. */
15966
15967static void
15968do_neon_ldx_stx (void)
15969{
b1a769ed
DG
15970 if (inst.operands[1].isreg)
15971 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15972
5287ad62
JB
15973 switch (NEON_LANE (inst.operands[0].imm))
15974 {
15975 case NEON_INTERLEAVE_LANES:
88714cb8 15976 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15977 do_neon_ld_st_interleave ();
15978 break;
5f4273c7 15979
5287ad62 15980 case NEON_ALL_LANES:
88714cb8 15981 NEON_ENCODE (DUP, inst);
5287ad62
JB
15982 do_neon_ld_dup ();
15983 break;
5f4273c7 15984
5287ad62 15985 default:
88714cb8 15986 NEON_ENCODE (LANE, inst);
5287ad62
JB
15987 do_neon_ld_st_lane ();
15988 }
15989
15990 /* L bit comes from bit mask. */
15991 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15992 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15993 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15994
5287ad62
JB
15995 if (inst.operands[1].postind)
15996 {
15997 int postreg = inst.operands[1].imm & 0xf;
15998 constraint (!inst.operands[1].immisreg,
15999 _("post-index must be a register"));
16000 constraint (postreg == 0xd || postreg == 0xf,
16001 _("bad register for post-index"));
16002 inst.instruction |= postreg;
16003 }
16004 else if (inst.operands[1].writeback)
16005 {
16006 inst.instruction |= 0xd;
16007 }
16008 else
5f4273c7
NC
16009 inst.instruction |= 0xf;
16010
5287ad62
JB
16011 if (thumb_mode)
16012 inst.instruction |= 0xf9000000;
16013 else
16014 inst.instruction |= 0xf4000000;
16015}
33399f07
MGD
16016
16017/* FP v8. */
16018static void
16019do_vfp_nsyn_fpv8 (enum neon_shape rs)
16020{
16021 NEON_ENCODE (FPV8, inst);
16022
16023 if (rs == NS_FFF)
16024 do_vfp_sp_dyadic ();
16025 else
16026 do_vfp_dp_rd_rn_rm ();
16027
16028 if (rs == NS_DDD)
16029 inst.instruction |= 0x100;
16030
16031 inst.instruction |= 0xf0000000;
16032}
16033
16034static void
16035do_vsel (void)
16036{
16037 set_it_insn_type (OUTSIDE_IT_INSN);
16038
16039 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16040 first_error (_("invalid instruction shape"));
16041}
16042
73924fbc
MGD
16043static void
16044do_vmaxnm (void)
16045{
16046 set_it_insn_type (OUTSIDE_IT_INSN);
16047
16048 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16049 return;
16050
16051 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16052 return;
16053
16054 neon_dyadic_misc (NT_untyped, N_F32, 0);
16055}
16056
30bdf752
MGD
16057static void
16058do_vrint_1 (enum neon_cvt_mode mode)
16059{
16060 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16061 struct neon_type_el et;
16062
16063 if (rs == NS_NULL)
16064 return;
16065
16066 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16067 if (et.type != NT_invtype)
16068 {
16069 /* VFP encodings. */
16070 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16071 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16072 set_it_insn_type (OUTSIDE_IT_INSN);
16073
16074 NEON_ENCODE (FPV8, inst);
16075 if (rs == NS_FF)
16076 do_vfp_sp_monadic ();
16077 else
16078 do_vfp_dp_rd_rm ();
16079
16080 switch (mode)
16081 {
16082 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16083 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16084 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16085 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16086 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16087 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16088 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16089 default: abort ();
16090 }
16091
16092 inst.instruction |= (rs == NS_DD) << 8;
16093 do_vfp_cond_or_thumb ();
16094 }
16095 else
16096 {
16097 /* Neon encodings (or something broken...). */
16098 inst.error = NULL;
16099 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16100
16101 if (et.type == NT_invtype)
16102 return;
16103
16104 set_it_insn_type (OUTSIDE_IT_INSN);
16105 NEON_ENCODE (FLOAT, inst);
16106
16107 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16108 return;
16109
16110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16111 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16112 inst.instruction |= LOW4 (inst.operands[1].reg);
16113 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16114 inst.instruction |= neon_quad (rs) << 6;
16115 switch (mode)
16116 {
16117 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16118 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16119 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16120 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16121 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16122 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16123 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16124 default: abort ();
16125 }
16126
16127 if (thumb_mode)
16128 inst.instruction |= 0xfc000000;
16129 else
16130 inst.instruction |= 0xf0000000;
16131 }
16132}
16133
16134static void
16135do_vrintx (void)
16136{
16137 do_vrint_1 (neon_cvt_mode_x);
16138}
16139
16140static void
16141do_vrintz (void)
16142{
16143 do_vrint_1 (neon_cvt_mode_z);
16144}
16145
16146static void
16147do_vrintr (void)
16148{
16149 do_vrint_1 (neon_cvt_mode_r);
16150}
16151
16152static void
16153do_vrinta (void)
16154{
16155 do_vrint_1 (neon_cvt_mode_a);
16156}
16157
16158static void
16159do_vrintn (void)
16160{
16161 do_vrint_1 (neon_cvt_mode_n);
16162}
16163
16164static void
16165do_vrintp (void)
16166{
16167 do_vrint_1 (neon_cvt_mode_p);
16168}
16169
16170static void
16171do_vrintm (void)
16172{
16173 do_vrint_1 (neon_cvt_mode_m);
16174}
16175
91ff7894
MGD
16176/* Crypto v1 instructions. */
16177static void
16178do_crypto_2op_1 (unsigned elttype, int op)
16179{
16180 set_it_insn_type (OUTSIDE_IT_INSN);
16181
16182 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16183 == NT_invtype)
16184 return;
16185
16186 inst.error = NULL;
16187
16188 NEON_ENCODE (INTEGER, inst);
16189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16190 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16191 inst.instruction |= LOW4 (inst.operands[1].reg);
16192 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16193 if (op != -1)
16194 inst.instruction |= op << 6;
16195
16196 if (thumb_mode)
16197 inst.instruction |= 0xfc000000;
16198 else
16199 inst.instruction |= 0xf0000000;
16200}
16201
16202static void
16203do_aese (void)
16204{
16205 do_crypto_2op_1 (N_8, 0);
16206}
16207
16208static void
16209do_aesd (void)
16210{
16211 do_crypto_2op_1 (N_8, 1);
16212}
16213
16214static void
16215do_aesmc (void)
16216{
16217 do_crypto_2op_1 (N_8, 2);
16218}
16219
16220static void
16221do_aesimc (void)
16222{
16223 do_crypto_2op_1 (N_8, 3);
16224}
16225
16226
5287ad62
JB
16227\f
16228/* Overall per-instruction processing. */
16229
16230/* We need to be able to fix up arbitrary expressions in some statements.
16231 This is so that we can handle symbols that are an arbitrary distance from
16232 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16233 which returns part of an address in a form which will be valid for
16234 a data instruction. We do this by pushing the expression into a symbol
16235 in the expr_section, and creating a fix for that. */
16236
16237static void
16238fix_new_arm (fragS * frag,
16239 int where,
16240 short int size,
16241 expressionS * exp,
16242 int pc_rel,
16243 int reloc)
16244{
16245 fixS * new_fix;
16246
16247 switch (exp->X_op)
16248 {
16249 case O_constant:
6e7ce2cd
PB
16250 if (pc_rel)
16251 {
16252 /* Create an absolute valued symbol, so we have something to
16253 refer to in the object file. Unfortunately for us, gas's
16254 generic expression parsing will already have folded out
16255 any use of .set foo/.type foo %function that may have
16256 been used to set type information of the target location,
16257 that's being specified symbolically. We have to presume
16258 the user knows what they are doing. */
16259 char name[16 + 8];
16260 symbolS *symbol;
16261
16262 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16263
16264 symbol = symbol_find_or_make (name);
16265 S_SET_SEGMENT (symbol, absolute_section);
16266 symbol_set_frag (symbol, &zero_address_frag);
16267 S_SET_VALUE (symbol, exp->X_add_number);
16268 exp->X_op = O_symbol;
16269 exp->X_add_symbol = symbol;
16270 exp->X_add_number = 0;
16271 }
16272 /* FALLTHROUGH */
5287ad62
JB
16273 case O_symbol:
16274 case O_add:
16275 case O_subtract:
21d799b5
NC
16276 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16277 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
16278 break;
16279
16280 default:
21d799b5
NC
16281 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16282 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
16283 break;
16284 }
16285
16286 /* Mark whether the fix is to a THUMB instruction, or an ARM
16287 instruction. */
16288 new_fix->tc_fix_data = thumb_mode;
16289}
16290
16291/* Create a frg for an instruction requiring relaxation. */
16292static void
16293output_relax_insn (void)
16294{
16295 char * to;
16296 symbolS *sym;
0110f2b8
PB
16297 int offset;
16298
6e1cb1a6
PB
16299 /* The size of the instruction is unknown, so tie the debug info to the
16300 start of the instruction. */
16301 dwarf2_emit_insn (0);
6e1cb1a6 16302
0110f2b8
PB
16303 switch (inst.reloc.exp.X_op)
16304 {
16305 case O_symbol:
16306 sym = inst.reloc.exp.X_add_symbol;
16307 offset = inst.reloc.exp.X_add_number;
16308 break;
16309 case O_constant:
16310 sym = NULL;
16311 offset = inst.reloc.exp.X_add_number;
16312 break;
16313 default:
16314 sym = make_expr_symbol (&inst.reloc.exp);
16315 offset = 0;
16316 break;
16317 }
16318 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16319 inst.relax, sym, offset, NULL/*offset, opcode*/);
16320 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
16321}
16322
16323/* Write a 32-bit thumb instruction to buf. */
16324static void
16325put_thumb32_insn (char * buf, unsigned long insn)
16326{
16327 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16328 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16329}
16330
b99bd4ef 16331static void
c19d1205 16332output_inst (const char * str)
b99bd4ef 16333{
c19d1205 16334 char * to = NULL;
b99bd4ef 16335
c19d1205 16336 if (inst.error)
b99bd4ef 16337 {
c19d1205 16338 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
16339 return;
16340 }
5f4273c7
NC
16341 if (inst.relax)
16342 {
16343 output_relax_insn ();
0110f2b8 16344 return;
5f4273c7 16345 }
c19d1205
ZW
16346 if (inst.size == 0)
16347 return;
b99bd4ef 16348
c19d1205 16349 to = frag_more (inst.size);
8dc2430f
NC
16350 /* PR 9814: Record the thumb mode into the current frag so that we know
16351 what type of NOP padding to use, if necessary. We override any previous
16352 setting so that if the mode has changed then the NOPS that we use will
16353 match the encoding of the last instruction in the frag. */
cd000bff 16354 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
16355
16356 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 16357 {
9c2799c2 16358 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 16359 put_thumb32_insn (to, inst.instruction);
b99bd4ef 16360 }
c19d1205 16361 else if (inst.size > INSN_SIZE)
b99bd4ef 16362 {
9c2799c2 16363 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
16364 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16365 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 16366 }
c19d1205
ZW
16367 else
16368 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 16369
c19d1205
ZW
16370 if (inst.reloc.type != BFD_RELOC_UNUSED)
16371 fix_new_arm (frag_now, to - frag_now->fr_literal,
16372 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16373 inst.reloc.type);
b99bd4ef 16374
c19d1205 16375 dwarf2_emit_insn (inst.size);
c19d1205 16376}
b99bd4ef 16377
e07e6e58
NC
16378static char *
16379output_it_inst (int cond, int mask, char * to)
16380{
16381 unsigned long instruction = 0xbf00;
16382
16383 mask &= 0xf;
16384 instruction |= mask;
16385 instruction |= cond << 4;
16386
16387 if (to == NULL)
16388 {
16389 to = frag_more (2);
16390#ifdef OBJ_ELF
16391 dwarf2_emit_insn (2);
16392#endif
16393 }
16394
16395 md_number_to_chars (to, instruction, 2);
16396
16397 return to;
16398}
16399
c19d1205
ZW
16400/* Tag values used in struct asm_opcode's tag field. */
16401enum opcode_tag
16402{
16403 OT_unconditional, /* Instruction cannot be conditionalized.
16404 The ARM condition field is still 0xE. */
16405 OT_unconditionalF, /* Instruction cannot be conditionalized
16406 and carries 0xF in its ARM condition field. */
16407 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
16408 OT_csuffixF, /* Some forms of the instruction take a conditional
16409 suffix, others place 0xF where the condition field
16410 would be. */
c19d1205
ZW
16411 OT_cinfix3, /* Instruction takes a conditional infix,
16412 beginning at character index 3. (In
16413 unified mode, it becomes a suffix.) */
088fa78e
KH
16414 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16415 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
16416 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16417 character index 3, even in unified mode. Used for
16418 legacy instructions where suffix and infix forms
16419 may be ambiguous. */
c19d1205 16420 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 16421 suffix or an infix at character index 3. */
c19d1205
ZW
16422 OT_odd_infix_unc, /* This is the unconditional variant of an
16423 instruction that takes a conditional infix
16424 at an unusual position. In unified mode,
16425 this variant will accept a suffix. */
16426 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16427 are the conditional variants of instructions that
16428 take conditional infixes in unusual positions.
16429 The infix appears at character index
16430 (tag - OT_odd_infix_0). These are not accepted
16431 in unified mode. */
16432};
b99bd4ef 16433
c19d1205
ZW
16434/* Subroutine of md_assemble, responsible for looking up the primary
16435 opcode from the mnemonic the user wrote. STR points to the
16436 beginning of the mnemonic.
16437
16438 This is not simply a hash table lookup, because of conditional
16439 variants. Most instructions have conditional variants, which are
16440 expressed with a _conditional affix_ to the mnemonic. If we were
16441 to encode each conditional variant as a literal string in the opcode
16442 table, it would have approximately 20,000 entries.
16443
16444 Most mnemonics take this affix as a suffix, and in unified syntax,
16445 'most' is upgraded to 'all'. However, in the divided syntax, some
16446 instructions take the affix as an infix, notably the s-variants of
16447 the arithmetic instructions. Of those instructions, all but six
16448 have the infix appear after the third character of the mnemonic.
16449
16450 Accordingly, the algorithm for looking up primary opcodes given
16451 an identifier is:
16452
16453 1. Look up the identifier in the opcode table.
16454 If we find a match, go to step U.
16455
16456 2. Look up the last two characters of the identifier in the
16457 conditions table. If we find a match, look up the first N-2
16458 characters of the identifier in the opcode table. If we
16459 find a match, go to step CE.
16460
16461 3. Look up the fourth and fifth characters of the identifier in
16462 the conditions table. If we find a match, extract those
16463 characters from the identifier, and look up the remaining
16464 characters in the opcode table. If we find a match, go
16465 to step CM.
16466
16467 4. Fail.
16468
16469 U. Examine the tag field of the opcode structure, in case this is
16470 one of the six instructions with its conditional infix in an
16471 unusual place. If it is, the tag tells us where to find the
16472 infix; look it up in the conditions table and set inst.cond
16473 accordingly. Otherwise, this is an unconditional instruction.
16474 Again set inst.cond accordingly. Return the opcode structure.
16475
16476 CE. Examine the tag field to make sure this is an instruction that
16477 should receive a conditional suffix. If it is not, fail.
16478 Otherwise, set inst.cond from the suffix we already looked up,
16479 and return the opcode structure.
16480
16481 CM. Examine the tag field to make sure this is an instruction that
16482 should receive a conditional infix after the third character.
16483 If it is not, fail. Otherwise, undo the edits to the current
16484 line of input and proceed as for case CE. */
16485
16486static const struct asm_opcode *
16487opcode_lookup (char **str)
16488{
16489 char *end, *base;
16490 char *affix;
16491 const struct asm_opcode *opcode;
16492 const struct asm_cond *cond;
e3cb604e 16493 char save[2];
c19d1205
ZW
16494
16495 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 16496 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 16497 for (base = end = *str; *end != '\0'; end++)
721a8186 16498 if (*end == ' ' || *end == '.')
c19d1205 16499 break;
b99bd4ef 16500
c19d1205 16501 if (end == base)
c921be7d 16502 return NULL;
b99bd4ef 16503
5287ad62 16504 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 16505 if (end[0] == '.')
b99bd4ef 16506 {
5287ad62 16507 int offset = 2;
5f4273c7 16508
267d2029
JB
16509 /* The .w and .n suffixes are only valid if the unified syntax is in
16510 use. */
16511 if (unified_syntax && end[1] == 'w')
c19d1205 16512 inst.size_req = 4;
267d2029 16513 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
16514 inst.size_req = 2;
16515 else
5287ad62
JB
16516 offset = 0;
16517
16518 inst.vectype.elems = 0;
16519
16520 *str = end + offset;
b99bd4ef 16521
5f4273c7 16522 if (end[offset] == '.')
5287ad62 16523 {
267d2029
JB
16524 /* See if we have a Neon type suffix (possible in either unified or
16525 non-unified ARM syntax mode). */
dcbf9037 16526 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 16527 return NULL;
5287ad62
JB
16528 }
16529 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 16530 return NULL;
b99bd4ef 16531 }
c19d1205
ZW
16532 else
16533 *str = end;
b99bd4ef 16534
c19d1205 16535 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
16536 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16537 end - base);
c19d1205 16538 if (opcode)
b99bd4ef 16539 {
c19d1205
ZW
16540 /* step U */
16541 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 16542 {
c19d1205
ZW
16543 inst.cond = COND_ALWAYS;
16544 return opcode;
b99bd4ef 16545 }
b99bd4ef 16546
278df34e 16547 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
16548 as_warn (_("conditional infixes are deprecated in unified syntax"));
16549 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 16550 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 16551 gas_assert (cond);
b99bd4ef 16552
c19d1205
ZW
16553 inst.cond = cond->value;
16554 return opcode;
16555 }
b99bd4ef 16556
c19d1205
ZW
16557 /* Cannot have a conditional suffix on a mnemonic of less than two
16558 characters. */
16559 if (end - base < 3)
c921be7d 16560 return NULL;
b99bd4ef 16561
c19d1205
ZW
16562 /* Look for suffixed mnemonic. */
16563 affix = end - 2;
21d799b5
NC
16564 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16565 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16566 affix - base);
c19d1205
ZW
16567 if (opcode && cond)
16568 {
16569 /* step CE */
16570 switch (opcode->tag)
16571 {
e3cb604e
PB
16572 case OT_cinfix3_legacy:
16573 /* Ignore conditional suffixes matched on infix only mnemonics. */
16574 break;
16575
c19d1205 16576 case OT_cinfix3:
088fa78e 16577 case OT_cinfix3_deprecated:
c19d1205
ZW
16578 case OT_odd_infix_unc:
16579 if (!unified_syntax)
e3cb604e 16580 return 0;
c19d1205
ZW
16581 /* else fall through */
16582
16583 case OT_csuffix:
037e8744 16584 case OT_csuffixF:
c19d1205
ZW
16585 case OT_csuf_or_in3:
16586 inst.cond = cond->value;
16587 return opcode;
16588
16589 case OT_unconditional:
16590 case OT_unconditionalF:
dfa9f0d5 16591 if (thumb_mode)
c921be7d 16592 inst.cond = cond->value;
dfa9f0d5
PB
16593 else
16594 {
c921be7d 16595 /* Delayed diagnostic. */
dfa9f0d5
PB
16596 inst.error = BAD_COND;
16597 inst.cond = COND_ALWAYS;
16598 }
c19d1205 16599 return opcode;
b99bd4ef 16600
c19d1205 16601 default:
c921be7d 16602 return NULL;
c19d1205
ZW
16603 }
16604 }
b99bd4ef 16605
c19d1205
ZW
16606 /* Cannot have a usual-position infix on a mnemonic of less than
16607 six characters (five would be a suffix). */
16608 if (end - base < 6)
c921be7d 16609 return NULL;
b99bd4ef 16610
c19d1205
ZW
16611 /* Look for infixed mnemonic in the usual position. */
16612 affix = base + 3;
21d799b5 16613 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 16614 if (!cond)
c921be7d 16615 return NULL;
e3cb604e
PB
16616
16617 memcpy (save, affix, 2);
16618 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
16619 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16620 (end - base) - 2);
e3cb604e
PB
16621 memmove (affix + 2, affix, (end - affix) - 2);
16622 memcpy (affix, save, 2);
16623
088fa78e
KH
16624 if (opcode
16625 && (opcode->tag == OT_cinfix3
16626 || opcode->tag == OT_cinfix3_deprecated
16627 || opcode->tag == OT_csuf_or_in3
16628 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 16629 {
c921be7d 16630 /* Step CM. */
278df34e 16631 if (warn_on_deprecated && unified_syntax
088fa78e
KH
16632 && (opcode->tag == OT_cinfix3
16633 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
16634 as_warn (_("conditional infixes are deprecated in unified syntax"));
16635
16636 inst.cond = cond->value;
16637 return opcode;
b99bd4ef
NC
16638 }
16639
c921be7d 16640 return NULL;
b99bd4ef
NC
16641}
16642
e07e6e58
NC
16643/* This function generates an initial IT instruction, leaving its block
16644 virtually open for the new instructions. Eventually,
16645 the mask will be updated by now_it_add_mask () each time
16646 a new instruction needs to be included in the IT block.
16647 Finally, the block is closed with close_automatic_it_block ().
16648 The block closure can be requested either from md_assemble (),
16649 a tencode (), or due to a label hook. */
16650
16651static void
16652new_automatic_it_block (int cond)
16653{
16654 now_it.state = AUTOMATIC_IT_BLOCK;
16655 now_it.mask = 0x18;
16656 now_it.cc = cond;
16657 now_it.block_length = 1;
cd000bff 16658 mapping_state (MAP_THUMB);
e07e6e58 16659 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
16660 now_it.warn_deprecated = FALSE;
16661 now_it.insn_cond = TRUE;
e07e6e58
NC
16662}
16663
16664/* Close an automatic IT block.
16665 See comments in new_automatic_it_block (). */
16666
16667static void
16668close_automatic_it_block (void)
16669{
16670 now_it.mask = 0x10;
16671 now_it.block_length = 0;
16672}
16673
16674/* Update the mask of the current automatically-generated IT
16675 instruction. See comments in new_automatic_it_block (). */
16676
16677static void
16678now_it_add_mask (int cond)
16679{
16680#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16681#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16682 | ((bitvalue) << (nbit)))
e07e6e58 16683 const int resulting_bit = (cond & 1);
c921be7d 16684
e07e6e58
NC
16685 now_it.mask &= 0xf;
16686 now_it.mask = SET_BIT_VALUE (now_it.mask,
16687 resulting_bit,
16688 (5 - now_it.block_length));
16689 now_it.mask = SET_BIT_VALUE (now_it.mask,
16690 1,
16691 ((5 - now_it.block_length) - 1) );
16692 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16693
16694#undef CLEAR_BIT
16695#undef SET_BIT_VALUE
e07e6e58
NC
16696}
16697
16698/* The IT blocks handling machinery is accessed through the these functions:
16699 it_fsm_pre_encode () from md_assemble ()
16700 set_it_insn_type () optional, from the tencode functions
16701 set_it_insn_type_last () ditto
16702 in_it_block () ditto
16703 it_fsm_post_encode () from md_assemble ()
16704 force_automatic_it_block_close () from label habdling functions
16705
16706 Rationale:
16707 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16708 initializing the IT insn type with a generic initial value depending
16709 on the inst.condition.
16710 2) During the tencode function, two things may happen:
16711 a) The tencode function overrides the IT insn type by
16712 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16713 b) The tencode function queries the IT block state by
16714 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16715
16716 Both set_it_insn_type and in_it_block run the internal FSM state
16717 handling function (handle_it_state), because: a) setting the IT insn
16718 type may incur in an invalid state (exiting the function),
16719 and b) querying the state requires the FSM to be updated.
16720 Specifically we want to avoid creating an IT block for conditional
16721 branches, so it_fsm_pre_encode is actually a guess and we can't
16722 determine whether an IT block is required until the tencode () routine
16723 has decided what type of instruction this actually it.
16724 Because of this, if set_it_insn_type and in_it_block have to be used,
16725 set_it_insn_type has to be called first.
16726
16727 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16728 determines the insn IT type depending on the inst.cond code.
16729 When a tencode () routine encodes an instruction that can be
16730 either outside an IT block, or, in the case of being inside, has to be
16731 the last one, set_it_insn_type_last () will determine the proper
16732 IT instruction type based on the inst.cond code. Otherwise,
16733 set_it_insn_type can be called for overriding that logic or
16734 for covering other cases.
16735
16736 Calling handle_it_state () may not transition the IT block state to
16737 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16738 still queried. Instead, if the FSM determines that the state should
16739 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16740 after the tencode () function: that's what it_fsm_post_encode () does.
16741
16742 Since in_it_block () calls the state handling function to get an
16743 updated state, an error may occur (due to invalid insns combination).
16744 In that case, inst.error is set.
16745 Therefore, inst.error has to be checked after the execution of
16746 the tencode () routine.
16747
16748 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16749 any pending state change (if any) that didn't take place in
16750 handle_it_state () as explained above. */
16751
16752static void
16753it_fsm_pre_encode (void)
16754{
16755 if (inst.cond != COND_ALWAYS)
16756 inst.it_insn_type = INSIDE_IT_INSN;
16757 else
16758 inst.it_insn_type = OUTSIDE_IT_INSN;
16759
16760 now_it.state_handled = 0;
16761}
16762
16763/* IT state FSM handling function. */
16764
16765static int
16766handle_it_state (void)
16767{
16768 now_it.state_handled = 1;
5a01bb1d 16769 now_it.insn_cond = FALSE;
e07e6e58
NC
16770
16771 switch (now_it.state)
16772 {
16773 case OUTSIDE_IT_BLOCK:
16774 switch (inst.it_insn_type)
16775 {
16776 case OUTSIDE_IT_INSN:
16777 break;
16778
16779 case INSIDE_IT_INSN:
16780 case INSIDE_IT_LAST_INSN:
16781 if (thumb_mode == 0)
16782 {
c921be7d 16783 if (unified_syntax
e07e6e58
NC
16784 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16785 as_tsktsk (_("Warning: conditional outside an IT block"\
16786 " for Thumb."));
16787 }
16788 else
16789 {
16790 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16791 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16792 {
16793 /* Automatically generate the IT instruction. */
16794 new_automatic_it_block (inst.cond);
16795 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16796 close_automatic_it_block ();
16797 }
16798 else
16799 {
16800 inst.error = BAD_OUT_IT;
16801 return FAIL;
16802 }
16803 }
16804 break;
16805
16806 case IF_INSIDE_IT_LAST_INSN:
16807 case NEUTRAL_IT_INSN:
16808 break;
16809
16810 case IT_INSN:
16811 now_it.state = MANUAL_IT_BLOCK;
16812 now_it.block_length = 0;
16813 break;
16814 }
16815 break;
16816
16817 case AUTOMATIC_IT_BLOCK:
16818 /* Three things may happen now:
16819 a) We should increment current it block size;
16820 b) We should close current it block (closing insn or 4 insns);
16821 c) We should close current it block and start a new one (due
16822 to incompatible conditions or
16823 4 insns-length block reached). */
16824
16825 switch (inst.it_insn_type)
16826 {
16827 case OUTSIDE_IT_INSN:
16828 /* The closure of the block shall happen immediatelly,
16829 so any in_it_block () call reports the block as closed. */
16830 force_automatic_it_block_close ();
16831 break;
16832
16833 case INSIDE_IT_INSN:
16834 case INSIDE_IT_LAST_INSN:
16835 case IF_INSIDE_IT_LAST_INSN:
16836 now_it.block_length++;
16837
16838 if (now_it.block_length > 4
16839 || !now_it_compatible (inst.cond))
16840 {
16841 force_automatic_it_block_close ();
16842 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16843 new_automatic_it_block (inst.cond);
16844 }
16845 else
16846 {
5a01bb1d 16847 now_it.insn_cond = TRUE;
e07e6e58
NC
16848 now_it_add_mask (inst.cond);
16849 }
16850
16851 if (now_it.state == AUTOMATIC_IT_BLOCK
16852 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16853 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16854 close_automatic_it_block ();
16855 break;
16856
16857 case NEUTRAL_IT_INSN:
16858 now_it.block_length++;
5a01bb1d 16859 now_it.insn_cond = TRUE;
e07e6e58
NC
16860
16861 if (now_it.block_length > 4)
16862 force_automatic_it_block_close ();
16863 else
16864 now_it_add_mask (now_it.cc & 1);
16865 break;
16866
16867 case IT_INSN:
16868 close_automatic_it_block ();
16869 now_it.state = MANUAL_IT_BLOCK;
16870 break;
16871 }
16872 break;
16873
16874 case MANUAL_IT_BLOCK:
16875 {
16876 /* Check conditional suffixes. */
16877 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16878 int is_last;
16879 now_it.mask <<= 1;
16880 now_it.mask &= 0x1f;
16881 is_last = (now_it.mask == 0x10);
5a01bb1d 16882 now_it.insn_cond = TRUE;
e07e6e58
NC
16883
16884 switch (inst.it_insn_type)
16885 {
16886 case OUTSIDE_IT_INSN:
16887 inst.error = BAD_NOT_IT;
16888 return FAIL;
16889
16890 case INSIDE_IT_INSN:
16891 if (cond != inst.cond)
16892 {
16893 inst.error = BAD_IT_COND;
16894 return FAIL;
16895 }
16896 break;
16897
16898 case INSIDE_IT_LAST_INSN:
16899 case IF_INSIDE_IT_LAST_INSN:
16900 if (cond != inst.cond)
16901 {
16902 inst.error = BAD_IT_COND;
16903 return FAIL;
16904 }
16905 if (!is_last)
16906 {
16907 inst.error = BAD_BRANCH;
16908 return FAIL;
16909 }
16910 break;
16911
16912 case NEUTRAL_IT_INSN:
16913 /* The BKPT instruction is unconditional even in an IT block. */
16914 break;
16915
16916 case IT_INSN:
16917 inst.error = BAD_IT_IT;
16918 return FAIL;
16919 }
16920 }
16921 break;
16922 }
16923
16924 return SUCCESS;
16925}
16926
5a01bb1d
MGD
16927struct depr_insn_mask
16928{
16929 unsigned long pattern;
16930 unsigned long mask;
16931 const char* description;
16932};
16933
16934/* List of 16-bit instruction patterns deprecated in an IT block in
16935 ARMv8. */
16936static const struct depr_insn_mask depr_it_insns[] = {
16937 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16938 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16939 { 0xa000, 0xb800, N_("ADR") },
16940 { 0x4800, 0xf800, N_("Literal loads") },
16941 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16942 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16943 { 0, 0, NULL }
16944};
16945
e07e6e58
NC
16946static void
16947it_fsm_post_encode (void)
16948{
16949 int is_last;
16950
16951 if (!now_it.state_handled)
16952 handle_it_state ();
16953
5a01bb1d
MGD
16954 if (now_it.insn_cond
16955 && !now_it.warn_deprecated
16956 && warn_on_deprecated
16957 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16958 {
16959 if (inst.instruction >= 0x10000)
16960 {
16961 as_warn (_("it blocks containing wide Thumb instructions are "
16962 "deprecated in ARMv8"));
16963 now_it.warn_deprecated = TRUE;
16964 }
16965 else
16966 {
16967 const struct depr_insn_mask *p = depr_it_insns;
16968
16969 while (p->mask != 0)
16970 {
16971 if ((inst.instruction & p->mask) == p->pattern)
16972 {
16973 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16974 "of the following class are deprecated in ARMv8: "
16975 "%s"), p->description);
16976 now_it.warn_deprecated = TRUE;
16977 break;
16978 }
16979
16980 ++p;
16981 }
16982 }
16983
16984 if (now_it.block_length > 1)
16985 {
16986 as_warn (_("it blocks of more than one conditional instruction are "
16987 "deprecated in ARMv8"));
16988 now_it.warn_deprecated = TRUE;
16989 }
16990 }
16991
e07e6e58
NC
16992 is_last = (now_it.mask == 0x10);
16993 if (is_last)
16994 {
16995 now_it.state = OUTSIDE_IT_BLOCK;
16996 now_it.mask = 0;
16997 }
16998}
16999
17000static void
17001force_automatic_it_block_close (void)
17002{
17003 if (now_it.state == AUTOMATIC_IT_BLOCK)
17004 {
17005 close_automatic_it_block ();
17006 now_it.state = OUTSIDE_IT_BLOCK;
17007 now_it.mask = 0;
17008 }
17009}
17010
17011static int
17012in_it_block (void)
17013{
17014 if (!now_it.state_handled)
17015 handle_it_state ();
17016
17017 return now_it.state != OUTSIDE_IT_BLOCK;
17018}
17019
c19d1205
ZW
17020void
17021md_assemble (char *str)
b99bd4ef 17022{
c19d1205
ZW
17023 char *p = str;
17024 const struct asm_opcode * opcode;
b99bd4ef 17025
c19d1205
ZW
17026 /* Align the previous label if needed. */
17027 if (last_label_seen != NULL)
b99bd4ef 17028 {
c19d1205
ZW
17029 symbol_set_frag (last_label_seen, frag_now);
17030 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17031 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
17032 }
17033
c19d1205
ZW
17034 memset (&inst, '\0', sizeof (inst));
17035 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 17036
c19d1205
ZW
17037 opcode = opcode_lookup (&p);
17038 if (!opcode)
b99bd4ef 17039 {
c19d1205 17040 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 17041 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
17042 if (! create_register_alias (str, p)
17043 && ! create_neon_reg_alias (str, p))
c19d1205 17044 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 17045
b99bd4ef
NC
17046 return;
17047 }
17048
278df34e 17049 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
17050 as_warn (_("s suffix on comparison instruction is deprecated"));
17051
037e8744
JB
17052 /* The value which unconditional instructions should have in place of the
17053 condition field. */
17054 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17055
c19d1205 17056 if (thumb_mode)
b99bd4ef 17057 {
e74cfd16 17058 arm_feature_set variant;
8f06b2d8
PB
17059
17060 variant = cpu_variant;
17061 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
17062 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17063 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 17064 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
17065 if (!opcode->tvariant
17066 || (thumb_mode == 1
17067 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 17068 {
bf3eeda7 17069 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
17070 return;
17071 }
c19d1205
ZW
17072 if (inst.cond != COND_ALWAYS && !unified_syntax
17073 && opcode->tencode != do_t_branch)
b99bd4ef 17074 {
c19d1205 17075 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
17076 return;
17077 }
17078
752d5da4 17079 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 17080 {
7e806470 17081 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
17082 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17083 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17084 {
17085 /* Two things are addressed here.
17086 1) Implicit require narrow instructions on Thumb-1.
17087 This avoids relaxation accidentally introducing Thumb-2
17088 instructions.
17089 2) Reject wide instructions in non Thumb-2 cores. */
17090 if (inst.size_req == 0)
17091 inst.size_req = 2;
17092 else if (inst.size_req == 4)
17093 {
bf3eeda7 17094 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
17095 return;
17096 }
17097 }
076d447c
PB
17098 }
17099
c19d1205
ZW
17100 inst.instruction = opcode->tvalue;
17101
5be8be5d 17102 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
17103 {
17104 /* Prepare the it_insn_type for those encodings that don't set
17105 it. */
17106 it_fsm_pre_encode ();
c19d1205 17107
e07e6e58
NC
17108 opcode->tencode ();
17109
17110 it_fsm_post_encode ();
17111 }
e27ec89e 17112
0110f2b8 17113 if (!(inst.error || inst.relax))
b99bd4ef 17114 {
9c2799c2 17115 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
17116 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17117 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 17118 {
c19d1205 17119 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
17120 return;
17121 }
17122 }
076d447c
PB
17123
17124 /* Something has gone badly wrong if we try to relax a fixed size
17125 instruction. */
9c2799c2 17126 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 17127
e74cfd16
PB
17128 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17129 *opcode->tvariant);
ee065d83 17130 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 17131 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 17132 anything other than bl/blx and v6-M instructions.
ee065d83 17133 This is overly pessimistic for relaxable instructions. */
7e806470
PB
17134 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17135 || inst.relax)
e07e6e58
NC
17136 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17137 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
17138 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17139 arm_ext_v6t2);
cd000bff 17140
88714cb8
DG
17141 check_neon_suffixes;
17142
cd000bff 17143 if (!inst.error)
c877a2f2
NC
17144 {
17145 mapping_state (MAP_THUMB);
17146 }
c19d1205 17147 }
3e9e4fcf 17148 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 17149 {
845b51d6
PB
17150 bfd_boolean is_bx;
17151
17152 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17153 is_bx = (opcode->aencode == do_bx);
17154
c19d1205 17155 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
17156 if (!(is_bx && fix_v4bx)
17157 && !(opcode->avariant &&
17158 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 17159 {
bf3eeda7 17160 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 17161 return;
b99bd4ef 17162 }
c19d1205 17163 if (inst.size_req)
b99bd4ef 17164 {
c19d1205
ZW
17165 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17166 return;
b99bd4ef
NC
17167 }
17168
c19d1205
ZW
17169 inst.instruction = opcode->avalue;
17170 if (opcode->tag == OT_unconditionalF)
17171 inst.instruction |= 0xF << 28;
17172 else
17173 inst.instruction |= inst.cond << 28;
17174 inst.size = INSN_SIZE;
5be8be5d 17175 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
17176 {
17177 it_fsm_pre_encode ();
17178 opcode->aencode ();
17179 it_fsm_post_encode ();
17180 }
ee065d83
PB
17181 /* Arm mode bx is marked as both v4T and v5 because it's still required
17182 on a hypothetical non-thumb v5 core. */
845b51d6 17183 if (is_bx)
e74cfd16 17184 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 17185 else
e74cfd16
PB
17186 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17187 *opcode->avariant);
88714cb8
DG
17188
17189 check_neon_suffixes;
17190
cd000bff 17191 if (!inst.error)
c877a2f2
NC
17192 {
17193 mapping_state (MAP_ARM);
17194 }
b99bd4ef 17195 }
3e9e4fcf
JB
17196 else
17197 {
17198 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17199 "-- `%s'"), str);
17200 return;
17201 }
c19d1205
ZW
17202 output_inst (str);
17203}
b99bd4ef 17204
e07e6e58
NC
17205static void
17206check_it_blocks_finished (void)
17207{
17208#ifdef OBJ_ELF
17209 asection *sect;
17210
17211 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17212 if (seg_info (sect)->tc_segment_info_data.current_it.state
17213 == MANUAL_IT_BLOCK)
17214 {
17215 as_warn (_("section '%s' finished with an open IT block."),
17216 sect->name);
17217 }
17218#else
17219 if (now_it.state == MANUAL_IT_BLOCK)
17220 as_warn (_("file finished with an open IT block."));
17221#endif
17222}
17223
c19d1205
ZW
17224/* Various frobbings of labels and their addresses. */
17225
17226void
17227arm_start_line_hook (void)
17228{
17229 last_label_seen = NULL;
b99bd4ef
NC
17230}
17231
c19d1205
ZW
17232void
17233arm_frob_label (symbolS * sym)
b99bd4ef 17234{
c19d1205 17235 last_label_seen = sym;
b99bd4ef 17236
c19d1205 17237 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 17238
c19d1205
ZW
17239#if defined OBJ_COFF || defined OBJ_ELF
17240 ARM_SET_INTERWORK (sym, support_interwork);
17241#endif
b99bd4ef 17242
e07e6e58
NC
17243 force_automatic_it_block_close ();
17244
5f4273c7 17245 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
17246 as Thumb functions. This is because these labels, whilst
17247 they exist inside Thumb code, are not the entry points for
17248 possible ARM->Thumb calls. Also, these labels can be used
17249 as part of a computed goto or switch statement. eg gcc
17250 can generate code that looks like this:
b99bd4ef 17251
c19d1205
ZW
17252 ldr r2, [pc, .Laaa]
17253 lsl r3, r3, #2
17254 ldr r2, [r3, r2]
17255 mov pc, r2
b99bd4ef 17256
c19d1205
ZW
17257 .Lbbb: .word .Lxxx
17258 .Lccc: .word .Lyyy
17259 ..etc...
17260 .Laaa: .word Lbbb
b99bd4ef 17261
c19d1205
ZW
17262 The first instruction loads the address of the jump table.
17263 The second instruction converts a table index into a byte offset.
17264 The third instruction gets the jump address out of the table.
17265 The fourth instruction performs the jump.
b99bd4ef 17266
c19d1205
ZW
17267 If the address stored at .Laaa is that of a symbol which has the
17268 Thumb_Func bit set, then the linker will arrange for this address
17269 to have the bottom bit set, which in turn would mean that the
17270 address computation performed by the third instruction would end
17271 up with the bottom bit set. Since the ARM is capable of unaligned
17272 word loads, the instruction would then load the incorrect address
17273 out of the jump table, and chaos would ensue. */
17274 if (label_is_thumb_function_name
17275 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17276 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 17277 {
c19d1205
ZW
17278 /* When the address of a Thumb function is taken the bottom
17279 bit of that address should be set. This will allow
17280 interworking between Arm and Thumb functions to work
17281 correctly. */
b99bd4ef 17282
c19d1205 17283 THUMB_SET_FUNC (sym, 1);
b99bd4ef 17284
c19d1205 17285 label_is_thumb_function_name = FALSE;
b99bd4ef 17286 }
07a53e5c 17287
07a53e5c 17288 dwarf2_emit_label (sym);
b99bd4ef
NC
17289}
17290
c921be7d 17291bfd_boolean
c19d1205 17292arm_data_in_code (void)
b99bd4ef 17293{
c19d1205 17294 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 17295 {
c19d1205
ZW
17296 *input_line_pointer = '/';
17297 input_line_pointer += 5;
17298 *input_line_pointer = 0;
c921be7d 17299 return TRUE;
b99bd4ef
NC
17300 }
17301
c921be7d 17302 return FALSE;
b99bd4ef
NC
17303}
17304
c19d1205
ZW
17305char *
17306arm_canonicalize_symbol_name (char * name)
b99bd4ef 17307{
c19d1205 17308 int len;
b99bd4ef 17309
c19d1205
ZW
17310 if (thumb_mode && (len = strlen (name)) > 5
17311 && streq (name + len - 5, "/data"))
17312 *(name + len - 5) = 0;
b99bd4ef 17313
c19d1205 17314 return name;
b99bd4ef 17315}
c19d1205
ZW
17316\f
17317/* Table of all register names defined by default. The user can
17318 define additional names with .req. Note that all register names
17319 should appear in both upper and lowercase variants. Some registers
17320 also have mixed-case names. */
b99bd4ef 17321
dcbf9037 17322#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 17323#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 17324#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
17325#define REGSET(p,t) \
17326 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17327 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17328 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17329 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
17330#define REGSETH(p,t) \
17331 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17332 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17333 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17334 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17335#define REGSET2(p,t) \
17336 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17337 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17338 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17339 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
17340#define SPLRBANK(base,bank,t) \
17341 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17342 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17343 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17344 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17345 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17346 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 17347
c19d1205 17348static const struct reg_entry reg_names[] =
7ed4c4c5 17349{
c19d1205
ZW
17350 /* ARM integer registers. */
17351 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 17352
c19d1205
ZW
17353 /* ATPCS synonyms. */
17354 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17355 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17356 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 17357
c19d1205
ZW
17358 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17359 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17360 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 17361
c19d1205
ZW
17362 /* Well-known aliases. */
17363 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17364 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17365
17366 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17367 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17368
17369 /* Coprocessor numbers. */
17370 REGSET(p, CP), REGSET(P, CP),
17371
17372 /* Coprocessor register numbers. The "cr" variants are for backward
17373 compatibility. */
17374 REGSET(c, CN), REGSET(C, CN),
17375 REGSET(cr, CN), REGSET(CR, CN),
17376
90ec0d68
MGD
17377 /* ARM banked registers. */
17378 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17379 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17380 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17381 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17382 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17383 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17384 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17385
17386 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17387 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17388 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17389 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17390 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17391 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17392 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17393 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17394
17395 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17396 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17397 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17398 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17399 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17400 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17401 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 17402 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
17403 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17404
c19d1205
ZW
17405 /* FPA registers. */
17406 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17407 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17408
17409 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17410 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17411
17412 /* VFP SP registers. */
5287ad62
JB
17413 REGSET(s,VFS), REGSET(S,VFS),
17414 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
17415
17416 /* VFP DP Registers. */
5287ad62
JB
17417 REGSET(d,VFD), REGSET(D,VFD),
17418 /* Extra Neon DP registers. */
17419 REGSETH(d,VFD), REGSETH(D,VFD),
17420
17421 /* Neon QP registers. */
17422 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
17423
17424 /* VFP control registers. */
17425 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17426 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
17427 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17428 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17429 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17430 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
17431
17432 /* Maverick DSP coprocessor registers. */
17433 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17434 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17435
17436 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17437 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17438 REGDEF(dspsc,0,DSPSC),
17439
17440 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17441 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17442 REGDEF(DSPSC,0,DSPSC),
17443
17444 /* iWMMXt data registers - p0, c0-15. */
17445 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17446
17447 /* iWMMXt control registers - p1, c0-3. */
17448 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17449 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17450 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17451 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17452
17453 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17454 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17455 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17456 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17457 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17458
17459 /* XScale accumulator registers. */
17460 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17461};
17462#undef REGDEF
17463#undef REGNUM
17464#undef REGSET
7ed4c4c5 17465
c19d1205
ZW
17466/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17467 within psr_required_here. */
17468static const struct asm_psr psrs[] =
17469{
17470 /* Backward compatibility notation. Note that "all" is no longer
17471 truly all possible PSR bits. */
17472 {"all", PSR_c | PSR_f},
17473 {"flg", PSR_f},
17474 {"ctl", PSR_c},
17475
17476 /* Individual flags. */
17477 {"f", PSR_f},
17478 {"c", PSR_c},
17479 {"x", PSR_x},
17480 {"s", PSR_s},
59b42a0d 17481
c19d1205
ZW
17482 /* Combinations of flags. */
17483 {"fs", PSR_f | PSR_s},
17484 {"fx", PSR_f | PSR_x},
17485 {"fc", PSR_f | PSR_c},
17486 {"sf", PSR_s | PSR_f},
17487 {"sx", PSR_s | PSR_x},
17488 {"sc", PSR_s | PSR_c},
17489 {"xf", PSR_x | PSR_f},
17490 {"xs", PSR_x | PSR_s},
17491 {"xc", PSR_x | PSR_c},
17492 {"cf", PSR_c | PSR_f},
17493 {"cs", PSR_c | PSR_s},
17494 {"cx", PSR_c | PSR_x},
17495 {"fsx", PSR_f | PSR_s | PSR_x},
17496 {"fsc", PSR_f | PSR_s | PSR_c},
17497 {"fxs", PSR_f | PSR_x | PSR_s},
17498 {"fxc", PSR_f | PSR_x | PSR_c},
17499 {"fcs", PSR_f | PSR_c | PSR_s},
17500 {"fcx", PSR_f | PSR_c | PSR_x},
17501 {"sfx", PSR_s | PSR_f | PSR_x},
17502 {"sfc", PSR_s | PSR_f | PSR_c},
17503 {"sxf", PSR_s | PSR_x | PSR_f},
17504 {"sxc", PSR_s | PSR_x | PSR_c},
17505 {"scf", PSR_s | PSR_c | PSR_f},
17506 {"scx", PSR_s | PSR_c | PSR_x},
17507 {"xfs", PSR_x | PSR_f | PSR_s},
17508 {"xfc", PSR_x | PSR_f | PSR_c},
17509 {"xsf", PSR_x | PSR_s | PSR_f},
17510 {"xsc", PSR_x | PSR_s | PSR_c},
17511 {"xcf", PSR_x | PSR_c | PSR_f},
17512 {"xcs", PSR_x | PSR_c | PSR_s},
17513 {"cfs", PSR_c | PSR_f | PSR_s},
17514 {"cfx", PSR_c | PSR_f | PSR_x},
17515 {"csf", PSR_c | PSR_s | PSR_f},
17516 {"csx", PSR_c | PSR_s | PSR_x},
17517 {"cxf", PSR_c | PSR_x | PSR_f},
17518 {"cxs", PSR_c | PSR_x | PSR_s},
17519 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17520 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17521 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17522 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17523 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17524 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17525 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17526 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17527 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17528 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17529 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17530 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17531 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17532 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17533 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17534 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17535 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17536 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17537 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17538 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17539 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17540 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17541 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17542 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17543};
17544
62b3e311
PB
17545/* Table of V7M psr names. */
17546static const struct asm_psr v7m_psrs[] =
17547{
2b744c99
PB
17548 {"apsr", 0 }, {"APSR", 0 },
17549 {"iapsr", 1 }, {"IAPSR", 1 },
17550 {"eapsr", 2 }, {"EAPSR", 2 },
17551 {"psr", 3 }, {"PSR", 3 },
17552 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17553 {"ipsr", 5 }, {"IPSR", 5 },
17554 {"epsr", 6 }, {"EPSR", 6 },
17555 {"iepsr", 7 }, {"IEPSR", 7 },
17556 {"msp", 8 }, {"MSP", 8 },
17557 {"psp", 9 }, {"PSP", 9 },
17558 {"primask", 16}, {"PRIMASK", 16},
17559 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
17560 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17561 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
17562 {"faultmask", 19}, {"FAULTMASK", 19},
17563 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
17564};
17565
c19d1205
ZW
17566/* Table of all shift-in-operand names. */
17567static const struct asm_shift_name shift_names [] =
b99bd4ef 17568{
c19d1205
ZW
17569 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17570 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17571 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17572 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17573 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17574 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17575};
b99bd4ef 17576
c19d1205
ZW
17577/* Table of all explicit relocation names. */
17578#ifdef OBJ_ELF
17579static struct reloc_entry reloc_names[] =
17580{
17581 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17582 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17583 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17584 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17585 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17586 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17587 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17588 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17589 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17590 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 17591 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
17592 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17593 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17594 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17595 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17596 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17597 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17598 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
17599};
17600#endif
b99bd4ef 17601
c19d1205
ZW
17602/* Table of all conditional affixes. 0xF is not defined as a condition code. */
17603static const struct asm_cond conds[] =
17604{
17605 {"eq", 0x0},
17606 {"ne", 0x1},
17607 {"cs", 0x2}, {"hs", 0x2},
17608 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17609 {"mi", 0x4},
17610 {"pl", 0x5},
17611 {"vs", 0x6},
17612 {"vc", 0x7},
17613 {"hi", 0x8},
17614 {"ls", 0x9},
17615 {"ge", 0xa},
17616 {"lt", 0xb},
17617 {"gt", 0xc},
17618 {"le", 0xd},
17619 {"al", 0xe}
17620};
bfae80f2 17621
e797f7e0
MGD
17622#define UL_BARRIER(L,U,CODE,FEAT) \
17623 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17624 { U, CODE, ARM_FEATURE (FEAT, 0) }
17625
62b3e311
PB
17626static struct asm_barrier_opt barrier_opt_names[] =
17627{
e797f7e0
MGD
17628 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17629 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17630 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17631 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17632 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17633 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17634 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17635 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17636 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17637 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17638 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17639 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17640 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17641 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17642 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17643 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
17644};
17645
e797f7e0
MGD
17646#undef UL_BARRIER
17647
c19d1205
ZW
17648/* Table of ARM-format instructions. */
17649
17650/* Macros for gluing together operand strings. N.B. In all cases
17651 other than OPS0, the trailing OP_stop comes from default
17652 zero-initialization of the unspecified elements of the array. */
17653#define OPS0() { OP_stop, }
17654#define OPS1(a) { OP_##a, }
17655#define OPS2(a,b) { OP_##a,OP_##b, }
17656#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17657#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17658#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17659#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17660
5be8be5d
DG
17661/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17662 This is useful when mixing operands for ARM and THUMB, i.e. using the
17663 MIX_ARM_THUMB_OPERANDS macro.
17664 In order to use these macros, prefix the number of operands with _
17665 e.g. _3. */
17666#define OPS_1(a) { a, }
17667#define OPS_2(a,b) { a,b, }
17668#define OPS_3(a,b,c) { a,b,c, }
17669#define OPS_4(a,b,c,d) { a,b,c,d, }
17670#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17671#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17672
c19d1205
ZW
17673/* These macros abstract out the exact format of the mnemonic table and
17674 save some repeated characters. */
17675
17676/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17677#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17678 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 17679 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17680
17681/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17682 a T_MNEM_xyz enumerator. */
17683#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17684 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17685#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17686 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17687
17688/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17689 infix after the third character. */
17690#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 17691 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 17692 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 17693#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 17694 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 17695 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 17696#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17697 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 17698#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17699 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17700#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17701 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 17702#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17703 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17704
17705/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17706 appear in the condition table. */
17707#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 17708 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 17709 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17710
17711#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
17712 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17713 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17714 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17715 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17716 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17717 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17718 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17719 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17720 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17721 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17722 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17723 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17724 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17725 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17726 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17727 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17728 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17729 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17730 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17731
17732#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17733 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17734#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17735 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17736
17737/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17738 field is still 0xE. Many of the Thumb variants can be executed
17739 conditionally, so this is checked separately. */
c19d1205 17740#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17741 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17742 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17743
17744/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17745 condition code field. */
17746#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17747 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17748 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17749
17750/* ARM-only variants of all the above. */
6a86118a 17751#define CE(mnem, op, nops, ops, ae) \
21d799b5 17752 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17753
17754#define C3(mnem, op, nops, ops, ae) \
17755 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17756
e3cb604e
PB
17757/* Legacy mnemonics that always have conditional infix after the third
17758 character. */
17759#define CL(mnem, op, nops, ops, ae) \
21d799b5 17760 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17761 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17762
8f06b2d8
PB
17763/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17764#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17765 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17766
e3cb604e
PB
17767/* Legacy coprocessor instructions where conditional infix and conditional
17768 suffix are ambiguous. For consistency this includes all FPA instructions,
17769 not just the potentially ambiguous ones. */
17770#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17771 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17772 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17773
17774/* Coprocessor, takes either a suffix or a position-3 infix
17775 (for an FPA corner case). */
17776#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17777 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17778 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17779
6a86118a 17780#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17781 { m1 #m2 m3, OPS##nops ops, \
17782 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17783 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17784
17785#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17786 xCM_ (m1, , m2, op, nops, ops, ae), \
17787 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17788 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17789 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17790 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17791 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17792 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17793 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17794 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17795 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17796 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17797 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17798 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17799 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17800 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17801 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17802 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17803 xCM_ (m1, le, m2, op, nops, ops, ae), \
17804 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17805
17806#define UE(mnem, op, nops, ops, ae) \
17807 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17808
17809#define UF(mnem, op, nops, ops, ae) \
17810 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17811
5287ad62
JB
17812/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17813 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17814 use the same encoding function for each. */
17815#define NUF(mnem, op, nops, ops, enc) \
17816 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17817 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17818
17819/* Neon data processing, version which indirects through neon_enc_tab for
17820 the various overloaded versions of opcodes. */
17821#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17822 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17823 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17824
17825/* Neon insn with conditional suffix for the ARM version, non-overloaded
17826 version. */
037e8744
JB
17827#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17828 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17829 THUMB_VARIANT, do_##enc, do_##enc }
17830
037e8744 17831#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17832 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17833
17834#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17835 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17836
5287ad62 17837/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17838#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17839 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17840 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17841
037e8744 17842#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17843 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17844
17845#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17846 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17847
c19d1205
ZW
17848#define do_0 0
17849
c19d1205 17850static const struct asm_opcode insns[] =
bfae80f2 17851{
e74cfd16
PB
17852#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17853#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17854 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17855 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17856 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17857 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17858 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17859 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17860 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17861 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17862 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17863 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17864 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17865 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17866 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17867 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17868 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17869 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17870
17871 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17872 for setting PSR flag bits. They are obsolete in V6 and do not
17873 have Thumb equivalents. */
21d799b5
NC
17874 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17875 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17876 CL("tstp", 110f000, 2, (RR, SH), cmp),
17877 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17878 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17879 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17880 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17881 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17882 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17883
17884 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17885 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17886 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17887 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17888
17889 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17890 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17891 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17892 OP_RRnpc),
17893 OP_ADDRGLDR),ldst, t_ldst),
17894 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17895
17896 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17897 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17898 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17899 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17900 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17901 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17902
17903 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17904 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17905 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17906 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17907
c19d1205 17908 /* Pseudo ops. */
21d799b5 17909 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17910 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17911 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17912
17913 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17914 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17915 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17916 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17917 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17918 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17919 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17920 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17921 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17922 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17923 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17924 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17925 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17926
16a4cf17 17927 /* These may simplify to neg. */
21d799b5
NC
17928 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17929 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17930
c921be7d
NC
17931#undef THUMB_VARIANT
17932#define THUMB_VARIANT & arm_ext_v6
17933
21d799b5 17934 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17935
17936 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17937#undef THUMB_VARIANT
17938#define THUMB_VARIANT & arm_ext_v6t2
17939
21d799b5
NC
17940 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17941 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17942 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17943
5be8be5d
DG
17944 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17945 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17946 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17947 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17948
21d799b5
NC
17949 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17950 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17951
21d799b5
NC
17952 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17953 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17954
17955 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17956 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17957 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17958
17959 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17960 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17961 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17962 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17963 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17964 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17965 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17966 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17967
c921be7d
NC
17968#undef ARM_VARIANT
17969#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17970#undef THUMB_VARIANT
17971#define THUMB_VARIANT & arm_ext_v4t
17972
21d799b5
NC
17973 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17974 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17975
c921be7d
NC
17976#undef THUMB_VARIANT
17977#define THUMB_VARIANT & arm_ext_v6t2
17978
21d799b5 17979 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17980 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17981
17982 /* Generic coprocessor instructions. */
21d799b5
NC
17983 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17984 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17985 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17986 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17987 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17988 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17989 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17990
c921be7d
NC
17991#undef ARM_VARIANT
17992#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17993
21d799b5 17994 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17995 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17996
c921be7d
NC
17997#undef ARM_VARIANT
17998#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17999#undef THUMB_VARIANT
18000#define THUMB_VARIANT & arm_ext_msr
18001
d2cd1205
JB
18002 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18003 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 18004
c921be7d
NC
18005#undef ARM_VARIANT
18006#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18007#undef THUMB_VARIANT
18008#define THUMB_VARIANT & arm_ext_v6t2
18009
21d799b5
NC
18010 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18011 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18012 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18013 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18014 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18015 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18016 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18017 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 18018
c921be7d
NC
18019#undef ARM_VARIANT
18020#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18021#undef THUMB_VARIANT
18022#define THUMB_VARIANT & arm_ext_v4t
18023
5be8be5d
DG
18024 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18025 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18026 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18027 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18028 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18029 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 18030
c921be7d
NC
18031#undef ARM_VARIANT
18032#define ARM_VARIANT & arm_ext_v4t_5
18033
c19d1205
ZW
18034 /* ARM Architecture 4T. */
18035 /* Note: bx (and blx) are required on V5, even if the processor does
18036 not support Thumb. */
21d799b5 18037 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 18038
c921be7d
NC
18039#undef ARM_VARIANT
18040#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18041#undef THUMB_VARIANT
18042#define THUMB_VARIANT & arm_ext_v5t
18043
c19d1205
ZW
18044 /* Note: blx has 2 variants; the .value coded here is for
18045 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
18046 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18047 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 18048
c921be7d
NC
18049#undef THUMB_VARIANT
18050#define THUMB_VARIANT & arm_ext_v6t2
18051
21d799b5
NC
18052 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18053 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18054 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18055 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18056 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18057 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18058 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18059 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 18060
c921be7d
NC
18061#undef ARM_VARIANT
18062#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
18063#undef THUMB_VARIANT
18064#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 18065
21d799b5
NC
18066 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18067 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18068 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18069 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 18070
21d799b5
NC
18071 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18072 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 18073
21d799b5
NC
18074 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18075 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18076 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18077 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 18078
21d799b5
NC
18079 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18080 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18081 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18082 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 18083
21d799b5
NC
18084 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18085 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 18086
03ee1b7f
NC
18087 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18088 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18089 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18090 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 18091
c921be7d
NC
18092#undef ARM_VARIANT
18093#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
18094#undef THUMB_VARIANT
18095#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 18096
21d799b5 18097 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
18098 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18099 ldrd, t_ldstd),
18100 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18101 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 18102
21d799b5
NC
18103 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18104 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 18105
c921be7d
NC
18106#undef ARM_VARIANT
18107#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18108
21d799b5 18109 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 18110
c921be7d
NC
18111#undef ARM_VARIANT
18112#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18113#undef THUMB_VARIANT
18114#define THUMB_VARIANT & arm_ext_v6
18115
21d799b5
NC
18116 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18117 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18118 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18119 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18120 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18121 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18122 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18123 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18124 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18125 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 18126
c921be7d
NC
18127#undef THUMB_VARIANT
18128#define THUMB_VARIANT & arm_ext_v6t2
18129
5be8be5d
DG
18130 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18131 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18132 strex, t_strex),
21d799b5
NC
18133 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18134 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 18135
21d799b5
NC
18136 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18137 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 18138
9e3c6df6 18139/* ARM V6 not included in V7M. */
c921be7d
NC
18140#undef THUMB_VARIANT
18141#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
18142 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18143 UF(rfeib, 9900a00, 1, (RRw), rfe),
18144 UF(rfeda, 8100a00, 1, (RRw), rfe),
18145 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18146 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18147 UF(rfefa, 9900a00, 1, (RRw), rfe),
18148 UF(rfeea, 8100a00, 1, (RRw), rfe),
18149 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18150 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18151 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18152 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18153 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 18154
9e3c6df6
PB
18155/* ARM V6 not included in V7M (eg. integer SIMD). */
18156#undef THUMB_VARIANT
18157#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
18158 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18159 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18160 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18161 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18162 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18163 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18164 /* Old name for QASX. */
21d799b5
NC
18165 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18166 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18167 /* Old name for QSAX. */
21d799b5
NC
18168 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18169 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18170 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18171 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18172 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18173 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18174 /* Old name for SASX. */
21d799b5
NC
18175 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18176 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18177 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18178 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18179 /* Old name for SHASX. */
21d799b5
NC
18180 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18181 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18182 /* Old name for SHSAX. */
21d799b5
NC
18183 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18184 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18185 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18186 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18187 /* Old name for SSAX. */
21d799b5
NC
18188 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18189 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18190 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18191 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18192 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18193 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18194 /* Old name for UASX. */
21d799b5
NC
18195 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18196 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18197 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18198 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18199 /* Old name for UHASX. */
21d799b5
NC
18200 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18201 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18202 /* Old name for UHSAX. */
21d799b5
NC
18203 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18204 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18205 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18206 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18207 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18208 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18209 /* Old name for UQASX. */
21d799b5
NC
18210 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18211 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18212 /* Old name for UQSAX. */
21d799b5
NC
18213 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18214 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18215 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18216 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18217 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18218 /* Old name for USAX. */
21d799b5
NC
18219 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18220 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
18221 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18222 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18223 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18224 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18225 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18226 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18227 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18228 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18229 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18230 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18231 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18232 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18233 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18234 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18235 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18236 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18237 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18238 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18239 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18240 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18241 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18242 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18243 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18244 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18245 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18246 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18247 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
18248 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18249 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18250 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18251 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18252 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 18253
c921be7d
NC
18254#undef ARM_VARIANT
18255#define ARM_VARIANT & arm_ext_v6k
18256#undef THUMB_VARIANT
18257#define THUMB_VARIANT & arm_ext_v6k
18258
21d799b5
NC
18259 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18260 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18261 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18262 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 18263
c921be7d
NC
18264#undef THUMB_VARIANT
18265#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
18266 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18267 ldrexd, t_ldrexd),
18268 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18269 RRnpcb), strexd, t_strexd),
ebdca51a 18270
c921be7d
NC
18271#undef THUMB_VARIANT
18272#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
18273 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18274 rd_rn, rd_rn),
18275 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18276 rd_rn, rd_rn),
18277 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 18278 strex, t_strexbh),
5be8be5d 18279 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 18280 strex, t_strexbh),
21d799b5 18281 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 18282
c921be7d 18283#undef ARM_VARIANT
f4c65163
MGD
18284#define ARM_VARIANT & arm_ext_sec
18285#undef THUMB_VARIANT
18286#define THUMB_VARIANT & arm_ext_sec
c921be7d 18287
21d799b5 18288 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 18289
90ec0d68
MGD
18290#undef ARM_VARIANT
18291#define ARM_VARIANT & arm_ext_virt
18292#undef THUMB_VARIANT
18293#define THUMB_VARIANT & arm_ext_virt
18294
18295 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18296 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18297
c921be7d
NC
18298#undef ARM_VARIANT
18299#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
18300#undef THUMB_VARIANT
18301#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 18302
21d799b5
NC
18303 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18304 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18305 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18306 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 18307
21d799b5
NC
18308 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18309 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18310 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18311 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 18312
5be8be5d
DG
18313 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18314 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18315 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18316 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 18317
bf3eeda7
NS
18318 /* Thumb-only instructions. */
18319#undef ARM_VARIANT
18320#define ARM_VARIANT NULL
18321 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18322 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
18323
18324 /* ARM does not really have an IT instruction, so always allow it.
18325 The opcode is copied from Thumb in order to allow warnings in
18326 -mimplicit-it=[never | arm] modes. */
18327#undef ARM_VARIANT
18328#define ARM_VARIANT & arm_ext_v1
18329
21d799b5
NC
18330 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18331 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18332 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18333 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18334 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18335 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18336 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18337 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18338 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18339 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18340 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18341 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18342 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18343 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18344 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 18345 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
18346 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18347 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 18348
92e90b6e 18349 /* Thumb2 only instructions. */
c921be7d
NC
18350#undef ARM_VARIANT
18351#define ARM_VARIANT NULL
92e90b6e 18352
21d799b5
NC
18353 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18354 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18355 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18356 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18357 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18358 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 18359
eea54501
MGD
18360 /* Hardware division instructions. */
18361#undef ARM_VARIANT
18362#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
18363#undef THUMB_VARIANT
18364#define THUMB_VARIANT & arm_ext_div
18365
eea54501
MGD
18366 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18367 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 18368
7e806470 18369 /* ARM V6M/V7 instructions. */
c921be7d
NC
18370#undef ARM_VARIANT
18371#define ARM_VARIANT & arm_ext_barrier
18372#undef THUMB_VARIANT
18373#define THUMB_VARIANT & arm_ext_barrier
18374
52e7f43d
RE
18375 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18376 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18377 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 18378
62b3e311 18379 /* ARM V7 instructions. */
c921be7d
NC
18380#undef ARM_VARIANT
18381#define ARM_VARIANT & arm_ext_v7
18382#undef THUMB_VARIANT
18383#define THUMB_VARIANT & arm_ext_v7
18384
21d799b5
NC
18385 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18386 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 18387
60e5ef9f
MGD
18388#undef ARM_VARIANT
18389#define ARM_VARIANT & arm_ext_mp
18390#undef THUMB_VARIANT
18391#define THUMB_VARIANT & arm_ext_mp
18392
18393 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18394
53c4b28b
MGD
18395 /* AArchv8 instructions. */
18396#undef ARM_VARIANT
18397#define ARM_VARIANT & arm_ext_v8
18398#undef THUMB_VARIANT
18399#define THUMB_VARIANT & arm_ext_v8
18400
18401 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
8884b720 18402 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
9eb6c0f1
MGD
18403 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18404 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18405 ldrexd, t_ldrexd),
18406 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18407 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18408 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18409 strlex, t_strlex),
18410 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18411 strexd, t_strexd),
18412 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18413 strlex, t_strlex),
18414 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18415 strlex, t_strlex),
18416 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18417 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18418 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18419 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18420 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18421 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
53c4b28b 18422
8884b720 18423 /* ARMv8 T32 only. */
b79f7053
MGD
18424#undef ARM_VARIANT
18425#define ARM_VARIANT NULL
18426 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18427 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18428 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18429
33399f07
MGD
18430 /* FP for ARMv8. */
18431#undef ARM_VARIANT
18432#define ARM_VARIANT & fpu_vfp_ext_armv8
18433#undef THUMB_VARIANT
18434#define THUMB_VARIANT & fpu_vfp_ext_armv8
18435
18436 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18437 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18438 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18439 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
18440 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18441 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
18442 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18443 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18444 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18445 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
18446 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
18447 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
18448 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
18449 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
18450 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
18451 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
18452 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 18453
91ff7894
MGD
18454 /* Crypto v1 extensions. */
18455#undef ARM_VARIANT
18456#define ARM_VARIANT & fpu_crypto_ext_armv8
18457#undef THUMB_VARIANT
18458#define THUMB_VARIANT & fpu_crypto_ext_armv8
18459
18460 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
18461 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
18462 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
18463 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
18464
18465
c921be7d
NC
18466#undef ARM_VARIANT
18467#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
18468#undef THUMB_VARIANT
18469#define THUMB_VARIANT NULL
c921be7d 18470
21d799b5
NC
18471 cCE("wfs", e200110, 1, (RR), rd),
18472 cCE("rfs", e300110, 1, (RR), rd),
18473 cCE("wfc", e400110, 1, (RR), rd),
18474 cCE("rfc", e500110, 1, (RR), rd),
18475
18476 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18477 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18478 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18479 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18480
18481 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18482 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18483 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18484 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18485
18486 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18487 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18488 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18489 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18490 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18491 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18492 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18493 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18494 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18495 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18496 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18497 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18498
18499 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18500 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18501 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18502 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18503 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18504 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18505 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18506 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18507 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18508 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18509 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18510 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18511
18512 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18513 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18514 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18515 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18516 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18517 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18518 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18519 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18520 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18521 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18522 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18523 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18524
18525 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18526 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18527 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18528 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18529 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18530 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18531 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18532 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18533 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18534 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18535 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18536 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18537
18538 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18539 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18540 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18541 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18542 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18543 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18544 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18545 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18546 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18547 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18548 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18549 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18550
18551 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18552 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18553 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18554 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18555 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18556 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18557 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18558 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18559 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18560 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18561 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18562 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18563
18564 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18565 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18566 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18567 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18568 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18569 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18570 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18571 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18572 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18573 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18574 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18575 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18576
18577 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18578 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18579 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18580 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18581 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18582 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18583 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18584 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18585 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18586 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18587 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18588 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18589
18590 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18591 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18592 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18593 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18594 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18595 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18596 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18597 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18598 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18599 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18600 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18601 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18602
18603 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18604 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18605 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18606 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18607 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18608 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18609 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18610 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18611 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18612 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18613 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18614 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18615
18616 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18617 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18618 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18619 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18620 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18621 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18622 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18623 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18624 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18625 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18626 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18627 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18628
18629 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18630 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18631 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18632 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18633 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18634 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18635 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18636 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18637 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18638 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18639 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18640 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18641
18642 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18643 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18644 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18645 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18646 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18647 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18648 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18649 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18650 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18651 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18652 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18653 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18654
18655 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18656 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18657 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18658 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18659 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18660 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18661 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18662 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18663 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18664 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18665 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18666 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18667
18668 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18669 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18670 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18671 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18672 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18673 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18674 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18675 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18676 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18677 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18678 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18679 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18680
18681 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18682 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18683 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18684 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18685 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18686 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18687 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18688 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18689 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18690 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18691 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18692 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18693
18694 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18695 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18696 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18697 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18698 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18699 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18700 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18701 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18702 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18703 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18704 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18705 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18706
18707 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18708 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18709 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18710 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18711 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18712 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18713 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18714 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18715 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18716 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18717 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18718 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18719
18720 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18721 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18722 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18723 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18724 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18725 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18726 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18727 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18728 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18729 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18730 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18731 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18732
18733 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18734 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18735 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18736 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18737 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18738 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18739 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18740 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18741 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18742 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18743 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18744 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18745
18746 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18747 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18748 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18749 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18750 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18751 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18752 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18753 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18754 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18755 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18756 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18757 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18758
18759 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18760 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18761 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18762 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18763 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18764 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18765 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18766 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18767 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18768 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18769 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18770 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18771
18772 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18773 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18774 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18775 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18776 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18777 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18778 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18779 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18780 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18781 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18782 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18783 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18784
18785 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18786 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18787 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18788 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18789 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18790 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18791 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18792 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18793 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18794 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18795 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18796 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18797
18798 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18799 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18800 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18801 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18802 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18803 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18804 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18805 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18806 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18807 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18808 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18809 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18810
18811 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18812 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18813 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18814 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18815 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18816 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18817 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18818 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18819 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18820 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18821 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18822 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18823
18824 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18825 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18826 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18827 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18828 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18829 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18830 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18831 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18832 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18833 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18834 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18835 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18836
18837 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18838 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18839 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18840 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18841 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18842 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18843 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18844 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18845 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18846 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18847 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18848 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18849
18850 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18851 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18852 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18853 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18854 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18855 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18856 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18857 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18858 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18859 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18860 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18861 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18862
18863 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18864 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18865 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18866 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18867
18868 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18869 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18870 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18871 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18872 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18873 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18874 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18875 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18876 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18877 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18878 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18879 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18880
c19d1205
ZW
18881 /* The implementation of the FIX instruction is broken on some
18882 assemblers, in that it accepts a precision specifier as well as a
18883 rounding specifier, despite the fact that this is meaningless.
18884 To be more compatible, we accept it as well, though of course it
18885 does not set any bits. */
21d799b5
NC
18886 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18887 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18888 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18889 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18890 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18891 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18892 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18893 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18894 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18895 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18896 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18897 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18898 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18899
c19d1205 18900 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18901#undef ARM_VARIANT
18902#define ARM_VARIANT & fpu_fpa_ext_v2
18903
21d799b5
NC
18904 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18905 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18906 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18907 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18908 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18909 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18910
c921be7d
NC
18911#undef ARM_VARIANT
18912#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18913
c19d1205 18914 /* Moves and type conversions. */
21d799b5
NC
18915 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18916 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18917 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18918 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
18919 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18920 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18921 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18922 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18923 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18924 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18925 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18926 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18927 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18928 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18929
18930 /* Memory operations. */
21d799b5
NC
18931 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18932 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18933 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18934 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18935 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18936 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18937 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18938 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18939 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18940 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18941 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18942 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18943 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18944 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18945 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18946 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18947 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18948 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18949
c19d1205 18950 /* Monadic operations. */
21d799b5
NC
18951 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18952 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18953 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18954
18955 /* Dyadic operations. */
21d799b5
NC
18956 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18957 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18958 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18959 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18960 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18961 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18962 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18963 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18964 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18965
c19d1205 18966 /* Comparisons. */
21d799b5
NC
18967 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18968 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18969 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18970 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18971
62f3b8c8
PB
18972 /* Double precision load/store are still present on single precision
18973 implementations. */
18974 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18975 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18976 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18977 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18978 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18979 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18980 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18981 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18982 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18983 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18984
c921be7d
NC
18985#undef ARM_VARIANT
18986#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18987
c19d1205 18988 /* Moves and type conversions. */
21d799b5
NC
18989 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18990 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18991 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18992 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18993 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18994 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18995 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18996 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18997 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18998 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18999 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19000 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19001 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 19002
c19d1205 19003 /* Monadic operations. */
21d799b5
NC
19004 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19005 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19006 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
19007
19008 /* Dyadic operations. */
21d799b5
NC
19009 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19010 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19011 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19012 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19013 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19014 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19015 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19016 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19017 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 19018
c19d1205 19019 /* Comparisons. */
21d799b5
NC
19020 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19021 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19022 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19023 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 19024
c921be7d
NC
19025#undef ARM_VARIANT
19026#define ARM_VARIANT & fpu_vfp_ext_v2
19027
21d799b5
NC
19028 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19029 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19030 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19031 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 19032
037e8744
JB
19033/* Instructions which may belong to either the Neon or VFP instruction sets.
19034 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
19035#undef ARM_VARIANT
19036#define ARM_VARIANT & fpu_vfp_ext_v1xd
19037#undef THUMB_VARIANT
19038#define THUMB_VARIANT & fpu_vfp_ext_v1xd
19039
037e8744
JB
19040 /* These mnemonics are unique to VFP. */
19041 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19042 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
19043 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19044 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19045 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19046 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19047 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
19048 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19049 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19050 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19051
19052 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
19053 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19054 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19055 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 19056
21d799b5
NC
19057 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19058 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
19059
19060 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19061 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19062
55881a11
MGD
19063 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19064 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19065 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19066 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19067 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19068 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
19069 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19070 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 19071
5f1af56b 19072 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 19073 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
19074 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19075 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 19076
037e8744
JB
19077
19078 /* NOTE: All VMOV encoding is special-cased! */
19079 NCE(vmov, 0, 1, (VMOV), neon_mov),
19080 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19081
c921be7d
NC
19082#undef THUMB_VARIANT
19083#define THUMB_VARIANT & fpu_neon_ext_v1
19084#undef ARM_VARIANT
19085#define ARM_VARIANT & fpu_neon_ext_v1
19086
5287ad62
JB
19087 /* Data processing with three registers of the same length. */
19088 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19089 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19090 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19091 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19092 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19093 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19094 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19095 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19096 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19097 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19098 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19099 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19100 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19101 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
19102 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19103 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19104 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19105 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
19106 /* If not immediate, fall back to neon_dyadic_i64_su.
19107 shl_imm should accept I8 I16 I32 I64,
19108 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
19109 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19110 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19111 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19112 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 19113 /* Logic ops, types optional & ignored. */
4316f0d2
DG
19114 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19115 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19116 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19117 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19118 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19119 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19120 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19121 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19122 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19123 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
19124 /* Bitfield ops, untyped. */
19125 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19126 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19127 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19128 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19129 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19130 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19131 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
19132 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19133 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19134 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19135 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19136 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19137 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
19138 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19139 back to neon_dyadic_if_su. */
21d799b5
NC
19140 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19141 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19142 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19143 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19144 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19145 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19146 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19147 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 19148 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
19149 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19150 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 19151 /* As above, D registers only. */
21d799b5
NC
19152 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19153 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 19154 /* Int and float variants, signedness unimportant. */
21d799b5
NC
19155 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19156 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19157 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 19158 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
19159 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19160 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
19161 /* vtst takes sizes 8, 16, 32. */
19162 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19163 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19164 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 19165 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 19166 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
19167 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19168 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19169 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19170 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
19171 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19172 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19173 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19174 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
19175 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19176 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19177 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19178 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
19179 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19180 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19181 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19182 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19183
19184 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 19185 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
19186 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19187
19188 /* Data processing with two registers and a shift amount. */
19189 /* Right shifts, and variants with rounding.
19190 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19191 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19192 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19193 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19194 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19195 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19196 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19197 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19198 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19199 /* Shift and insert. Sizes accepted 8 16 32 64. */
19200 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19201 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19202 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19203 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19204 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19205 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19206 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19207 /* Right shift immediate, saturating & narrowing, with rounding variants.
19208 Types accepted S16 S32 S64 U16 U32 U64. */
19209 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19210 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19211 /* As above, unsigned. Types accepted S16 S32 S64. */
19212 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19213 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19214 /* Right shift narrowing. Types accepted I16 I32 I64. */
19215 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19216 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19217 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 19218 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 19219 /* CVT with optional immediate for fixed-point variant. */
21d799b5 19220 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 19221
4316f0d2
DG
19222 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19223 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
19224
19225 /* Data processing, three registers of different lengths. */
19226 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19227 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19228 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19229 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19230 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19231 /* If not scalar, fall back to neon_dyadic_long.
19232 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
19233 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19234 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
19235 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19236 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19237 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19238 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19239 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19240 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19241 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19242 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19243 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
19244 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19245 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19246 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
19247 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19248 S16 S32 U16 U32. */
21d799b5 19249 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
19250
19251 /* Extract. Size 8. */
3b8d421e
PB
19252 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19253 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
19254
19255 /* Two registers, miscellaneous. */
19256 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19257 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19258 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19259 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19260 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19261 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19262 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19263 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
19264 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19265 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
19266 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19267 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19268 /* VMOVN. Types I16 I32 I64. */
21d799b5 19269 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 19270 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 19271 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 19272 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 19273 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
19274 /* VZIP / VUZP. Sizes 8 16 32. */
19275 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19276 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19277 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19278 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19279 /* VQABS / VQNEG. Types S8 S16 S32. */
19280 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19281 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19282 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19283 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19284 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19285 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19286 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19287 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19288 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19289 /* Reciprocal estimates. Types U32 F32. */
19290 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19291 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19292 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19293 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19294 /* VCLS. Types S8 S16 S32. */
19295 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19296 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19297 /* VCLZ. Types I8 I16 I32. */
19298 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19299 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19300 /* VCNT. Size 8. */
19301 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19302 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19303 /* Two address, untyped. */
19304 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19305 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19306 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
19307 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19308 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
19309
19310 /* Table lookup. Size 8. */
19311 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19312 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19313
c921be7d
NC
19314#undef THUMB_VARIANT
19315#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19316#undef ARM_VARIANT
19317#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19318
5287ad62 19319 /* Neon element/structure load/store. */
21d799b5
NC
19320 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19321 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19322 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19323 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19324 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19325 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19326 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19327 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 19328
c921be7d 19329#undef THUMB_VARIANT
62f3b8c8
PB
19330#define THUMB_VARIANT &fpu_vfp_ext_v3xd
19331#undef ARM_VARIANT
19332#define ARM_VARIANT &fpu_vfp_ext_v3xd
19333 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19334 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19335 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19336 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19337 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19338 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19339 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19340 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19341 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19342
19343#undef THUMB_VARIANT
c921be7d
NC
19344#define THUMB_VARIANT & fpu_vfp_ext_v3
19345#undef ARM_VARIANT
19346#define ARM_VARIANT & fpu_vfp_ext_v3
19347
21d799b5 19348 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 19349 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19350 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 19351 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19352 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 19353 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19354 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 19355 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19356 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 19357
62f3b8c8
PB
19358#undef ARM_VARIANT
19359#define ARM_VARIANT &fpu_vfp_ext_fma
19360#undef THUMB_VARIANT
19361#define THUMB_VARIANT &fpu_vfp_ext_fma
19362 /* Mnemonics shared by Neon and VFP. These are included in the
19363 VFP FMA variant; NEON and VFP FMA always includes the NEON
19364 FMA instructions. */
19365 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19366 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19367 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19368 the v form should always be used. */
19369 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19370 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19371 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19372 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19373 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19374 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19375
5287ad62 19376#undef THUMB_VARIANT
c921be7d
NC
19377#undef ARM_VARIANT
19378#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19379
21d799b5
NC
19380 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19381 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19382 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19383 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19384 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19385 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19386 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19387 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 19388
c921be7d
NC
19389#undef ARM_VARIANT
19390#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19391
21d799b5
NC
19392 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19393 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19394 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19395 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19396 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19397 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19398 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19399 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19400 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19401 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19402 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19403 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19404 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19405 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19406 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19407 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19408 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19409 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19410 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19411 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19412 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19413 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19414 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19415 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19416 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19417 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19418 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19419 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19420 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19421 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19422 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19423 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19424 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19425 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19426 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19427 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19428 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19429 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19430 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19431 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19432 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19433 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19434 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19435 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19436 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19437 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19438 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19439 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19440 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19441 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19442 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19443 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19444 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19445 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19446 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19447 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19448 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19449 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19450 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19451 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19452 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19453 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19454 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19455 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19456 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19457 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19458 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19459 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19460 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19461 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19462 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19463 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19464 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19465 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19466 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19467 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19468 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19469 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19470 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19471 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19472 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19473 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19474 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19475 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19476 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19477 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19478 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19479 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19480 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19481 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19482 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19483 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19484 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19485 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19486 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19487 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19488 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19489 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19490 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19491 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19492 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19493 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19494 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19495 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19496 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19497 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19498 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19499 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19500 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19501 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19502 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19503 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19504 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19505 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19506 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19507 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19508 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19509 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19510 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19511 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19512 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19513 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19514 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19515 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19516 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19517 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19518 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19519 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19520 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19521 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19522 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19523 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19524 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19525 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19526 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19527 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19528 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19529 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19530 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19531 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19532 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19533 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19534 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19535 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19536 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19537 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19538 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19539 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19540 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19541 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19542 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19543 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19544 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19545 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19546 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19547 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19548 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19549 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19550 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19551 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19552 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19553 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 19554
c921be7d
NC
19555#undef ARM_VARIANT
19556#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19557
21d799b5
NC
19558 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19559 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19560 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19561 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19562 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19563 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19564 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19565 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19566 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19567 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19568 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19569 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19570 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19571 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19572 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19573 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19574 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19575 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19576 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19577 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19578 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19579 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19580 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19581 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19582 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19583 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19584 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19585 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19586 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19587 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19588 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19589 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19590 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19591 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19592 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19593 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19594 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19595 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19596 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19597 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19598 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19599 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19600 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19601 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19602 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19603 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19604 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19605 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19606 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19607 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19608 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19609 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19610 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19611 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19612 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19613 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19614 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 19615
c921be7d
NC
19616#undef ARM_VARIANT
19617#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19618
21d799b5
NC
19619 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19620 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19621 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19622 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19623 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19624 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19625 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19626 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19627 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19628 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19629 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19630 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19631 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19632 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19633 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19634 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19635 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19636 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19637 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19638 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19639 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19640 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19641 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19642 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19643 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19644 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19645 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19646 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19647 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19648 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19649 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19650 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19651 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19652 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19653 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19654 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19655 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19656 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19657 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19658 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19659 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19660 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19661 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19662 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19663 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19664 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19665 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19666 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19667 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19668 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19669 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19670 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19671 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19672 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19673 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19674 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19675 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19676 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19677 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19678 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19679 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19680 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19681 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19682 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19683 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19684 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19685 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19686 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19687 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19688 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19689 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19690 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19691 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19692 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19693 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19694 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
19695};
19696#undef ARM_VARIANT
19697#undef THUMB_VARIANT
19698#undef TCE
19699#undef TCM
19700#undef TUE
19701#undef TUF
19702#undef TCC
8f06b2d8 19703#undef cCE
e3cb604e
PB
19704#undef cCL
19705#undef C3E
c19d1205
ZW
19706#undef CE
19707#undef CM
19708#undef UE
19709#undef UF
19710#undef UT
5287ad62
JB
19711#undef NUF
19712#undef nUF
19713#undef NCE
19714#undef nCE
c19d1205
ZW
19715#undef OPS0
19716#undef OPS1
19717#undef OPS2
19718#undef OPS3
19719#undef OPS4
19720#undef OPS5
19721#undef OPS6
19722#undef do_0
19723\f
19724/* MD interface: bits in the object file. */
bfae80f2 19725
c19d1205
ZW
19726/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19727 for use in the a.out file, and stores them in the array pointed to by buf.
19728 This knows about the endian-ness of the target machine and does
19729 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19730 2 (short) and 4 (long) Floating numbers are put out as a series of
19731 LITTLENUMS (shorts, here at least). */
b99bd4ef 19732
c19d1205
ZW
19733void
19734md_number_to_chars (char * buf, valueT val, int n)
19735{
19736 if (target_big_endian)
19737 number_to_chars_bigendian (buf, val, n);
19738 else
19739 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
19740}
19741
c19d1205
ZW
19742static valueT
19743md_chars_to_number (char * buf, int n)
bfae80f2 19744{
c19d1205
ZW
19745 valueT result = 0;
19746 unsigned char * where = (unsigned char *) buf;
bfae80f2 19747
c19d1205 19748 if (target_big_endian)
b99bd4ef 19749 {
c19d1205
ZW
19750 while (n--)
19751 {
19752 result <<= 8;
19753 result |= (*where++ & 255);
19754 }
b99bd4ef 19755 }
c19d1205 19756 else
b99bd4ef 19757 {
c19d1205
ZW
19758 while (n--)
19759 {
19760 result <<= 8;
19761 result |= (where[n] & 255);
19762 }
bfae80f2 19763 }
b99bd4ef 19764
c19d1205 19765 return result;
bfae80f2 19766}
b99bd4ef 19767
c19d1205 19768/* MD interface: Sections. */
b99bd4ef 19769
fa94de6b
RM
19770/* Calculate the maximum variable size (i.e., excluding fr_fix)
19771 that an rs_machine_dependent frag may reach. */
19772
19773unsigned int
19774arm_frag_max_var (fragS *fragp)
19775{
19776 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19777 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19778
19779 Note that we generate relaxable instructions even for cases that don't
19780 really need it, like an immediate that's a trivial constant. So we're
19781 overestimating the instruction size for some of those cases. Rather
19782 than putting more intelligence here, it would probably be better to
19783 avoid generating a relaxation frag in the first place when it can be
19784 determined up front that a short instruction will suffice. */
19785
19786 gas_assert (fragp->fr_type == rs_machine_dependent);
19787 return INSN_SIZE;
19788}
19789
0110f2b8
PB
19790/* Estimate the size of a frag before relaxing. Assume everything fits in
19791 2 bytes. */
19792
c19d1205 19793int
0110f2b8 19794md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
19795 segT segtype ATTRIBUTE_UNUSED)
19796{
0110f2b8
PB
19797 fragp->fr_var = 2;
19798 return 2;
19799}
19800
19801/* Convert a machine dependent frag. */
19802
19803void
19804md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19805{
19806 unsigned long insn;
19807 unsigned long old_op;
19808 char *buf;
19809 expressionS exp;
19810 fixS *fixp;
19811 int reloc_type;
19812 int pc_rel;
19813 int opcode;
19814
19815 buf = fragp->fr_literal + fragp->fr_fix;
19816
19817 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19818 if (fragp->fr_symbol)
19819 {
0110f2b8
PB
19820 exp.X_op = O_symbol;
19821 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19822 }
19823 else
19824 {
0110f2b8 19825 exp.X_op = O_constant;
5f4273c7 19826 }
0110f2b8
PB
19827 exp.X_add_number = fragp->fr_offset;
19828 opcode = fragp->fr_subtype;
19829 switch (opcode)
19830 {
19831 case T_MNEM_ldr_pc:
19832 case T_MNEM_ldr_pc2:
19833 case T_MNEM_ldr_sp:
19834 case T_MNEM_str_sp:
19835 case T_MNEM_ldr:
19836 case T_MNEM_ldrb:
19837 case T_MNEM_ldrh:
19838 case T_MNEM_str:
19839 case T_MNEM_strb:
19840 case T_MNEM_strh:
19841 if (fragp->fr_var == 4)
19842 {
5f4273c7 19843 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19844 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19845 {
19846 insn |= (old_op & 0x700) << 4;
19847 }
19848 else
19849 {
19850 insn |= (old_op & 7) << 12;
19851 insn |= (old_op & 0x38) << 13;
19852 }
19853 insn |= 0x00000c00;
19854 put_thumb32_insn (buf, insn);
19855 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19856 }
19857 else
19858 {
19859 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19860 }
19861 pc_rel = (opcode == T_MNEM_ldr_pc2);
19862 break;
19863 case T_MNEM_adr:
19864 if (fragp->fr_var == 4)
19865 {
19866 insn = THUMB_OP32 (opcode);
19867 insn |= (old_op & 0xf0) << 4;
19868 put_thumb32_insn (buf, insn);
19869 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19870 }
19871 else
19872 {
19873 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19874 exp.X_add_number -= 4;
19875 }
19876 pc_rel = 1;
19877 break;
19878 case T_MNEM_mov:
19879 case T_MNEM_movs:
19880 case T_MNEM_cmp:
19881 case T_MNEM_cmn:
19882 if (fragp->fr_var == 4)
19883 {
19884 int r0off = (opcode == T_MNEM_mov
19885 || opcode == T_MNEM_movs) ? 0 : 8;
19886 insn = THUMB_OP32 (opcode);
19887 insn = (insn & 0xe1ffffff) | 0x10000000;
19888 insn |= (old_op & 0x700) << r0off;
19889 put_thumb32_insn (buf, insn);
19890 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19891 }
19892 else
19893 {
19894 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19895 }
19896 pc_rel = 0;
19897 break;
19898 case T_MNEM_b:
19899 if (fragp->fr_var == 4)
19900 {
19901 insn = THUMB_OP32(opcode);
19902 put_thumb32_insn (buf, insn);
19903 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19904 }
19905 else
19906 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19907 pc_rel = 1;
19908 break;
19909 case T_MNEM_bcond:
19910 if (fragp->fr_var == 4)
19911 {
19912 insn = THUMB_OP32(opcode);
19913 insn |= (old_op & 0xf00) << 14;
19914 put_thumb32_insn (buf, insn);
19915 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19916 }
19917 else
19918 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19919 pc_rel = 1;
19920 break;
19921 case T_MNEM_add_sp:
19922 case T_MNEM_add_pc:
19923 case T_MNEM_inc_sp:
19924 case T_MNEM_dec_sp:
19925 if (fragp->fr_var == 4)
19926 {
19927 /* ??? Choose between add and addw. */
19928 insn = THUMB_OP32 (opcode);
19929 insn |= (old_op & 0xf0) << 4;
19930 put_thumb32_insn (buf, insn);
16805f35
PB
19931 if (opcode == T_MNEM_add_pc)
19932 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19933 else
19934 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19935 }
19936 else
19937 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19938 pc_rel = 0;
19939 break;
19940
19941 case T_MNEM_addi:
19942 case T_MNEM_addis:
19943 case T_MNEM_subi:
19944 case T_MNEM_subis:
19945 if (fragp->fr_var == 4)
19946 {
19947 insn = THUMB_OP32 (opcode);
19948 insn |= (old_op & 0xf0) << 4;
19949 insn |= (old_op & 0xf) << 16;
19950 put_thumb32_insn (buf, insn);
16805f35
PB
19951 if (insn & (1 << 20))
19952 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19953 else
19954 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19955 }
19956 else
19957 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19958 pc_rel = 0;
19959 break;
19960 default:
5f4273c7 19961 abort ();
0110f2b8
PB
19962 }
19963 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19964 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19965 fixp->fx_file = fragp->fr_file;
19966 fixp->fx_line = fragp->fr_line;
19967 fragp->fr_fix += fragp->fr_var;
19968}
19969
19970/* Return the size of a relaxable immediate operand instruction.
19971 SHIFT and SIZE specify the form of the allowable immediate. */
19972static int
19973relax_immediate (fragS *fragp, int size, int shift)
19974{
19975 offsetT offset;
19976 offsetT mask;
19977 offsetT low;
19978
19979 /* ??? Should be able to do better than this. */
19980 if (fragp->fr_symbol)
19981 return 4;
19982
19983 low = (1 << shift) - 1;
19984 mask = (1 << (shift + size)) - (1 << shift);
19985 offset = fragp->fr_offset;
19986 /* Force misaligned offsets to 32-bit variant. */
19987 if (offset & low)
5e77afaa 19988 return 4;
0110f2b8
PB
19989 if (offset & ~mask)
19990 return 4;
19991 return 2;
19992}
19993
5e77afaa
PB
19994/* Get the address of a symbol during relaxation. */
19995static addressT
5f4273c7 19996relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19997{
19998 fragS *sym_frag;
19999 addressT addr;
20000 symbolS *sym;
20001
20002 sym = fragp->fr_symbol;
20003 sym_frag = symbol_get_frag (sym);
20004 know (S_GET_SEGMENT (sym) != absolute_section
20005 || sym_frag == &zero_address_frag);
20006 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20007
20008 /* If frag has yet to be reached on this pass, assume it will
20009 move by STRETCH just as we did. If this is not so, it will
20010 be because some frag between grows, and that will force
20011 another pass. */
20012
20013 if (stretch != 0
20014 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
20015 {
20016 fragS *f;
20017
20018 /* Adjust stretch for any alignment frag. Note that if have
20019 been expanding the earlier code, the symbol may be
20020 defined in what appears to be an earlier frag. FIXME:
20021 This doesn't handle the fr_subtype field, which specifies
20022 a maximum number of bytes to skip when doing an
20023 alignment. */
20024 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20025 {
20026 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20027 {
20028 if (stretch < 0)
20029 stretch = - ((- stretch)
20030 & ~ ((1 << (int) f->fr_offset) - 1));
20031 else
20032 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20033 if (stretch == 0)
20034 break;
20035 }
20036 }
20037 if (f != NULL)
20038 addr += stretch;
20039 }
5e77afaa
PB
20040
20041 return addr;
20042}
20043
0110f2b8
PB
20044/* Return the size of a relaxable adr pseudo-instruction or PC-relative
20045 load. */
20046static int
5e77afaa 20047relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
20048{
20049 addressT addr;
20050 offsetT val;
20051
20052 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
20053 if (fragp->fr_symbol == NULL
20054 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
20055 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20056 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
20057 return 4;
20058
5f4273c7 20059 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
20060 addr = fragp->fr_address + fragp->fr_fix;
20061 addr = (addr + 4) & ~3;
5e77afaa 20062 /* Force misaligned targets to 32-bit variant. */
0110f2b8 20063 if (val & 3)
5e77afaa 20064 return 4;
0110f2b8
PB
20065 val -= addr;
20066 if (val < 0 || val > 1020)
20067 return 4;
20068 return 2;
20069}
20070
20071/* Return the size of a relaxable add/sub immediate instruction. */
20072static int
20073relax_addsub (fragS *fragp, asection *sec)
20074{
20075 char *buf;
20076 int op;
20077
20078 buf = fragp->fr_literal + fragp->fr_fix;
20079 op = bfd_get_16(sec->owner, buf);
20080 if ((op & 0xf) == ((op >> 4) & 0xf))
20081 return relax_immediate (fragp, 8, 0);
20082 else
20083 return relax_immediate (fragp, 3, 0);
20084}
20085
20086
20087/* Return the size of a relaxable branch instruction. BITS is the
20088 size of the offset field in the narrow instruction. */
20089
20090static int
5e77afaa 20091relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
20092{
20093 addressT addr;
20094 offsetT val;
20095 offsetT limit;
20096
20097 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 20098 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
20099 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20100 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
20101 return 4;
20102
267bf995
RR
20103#ifdef OBJ_ELF
20104 if (S_IS_DEFINED (fragp->fr_symbol)
20105 && ARM_IS_FUNC (fragp->fr_symbol))
20106 return 4;
0d9b4b55
NC
20107
20108 /* PR 12532. Global symbols with default visibility might
20109 be preempted, so do not relax relocations to them. */
20110 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
20111 && (! S_IS_LOCAL (fragp->fr_symbol)))
20112 return 4;
267bf995
RR
20113#endif
20114
5f4273c7 20115 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
20116 addr = fragp->fr_address + fragp->fr_fix + 4;
20117 val -= addr;
20118
20119 /* Offset is a signed value *2 */
20120 limit = 1 << bits;
20121 if (val >= limit || val < -limit)
20122 return 4;
20123 return 2;
20124}
20125
20126
20127/* Relax a machine dependent frag. This returns the amount by which
20128 the current size of the frag should change. */
20129
20130int
5e77afaa 20131arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
20132{
20133 int oldsize;
20134 int newsize;
20135
20136 oldsize = fragp->fr_var;
20137 switch (fragp->fr_subtype)
20138 {
20139 case T_MNEM_ldr_pc2:
5f4273c7 20140 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
20141 break;
20142 case T_MNEM_ldr_pc:
20143 case T_MNEM_ldr_sp:
20144 case T_MNEM_str_sp:
5f4273c7 20145 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
20146 break;
20147 case T_MNEM_ldr:
20148 case T_MNEM_str:
5f4273c7 20149 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
20150 break;
20151 case T_MNEM_ldrh:
20152 case T_MNEM_strh:
5f4273c7 20153 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
20154 break;
20155 case T_MNEM_ldrb:
20156 case T_MNEM_strb:
5f4273c7 20157 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
20158 break;
20159 case T_MNEM_adr:
5f4273c7 20160 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
20161 break;
20162 case T_MNEM_mov:
20163 case T_MNEM_movs:
20164 case T_MNEM_cmp:
20165 case T_MNEM_cmn:
5f4273c7 20166 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
20167 break;
20168 case T_MNEM_b:
5f4273c7 20169 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
20170 break;
20171 case T_MNEM_bcond:
5f4273c7 20172 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
20173 break;
20174 case T_MNEM_add_sp:
20175 case T_MNEM_add_pc:
20176 newsize = relax_immediate (fragp, 8, 2);
20177 break;
20178 case T_MNEM_inc_sp:
20179 case T_MNEM_dec_sp:
20180 newsize = relax_immediate (fragp, 7, 2);
20181 break;
20182 case T_MNEM_addi:
20183 case T_MNEM_addis:
20184 case T_MNEM_subi:
20185 case T_MNEM_subis:
20186 newsize = relax_addsub (fragp, sec);
20187 break;
20188 default:
5f4273c7 20189 abort ();
0110f2b8 20190 }
5e77afaa
PB
20191
20192 fragp->fr_var = newsize;
20193 /* Freeze wide instructions that are at or before the same location as
20194 in the previous pass. This avoids infinite loops.
5f4273c7
NC
20195 Don't freeze them unconditionally because targets may be artificially
20196 misaligned by the expansion of preceding frags. */
5e77afaa 20197 if (stretch <= 0 && newsize > 2)
0110f2b8 20198 {
0110f2b8 20199 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 20200 frag_wane (fragp);
0110f2b8 20201 }
5e77afaa 20202
0110f2b8 20203 return newsize - oldsize;
c19d1205 20204}
b99bd4ef 20205
c19d1205 20206/* Round up a section size to the appropriate boundary. */
b99bd4ef 20207
c19d1205
ZW
20208valueT
20209md_section_align (segT segment ATTRIBUTE_UNUSED,
20210 valueT size)
20211{
f0927246
NC
20212#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20213 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20214 {
20215 /* For a.out, force the section size to be aligned. If we don't do
20216 this, BFD will align it for us, but it will not write out the
20217 final bytes of the section. This may be a bug in BFD, but it is
20218 easier to fix it here since that is how the other a.out targets
20219 work. */
20220 int align;
20221
20222 align = bfd_get_section_alignment (stdoutput, segment);
20223 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20224 }
c19d1205 20225#endif
f0927246
NC
20226
20227 return size;
bfae80f2 20228}
b99bd4ef 20229
c19d1205
ZW
20230/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20231 of an rs_align_code fragment. */
20232
20233void
20234arm_handle_align (fragS * fragP)
bfae80f2 20235{
e7495e45
NS
20236 static char const arm_noop[2][2][4] =
20237 {
20238 { /* ARMv1 */
20239 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20240 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20241 },
20242 { /* ARMv6k */
20243 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20244 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20245 },
20246 };
20247 static char const thumb_noop[2][2][2] =
20248 {
20249 { /* Thumb-1 */
20250 {0xc0, 0x46}, /* LE */
20251 {0x46, 0xc0}, /* BE */
20252 },
20253 { /* Thumb-2 */
20254 {0x00, 0xbf}, /* LE */
20255 {0xbf, 0x00} /* BE */
20256 }
20257 };
20258 static char const wide_thumb_noop[2][4] =
20259 { /* Wide Thumb-2 */
20260 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20261 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20262 };
c921be7d 20263
e7495e45 20264 unsigned bytes, fix, noop_size;
c19d1205
ZW
20265 char * p;
20266 const char * noop;
e7495e45 20267 const char *narrow_noop = NULL;
cd000bff
DJ
20268#ifdef OBJ_ELF
20269 enum mstate state;
20270#endif
bfae80f2 20271
c19d1205 20272 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
20273 return;
20274
c19d1205
ZW
20275 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20276 p = fragP->fr_literal + fragP->fr_fix;
20277 fix = 0;
bfae80f2 20278
c19d1205
ZW
20279 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20280 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 20281
cd000bff 20282 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 20283
cd000bff 20284 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 20285 {
e7495e45
NS
20286 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20287 {
20288 narrow_noop = thumb_noop[1][target_big_endian];
20289 noop = wide_thumb_noop[target_big_endian];
20290 }
c19d1205 20291 else
e7495e45
NS
20292 noop = thumb_noop[0][target_big_endian];
20293 noop_size = 2;
cd000bff
DJ
20294#ifdef OBJ_ELF
20295 state = MAP_THUMB;
20296#endif
7ed4c4c5
NC
20297 }
20298 else
20299 {
e7495e45
NS
20300 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20301 [target_big_endian];
20302 noop_size = 4;
cd000bff
DJ
20303#ifdef OBJ_ELF
20304 state = MAP_ARM;
20305#endif
7ed4c4c5 20306 }
c921be7d 20307
e7495e45 20308 fragP->fr_var = noop_size;
c921be7d 20309
c19d1205 20310 if (bytes & (noop_size - 1))
7ed4c4c5 20311 {
c19d1205 20312 fix = bytes & (noop_size - 1);
cd000bff
DJ
20313#ifdef OBJ_ELF
20314 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20315#endif
c19d1205
ZW
20316 memset (p, 0, fix);
20317 p += fix;
20318 bytes -= fix;
a737bd4d 20319 }
a737bd4d 20320
e7495e45
NS
20321 if (narrow_noop)
20322 {
20323 if (bytes & noop_size)
20324 {
20325 /* Insert a narrow noop. */
20326 memcpy (p, narrow_noop, noop_size);
20327 p += noop_size;
20328 bytes -= noop_size;
20329 fix += noop_size;
20330 }
20331
20332 /* Use wide noops for the remainder */
20333 noop_size = 4;
20334 }
20335
c19d1205 20336 while (bytes >= noop_size)
a737bd4d 20337 {
c19d1205
ZW
20338 memcpy (p, noop, noop_size);
20339 p += noop_size;
20340 bytes -= noop_size;
20341 fix += noop_size;
a737bd4d
NC
20342 }
20343
c19d1205 20344 fragP->fr_fix += fix;
a737bd4d
NC
20345}
20346
c19d1205
ZW
20347/* Called from md_do_align. Used to create an alignment
20348 frag in a code section. */
20349
20350void
20351arm_frag_align_code (int n, int max)
bfae80f2 20352{
c19d1205 20353 char * p;
7ed4c4c5 20354
c19d1205 20355 /* We assume that there will never be a requirement
6ec8e702 20356 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 20357 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
20358 {
20359 char err_msg[128];
20360
fa94de6b 20361 sprintf (err_msg,
6ec8e702
NC
20362 _("alignments greater than %d bytes not supported in .text sections."),
20363 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 20364 as_fatal ("%s", err_msg);
6ec8e702 20365 }
bfae80f2 20366
c19d1205
ZW
20367 p = frag_var (rs_align_code,
20368 MAX_MEM_FOR_RS_ALIGN_CODE,
20369 1,
20370 (relax_substateT) max,
20371 (symbolS *) NULL,
20372 (offsetT) n,
20373 (char *) NULL);
20374 *p = 0;
20375}
bfae80f2 20376
8dc2430f
NC
20377/* Perform target specific initialisation of a frag.
20378 Note - despite the name this initialisation is not done when the frag
20379 is created, but only when its type is assigned. A frag can be created
20380 and used a long time before its type is set, so beware of assuming that
20381 this initialisationis performed first. */
bfae80f2 20382
cd000bff
DJ
20383#ifndef OBJ_ELF
20384void
20385arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20386{
20387 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 20388 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
20389}
20390
20391#else /* OBJ_ELF is defined. */
c19d1205 20392void
cd000bff 20393arm_init_frag (fragS * fragP, int max_chars)
c19d1205 20394{
8dc2430f
NC
20395 /* If the current ARM vs THUMB mode has not already
20396 been recorded into this frag then do so now. */
cd000bff
DJ
20397 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20398 {
20399 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20400
20401 /* Record a mapping symbol for alignment frags. We will delete this
20402 later if the alignment ends up empty. */
20403 switch (fragP->fr_type)
20404 {
20405 case rs_align:
20406 case rs_align_test:
20407 case rs_fill:
20408 mapping_state_2 (MAP_DATA, max_chars);
20409 break;
20410 case rs_align_code:
20411 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20412 break;
20413 default:
20414 break;
20415 }
20416 }
bfae80f2
RE
20417}
20418
c19d1205
ZW
20419/* When we change sections we need to issue a new mapping symbol. */
20420
20421void
20422arm_elf_change_section (void)
bfae80f2 20423{
c19d1205
ZW
20424 /* Link an unlinked unwind index table section to the .text section. */
20425 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20426 && elf_linked_to_section (now_seg) == NULL)
20427 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
20428}
20429
c19d1205
ZW
20430int
20431arm_elf_section_type (const char * str, size_t len)
e45d0630 20432{
c19d1205
ZW
20433 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20434 return SHT_ARM_EXIDX;
e45d0630 20435
c19d1205
ZW
20436 return -1;
20437}
20438\f
20439/* Code to deal with unwinding tables. */
e45d0630 20440
c19d1205 20441static void add_unwind_adjustsp (offsetT);
e45d0630 20442
5f4273c7 20443/* Generate any deferred unwind frame offset. */
e45d0630 20444
bfae80f2 20445static void
c19d1205 20446flush_pending_unwind (void)
bfae80f2 20447{
c19d1205 20448 offsetT offset;
bfae80f2 20449
c19d1205
ZW
20450 offset = unwind.pending_offset;
20451 unwind.pending_offset = 0;
20452 if (offset != 0)
20453 add_unwind_adjustsp (offset);
bfae80f2
RE
20454}
20455
c19d1205
ZW
20456/* Add an opcode to this list for this function. Two-byte opcodes should
20457 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20458 order. */
20459
bfae80f2 20460static void
c19d1205 20461add_unwind_opcode (valueT op, int length)
bfae80f2 20462{
c19d1205
ZW
20463 /* Add any deferred stack adjustment. */
20464 if (unwind.pending_offset)
20465 flush_pending_unwind ();
bfae80f2 20466
c19d1205 20467 unwind.sp_restored = 0;
bfae80f2 20468
c19d1205 20469 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 20470 {
c19d1205
ZW
20471 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20472 if (unwind.opcodes)
21d799b5
NC
20473 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20474 unwind.opcode_alloc);
c19d1205 20475 else
21d799b5 20476 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 20477 }
c19d1205 20478 while (length > 0)
bfae80f2 20479 {
c19d1205
ZW
20480 length--;
20481 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20482 op >>= 8;
20483 unwind.opcode_count++;
bfae80f2 20484 }
bfae80f2
RE
20485}
20486
c19d1205
ZW
20487/* Add unwind opcodes to adjust the stack pointer. */
20488
bfae80f2 20489static void
c19d1205 20490add_unwind_adjustsp (offsetT offset)
bfae80f2 20491{
c19d1205 20492 valueT op;
bfae80f2 20493
c19d1205 20494 if (offset > 0x200)
bfae80f2 20495 {
c19d1205
ZW
20496 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20497 char bytes[5];
20498 int n;
20499 valueT o;
bfae80f2 20500
c19d1205
ZW
20501 /* Long form: 0xb2, uleb128. */
20502 /* This might not fit in a word so add the individual bytes,
20503 remembering the list is built in reverse order. */
20504 o = (valueT) ((offset - 0x204) >> 2);
20505 if (o == 0)
20506 add_unwind_opcode (0, 1);
bfae80f2 20507
c19d1205
ZW
20508 /* Calculate the uleb128 encoding of the offset. */
20509 n = 0;
20510 while (o)
20511 {
20512 bytes[n] = o & 0x7f;
20513 o >>= 7;
20514 if (o)
20515 bytes[n] |= 0x80;
20516 n++;
20517 }
20518 /* Add the insn. */
20519 for (; n; n--)
20520 add_unwind_opcode (bytes[n - 1], 1);
20521 add_unwind_opcode (0xb2, 1);
20522 }
20523 else if (offset > 0x100)
bfae80f2 20524 {
c19d1205
ZW
20525 /* Two short opcodes. */
20526 add_unwind_opcode (0x3f, 1);
20527 op = (offset - 0x104) >> 2;
20528 add_unwind_opcode (op, 1);
bfae80f2 20529 }
c19d1205
ZW
20530 else if (offset > 0)
20531 {
20532 /* Short opcode. */
20533 op = (offset - 4) >> 2;
20534 add_unwind_opcode (op, 1);
20535 }
20536 else if (offset < 0)
bfae80f2 20537 {
c19d1205
ZW
20538 offset = -offset;
20539 while (offset > 0x100)
bfae80f2 20540 {
c19d1205
ZW
20541 add_unwind_opcode (0x7f, 1);
20542 offset -= 0x100;
bfae80f2 20543 }
c19d1205
ZW
20544 op = ((offset - 4) >> 2) | 0x40;
20545 add_unwind_opcode (op, 1);
bfae80f2 20546 }
bfae80f2
RE
20547}
20548
c19d1205
ZW
20549/* Finish the list of unwind opcodes for this function. */
20550static void
20551finish_unwind_opcodes (void)
bfae80f2 20552{
c19d1205 20553 valueT op;
bfae80f2 20554
c19d1205 20555 if (unwind.fp_used)
bfae80f2 20556 {
708587a4 20557 /* Adjust sp as necessary. */
c19d1205
ZW
20558 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20559 flush_pending_unwind ();
bfae80f2 20560
c19d1205
ZW
20561 /* After restoring sp from the frame pointer. */
20562 op = 0x90 | unwind.fp_reg;
20563 add_unwind_opcode (op, 1);
20564 }
20565 else
20566 flush_pending_unwind ();
bfae80f2
RE
20567}
20568
bfae80f2 20569
c19d1205
ZW
20570/* Start an exception table entry. If idx is nonzero this is an index table
20571 entry. */
bfae80f2
RE
20572
20573static void
c19d1205 20574start_unwind_section (const segT text_seg, int idx)
bfae80f2 20575{
c19d1205
ZW
20576 const char * text_name;
20577 const char * prefix;
20578 const char * prefix_once;
20579 const char * group_name;
20580 size_t prefix_len;
20581 size_t text_len;
20582 char * sec_name;
20583 size_t sec_name_len;
20584 int type;
20585 int flags;
20586 int linkonce;
bfae80f2 20587
c19d1205 20588 if (idx)
bfae80f2 20589 {
c19d1205
ZW
20590 prefix = ELF_STRING_ARM_unwind;
20591 prefix_once = ELF_STRING_ARM_unwind_once;
20592 type = SHT_ARM_EXIDX;
bfae80f2 20593 }
c19d1205 20594 else
bfae80f2 20595 {
c19d1205
ZW
20596 prefix = ELF_STRING_ARM_unwind_info;
20597 prefix_once = ELF_STRING_ARM_unwind_info_once;
20598 type = SHT_PROGBITS;
bfae80f2
RE
20599 }
20600
c19d1205
ZW
20601 text_name = segment_name (text_seg);
20602 if (streq (text_name, ".text"))
20603 text_name = "";
20604
20605 if (strncmp (text_name, ".gnu.linkonce.t.",
20606 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 20607 {
c19d1205
ZW
20608 prefix = prefix_once;
20609 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
20610 }
20611
c19d1205
ZW
20612 prefix_len = strlen (prefix);
20613 text_len = strlen (text_name);
20614 sec_name_len = prefix_len + text_len;
21d799b5 20615 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
20616 memcpy (sec_name, prefix, prefix_len);
20617 memcpy (sec_name + prefix_len, text_name, text_len);
20618 sec_name[prefix_len + text_len] = '\0';
bfae80f2 20619
c19d1205
ZW
20620 flags = SHF_ALLOC;
20621 linkonce = 0;
20622 group_name = 0;
bfae80f2 20623
c19d1205
ZW
20624 /* Handle COMDAT group. */
20625 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 20626 {
c19d1205
ZW
20627 group_name = elf_group_name (text_seg);
20628 if (group_name == NULL)
20629 {
bd3ba5d1 20630 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
20631 segment_name (text_seg));
20632 ignore_rest_of_line ();
20633 return;
20634 }
20635 flags |= SHF_GROUP;
20636 linkonce = 1;
bfae80f2
RE
20637 }
20638
c19d1205 20639 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 20640
5f4273c7 20641 /* Set the section link for index tables. */
c19d1205
ZW
20642 if (idx)
20643 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
20644}
20645
bfae80f2 20646
c19d1205
ZW
20647/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20648 personality routine data. Returns zero, or the index table value for
20649 and inline entry. */
20650
20651static valueT
20652create_unwind_entry (int have_data)
bfae80f2 20653{
c19d1205
ZW
20654 int size;
20655 addressT where;
20656 char *ptr;
20657 /* The current word of data. */
20658 valueT data;
20659 /* The number of bytes left in this word. */
20660 int n;
bfae80f2 20661
c19d1205 20662 finish_unwind_opcodes ();
bfae80f2 20663
c19d1205
ZW
20664 /* Remember the current text section. */
20665 unwind.saved_seg = now_seg;
20666 unwind.saved_subseg = now_subseg;
bfae80f2 20667
c19d1205 20668 start_unwind_section (now_seg, 0);
bfae80f2 20669
c19d1205 20670 if (unwind.personality_routine == NULL)
bfae80f2 20671 {
c19d1205
ZW
20672 if (unwind.personality_index == -2)
20673 {
20674 if (have_data)
5f4273c7 20675 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
20676 return 1; /* EXIDX_CANTUNWIND. */
20677 }
bfae80f2 20678
c19d1205
ZW
20679 /* Use a default personality routine if none is specified. */
20680 if (unwind.personality_index == -1)
20681 {
20682 if (unwind.opcode_count > 3)
20683 unwind.personality_index = 1;
20684 else
20685 unwind.personality_index = 0;
20686 }
bfae80f2 20687
c19d1205
ZW
20688 /* Space for the personality routine entry. */
20689 if (unwind.personality_index == 0)
20690 {
20691 if (unwind.opcode_count > 3)
20692 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 20693
c19d1205
ZW
20694 if (!have_data)
20695 {
20696 /* All the data is inline in the index table. */
20697 data = 0x80;
20698 n = 3;
20699 while (unwind.opcode_count > 0)
20700 {
20701 unwind.opcode_count--;
20702 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20703 n--;
20704 }
bfae80f2 20705
c19d1205
ZW
20706 /* Pad with "finish" opcodes. */
20707 while (n--)
20708 data = (data << 8) | 0xb0;
bfae80f2 20709
c19d1205
ZW
20710 return data;
20711 }
20712 size = 0;
20713 }
20714 else
20715 /* We get two opcodes "free" in the first word. */
20716 size = unwind.opcode_count - 2;
20717 }
20718 else
5011093d
NC
20719 {
20720 gas_assert (unwind.personality_index == -1);
20721
20722 /* An extra byte is required for the opcode count. */
20723 size = unwind.opcode_count + 1;
20724 }
bfae80f2 20725
c19d1205
ZW
20726 size = (size + 3) >> 2;
20727 if (size > 0xff)
20728 as_bad (_("too many unwind opcodes"));
bfae80f2 20729
c19d1205
ZW
20730 frag_align (2, 0, 0);
20731 record_alignment (now_seg, 2);
20732 unwind.table_entry = expr_build_dot ();
20733
20734 /* Allocate the table entry. */
20735 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
20736 /* PR 13449: Zero the table entries in case some of them are not used. */
20737 memset (ptr, 0, (size << 2) + 4);
c19d1205 20738 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 20739
c19d1205 20740 switch (unwind.personality_index)
bfae80f2 20741 {
c19d1205
ZW
20742 case -1:
20743 /* ??? Should this be a PLT generating relocation? */
20744 /* Custom personality routine. */
20745 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20746 BFD_RELOC_ARM_PREL31);
bfae80f2 20747
c19d1205
ZW
20748 where += 4;
20749 ptr += 4;
bfae80f2 20750
c19d1205 20751 /* Set the first byte to the number of additional words. */
5011093d 20752 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
20753 n = 3;
20754 break;
bfae80f2 20755
c19d1205
ZW
20756 /* ABI defined personality routines. */
20757 case 0:
20758 /* Three opcodes bytes are packed into the first word. */
20759 data = 0x80;
20760 n = 3;
20761 break;
bfae80f2 20762
c19d1205
ZW
20763 case 1:
20764 case 2:
20765 /* The size and first two opcode bytes go in the first word. */
20766 data = ((0x80 + unwind.personality_index) << 8) | size;
20767 n = 2;
20768 break;
bfae80f2 20769
c19d1205
ZW
20770 default:
20771 /* Should never happen. */
20772 abort ();
20773 }
bfae80f2 20774
c19d1205
ZW
20775 /* Pack the opcodes into words (MSB first), reversing the list at the same
20776 time. */
20777 while (unwind.opcode_count > 0)
20778 {
20779 if (n == 0)
20780 {
20781 md_number_to_chars (ptr, data, 4);
20782 ptr += 4;
20783 n = 4;
20784 data = 0;
20785 }
20786 unwind.opcode_count--;
20787 n--;
20788 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20789 }
20790
20791 /* Finish off the last word. */
20792 if (n < 4)
20793 {
20794 /* Pad with "finish" opcodes. */
20795 while (n--)
20796 data = (data << 8) | 0xb0;
20797
20798 md_number_to_chars (ptr, data, 4);
20799 }
20800
20801 if (!have_data)
20802 {
20803 /* Add an empty descriptor if there is no user-specified data. */
20804 ptr = frag_more (4);
20805 md_number_to_chars (ptr, 0, 4);
20806 }
20807
20808 return 0;
bfae80f2
RE
20809}
20810
f0927246
NC
20811
20812/* Initialize the DWARF-2 unwind information for this procedure. */
20813
20814void
20815tc_arm_frame_initial_instructions (void)
20816{
20817 cfi_add_CFA_def_cfa (REG_SP, 0);
20818}
20819#endif /* OBJ_ELF */
20820
c19d1205
ZW
20821/* Convert REGNAME to a DWARF-2 register number. */
20822
20823int
1df69f4f 20824tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20825{
1df69f4f 20826 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20827
20828 if (reg == FAIL)
20829 return -1;
20830
20831 return reg;
bfae80f2
RE
20832}
20833
f0927246 20834#ifdef TE_PE
c19d1205 20835void
f0927246 20836tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20837{
91d6fa6a 20838 expressionS exp;
bfae80f2 20839
91d6fa6a
NC
20840 exp.X_op = O_secrel;
20841 exp.X_add_symbol = symbol;
20842 exp.X_add_number = 0;
20843 emit_expr (&exp, size);
f0927246
NC
20844}
20845#endif
bfae80f2 20846
c19d1205 20847/* MD interface: Symbol and relocation handling. */
bfae80f2 20848
2fc8bdac
ZW
20849/* Return the address within the segment that a PC-relative fixup is
20850 relative to. For ARM, PC-relative fixups applied to instructions
20851 are generally relative to the location of the fixup plus 8 bytes.
20852 Thumb branches are offset by 4, and Thumb loads relative to PC
20853 require special handling. */
bfae80f2 20854
c19d1205 20855long
2fc8bdac 20856md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20857{
2fc8bdac
ZW
20858 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20859
20860 /* If this is pc-relative and we are going to emit a relocation
20861 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20862 will need. Otherwise we want to use the calculated base.
20863 For WinCE we skip the bias for externals as well, since this
20864 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20865 if (fixP->fx_pcrel
2fc8bdac 20866 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20867 || (arm_force_relocation (fixP)
20868#ifdef TE_WINCE
20869 && !S_IS_EXTERNAL (fixP->fx_addsy)
20870#endif
20871 )))
2fc8bdac 20872 base = 0;
bfae80f2 20873
267bf995 20874
c19d1205 20875 switch (fixP->fx_r_type)
bfae80f2 20876 {
2fc8bdac
ZW
20877 /* PC relative addressing on the Thumb is slightly odd as the
20878 bottom two bits of the PC are forced to zero for the
20879 calculation. This happens *after* application of the
20880 pipeline offset. However, Thumb adrl already adjusts for
20881 this, so we need not do it again. */
c19d1205 20882 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20883 return base & ~3;
c19d1205
ZW
20884
20885 case BFD_RELOC_ARM_THUMB_OFFSET:
20886 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20887 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20888 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20889 return (base + 4) & ~3;
c19d1205 20890
2fc8bdac
ZW
20891 /* Thumb branches are simply offset by +4. */
20892 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20893 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20894 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20895 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20896 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20897 return base + 4;
bfae80f2 20898
267bf995 20899 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20900 if (fixP->fx_addsy
20901 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20902 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20903 && ARM_IS_FUNC (fixP->fx_addsy)
20904 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20905 base = fixP->fx_where + fixP->fx_frag->fr_address;
20906 return base + 4;
20907
00adf2d4
JB
20908 /* BLX is like branches above, but forces the low two bits of PC to
20909 zero. */
486499d0
CL
20910 case BFD_RELOC_THUMB_PCREL_BLX:
20911 if (fixP->fx_addsy
20912 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20913 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20914 && THUMB_IS_FUNC (fixP->fx_addsy)
20915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20916 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
20917 return (base + 4) & ~3;
20918
2fc8bdac
ZW
20919 /* ARM mode branches are offset by +8. However, the Windows CE
20920 loader expects the relocation not to take this into account. */
267bf995 20921 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20922 if (fixP->fx_addsy
20923 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20924 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20925 && ARM_IS_FUNC (fixP->fx_addsy)
20926 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20927 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20928 return base + 8;
267bf995 20929
486499d0
CL
20930 case BFD_RELOC_ARM_PCREL_CALL:
20931 if (fixP->fx_addsy
20932 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20933 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20934 && THUMB_IS_FUNC (fixP->fx_addsy)
20935 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20936 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20937 return base + 8;
267bf995 20938
2fc8bdac 20939 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20940 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20941 case BFD_RELOC_ARM_PLT32:
c19d1205 20942#ifdef TE_WINCE
5f4273c7 20943 /* When handling fixups immediately, because we have already
53baae48
NC
20944 discovered the value of a symbol, or the address of the frag involved
20945 we must account for the offset by +8, as the OS loader will never see the reloc.
20946 see fixup_segment() in write.c
20947 The S_IS_EXTERNAL test handles the case of global symbols.
20948 Those need the calculated base, not just the pipe compensation the linker will need. */
20949 if (fixP->fx_pcrel
20950 && fixP->fx_addsy != NULL
20951 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20952 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20953 return base + 8;
2fc8bdac 20954 return base;
c19d1205 20955#else
2fc8bdac 20956 return base + 8;
c19d1205 20957#endif
2fc8bdac 20958
267bf995 20959
2fc8bdac
ZW
20960 /* ARM mode loads relative to PC are also offset by +8. Unlike
20961 branches, the Windows CE loader *does* expect the relocation
20962 to take this into account. */
20963 case BFD_RELOC_ARM_OFFSET_IMM:
20964 case BFD_RELOC_ARM_OFFSET_IMM8:
20965 case BFD_RELOC_ARM_HWLITERAL:
20966 case BFD_RELOC_ARM_LITERAL:
20967 case BFD_RELOC_ARM_CP_OFF_IMM:
20968 return base + 8;
20969
20970
20971 /* Other PC-relative relocations are un-offset. */
20972 default:
20973 return base;
20974 }
bfae80f2
RE
20975}
20976
c19d1205
ZW
20977/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20978 Otherwise we have no need to default values of symbols. */
20979
20980symbolS *
20981md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20982{
c19d1205
ZW
20983#ifdef OBJ_ELF
20984 if (name[0] == '_' && name[1] == 'G'
20985 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20986 {
20987 if (!GOT_symbol)
20988 {
20989 if (symbol_find (name))
bd3ba5d1 20990 as_bad (_("GOT already in the symbol table"));
bfae80f2 20991
c19d1205
ZW
20992 GOT_symbol = symbol_new (name, undefined_section,
20993 (valueT) 0, & zero_address_frag);
20994 }
bfae80f2 20995
c19d1205 20996 return GOT_symbol;
bfae80f2 20997 }
c19d1205 20998#endif
bfae80f2 20999
c921be7d 21000 return NULL;
bfae80f2
RE
21001}
21002
55cf6793 21003/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
21004 computed as two separate immediate values, added together. We
21005 already know that this value cannot be computed by just one ARM
21006 instruction. */
21007
21008static unsigned int
21009validate_immediate_twopart (unsigned int val,
21010 unsigned int * highpart)
bfae80f2 21011{
c19d1205
ZW
21012 unsigned int a;
21013 unsigned int i;
bfae80f2 21014
c19d1205
ZW
21015 for (i = 0; i < 32; i += 2)
21016 if (((a = rotate_left (val, i)) & 0xff) != 0)
21017 {
21018 if (a & 0xff00)
21019 {
21020 if (a & ~ 0xffff)
21021 continue;
21022 * highpart = (a >> 8) | ((i + 24) << 7);
21023 }
21024 else if (a & 0xff0000)
21025 {
21026 if (a & 0xff000000)
21027 continue;
21028 * highpart = (a >> 16) | ((i + 16) << 7);
21029 }
21030 else
21031 {
9c2799c2 21032 gas_assert (a & 0xff000000);
c19d1205
ZW
21033 * highpart = (a >> 24) | ((i + 8) << 7);
21034 }
bfae80f2 21035
c19d1205
ZW
21036 return (a & 0xff) | (i << 7);
21037 }
bfae80f2 21038
c19d1205 21039 return FAIL;
bfae80f2
RE
21040}
21041
c19d1205
ZW
21042static int
21043validate_offset_imm (unsigned int val, int hwse)
21044{
21045 if ((hwse && val > 255) || val > 4095)
21046 return FAIL;
21047 return val;
21048}
bfae80f2 21049
55cf6793 21050/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
21051 negative immediate constant by altering the instruction. A bit of
21052 a hack really.
21053 MOV <-> MVN
21054 AND <-> BIC
21055 ADC <-> SBC
21056 by inverting the second operand, and
21057 ADD <-> SUB
21058 CMP <-> CMN
21059 by negating the second operand. */
bfae80f2 21060
c19d1205
ZW
21061static int
21062negate_data_op (unsigned long * instruction,
21063 unsigned long value)
bfae80f2 21064{
c19d1205
ZW
21065 int op, new_inst;
21066 unsigned long negated, inverted;
bfae80f2 21067
c19d1205
ZW
21068 negated = encode_arm_immediate (-value);
21069 inverted = encode_arm_immediate (~value);
bfae80f2 21070
c19d1205
ZW
21071 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21072 switch (op)
bfae80f2 21073 {
c19d1205
ZW
21074 /* First negates. */
21075 case OPCODE_SUB: /* ADD <-> SUB */
21076 new_inst = OPCODE_ADD;
21077 value = negated;
21078 break;
bfae80f2 21079
c19d1205
ZW
21080 case OPCODE_ADD:
21081 new_inst = OPCODE_SUB;
21082 value = negated;
21083 break;
bfae80f2 21084
c19d1205
ZW
21085 case OPCODE_CMP: /* CMP <-> CMN */
21086 new_inst = OPCODE_CMN;
21087 value = negated;
21088 break;
bfae80f2 21089
c19d1205
ZW
21090 case OPCODE_CMN:
21091 new_inst = OPCODE_CMP;
21092 value = negated;
21093 break;
bfae80f2 21094
c19d1205
ZW
21095 /* Now Inverted ops. */
21096 case OPCODE_MOV: /* MOV <-> MVN */
21097 new_inst = OPCODE_MVN;
21098 value = inverted;
21099 break;
bfae80f2 21100
c19d1205
ZW
21101 case OPCODE_MVN:
21102 new_inst = OPCODE_MOV;
21103 value = inverted;
21104 break;
bfae80f2 21105
c19d1205
ZW
21106 case OPCODE_AND: /* AND <-> BIC */
21107 new_inst = OPCODE_BIC;
21108 value = inverted;
21109 break;
bfae80f2 21110
c19d1205
ZW
21111 case OPCODE_BIC:
21112 new_inst = OPCODE_AND;
21113 value = inverted;
21114 break;
bfae80f2 21115
c19d1205
ZW
21116 case OPCODE_ADC: /* ADC <-> SBC */
21117 new_inst = OPCODE_SBC;
21118 value = inverted;
21119 break;
bfae80f2 21120
c19d1205
ZW
21121 case OPCODE_SBC:
21122 new_inst = OPCODE_ADC;
21123 value = inverted;
21124 break;
bfae80f2 21125
c19d1205
ZW
21126 /* We cannot do anything. */
21127 default:
21128 return FAIL;
b99bd4ef
NC
21129 }
21130
c19d1205
ZW
21131 if (value == (unsigned) FAIL)
21132 return FAIL;
21133
21134 *instruction &= OPCODE_MASK;
21135 *instruction |= new_inst << DATA_OP_SHIFT;
21136 return value;
b99bd4ef
NC
21137}
21138
ef8d22e6
PB
21139/* Like negate_data_op, but for Thumb-2. */
21140
21141static unsigned int
16dd5e42 21142thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
21143{
21144 int op, new_inst;
21145 int rd;
16dd5e42 21146 unsigned int negated, inverted;
ef8d22e6
PB
21147
21148 negated = encode_thumb32_immediate (-value);
21149 inverted = encode_thumb32_immediate (~value);
21150
21151 rd = (*instruction >> 8) & 0xf;
21152 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21153 switch (op)
21154 {
21155 /* ADD <-> SUB. Includes CMP <-> CMN. */
21156 case T2_OPCODE_SUB:
21157 new_inst = T2_OPCODE_ADD;
21158 value = negated;
21159 break;
21160
21161 case T2_OPCODE_ADD:
21162 new_inst = T2_OPCODE_SUB;
21163 value = negated;
21164 break;
21165
21166 /* ORR <-> ORN. Includes MOV <-> MVN. */
21167 case T2_OPCODE_ORR:
21168 new_inst = T2_OPCODE_ORN;
21169 value = inverted;
21170 break;
21171
21172 case T2_OPCODE_ORN:
21173 new_inst = T2_OPCODE_ORR;
21174 value = inverted;
21175 break;
21176
21177 /* AND <-> BIC. TST has no inverted equivalent. */
21178 case T2_OPCODE_AND:
21179 new_inst = T2_OPCODE_BIC;
21180 if (rd == 15)
21181 value = FAIL;
21182 else
21183 value = inverted;
21184 break;
21185
21186 case T2_OPCODE_BIC:
21187 new_inst = T2_OPCODE_AND;
21188 value = inverted;
21189 break;
21190
21191 /* ADC <-> SBC */
21192 case T2_OPCODE_ADC:
21193 new_inst = T2_OPCODE_SBC;
21194 value = inverted;
21195 break;
21196
21197 case T2_OPCODE_SBC:
21198 new_inst = T2_OPCODE_ADC;
21199 value = inverted;
21200 break;
21201
21202 /* We cannot do anything. */
21203 default:
21204 return FAIL;
21205 }
21206
16dd5e42 21207 if (value == (unsigned int)FAIL)
ef8d22e6
PB
21208 return FAIL;
21209
21210 *instruction &= T2_OPCODE_MASK;
21211 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21212 return value;
21213}
21214
8f06b2d8
PB
21215/* Read a 32-bit thumb instruction from buf. */
21216static unsigned long
21217get_thumb32_insn (char * buf)
21218{
21219 unsigned long insn;
21220 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21221 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21222
21223 return insn;
21224}
21225
a8bc6c78
PB
21226
21227/* We usually want to set the low bit on the address of thumb function
21228 symbols. In particular .word foo - . should have the low bit set.
21229 Generic code tries to fold the difference of two symbols to
21230 a constant. Prevent this and force a relocation when the first symbols
21231 is a thumb function. */
c921be7d
NC
21232
21233bfd_boolean
a8bc6c78
PB
21234arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21235{
21236 if (op == O_subtract
21237 && l->X_op == O_symbol
21238 && r->X_op == O_symbol
21239 && THUMB_IS_FUNC (l->X_add_symbol))
21240 {
21241 l->X_op = O_subtract;
21242 l->X_op_symbol = r->X_add_symbol;
21243 l->X_add_number -= r->X_add_number;
c921be7d 21244 return TRUE;
a8bc6c78 21245 }
c921be7d 21246
a8bc6c78 21247 /* Process as normal. */
c921be7d 21248 return FALSE;
a8bc6c78
PB
21249}
21250
4a42ebbc
RR
21251/* Encode Thumb2 unconditional branches and calls. The encoding
21252 for the 2 are identical for the immediate values. */
21253
21254static void
21255encode_thumb2_b_bl_offset (char * buf, offsetT value)
21256{
21257#define T2I1I2MASK ((1 << 13) | (1 << 11))
21258 offsetT newval;
21259 offsetT newval2;
21260 addressT S, I1, I2, lo, hi;
21261
21262 S = (value >> 24) & 0x01;
21263 I1 = (value >> 23) & 0x01;
21264 I2 = (value >> 22) & 0x01;
21265 hi = (value >> 12) & 0x3ff;
fa94de6b 21266 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
21267 newval = md_chars_to_number (buf, THUMB_SIZE);
21268 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21269 newval |= (S << 10) | hi;
21270 newval2 &= ~T2I1I2MASK;
21271 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21272 md_number_to_chars (buf, newval, THUMB_SIZE);
21273 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21274}
21275
c19d1205 21276void
55cf6793 21277md_apply_fix (fixS * fixP,
c19d1205
ZW
21278 valueT * valP,
21279 segT seg)
21280{
21281 offsetT value = * valP;
21282 offsetT newval;
21283 unsigned int newimm;
21284 unsigned long temp;
21285 int sign;
21286 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 21287
9c2799c2 21288 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 21289
c19d1205 21290 /* Note whether this will delete the relocation. */
4962c51a 21291
c19d1205
ZW
21292 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21293 fixP->fx_done = 1;
b99bd4ef 21294
adbaf948 21295 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 21296 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
21297 for emit_reloc. */
21298 value &= 0xffffffff;
21299 value ^= 0x80000000;
5f4273c7 21300 value -= 0x80000000;
adbaf948
ZW
21301
21302 *valP = value;
c19d1205 21303 fixP->fx_addnumber = value;
b99bd4ef 21304
adbaf948
ZW
21305 /* Same treatment for fixP->fx_offset. */
21306 fixP->fx_offset &= 0xffffffff;
21307 fixP->fx_offset ^= 0x80000000;
21308 fixP->fx_offset -= 0x80000000;
21309
c19d1205 21310 switch (fixP->fx_r_type)
b99bd4ef 21311 {
c19d1205
ZW
21312 case BFD_RELOC_NONE:
21313 /* This will need to go in the object file. */
21314 fixP->fx_done = 0;
21315 break;
b99bd4ef 21316
c19d1205
ZW
21317 case BFD_RELOC_ARM_IMMEDIATE:
21318 /* We claim that this fixup has been processed here,
21319 even if in fact we generate an error because we do
21320 not have a reloc for it, so tc_gen_reloc will reject it. */
21321 fixP->fx_done = 1;
b99bd4ef 21322
77db8e2e 21323 if (fixP->fx_addsy)
b99bd4ef 21324 {
77db8e2e 21325 const char *msg = 0;
b99bd4ef 21326
77db8e2e
NC
21327 if (! S_IS_DEFINED (fixP->fx_addsy))
21328 msg = _("undefined symbol %s used as an immediate value");
21329 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21330 msg = _("symbol %s is in a different section");
21331 else if (S_IS_WEAK (fixP->fx_addsy))
21332 msg = _("symbol %s is weak and may be overridden later");
21333
21334 if (msg)
21335 {
21336 as_bad_where (fixP->fx_file, fixP->fx_line,
21337 msg, S_GET_NAME (fixP->fx_addsy));
21338 break;
21339 }
42e5fcbf
AS
21340 }
21341
c19d1205
ZW
21342 temp = md_chars_to_number (buf, INSN_SIZE);
21343
5e73442d
SL
21344 /* If the offset is negative, we should use encoding A2 for ADR. */
21345 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21346 newimm = negate_data_op (&temp, value);
21347 else
21348 {
21349 newimm = encode_arm_immediate (value);
21350
21351 /* If the instruction will fail, see if we can fix things up by
21352 changing the opcode. */
21353 if (newimm == (unsigned int) FAIL)
21354 newimm = negate_data_op (&temp, value);
21355 }
21356
21357 if (newimm == (unsigned int) FAIL)
b99bd4ef 21358 {
c19d1205
ZW
21359 as_bad_where (fixP->fx_file, fixP->fx_line,
21360 _("invalid constant (%lx) after fixup"),
21361 (unsigned long) value);
21362 break;
b99bd4ef 21363 }
b99bd4ef 21364
c19d1205
ZW
21365 newimm |= (temp & 0xfffff000);
21366 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21367 break;
b99bd4ef 21368
c19d1205
ZW
21369 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21370 {
21371 unsigned int highpart = 0;
21372 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 21373
77db8e2e 21374 if (fixP->fx_addsy)
42e5fcbf 21375 {
77db8e2e 21376 const char *msg = 0;
42e5fcbf 21377
77db8e2e
NC
21378 if (! S_IS_DEFINED (fixP->fx_addsy))
21379 msg = _("undefined symbol %s used as an immediate value");
21380 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21381 msg = _("symbol %s is in a different section");
21382 else if (S_IS_WEAK (fixP->fx_addsy))
21383 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 21384
77db8e2e
NC
21385 if (msg)
21386 {
21387 as_bad_where (fixP->fx_file, fixP->fx_line,
21388 msg, S_GET_NAME (fixP->fx_addsy));
21389 break;
21390 }
21391 }
fa94de6b 21392
c19d1205
ZW
21393 newimm = encode_arm_immediate (value);
21394 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 21395
c19d1205
ZW
21396 /* If the instruction will fail, see if we can fix things up by
21397 changing the opcode. */
21398 if (newimm == (unsigned int) FAIL
21399 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21400 {
21401 /* No ? OK - try using two ADD instructions to generate
21402 the value. */
21403 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 21404
c19d1205
ZW
21405 /* Yes - then make sure that the second instruction is
21406 also an add. */
21407 if (newimm != (unsigned int) FAIL)
21408 newinsn = temp;
21409 /* Still No ? Try using a negated value. */
21410 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21411 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21412 /* Otherwise - give up. */
21413 else
21414 {
21415 as_bad_where (fixP->fx_file, fixP->fx_line,
21416 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21417 (long) value);
21418 break;
21419 }
b99bd4ef 21420
c19d1205
ZW
21421 /* Replace the first operand in the 2nd instruction (which
21422 is the PC) with the destination register. We have
21423 already added in the PC in the first instruction and we
21424 do not want to do it again. */
21425 newinsn &= ~ 0xf0000;
21426 newinsn |= ((newinsn & 0x0f000) << 4);
21427 }
b99bd4ef 21428
c19d1205
ZW
21429 newimm |= (temp & 0xfffff000);
21430 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 21431
c19d1205
ZW
21432 highpart |= (newinsn & 0xfffff000);
21433 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21434 }
21435 break;
b99bd4ef 21436
c19d1205 21437 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21438 if (!fixP->fx_done && seg->use_rela_p)
21439 value = 0;
21440
c19d1205 21441 case BFD_RELOC_ARM_LITERAL:
26d97720 21442 sign = value > 0;
b99bd4ef 21443
c19d1205
ZW
21444 if (value < 0)
21445 value = - value;
b99bd4ef 21446
c19d1205 21447 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 21448 {
c19d1205
ZW
21449 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21450 as_bad_where (fixP->fx_file, fixP->fx_line,
21451 _("invalid literal constant: pool needs to be closer"));
21452 else
21453 as_bad_where (fixP->fx_file, fixP->fx_line,
21454 _("bad immediate value for offset (%ld)"),
21455 (long) value);
21456 break;
f03698e6
RE
21457 }
21458
c19d1205 21459 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21460 if (value == 0)
21461 newval &= 0xfffff000;
21462 else
21463 {
21464 newval &= 0xff7ff000;
21465 newval |= value | (sign ? INDEX_UP : 0);
21466 }
c19d1205
ZW
21467 md_number_to_chars (buf, newval, INSN_SIZE);
21468 break;
b99bd4ef 21469
c19d1205
ZW
21470 case BFD_RELOC_ARM_OFFSET_IMM8:
21471 case BFD_RELOC_ARM_HWLITERAL:
26d97720 21472 sign = value > 0;
b99bd4ef 21473
c19d1205
ZW
21474 if (value < 0)
21475 value = - value;
b99bd4ef 21476
c19d1205 21477 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 21478 {
c19d1205
ZW
21479 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21480 as_bad_where (fixP->fx_file, fixP->fx_line,
21481 _("invalid literal constant: pool needs to be closer"));
21482 else
f9d4405b 21483 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
21484 (long) value);
21485 break;
b99bd4ef
NC
21486 }
21487
c19d1205 21488 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21489 if (value == 0)
21490 newval &= 0xfffff0f0;
21491 else
21492 {
21493 newval &= 0xff7ff0f0;
21494 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21495 }
c19d1205
ZW
21496 md_number_to_chars (buf, newval, INSN_SIZE);
21497 break;
b99bd4ef 21498
c19d1205
ZW
21499 case BFD_RELOC_ARM_T32_OFFSET_U8:
21500 if (value < 0 || value > 1020 || value % 4 != 0)
21501 as_bad_where (fixP->fx_file, fixP->fx_line,
21502 _("bad immediate value for offset (%ld)"), (long) value);
21503 value /= 4;
b99bd4ef 21504
c19d1205 21505 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
21506 newval |= value;
21507 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21508 break;
b99bd4ef 21509
c19d1205
ZW
21510 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21511 /* This is a complicated relocation used for all varieties of Thumb32
21512 load/store instruction with immediate offset:
21513
21514 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21515 *4, optional writeback(W)
21516 (doubleword load/store)
21517
21518 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21519 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21520 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21521 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21522 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21523
21524 Uppercase letters indicate bits that are already encoded at
21525 this point. Lowercase letters are our problem. For the
21526 second block of instructions, the secondary opcode nybble
21527 (bits 8..11) is present, and bit 23 is zero, even if this is
21528 a PC-relative operation. */
21529 newval = md_chars_to_number (buf, THUMB_SIZE);
21530 newval <<= 16;
21531 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 21532
c19d1205 21533 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 21534 {
c19d1205
ZW
21535 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21536 if (value >= 0)
21537 newval |= (1 << 23);
21538 else
21539 value = -value;
21540 if (value % 4 != 0)
21541 {
21542 as_bad_where (fixP->fx_file, fixP->fx_line,
21543 _("offset not a multiple of 4"));
21544 break;
21545 }
21546 value /= 4;
216d22bc 21547 if (value > 0xff)
c19d1205
ZW
21548 {
21549 as_bad_where (fixP->fx_file, fixP->fx_line,
21550 _("offset out of range"));
21551 break;
21552 }
21553 newval &= ~0xff;
b99bd4ef 21554 }
c19d1205 21555 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 21556 {
c19d1205
ZW
21557 /* PC-relative, 12-bit offset. */
21558 if (value >= 0)
21559 newval |= (1 << 23);
21560 else
21561 value = -value;
216d22bc 21562 if (value > 0xfff)
c19d1205
ZW
21563 {
21564 as_bad_where (fixP->fx_file, fixP->fx_line,
21565 _("offset out of range"));
21566 break;
21567 }
21568 newval &= ~0xfff;
b99bd4ef 21569 }
c19d1205 21570 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 21571 {
c19d1205
ZW
21572 /* Writeback: 8-bit, +/- offset. */
21573 if (value >= 0)
21574 newval |= (1 << 9);
21575 else
21576 value = -value;
216d22bc 21577 if (value > 0xff)
c19d1205
ZW
21578 {
21579 as_bad_where (fixP->fx_file, fixP->fx_line,
21580 _("offset out of range"));
21581 break;
21582 }
21583 newval &= ~0xff;
b99bd4ef 21584 }
c19d1205 21585 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 21586 {
c19d1205 21587 /* T-instruction: positive 8-bit offset. */
216d22bc 21588 if (value < 0 || value > 0xff)
b99bd4ef 21589 {
c19d1205
ZW
21590 as_bad_where (fixP->fx_file, fixP->fx_line,
21591 _("offset out of range"));
21592 break;
b99bd4ef 21593 }
c19d1205
ZW
21594 newval &= ~0xff;
21595 newval |= value;
b99bd4ef
NC
21596 }
21597 else
b99bd4ef 21598 {
c19d1205
ZW
21599 /* Positive 12-bit or negative 8-bit offset. */
21600 int limit;
21601 if (value >= 0)
b99bd4ef 21602 {
c19d1205
ZW
21603 newval |= (1 << 23);
21604 limit = 0xfff;
21605 }
21606 else
21607 {
21608 value = -value;
21609 limit = 0xff;
21610 }
21611 if (value > limit)
21612 {
21613 as_bad_where (fixP->fx_file, fixP->fx_line,
21614 _("offset out of range"));
21615 break;
b99bd4ef 21616 }
c19d1205 21617 newval &= ~limit;
b99bd4ef 21618 }
b99bd4ef 21619
c19d1205
ZW
21620 newval |= value;
21621 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21622 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21623 break;
404ff6b5 21624
c19d1205
ZW
21625 case BFD_RELOC_ARM_SHIFT_IMM:
21626 newval = md_chars_to_number (buf, INSN_SIZE);
21627 if (((unsigned long) value) > 32
21628 || (value == 32
21629 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21630 {
21631 as_bad_where (fixP->fx_file, fixP->fx_line,
21632 _("shift expression is too large"));
21633 break;
21634 }
404ff6b5 21635
c19d1205
ZW
21636 if (value == 0)
21637 /* Shifts of zero must be done as lsl. */
21638 newval &= ~0x60;
21639 else if (value == 32)
21640 value = 0;
21641 newval &= 0xfffff07f;
21642 newval |= (value & 0x1f) << 7;
21643 md_number_to_chars (buf, newval, INSN_SIZE);
21644 break;
404ff6b5 21645
c19d1205 21646 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 21647 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 21648 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 21649 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
21650 /* We claim that this fixup has been processed here,
21651 even if in fact we generate an error because we do
21652 not have a reloc for it, so tc_gen_reloc will reject it. */
21653 fixP->fx_done = 1;
404ff6b5 21654
c19d1205
ZW
21655 if (fixP->fx_addsy
21656 && ! S_IS_DEFINED (fixP->fx_addsy))
21657 {
21658 as_bad_where (fixP->fx_file, fixP->fx_line,
21659 _("undefined symbol %s used as an immediate value"),
21660 S_GET_NAME (fixP->fx_addsy));
21661 break;
21662 }
404ff6b5 21663
c19d1205
ZW
21664 newval = md_chars_to_number (buf, THUMB_SIZE);
21665 newval <<= 16;
21666 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 21667
16805f35
PB
21668 newimm = FAIL;
21669 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21670 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
21671 {
21672 newimm = encode_thumb32_immediate (value);
21673 if (newimm == (unsigned int) FAIL)
21674 newimm = thumb32_negate_data_op (&newval, value);
21675 }
16805f35
PB
21676 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21677 && newimm == (unsigned int) FAIL)
92e90b6e 21678 {
16805f35
PB
21679 /* Turn add/sum into addw/subw. */
21680 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21681 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
21682 /* No flat 12-bit imm encoding for addsw/subsw. */
21683 if ((newval & 0x00100000) == 0)
e9f89963 21684 {
40f246e3
NC
21685 /* 12 bit immediate for addw/subw. */
21686 if (value < 0)
21687 {
21688 value = -value;
21689 newval ^= 0x00a00000;
21690 }
21691 if (value > 0xfff)
21692 newimm = (unsigned int) FAIL;
21693 else
21694 newimm = value;
e9f89963 21695 }
92e90b6e 21696 }
cc8a6dd0 21697
c19d1205 21698 if (newimm == (unsigned int)FAIL)
3631a3c8 21699 {
c19d1205
ZW
21700 as_bad_where (fixP->fx_file, fixP->fx_line,
21701 _("invalid constant (%lx) after fixup"),
21702 (unsigned long) value);
21703 break;
3631a3c8
NC
21704 }
21705
c19d1205
ZW
21706 newval |= (newimm & 0x800) << 15;
21707 newval |= (newimm & 0x700) << 4;
21708 newval |= (newimm & 0x0ff);
cc8a6dd0 21709
c19d1205
ZW
21710 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21711 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21712 break;
a737bd4d 21713
3eb17e6b 21714 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
21715 if (((unsigned long) value) > 0xffff)
21716 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 21717 _("invalid smc expression"));
2fc8bdac 21718 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21719 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21720 md_number_to_chars (buf, newval, INSN_SIZE);
21721 break;
a737bd4d 21722
90ec0d68
MGD
21723 case BFD_RELOC_ARM_HVC:
21724 if (((unsigned long) value) > 0xffff)
21725 as_bad_where (fixP->fx_file, fixP->fx_line,
21726 _("invalid hvc expression"));
21727 newval = md_chars_to_number (buf, INSN_SIZE);
21728 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21729 md_number_to_chars (buf, newval, INSN_SIZE);
21730 break;
21731
c19d1205 21732 case BFD_RELOC_ARM_SWI:
adbaf948 21733 if (fixP->tc_fix_data != 0)
c19d1205
ZW
21734 {
21735 if (((unsigned long) value) > 0xff)
21736 as_bad_where (fixP->fx_file, fixP->fx_line,
21737 _("invalid swi expression"));
2fc8bdac 21738 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
21739 newval |= value;
21740 md_number_to_chars (buf, newval, THUMB_SIZE);
21741 }
21742 else
21743 {
21744 if (((unsigned long) value) > 0x00ffffff)
21745 as_bad_where (fixP->fx_file, fixP->fx_line,
21746 _("invalid swi expression"));
2fc8bdac 21747 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21748 newval |= value;
21749 md_number_to_chars (buf, newval, INSN_SIZE);
21750 }
21751 break;
a737bd4d 21752
c19d1205
ZW
21753 case BFD_RELOC_ARM_MULTI:
21754 if (((unsigned long) value) > 0xffff)
21755 as_bad_where (fixP->fx_file, fixP->fx_line,
21756 _("invalid expression in load/store multiple"));
21757 newval = value | md_chars_to_number (buf, INSN_SIZE);
21758 md_number_to_chars (buf, newval, INSN_SIZE);
21759 break;
a737bd4d 21760
c19d1205 21761#ifdef OBJ_ELF
39b41c9c 21762 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
21763
21764 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21765 && fixP->fx_addsy
34e77a92 21766 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21767 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21768 && THUMB_IS_FUNC (fixP->fx_addsy))
21769 /* Flip the bl to blx. This is a simple flip
21770 bit here because we generate PCREL_CALL for
21771 unconditional bls. */
21772 {
21773 newval = md_chars_to_number (buf, INSN_SIZE);
21774 newval = newval | 0x10000000;
21775 md_number_to_chars (buf, newval, INSN_SIZE);
21776 temp = 1;
21777 fixP->fx_done = 1;
21778 }
39b41c9c
PB
21779 else
21780 temp = 3;
21781 goto arm_branch_common;
21782
21783 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
21784 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21785 && fixP->fx_addsy
34e77a92 21786 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21787 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21788 && THUMB_IS_FUNC (fixP->fx_addsy))
21789 {
21790 /* This would map to a bl<cond>, b<cond>,
21791 b<always> to a Thumb function. We
21792 need to force a relocation for this particular
21793 case. */
21794 newval = md_chars_to_number (buf, INSN_SIZE);
21795 fixP->fx_done = 0;
21796 }
21797
2fc8bdac 21798 case BFD_RELOC_ARM_PLT32:
c19d1205 21799#endif
39b41c9c
PB
21800 case BFD_RELOC_ARM_PCREL_BRANCH:
21801 temp = 3;
21802 goto arm_branch_common;
a737bd4d 21803
39b41c9c 21804 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 21805
39b41c9c 21806 temp = 1;
267bf995
RR
21807 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21808 && fixP->fx_addsy
34e77a92 21809 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21810 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21811 && ARM_IS_FUNC (fixP->fx_addsy))
21812 {
21813 /* Flip the blx to a bl and warn. */
21814 const char *name = S_GET_NAME (fixP->fx_addsy);
21815 newval = 0xeb000000;
21816 as_warn_where (fixP->fx_file, fixP->fx_line,
21817 _("blx to '%s' an ARM ISA state function changed to bl"),
21818 name);
21819 md_number_to_chars (buf, newval, INSN_SIZE);
21820 temp = 3;
21821 fixP->fx_done = 1;
21822 }
21823
21824#ifdef OBJ_ELF
21825 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21826 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21827#endif
21828
39b41c9c 21829 arm_branch_common:
c19d1205 21830 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21831 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21832 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21833 also be be clear. */
21834 if (value & temp)
c19d1205 21835 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21836 _("misaligned branch destination"));
21837 if ((value & (offsetT)0xfe000000) != (offsetT)0
21838 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21839 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21840
2fc8bdac 21841 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21842 {
2fc8bdac
ZW
21843 newval = md_chars_to_number (buf, INSN_SIZE);
21844 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21845 /* Set the H bit on BLX instructions. */
21846 if (temp == 1)
21847 {
21848 if (value & 2)
21849 newval |= 0x01000000;
21850 else
21851 newval &= ~0x01000000;
21852 }
2fc8bdac 21853 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21854 }
c19d1205 21855 break;
a737bd4d 21856
25fe350b
MS
21857 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21858 /* CBZ can only branch forward. */
a737bd4d 21859
738755b0
MS
21860 /* Attempts to use CBZ to branch to the next instruction
21861 (which, strictly speaking, are prohibited) will be turned into
21862 no-ops.
21863
21864 FIXME: It may be better to remove the instruction completely and
21865 perform relaxation. */
21866 if (value == -2)
2fc8bdac
ZW
21867 {
21868 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21869 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21870 md_number_to_chars (buf, newval, THUMB_SIZE);
21871 }
738755b0
MS
21872 else
21873 {
21874 if (value & ~0x7e)
08f10d51 21875 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21876
21877 if (fixP->fx_done || !seg->use_rela_p)
21878 {
21879 newval = md_chars_to_number (buf, THUMB_SIZE);
21880 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21881 md_number_to_chars (buf, newval, THUMB_SIZE);
21882 }
21883 }
c19d1205 21884 break;
a737bd4d 21885
c19d1205 21886 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21887 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21888 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21889
2fc8bdac
ZW
21890 if (fixP->fx_done || !seg->use_rela_p)
21891 {
21892 newval = md_chars_to_number (buf, THUMB_SIZE);
21893 newval |= (value & 0x1ff) >> 1;
21894 md_number_to_chars (buf, newval, THUMB_SIZE);
21895 }
c19d1205 21896 break;
a737bd4d 21897
c19d1205 21898 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21899 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21900 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21901
2fc8bdac
ZW
21902 if (fixP->fx_done || !seg->use_rela_p)
21903 {
21904 newval = md_chars_to_number (buf, THUMB_SIZE);
21905 newval |= (value & 0xfff) >> 1;
21906 md_number_to_chars (buf, newval, THUMB_SIZE);
21907 }
c19d1205 21908 break;
a737bd4d 21909
c19d1205 21910 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21911 if (fixP->fx_addsy
21912 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21913 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21914 && ARM_IS_FUNC (fixP->fx_addsy)
21915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21916 {
21917 /* Force a relocation for a branch 20 bits wide. */
21918 fixP->fx_done = 0;
21919 }
08f10d51 21920 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
21921 as_bad_where (fixP->fx_file, fixP->fx_line,
21922 _("conditional branch out of range"));
404ff6b5 21923
2fc8bdac
ZW
21924 if (fixP->fx_done || !seg->use_rela_p)
21925 {
21926 offsetT newval2;
21927 addressT S, J1, J2, lo, hi;
404ff6b5 21928
2fc8bdac
ZW
21929 S = (value & 0x00100000) >> 20;
21930 J2 = (value & 0x00080000) >> 19;
21931 J1 = (value & 0x00040000) >> 18;
21932 hi = (value & 0x0003f000) >> 12;
21933 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21934
2fc8bdac
ZW
21935 newval = md_chars_to_number (buf, THUMB_SIZE);
21936 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21937 newval |= (S << 10) | hi;
21938 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21939 md_number_to_chars (buf, newval, THUMB_SIZE);
21940 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21941 }
c19d1205 21942 break;
6c43fab6 21943
c19d1205 21944 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21945 /* If there is a blx from a thumb state function to
21946 another thumb function flip this to a bl and warn
21947 about it. */
21948
21949 if (fixP->fx_addsy
34e77a92 21950 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21951 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21952 && THUMB_IS_FUNC (fixP->fx_addsy))
21953 {
21954 const char *name = S_GET_NAME (fixP->fx_addsy);
21955 as_warn_where (fixP->fx_file, fixP->fx_line,
21956 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21957 name);
21958 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21959 newval = newval | 0x1000;
21960 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21961 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21962 fixP->fx_done = 1;
21963 }
21964
21965
21966 goto thumb_bl_common;
21967
c19d1205 21968 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21969 /* A bl from Thumb state ISA to an internal ARM state function
21970 is converted to a blx. */
21971 if (fixP->fx_addsy
21972 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21973 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21974 && ARM_IS_FUNC (fixP->fx_addsy)
21975 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21976 {
21977 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21978 newval = newval & ~0x1000;
21979 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21980 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21981 fixP->fx_done = 1;
21982 }
21983
21984 thumb_bl_common:
21985
21986#ifdef OBJ_ELF
2b2f5df9
NC
21987 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21988 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
267bf995
RR
21989 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21990#endif
21991
2fc8bdac
ZW
21992 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21993 /* For a BLX instruction, make sure that the relocation is rounded up
21994 to a word boundary. This follows the semantics of the instruction
21995 which specifies that bit 1 of the target address will come from bit
21996 1 of the base address. */
21997 value = (value + 1) & ~ 1;
404ff6b5 21998
2b2f5df9
NC
21999 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22000 {
22001 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22002 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22003 else if ((value & ~0x1ffffff)
22004 && ((value & ~0x1ffffff) != ~0x1ffffff))
22005 as_bad_where (fixP->fx_file, fixP->fx_line,
22006 _("Thumb2 branch out of range"));
22007 }
4a42ebbc
RR
22008
22009 if (fixP->fx_done || !seg->use_rela_p)
22010 encode_thumb2_b_bl_offset (buf, value);
22011
c19d1205 22012 break;
404ff6b5 22013
c19d1205 22014 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
22015 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22016 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 22017
2fc8bdac 22018 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 22019 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 22020
2fc8bdac 22021 break;
a737bd4d 22022
2fc8bdac
ZW
22023 case BFD_RELOC_8:
22024 if (fixP->fx_done || !seg->use_rela_p)
22025 md_number_to_chars (buf, value, 1);
c19d1205 22026 break;
a737bd4d 22027
c19d1205 22028 case BFD_RELOC_16:
2fc8bdac 22029 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 22030 md_number_to_chars (buf, value, 2);
c19d1205 22031 break;
a737bd4d 22032
c19d1205 22033#ifdef OBJ_ELF
0855e32b
NS
22034 case BFD_RELOC_ARM_TLS_CALL:
22035 case BFD_RELOC_ARM_THM_TLS_CALL:
22036 case BFD_RELOC_ARM_TLS_DESCSEQ:
22037 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22038 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22039 break;
22040
22041 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22042 case BFD_RELOC_ARM_TLS_GD32:
22043 case BFD_RELOC_ARM_TLS_LE32:
22044 case BFD_RELOC_ARM_TLS_IE32:
22045 case BFD_RELOC_ARM_TLS_LDM32:
22046 case BFD_RELOC_ARM_TLS_LDO32:
22047 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22048 /* fall through */
6c43fab6 22049
c19d1205
ZW
22050 case BFD_RELOC_ARM_GOT32:
22051 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
22052 if (fixP->fx_done || !seg->use_rela_p)
22053 md_number_to_chars (buf, 0, 4);
c19d1205 22054 break;
b43420e6
NC
22055
22056 case BFD_RELOC_ARM_GOT_PREL:
22057 if (fixP->fx_done || !seg->use_rela_p)
22058 md_number_to_chars (buf, value, 4);
22059 break;
22060
9a6f4e97
NS
22061 case BFD_RELOC_ARM_TARGET2:
22062 /* TARGET2 is not partial-inplace, so we need to write the
22063 addend here for REL targets, because it won't be written out
22064 during reloc processing later. */
22065 if (fixP->fx_done || !seg->use_rela_p)
22066 md_number_to_chars (buf, fixP->fx_offset, 4);
22067 break;
c19d1205 22068#endif
6c43fab6 22069
c19d1205
ZW
22070 case BFD_RELOC_RVA:
22071 case BFD_RELOC_32:
22072 case BFD_RELOC_ARM_TARGET1:
22073 case BFD_RELOC_ARM_ROSEGREL32:
22074 case BFD_RELOC_ARM_SBREL32:
22075 case BFD_RELOC_32_PCREL:
f0927246
NC
22076#ifdef TE_PE
22077 case BFD_RELOC_32_SECREL:
22078#endif
2fc8bdac 22079 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
22080#ifdef TE_WINCE
22081 /* For WinCE we only do this for pcrel fixups. */
22082 if (fixP->fx_done || fixP->fx_pcrel)
22083#endif
22084 md_number_to_chars (buf, value, 4);
c19d1205 22085 break;
6c43fab6 22086
c19d1205
ZW
22087#ifdef OBJ_ELF
22088 case BFD_RELOC_ARM_PREL31:
2fc8bdac 22089 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
22090 {
22091 newval = md_chars_to_number (buf, 4) & 0x80000000;
22092 if ((value ^ (value >> 1)) & 0x40000000)
22093 {
22094 as_bad_where (fixP->fx_file, fixP->fx_line,
22095 _("rel31 relocation overflow"));
22096 }
22097 newval |= value & 0x7fffffff;
22098 md_number_to_chars (buf, newval, 4);
22099 }
22100 break;
c19d1205 22101#endif
a737bd4d 22102
c19d1205 22103 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 22104 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
22105 if (value < -1023 || value > 1023 || (value & 3))
22106 as_bad_where (fixP->fx_file, fixP->fx_line,
22107 _("co-processor offset out of range"));
22108 cp_off_common:
26d97720 22109 sign = value > 0;
c19d1205
ZW
22110 if (value < 0)
22111 value = -value;
8f06b2d8
PB
22112 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22113 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22114 newval = md_chars_to_number (buf, INSN_SIZE);
22115 else
22116 newval = get_thumb32_insn (buf);
26d97720
NS
22117 if (value == 0)
22118 newval &= 0xffffff00;
22119 else
22120 {
22121 newval &= 0xff7fff00;
22122 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22123 }
8f06b2d8
PB
22124 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22125 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22126 md_number_to_chars (buf, newval, INSN_SIZE);
22127 else
22128 put_thumb32_insn (buf, newval);
c19d1205 22129 break;
a737bd4d 22130
c19d1205 22131 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 22132 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
22133 if (value < -255 || value > 255)
22134 as_bad_where (fixP->fx_file, fixP->fx_line,
22135 _("co-processor offset out of range"));
df7849c5 22136 value *= 4;
c19d1205 22137 goto cp_off_common;
6c43fab6 22138
c19d1205
ZW
22139 case BFD_RELOC_ARM_THUMB_OFFSET:
22140 newval = md_chars_to_number (buf, THUMB_SIZE);
22141 /* Exactly what ranges, and where the offset is inserted depends
22142 on the type of instruction, we can establish this from the
22143 top 4 bits. */
22144 switch (newval >> 12)
22145 {
22146 case 4: /* PC load. */
22147 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22148 forced to zero for these loads; md_pcrel_from has already
22149 compensated for this. */
22150 if (value & 3)
22151 as_bad_where (fixP->fx_file, fixP->fx_line,
22152 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
22153 (((unsigned long) fixP->fx_frag->fr_address
22154 + (unsigned long) fixP->fx_where) & ~3)
22155 + (unsigned long) value);
a737bd4d 22156
c19d1205
ZW
22157 if (value & ~0x3fc)
22158 as_bad_where (fixP->fx_file, fixP->fx_line,
22159 _("invalid offset, value too big (0x%08lX)"),
22160 (long) value);
a737bd4d 22161
c19d1205
ZW
22162 newval |= value >> 2;
22163 break;
a737bd4d 22164
c19d1205
ZW
22165 case 9: /* SP load/store. */
22166 if (value & ~0x3fc)
22167 as_bad_where (fixP->fx_file, fixP->fx_line,
22168 _("invalid offset, value too big (0x%08lX)"),
22169 (long) value);
22170 newval |= value >> 2;
22171 break;
6c43fab6 22172
c19d1205
ZW
22173 case 6: /* Word load/store. */
22174 if (value & ~0x7c)
22175 as_bad_where (fixP->fx_file, fixP->fx_line,
22176 _("invalid offset, value too big (0x%08lX)"),
22177 (long) value);
22178 newval |= value << 4; /* 6 - 2. */
22179 break;
a737bd4d 22180
c19d1205
ZW
22181 case 7: /* Byte load/store. */
22182 if (value & ~0x1f)
22183 as_bad_where (fixP->fx_file, fixP->fx_line,
22184 _("invalid offset, value too big (0x%08lX)"),
22185 (long) value);
22186 newval |= value << 6;
22187 break;
a737bd4d 22188
c19d1205
ZW
22189 case 8: /* Halfword load/store. */
22190 if (value & ~0x3e)
22191 as_bad_where (fixP->fx_file, fixP->fx_line,
22192 _("invalid offset, value too big (0x%08lX)"),
22193 (long) value);
22194 newval |= value << 5; /* 6 - 1. */
22195 break;
a737bd4d 22196
c19d1205
ZW
22197 default:
22198 as_bad_where (fixP->fx_file, fixP->fx_line,
22199 "Unable to process relocation for thumb opcode: %lx",
22200 (unsigned long) newval);
22201 break;
22202 }
22203 md_number_to_chars (buf, newval, THUMB_SIZE);
22204 break;
a737bd4d 22205
c19d1205
ZW
22206 case BFD_RELOC_ARM_THUMB_ADD:
22207 /* This is a complicated relocation, since we use it for all of
22208 the following immediate relocations:
a737bd4d 22209
c19d1205
ZW
22210 3bit ADD/SUB
22211 8bit ADD/SUB
22212 9bit ADD/SUB SP word-aligned
22213 10bit ADD PC/SP word-aligned
a737bd4d 22214
c19d1205
ZW
22215 The type of instruction being processed is encoded in the
22216 instruction field:
a737bd4d 22217
c19d1205
ZW
22218 0x8000 SUB
22219 0x00F0 Rd
22220 0x000F Rs
22221 */
22222 newval = md_chars_to_number (buf, THUMB_SIZE);
22223 {
22224 int rd = (newval >> 4) & 0xf;
22225 int rs = newval & 0xf;
22226 int subtract = !!(newval & 0x8000);
a737bd4d 22227
c19d1205
ZW
22228 /* Check for HI regs, only very restricted cases allowed:
22229 Adjusting SP, and using PC or SP to get an address. */
22230 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22231 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22232 as_bad_where (fixP->fx_file, fixP->fx_line,
22233 _("invalid Hi register with immediate"));
a737bd4d 22234
c19d1205
ZW
22235 /* If value is negative, choose the opposite instruction. */
22236 if (value < 0)
22237 {
22238 value = -value;
22239 subtract = !subtract;
22240 if (value < 0)
22241 as_bad_where (fixP->fx_file, fixP->fx_line,
22242 _("immediate value out of range"));
22243 }
a737bd4d 22244
c19d1205
ZW
22245 if (rd == REG_SP)
22246 {
22247 if (value & ~0x1fc)
22248 as_bad_where (fixP->fx_file, fixP->fx_line,
22249 _("invalid immediate for stack address calculation"));
22250 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22251 newval |= value >> 2;
22252 }
22253 else if (rs == REG_PC || rs == REG_SP)
22254 {
22255 if (subtract || value & ~0x3fc)
22256 as_bad_where (fixP->fx_file, fixP->fx_line,
22257 _("invalid immediate for address calculation (value = 0x%08lX)"),
22258 (unsigned long) value);
22259 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22260 newval |= rd << 8;
22261 newval |= value >> 2;
22262 }
22263 else if (rs == rd)
22264 {
22265 if (value & ~0xff)
22266 as_bad_where (fixP->fx_file, fixP->fx_line,
22267 _("immediate value out of range"));
22268 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22269 newval |= (rd << 8) | value;
22270 }
22271 else
22272 {
22273 if (value & ~0x7)
22274 as_bad_where (fixP->fx_file, fixP->fx_line,
22275 _("immediate value out of range"));
22276 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22277 newval |= rd | (rs << 3) | (value << 6);
22278 }
22279 }
22280 md_number_to_chars (buf, newval, THUMB_SIZE);
22281 break;
a737bd4d 22282
c19d1205
ZW
22283 case BFD_RELOC_ARM_THUMB_IMM:
22284 newval = md_chars_to_number (buf, THUMB_SIZE);
22285 if (value < 0 || value > 255)
22286 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 22287 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
22288 (long) value);
22289 newval |= value;
22290 md_number_to_chars (buf, newval, THUMB_SIZE);
22291 break;
a737bd4d 22292
c19d1205
ZW
22293 case BFD_RELOC_ARM_THUMB_SHIFT:
22294 /* 5bit shift value (0..32). LSL cannot take 32. */
22295 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22296 temp = newval & 0xf800;
22297 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22298 as_bad_where (fixP->fx_file, fixP->fx_line,
22299 _("invalid shift value: %ld"), (long) value);
22300 /* Shifts of zero must be encoded as LSL. */
22301 if (value == 0)
22302 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22303 /* Shifts of 32 are encoded as zero. */
22304 else if (value == 32)
22305 value = 0;
22306 newval |= value << 6;
22307 md_number_to_chars (buf, newval, THUMB_SIZE);
22308 break;
a737bd4d 22309
c19d1205
ZW
22310 case BFD_RELOC_VTABLE_INHERIT:
22311 case BFD_RELOC_VTABLE_ENTRY:
22312 fixP->fx_done = 0;
22313 return;
6c43fab6 22314
b6895b4f
PB
22315 case BFD_RELOC_ARM_MOVW:
22316 case BFD_RELOC_ARM_MOVT:
22317 case BFD_RELOC_ARM_THUMB_MOVW:
22318 case BFD_RELOC_ARM_THUMB_MOVT:
22319 if (fixP->fx_done || !seg->use_rela_p)
22320 {
22321 /* REL format relocations are limited to a 16-bit addend. */
22322 if (!fixP->fx_done)
22323 {
39623e12 22324 if (value < -0x8000 || value > 0x7fff)
b6895b4f 22325 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 22326 _("offset out of range"));
b6895b4f
PB
22327 }
22328 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22329 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22330 {
22331 value >>= 16;
22332 }
22333
22334 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22335 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22336 {
22337 newval = get_thumb32_insn (buf);
22338 newval &= 0xfbf08f00;
22339 newval |= (value & 0xf000) << 4;
22340 newval |= (value & 0x0800) << 15;
22341 newval |= (value & 0x0700) << 4;
22342 newval |= (value & 0x00ff);
22343 put_thumb32_insn (buf, newval);
22344 }
22345 else
22346 {
22347 newval = md_chars_to_number (buf, 4);
22348 newval &= 0xfff0f000;
22349 newval |= value & 0x0fff;
22350 newval |= (value & 0xf000) << 4;
22351 md_number_to_chars (buf, newval, 4);
22352 }
22353 }
22354 return;
22355
4962c51a
MS
22356 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22357 case BFD_RELOC_ARM_ALU_PC_G0:
22358 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22359 case BFD_RELOC_ARM_ALU_PC_G1:
22360 case BFD_RELOC_ARM_ALU_PC_G2:
22361 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22362 case BFD_RELOC_ARM_ALU_SB_G0:
22363 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22364 case BFD_RELOC_ARM_ALU_SB_G1:
22365 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 22366 gas_assert (!fixP->fx_done);
4962c51a
MS
22367 if (!seg->use_rela_p)
22368 {
22369 bfd_vma insn;
22370 bfd_vma encoded_addend;
22371 bfd_vma addend_abs = abs (value);
22372
22373 /* Check that the absolute value of the addend can be
22374 expressed as an 8-bit constant plus a rotation. */
22375 encoded_addend = encode_arm_immediate (addend_abs);
22376 if (encoded_addend == (unsigned int) FAIL)
22377 as_bad_where (fixP->fx_file, fixP->fx_line,
22378 _("the offset 0x%08lX is not representable"),
495bde8e 22379 (unsigned long) addend_abs);
4962c51a
MS
22380
22381 /* Extract the instruction. */
22382 insn = md_chars_to_number (buf, INSN_SIZE);
22383
22384 /* If the addend is positive, use an ADD instruction.
22385 Otherwise use a SUB. Take care not to destroy the S bit. */
22386 insn &= 0xff1fffff;
22387 if (value < 0)
22388 insn |= 1 << 22;
22389 else
22390 insn |= 1 << 23;
22391
22392 /* Place the encoded addend into the first 12 bits of the
22393 instruction. */
22394 insn &= 0xfffff000;
22395 insn |= encoded_addend;
5f4273c7
NC
22396
22397 /* Update the instruction. */
4962c51a
MS
22398 md_number_to_chars (buf, insn, INSN_SIZE);
22399 }
22400 break;
22401
22402 case BFD_RELOC_ARM_LDR_PC_G0:
22403 case BFD_RELOC_ARM_LDR_PC_G1:
22404 case BFD_RELOC_ARM_LDR_PC_G2:
22405 case BFD_RELOC_ARM_LDR_SB_G0:
22406 case BFD_RELOC_ARM_LDR_SB_G1:
22407 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 22408 gas_assert (!fixP->fx_done);
4962c51a
MS
22409 if (!seg->use_rela_p)
22410 {
22411 bfd_vma insn;
22412 bfd_vma addend_abs = abs (value);
22413
22414 /* Check that the absolute value of the addend can be
22415 encoded in 12 bits. */
22416 if (addend_abs >= 0x1000)
22417 as_bad_where (fixP->fx_file, fixP->fx_line,
22418 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 22419 (unsigned long) addend_abs);
4962c51a
MS
22420
22421 /* Extract the instruction. */
22422 insn = md_chars_to_number (buf, INSN_SIZE);
22423
22424 /* If the addend is negative, clear bit 23 of the instruction.
22425 Otherwise set it. */
22426 if (value < 0)
22427 insn &= ~(1 << 23);
22428 else
22429 insn |= 1 << 23;
22430
22431 /* Place the absolute value of the addend into the first 12 bits
22432 of the instruction. */
22433 insn &= 0xfffff000;
22434 insn |= addend_abs;
5f4273c7
NC
22435
22436 /* Update the instruction. */
4962c51a
MS
22437 md_number_to_chars (buf, insn, INSN_SIZE);
22438 }
22439 break;
22440
22441 case BFD_RELOC_ARM_LDRS_PC_G0:
22442 case BFD_RELOC_ARM_LDRS_PC_G1:
22443 case BFD_RELOC_ARM_LDRS_PC_G2:
22444 case BFD_RELOC_ARM_LDRS_SB_G0:
22445 case BFD_RELOC_ARM_LDRS_SB_G1:
22446 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 22447 gas_assert (!fixP->fx_done);
4962c51a
MS
22448 if (!seg->use_rela_p)
22449 {
22450 bfd_vma insn;
22451 bfd_vma addend_abs = abs (value);
22452
22453 /* Check that the absolute value of the addend can be
22454 encoded in 8 bits. */
22455 if (addend_abs >= 0x100)
22456 as_bad_where (fixP->fx_file, fixP->fx_line,
22457 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 22458 (unsigned long) addend_abs);
4962c51a
MS
22459
22460 /* Extract the instruction. */
22461 insn = md_chars_to_number (buf, INSN_SIZE);
22462
22463 /* If the addend is negative, clear bit 23 of the instruction.
22464 Otherwise set it. */
22465 if (value < 0)
22466 insn &= ~(1 << 23);
22467 else
22468 insn |= 1 << 23;
22469
22470 /* Place the first four bits of the absolute value of the addend
22471 into the first 4 bits of the instruction, and the remaining
22472 four into bits 8 .. 11. */
22473 insn &= 0xfffff0f0;
22474 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
22475
22476 /* Update the instruction. */
4962c51a
MS
22477 md_number_to_chars (buf, insn, INSN_SIZE);
22478 }
22479 break;
22480
22481 case BFD_RELOC_ARM_LDC_PC_G0:
22482 case BFD_RELOC_ARM_LDC_PC_G1:
22483 case BFD_RELOC_ARM_LDC_PC_G2:
22484 case BFD_RELOC_ARM_LDC_SB_G0:
22485 case BFD_RELOC_ARM_LDC_SB_G1:
22486 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 22487 gas_assert (!fixP->fx_done);
4962c51a
MS
22488 if (!seg->use_rela_p)
22489 {
22490 bfd_vma insn;
22491 bfd_vma addend_abs = abs (value);
22492
22493 /* Check that the absolute value of the addend is a multiple of
22494 four and, when divided by four, fits in 8 bits. */
22495 if (addend_abs & 0x3)
22496 as_bad_where (fixP->fx_file, fixP->fx_line,
22497 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 22498 (unsigned long) addend_abs);
4962c51a
MS
22499
22500 if ((addend_abs >> 2) > 0xff)
22501 as_bad_where (fixP->fx_file, fixP->fx_line,
22502 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 22503 (unsigned long) addend_abs);
4962c51a
MS
22504
22505 /* Extract the instruction. */
22506 insn = md_chars_to_number (buf, INSN_SIZE);
22507
22508 /* If the addend is negative, clear bit 23 of the instruction.
22509 Otherwise set it. */
22510 if (value < 0)
22511 insn &= ~(1 << 23);
22512 else
22513 insn |= 1 << 23;
22514
22515 /* Place the addend (divided by four) into the first eight
22516 bits of the instruction. */
22517 insn &= 0xfffffff0;
22518 insn |= addend_abs >> 2;
5f4273c7
NC
22519
22520 /* Update the instruction. */
4962c51a
MS
22521 md_number_to_chars (buf, insn, INSN_SIZE);
22522 }
22523 break;
22524
845b51d6
PB
22525 case BFD_RELOC_ARM_V4BX:
22526 /* This will need to go in the object file. */
22527 fixP->fx_done = 0;
22528 break;
22529
c19d1205
ZW
22530 case BFD_RELOC_UNUSED:
22531 default:
22532 as_bad_where (fixP->fx_file, fixP->fx_line,
22533 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22534 }
6c43fab6
RE
22535}
22536
c19d1205
ZW
22537/* Translate internal representation of relocation info to BFD target
22538 format. */
a737bd4d 22539
c19d1205 22540arelent *
00a97672 22541tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 22542{
c19d1205
ZW
22543 arelent * reloc;
22544 bfd_reloc_code_real_type code;
a737bd4d 22545
21d799b5 22546 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 22547
21d799b5 22548 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
22549 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22550 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 22551
2fc8bdac 22552 if (fixp->fx_pcrel)
00a97672
RS
22553 {
22554 if (section->use_rela_p)
22555 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22556 else
22557 fixp->fx_offset = reloc->address;
22558 }
c19d1205 22559 reloc->addend = fixp->fx_offset;
a737bd4d 22560
c19d1205 22561 switch (fixp->fx_r_type)
a737bd4d 22562 {
c19d1205
ZW
22563 case BFD_RELOC_8:
22564 if (fixp->fx_pcrel)
22565 {
22566 code = BFD_RELOC_8_PCREL;
22567 break;
22568 }
a737bd4d 22569
c19d1205
ZW
22570 case BFD_RELOC_16:
22571 if (fixp->fx_pcrel)
22572 {
22573 code = BFD_RELOC_16_PCREL;
22574 break;
22575 }
6c43fab6 22576
c19d1205
ZW
22577 case BFD_RELOC_32:
22578 if (fixp->fx_pcrel)
22579 {
22580 code = BFD_RELOC_32_PCREL;
22581 break;
22582 }
a737bd4d 22583
b6895b4f
PB
22584 case BFD_RELOC_ARM_MOVW:
22585 if (fixp->fx_pcrel)
22586 {
22587 code = BFD_RELOC_ARM_MOVW_PCREL;
22588 break;
22589 }
22590
22591 case BFD_RELOC_ARM_MOVT:
22592 if (fixp->fx_pcrel)
22593 {
22594 code = BFD_RELOC_ARM_MOVT_PCREL;
22595 break;
22596 }
22597
22598 case BFD_RELOC_ARM_THUMB_MOVW:
22599 if (fixp->fx_pcrel)
22600 {
22601 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22602 break;
22603 }
22604
22605 case BFD_RELOC_ARM_THUMB_MOVT:
22606 if (fixp->fx_pcrel)
22607 {
22608 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22609 break;
22610 }
22611
c19d1205
ZW
22612 case BFD_RELOC_NONE:
22613 case BFD_RELOC_ARM_PCREL_BRANCH:
22614 case BFD_RELOC_ARM_PCREL_BLX:
22615 case BFD_RELOC_RVA:
22616 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22617 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22618 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22619 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22620 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22621 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
22622 case BFD_RELOC_VTABLE_ENTRY:
22623 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
22624#ifdef TE_PE
22625 case BFD_RELOC_32_SECREL:
22626#endif
c19d1205
ZW
22627 code = fixp->fx_r_type;
22628 break;
a737bd4d 22629
00adf2d4
JB
22630 case BFD_RELOC_THUMB_PCREL_BLX:
22631#ifdef OBJ_ELF
22632 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22633 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22634 else
22635#endif
22636 code = BFD_RELOC_THUMB_PCREL_BLX;
22637 break;
22638
c19d1205
ZW
22639 case BFD_RELOC_ARM_LITERAL:
22640 case BFD_RELOC_ARM_HWLITERAL:
22641 /* If this is called then the a literal has
22642 been referenced across a section boundary. */
22643 as_bad_where (fixp->fx_file, fixp->fx_line,
22644 _("literal referenced across section boundary"));
22645 return NULL;
a737bd4d 22646
c19d1205 22647#ifdef OBJ_ELF
0855e32b
NS
22648 case BFD_RELOC_ARM_TLS_CALL:
22649 case BFD_RELOC_ARM_THM_TLS_CALL:
22650 case BFD_RELOC_ARM_TLS_DESCSEQ:
22651 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
22652 case BFD_RELOC_ARM_GOT32:
22653 case BFD_RELOC_ARM_GOTOFF:
b43420e6 22654 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
22655 case BFD_RELOC_ARM_PLT32:
22656 case BFD_RELOC_ARM_TARGET1:
22657 case BFD_RELOC_ARM_ROSEGREL32:
22658 case BFD_RELOC_ARM_SBREL32:
22659 case BFD_RELOC_ARM_PREL31:
22660 case BFD_RELOC_ARM_TARGET2:
22661 case BFD_RELOC_ARM_TLS_LE32:
22662 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
22663 case BFD_RELOC_ARM_PCREL_CALL:
22664 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
22665 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22666 case BFD_RELOC_ARM_ALU_PC_G0:
22667 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22668 case BFD_RELOC_ARM_ALU_PC_G1:
22669 case BFD_RELOC_ARM_ALU_PC_G2:
22670 case BFD_RELOC_ARM_LDR_PC_G0:
22671 case BFD_RELOC_ARM_LDR_PC_G1:
22672 case BFD_RELOC_ARM_LDR_PC_G2:
22673 case BFD_RELOC_ARM_LDRS_PC_G0:
22674 case BFD_RELOC_ARM_LDRS_PC_G1:
22675 case BFD_RELOC_ARM_LDRS_PC_G2:
22676 case BFD_RELOC_ARM_LDC_PC_G0:
22677 case BFD_RELOC_ARM_LDC_PC_G1:
22678 case BFD_RELOC_ARM_LDC_PC_G2:
22679 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22680 case BFD_RELOC_ARM_ALU_SB_G0:
22681 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22682 case BFD_RELOC_ARM_ALU_SB_G1:
22683 case BFD_RELOC_ARM_ALU_SB_G2:
22684 case BFD_RELOC_ARM_LDR_SB_G0:
22685 case BFD_RELOC_ARM_LDR_SB_G1:
22686 case BFD_RELOC_ARM_LDR_SB_G2:
22687 case BFD_RELOC_ARM_LDRS_SB_G0:
22688 case BFD_RELOC_ARM_LDRS_SB_G1:
22689 case BFD_RELOC_ARM_LDRS_SB_G2:
22690 case BFD_RELOC_ARM_LDC_SB_G0:
22691 case BFD_RELOC_ARM_LDC_SB_G1:
22692 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 22693 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
22694 code = fixp->fx_r_type;
22695 break;
a737bd4d 22696
0855e32b 22697 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22698 case BFD_RELOC_ARM_TLS_GD32:
22699 case BFD_RELOC_ARM_TLS_IE32:
22700 case BFD_RELOC_ARM_TLS_LDM32:
22701 /* BFD will include the symbol's address in the addend.
22702 But we don't want that, so subtract it out again here. */
22703 if (!S_IS_COMMON (fixp->fx_addsy))
22704 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22705 code = fixp->fx_r_type;
22706 break;
22707#endif
a737bd4d 22708
c19d1205
ZW
22709 case BFD_RELOC_ARM_IMMEDIATE:
22710 as_bad_where (fixp->fx_file, fixp->fx_line,
22711 _("internal relocation (type: IMMEDIATE) not fixed up"));
22712 return NULL;
a737bd4d 22713
c19d1205
ZW
22714 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22715 as_bad_where (fixp->fx_file, fixp->fx_line,
22716 _("ADRL used for a symbol not defined in the same file"));
22717 return NULL;
a737bd4d 22718
c19d1205 22719 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
22720 if (section->use_rela_p)
22721 {
22722 code = fixp->fx_r_type;
22723 break;
22724 }
22725
c19d1205
ZW
22726 if (fixp->fx_addsy != NULL
22727 && !S_IS_DEFINED (fixp->fx_addsy)
22728 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 22729 {
c19d1205
ZW
22730 as_bad_where (fixp->fx_file, fixp->fx_line,
22731 _("undefined local label `%s'"),
22732 S_GET_NAME (fixp->fx_addsy));
22733 return NULL;
a737bd4d
NC
22734 }
22735
c19d1205
ZW
22736 as_bad_where (fixp->fx_file, fixp->fx_line,
22737 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22738 return NULL;
a737bd4d 22739
c19d1205
ZW
22740 default:
22741 {
22742 char * type;
6c43fab6 22743
c19d1205
ZW
22744 switch (fixp->fx_r_type)
22745 {
22746 case BFD_RELOC_NONE: type = "NONE"; break;
22747 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22748 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 22749 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
22750 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22751 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22752 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 22753 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 22754 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
22755 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22756 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22757 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22758 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22759 default: type = _("<unknown>"); break;
22760 }
22761 as_bad_where (fixp->fx_file, fixp->fx_line,
22762 _("cannot represent %s relocation in this object file format"),
22763 type);
22764 return NULL;
22765 }
a737bd4d 22766 }
6c43fab6 22767
c19d1205
ZW
22768#ifdef OBJ_ELF
22769 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22770 && GOT_symbol
22771 && fixp->fx_addsy == GOT_symbol)
22772 {
22773 code = BFD_RELOC_ARM_GOTPC;
22774 reloc->addend = fixp->fx_offset = reloc->address;
22775 }
22776#endif
6c43fab6 22777
c19d1205 22778 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 22779
c19d1205
ZW
22780 if (reloc->howto == NULL)
22781 {
22782 as_bad_where (fixp->fx_file, fixp->fx_line,
22783 _("cannot represent %s relocation in this object file format"),
22784 bfd_get_reloc_code_name (code));
22785 return NULL;
22786 }
6c43fab6 22787
c19d1205
ZW
22788 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22789 vtable entry to be used in the relocation's section offset. */
22790 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22791 reloc->address = fixp->fx_offset;
6c43fab6 22792
c19d1205 22793 return reloc;
6c43fab6
RE
22794}
22795
c19d1205 22796/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 22797
c19d1205
ZW
22798void
22799cons_fix_new_arm (fragS * frag,
22800 int where,
22801 int size,
22802 expressionS * exp)
6c43fab6 22803{
c19d1205
ZW
22804 bfd_reloc_code_real_type type;
22805 int pcrel = 0;
6c43fab6 22806
c19d1205
ZW
22807 /* Pick a reloc.
22808 FIXME: @@ Should look at CPU word size. */
22809 switch (size)
22810 {
22811 case 1:
22812 type = BFD_RELOC_8;
22813 break;
22814 case 2:
22815 type = BFD_RELOC_16;
22816 break;
22817 case 4:
22818 default:
22819 type = BFD_RELOC_32;
22820 break;
22821 case 8:
22822 type = BFD_RELOC_64;
22823 break;
22824 }
6c43fab6 22825
f0927246
NC
22826#ifdef TE_PE
22827 if (exp->X_op == O_secrel)
22828 {
22829 exp->X_op = O_symbol;
22830 type = BFD_RELOC_32_SECREL;
22831 }
22832#endif
22833
c19d1205
ZW
22834 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22835}
6c43fab6 22836
4343666d 22837#if defined (OBJ_COFF)
c19d1205
ZW
22838void
22839arm_validate_fix (fixS * fixP)
6c43fab6 22840{
c19d1205
ZW
22841 /* If the destination of the branch is a defined symbol which does not have
22842 the THUMB_FUNC attribute, then we must be calling a function which has
22843 the (interfacearm) attribute. We look for the Thumb entry point to that
22844 function and change the branch to refer to that function instead. */
22845 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22846 && fixP->fx_addsy != NULL
22847 && S_IS_DEFINED (fixP->fx_addsy)
22848 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22849 {
c19d1205 22850 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22851 }
c19d1205
ZW
22852}
22853#endif
6c43fab6 22854
267bf995 22855
c19d1205
ZW
22856int
22857arm_force_relocation (struct fix * fixp)
22858{
22859#if defined (OBJ_COFF) && defined (TE_PE)
22860 if (fixp->fx_r_type == BFD_RELOC_RVA)
22861 return 1;
22862#endif
6c43fab6 22863
267bf995
RR
22864 /* In case we have a call or a branch to a function in ARM ISA mode from
22865 a thumb function or vice-versa force the relocation. These relocations
22866 are cleared off for some cores that might have blx and simple transformations
22867 are possible. */
22868
22869#ifdef OBJ_ELF
22870 switch (fixp->fx_r_type)
22871 {
22872 case BFD_RELOC_ARM_PCREL_JUMP:
22873 case BFD_RELOC_ARM_PCREL_CALL:
22874 case BFD_RELOC_THUMB_PCREL_BLX:
22875 if (THUMB_IS_FUNC (fixp->fx_addsy))
22876 return 1;
22877 break;
22878
22879 case BFD_RELOC_ARM_PCREL_BLX:
22880 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22881 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22882 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22883 if (ARM_IS_FUNC (fixp->fx_addsy))
22884 return 1;
22885 break;
22886
22887 default:
22888 break;
22889 }
22890#endif
22891
b5884301
PB
22892 /* Resolve these relocations even if the symbol is extern or weak.
22893 Technically this is probably wrong due to symbol preemption.
22894 In practice these relocations do not have enough range to be useful
22895 at dynamic link time, and some code (e.g. in the Linux kernel)
22896 expects these references to be resolved. */
c19d1205
ZW
22897 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22898 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22899 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22900 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22901 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22902 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22903 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22904 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22905 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22906 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22907 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22908 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22909 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22910 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22911 return 0;
a737bd4d 22912
4962c51a
MS
22913 /* Always leave these relocations for the linker. */
22914 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22915 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22916 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22917 return 1;
22918
f0291e4c
PB
22919 /* Always generate relocations against function symbols. */
22920 if (fixp->fx_r_type == BFD_RELOC_32
22921 && fixp->fx_addsy
22922 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22923 return 1;
22924
c19d1205 22925 return generic_force_reloc (fixp);
404ff6b5
AH
22926}
22927
0ffdc86c 22928#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22929/* Relocations against function names must be left unadjusted,
22930 so that the linker can use this information to generate interworking
22931 stubs. The MIPS version of this function
c19d1205
ZW
22932 also prevents relocations that are mips-16 specific, but I do not
22933 know why it does this.
404ff6b5 22934
c19d1205
ZW
22935 FIXME:
22936 There is one other problem that ought to be addressed here, but
22937 which currently is not: Taking the address of a label (rather
22938 than a function) and then later jumping to that address. Such
22939 addresses also ought to have their bottom bit set (assuming that
22940 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22941
c19d1205
ZW
22942bfd_boolean
22943arm_fix_adjustable (fixS * fixP)
404ff6b5 22944{
c19d1205
ZW
22945 if (fixP->fx_addsy == NULL)
22946 return 1;
404ff6b5 22947
e28387c3
PB
22948 /* Preserve relocations against symbols with function type. */
22949 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22950 return FALSE;
e28387c3 22951
c19d1205
ZW
22952 if (THUMB_IS_FUNC (fixP->fx_addsy)
22953 && fixP->fx_subsy == NULL)
c921be7d 22954 return FALSE;
a737bd4d 22955
c19d1205
ZW
22956 /* We need the symbol name for the VTABLE entries. */
22957 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22959 return FALSE;
404ff6b5 22960
c19d1205
ZW
22961 /* Don't allow symbols to be discarded on GOT related relocs. */
22962 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22963 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22964 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22965 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22966 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22967 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22968 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22969 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22970 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22971 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22972 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22973 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22974 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22975 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22976 return FALSE;
a737bd4d 22977
4962c51a
MS
22978 /* Similarly for group relocations. */
22979 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22980 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22981 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22982 return FALSE;
4962c51a 22983
79947c54
CD
22984 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22985 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22986 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22987 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22988 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22989 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22990 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22991 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22992 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22993 return FALSE;
79947c54 22994
c921be7d 22995 return TRUE;
a737bd4d 22996}
0ffdc86c
NC
22997#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22998
22999#ifdef OBJ_ELF
404ff6b5 23000
c19d1205
ZW
23001const char *
23002elf32_arm_target_format (void)
404ff6b5 23003{
c19d1205
ZW
23004#ifdef TE_SYMBIAN
23005 return (target_big_endian
23006 ? "elf32-bigarm-symbian"
23007 : "elf32-littlearm-symbian");
23008#elif defined (TE_VXWORKS)
23009 return (target_big_endian
23010 ? "elf32-bigarm-vxworks"
23011 : "elf32-littlearm-vxworks");
b38cadfb
NC
23012#elif defined (TE_NACL)
23013 return (target_big_endian
23014 ? "elf32-bigarm-nacl"
23015 : "elf32-littlearm-nacl");
c19d1205
ZW
23016#else
23017 if (target_big_endian)
23018 return "elf32-bigarm";
23019 else
23020 return "elf32-littlearm";
23021#endif
404ff6b5
AH
23022}
23023
c19d1205
ZW
23024void
23025armelf_frob_symbol (symbolS * symp,
23026 int * puntp)
404ff6b5 23027{
c19d1205
ZW
23028 elf_frob_symbol (symp, puntp);
23029}
23030#endif
404ff6b5 23031
c19d1205 23032/* MD interface: Finalization. */
a737bd4d 23033
c19d1205
ZW
23034void
23035arm_cleanup (void)
23036{
23037 literal_pool * pool;
a737bd4d 23038
e07e6e58
NC
23039 /* Ensure that all the IT blocks are properly closed. */
23040 check_it_blocks_finished ();
23041
c19d1205
ZW
23042 for (pool = list_of_pools; pool; pool = pool->next)
23043 {
5f4273c7 23044 /* Put it at the end of the relevant section. */
c19d1205
ZW
23045 subseg_set (pool->section, pool->sub_section);
23046#ifdef OBJ_ELF
23047 arm_elf_change_section ();
23048#endif
23049 s_ltorg (0);
23050 }
404ff6b5
AH
23051}
23052
cd000bff
DJ
23053#ifdef OBJ_ELF
23054/* Remove any excess mapping symbols generated for alignment frags in
23055 SEC. We may have created a mapping symbol before a zero byte
23056 alignment; remove it if there's a mapping symbol after the
23057 alignment. */
23058static void
23059check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23060 void *dummy ATTRIBUTE_UNUSED)
23061{
23062 segment_info_type *seginfo = seg_info (sec);
23063 fragS *fragp;
23064
23065 if (seginfo == NULL || seginfo->frchainP == NULL)
23066 return;
23067
23068 for (fragp = seginfo->frchainP->frch_root;
23069 fragp != NULL;
23070 fragp = fragp->fr_next)
23071 {
23072 symbolS *sym = fragp->tc_frag_data.last_map;
23073 fragS *next = fragp->fr_next;
23074
23075 /* Variable-sized frags have been converted to fixed size by
23076 this point. But if this was variable-sized to start with,
23077 there will be a fixed-size frag after it. So don't handle
23078 next == NULL. */
23079 if (sym == NULL || next == NULL)
23080 continue;
23081
23082 if (S_GET_VALUE (sym) < next->fr_address)
23083 /* Not at the end of this frag. */
23084 continue;
23085 know (S_GET_VALUE (sym) == next->fr_address);
23086
23087 do
23088 {
23089 if (next->tc_frag_data.first_map != NULL)
23090 {
23091 /* Next frag starts with a mapping symbol. Discard this
23092 one. */
23093 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23094 break;
23095 }
23096
23097 if (next->fr_next == NULL)
23098 {
23099 /* This mapping symbol is at the end of the section. Discard
23100 it. */
23101 know (next->fr_fix == 0 && next->fr_var == 0);
23102 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23103 break;
23104 }
23105
23106 /* As long as we have empty frags without any mapping symbols,
23107 keep looking. */
23108 /* If the next frag is non-empty and does not start with a
23109 mapping symbol, then this mapping symbol is required. */
23110 if (next->fr_address != next->fr_next->fr_address)
23111 break;
23112
23113 next = next->fr_next;
23114 }
23115 while (next != NULL);
23116 }
23117}
23118#endif
23119
c19d1205
ZW
23120/* Adjust the symbol table. This marks Thumb symbols as distinct from
23121 ARM ones. */
404ff6b5 23122
c19d1205
ZW
23123void
23124arm_adjust_symtab (void)
404ff6b5 23125{
c19d1205
ZW
23126#ifdef OBJ_COFF
23127 symbolS * sym;
404ff6b5 23128
c19d1205
ZW
23129 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23130 {
23131 if (ARM_IS_THUMB (sym))
23132 {
23133 if (THUMB_IS_FUNC (sym))
23134 {
23135 /* Mark the symbol as a Thumb function. */
23136 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23137 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23138 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 23139
c19d1205
ZW
23140 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23141 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23142 else
23143 as_bad (_("%s: unexpected function type: %d"),
23144 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23145 }
23146 else switch (S_GET_STORAGE_CLASS (sym))
23147 {
23148 case C_EXT:
23149 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23150 break;
23151 case C_STAT:
23152 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23153 break;
23154 case C_LABEL:
23155 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23156 break;
23157 default:
23158 /* Do nothing. */
23159 break;
23160 }
23161 }
a737bd4d 23162
c19d1205
ZW
23163 if (ARM_IS_INTERWORK (sym))
23164 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 23165 }
c19d1205
ZW
23166#endif
23167#ifdef OBJ_ELF
23168 symbolS * sym;
23169 char bind;
404ff6b5 23170
c19d1205 23171 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 23172 {
c19d1205
ZW
23173 if (ARM_IS_THUMB (sym))
23174 {
23175 elf_symbol_type * elf_sym;
404ff6b5 23176
c19d1205
ZW
23177 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23178 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 23179
b0796911
PB
23180 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23181 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
23182 {
23183 /* If it's a .thumb_func, declare it as so,
23184 otherwise tag label as .code 16. */
23185 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
23186 elf_sym->internal_elf_sym.st_target_internal
23187 = ST_BRANCH_TO_THUMB;
3ba67470 23188 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
23189 elf_sym->internal_elf_sym.st_info =
23190 ELF_ST_INFO (bind, STT_ARM_16BIT);
23191 }
23192 }
23193 }
cd000bff
DJ
23194
23195 /* Remove any overlapping mapping symbols generated by alignment frags. */
23196 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
23197 /* Now do generic ELF adjustments. */
23198 elf_adjust_symtab ();
c19d1205 23199#endif
404ff6b5
AH
23200}
23201
c19d1205 23202/* MD interface: Initialization. */
404ff6b5 23203
a737bd4d 23204static void
c19d1205 23205set_constant_flonums (void)
a737bd4d 23206{
c19d1205 23207 int i;
404ff6b5 23208
c19d1205
ZW
23209 for (i = 0; i < NUM_FLOAT_VALS; i++)
23210 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23211 abort ();
a737bd4d 23212}
404ff6b5 23213
3e9e4fcf
JB
23214/* Auto-select Thumb mode if it's the only available instruction set for the
23215 given architecture. */
23216
23217static void
23218autoselect_thumb_from_cpu_variant (void)
23219{
23220 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23221 opcode_select (16);
23222}
23223
c19d1205
ZW
23224void
23225md_begin (void)
a737bd4d 23226{
c19d1205
ZW
23227 unsigned mach;
23228 unsigned int i;
404ff6b5 23229
c19d1205
ZW
23230 if ( (arm_ops_hsh = hash_new ()) == NULL
23231 || (arm_cond_hsh = hash_new ()) == NULL
23232 || (arm_shift_hsh = hash_new ()) == NULL
23233 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 23234 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 23235 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
23236 || (arm_reloc_hsh = hash_new ()) == NULL
23237 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
23238 as_fatal (_("virtual memory exhausted"));
23239
23240 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 23241 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 23242 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 23243 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 23244 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 23245 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 23246 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 23247 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 23248 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
23249 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23250 (void *) (v7m_psrs + i));
c19d1205 23251 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 23252 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
23253 for (i = 0;
23254 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23255 i++)
d3ce72d0 23256 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 23257 (void *) (barrier_opt_names + i));
c19d1205 23258#ifdef OBJ_ELF
3da1d841
NC
23259 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23260 {
23261 struct reloc_entry * entry = reloc_names + i;
23262
23263 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23264 /* This makes encode_branch() use the EABI versions of this relocation. */
23265 entry->reloc = BFD_RELOC_UNUSED;
23266
23267 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23268 }
c19d1205
ZW
23269#endif
23270
23271 set_constant_flonums ();
404ff6b5 23272
c19d1205
ZW
23273 /* Set the cpu variant based on the command-line options. We prefer
23274 -mcpu= over -march= if both are set (as for GCC); and we prefer
23275 -mfpu= over any other way of setting the floating point unit.
23276 Use of legacy options with new options are faulted. */
e74cfd16 23277 if (legacy_cpu)
404ff6b5 23278 {
e74cfd16 23279 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
23280 as_bad (_("use of old and new-style options to set CPU type"));
23281
23282 mcpu_cpu_opt = legacy_cpu;
404ff6b5 23283 }
e74cfd16 23284 else if (!mcpu_cpu_opt)
c19d1205 23285 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 23286
e74cfd16 23287 if (legacy_fpu)
c19d1205 23288 {
e74cfd16 23289 if (mfpu_opt)
c19d1205 23290 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
23291
23292 mfpu_opt = legacy_fpu;
23293 }
e74cfd16 23294 else if (!mfpu_opt)
03b1477f 23295 {
45eb4c1b
NS
23296#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23297 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
23298 /* Some environments specify a default FPU. If they don't, infer it
23299 from the processor. */
e74cfd16 23300 if (mcpu_fpu_opt)
03b1477f
RE
23301 mfpu_opt = mcpu_fpu_opt;
23302 else
23303 mfpu_opt = march_fpu_opt;
39c2da32 23304#else
e74cfd16 23305 mfpu_opt = &fpu_default;
39c2da32 23306#endif
03b1477f
RE
23307 }
23308
e74cfd16 23309 if (!mfpu_opt)
03b1477f 23310 {
493cb6ef 23311 if (mcpu_cpu_opt != NULL)
e74cfd16 23312 mfpu_opt = &fpu_default;
493cb6ef 23313 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 23314 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 23315 else
e74cfd16 23316 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
23317 }
23318
ee065d83 23319#ifdef CPU_DEFAULT
e74cfd16 23320 if (!mcpu_cpu_opt)
ee065d83 23321 {
e74cfd16
PB
23322 mcpu_cpu_opt = &cpu_default;
23323 selected_cpu = cpu_default;
ee065d83 23324 }
e74cfd16
PB
23325#else
23326 if (mcpu_cpu_opt)
23327 selected_cpu = *mcpu_cpu_opt;
ee065d83 23328 else
e74cfd16 23329 mcpu_cpu_opt = &arm_arch_any;
ee065d83 23330#endif
03b1477f 23331
e74cfd16 23332 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 23333
3e9e4fcf
JB
23334 autoselect_thumb_from_cpu_variant ();
23335
e74cfd16 23336 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 23337
f17c130b 23338#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 23339 {
7cc69913
NC
23340 unsigned int flags = 0;
23341
23342#if defined OBJ_ELF
23343 flags = meabi_flags;
d507cf36
PB
23344
23345 switch (meabi_flags)
33a392fb 23346 {
d507cf36 23347 case EF_ARM_EABI_UNKNOWN:
7cc69913 23348#endif
d507cf36
PB
23349 /* Set the flags in the private structure. */
23350 if (uses_apcs_26) flags |= F_APCS26;
23351 if (support_interwork) flags |= F_INTERWORK;
23352 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 23353 if (pic_code) flags |= F_PIC;
e74cfd16 23354 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
23355 flags |= F_SOFT_FLOAT;
23356
d507cf36
PB
23357 switch (mfloat_abi_opt)
23358 {
23359 case ARM_FLOAT_ABI_SOFT:
23360 case ARM_FLOAT_ABI_SOFTFP:
23361 flags |= F_SOFT_FLOAT;
23362 break;
33a392fb 23363
d507cf36
PB
23364 case ARM_FLOAT_ABI_HARD:
23365 if (flags & F_SOFT_FLOAT)
23366 as_bad (_("hard-float conflicts with specified fpu"));
23367 break;
23368 }
03b1477f 23369
e74cfd16
PB
23370 /* Using pure-endian doubles (even if soft-float). */
23371 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 23372 flags |= F_VFP_FLOAT;
f17c130b 23373
fde78edd 23374#if defined OBJ_ELF
e74cfd16 23375 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 23376 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
23377 break;
23378
8cb51566 23379 case EF_ARM_EABI_VER4:
3a4a14e9 23380 case EF_ARM_EABI_VER5:
c19d1205 23381 /* No additional flags to set. */
d507cf36
PB
23382 break;
23383
23384 default:
23385 abort ();
23386 }
7cc69913 23387#endif
b99bd4ef
NC
23388 bfd_set_private_flags (stdoutput, flags);
23389
23390 /* We have run out flags in the COFF header to encode the
23391 status of ATPCS support, so instead we create a dummy,
c19d1205 23392 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
23393 if (atpcs)
23394 {
23395 asection * sec;
23396
23397 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23398
23399 if (sec != NULL)
23400 {
23401 bfd_set_section_flags
23402 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23403 bfd_set_section_size (stdoutput, sec, 0);
23404 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23405 }
23406 }
7cc69913 23407 }
f17c130b 23408#endif
b99bd4ef
NC
23409
23410 /* Record the CPU type as well. */
2d447fca
JM
23411 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23412 mach = bfd_mach_arm_iWMMXt2;
23413 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 23414 mach = bfd_mach_arm_iWMMXt;
e74cfd16 23415 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 23416 mach = bfd_mach_arm_XScale;
e74cfd16 23417 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 23418 mach = bfd_mach_arm_ep9312;
e74cfd16 23419 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 23420 mach = bfd_mach_arm_5TE;
e74cfd16 23421 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 23422 {
e74cfd16 23423 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23424 mach = bfd_mach_arm_5T;
23425 else
23426 mach = bfd_mach_arm_5;
23427 }
e74cfd16 23428 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 23429 {
e74cfd16 23430 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23431 mach = bfd_mach_arm_4T;
23432 else
23433 mach = bfd_mach_arm_4;
23434 }
e74cfd16 23435 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 23436 mach = bfd_mach_arm_3M;
e74cfd16
PB
23437 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23438 mach = bfd_mach_arm_3;
23439 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23440 mach = bfd_mach_arm_2a;
23441 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23442 mach = bfd_mach_arm_2;
23443 else
23444 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
23445
23446 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23447}
23448
c19d1205 23449/* Command line processing. */
b99bd4ef 23450
c19d1205
ZW
23451/* md_parse_option
23452 Invocation line includes a switch not recognized by the base assembler.
23453 See if it's a processor-specific option.
b99bd4ef 23454
c19d1205
ZW
23455 This routine is somewhat complicated by the need for backwards
23456 compatibility (since older releases of gcc can't be changed).
23457 The new options try to make the interface as compatible as
23458 possible with GCC.
b99bd4ef 23459
c19d1205 23460 New options (supported) are:
b99bd4ef 23461
c19d1205
ZW
23462 -mcpu=<cpu name> Assemble for selected processor
23463 -march=<architecture name> Assemble for selected architecture
23464 -mfpu=<fpu architecture> Assemble for selected FPU.
23465 -EB/-mbig-endian Big-endian
23466 -EL/-mlittle-endian Little-endian
23467 -k Generate PIC code
23468 -mthumb Start in Thumb mode
23469 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 23470
278df34e 23471 -m[no-]warn-deprecated Warn about deprecated features
267bf995 23472
c19d1205 23473 For now we will also provide support for:
b99bd4ef 23474
c19d1205
ZW
23475 -mapcs-32 32-bit Program counter
23476 -mapcs-26 26-bit Program counter
23477 -macps-float Floats passed in FP registers
23478 -mapcs-reentrant Reentrant code
23479 -matpcs
23480 (sometime these will probably be replaced with -mapcs=<list of options>
23481 and -matpcs=<list of options>)
b99bd4ef 23482
c19d1205
ZW
23483 The remaining options are only supported for back-wards compatibility.
23484 Cpu variants, the arm part is optional:
23485 -m[arm]1 Currently not supported.
23486 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23487 -m[arm]3 Arm 3 processor
23488 -m[arm]6[xx], Arm 6 processors
23489 -m[arm]7[xx][t][[d]m] Arm 7 processors
23490 -m[arm]8[10] Arm 8 processors
23491 -m[arm]9[20][tdmi] Arm 9 processors
23492 -mstrongarm[110[0]] StrongARM processors
23493 -mxscale XScale processors
23494 -m[arm]v[2345[t[e]]] Arm architectures
23495 -mall All (except the ARM1)
23496 FP variants:
23497 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23498 -mfpe-old (No float load/store multiples)
23499 -mvfpxd VFP Single precision
23500 -mvfp All VFP
23501 -mno-fpu Disable all floating point instructions
b99bd4ef 23502
c19d1205
ZW
23503 The following CPU names are recognized:
23504 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23505 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23506 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23507 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23508 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23509 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23510 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 23511
c19d1205 23512 */
b99bd4ef 23513
c19d1205 23514const char * md_shortopts = "m:k";
b99bd4ef 23515
c19d1205
ZW
23516#ifdef ARM_BI_ENDIAN
23517#define OPTION_EB (OPTION_MD_BASE + 0)
23518#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 23519#else
c19d1205
ZW
23520#if TARGET_BYTES_BIG_ENDIAN
23521#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 23522#else
c19d1205
ZW
23523#define OPTION_EL (OPTION_MD_BASE + 1)
23524#endif
b99bd4ef 23525#endif
845b51d6 23526#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 23527
c19d1205 23528struct option md_longopts[] =
b99bd4ef 23529{
c19d1205
ZW
23530#ifdef OPTION_EB
23531 {"EB", no_argument, NULL, OPTION_EB},
23532#endif
23533#ifdef OPTION_EL
23534 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 23535#endif
845b51d6 23536 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
23537 {NULL, no_argument, NULL, 0}
23538};
b99bd4ef 23539
c19d1205 23540size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 23541
c19d1205 23542struct arm_option_table
b99bd4ef 23543{
c19d1205
ZW
23544 char *option; /* Option name to match. */
23545 char *help; /* Help information. */
23546 int *var; /* Variable to change. */
23547 int value; /* What to change it to. */
23548 char *deprecated; /* If non-null, print this message. */
23549};
b99bd4ef 23550
c19d1205
ZW
23551struct arm_option_table arm_opts[] =
23552{
23553 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23554 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23555 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23556 &support_interwork, 1, NULL},
23557 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23558 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23559 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23560 1, NULL},
23561 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23562 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23563 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23564 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23565 NULL},
b99bd4ef 23566
c19d1205
ZW
23567 /* These are recognized by the assembler, but have no affect on code. */
23568 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23569 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
23570
23571 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23572 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23573 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
23574 {NULL, NULL, NULL, 0, NULL}
23575};
23576
23577struct arm_legacy_option_table
23578{
23579 char *option; /* Option name to match. */
23580 const arm_feature_set **var; /* Variable to change. */
23581 const arm_feature_set value; /* What to change it to. */
23582 char *deprecated; /* If non-null, print this message. */
23583};
b99bd4ef 23584
e74cfd16
PB
23585const struct arm_legacy_option_table arm_legacy_opts[] =
23586{
c19d1205
ZW
23587 /* DON'T add any new processors to this list -- we want the whole list
23588 to go away... Add them to the processors table instead. */
e74cfd16
PB
23589 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23590 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23591 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23592 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23593 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23594 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23595 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23596 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23597 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23598 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23599 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23600 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23601 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23602 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23603 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23604 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23605 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23606 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23607 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23608 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23609 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23610 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23611 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23612 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23613 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23614 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23615 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23616 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23617 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23618 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23619 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23620 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23621 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23622 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23623 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23624 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23625 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23626 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23627 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23628 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23629 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23630 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23631 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23632 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23633 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23634 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23635 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23636 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23637 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23638 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23639 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23640 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23641 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23642 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23643 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23644 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23645 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23646 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23647 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23648 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23649 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23650 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23651 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23652 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23653 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23654 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23655 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23656 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23657 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23658 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23659 N_("use -mcpu=strongarm110")},
e74cfd16 23660 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23661 N_("use -mcpu=strongarm1100")},
e74cfd16 23662 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23663 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
23664 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23665 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23666 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 23667
c19d1205 23668 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
23669 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23670 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23671 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23672 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23673 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23674 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23675 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23676 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23677 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23678 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23679 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23680 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23681 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23682 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23683 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23684 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23685 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23686 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 23687
c19d1205 23688 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
23689 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23690 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23691 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23692 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 23693 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 23694
e74cfd16 23695 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 23696};
7ed4c4c5 23697
c19d1205 23698struct arm_cpu_option_table
7ed4c4c5 23699{
c19d1205 23700 char *name;
f3bad469 23701 size_t name_len;
e74cfd16 23702 const arm_feature_set value;
c19d1205
ZW
23703 /* For some CPUs we assume an FPU unless the user explicitly sets
23704 -mfpu=... */
e74cfd16 23705 const arm_feature_set default_fpu;
ee065d83
PB
23706 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23707 case. */
23708 const char *canonical_name;
c19d1205 23709};
7ed4c4c5 23710
c19d1205
ZW
23711/* This list should, at a minimum, contain all the cpu names
23712 recognized by GCC. */
f3bad469 23713#define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
e74cfd16 23714static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 23715{
f3bad469
MGD
23716 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23717 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23718 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23719 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23720 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23721 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23722 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23723 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23724 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23725 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23726 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23727 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23728 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23729 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23730 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23731 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23732 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23733 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23734 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23735 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23736 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23737 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23738 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23739 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23740 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23741 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23742 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23743 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23744 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23745 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23746 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23747 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23748 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23749 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23750 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23751 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23752 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23753 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23754 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23755 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23756 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23757 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23758 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23759 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23760 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23761 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
c19d1205
ZW
23762 /* For V5 or later processors we default to using VFP; but the user
23763 should really set the FPU type explicitly. */
f3bad469
MGD
23764 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23765 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23766 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23767 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23768 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23769 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23770 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23771 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23772 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23773 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23774 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23775 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23776 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23777 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23778 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23779 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23780 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23781 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23782 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23783 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23784 "ARM1026EJ-S"),
23785 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23786 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23787 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23788 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23789 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23790 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23791 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23792 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23793 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23794 "ARM1136JF-S"),
23795 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23796 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23797 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23798 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23799 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23800 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23801 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23802 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23803 FPU_NONE, "Cortex-A5"),
23804 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23805 FPU_ARCH_NEON_VFP_V4,
23806 "Cortex-A7"),
23807 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23808 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 23809 | FPU_NEON_EXT_V1),
f3bad469
MGD
23810 "Cortex-A8"),
23811 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23812 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 23813 | FPU_NEON_EXT_V1),
f3bad469
MGD
23814 "Cortex-A9"),
23815 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23816 FPU_ARCH_NEON_VFP_V4,
23817 "Cortex-A15"),
23818 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23819 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23820 "Cortex-R4F"),
23821 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23822 FPU_NONE, "Cortex-R5"),
23823 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23824 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23825 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23826 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
ce32bd10 23827 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
c19d1205 23828 /* ??? XSCALE is really an architecture. */
f3bad469 23829 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23830 /* ??? iwmmxt is not a processor. */
f3bad469
MGD
23831 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23832 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23833 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23834 /* Maverick */
f3bad469
MGD
23835 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23836 FPU_ARCH_MAVERICK,
23837 "ARM920T"),
23838 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 23839};
f3bad469 23840#undef ARM_CPU_OPT
7ed4c4c5 23841
c19d1205 23842struct arm_arch_option_table
7ed4c4c5 23843{
c19d1205 23844 char *name;
f3bad469 23845 size_t name_len;
e74cfd16
PB
23846 const arm_feature_set value;
23847 const arm_feature_set default_fpu;
c19d1205 23848};
7ed4c4c5 23849
c19d1205
ZW
23850/* This list should, at a minimum, contain all the architecture names
23851 recognized by GCC. */
f3bad469 23852#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 23853static const struct arm_arch_option_table arm_archs[] =
c19d1205 23854{
f3bad469
MGD
23855 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23856 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23857 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23858 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23859 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23860 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23861 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23862 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23863 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23864 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23865 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23866 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23867 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23868 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23869 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23870 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23871 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23872 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23873 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23874 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23875 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23876 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23877 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23878 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23879 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23880 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23881 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23882 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23883 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
23884 /* The official spelling of the ARMv7 profile variants is the dashed form.
23885 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469
MGD
23886 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23887 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23888 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23889 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23890 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23891 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23892 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
bca38921 23893 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
f3bad469
MGD
23894 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23895 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23896 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23897 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 23898};
f3bad469 23899#undef ARM_ARCH_OPT
7ed4c4c5 23900
69133863
MGD
23901/* ISA extensions in the co-processor and main instruction set space. */
23902struct arm_option_extension_value_table
c19d1205
ZW
23903{
23904 char *name;
f3bad469 23905 size_t name_len;
e74cfd16 23906 const arm_feature_set value;
69133863 23907 const arm_feature_set allowed_archs;
c19d1205 23908};
7ed4c4c5 23909
69133863
MGD
23910/* The following table must be in alphabetical order with a NULL last entry.
23911 */
f3bad469 23912#define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
69133863 23913static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23914{
bca38921
MGD
23915 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23916 ARM_FEATURE (ARM_EXT_V8, 0)),
23917 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23918 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23919 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23920 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23921 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23922 ARM_EXT_OPT ("iwmmxt2",
23923 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23924 ARM_EXT_OPT ("maverick",
23925 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23926 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23927 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
bca38921
MGD
23928 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23929 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23930 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23931 ARM_FEATURE (ARM_EXT_V6M, 0)),
23932 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23933 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23934 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23935 | ARM_EXT_DIV, 0),
23936 ARM_FEATURE (ARM_EXT_V7A, 0)),
23937 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23938 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
69133863 23939};
f3bad469 23940#undef ARM_EXT_OPT
69133863
MGD
23941
23942/* ISA floating-point and Advanced SIMD extensions. */
23943struct arm_option_fpu_value_table
23944{
23945 char *name;
23946 const arm_feature_set value;
c19d1205 23947};
7ed4c4c5 23948
c19d1205
ZW
23949/* This list should, at a minimum, contain all the fpu names
23950 recognized by GCC. */
69133863 23951static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
23952{
23953 {"softfpa", FPU_NONE},
23954 {"fpe", FPU_ARCH_FPE},
23955 {"fpe2", FPU_ARCH_FPE},
23956 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23957 {"fpa", FPU_ARCH_FPA},
23958 {"fpa10", FPU_ARCH_FPA},
23959 {"fpa11", FPU_ARCH_FPA},
23960 {"arm7500fe", FPU_ARCH_FPA},
23961 {"softvfp", FPU_ARCH_VFP},
23962 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23963 {"vfp", FPU_ARCH_VFP_V2},
23964 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23965 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23966 {"vfp10", FPU_ARCH_VFP_V2},
23967 {"vfp10-r0", FPU_ARCH_VFP_V1},
23968 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23969 {"vfpv2", FPU_ARCH_VFP_V2},
23970 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23971 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23972 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23973 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23974 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23975 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23976 {"arm1020t", FPU_ARCH_VFP_V1},
23977 {"arm1020e", FPU_ARCH_VFP_V2},
23978 {"arm1136jfs", FPU_ARCH_VFP_V2},
23979 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23980 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23981 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23982 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23983 {"vfpv4", FPU_ARCH_VFP_V4},
23984 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23985 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23986 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
23987 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23988 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23989 {"crypto-neon-fp-armv8",
23990 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
e74cfd16
PB
23991 {NULL, ARM_ARCH_NONE}
23992};
23993
23994struct arm_option_value_table
23995{
23996 char *name;
23997 long value;
c19d1205 23998};
7ed4c4c5 23999
e74cfd16 24000static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
24001{
24002 {"hard", ARM_FLOAT_ABI_HARD},
24003 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24004 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 24005 {NULL, 0}
c19d1205 24006};
7ed4c4c5 24007
c19d1205 24008#ifdef OBJ_ELF
3a4a14e9 24009/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 24010static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
24011{
24012 {"gnu", EF_ARM_EABI_UNKNOWN},
24013 {"4", EF_ARM_EABI_VER4},
3a4a14e9 24014 {"5", EF_ARM_EABI_VER5},
e74cfd16 24015 {NULL, 0}
c19d1205
ZW
24016};
24017#endif
7ed4c4c5 24018
c19d1205
ZW
24019struct arm_long_option_table
24020{
24021 char * option; /* Substring to match. */
24022 char * help; /* Help information. */
24023 int (* func) (char * subopt); /* Function to decode sub-option. */
24024 char * deprecated; /* If non-null, print this message. */
24025};
7ed4c4c5 24026
c921be7d 24027static bfd_boolean
f3bad469 24028arm_parse_extension (char *str, const arm_feature_set **opt_p)
7ed4c4c5 24029{
21d799b5
NC
24030 arm_feature_set *ext_set = (arm_feature_set *)
24031 xmalloc (sizeof (arm_feature_set));
e74cfd16 24032
69133863 24033 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
24034 extensions being added before being removed. We achieve this by having
24035 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 24036 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 24037 or removing it (0) and only allowing it to change in the order
69133863
MGD
24038 -1 -> 1 -> 0. */
24039 const struct arm_option_extension_value_table * opt = NULL;
24040 int adding_value = -1;
24041
e74cfd16
PB
24042 /* Copy the feature set, so that we can modify it. */
24043 *ext_set = **opt_p;
24044 *opt_p = ext_set;
24045
c19d1205 24046 while (str != NULL && *str != 0)
7ed4c4c5 24047 {
f3bad469
MGD
24048 char *ext;
24049 size_t len;
7ed4c4c5 24050
c19d1205
ZW
24051 if (*str != '+')
24052 {
24053 as_bad (_("invalid architectural extension"));
c921be7d 24054 return FALSE;
c19d1205 24055 }
7ed4c4c5 24056
c19d1205
ZW
24057 str++;
24058 ext = strchr (str, '+');
7ed4c4c5 24059
c19d1205 24060 if (ext != NULL)
f3bad469 24061 len = ext - str;
c19d1205 24062 else
f3bad469 24063 len = strlen (str);
7ed4c4c5 24064
f3bad469 24065 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
24066 {
24067 if (adding_value != 0)
24068 {
24069 adding_value = 0;
24070 opt = arm_extensions;
24071 }
24072
f3bad469 24073 len -= 2;
69133863
MGD
24074 str += 2;
24075 }
f3bad469 24076 else if (len > 0)
69133863
MGD
24077 {
24078 if (adding_value == -1)
24079 {
24080 adding_value = 1;
24081 opt = arm_extensions;
24082 }
24083 else if (adding_value != 1)
24084 {
24085 as_bad (_("must specify extensions to add before specifying "
24086 "those to remove"));
24087 return FALSE;
24088 }
24089 }
24090
f3bad469 24091 if (len == 0)
c19d1205
ZW
24092 {
24093 as_bad (_("missing architectural extension"));
c921be7d 24094 return FALSE;
c19d1205 24095 }
7ed4c4c5 24096
69133863
MGD
24097 gas_assert (adding_value != -1);
24098 gas_assert (opt != NULL);
24099
24100 /* Scan over the options table trying to find an exact match. */
24101 for (; opt->name != NULL; opt++)
f3bad469 24102 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 24103 {
69133863
MGD
24104 /* Check we can apply the extension to this architecture. */
24105 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
24106 {
24107 as_bad (_("extension does not apply to the base architecture"));
24108 return FALSE;
24109 }
24110
24111 /* Add or remove the extension. */
24112 if (adding_value)
24113 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
24114 else
24115 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
24116
c19d1205
ZW
24117 break;
24118 }
7ed4c4c5 24119
c19d1205
ZW
24120 if (opt->name == NULL)
24121 {
69133863
MGD
24122 /* Did we fail to find an extension because it wasn't specified in
24123 alphabetical order, or because it does not exist? */
24124
24125 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 24126 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
24127 break;
24128
24129 if (opt->name == NULL)
24130 as_bad (_("unknown architectural extension `%s'"), str);
24131 else
24132 as_bad (_("architectural extensions must be specified in "
24133 "alphabetical order"));
24134
c921be7d 24135 return FALSE;
c19d1205 24136 }
69133863
MGD
24137 else
24138 {
24139 /* We should skip the extension we've just matched the next time
24140 round. */
24141 opt++;
24142 }
7ed4c4c5 24143
c19d1205
ZW
24144 str = ext;
24145 };
7ed4c4c5 24146
c921be7d 24147 return TRUE;
c19d1205 24148}
7ed4c4c5 24149
c921be7d 24150static bfd_boolean
f3bad469 24151arm_parse_cpu (char *str)
7ed4c4c5 24152{
f3bad469
MGD
24153 const struct arm_cpu_option_table *opt;
24154 char *ext = strchr (str, '+');
24155 size_t len;
7ed4c4c5 24156
c19d1205 24157 if (ext != NULL)
f3bad469 24158 len = ext - str;
7ed4c4c5 24159 else
f3bad469 24160 len = strlen (str);
7ed4c4c5 24161
f3bad469 24162 if (len == 0)
7ed4c4c5 24163 {
c19d1205 24164 as_bad (_("missing cpu name `%s'"), str);
c921be7d 24165 return FALSE;
7ed4c4c5
NC
24166 }
24167
c19d1205 24168 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 24169 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 24170 {
e74cfd16
PB
24171 mcpu_cpu_opt = &opt->value;
24172 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 24173 if (opt->canonical_name)
5f4273c7 24174 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24175 else
24176 {
f3bad469 24177 size_t i;
c921be7d 24178
f3bad469 24179 for (i = 0; i < len; i++)
ee065d83
PB
24180 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24181 selected_cpu_name[i] = 0;
24182 }
7ed4c4c5 24183
c19d1205
ZW
24184 if (ext != NULL)
24185 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 24186
c921be7d 24187 return TRUE;
c19d1205 24188 }
7ed4c4c5 24189
c19d1205 24190 as_bad (_("unknown cpu `%s'"), str);
c921be7d 24191 return FALSE;
7ed4c4c5
NC
24192}
24193
c921be7d 24194static bfd_boolean
f3bad469 24195arm_parse_arch (char *str)
7ed4c4c5 24196{
e74cfd16 24197 const struct arm_arch_option_table *opt;
c19d1205 24198 char *ext = strchr (str, '+');
f3bad469 24199 size_t len;
7ed4c4c5 24200
c19d1205 24201 if (ext != NULL)
f3bad469 24202 len = ext - str;
7ed4c4c5 24203 else
f3bad469 24204 len = strlen (str);
7ed4c4c5 24205
f3bad469 24206 if (len == 0)
7ed4c4c5 24207 {
c19d1205 24208 as_bad (_("missing architecture name `%s'"), str);
c921be7d 24209 return FALSE;
7ed4c4c5
NC
24210 }
24211
c19d1205 24212 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 24213 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 24214 {
e74cfd16
PB
24215 march_cpu_opt = &opt->value;
24216 march_fpu_opt = &opt->default_fpu;
5f4273c7 24217 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 24218
c19d1205
ZW
24219 if (ext != NULL)
24220 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 24221
c921be7d 24222 return TRUE;
c19d1205
ZW
24223 }
24224
24225 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 24226 return FALSE;
7ed4c4c5 24227}
eb043451 24228
c921be7d 24229static bfd_boolean
c19d1205
ZW
24230arm_parse_fpu (char * str)
24231{
69133863 24232 const struct arm_option_fpu_value_table * opt;
b99bd4ef 24233
c19d1205
ZW
24234 for (opt = arm_fpus; opt->name != NULL; opt++)
24235 if (streq (opt->name, str))
24236 {
e74cfd16 24237 mfpu_opt = &opt->value;
c921be7d 24238 return TRUE;
c19d1205 24239 }
b99bd4ef 24240
c19d1205 24241 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 24242 return FALSE;
c19d1205
ZW
24243}
24244
c921be7d 24245static bfd_boolean
c19d1205 24246arm_parse_float_abi (char * str)
b99bd4ef 24247{
e74cfd16 24248 const struct arm_option_value_table * opt;
b99bd4ef 24249
c19d1205
ZW
24250 for (opt = arm_float_abis; opt->name != NULL; opt++)
24251 if (streq (opt->name, str))
24252 {
24253 mfloat_abi_opt = opt->value;
c921be7d 24254 return TRUE;
c19d1205 24255 }
cc8a6dd0 24256
c19d1205 24257 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 24258 return FALSE;
c19d1205 24259}
b99bd4ef 24260
c19d1205 24261#ifdef OBJ_ELF
c921be7d 24262static bfd_boolean
c19d1205
ZW
24263arm_parse_eabi (char * str)
24264{
e74cfd16 24265 const struct arm_option_value_table *opt;
cc8a6dd0 24266
c19d1205
ZW
24267 for (opt = arm_eabis; opt->name != NULL; opt++)
24268 if (streq (opt->name, str))
24269 {
24270 meabi_flags = opt->value;
c921be7d 24271 return TRUE;
c19d1205
ZW
24272 }
24273 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 24274 return FALSE;
c19d1205
ZW
24275}
24276#endif
cc8a6dd0 24277
c921be7d 24278static bfd_boolean
e07e6e58
NC
24279arm_parse_it_mode (char * str)
24280{
c921be7d 24281 bfd_boolean ret = TRUE;
e07e6e58
NC
24282
24283 if (streq ("arm", str))
24284 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24285 else if (streq ("thumb", str))
24286 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24287 else if (streq ("always", str))
24288 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24289 else if (streq ("never", str))
24290 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24291 else
24292 {
24293 as_bad (_("unknown implicit IT mode `%s', should be "\
24294 "arm, thumb, always, or never."), str);
c921be7d 24295 ret = FALSE;
e07e6e58
NC
24296 }
24297
24298 return ret;
24299}
24300
c19d1205
ZW
24301struct arm_long_option_table arm_long_opts[] =
24302{
24303 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24304 arm_parse_cpu, NULL},
24305 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24306 arm_parse_arch, NULL},
24307 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24308 arm_parse_fpu, NULL},
24309 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24310 arm_parse_float_abi, NULL},
24311#ifdef OBJ_ELF
7fac0536 24312 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
24313 arm_parse_eabi, NULL},
24314#endif
e07e6e58
NC
24315 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24316 arm_parse_it_mode, NULL},
c19d1205
ZW
24317 {NULL, NULL, 0, NULL}
24318};
cc8a6dd0 24319
c19d1205
ZW
24320int
24321md_parse_option (int c, char * arg)
24322{
24323 struct arm_option_table *opt;
e74cfd16 24324 const struct arm_legacy_option_table *fopt;
c19d1205 24325 struct arm_long_option_table *lopt;
b99bd4ef 24326
c19d1205 24327 switch (c)
b99bd4ef 24328 {
c19d1205
ZW
24329#ifdef OPTION_EB
24330 case OPTION_EB:
24331 target_big_endian = 1;
24332 break;
24333#endif
cc8a6dd0 24334
c19d1205
ZW
24335#ifdef OPTION_EL
24336 case OPTION_EL:
24337 target_big_endian = 0;
24338 break;
24339#endif
b99bd4ef 24340
845b51d6
PB
24341 case OPTION_FIX_V4BX:
24342 fix_v4bx = TRUE;
24343 break;
24344
c19d1205
ZW
24345 case 'a':
24346 /* Listing option. Just ignore these, we don't support additional
24347 ones. */
24348 return 0;
b99bd4ef 24349
c19d1205
ZW
24350 default:
24351 for (opt = arm_opts; opt->option != NULL; opt++)
24352 {
24353 if (c == opt->option[0]
24354 && ((arg == NULL && opt->option[1] == 0)
24355 || streq (arg, opt->option + 1)))
24356 {
c19d1205 24357 /* If the option is deprecated, tell the user. */
278df34e 24358 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
24359 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24360 arg ? arg : "", _(opt->deprecated));
b99bd4ef 24361
c19d1205
ZW
24362 if (opt->var != NULL)
24363 *opt->var = opt->value;
cc8a6dd0 24364
c19d1205
ZW
24365 return 1;
24366 }
24367 }
b99bd4ef 24368
e74cfd16
PB
24369 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24370 {
24371 if (c == fopt->option[0]
24372 && ((arg == NULL && fopt->option[1] == 0)
24373 || streq (arg, fopt->option + 1)))
24374 {
e74cfd16 24375 /* If the option is deprecated, tell the user. */
278df34e 24376 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
24377 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24378 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
24379
24380 if (fopt->var != NULL)
24381 *fopt->var = &fopt->value;
24382
24383 return 1;
24384 }
24385 }
24386
c19d1205
ZW
24387 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24388 {
24389 /* These options are expected to have an argument. */
24390 if (c == lopt->option[0]
24391 && arg != NULL
24392 && strncmp (arg, lopt->option + 1,
24393 strlen (lopt->option + 1)) == 0)
24394 {
c19d1205 24395 /* If the option is deprecated, tell the user. */
278df34e 24396 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
24397 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24398 _(lopt->deprecated));
b99bd4ef 24399
c19d1205
ZW
24400 /* Call the sup-option parser. */
24401 return lopt->func (arg + strlen (lopt->option) - 1);
24402 }
24403 }
a737bd4d 24404
c19d1205
ZW
24405 return 0;
24406 }
a394c00f 24407
c19d1205
ZW
24408 return 1;
24409}
a394c00f 24410
c19d1205
ZW
24411void
24412md_show_usage (FILE * fp)
a394c00f 24413{
c19d1205
ZW
24414 struct arm_option_table *opt;
24415 struct arm_long_option_table *lopt;
a394c00f 24416
c19d1205 24417 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 24418
c19d1205
ZW
24419 for (opt = arm_opts; opt->option != NULL; opt++)
24420 if (opt->help != NULL)
24421 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 24422
c19d1205
ZW
24423 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24424 if (lopt->help != NULL)
24425 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 24426
c19d1205
ZW
24427#ifdef OPTION_EB
24428 fprintf (fp, _("\
24429 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
24430#endif
24431
c19d1205
ZW
24432#ifdef OPTION_EL
24433 fprintf (fp, _("\
24434 -EL assemble code for a little-endian cpu\n"));
a737bd4d 24435#endif
845b51d6
PB
24436
24437 fprintf (fp, _("\
24438 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 24439}
ee065d83
PB
24440
24441
24442#ifdef OBJ_ELF
62b3e311
PB
24443typedef struct
24444{
24445 int val;
24446 arm_feature_set flags;
24447} cpu_arch_ver_table;
24448
24449/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24450 least features first. */
24451static const cpu_arch_ver_table cpu_arch_ver[] =
24452{
24453 {1, ARM_ARCH_V4},
24454 {2, ARM_ARCH_V4T},
24455 {3, ARM_ARCH_V5},
ee3c0378 24456 {3, ARM_ARCH_V5T},
62b3e311
PB
24457 {4, ARM_ARCH_V5TE},
24458 {5, ARM_ARCH_V5TEJ},
24459 {6, ARM_ARCH_V6},
7e806470 24460 {9, ARM_ARCH_V6K},
f4c65163 24461 {7, ARM_ARCH_V6Z},
91e22acd 24462 {11, ARM_ARCH_V6M},
b2a5fbdc 24463 {12, ARM_ARCH_V6SM},
7e806470 24464 {8, ARM_ARCH_V6T2},
bca38921 24465 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
62b3e311
PB
24466 {10, ARM_ARCH_V7R},
24467 {10, ARM_ARCH_V7M},
bca38921 24468 {14, ARM_ARCH_V8A},
62b3e311
PB
24469 {0, ARM_ARCH_NONE}
24470};
24471
ee3c0378
AS
24472/* Set an attribute if it has not already been set by the user. */
24473static void
24474aeabi_set_attribute_int (int tag, int value)
24475{
24476 if (tag < 1
24477 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24478 || !attributes_set_explicitly[tag])
24479 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24480}
24481
24482static void
24483aeabi_set_attribute_string (int tag, const char *value)
24484{
24485 if (tag < 1
24486 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24487 || !attributes_set_explicitly[tag])
24488 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24489}
24490
ee065d83
PB
24491/* Set the public EABI object attributes. */
24492static void
24493aeabi_set_public_attributes (void)
24494{
24495 int arch;
69239280 24496 char profile;
90ec0d68 24497 int virt_sec = 0;
bca38921 24498 int fp16_optional = 0;
e74cfd16 24499 arm_feature_set flags;
62b3e311
PB
24500 arm_feature_set tmp;
24501 const cpu_arch_ver_table *p;
ee065d83
PB
24502
24503 /* Choose the architecture based on the capabilities of the requested cpu
24504 (if any) and/or the instructions actually used. */
e74cfd16
PB
24505 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24506 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24507 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
ddd7f988
RE
24508
24509 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24510 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24511
24512 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24513 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24514
24515 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
24516 if (object_arch)
24517 {
24518 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24519 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24520 }
24521
251665fc
MGD
24522 /* We need to make sure that the attributes do not identify us as v6S-M
24523 when the only v6S-M feature in use is the Operating System Extensions. */
24524 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24525 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24526 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24527
62b3e311
PB
24528 tmp = flags;
24529 arch = 0;
24530 for (p = cpu_arch_ver; p->val; p++)
24531 {
24532 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24533 {
24534 arch = p->val;
24535 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24536 }
24537 }
ee065d83 24538
9e3c6df6
PB
24539 /* The table lookup above finds the last architecture to contribute
24540 a new feature. Unfortunately, Tag13 is a subset of the union of
24541 v6T2 and v7-M, so it is never seen as contributing a new feature.
24542 We can not search for the last entry which is entirely used,
24543 because if no CPU is specified we build up only those flags
24544 actually used. Perhaps we should separate out the specified
24545 and implicit cases. Avoid taking this path for -march=all by
24546 checking for contradictory v7-A / v7-M features. */
24547 if (arch == 10
24548 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24549 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24550 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24551 arch = 13;
24552
ee065d83
PB
24553 /* Tag_CPU_name. */
24554 if (selected_cpu_name[0])
24555 {
91d6fa6a 24556 char *q;
ee065d83 24557
91d6fa6a
NC
24558 q = selected_cpu_name;
24559 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
24560 {
24561 int i;
5f4273c7 24562
91d6fa6a
NC
24563 q += 4;
24564 for (i = 0; q[i]; i++)
24565 q[i] = TOUPPER (q[i]);
ee065d83 24566 }
91d6fa6a 24567 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 24568 }
62f3b8c8 24569
ee065d83 24570 /* Tag_CPU_arch. */
ee3c0378 24571 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 24572
62b3e311
PB
24573 /* Tag_CPU_arch_profile. */
24574 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
69239280 24575 profile = 'A';
62b3e311 24576 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
69239280 24577 profile = 'R';
7e806470 24578 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
69239280
MGD
24579 profile = 'M';
24580 else
24581 profile = '\0';
24582
24583 if (profile != '\0')
24584 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 24585
ee065d83 24586 /* Tag_ARM_ISA_use. */
ee3c0378
AS
24587 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24588 || arch == 0)
24589 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 24590
ee065d83 24591 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
24592 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24593 || arch == 0)
24594 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24595 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 24596
ee065d83 24597 /* Tag_VFP_arch. */
bca38921
MGD
24598 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24599 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24600 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
24601 aeabi_set_attribute_int (Tag_VFP_arch,
24602 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24603 ? 5 : 6);
24604 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
24605 {
24606 fp16_optional = 1;
24607 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24608 }
ada65aa3 24609 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
24610 {
24611 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24612 fp16_optional = 1;
24613 }
ee3c0378
AS
24614 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24615 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24616 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24617 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24618 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 24619
4547cb56
NC
24620 /* Tag_ABI_HardFP_use. */
24621 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24622 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24623 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24624
ee065d83 24625 /* Tag_WMMX_arch. */
ee3c0378
AS
24626 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24627 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24628 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24629 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 24630
ee3c0378 24631 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
bca38921
MGD
24632 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24633 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24634 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24635 {
24636 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24637 {
24638 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24639 }
24640 else
24641 {
24642 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24643 fp16_optional = 1;
24644 }
24645 }
fa94de6b 24646
ee3c0378 24647 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 24648 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 24649 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 24650
69239280
MGD
24651 /* Tag_DIV_use.
24652
24653 We set Tag_DIV_use to two when integer divide instructions have been used
24654 in ARM state, or when Thumb integer divide instructions have been used,
24655 but we have no architecture profile set, nor have we any ARM instructions.
24656
bca38921
MGD
24657 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24658 architecture.
24659
69239280 24660 For new architectures we will have to check these tests. */
bca38921
MGD
24661 gas_assert (arch <= TAG_CPU_ARCH_V8);
24662 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24663 aeabi_set_attribute_int (Tag_DIV_use, 0);
24664 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24665 || (profile == '\0'
24666 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24667 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 24668 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
24669
24670 /* Tag_MP_extension_use. */
24671 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24672 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
24673
24674 /* Tag Virtualization_use. */
24675 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
24676 virt_sec |= 1;
24677 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24678 virt_sec |= 2;
24679 if (virt_sec != 0)
24680 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
24681}
24682
104d59d1 24683/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
24684void
24685arm_md_end (void)
24686{
ee065d83
PB
24687 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24688 return;
24689
24690 aeabi_set_public_attributes ();
ee065d83 24691}
8463be01 24692#endif /* OBJ_ELF */
ee065d83
PB
24693
24694
24695/* Parse a .cpu directive. */
24696
24697static void
24698s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24699{
e74cfd16 24700 const struct arm_cpu_option_table *opt;
ee065d83
PB
24701 char *name;
24702 char saved_char;
24703
24704 name = input_line_pointer;
5f4273c7 24705 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24706 input_line_pointer++;
24707 saved_char = *input_line_pointer;
24708 *input_line_pointer = 0;
24709
24710 /* Skip the first "all" entry. */
24711 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24712 if (streq (opt->name, name))
24713 {
e74cfd16
PB
24714 mcpu_cpu_opt = &opt->value;
24715 selected_cpu = opt->value;
ee065d83 24716 if (opt->canonical_name)
5f4273c7 24717 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24718 else
24719 {
24720 int i;
24721 for (i = 0; opt->name[i]; i++)
24722 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 24723
ee065d83
PB
24724 selected_cpu_name[i] = 0;
24725 }
e74cfd16 24726 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24727 *input_line_pointer = saved_char;
24728 demand_empty_rest_of_line ();
24729 return;
24730 }
24731 as_bad (_("unknown cpu `%s'"), name);
24732 *input_line_pointer = saved_char;
24733 ignore_rest_of_line ();
24734}
24735
24736
24737/* Parse a .arch directive. */
24738
24739static void
24740s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24741{
e74cfd16 24742 const struct arm_arch_option_table *opt;
ee065d83
PB
24743 char saved_char;
24744 char *name;
24745
24746 name = input_line_pointer;
5f4273c7 24747 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24748 input_line_pointer++;
24749 saved_char = *input_line_pointer;
24750 *input_line_pointer = 0;
24751
24752 /* Skip the first "all" entry. */
24753 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24754 if (streq (opt->name, name))
24755 {
e74cfd16
PB
24756 mcpu_cpu_opt = &opt->value;
24757 selected_cpu = opt->value;
5f4273c7 24758 strcpy (selected_cpu_name, opt->name);
e74cfd16 24759 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24760 *input_line_pointer = saved_char;
24761 demand_empty_rest_of_line ();
24762 return;
24763 }
24764
24765 as_bad (_("unknown architecture `%s'\n"), name);
24766 *input_line_pointer = saved_char;
24767 ignore_rest_of_line ();
24768}
24769
24770
7a1d4c38
PB
24771/* Parse a .object_arch directive. */
24772
24773static void
24774s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24775{
24776 const struct arm_arch_option_table *opt;
24777 char saved_char;
24778 char *name;
24779
24780 name = input_line_pointer;
5f4273c7 24781 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
24782 input_line_pointer++;
24783 saved_char = *input_line_pointer;
24784 *input_line_pointer = 0;
24785
24786 /* Skip the first "all" entry. */
24787 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24788 if (streq (opt->name, name))
24789 {
24790 object_arch = &opt->value;
24791 *input_line_pointer = saved_char;
24792 demand_empty_rest_of_line ();
24793 return;
24794 }
24795
24796 as_bad (_("unknown architecture `%s'\n"), name);
24797 *input_line_pointer = saved_char;
24798 ignore_rest_of_line ();
24799}
24800
69133863
MGD
24801/* Parse a .arch_extension directive. */
24802
24803static void
24804s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24805{
24806 const struct arm_option_extension_value_table *opt;
24807 char saved_char;
24808 char *name;
24809 int adding_value = 1;
24810
24811 name = input_line_pointer;
24812 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24813 input_line_pointer++;
24814 saved_char = *input_line_pointer;
24815 *input_line_pointer = 0;
24816
24817 if (strlen (name) >= 2
24818 && strncmp (name, "no", 2) == 0)
24819 {
24820 adding_value = 0;
24821 name += 2;
24822 }
24823
24824 for (opt = arm_extensions; opt->name != NULL; opt++)
24825 if (streq (opt->name, name))
24826 {
24827 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24828 {
24829 as_bad (_("architectural extension `%s' is not allowed for the "
24830 "current base architecture"), name);
24831 break;
24832 }
24833
24834 if (adding_value)
24835 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24836 else
24837 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24838
24839 mcpu_cpu_opt = &selected_cpu;
24840 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24841 *input_line_pointer = saved_char;
24842 demand_empty_rest_of_line ();
24843 return;
24844 }
24845
24846 if (opt->name == NULL)
24847 as_bad (_("unknown architecture `%s'\n"), name);
24848
24849 *input_line_pointer = saved_char;
24850 ignore_rest_of_line ();
24851}
24852
ee065d83
PB
24853/* Parse a .fpu directive. */
24854
24855static void
24856s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24857{
69133863 24858 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
24859 char saved_char;
24860 char *name;
24861
24862 name = input_line_pointer;
5f4273c7 24863 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24864 input_line_pointer++;
24865 saved_char = *input_line_pointer;
24866 *input_line_pointer = 0;
5f4273c7 24867
ee065d83
PB
24868 for (opt = arm_fpus; opt->name != NULL; opt++)
24869 if (streq (opt->name, name))
24870 {
e74cfd16
PB
24871 mfpu_opt = &opt->value;
24872 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24873 *input_line_pointer = saved_char;
24874 demand_empty_rest_of_line ();
24875 return;
24876 }
24877
24878 as_bad (_("unknown floating point format `%s'\n"), name);
24879 *input_line_pointer = saved_char;
24880 ignore_rest_of_line ();
24881}
ee065d83 24882
794ba86a 24883/* Copy symbol information. */
f31fef98 24884
794ba86a
DJ
24885void
24886arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24887{
24888 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24889}
e04befd0 24890
f31fef98 24891#ifdef OBJ_ELF
e04befd0
AS
24892/* Given a symbolic attribute NAME, return the proper integer value.
24893 Returns -1 if the attribute is not known. */
f31fef98 24894
e04befd0
AS
24895int
24896arm_convert_symbolic_attribute (const char *name)
24897{
f31fef98
NC
24898 static const struct
24899 {
24900 const char * name;
24901 const int tag;
24902 }
24903 attribute_table[] =
24904 {
24905 /* When you modify this table you should
24906 also modify the list in doc/c-arm.texi. */
e04befd0 24907#define T(tag) {#tag, tag}
f31fef98
NC
24908 T (Tag_CPU_raw_name),
24909 T (Tag_CPU_name),
24910 T (Tag_CPU_arch),
24911 T (Tag_CPU_arch_profile),
24912 T (Tag_ARM_ISA_use),
24913 T (Tag_THUMB_ISA_use),
75375b3e 24914 T (Tag_FP_arch),
f31fef98
NC
24915 T (Tag_VFP_arch),
24916 T (Tag_WMMX_arch),
24917 T (Tag_Advanced_SIMD_arch),
24918 T (Tag_PCS_config),
24919 T (Tag_ABI_PCS_R9_use),
24920 T (Tag_ABI_PCS_RW_data),
24921 T (Tag_ABI_PCS_RO_data),
24922 T (Tag_ABI_PCS_GOT_use),
24923 T (Tag_ABI_PCS_wchar_t),
24924 T (Tag_ABI_FP_rounding),
24925 T (Tag_ABI_FP_denormal),
24926 T (Tag_ABI_FP_exceptions),
24927 T (Tag_ABI_FP_user_exceptions),
24928 T (Tag_ABI_FP_number_model),
75375b3e 24929 T (Tag_ABI_align_needed),
f31fef98 24930 T (Tag_ABI_align8_needed),
75375b3e 24931 T (Tag_ABI_align_preserved),
f31fef98
NC
24932 T (Tag_ABI_align8_preserved),
24933 T (Tag_ABI_enum_size),
24934 T (Tag_ABI_HardFP_use),
24935 T (Tag_ABI_VFP_args),
24936 T (Tag_ABI_WMMX_args),
24937 T (Tag_ABI_optimization_goals),
24938 T (Tag_ABI_FP_optimization_goals),
24939 T (Tag_compatibility),
24940 T (Tag_CPU_unaligned_access),
75375b3e 24941 T (Tag_FP_HP_extension),
f31fef98
NC
24942 T (Tag_VFP_HP_extension),
24943 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
24944 T (Tag_MPextension_use),
24945 T (Tag_DIV_use),
f31fef98
NC
24946 T (Tag_nodefaults),
24947 T (Tag_also_compatible_with),
24948 T (Tag_conformance),
24949 T (Tag_T2EE_use),
24950 T (Tag_Virtualization_use),
cd21e546 24951 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 24952#undef T
f31fef98 24953 };
e04befd0
AS
24954 unsigned int i;
24955
24956 if (name == NULL)
24957 return -1;
24958
f31fef98 24959 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 24960 if (streq (name, attribute_table[i].name))
e04befd0
AS
24961 return attribute_table[i].tag;
24962
24963 return -1;
24964}
267bf995
RR
24965
24966
24967/* Apply sym value for relocations only in the case that
24968 they are for local symbols and you have the respective
24969 architectural feature for blx and simple switches. */
24970int
24971arm_apply_sym_value (struct fix * fixP)
24972{
24973 if (fixP->fx_addsy
24974 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 24975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
24976 {
24977 switch (fixP->fx_r_type)
24978 {
24979 case BFD_RELOC_ARM_PCREL_BLX:
24980 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24981 if (ARM_IS_FUNC (fixP->fx_addsy))
24982 return 1;
24983 break;
24984
24985 case BFD_RELOC_ARM_PCREL_CALL:
24986 case BFD_RELOC_THUMB_PCREL_BLX:
24987 if (THUMB_IS_FUNC (fixP->fx_addsy))
24988 return 1;
24989 break;
24990
24991 default:
24992 break;
24993 }
24994
24995 }
24996 return 0;
24997}
f31fef98 24998#endif /* OBJ_ELF */
This page took 2.639803 seconds and 4 git commands to generate.