2011-05-31 Paul Brook <paul@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
8d67f500
NC
242
243/* Return if no cpu was selected on command-line. */
244static bfd_boolean
245no_cpu_selected (void)
246{
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249}
250
7cc69913 251#ifdef OBJ_ELF
deeaaff8
DJ
252# ifdef EABI_DEFAULT
253static int meabi_flags = EABI_DEFAULT;
254# else
d507cf36 255static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 256# endif
e1da3f5b 257
ee3c0378
AS
258static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
e1da3f5b 260bfd_boolean
5f4273c7 261arm_is_eabi (void)
e1da3f5b
PB
262{
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264}
7cc69913 265#endif
b99bd4ef 266
b99bd4ef 267#ifdef OBJ_ELF
c19d1205 268/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
269symbolS * GOT_symbol;
270#endif
271
b99bd4ef
NC
272/* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276static int thumb_mode = 0;
8dc2430f
NC
277/* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280#define MODE_RECORDED (1 << 4)
b99bd4ef 281
e07e6e58
NC
282/* Specifies the intrinsic IT insn behavior mode. */
283enum implicit_it_mode
284{
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289};
290static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
c19d1205
ZW
292/* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315static bfd_boolean unified_syntax = FALSE;
b99bd4ef 316
5287ad62
JB
317enum neon_el_type
318{
dcbf9037 319 NT_invtype,
5287ad62
JB
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
dcbf9037 325 NT_unsigned
5287ad62
JB
326};
327
328struct neon_type_el
329{
330 enum neon_el_type type;
331 unsigned size;
332};
333
334#define NEON_MAX_TYPE_ELS 4
335
336struct neon_type
337{
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340};
341
e07e6e58
NC
342enum it_instruction_type
343{
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352};
353
b99bd4ef
NC
354struct arm_it
355{
c19d1205 356 const char * error;
b99bd4ef 357 unsigned long instruction;
c19d1205
ZW
358 int size;
359 int size_req;
360 int cond;
037e8744
JB
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
5287ad62 365 struct neon_type vectype;
88714cb8
DG
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
0110f2b8
PB
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
b99bd4ef
NC
372 struct
373 {
374 bfd_reloc_code_real_type type;
c19d1205
ZW
375 expressionS exp;
376 int pc_rel;
b99bd4ef 377 } reloc;
b99bd4ef 378
e07e6e58
NC
379 enum it_instruction_type it_insn_type;
380
c19d1205
ZW
381 struct
382 {
383 unsigned reg;
ca3f61f7 384 signed int imm;
dcbf9037 385 struct neon_type_el vectype;
ca3f61f7
NC
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 405 } operands[6];
b99bd4ef
NC
406};
407
c19d1205 408static struct arm_it inst;
b99bd4ef
NC
409
410#define NUM_FLOAT_VALS 8
411
05d2d07e 412const char * fp_const[] =
b99bd4ef
NC
413{
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415};
416
c19d1205 417/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
418#define MAX_LITTLENUMS 6
419
420LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422#define FAIL (-1)
423#define SUCCESS (0)
424
425#define SUFF_S 1
426#define SUFF_D 2
427#define SUFF_E 3
428#define SUFF_P 4
429
c19d1205
ZW
430#define CP_T_X 0x00008000
431#define CP_T_Y 0x00400000
b99bd4ef 432
c19d1205
ZW
433#define CONDS_BIT 0x00100000
434#define LOAD_BIT 0x00100000
b99bd4ef
NC
435
436#define DOUBLE_LOAD_FLAG 0x00000001
437
438struct asm_cond
439{
d3ce72d0 440 const char * template_name;
c921be7d 441 unsigned long value;
b99bd4ef
NC
442};
443
c19d1205 444#define COND_ALWAYS 0xE
b99bd4ef 445
b99bd4ef
NC
446struct asm_psr
447{
d3ce72d0 448 const char * template_name;
c921be7d 449 unsigned long field;
b99bd4ef
NC
450};
451
62b3e311
PB
452struct asm_barrier_opt
453{
d3ce72d0 454 const char * template_name;
c921be7d 455 unsigned long value;
62b3e311
PB
456};
457
2d2255b5 458/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
459#define SPSR_BIT (1 << 22)
460
c19d1205
ZW
461/* The individual PSR flag bits. */
462#define PSR_c (1 << 16)
463#define PSR_x (1 << 17)
464#define PSR_s (1 << 18)
465#define PSR_f (1 << 19)
b99bd4ef 466
c19d1205 467struct reloc_entry
bfae80f2 468{
c921be7d
NC
469 char * name;
470 bfd_reloc_code_real_type reloc;
bfae80f2
RE
471};
472
5287ad62 473enum vfp_reg_pos
bfae80f2 474{
5287ad62
JB
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
477};
478
479enum vfp_ldstm_type
480{
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482};
483
dcbf9037
JB
484/* Bits for DEFINED field in neon_typed_alias. */
485#define NTA_HASTYPE 1
486#define NTA_HASINDEX 2
487
488struct neon_typed_alias
489{
c921be7d
NC
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
dcbf9037
JB
493};
494
c19d1205
ZW
495/* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497enum arm_reg_type
bfae80f2 498{
c19d1205
ZW
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
5287ad62 505 REG_TYPE_NQ,
037e8744 506 REG_TYPE_VFSD,
5287ad62 507 REG_TYPE_NDQ,
037e8744 508 REG_TYPE_NSDQ,
c19d1205
ZW
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
90ec0d68 520 REG_TYPE_RNB
bfae80f2
RE
521};
522
dcbf9037
JB
523/* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
527struct reg_entry
528{
c921be7d 529 const char * name;
90ec0d68 530 unsigned int number;
c921be7d
NC
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
6c43fab6
RE
534};
535
c19d1205 536/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 537const char * const reg_expected_msgs[] =
c19d1205
ZW
538{
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
5287ad62
JB
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
037e8744 546 N_("VFP single or double precision register expected"),
5287ad62 547 N_("Neon double or quad precision register expected"),
037e8744 548 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
6c43fab6
RE
560};
561
c19d1205
ZW
562/* Some well known registers that we refer to directly elsewhere. */
563#define REG_SP 13
564#define REG_LR 14
565#define REG_PC 15
404ff6b5 566
b99bd4ef
NC
567/* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
c19d1205 569#define INSN_SIZE 4
b99bd4ef
NC
570
571struct asm_opcode
572{
573 /* Basic string to match. */
d3ce72d0 574 const char * template_name;
c19d1205
ZW
575
576 /* Parameters to instruction. */
5be8be5d 577 unsigned int operands[8];
c19d1205
ZW
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
b99bd4ef
NC
581
582 /* Basic instruction code. */
c19d1205 583 unsigned int avalue : 28;
b99bd4ef 584
c19d1205
ZW
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
b99bd4ef 587
90e4755a 588 /* Which architecture variant provides this instruction. */
c921be7d
NC
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
c19d1205
ZW
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
b99bd4ef 594
c19d1205
ZW
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
b99bd4ef
NC
597};
598
a737bd4d
NC
599/* Defines for various bits that we will want to toggle. */
600#define INST_IMMEDIATE 0x02000000
601#define OFFSET_REG 0x02000000
c19d1205 602#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
603#define SHIFT_BY_REG 0x00000010
604#define PRE_INDEX 0x01000000
605#define INDEX_UP 0x00800000
606#define WRITE_BACK 0x00200000
607#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 608#define CPSI_MMOD 0x00020000
90e4755a 609
a737bd4d
NC
610#define LITERAL_MASK 0xf000f000
611#define OPCODE_MASK 0xfe1fffff
612#define V4_STR_BIT 0x00000020
90e4755a 613
efd81785
PB
614#define T2_SUBS_PC_LR 0xf3de8f00
615
a737bd4d 616#define DATA_OP_SHIFT 21
90e4755a 617
ef8d22e6
PB
618#define T2_OPCODE_MASK 0xfe1fffff
619#define T2_DATA_OP_SHIFT 21
620
a737bd4d
NC
621/* Codes to distinguish the arithmetic instructions. */
622#define OPCODE_AND 0
623#define OPCODE_EOR 1
624#define OPCODE_SUB 2
625#define OPCODE_RSB 3
626#define OPCODE_ADD 4
627#define OPCODE_ADC 5
628#define OPCODE_SBC 6
629#define OPCODE_RSC 7
630#define OPCODE_TST 8
631#define OPCODE_TEQ 9
632#define OPCODE_CMP 10
633#define OPCODE_CMN 11
634#define OPCODE_ORR 12
635#define OPCODE_MOV 13
636#define OPCODE_BIC 14
637#define OPCODE_MVN 15
90e4755a 638
ef8d22e6
PB
639#define T2_OPCODE_AND 0
640#define T2_OPCODE_BIC 1
641#define T2_OPCODE_ORR 2
642#define T2_OPCODE_ORN 3
643#define T2_OPCODE_EOR 4
644#define T2_OPCODE_ADD 8
645#define T2_OPCODE_ADC 10
646#define T2_OPCODE_SBC 11
647#define T2_OPCODE_SUB 13
648#define T2_OPCODE_RSB 14
649
a737bd4d
NC
650#define T_OPCODE_MUL 0x4340
651#define T_OPCODE_TST 0x4200
652#define T_OPCODE_CMN 0x42c0
653#define T_OPCODE_NEG 0x4240
654#define T_OPCODE_MVN 0x43c0
90e4755a 655
a737bd4d
NC
656#define T_OPCODE_ADD_R3 0x1800
657#define T_OPCODE_SUB_R3 0x1a00
658#define T_OPCODE_ADD_HI 0x4400
659#define T_OPCODE_ADD_ST 0xb000
660#define T_OPCODE_SUB_ST 0xb080
661#define T_OPCODE_ADD_SP 0xa800
662#define T_OPCODE_ADD_PC 0xa000
663#define T_OPCODE_ADD_I8 0x3000
664#define T_OPCODE_SUB_I8 0x3800
665#define T_OPCODE_ADD_I3 0x1c00
666#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 667
a737bd4d
NC
668#define T_OPCODE_ASR_R 0x4100
669#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
670#define T_OPCODE_LSR_R 0x40c0
671#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
672#define T_OPCODE_ASR_I 0x1000
673#define T_OPCODE_LSL_I 0x0000
674#define T_OPCODE_LSR_I 0x0800
b99bd4ef 675
a737bd4d
NC
676#define T_OPCODE_MOV_I8 0x2000
677#define T_OPCODE_CMP_I8 0x2800
678#define T_OPCODE_CMP_LR 0x4280
679#define T_OPCODE_MOV_HR 0x4600
680#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 681
a737bd4d
NC
682#define T_OPCODE_LDR_PC 0x4800
683#define T_OPCODE_LDR_SP 0x9800
684#define T_OPCODE_STR_SP 0x9000
685#define T_OPCODE_LDR_IW 0x6800
686#define T_OPCODE_STR_IW 0x6000
687#define T_OPCODE_LDR_IH 0x8800
688#define T_OPCODE_STR_IH 0x8000
689#define T_OPCODE_LDR_IB 0x7800
690#define T_OPCODE_STR_IB 0x7000
691#define T_OPCODE_LDR_RW 0x5800
692#define T_OPCODE_STR_RW 0x5000
693#define T_OPCODE_LDR_RH 0x5a00
694#define T_OPCODE_STR_RH 0x5200
695#define T_OPCODE_LDR_RB 0x5c00
696#define T_OPCODE_STR_RB 0x5400
c9b604bd 697
a737bd4d
NC
698#define T_OPCODE_PUSH 0xb400
699#define T_OPCODE_POP 0xbc00
b99bd4ef 700
2fc8bdac 701#define T_OPCODE_BRANCH 0xe000
b99bd4ef 702
a737bd4d 703#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 704#define THUMB_PP_PC_LR 0x0100
c19d1205 705#define THUMB_LOAD_BIT 0x0800
53365c0d 706#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
707
708#define BAD_ARGS _("bad arguments to instruction")
fdfde340 709#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
710#define BAD_PC _("r15 not allowed here")
711#define BAD_COND _("instruction cannot be conditional")
712#define BAD_OVERLAP _("registers may not be the same")
713#define BAD_HIREG _("lo register required")
714#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 715#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
716#define BAD_BRANCH _("branch must be last instruction in IT block")
717#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 718#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
719#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720#define BAD_IT_COND _("incorrect condition in IT block")
721#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 722#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
723#define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725#define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
c19d1205 727
c921be7d
NC
728static struct hash_control * arm_ops_hsh;
729static struct hash_control * arm_cond_hsh;
730static struct hash_control * arm_shift_hsh;
731static struct hash_control * arm_psr_hsh;
732static struct hash_control * arm_v7m_psr_hsh;
733static struct hash_control * arm_reg_hsh;
734static struct hash_control * arm_reloc_hsh;
735static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 736
b99bd4ef
NC
737/* Stuff needed to resolve the label ambiguity
738 As:
739 ...
740 label: <insn>
741 may differ from:
742 ...
743 label:
5f4273c7 744 <insn> */
b99bd4ef
NC
745
746symbolS * last_label_seen;
b34976b6 747static int label_is_thumb_function_name = FALSE;
e07e6e58 748
3d0c9500
NC
749/* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
a737bd4d 751
c19d1205 752#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 753typedef struct literal_pool
b99bd4ef 754{
c921be7d
NC
755 expressionS literals [MAX_LITERAL_POOL_SIZE];
756 unsigned int next_free_entry;
757 unsigned int id;
758 symbolS * symbol;
759 segT section;
760 subsegT sub_section;
761 struct literal_pool * next;
3d0c9500 762} literal_pool;
b99bd4ef 763
3d0c9500
NC
764/* Pointer to a linked list of literal pools. */
765literal_pool * list_of_pools = NULL;
e27ec89e 766
e07e6e58
NC
767#ifdef OBJ_ELF
768# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
769#else
770static struct current_it now_it;
771#endif
772
773static inline int
774now_it_compatible (int cond)
775{
776 return (cond & ~1) == (now_it.cc & ~1);
777}
778
779static inline int
780conditional_insn (void)
781{
782 return inst.cond != COND_ALWAYS;
783}
784
785static int in_it_block (void);
786
787static int handle_it_state (void);
788
789static void force_automatic_it_block_close (void);
790
c921be7d
NC
791static void it_fsm_post_encode (void);
792
e07e6e58
NC
793#define set_it_insn_type(type) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return; \
799 } \
800 while (0)
801
c921be7d
NC
802#define set_it_insn_type_nonvoid(type, failret) \
803 do \
804 { \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
807 return failret; \
808 } \
809 while(0)
810
e07e6e58
NC
811#define set_it_insn_type_last() \
812 do \
813 { \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
816 else \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
818 } \
819 while (0)
820
c19d1205 821/* Pure syntax. */
b99bd4ef 822
c19d1205
ZW
823/* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825const char comment_chars[] = "@";
3d0c9500 826
c19d1205
ZW
827/* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830/* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833/* Also note that comments like this one will always work. */
834const char line_comment_chars[] = "#";
3d0c9500 835
c19d1205 836const char line_separator_chars[] = ";";
b99bd4ef 837
c19d1205
ZW
838/* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840const char EXP_CHARS[] = "eE";
3d0c9500 841
c19d1205
ZW
842/* Chars that mean this number is a floating point constant. */
843/* As in 0f12.456 */
844/* or 0d1.2345e12 */
b99bd4ef 845
c19d1205 846const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 847
c19d1205
ZW
848/* Prefix characters that indicate the start of an immediate
849 value. */
850#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 851
c19d1205
ZW
852/* Separator character handling. */
853
854#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
855
856static inline int
857skip_past_char (char ** str, char c)
858{
859 if (**str == c)
860 {
861 (*str)++;
862 return SUCCESS;
3d0c9500 863 }
c19d1205
ZW
864 else
865 return FAIL;
866}
c921be7d 867
c19d1205 868#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 869
c19d1205
ZW
870/* Arithmetic expressions (possibly involving symbols). */
871
872/* Return TRUE if anything in the expression is a bignum. */
873
874static int
875walk_no_bignums (symbolS * sp)
876{
877 if (symbol_get_value_expression (sp)->X_op == O_big)
878 return 1;
879
880 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 881 {
c19d1205
ZW
882 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
883 || (symbol_get_value_expression (sp)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
885 }
886
c19d1205 887 return 0;
3d0c9500
NC
888}
889
c19d1205
ZW
890static int in_my_get_expression = 0;
891
892/* Third argument to my_get_expression. */
893#define GE_NO_PREFIX 0
894#define GE_IMM_PREFIX 1
895#define GE_OPT_PREFIX 2
5287ad62
JB
896/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898#define GE_OPT_PREFIX_BIG 3
a737bd4d 899
b99bd4ef 900static int
c19d1205 901my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 902{
c19d1205
ZW
903 char * save_in;
904 segT seg;
b99bd4ef 905
c19d1205
ZW
906 /* In unified syntax, all prefixes are optional. */
907 if (unified_syntax)
5287ad62
JB
908 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
909 : GE_OPT_PREFIX;
b99bd4ef 910
c19d1205 911 switch (prefix_mode)
b99bd4ef 912 {
c19d1205
ZW
913 case GE_NO_PREFIX: break;
914 case GE_IMM_PREFIX:
915 if (!is_immediate_prefix (**str))
916 {
917 inst.error = _("immediate expression requires a # prefix");
918 return FAIL;
919 }
920 (*str)++;
921 break;
922 case GE_OPT_PREFIX:
5287ad62 923 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
924 if (is_immediate_prefix (**str))
925 (*str)++;
926 break;
927 default: abort ();
928 }
b99bd4ef 929
c19d1205 930 memset (ep, 0, sizeof (expressionS));
b99bd4ef 931
c19d1205
ZW
932 save_in = input_line_pointer;
933 input_line_pointer = *str;
934 in_my_get_expression = 1;
935 seg = expression (ep);
936 in_my_get_expression = 0;
937
f86adc07 938 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 939 {
f86adc07 940 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 if (inst.error == NULL)
f86adc07
NS
944 inst.error = (ep->X_op == O_absent
945 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
946 return 1;
947 }
b99bd4ef 948
c19d1205
ZW
949#ifdef OBJ_AOUT
950 if (seg != absolute_section
951 && seg != text_section
952 && seg != data_section
953 && seg != bss_section
954 && seg != undefined_section)
955 {
956 inst.error = _("bad segment");
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 1;
b99bd4ef 960 }
87975d2a
AM
961#else
962 (void) seg;
c19d1205 963#endif
b99bd4ef 964
c19d1205
ZW
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
5287ad62
JB
968 if (prefix_mode != GE_OPT_PREFIX_BIG
969 && (ep->X_op == O_big
970 || (ep->X_add_symbol
971 && (walk_no_bignums (ep->X_add_symbol)
972 || (ep->X_op_symbol
973 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
974 {
975 inst.error = _("invalid constant");
976 *str = input_line_pointer;
977 input_line_pointer = save_in;
978 return 1;
979 }
b99bd4ef 980
c19d1205
ZW
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 0;
b99bd4ef
NC
984}
985
c19d1205
ZW
986/* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
b99bd4ef 990
c19d1205
ZW
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 997
c19d1205 998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 999
c19d1205
ZW
1000char *
1001md_atof (int type, char * litP, int * sizeP)
1002{
1003 int prec;
1004 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1005 char *t;
1006 int i;
b99bd4ef 1007
c19d1205
ZW
1008 switch (type)
1009 {
1010 case 'f':
1011 case 'F':
1012 case 's':
1013 case 'S':
1014 prec = 2;
1015 break;
b99bd4ef 1016
c19d1205
ZW
1017 case 'd':
1018 case 'D':
1019 case 'r':
1020 case 'R':
1021 prec = 4;
1022 break;
b99bd4ef 1023
c19d1205
ZW
1024 case 'x':
1025 case 'X':
499ac353 1026 prec = 5;
c19d1205 1027 break;
b99bd4ef 1028
c19d1205
ZW
1029 case 'p':
1030 case 'P':
499ac353 1031 prec = 5;
c19d1205 1032 break;
a737bd4d 1033
c19d1205
ZW
1034 default:
1035 *sizeP = 0;
499ac353 1036 return _("Unrecognized or unsupported floating point constant");
c19d1205 1037 }
b99bd4ef 1038
c19d1205
ZW
1039 t = atof_ieee (input_line_pointer, type, words);
1040 if (t)
1041 input_line_pointer = t;
499ac353 1042 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1043
c19d1205
ZW
1044 if (target_big_endian)
1045 {
1046 for (i = 0; i < prec; i++)
1047 {
499ac353
NC
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1050 }
1051 }
1052 else
1053 {
e74cfd16 1054 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1055 for (i = prec - 1; i >= 0; i--)
1056 {
499ac353
NC
1057 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1058 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1059 }
1060 else
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i = 0; i < prec; i += 2)
1064 {
499ac353
NC
1065 md_number_to_chars (litP, (valueT) words[i + 1],
1066 sizeof (LITTLENUM_TYPE));
1067 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1068 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1069 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1070 }
1071 }
b99bd4ef 1072
499ac353 1073 return NULL;
c19d1205 1074}
b99bd4ef 1075
c19d1205
ZW
1076/* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1078void
91d6fa6a 1079md_operand (expressionS * exp)
c19d1205
ZW
1080{
1081 if (in_my_get_expression)
91d6fa6a 1082 exp->X_op = O_illegal;
b99bd4ef
NC
1083}
1084
c19d1205 1085/* Immediate values. */
b99bd4ef 1086
c19d1205
ZW
1087/* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1090#ifdef OBJ_ELF
1091static int
1092immediate_for_directive (int *val)
b99bd4ef 1093{
c19d1205
ZW
1094 expressionS exp;
1095 exp.X_op = O_illegal;
b99bd4ef 1096
c19d1205
ZW
1097 if (is_immediate_prefix (*input_line_pointer))
1098 {
1099 input_line_pointer++;
1100 expression (&exp);
1101 }
b99bd4ef 1102
c19d1205
ZW
1103 if (exp.X_op != O_constant)
1104 {
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1107 return FAIL;
1108 }
1109 *val = exp.X_add_number;
1110 return SUCCESS;
b99bd4ef 1111}
c19d1205 1112#endif
b99bd4ef 1113
c19d1205 1114/* Register parsing. */
b99bd4ef 1115
c19d1205
ZW
1116/* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1120
1121static struct reg_entry *
1122arm_reg_parse_multi (char **ccp)
b99bd4ef 1123{
c19d1205
ZW
1124 char *start = *ccp;
1125 char *p;
1126 struct reg_entry *reg;
b99bd4ef 1127
c19d1205
ZW
1128#ifdef REGISTER_PREFIX
1129 if (*start != REGISTER_PREFIX)
01cfc07f 1130 return NULL;
c19d1205
ZW
1131 start++;
1132#endif
1133#ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start == OPTIONAL_REGISTER_PREFIX)
1135 start++;
1136#endif
b99bd4ef 1137
c19d1205
ZW
1138 p = start;
1139 if (!ISALPHA (*p) || !is_name_beginner (*p))
1140 return NULL;
b99bd4ef 1141
c19d1205
ZW
1142 do
1143 p++;
1144 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1145
1146 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1147
1148 if (!reg)
1149 return NULL;
1150
1151 *ccp = p;
1152 return reg;
b99bd4ef
NC
1153}
1154
1155static int
dcbf9037
JB
1156arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1157 enum arm_reg_type type)
b99bd4ef 1158{
c19d1205
ZW
1159 /* Alternative syntaxes are accepted for a few register classes. */
1160 switch (type)
1161 {
1162 case REG_TYPE_MVF:
1163 case REG_TYPE_MVD:
1164 case REG_TYPE_MVFX:
1165 case REG_TYPE_MVDX:
1166 /* Generic coprocessor register names are allowed for these. */
79134647 1167 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1168 return reg->number;
1169 break;
69b97547 1170
c19d1205
ZW
1171 case REG_TYPE_CP:
1172 /* For backward compatibility, a bare number is valid here. */
1173 {
1174 unsigned long processor = strtoul (start, ccp, 10);
1175 if (*ccp != start && processor <= 15)
1176 return processor;
1177 }
6057a28f 1178
c19d1205
ZW
1179 case REG_TYPE_MMXWC:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
79134647 1182 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1183 return reg->number;
6057a28f 1184 break;
c19d1205 1185
6057a28f 1186 default:
c19d1205 1187 break;
6057a28f
NC
1188 }
1189
dcbf9037
JB
1190 return FAIL;
1191}
1192
1193/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1195
1196static int
1197arm_reg_parse (char **ccp, enum arm_reg_type type)
1198{
1199 char *start = *ccp;
1200 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1201 int ret;
1202
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1205 return FAIL;
1206
1207 if (reg && reg->type == type)
1208 return reg->number;
1209
1210 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1211 return ret;
1212
c19d1205
ZW
1213 *ccp = start;
1214 return FAIL;
1215}
69b97547 1216
dcbf9037
JB
1217/* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1219 properly. E.g.,
1220
1221 .i32.i32.s16
1222 .s32.f32
1223 .u16
1224
1225 Can all be legally parsed by this function.
1226
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1230
1231static int
1232parse_neon_type (struct neon_type *type, char **str)
1233{
1234 char *ptr = *str;
1235
1236 if (type)
1237 type->elems = 0;
1238
1239 while (type->elems < NEON_MAX_TYPE_ELS)
1240 {
1241 enum neon_el_type thistype = NT_untyped;
1242 unsigned thissize = -1u;
1243
1244 if (*ptr != '.')
1245 break;
1246
1247 ptr++;
1248
1249 /* Just a size without an explicit type. */
1250 if (ISDIGIT (*ptr))
1251 goto parsesize;
1252
1253 switch (TOLOWER (*ptr))
1254 {
1255 case 'i': thistype = NT_integer; break;
1256 case 'f': thistype = NT_float; break;
1257 case 'p': thistype = NT_poly; break;
1258 case 's': thistype = NT_signed; break;
1259 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1260 case 'd':
1261 thistype = NT_float;
1262 thissize = 64;
1263 ptr++;
1264 goto done;
dcbf9037
JB
1265 default:
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1267 return FAIL;
1268 }
1269
1270 ptr++;
1271
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype == NT_float && !ISDIGIT (*ptr))
1274 thissize = 32;
1275 else
1276 {
1277 parsesize:
1278 thissize = strtoul (ptr, &ptr, 10);
1279
1280 if (thissize != 8 && thissize != 16 && thissize != 32
1281 && thissize != 64)
1282 {
1283 as_bad (_("bad size %d in type specifier"), thissize);
1284 return FAIL;
1285 }
1286 }
1287
037e8744 1288 done:
dcbf9037
JB
1289 if (type)
1290 {
1291 type->el[type->elems].type = thistype;
1292 type->el[type->elems].size = thissize;
1293 type->elems++;
1294 }
1295 }
1296
1297 /* Empty/missing type is not a successful parse. */
1298 if (type->elems == 0)
1299 return FAIL;
1300
1301 *str = ptr;
1302
1303 return SUCCESS;
1304}
1305
1306/* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1310
1311static void
1312first_error (const char *err)
1313{
1314 if (!inst.error)
1315 inst.error = err;
1316}
1317
1318/* Parse a single type, e.g. ".s32", leading period included. */
1319static int
1320parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1321{
1322 char *str = *ccp;
1323 struct neon_type optype;
1324
1325 if (*str == '.')
1326 {
1327 if (parse_neon_type (&optype, &str) == SUCCESS)
1328 {
1329 if (optype.elems == 1)
1330 *vectype = optype.el[0];
1331 else
1332 {
1333 first_error (_("only one type should be specified for operand"));
1334 return FAIL;
1335 }
1336 }
1337 else
1338 {
1339 first_error (_("vector type expected"));
1340 return FAIL;
1341 }
1342 }
1343 else
1344 return FAIL;
5f4273c7 1345
dcbf9037 1346 *ccp = str;
5f4273c7 1347
dcbf9037
JB
1348 return SUCCESS;
1349}
1350
1351/* Special meanings for indices (which have a range of 0-7), which will fit into
1352 a 4-bit integer. */
1353
1354#define NEON_ALL_LANES 15
1355#define NEON_INTERLEAVE_LANES 14
1356
1357/* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1361
1362static int
1363parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1364 enum arm_reg_type *rtype,
1365 struct neon_typed_alias *typeinfo)
1366{
1367 char *str = *ccp;
1368 struct reg_entry *reg = arm_reg_parse_multi (&str);
1369 struct neon_typed_alias atype;
1370 struct neon_type_el parsetype;
1371
1372 atype.defined = 0;
1373 atype.index = -1;
1374 atype.eltype.type = NT_invtype;
1375 atype.eltype.size = -1;
1376
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1379 if (reg == NULL)
1380 {
1381 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1382 if (altreg != FAIL)
1383 *ccp = str;
1384 if (typeinfo)
1385 *typeinfo = atype;
1386 return altreg;
1387 }
1388
037e8744
JB
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type == REG_TYPE_NDQ
1391 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1392 || (type == REG_TYPE_VFSD
1393 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1394 || (type == REG_TYPE_NSDQ
1395 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1396 || reg->type == REG_TYPE_NQ))
1397 || (type == REG_TYPE_MMXWC
1398 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1399 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1400
1401 if (type != reg->type)
1402 return FAIL;
1403
1404 if (reg->neon)
1405 atype = *reg->neon;
5f4273c7 1406
dcbf9037
JB
1407 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1408 {
1409 if ((atype.defined & NTA_HASTYPE) != 0)
1410 {
1411 first_error (_("can't redefine type for operand"));
1412 return FAIL;
1413 }
1414 atype.defined |= NTA_HASTYPE;
1415 atype.eltype = parsetype;
1416 }
5f4273c7 1417
dcbf9037
JB
1418 if (skip_past_char (&str, '[') == SUCCESS)
1419 {
1420 if (type != REG_TYPE_VFD)
1421 {
1422 first_error (_("only D registers may be indexed"));
1423 return FAIL;
1424 }
5f4273c7 1425
dcbf9037
JB
1426 if ((atype.defined & NTA_HASINDEX) != 0)
1427 {
1428 first_error (_("can't change index for operand"));
1429 return FAIL;
1430 }
1431
1432 atype.defined |= NTA_HASINDEX;
1433
1434 if (skip_past_char (&str, ']') == SUCCESS)
1435 atype.index = NEON_ALL_LANES;
1436 else
1437 {
1438 expressionS exp;
1439
1440 my_get_expression (&exp, &str, GE_NO_PREFIX);
1441
1442 if (exp.X_op != O_constant)
1443 {
1444 first_error (_("constant expression required"));
1445 return FAIL;
1446 }
1447
1448 if (skip_past_char (&str, ']') == FAIL)
1449 return FAIL;
1450
1451 atype.index = exp.X_add_number;
1452 }
1453 }
5f4273c7 1454
dcbf9037
JB
1455 if (typeinfo)
1456 *typeinfo = atype;
5f4273c7 1457
dcbf9037
JB
1458 if (rtype)
1459 *rtype = type;
5f4273c7 1460
dcbf9037 1461 *ccp = str;
5f4273c7 1462
dcbf9037
JB
1463 return reg->number;
1464}
1465
1466/* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1471 This function will fault on encountering a scalar. */
dcbf9037
JB
1472
1473static int
1474arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1475 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1476{
1477 struct neon_typed_alias atype;
1478 char *str = *ccp;
1479 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1480
1481 if (reg == FAIL)
1482 return FAIL;
1483
0855e32b
NS
1484 /* Do not allow regname(... to parse as a register. */
1485 if (*str == '(')
1486 return FAIL;
1487
dcbf9037
JB
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype.defined & NTA_HASINDEX) != 0)
1490 {
1491 first_error (_("register operand expected, but got scalar"));
1492 return FAIL;
1493 }
1494
1495 if (vectype)
1496 *vectype = atype.eltype;
1497
1498 *ccp = str;
1499
1500 return reg;
1501}
1502
1503#define NEON_SCALAR_REG(X) ((X) >> 4)
1504#define NEON_SCALAR_INDEX(X) ((X) & 15)
1505
5287ad62
JB
1506/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1509
1510static int
dcbf9037 1511parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1512{
dcbf9037 1513 int reg;
5287ad62 1514 char *str = *ccp;
dcbf9037 1515 struct neon_typed_alias atype;
5f4273c7 1516
dcbf9037 1517 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1518
dcbf9037 1519 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1520 return FAIL;
5f4273c7 1521
dcbf9037 1522 if (atype.index == NEON_ALL_LANES)
5287ad62 1523 {
dcbf9037 1524 first_error (_("scalar must have an index"));
5287ad62
JB
1525 return FAIL;
1526 }
dcbf9037 1527 else if (atype.index >= 64 / elsize)
5287ad62 1528 {
dcbf9037 1529 first_error (_("scalar index out of range"));
5287ad62
JB
1530 return FAIL;
1531 }
5f4273c7 1532
dcbf9037
JB
1533 if (type)
1534 *type = atype.eltype;
5f4273c7 1535
5287ad62 1536 *ccp = str;
5f4273c7 1537
dcbf9037 1538 return reg * 16 + atype.index;
5287ad62
JB
1539}
1540
c19d1205 1541/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1542
c19d1205
ZW
1543static long
1544parse_reg_list (char ** strp)
1545{
1546 char * str = * strp;
1547 long range = 0;
1548 int another_range;
a737bd4d 1549
c19d1205
ZW
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1551 do
6057a28f 1552 {
c19d1205 1553 another_range = 0;
a737bd4d 1554
c19d1205
ZW
1555 if (*str == '{')
1556 {
1557 int in_range = 0;
1558 int cur_reg = -1;
a737bd4d 1559
c19d1205
ZW
1560 str++;
1561 do
1562 {
1563 int reg;
6057a28f 1564
dcbf9037 1565 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1566 {
dcbf9037 1567 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1568 return FAIL;
1569 }
a737bd4d 1570
c19d1205
ZW
1571 if (in_range)
1572 {
1573 int i;
a737bd4d 1574
c19d1205
ZW
1575 if (reg <= cur_reg)
1576 {
dcbf9037 1577 first_error (_("bad range in register list"));
c19d1205
ZW
1578 return FAIL;
1579 }
40a18ebd 1580
c19d1205
ZW
1581 for (i = cur_reg + 1; i < reg; i++)
1582 {
1583 if (range & (1 << i))
1584 as_tsktsk
1585 (_("Warning: duplicated register (r%d) in register list"),
1586 i);
1587 else
1588 range |= 1 << i;
1589 }
1590 in_range = 0;
1591 }
a737bd4d 1592
c19d1205
ZW
1593 if (range & (1 << reg))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1595 reg);
1596 else if (reg <= cur_reg)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1598
c19d1205
ZW
1599 range |= 1 << reg;
1600 cur_reg = reg;
1601 }
1602 while (skip_past_comma (&str) != FAIL
1603 || (in_range = 1, *str++ == '-'));
1604 str--;
a737bd4d 1605
c19d1205
ZW
1606 if (*str++ != '}')
1607 {
dcbf9037 1608 first_error (_("missing `}'"));
c19d1205
ZW
1609 return FAIL;
1610 }
1611 }
1612 else
1613 {
91d6fa6a 1614 expressionS exp;
40a18ebd 1615
91d6fa6a 1616 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1617 return FAIL;
40a18ebd 1618
91d6fa6a 1619 if (exp.X_op == O_constant)
c19d1205 1620 {
91d6fa6a
NC
1621 if (exp.X_add_number
1622 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1623 {
1624 inst.error = _("invalid register mask");
1625 return FAIL;
1626 }
a737bd4d 1627
91d6fa6a 1628 if ((range & exp.X_add_number) != 0)
c19d1205 1629 {
91d6fa6a 1630 int regno = range & exp.X_add_number;
a737bd4d 1631
c19d1205
ZW
1632 regno &= -regno;
1633 regno = (1 << regno) - 1;
1634 as_tsktsk
1635 (_("Warning: duplicated register (r%d) in register list"),
1636 regno);
1637 }
a737bd4d 1638
91d6fa6a 1639 range |= exp.X_add_number;
c19d1205
ZW
1640 }
1641 else
1642 {
1643 if (inst.reloc.type != 0)
1644 {
1645 inst.error = _("expression too complex");
1646 return FAIL;
1647 }
a737bd4d 1648
91d6fa6a 1649 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1650 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1651 inst.reloc.pc_rel = 0;
1652 }
1653 }
a737bd4d 1654
c19d1205
ZW
1655 if (*str == '|' || *str == '+')
1656 {
1657 str++;
1658 another_range = 1;
1659 }
a737bd4d 1660 }
c19d1205 1661 while (another_range);
a737bd4d 1662
c19d1205
ZW
1663 *strp = str;
1664 return range;
a737bd4d
NC
1665}
1666
5287ad62
JB
1667/* Types of registers in a list. */
1668
1669enum reg_list_els
1670{
1671 REGLIST_VFP_S,
1672 REGLIST_VFP_D,
1673 REGLIST_NEON_D
1674};
1675
c19d1205
ZW
1676/* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1683 some cases, e.g.:
1684 vtbl.8 d3,d4,d5
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
dcbf9037
JB
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1689 bug. */
6057a28f 1690
c19d1205 1691static int
037e8744 1692parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1693{
037e8744 1694 char *str = *ccp;
c19d1205
ZW
1695 int base_reg;
1696 int new_base;
21d799b5 1697 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1698 int max_regs = 0;
c19d1205
ZW
1699 int count = 0;
1700 int warned = 0;
1701 unsigned long mask = 0;
a737bd4d 1702 int i;
6057a28f 1703
037e8744 1704 if (*str != '{')
5287ad62
JB
1705 {
1706 inst.error = _("expecting {");
1707 return FAIL;
1708 }
6057a28f 1709
037e8744 1710 str++;
6057a28f 1711
5287ad62 1712 switch (etype)
c19d1205 1713 {
5287ad62 1714 case REGLIST_VFP_S:
c19d1205
ZW
1715 regtype = REG_TYPE_VFS;
1716 max_regs = 32;
5287ad62 1717 break;
5f4273c7 1718
5287ad62
JB
1719 case REGLIST_VFP_D:
1720 regtype = REG_TYPE_VFD;
b7fc2769 1721 break;
5f4273c7 1722
b7fc2769
JB
1723 case REGLIST_NEON_D:
1724 regtype = REG_TYPE_NDQ;
1725 break;
1726 }
1727
1728 if (etype != REGLIST_VFP_S)
1729 {
b1cc4aeb
PB
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1732 {
1733 max_regs = 32;
1734 if (thumb_mode)
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1736 fpu_vfp_ext_d32);
5287ad62
JB
1737 else
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1739 fpu_vfp_ext_d32);
5287ad62
JB
1740 }
1741 else
1742 max_regs = 16;
c19d1205 1743 }
6057a28f 1744
c19d1205 1745 base_reg = max_regs;
a737bd4d 1746
c19d1205
ZW
1747 do
1748 {
5287ad62 1749 int setmask = 1, addregs = 1;
dcbf9037 1750
037e8744 1751 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1752
c19d1205 1753 if (new_base == FAIL)
a737bd4d 1754 {
dcbf9037 1755 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1756 return FAIL;
1757 }
5f4273c7 1758
b7fc2769
JB
1759 if (new_base >= max_regs)
1760 {
1761 first_error (_("register out of range in list"));
1762 return FAIL;
1763 }
5f4273c7 1764
5287ad62
JB
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype == REG_TYPE_NQ)
1767 {
1768 setmask = 3;
1769 addregs = 2;
1770 }
1771
c19d1205
ZW
1772 if (new_base < base_reg)
1773 base_reg = new_base;
a737bd4d 1774
5287ad62 1775 if (mask & (setmask << new_base))
c19d1205 1776 {
dcbf9037 1777 first_error (_("invalid register list"));
c19d1205 1778 return FAIL;
a737bd4d 1779 }
a737bd4d 1780
c19d1205
ZW
1781 if ((mask >> new_base) != 0 && ! warned)
1782 {
1783 as_tsktsk (_("register list not in ascending order"));
1784 warned = 1;
1785 }
0bbf2aa4 1786
5287ad62
JB
1787 mask |= setmask << new_base;
1788 count += addregs;
0bbf2aa4 1789
037e8744 1790 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1791 {
1792 int high_range;
0bbf2aa4 1793
037e8744 1794 str++;
0bbf2aa4 1795
037e8744 1796 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1797 == FAIL)
c19d1205
ZW
1798 {
1799 inst.error = gettext (reg_expected_msgs[regtype]);
1800 return FAIL;
1801 }
0bbf2aa4 1802
b7fc2769
JB
1803 if (high_range >= max_regs)
1804 {
1805 first_error (_("register out of range in list"));
1806 return FAIL;
1807 }
1808
5287ad62
JB
1809 if (regtype == REG_TYPE_NQ)
1810 high_range = high_range + 1;
1811
c19d1205
ZW
1812 if (high_range <= new_base)
1813 {
1814 inst.error = _("register range not in ascending order");
1815 return FAIL;
1816 }
0bbf2aa4 1817
5287ad62 1818 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1819 {
5287ad62 1820 if (mask & (setmask << new_base))
0bbf2aa4 1821 {
c19d1205
ZW
1822 inst.error = _("invalid register list");
1823 return FAIL;
0bbf2aa4 1824 }
c19d1205 1825
5287ad62
JB
1826 mask |= setmask << new_base;
1827 count += addregs;
0bbf2aa4 1828 }
0bbf2aa4 1829 }
0bbf2aa4 1830 }
037e8744 1831 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1832
037e8744 1833 str++;
0bbf2aa4 1834
c19d1205
ZW
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count == 0 || count > max_regs)
1837 abort ();
1838
1839 *pbase = base_reg;
1840
1841 /* Final test -- the registers must be consecutive. */
1842 mask >>= base_reg;
1843 for (i = 0; i < count; i++)
1844 {
1845 if ((mask & (1u << i)) == 0)
1846 {
1847 inst.error = _("non-contiguous register range");
1848 return FAIL;
1849 }
1850 }
1851
037e8744
JB
1852 *ccp = str;
1853
c19d1205 1854 return count;
b99bd4ef
NC
1855}
1856
dcbf9037
JB
1857/* True if two alias types are the same. */
1858
c921be7d 1859static bfd_boolean
dcbf9037
JB
1860neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1861{
1862 if (!a && !b)
c921be7d 1863 return TRUE;
5f4273c7 1864
dcbf9037 1865 if (!a || !b)
c921be7d 1866 return FALSE;
dcbf9037
JB
1867
1868 if (a->defined != b->defined)
c921be7d 1869 return FALSE;
5f4273c7 1870
dcbf9037
JB
1871 if ((a->defined & NTA_HASTYPE) != 0
1872 && (a->eltype.type != b->eltype.type
1873 || a->eltype.size != b->eltype.size))
c921be7d 1874 return FALSE;
dcbf9037
JB
1875
1876 if ((a->defined & NTA_HASINDEX) != 0
1877 && (a->index != b->index))
c921be7d 1878 return FALSE;
5f4273c7 1879
c921be7d 1880 return TRUE;
dcbf9037
JB
1881}
1882
5287ad62
JB
1883/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
dcbf9037 1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1886 the return value.
1887 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1890
5287ad62 1891#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1892#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1893#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1894
1895static int
dcbf9037
JB
1896parse_neon_el_struct_list (char **str, unsigned *pbase,
1897 struct neon_type_el *eltype)
5287ad62
JB
1898{
1899 char *ptr = *str;
1900 int base_reg = -1;
1901 int reg_incr = -1;
1902 int count = 0;
1903 int lane = -1;
1904 int leading_brace = 0;
1905 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1906 const char *const incr_error = _("register stride must be 1 or 2");
1907 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1908 struct neon_typed_alias firsttype;
5f4273c7 1909
5287ad62
JB
1910 if (skip_past_char (&ptr, '{') == SUCCESS)
1911 leading_brace = 1;
5f4273c7 1912
5287ad62
JB
1913 do
1914 {
dcbf9037
JB
1915 struct neon_typed_alias atype;
1916 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1917
5287ad62
JB
1918 if (getreg == FAIL)
1919 {
dcbf9037 1920 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1921 return FAIL;
1922 }
5f4273c7 1923
5287ad62
JB
1924 if (base_reg == -1)
1925 {
1926 base_reg = getreg;
1927 if (rtype == REG_TYPE_NQ)
1928 {
1929 reg_incr = 1;
5287ad62 1930 }
dcbf9037 1931 firsttype = atype;
5287ad62
JB
1932 }
1933 else if (reg_incr == -1)
1934 {
1935 reg_incr = getreg - base_reg;
1936 if (reg_incr < 1 || reg_incr > 2)
1937 {
dcbf9037 1938 first_error (_(incr_error));
5287ad62
JB
1939 return FAIL;
1940 }
1941 }
1942 else if (getreg != base_reg + reg_incr * count)
1943 {
dcbf9037
JB
1944 first_error (_(incr_error));
1945 return FAIL;
1946 }
1947
c921be7d 1948 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1949 {
1950 first_error (_(type_error));
5287ad62
JB
1951 return FAIL;
1952 }
5f4273c7 1953
5287ad62
JB
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1955 modes. */
1956 if (ptr[0] == '-')
1957 {
dcbf9037 1958 struct neon_typed_alias htype;
5287ad62
JB
1959 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1960 if (lane == -1)
1961 lane = NEON_INTERLEAVE_LANES;
1962 else if (lane != NEON_INTERLEAVE_LANES)
1963 {
dcbf9037 1964 first_error (_(type_error));
5287ad62
JB
1965 return FAIL;
1966 }
1967 if (reg_incr == -1)
1968 reg_incr = 1;
1969 else if (reg_incr != 1)
1970 {
dcbf9037 1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1972 return FAIL;
1973 }
1974 ptr++;
dcbf9037 1975 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1976 if (hireg == FAIL)
1977 {
dcbf9037
JB
1978 first_error (_(reg_expected_msgs[rtype]));
1979 return FAIL;
1980 }
c921be7d 1981 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1982 {
1983 first_error (_(type_error));
5287ad62
JB
1984 return FAIL;
1985 }
1986 count += hireg + dregs - getreg;
1987 continue;
1988 }
5f4273c7 1989
5287ad62
JB
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype == REG_TYPE_NQ)
1992 {
1993 count += 2;
1994 continue;
1995 }
5f4273c7 1996
dcbf9037 1997 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1998 {
dcbf9037
JB
1999 if (lane == -1)
2000 lane = atype.index;
2001 else if (lane != atype.index)
5287ad62 2002 {
dcbf9037
JB
2003 first_error (_(type_error));
2004 return FAIL;
5287ad62
JB
2005 }
2006 }
2007 else if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
dcbf9037 2011 first_error (_(type_error));
5287ad62
JB
2012 return FAIL;
2013 }
2014 count++;
2015 }
2016 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2017
5287ad62
JB
2018 /* No lane set by [x]. We must be interleaving structures. */
2019 if (lane == -1)
2020 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2021
5287ad62
JB
2022 /* Sanity check. */
2023 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2024 || (count > 1 && reg_incr == -1))
2025 {
dcbf9037 2026 first_error (_("error parsing element/structure list"));
5287ad62
JB
2027 return FAIL;
2028 }
2029
2030 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2031 {
dcbf9037 2032 first_error (_("expected }"));
5287ad62
JB
2033 return FAIL;
2034 }
5f4273c7 2035
5287ad62
JB
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038
dcbf9037
JB
2039 if (eltype)
2040 *eltype = firsttype.eltype;
2041
5287ad62
JB
2042 *pbase = base_reg;
2043 *str = ptr;
5f4273c7 2044
5287ad62
JB
2045 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2046}
2047
c19d1205
ZW
2048/* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2053static int
2054parse_reloc (char **str)
b99bd4ef 2055{
c19d1205
ZW
2056 struct reloc_entry *r;
2057 char *p, *q;
b99bd4ef 2058
c19d1205
ZW
2059 if (**str != '(')
2060 return BFD_RELOC_UNUSED;
b99bd4ef 2061
c19d1205
ZW
2062 p = *str + 1;
2063 q = p;
2064
2065 while (*q && *q != ')' && *q != ',')
2066 q++;
2067 if (*q != ')')
2068 return -1;
2069
21d799b5
NC
2070 if ((r = (struct reloc_entry *)
2071 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2072 return -1;
2073
2074 *str = q + 1;
2075 return r->reloc;
b99bd4ef
NC
2076}
2077
c19d1205
ZW
2078/* Directives: register aliases. */
2079
dcbf9037 2080static struct reg_entry *
90ec0d68 2081insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2082{
d3ce72d0 2083 struct reg_entry *new_reg;
c19d1205 2084 const char *name;
b99bd4ef 2085
d3ce72d0 2086 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2087 {
d3ce72d0 2088 if (new_reg->builtin)
c19d1205 2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2090
c19d1205
ZW
2091 /* Only warn about a redefinition if it's not defined as the
2092 same register. */
d3ce72d0 2093 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2094 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2095
d929913e 2096 return NULL;
c19d1205 2097 }
b99bd4ef 2098
c19d1205 2099 name = xstrdup (str);
d3ce72d0 2100 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2101
d3ce72d0
NC
2102 new_reg->name = name;
2103 new_reg->number = number;
2104 new_reg->type = type;
2105 new_reg->builtin = FALSE;
2106 new_reg->neon = NULL;
b99bd4ef 2107
d3ce72d0 2108 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2109 abort ();
5f4273c7 2110
d3ce72d0 2111 return new_reg;
dcbf9037
JB
2112}
2113
2114static void
2115insert_neon_reg_alias (char *str, int number, int type,
2116 struct neon_typed_alias *atype)
2117{
2118 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2119
dcbf9037
JB
2120 if (!reg)
2121 {
2122 first_error (_("attempt to redefine typed alias"));
2123 return;
2124 }
5f4273c7 2125
dcbf9037
JB
2126 if (atype)
2127 {
21d799b5
NC
2128 reg->neon = (struct neon_typed_alias *)
2129 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2130 *reg->neon = *atype;
2131 }
c19d1205 2132}
b99bd4ef 2133
c19d1205 2134/* Look for the .req directive. This is of the form:
b99bd4ef 2135
c19d1205 2136 new_register_name .req existing_register_name
b99bd4ef 2137
c19d1205 2138 If we find one, or if it looks sufficiently like one that we want to
d929913e 2139 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2140
d929913e 2141static bfd_boolean
c19d1205
ZW
2142create_register_alias (char * newname, char *p)
2143{
2144 struct reg_entry *old;
2145 char *oldname, *nbuf;
2146 size_t nlen;
b99bd4ef 2147
c19d1205
ZW
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2150 oldname = p;
2151 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2152 return FALSE;
b99bd4ef 2153
c19d1205
ZW
2154 oldname += 6;
2155 if (*oldname == '\0')
d929913e 2156 return FALSE;
b99bd4ef 2157
21d799b5 2158 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2159 if (!old)
b99bd4ef 2160 {
c19d1205 2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2162 return TRUE;
b99bd4ef
NC
2163 }
2164
c19d1205
ZW
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168#ifdef TC_CASE_SENSITIVE
2169 nlen = p - newname;
2170#else
2171 newname = original_case_string;
2172 nlen = strlen (newname);
2173#endif
b99bd4ef 2174
21d799b5 2175 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2176 memcpy (nbuf, newname, nlen);
2177 nbuf[nlen] = '\0';
b99bd4ef 2178
c19d1205
ZW
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2181 name. */
d929913e
NC
2182 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2183 {
2184 for (p = nbuf; *p; p++)
2185 *p = TOUPPER (*p);
c19d1205 2186
d929913e
NC
2187 if (strncmp (nbuf, newname, nlen))
2188 {
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2193 foo .req r0
2194 Foo .req r1
2195 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2196 the artificial FOO alias because it has already been created by the
d929913e
NC
2197 first .req. */
2198 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2199 return TRUE;
2200 }
c19d1205 2201
d929913e
NC
2202 for (p = nbuf; *p; p++)
2203 *p = TOLOWER (*p);
c19d1205 2204
d929913e
NC
2205 if (strncmp (nbuf, newname, nlen))
2206 insert_reg_alias (nbuf, old->number, old->type);
2207 }
c19d1205 2208
d929913e 2209 return TRUE;
b99bd4ef
NC
2210}
2211
dcbf9037
JB
2212/* Create a Neon typed/indexed register alias using directives, e.g.:
2213 X .dn d5.s32[1]
2214 Y .qn 6.s16
2215 Z .dn d7
2216 T .dn Z[0]
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
5f4273c7 2220 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2221
c921be7d 2222static bfd_boolean
dcbf9037
JB
2223create_neon_reg_alias (char *newname, char *p)
2224{
2225 enum arm_reg_type basetype;
2226 struct reg_entry *basereg;
2227 struct reg_entry mybasereg;
2228 struct neon_type ntype;
2229 struct neon_typed_alias typeinfo;
12d6b0b7 2230 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2231 int namelen;
5f4273c7 2232
dcbf9037
JB
2233 typeinfo.defined = 0;
2234 typeinfo.eltype.type = NT_invtype;
2235 typeinfo.eltype.size = -1;
2236 typeinfo.index = -1;
5f4273c7 2237
dcbf9037 2238 nameend = p;
5f4273c7 2239
dcbf9037
JB
2240 if (strncmp (p, " .dn ", 5) == 0)
2241 basetype = REG_TYPE_VFD;
2242 else if (strncmp (p, " .qn ", 5) == 0)
2243 basetype = REG_TYPE_NQ;
2244 else
c921be7d 2245 return FALSE;
5f4273c7 2246
dcbf9037 2247 p += 5;
5f4273c7 2248
dcbf9037 2249 if (*p == '\0')
c921be7d 2250 return FALSE;
5f4273c7 2251
dcbf9037
JB
2252 basereg = arm_reg_parse_multi (&p);
2253
2254 if (basereg && basereg->type != basetype)
2255 {
2256 as_bad (_("bad type for register"));
c921be7d 2257 return FALSE;
dcbf9037
JB
2258 }
2259
2260 if (basereg == NULL)
2261 {
2262 expressionS exp;
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp, &p, GE_NO_PREFIX);
2265 if (exp.X_op != O_constant)
2266 {
2267 as_bad (_("expression must be constant"));
c921be7d 2268 return FALSE;
dcbf9037
JB
2269 }
2270 basereg = &mybasereg;
2271 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2272 : exp.X_add_number;
2273 basereg->neon = 0;
2274 }
2275
2276 if (basereg->neon)
2277 typeinfo = *basereg->neon;
2278
2279 if (parse_neon_type (&ntype, &p) == SUCCESS)
2280 {
2281 /* We got a type. */
2282 if (typeinfo.defined & NTA_HASTYPE)
2283 {
2284 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037
JB
2288 typeinfo.defined |= NTA_HASTYPE;
2289 if (ntype.elems != 1)
2290 {
2291 as_bad (_("you must specify a single type only"));
c921be7d 2292 return FALSE;
dcbf9037
JB
2293 }
2294 typeinfo.eltype = ntype.el[0];
2295 }
5f4273c7 2296
dcbf9037
JB
2297 if (skip_past_char (&p, '[') == SUCCESS)
2298 {
2299 expressionS exp;
2300 /* We got a scalar index. */
5f4273c7 2301
dcbf9037
JB
2302 if (typeinfo.defined & NTA_HASINDEX)
2303 {
2304 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2305 return FALSE;
dcbf9037 2306 }
5f4273c7 2307
dcbf9037 2308 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2309
dcbf9037
JB
2310 if (exp.X_op != O_constant)
2311 {
2312 as_bad (_("scalar index must be constant"));
c921be7d 2313 return FALSE;
dcbf9037 2314 }
5f4273c7 2315
dcbf9037
JB
2316 typeinfo.defined |= NTA_HASINDEX;
2317 typeinfo.index = exp.X_add_number;
5f4273c7 2318
dcbf9037
JB
2319 if (skip_past_char (&p, ']') == FAIL)
2320 {
2321 as_bad (_("expecting ]"));
c921be7d 2322 return FALSE;
dcbf9037
JB
2323 }
2324 }
2325
15735687
NS
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329#ifdef TC_CASE_SENSITIVE
dcbf9037 2330 namelen = nameend - newname;
15735687
NS
2331#else
2332 newname = original_case_string;
2333 namelen = strlen (newname);
2334#endif
2335
21d799b5 2336 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2337 strncpy (namebuf, newname, namelen);
2338 namebuf[namelen] = '\0';
5f4273c7 2339
dcbf9037
JB
2340 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2341 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2342
dcbf9037
JB
2343 /* Insert name in all uppercase. */
2344 for (p = namebuf; *p; p++)
2345 *p = TOUPPER (*p);
5f4273c7 2346
dcbf9037
JB
2347 if (strncmp (namebuf, newname, namelen))
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2350
dcbf9037
JB
2351 /* Insert name in all lowercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOLOWER (*p);
5f4273c7 2354
dcbf9037
JB
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2358
c921be7d 2359 return TRUE;
dcbf9037
JB
2360}
2361
c19d1205
ZW
2362/* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
c921be7d 2364
b99bd4ef 2365static void
c19d1205 2366s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2367{
c19d1205
ZW
2368 as_bad (_("invalid syntax for .req directive"));
2369}
b99bd4ef 2370
dcbf9037
JB
2371static void
2372s_dn (int a ATTRIBUTE_UNUSED)
2373{
2374 as_bad (_("invalid syntax for .dn directive"));
2375}
2376
2377static void
2378s_qn (int a ATTRIBUTE_UNUSED)
2379{
2380 as_bad (_("invalid syntax for .qn directive"));
2381}
2382
c19d1205
ZW
2383/* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
b99bd4ef 2385
c19d1205
ZW
2386 my_alias .req r11
2387 .unreq my_alias */
b99bd4ef
NC
2388
2389static void
c19d1205 2390s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2391{
c19d1205
ZW
2392 char * name;
2393 char saved_char;
b99bd4ef 2394
c19d1205
ZW
2395 name = input_line_pointer;
2396
2397 while (*input_line_pointer != 0
2398 && *input_line_pointer != ' '
2399 && *input_line_pointer != '\n')
2400 ++input_line_pointer;
2401
2402 saved_char = *input_line_pointer;
2403 *input_line_pointer = 0;
2404
2405 if (!*name)
2406 as_bad (_("invalid syntax for .unreq directive"));
2407 else
2408 {
21d799b5
NC
2409 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2410 name);
c19d1205
ZW
2411
2412 if (!reg)
2413 as_bad (_("unknown register alias '%s'"), name);
2414 else if (reg->builtin)
a1727c1a 2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2416 name);
2417 else
2418 {
d929913e
NC
2419 char * p;
2420 char * nbuf;
2421
db0bc284 2422 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2423 free ((char *) reg->name);
dcbf9037
JB
2424 if (reg->neon)
2425 free (reg->neon);
c19d1205 2426 free (reg);
d929913e
NC
2427
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
5f4273c7 2431
d929913e
NC
2432 nbuf = strdup (name);
2433 for (p = nbuf; *p; p++)
2434 *p = TOUPPER (*p);
21d799b5 2435 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2436 if (reg)
2437 {
db0bc284 2438 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2439 free ((char *) reg->name);
2440 if (reg->neon)
2441 free (reg->neon);
2442 free (reg);
2443 }
2444
2445 for (p = nbuf; *p; p++)
2446 *p = TOLOWER (*p);
21d799b5 2447 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2448 if (reg)
2449 {
db0bc284 2450 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2451 free ((char *) reg->name);
2452 if (reg->neon)
2453 free (reg->neon);
2454 free (reg);
2455 }
2456
2457 free (nbuf);
c19d1205
ZW
2458 }
2459 }
b99bd4ef 2460
c19d1205 2461 *input_line_pointer = saved_char;
b99bd4ef
NC
2462 demand_empty_rest_of_line ();
2463}
2464
c19d1205
ZW
2465/* Directives: Instruction set selection. */
2466
2467#ifdef OBJ_ELF
2468/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2472
cd000bff
DJ
2473/* Create a new mapping symbol for the transition to STATE. */
2474
2475static void
2476make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2477{
a737bd4d 2478 symbolS * symbolP;
c19d1205
ZW
2479 const char * symname;
2480 int type;
b99bd4ef 2481
c19d1205 2482 switch (state)
b99bd4ef 2483 {
c19d1205
ZW
2484 case MAP_DATA:
2485 symname = "$d";
2486 type = BSF_NO_FLAGS;
2487 break;
2488 case MAP_ARM:
2489 symname = "$a";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_THUMB:
2493 symname = "$t";
2494 type = BSF_NO_FLAGS;
2495 break;
c19d1205
ZW
2496 default:
2497 abort ();
2498 }
2499
cd000bff 2500 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2501 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2502
2503 switch (state)
2504 {
2505 case MAP_ARM:
2506 THUMB_SET_FUNC (symbolP, 0);
2507 ARM_SET_THUMB (symbolP, 0);
2508 ARM_SET_INTERWORK (symbolP, support_interwork);
2509 break;
2510
2511 case MAP_THUMB:
2512 THUMB_SET_FUNC (symbolP, 1);
2513 ARM_SET_THUMB (symbolP, 1);
2514 ARM_SET_INTERWORK (symbolP, support_interwork);
2515 break;
2516
2517 case MAP_DATA:
2518 default:
cd000bff
DJ
2519 break;
2520 }
2521
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2de7820f
JZ
2525 check_mapping_symbols.
2526
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2531 if (value == 0)
2532 {
2de7820f
JZ
2533 if (frag->tc_frag_data.first_map != NULL)
2534 {
2535 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2536 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2537 }
cd000bff
DJ
2538 frag->tc_frag_data.first_map = symbolP;
2539 }
2540 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2541 {
2542 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2543 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2544 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2545 }
cd000bff
DJ
2546 frag->tc_frag_data.last_map = symbolP;
2547}
2548
2549/* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2552
2553static void
2554insert_data_mapping_symbol (enum mstate state,
2555 valueT value, fragS *frag, offsetT bytes)
2556{
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag->tc_frag_data.last_map != NULL
2559 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2560 {
2561 symbolS *symp = frag->tc_frag_data.last_map;
2562
2563 if (value == 0)
2564 {
2565 know (frag->tc_frag_data.first_map == symp);
2566 frag->tc_frag_data.first_map = NULL;
2567 }
2568 frag->tc_frag_data.last_map = NULL;
2569 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2570 }
cd000bff
DJ
2571
2572 make_mapping_symbol (MAP_DATA, value, frag);
2573 make_mapping_symbol (state, value + bytes, frag);
2574}
2575
2576static void mapping_state_2 (enum mstate state, int max_chars);
2577
2578/* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2580
2581void
2582mapping_state (enum mstate state)
2583{
940b5ce0
DJ
2584 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2585
cd000bff
DJ
2586#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2587
2588 if (mapstate == state)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2591 return;
2592 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2593 /* This case will be evaluated later in the next else. */
2594 return;
2595 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2596 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2597 {
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2603 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2604
2605 if (add_symbol)
2606 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2607 }
2608
2609 mapping_state_2 (state, 0);
2610#undef TRANSITION
2611}
2612
2613/* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2615
2616static void
2617mapping_state_2 (enum mstate state, int max_chars)
2618{
940b5ce0
DJ
2619 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2620
2621 if (!SEG_NORMAL (now_seg))
2622 return;
2623
cd000bff
DJ
2624 if (mapstate == state)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2627 return;
2628
cd000bff
DJ
2629 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2630 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2631}
2632#else
d3106081
NS
2633#define mapping_state(x) ((void)0)
2634#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2635#endif
2636
2637/* Find the real, Thumb encoded start of a Thumb function. */
2638
4343666d 2639#ifdef OBJ_COFF
c19d1205
ZW
2640static symbolS *
2641find_real_start (symbolS * symbolP)
2642{
2643 char * real_start;
2644 const char * name = S_GET_NAME (symbolP);
2645 symbolS * new_target;
2646
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648#define STUB_NAME ".real_start_of"
2649
2650 if (name == NULL)
2651 abort ();
2652
37f6032b
ZW
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2659 return symbolP;
2660
37f6032b 2661 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2662 new_target = symbol_find (real_start);
2663
2664 if (new_target == NULL)
2665 {
bd3ba5d1 2666 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2667 new_target = symbolP;
2668 }
2669
c19d1205
ZW
2670 return new_target;
2671}
4343666d 2672#endif
c19d1205
ZW
2673
2674static void
2675opcode_select (int width)
2676{
2677 switch (width)
2678 {
2679 case 16:
2680 if (! thumb_mode)
2681 {
e74cfd16 2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2684
2685 thumb_mode = 1;
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg, 1);
2689 }
c19d1205
ZW
2690 break;
2691
2692 case 32:
2693 if (thumb_mode)
2694 {
e74cfd16 2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2696 as_bad (_("selected processor does not support ARM opcodes"));
2697
2698 thumb_mode = 0;
2699
2700 if (!need_pass_2)
2701 frag_align (2, 0, 0);
2702
2703 record_alignment (now_seg, 1);
2704 }
c19d1205
ZW
2705 break;
2706
2707 default:
2708 as_bad (_("invalid instruction size selected (%d)"), width);
2709 }
2710}
2711
2712static void
2713s_arm (int ignore ATTRIBUTE_UNUSED)
2714{
2715 opcode_select (32);
2716 demand_empty_rest_of_line ();
2717}
2718
2719static void
2720s_thumb (int ignore ATTRIBUTE_UNUSED)
2721{
2722 opcode_select (16);
2723 demand_empty_rest_of_line ();
2724}
2725
2726static void
2727s_code (int unused ATTRIBUTE_UNUSED)
2728{
2729 int temp;
2730
2731 temp = get_absolute_expression ();
2732 switch (temp)
2733 {
2734 case 16:
2735 case 32:
2736 opcode_select (temp);
2737 break;
2738
2739 default:
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2741 }
2742}
2743
2744static void
2745s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2746{
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2752 if (! thumb_mode)
2753 {
2754 thumb_mode = 2;
2755 record_alignment (now_seg, 1);
2756 }
2757
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2763{
2764 s_thumb (0);
2765
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name = TRUE;
2769}
2770
2771/* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2773
2774static void
2775s_thumb_set (int equiv)
2776{
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2779 is created. */
2780 char * name;
2781 char delim;
2782 char * end_name;
2783 symbolS * symbolP;
2784
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2787 Dean - in haste. */
2788 name = input_line_pointer;
2789 delim = get_symbol_end ();
2790 end_name = input_line_pointer;
2791 *end_name = delim;
2792
2793 if (*input_line_pointer != ',')
2794 {
2795 *end_name = 0;
2796 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2797 *end_name = delim;
2798 ignore_rest_of_line ();
2799 return;
2800 }
2801
2802 input_line_pointer++;
2803 *end_name = 0;
2804
2805 if (name[0] == '.' && name[1] == '\0')
2806 {
2807 /* XXX - this should not happen to .thumb_set. */
2808 abort ();
2809 }
2810
2811 if ((symbolP = symbol_find (name)) == NULL
2812 && (symbolP = md_undefined_symbol (name)) == NULL)
2813 {
2814#ifndef NO_LISTING
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
c19d1205 2817 for this symbol. */
b99bd4ef
NC
2818 if (listing & LISTING_SYMBOLS)
2819 {
2820 extern struct list_info_struct * listing_tail;
21d799b5 2821 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2822
2823 memset (dummy_frag, 0, sizeof (fragS));
2824 dummy_frag->fr_type = rs_fill;
2825 dummy_frag->line = listing_tail;
2826 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2827 dummy_frag->fr_symbol = symbolP;
2828 }
2829 else
2830#endif
2831 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2832
2833#ifdef OBJ_COFF
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP);
2836#endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2838
2839 symbol_table_insert (symbolP);
2840
2841 * end_name = delim;
2842
2843 if (equiv
2844 && S_IS_DEFINED (symbolP)
2845 && S_GET_SEGMENT (symbolP) != reg_section)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2847
2848 pseudo_set (symbolP);
2849
2850 demand_empty_rest_of_line ();
2851
c19d1205 2852 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2853
2854 THUMB_SET_FUNC (symbolP, 1);
2855 ARM_SET_THUMB (symbolP, 1);
2856#if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP, support_interwork);
2858#endif
2859}
2860
c19d1205 2861/* Directives: Mode selection. */
b99bd4ef 2862
c19d1205
ZW
2863/* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2866static void
c19d1205 2867s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2868{
c19d1205
ZW
2869 char *name, delim;
2870
2871 name = input_line_pointer;
2872 delim = get_symbol_end ();
2873
2874 if (!strcasecmp (name, "unified"))
2875 unified_syntax = TRUE;
2876 else if (!strcasecmp (name, "divided"))
2877 unified_syntax = FALSE;
2878 else
2879 {
2880 as_bad (_("unrecognized syntax mode \"%s\""), name);
2881 return;
2882 }
2883 *input_line_pointer = delim;
b99bd4ef
NC
2884 demand_empty_rest_of_line ();
2885}
2886
c19d1205
ZW
2887/* Directives: sectioning and alignment. */
2888
2889/* Same as s_align_ptwo but align 0 => align 2. */
2890
b99bd4ef 2891static void
c19d1205 2892s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2893{
a737bd4d 2894 int temp;
dce323d1 2895 bfd_boolean fill_p;
c19d1205
ZW
2896 long temp_fill;
2897 long max_alignment = 15;
b99bd4ef
NC
2898
2899 temp = get_absolute_expression ();
c19d1205
ZW
2900 if (temp > max_alignment)
2901 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2902 else if (temp < 0)
b99bd4ef 2903 {
c19d1205
ZW
2904 as_bad (_("alignment negative. 0 assumed."));
2905 temp = 0;
2906 }
b99bd4ef 2907
c19d1205
ZW
2908 if (*input_line_pointer == ',')
2909 {
2910 input_line_pointer++;
2911 temp_fill = get_absolute_expression ();
dce323d1 2912 fill_p = TRUE;
b99bd4ef 2913 }
c19d1205 2914 else
dce323d1
PB
2915 {
2916 fill_p = FALSE;
2917 temp_fill = 0;
2918 }
b99bd4ef 2919
c19d1205
ZW
2920 if (!temp)
2921 temp = 2;
b99bd4ef 2922
c19d1205
ZW
2923 /* Only make a frag if we HAVE to. */
2924 if (temp && !need_pass_2)
dce323d1
PB
2925 {
2926 if (!fill_p && subseg_text_p (now_seg))
2927 frag_align_code (temp, 0);
2928 else
2929 frag_align (temp, (int) temp_fill, 0);
2930 }
c19d1205
ZW
2931 demand_empty_rest_of_line ();
2932
2933 record_alignment (now_seg, temp);
b99bd4ef
NC
2934}
2935
c19d1205
ZW
2936static void
2937s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2938{
c19d1205
ZW
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section, 0);
2942 demand_empty_rest_of_line ();
cd000bff
DJ
2943
2944#ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2946#endif
c19d1205 2947}
b99bd4ef 2948
c19d1205
ZW
2949static void
2950s_even (int ignore ATTRIBUTE_UNUSED)
2951{
2952 /* Never make frag if expect extra pass. */
2953 if (!need_pass_2)
2954 frag_align (1, 0, 0);
b99bd4ef 2955
c19d1205 2956 record_alignment (now_seg, 1);
b99bd4ef 2957
c19d1205 2958 demand_empty_rest_of_line ();
b99bd4ef
NC
2959}
2960
c19d1205 2961/* Directives: Literal pools. */
a737bd4d 2962
c19d1205
ZW
2963static literal_pool *
2964find_literal_pool (void)
a737bd4d 2965{
c19d1205 2966 literal_pool * pool;
a737bd4d 2967
c19d1205 2968 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2969 {
c19d1205
ZW
2970 if (pool->section == now_seg
2971 && pool->sub_section == now_subseg)
2972 break;
a737bd4d
NC
2973 }
2974
c19d1205 2975 return pool;
a737bd4d
NC
2976}
2977
c19d1205
ZW
2978static literal_pool *
2979find_or_make_literal_pool (void)
a737bd4d 2980{
c19d1205
ZW
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num = 1;
2983 literal_pool * pool;
a737bd4d 2984
c19d1205 2985 pool = find_literal_pool ();
a737bd4d 2986
c19d1205 2987 if (pool == NULL)
a737bd4d 2988 {
c19d1205 2989 /* Create a new pool. */
21d799b5 2990 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2991 if (! pool)
2992 return NULL;
a737bd4d 2993
c19d1205
ZW
2994 pool->next_free_entry = 0;
2995 pool->section = now_seg;
2996 pool->sub_section = now_subseg;
2997 pool->next = list_of_pools;
2998 pool->symbol = NULL;
2999
3000 /* Add it to the list. */
3001 list_of_pools = pool;
a737bd4d 3002 }
a737bd4d 3003
c19d1205
ZW
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool->symbol == NULL)
a737bd4d 3006 {
c19d1205
ZW
3007 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3008 (valueT) 0, &zero_address_frag);
3009 pool->id = latest_pool_num ++;
a737bd4d
NC
3010 }
3011
c19d1205
ZW
3012 /* Done. */
3013 return pool;
a737bd4d
NC
3014}
3015
c19d1205 3016/* Add the literal in the global 'inst'
5f4273c7 3017 structure to the relevant literal pool. */
b99bd4ef
NC
3018
3019static int
c19d1205 3020add_to_lit_pool (void)
b99bd4ef 3021{
c19d1205
ZW
3022 literal_pool * pool;
3023 unsigned int entry;
b99bd4ef 3024
c19d1205
ZW
3025 pool = find_or_make_literal_pool ();
3026
3027 /* Check if this literal value is already in the pool. */
3028 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3029 {
c19d1205
ZW
3030 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3031 && (inst.reloc.exp.X_op == O_constant)
3032 && (pool->literals[entry].X_add_number
3033 == inst.reloc.exp.X_add_number)
3034 && (pool->literals[entry].X_unsigned
3035 == inst.reloc.exp.X_unsigned))
3036 break;
3037
3038 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3039 && (inst.reloc.exp.X_op == O_symbol)
3040 && (pool->literals[entry].X_add_number
3041 == inst.reloc.exp.X_add_number)
3042 && (pool->literals[entry].X_add_symbol
3043 == inst.reloc.exp.X_add_symbol)
3044 && (pool->literals[entry].X_op_symbol
3045 == inst.reloc.exp.X_op_symbol))
3046 break;
b99bd4ef
NC
3047 }
3048
c19d1205
ZW
3049 /* Do we need to create a new entry? */
3050 if (entry == pool->next_free_entry)
3051 {
3052 if (entry >= MAX_LITERAL_POOL_SIZE)
3053 {
3054 inst.error = _("literal pool overflow");
3055 return FAIL;
3056 }
3057
3058 pool->literals[entry] = inst.reloc.exp;
3059 pool->next_free_entry += 1;
3060 }
b99bd4ef 3061
c19d1205
ZW
3062 inst.reloc.exp.X_op = O_symbol;
3063 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3064 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3065
c19d1205 3066 return SUCCESS;
b99bd4ef
NC
3067}
3068
c19d1205
ZW
3069/* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
e16bb312 3071
c19d1205
ZW
3072static void
3073symbol_locate (symbolS * symbolP,
3074 const char * name, /* It is copied, the caller can modify. */
3075 segT segment, /* Segment identifier (SEG_<something>). */
3076 valueT valu, /* Symbol value. */
3077 fragS * frag) /* Associated fragment. */
3078{
3079 unsigned int name_length;
3080 char * preserved_copy_of_name;
e16bb312 3081
c19d1205
ZW
3082 name_length = strlen (name) + 1; /* +1 for \0. */
3083 obstack_grow (&notes, name, name_length);
21d799b5 3084 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3085
c19d1205
ZW
3086#ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name =
3088 tc_canonicalize_symbol_name (preserved_copy_of_name);
3089#endif
b99bd4ef 3090
c19d1205 3091 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3092
c19d1205
ZW
3093 S_SET_SEGMENT (symbolP, segment);
3094 S_SET_VALUE (symbolP, valu);
3095 symbol_clear_list_pointers (symbolP);
b99bd4ef 3096
c19d1205 3097 symbol_set_frag (symbolP, frag);
b99bd4ef 3098
c19d1205
ZW
3099 /* Link to end of symbol chain. */
3100 {
3101 extern int symbol_table_frozen;
b99bd4ef 3102
c19d1205
ZW
3103 if (symbol_table_frozen)
3104 abort ();
3105 }
b99bd4ef 3106
c19d1205 3107 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3108
c19d1205 3109 obj_symbol_new_hook (symbolP);
b99bd4ef 3110
c19d1205
ZW
3111#ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP);
3113#endif
3114
3115#ifdef DEBUG_SYMS
3116 verify_symbol_chain (symbol_rootP, symbol_lastP);
3117#endif /* DEBUG_SYMS */
b99bd4ef
NC
3118}
3119
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3123{
c19d1205
ZW
3124 unsigned int entry;
3125 literal_pool * pool;
3126 char sym_name[20];
b99bd4ef 3127
c19d1205
ZW
3128 pool = find_literal_pool ();
3129 if (pool == NULL
3130 || pool->symbol == NULL
3131 || pool->next_free_entry == 0)
3132 return;
b99bd4ef 3133
c19d1205 3134 mapping_state (MAP_DATA);
b99bd4ef 3135
c19d1205
ZW
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3138 if (!need_pass_2)
3139 frag_align (2, 0, 0);
b99bd4ef 3140
c19d1205 3141 record_alignment (now_seg, 2);
b99bd4ef 3142
c19d1205 3143 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3144
c19d1205
ZW
3145 symbol_locate (pool->symbol, sym_name, now_seg,
3146 (valueT) frag_now_fix (), frag_now);
3147 symbol_table_insert (pool->symbol);
b99bd4ef 3148
c19d1205 3149 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3150
c19d1205
ZW
3151#if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3153#endif
6c43fab6 3154
c19d1205
ZW
3155 for (entry = 0; entry < pool->next_free_entry; entry ++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3158
c19d1205
ZW
3159 /* Mark the pool as empty. */
3160 pool->next_free_entry = 0;
3161 pool->symbol = NULL;
b99bd4ef
NC
3162}
3163
c19d1205
ZW
3164#ifdef OBJ_ELF
3165/* Forward declarations for functions below, in the MD interface
3166 section. */
3167static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3168static valueT create_unwind_entry (int);
3169static void start_unwind_section (const segT, int);
3170static void add_unwind_opcode (valueT, int);
3171static void flush_pending_unwind (void);
b99bd4ef 3172
c19d1205 3173/* Directives: Data. */
b99bd4ef 3174
c19d1205
ZW
3175static void
3176s_arm_elf_cons (int nbytes)
3177{
3178 expressionS exp;
b99bd4ef 3179
c19d1205
ZW
3180#ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3182#endif
b99bd4ef 3183
c19d1205 3184 if (is_it_end_of_statement ())
b99bd4ef 3185 {
c19d1205
ZW
3186 demand_empty_rest_of_line ();
3187 return;
b99bd4ef
NC
3188 }
3189
c19d1205
ZW
3190#ifdef md_cons_align
3191 md_cons_align (nbytes);
3192#endif
b99bd4ef 3193
c19d1205
ZW
3194 mapping_state (MAP_DATA);
3195 do
b99bd4ef 3196 {
c19d1205
ZW
3197 int reloc;
3198 char *base = input_line_pointer;
b99bd4ef 3199
c19d1205 3200 expression (& exp);
b99bd4ef 3201
c19d1205
ZW
3202 if (exp.X_op != O_symbol)
3203 emit_expr (&exp, (unsigned int) nbytes);
3204 else
3205 {
3206 char *before_reloc = input_line_pointer;
3207 reloc = parse_reloc (&input_line_pointer);
3208 if (reloc == -1)
3209 {
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3212 return;
3213 }
3214 else if (reloc == BFD_RELOC_UNUSED)
3215 emit_expr (&exp, (unsigned int) nbytes);
3216 else
3217 {
21d799b5
NC
3218 reloc_howto_type *howto = (reloc_howto_type *)
3219 bfd_reloc_type_lookup (stdoutput,
3220 (bfd_reloc_code_real_type) reloc);
c19d1205 3221 int size = bfd_get_reloc_size (howto);
b99bd4ef 3222
2fc8bdac
ZW
3223 if (reloc == BFD_RELOC_ARM_PLT32)
3224 {
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc = BFD_RELOC_UNUSED;
3227 size = 0;
3228 }
3229
c19d1205 3230 if (size > nbytes)
2fc8bdac 3231 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3232 howto->name, nbytes);
3233 else
3234 {
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p = input_line_pointer;
3240 int offset;
21d799b5 3241 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3242 memcpy (save_buf, base, input_line_pointer - base);
3243 memmove (base + (input_line_pointer - before_reloc),
3244 base, before_reloc - base);
3245
3246 input_line_pointer = base + (input_line_pointer-before_reloc);
3247 expression (&exp);
3248 memcpy (base, save_buf, p - base);
3249
3250 offset = nbytes - size;
3251 p = frag_more ((int) nbytes);
3252 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3253 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3254 }
3255 }
3256 }
b99bd4ef 3257 }
c19d1205 3258 while (*input_line_pointer++ == ',');
b99bd4ef 3259
c19d1205
ZW
3260 /* Put terminator back into stream. */
3261 input_line_pointer --;
3262 demand_empty_rest_of_line ();
b99bd4ef
NC
3263}
3264
c921be7d
NC
3265/* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3267
3268static void
3269emit_thumb32_expr (expressionS * exp)
3270{
3271 expressionS exp_high = *exp;
3272
3273 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3274 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3275 exp->X_add_number &= 0xffff;
3276 emit_expr (exp, (unsigned int) THUMB_SIZE);
3277}
3278
3279/* Guess the instruction size based on the opcode. */
3280
3281static int
3282thumb_insn_size (int opcode)
3283{
3284 if ((unsigned int) opcode < 0xe800u)
3285 return 2;
3286 else if ((unsigned int) opcode >= 0xe8000000u)
3287 return 4;
3288 else
3289 return 0;
3290}
3291
3292static bfd_boolean
3293emit_insn (expressionS *exp, int nbytes)
3294{
3295 int size = 0;
3296
3297 if (exp->X_op == O_constant)
3298 {
3299 size = nbytes;
3300
3301 if (size == 0)
3302 size = thumb_insn_size (exp->X_add_number);
3303
3304 if (size != 0)
3305 {
3306 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3307 {
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3310 size = 0;
3311 }
3312 else
3313 {
3314 if (now_it.state == AUTOMATIC_IT_BLOCK)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3316 else
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3318
3319 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3320 emit_thumb32_expr (exp);
3321 else
3322 emit_expr (exp, (unsigned int) size);
3323
3324 it_fsm_post_encode ();
3325 }
3326 }
3327 else
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3330 }
3331 else
3332 as_bad (_("constant expression required"));
3333
3334 return (size != 0);
3335}
3336
3337/* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3339
3340static void
3341s_arm_elf_inst (int nbytes)
3342{
3343 if (is_it_end_of_statement ())
3344 {
3345 demand_empty_rest_of_line ();
3346 return;
3347 }
3348
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3351
3352 if (thumb_mode)
3353 mapping_state (MAP_THUMB);
3354 else
3355 {
3356 if (nbytes != 0)
3357 {
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3360 return;
3361 }
3362
3363 nbytes = 4;
3364
3365 mapping_state (MAP_ARM);
3366 }
3367
3368 do
3369 {
3370 expressionS exp;
3371
3372 expression (& exp);
3373
3374 if (! emit_insn (& exp, nbytes))
3375 {
3376 ignore_rest_of_line ();
3377 return;
3378 }
3379 }
3380 while (*input_line_pointer++ == ',');
3381
3382 /* Put terminator back into stream. */
3383 input_line_pointer --;
3384 demand_empty_rest_of_line ();
3385}
b99bd4ef 3386
c19d1205 3387/* Parse a .rel31 directive. */
b99bd4ef 3388
c19d1205
ZW
3389static void
3390s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3391{
3392 expressionS exp;
3393 char *p;
3394 valueT highbit;
b99bd4ef 3395
c19d1205
ZW
3396 highbit = 0;
3397 if (*input_line_pointer == '1')
3398 highbit = 0x80000000;
3399 else if (*input_line_pointer != '0')
3400 as_bad (_("expected 0 or 1"));
b99bd4ef 3401
c19d1205
ZW
3402 input_line_pointer++;
3403 if (*input_line_pointer != ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer++;
b99bd4ef 3406
c19d1205
ZW
3407#ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3409#endif
b99bd4ef 3410
c19d1205
ZW
3411#ifdef md_cons_align
3412 md_cons_align (4);
3413#endif
b99bd4ef 3414
c19d1205 3415 mapping_state (MAP_DATA);
b99bd4ef 3416
c19d1205 3417 expression (&exp);
b99bd4ef 3418
c19d1205
ZW
3419 p = frag_more (4);
3420 md_number_to_chars (p, highbit, 4);
3421 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3422 BFD_RELOC_ARM_PREL31);
b99bd4ef 3423
c19d1205 3424 demand_empty_rest_of_line ();
b99bd4ef
NC
3425}
3426
c19d1205 3427/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3428
c19d1205 3429/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3430
c19d1205
ZW
3431static void
3432s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3433{
3434 demand_empty_rest_of_line ();
921e5f0a
PB
3435 if (unwind.proc_start)
3436 {
c921be7d 3437 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3438 return;
3439 }
3440
c19d1205
ZW
3441 /* Mark the start of the function. */
3442 unwind.proc_start = expr_build_dot ();
b99bd4ef 3443
c19d1205
ZW
3444 /* Reset the rest of the unwind info. */
3445 unwind.opcode_count = 0;
3446 unwind.table_entry = NULL;
3447 unwind.personality_routine = NULL;
3448 unwind.personality_index = -1;
3449 unwind.frame_size = 0;
3450 unwind.fp_offset = 0;
fdfde340 3451 unwind.fp_reg = REG_SP;
c19d1205
ZW
3452 unwind.fp_used = 0;
3453 unwind.sp_restored = 0;
3454}
b99bd4ef 3455
b99bd4ef 3456
c19d1205
ZW
3457/* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
b99bd4ef 3459
c19d1205
ZW
3460static void
3461s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3462{
3463 demand_empty_rest_of_line ();
921e5f0a 3464 if (!unwind.proc_start)
c921be7d 3465 as_bad (MISSING_FNSTART);
921e5f0a 3466
c19d1205 3467 if (unwind.table_entry)
6decc662 3468 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3469
c19d1205
ZW
3470 create_unwind_entry (1);
3471}
a737bd4d 3472
c19d1205 3473/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3474
c19d1205
ZW
3475static void
3476s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3477{
3478 long where;
3479 char *ptr;
3480 valueT val;
940b5ce0 3481 unsigned int marked_pr_dependency;
f02232aa 3482
c19d1205 3483 demand_empty_rest_of_line ();
f02232aa 3484
921e5f0a
PB
3485 if (!unwind.proc_start)
3486 {
c921be7d 3487 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3488 return;
3489 }
3490
c19d1205
ZW
3491 /* Add eh table entry. */
3492 if (unwind.table_entry == NULL)
3493 val = create_unwind_entry (0);
3494 else
3495 val = 0;
f02232aa 3496
c19d1205
ZW
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind.saved_seg, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg, 2);
b99bd4ef 3501
c19d1205
ZW
3502 ptr = frag_more (8);
3503 where = frag_now_fix () - 8;
f02232aa 3504
c19d1205
ZW
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3507 BFD_RELOC_ARM_PREL31);
f02232aa 3508
c19d1205
ZW
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
940b5ce0
DJ
3511 marked_pr_dependency
3512 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3513 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3514 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3515 {
5f4273c7
NC
3516 static const char *const name[] =
3517 {
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3521 };
c19d1205
ZW
3522 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3523 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3524 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3525 |= 1 << unwind.personality_index;
c19d1205 3526 }
f02232aa 3527
c19d1205
ZW
3528 if (val)
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr + 4, val, 4);
3531 else
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3534 BFD_RELOC_ARM_PREL31);
f02232aa 3535
c19d1205
ZW
3536 /* Restore the original section. */
3537 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3538
3539 unwind.proc_start = NULL;
c19d1205 3540}
f02232aa 3541
f02232aa 3542
c19d1205 3543/* Parse an unwind_cantunwind directive. */
b99bd4ef 3544
c19d1205
ZW
3545static void
3546s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3547{
3548 demand_empty_rest_of_line ();
921e5f0a 3549 if (!unwind.proc_start)
c921be7d 3550 as_bad (MISSING_FNSTART);
921e5f0a 3551
c19d1205
ZW
3552 if (unwind.personality_routine || unwind.personality_index != -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3554
c19d1205
ZW
3555 unwind.personality_index = -2;
3556}
b99bd4ef 3557
b99bd4ef 3558
c19d1205 3559/* Parse a personalityindex directive. */
b99bd4ef 3560
c19d1205
ZW
3561static void
3562s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3563{
3564 expressionS exp;
b99bd4ef 3565
921e5f0a 3566 if (!unwind.proc_start)
c921be7d 3567 as_bad (MISSING_FNSTART);
921e5f0a 3568
c19d1205
ZW
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3571
c19d1205 3572 expression (&exp);
b99bd4ef 3573
c19d1205
ZW
3574 if (exp.X_op != O_constant
3575 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3576 {
c19d1205
ZW
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3579 return;
b99bd4ef
NC
3580 }
3581
c19d1205 3582 unwind.personality_index = exp.X_add_number;
b99bd4ef 3583
c19d1205
ZW
3584 demand_empty_rest_of_line ();
3585}
e16bb312 3586
e16bb312 3587
c19d1205 3588/* Parse a personality directive. */
e16bb312 3589
c19d1205
ZW
3590static void
3591s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3592{
3593 char *name, *p, c;
a737bd4d 3594
921e5f0a 3595 if (!unwind.proc_start)
c921be7d 3596 as_bad (MISSING_FNSTART);
921e5f0a 3597
c19d1205
ZW
3598 if (unwind.personality_routine || unwind.personality_index != -1)
3599 as_bad (_("duplicate .personality directive"));
a737bd4d 3600
c19d1205
ZW
3601 name = input_line_pointer;
3602 c = get_symbol_end ();
3603 p = input_line_pointer;
3604 unwind.personality_routine = symbol_find_or_make (name);
3605 *p = c;
3606 demand_empty_rest_of_line ();
3607}
e16bb312 3608
e16bb312 3609
c19d1205 3610/* Parse a directive saving core registers. */
e16bb312 3611
c19d1205
ZW
3612static void
3613s_arm_unwind_save_core (void)
e16bb312 3614{
c19d1205
ZW
3615 valueT op;
3616 long range;
3617 int n;
e16bb312 3618
c19d1205
ZW
3619 range = parse_reg_list (&input_line_pointer);
3620 if (range == FAIL)
e16bb312 3621 {
c19d1205
ZW
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3624 return;
3625 }
e16bb312 3626
c19d1205 3627 demand_empty_rest_of_line ();
e16bb312 3628
c19d1205
ZW
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind.sp_restored && unwind.fp_reg == 12
3633 && (range & 0x3000) == 0x1000)
3634 {
3635 unwind.opcode_count--;
3636 unwind.sp_restored = 0;
3637 range = (range | 0x2000) & ~0x1000;
3638 unwind.pending_offset = 0;
3639 }
e16bb312 3640
01ae4198
DJ
3641 /* Pop r4-r15. */
3642 if (range & 0xfff0)
c19d1205 3643 {
01ae4198
DJ
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n = 0; n < 8; n++)
3647 {
3648 /* Break at the first non-saved register. */
3649 if ((range & (1 << (n + 4))) == 0)
3650 break;
3651 }
3652 /* See if there are any other bits set. */
3653 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3654 {
3655 /* Use the long form. */
3656 op = 0x8000 | ((range >> 4) & 0xfff);
3657 add_unwind_opcode (op, 2);
3658 }
0dd132b6 3659 else
01ae4198
DJ
3660 {
3661 /* Use the short form. */
3662 if (range & 0x4000)
3663 op = 0xa8; /* Pop r14. */
3664 else
3665 op = 0xa0; /* Do not pop r14. */
3666 op |= (n - 1);
3667 add_unwind_opcode (op, 1);
3668 }
c19d1205 3669 }
0dd132b6 3670
c19d1205
ZW
3671 /* Pop r0-r3. */
3672 if (range & 0xf)
3673 {
3674 op = 0xb100 | (range & 0xf);
3675 add_unwind_opcode (op, 2);
0dd132b6
NC
3676 }
3677
c19d1205
ZW
3678 /* Record the number of bytes pushed. */
3679 for (n = 0; n < 16; n++)
3680 {
3681 if (range & (1 << n))
3682 unwind.frame_size += 4;
3683 }
0dd132b6
NC
3684}
3685
c19d1205
ZW
3686
3687/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3688
3689static void
c19d1205 3690s_arm_unwind_save_fpa (int reg)
b99bd4ef 3691{
c19d1205
ZW
3692 expressionS exp;
3693 int num_regs;
3694 valueT op;
b99bd4ef 3695
c19d1205
ZW
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer) != FAIL)
3698 expression (&exp);
3699 else
3700 exp.X_op = O_illegal;
b99bd4ef 3701
c19d1205 3702 if (exp.X_op != O_constant)
b99bd4ef 3703 {
c19d1205
ZW
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
b99bd4ef
NC
3706 return;
3707 }
3708
c19d1205
ZW
3709 num_regs = exp.X_add_number;
3710
3711 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3712 {
c19d1205
ZW
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
b99bd4ef
NC
3715 return;
3716 }
3717
c19d1205 3718 demand_empty_rest_of_line ();
b99bd4ef 3719
c19d1205
ZW
3720 if (reg == 4)
3721 {
3722 /* Short form. */
3723 op = 0xb4 | (num_regs - 1);
3724 add_unwind_opcode (op, 1);
3725 }
b99bd4ef
NC
3726 else
3727 {
c19d1205
ZW
3728 /* Long form. */
3729 op = 0xc800 | (reg << 4) | (num_regs - 1);
3730 add_unwind_opcode (op, 2);
b99bd4ef 3731 }
c19d1205 3732 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3733}
3734
c19d1205 3735
fa073d69
MS
3736/* Parse a directive saving VFP registers for ARMv6 and above. */
3737
3738static void
3739s_arm_unwind_save_vfp_armv6 (void)
3740{
3741 int count;
3742 unsigned int start;
3743 valueT op;
3744 int num_vfpv3_regs = 0;
3745 int num_regs_below_16;
3746
3747 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3748 if (count == FAIL)
3749 {
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3753 }
3754
3755 demand_empty_rest_of_line ();
3756
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3759
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3761 if (start >= 16)
3762 num_vfpv3_regs = count;
3763 else if (start + count > 16)
3764 num_vfpv3_regs = start + count - 16;
3765
3766 if (num_vfpv3_regs > 0)
3767 {
3768 int start_offset = start > 16 ? start - 16 : 0;
3769 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3775 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3776 if (num_regs_below_16 > 0)
3777 {
3778 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3779 add_unwind_opcode (op, 2);
3780 }
3781
3782 unwind.frame_size += count * 8;
3783}
3784
3785
3786/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3787
3788static void
c19d1205 3789s_arm_unwind_save_vfp (void)
b99bd4ef 3790{
c19d1205 3791 int count;
ca3f61f7 3792 unsigned int reg;
c19d1205 3793 valueT op;
b99bd4ef 3794
5287ad62 3795 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3796 if (count == FAIL)
b99bd4ef 3797 {
c19d1205
ZW
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
b99bd4ef
NC
3800 return;
3801 }
3802
c19d1205 3803 demand_empty_rest_of_line ();
b99bd4ef 3804
c19d1205 3805 if (reg == 8)
b99bd4ef 3806 {
c19d1205
ZW
3807 /* Short form. */
3808 op = 0xb8 | (count - 1);
3809 add_unwind_opcode (op, 1);
b99bd4ef 3810 }
c19d1205 3811 else
b99bd4ef 3812 {
c19d1205
ZW
3813 /* Long form. */
3814 op = 0xb300 | (reg << 4) | (count - 1);
3815 add_unwind_opcode (op, 2);
b99bd4ef 3816 }
c19d1205
ZW
3817 unwind.frame_size += count * 8 + 4;
3818}
b99bd4ef 3819
b99bd4ef 3820
c19d1205
ZW
3821/* Parse a directive saving iWMMXt data registers. */
3822
3823static void
3824s_arm_unwind_save_mmxwr (void)
3825{
3826 int reg;
3827 int hi_reg;
3828 int i;
3829 unsigned mask = 0;
3830 valueT op;
b99bd4ef 3831
c19d1205
ZW
3832 if (*input_line_pointer == '{')
3833 input_line_pointer++;
b99bd4ef 3834
c19d1205 3835 do
b99bd4ef 3836 {
dcbf9037 3837 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3838
c19d1205 3839 if (reg == FAIL)
b99bd4ef 3840 {
9b7132d3 3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3842 goto error;
b99bd4ef
NC
3843 }
3844
c19d1205
ZW
3845 if (mask >> reg)
3846 as_tsktsk (_("register list not in ascending order"));
3847 mask |= 1 << reg;
b99bd4ef 3848
c19d1205
ZW
3849 if (*input_line_pointer == '-')
3850 {
3851 input_line_pointer++;
dcbf9037 3852 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3853 if (hi_reg == FAIL)
3854 {
9b7132d3 3855 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3856 goto error;
3857 }
3858 else if (reg >= hi_reg)
3859 {
3860 as_bad (_("bad register range"));
3861 goto error;
3862 }
3863 for (; reg < hi_reg; reg++)
3864 mask |= 1 << reg;
3865 }
3866 }
3867 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3868
c19d1205
ZW
3869 if (*input_line_pointer == '}')
3870 input_line_pointer++;
b99bd4ef 3871
c19d1205 3872 demand_empty_rest_of_line ();
b99bd4ef 3873
708587a4 3874 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3875 the list. */
3876 flush_pending_unwind ();
b99bd4ef 3877
c19d1205 3878 for (i = 0; i < 16; i++)
b99bd4ef 3879 {
c19d1205
ZW
3880 if (mask & (1 << i))
3881 unwind.frame_size += 8;
b99bd4ef
NC
3882 }
3883
c19d1205
ZW
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3886 registers. */
3887 if (unwind.opcode_count > 0)
b99bd4ef 3888 {
c19d1205
ZW
3889 i = unwind.opcodes[unwind.opcode_count - 1];
3890 if ((i & 0xf8) == 0xc0)
3891 {
3892 i &= 7;
3893 /* Only merge if the blocks are contiguous. */
3894 if (i < 6)
3895 {
3896 if ((mask & 0xfe00) == (1 << 9))
3897 {
3898 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3899 unwind.opcode_count--;
3900 }
3901 }
3902 else if (i == 6 && unwind.opcode_count >= 2)
3903 {
3904 i = unwind.opcodes[unwind.opcode_count - 2];
3905 reg = i >> 4;
3906 i &= 0xf;
b99bd4ef 3907
c19d1205
ZW
3908 op = 0xffff << (reg - 1);
3909 if (reg > 0
87a1fd79 3910 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3911 {
3912 op = (1 << (reg + i + 1)) - 1;
3913 op &= ~((1 << reg) - 1);
3914 mask |= op;
3915 unwind.opcode_count -= 2;
3916 }
3917 }
3918 }
b99bd4ef
NC
3919 }
3920
c19d1205
ZW
3921 hi_reg = 15;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3925 {
c19d1205
ZW
3926 /* Save registers in blocks. */
3927 if (reg < 0
3928 || !(mask & (1 << reg)))
3929 {
3930 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3931 preceding block. */
c19d1205
ZW
3932 if (reg != hi_reg)
3933 {
3934 if (reg == 9)
3935 {
3936 /* Short form. */
3937 op = 0xc0 | (hi_reg - 10);
3938 add_unwind_opcode (op, 1);
3939 }
3940 else
3941 {
3942 /* Long form. */
3943 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3944 add_unwind_opcode (op, 2);
3945 }
3946 }
3947 hi_reg = reg - 1;
3948 }
b99bd4ef
NC
3949 }
3950
c19d1205
ZW
3951 return;
3952error:
3953 ignore_rest_of_line ();
b99bd4ef
NC
3954}
3955
3956static void
c19d1205 3957s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3958{
c19d1205
ZW
3959 int reg;
3960 int hi_reg;
3961 unsigned mask = 0;
3962 valueT op;
b99bd4ef 3963
c19d1205
ZW
3964 if (*input_line_pointer == '{')
3965 input_line_pointer++;
b99bd4ef 3966
c19d1205 3967 do
b99bd4ef 3968 {
dcbf9037 3969 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3970
c19d1205
ZW
3971 if (reg == FAIL)
3972 {
9b7132d3 3973 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3974 goto error;
3975 }
b99bd4ef 3976
c19d1205
ZW
3977 reg -= 8;
3978 if (mask >> reg)
3979 as_tsktsk (_("register list not in ascending order"));
3980 mask |= 1 << reg;
b99bd4ef 3981
c19d1205
ZW
3982 if (*input_line_pointer == '-')
3983 {
3984 input_line_pointer++;
dcbf9037 3985 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3986 if (hi_reg == FAIL)
3987 {
9b7132d3 3988 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3989 goto error;
3990 }
3991 else if (reg >= hi_reg)
3992 {
3993 as_bad (_("bad register range"));
3994 goto error;
3995 }
3996 for (; reg < hi_reg; reg++)
3997 mask |= 1 << reg;
3998 }
b99bd4ef 3999 }
c19d1205 4000 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4001
c19d1205
ZW
4002 if (*input_line_pointer == '}')
4003 input_line_pointer++;
b99bd4ef 4004
c19d1205
ZW
4005 demand_empty_rest_of_line ();
4006
708587a4 4007 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4008 the list. */
4009 flush_pending_unwind ();
b99bd4ef 4010
c19d1205 4011 for (reg = 0; reg < 16; reg++)
b99bd4ef 4012 {
c19d1205
ZW
4013 if (mask & (1 << reg))
4014 unwind.frame_size += 4;
b99bd4ef 4015 }
c19d1205
ZW
4016 op = 0xc700 | mask;
4017 add_unwind_opcode (op, 2);
4018 return;
4019error:
4020 ignore_rest_of_line ();
b99bd4ef
NC
4021}
4022
c19d1205 4023
fa073d69
MS
4024/* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4026
b99bd4ef 4027static void
fa073d69 4028s_arm_unwind_save (int arch_v6)
b99bd4ef 4029{
c19d1205
ZW
4030 char *peek;
4031 struct reg_entry *reg;
4032 bfd_boolean had_brace = FALSE;
b99bd4ef 4033
921e5f0a 4034 if (!unwind.proc_start)
c921be7d 4035 as_bad (MISSING_FNSTART);
921e5f0a 4036
c19d1205
ZW
4037 /* Figure out what sort of save we have. */
4038 peek = input_line_pointer;
b99bd4ef 4039
c19d1205 4040 if (*peek == '{')
b99bd4ef 4041 {
c19d1205
ZW
4042 had_brace = TRUE;
4043 peek++;
b99bd4ef
NC
4044 }
4045
c19d1205 4046 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4047
c19d1205 4048 if (!reg)
b99bd4ef 4049 {
c19d1205
ZW
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
b99bd4ef
NC
4052 return;
4053 }
4054
c19d1205 4055 switch (reg->type)
b99bd4ef 4056 {
c19d1205
ZW
4057 case REG_TYPE_FN:
4058 if (had_brace)
4059 {
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4062 return;
4063 }
93ac2687 4064 input_line_pointer = peek;
c19d1205 4065 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4066 return;
c19d1205
ZW
4067
4068 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4069 case REG_TYPE_VFD:
4070 if (arch_v6)
4071 s_arm_unwind_save_vfp_armv6 ();
4072 else
4073 s_arm_unwind_save_vfp ();
4074 return;
c19d1205
ZW
4075 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4077
4078 default:
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
b99bd4ef 4081 }
c19d1205 4082}
b99bd4ef 4083
b99bd4ef 4084
c19d1205
ZW
4085/* Parse an unwind_movsp directive. */
4086
4087static void
4088s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4089{
4090 int reg;
4091 valueT op;
4fa3602b 4092 int offset;
c19d1205 4093
921e5f0a 4094 if (!unwind.proc_start)
c921be7d 4095 as_bad (MISSING_FNSTART);
921e5f0a 4096
dcbf9037 4097 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4098 if (reg == FAIL)
b99bd4ef 4099 {
9b7132d3 4100 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4101 ignore_rest_of_line ();
b99bd4ef
NC
4102 return;
4103 }
4fa3602b
PB
4104
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer) != FAIL)
4107 {
4108 if (immediate_for_directive (&offset) == FAIL)
4109 return;
4110 }
4111 else
4112 offset = 0;
4113
c19d1205 4114 demand_empty_rest_of_line ();
b99bd4ef 4115
c19d1205 4116 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4117 {
c19d1205 4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4119 return;
4120 }
4121
c19d1205
ZW
4122 if (unwind.fp_reg != REG_SP)
4123 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4124
c19d1205
ZW
4125 /* Generate opcode to restore the value. */
4126 op = 0x90 | reg;
4127 add_unwind_opcode (op, 1);
4128
4129 /* Record the information for later. */
4130 unwind.fp_reg = reg;
4fa3602b 4131 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4132 unwind.sp_restored = 1;
b05fe5cf
ZW
4133}
4134
c19d1205
ZW
4135/* Parse an unwind_pad directive. */
4136
b05fe5cf 4137static void
c19d1205 4138s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4139{
c19d1205 4140 int offset;
b05fe5cf 4141
921e5f0a 4142 if (!unwind.proc_start)
c921be7d 4143 as_bad (MISSING_FNSTART);
921e5f0a 4144
c19d1205
ZW
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
b99bd4ef 4147
c19d1205
ZW
4148 if (offset & 3)
4149 {
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
b99bd4ef 4154
c19d1205
ZW
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind.frame_size += offset;
4157 unwind.pending_offset += offset;
4158
4159 demand_empty_rest_of_line ();
4160}
4161
4162/* Parse an unwind_setfp directive. */
4163
4164static void
4165s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4166{
c19d1205
ZW
4167 int sp_reg;
4168 int fp_reg;
4169 int offset;
4170
921e5f0a 4171 if (!unwind.proc_start)
c921be7d 4172 as_bad (MISSING_FNSTART);
921e5f0a 4173
dcbf9037 4174 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4175 if (skip_past_comma (&input_line_pointer) == FAIL)
4176 sp_reg = FAIL;
4177 else
dcbf9037 4178 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4179
c19d1205
ZW
4180 if (fp_reg == FAIL || sp_reg == FAIL)
4181 {
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4184 return;
4185 }
b99bd4ef 4186
c19d1205
ZW
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer) != FAIL)
4189 {
4190 if (immediate_for_directive (&offset) == FAIL)
4191 return;
4192 }
4193 else
4194 offset = 0;
a737bd4d 4195
c19d1205 4196 demand_empty_rest_of_line ();
a737bd4d 4197
fdfde340 4198 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4199 {
c19d1205
ZW
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4202 return;
a737bd4d
NC
4203 }
4204
c19d1205
ZW
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind.fp_reg = fp_reg;
4207 unwind.fp_used = 1;
fdfde340 4208 if (sp_reg == REG_SP)
c19d1205
ZW
4209 unwind.fp_offset = unwind.frame_size - offset;
4210 else
4211 unwind.fp_offset -= offset;
a737bd4d
NC
4212}
4213
c19d1205
ZW
4214/* Parse an unwind_raw directive. */
4215
4216static void
4217s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4218{
c19d1205 4219 expressionS exp;
708587a4 4220 /* This is an arbitrary limit. */
c19d1205
ZW
4221 unsigned char op[16];
4222 int count;
a737bd4d 4223
921e5f0a 4224 if (!unwind.proc_start)
c921be7d 4225 as_bad (MISSING_FNSTART);
921e5f0a 4226
c19d1205
ZW
4227 expression (&exp);
4228 if (exp.X_op == O_constant
4229 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4230 {
c19d1205
ZW
4231 unwind.frame_size += exp.X_add_number;
4232 expression (&exp);
4233 }
4234 else
4235 exp.X_op = O_illegal;
a737bd4d 4236
c19d1205
ZW
4237 if (exp.X_op != O_constant)
4238 {
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
a737bd4d 4243
c19d1205 4244 count = 0;
a737bd4d 4245
c19d1205
ZW
4246 /* Parse the opcode. */
4247 for (;;)
4248 {
4249 if (count >= 16)
4250 {
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
a737bd4d 4253 }
c19d1205 4254 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4255 {
c19d1205
ZW
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4258 return;
a737bd4d 4259 }
c19d1205 4260 op[count++] = exp.X_add_number;
a737bd4d 4261
c19d1205
ZW
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer) == FAIL)
4264 break;
a737bd4d 4265
c19d1205
ZW
4266 expression (&exp);
4267 }
b99bd4ef 4268
c19d1205
ZW
4269 /* Add the opcode bytes in reverse order. */
4270 while (count--)
4271 add_unwind_opcode (op[count], 1);
b99bd4ef 4272
c19d1205 4273 demand_empty_rest_of_line ();
b99bd4ef 4274}
ee065d83
PB
4275
4276
4277/* Parse a .eabi_attribute directive. */
4278
4279static void
4280s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4281{
ee3c0378
AS
4282 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4283
4284 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4285 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4286}
4287
0855e32b
NS
4288/* Emit a tls fix for the symbol. */
4289
4290static void
4291s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4292{
4293 char *p;
4294 expressionS exp;
4295#ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4297#endif
4298
4299#ifdef md_cons_align
4300 md_cons_align (4);
4301#endif
4302
4303 /* Since we're just labelling the code, there's no need to define a
4304 mapping symbol. */
4305 expression (&exp);
4306 p = obstack_next_free (&frchain_now->frch_obstack);
4307 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4308 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ);
4310}
cdf9ccec 4311#endif /* OBJ_ELF */
0855e32b 4312
ee065d83 4313static void s_arm_arch (int);
7a1d4c38 4314static void s_arm_object_arch (int);
ee065d83
PB
4315static void s_arm_cpu (int);
4316static void s_arm_fpu (int);
69133863 4317static void s_arm_arch_extension (int);
b99bd4ef 4318
f0927246
NC
4319#ifdef TE_PE
4320
4321static void
5f4273c7 4322pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4323{
4324 expressionS exp;
4325
4326 do
4327 {
4328 expression (&exp);
4329 if (exp.X_op == O_symbol)
4330 exp.X_op = O_secrel;
4331
4332 emit_expr (&exp, 4);
4333 }
4334 while (*input_line_pointer++ == ',');
4335
4336 input_line_pointer--;
4337 demand_empty_rest_of_line ();
4338}
4339#endif /* TE_PE */
4340
c19d1205
ZW
4341/* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
b99bd4ef 4346
c19d1205 4347const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4348{
c19d1205
ZW
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req, 0 },
dcbf9037
JB
4351 /* Following two are likewise never called. */
4352 { "dn", s_dn, 0 },
4353 { "qn", s_qn, 0 },
c19d1205
ZW
4354 { "unreq", s_unreq, 0 },
4355 { "bss", s_bss, 0 },
4356 { "align", s_align, 0 },
4357 { "arm", s_arm, 0 },
4358 { "thumb", s_thumb, 0 },
4359 { "code", s_code, 0 },
4360 { "force_thumb", s_force_thumb, 0 },
4361 { "thumb_func", s_thumb_func, 0 },
4362 { "thumb_set", s_thumb_set, 0 },
4363 { "even", s_even, 0 },
4364 { "ltorg", s_ltorg, 0 },
4365 { "pool", s_ltorg, 0 },
4366 { "syntax", s_syntax, 0 },
8463be01
PB
4367 { "cpu", s_arm_cpu, 0 },
4368 { "arch", s_arm_arch, 0 },
7a1d4c38 4369 { "object_arch", s_arm_object_arch, 0 },
8463be01 4370 { "fpu", s_arm_fpu, 0 },
69133863 4371 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4372#ifdef OBJ_ELF
c921be7d
NC
4373 { "word", s_arm_elf_cons, 4 },
4374 { "long", s_arm_elf_cons, 4 },
4375 { "inst.n", s_arm_elf_inst, 2 },
4376 { "inst.w", s_arm_elf_inst, 4 },
4377 { "inst", s_arm_elf_inst, 0 },
4378 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4379 { "fnstart", s_arm_unwind_fnstart, 0 },
4380 { "fnend", s_arm_unwind_fnend, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4382 { "personality", s_arm_unwind_personality, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4385 { "save", s_arm_unwind_save, 0 },
fa073d69 4386 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4387 { "movsp", s_arm_unwind_movsp, 0 },
4388 { "pad", s_arm_unwind_pad, 0 },
4389 { "setfp", s_arm_unwind_setfp, 0 },
4390 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4391 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4392 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4393#else
4394 { "word", cons, 4},
f0927246
NC
4395
4396 /* These are used for dwarf. */
4397 {"2byte", cons, 2},
4398 {"4byte", cons, 4},
4399 {"8byte", cons, 8},
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4402 { "loc", dwarf2_directive_loc, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4404#endif
4405 { "extend", float_cons, 'x' },
4406 { "ldouble", float_cons, 'x' },
4407 { "packed", float_cons, 'p' },
f0927246
NC
4408#ifdef TE_PE
4409 {"secrel32", pe_directive_secrel, 0},
4410#endif
c19d1205
ZW
4411 { 0, 0, 0 }
4412};
4413\f
4414/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4415
c19d1205
ZW
4416/* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4420 optional. */
b99bd4ef 4421
c19d1205
ZW
4422static int
4423parse_immediate (char **str, int *val, int min, int max,
4424 bfd_boolean prefix_opt)
4425{
4426 expressionS exp;
4427 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4428 if (exp.X_op != O_constant)
b99bd4ef 4429 {
c19d1205
ZW
4430 inst.error = _("constant expression required");
4431 return FAIL;
4432 }
b99bd4ef 4433
c19d1205
ZW
4434 if (exp.X_add_number < min || exp.X_add_number > max)
4435 {
4436 inst.error = _("immediate value out of range");
4437 return FAIL;
4438 }
b99bd4ef 4439
c19d1205
ZW
4440 *val = exp.X_add_number;
4441 return SUCCESS;
4442}
b99bd4ef 4443
5287ad62 4444/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4446 instructions. Puts the result directly in inst.operands[i]. */
4447
4448static int
4449parse_big_immediate (char **str, int i)
4450{
4451 expressionS exp;
4452 char *ptr = *str;
4453
4454 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4455
4456 if (exp.X_op == O_constant)
036dc3f7
PB
4457 {
4458 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
58ad575f 4462 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4463 {
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4466 inst.operands[i].regisimm = 1;
4467 }
4468 }
5287ad62 4469 else if (exp.X_op == O_big
95b75c01 4470 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4471 {
4472 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4473
5287ad62
JB
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4477 gas_assert (parts != 0);
95b75c01
NC
4478
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4484 {
4485 LITTLENUM_TYPE m = -1;
4486
4487 if (generic_bignum[parts * 2] != 0
4488 && generic_bignum[parts * 2] != m)
4489 return FAIL;
4490
4491 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4492 if (generic_bignum[j] != generic_bignum[j-1])
4493 return FAIL;
4494 }
4495
5287ad62
JB
4496 inst.operands[i].imm = 0;
4497 for (j = 0; j < parts; j++, idx++)
4498 inst.operands[i].imm |= generic_bignum[idx]
4499 << (LITTLENUM_NUMBER_OF_BITS * j);
4500 inst.operands[i].reg = 0;
4501 for (j = 0; j < parts; j++, idx++)
4502 inst.operands[i].reg |= generic_bignum[idx]
4503 << (LITTLENUM_NUMBER_OF_BITS * j);
4504 inst.operands[i].regisimm = 1;
4505 }
4506 else
4507 return FAIL;
5f4273c7 4508
5287ad62
JB
4509 *str = ptr;
4510
4511 return SUCCESS;
4512}
4513
c19d1205
ZW
4514/* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
b99bd4ef 4516
c19d1205
ZW
4517static int
4518parse_fpa_immediate (char ** str)
4519{
4520 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4521 char * save_in;
4522 expressionS exp;
4523 int i;
4524 int j;
b99bd4ef 4525
c19d1205
ZW
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
b99bd4ef 4528
c19d1205
ZW
4529 for (i = 0; fp_const[i]; i++)
4530 {
4531 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4532 {
c19d1205 4533 char *start = *str;
b99bd4ef 4534
c19d1205
ZW
4535 *str += strlen (fp_const[i]);
4536 if (is_end_of_line[(unsigned char) **str])
4537 return i + 8;
4538 *str = start;
4539 }
4540 }
b99bd4ef 4541
c19d1205
ZW
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
b99bd4ef 4546
c19d1205 4547 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4548
c19d1205
ZW
4549 /* Look for a raw floating point number. */
4550 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4551 && is_end_of_line[(unsigned char) *save_in])
4552 {
4553 for (i = 0; i < NUM_FLOAT_VALS; i++)
4554 {
4555 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4556 {
c19d1205
ZW
4557 if (words[j] != fp_values[i][j])
4558 break;
b99bd4ef
NC
4559 }
4560
c19d1205 4561 if (j == MAX_LITTLENUMS)
b99bd4ef 4562 {
c19d1205
ZW
4563 *str = save_in;
4564 return i + 8;
b99bd4ef
NC
4565 }
4566 }
4567 }
b99bd4ef 4568
c19d1205
ZW
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in = input_line_pointer;
4572 input_line_pointer = *str;
4573 if (expression (&exp) == absolute_section
4574 && exp.X_op == O_big
4575 && exp.X_add_number < 0)
4576 {
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4578 Ditto for 15. */
4579 if (gen_to_words (words, 5, (long) 15) == 0)
4580 {
4581 for (i = 0; i < NUM_FLOAT_VALS; i++)
4582 {
4583 for (j = 0; j < MAX_LITTLENUMS; j++)
4584 {
4585 if (words[j] != fp_values[i][j])
4586 break;
4587 }
b99bd4ef 4588
c19d1205
ZW
4589 if (j == MAX_LITTLENUMS)
4590 {
4591 *str = input_line_pointer;
4592 input_line_pointer = save_in;
4593 return i + 8;
4594 }
4595 }
4596 }
b99bd4ef
NC
4597 }
4598
c19d1205
ZW
4599 *str = input_line_pointer;
4600 input_line_pointer = save_in;
4601 inst.error = _("invalid FPA immediate expression");
4602 return FAIL;
b99bd4ef
NC
4603}
4604
136da414
JB
4605/* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4607
4608static int
4609is_quarter_float (unsigned imm)
4610{
4611 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4613}
4614
4615/* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
136da414
JB
4620
4621static unsigned
4622parse_qfloat_immediate (char **ccp, int *immed)
4623{
4624 char *str = *ccp;
c96612cc 4625 char *fpnum;
136da414 4626 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4627 int found_fpchar = 0;
5f4273c7 4628
136da414 4629 skip_past_char (&str, '#');
5f4273c7 4630
c96612cc
JB
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4636 fpnum = str;
4637 skip_whitespace (fpnum);
4638
4639 if (strncmp (fpnum, "0x", 2) == 0)
4640 return FAIL;
4641 else
4642 {
4643 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4644 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4645 {
4646 found_fpchar = 1;
4647 break;
4648 }
4649
4650 if (!found_fpchar)
4651 return FAIL;
4652 }
5f4273c7 4653
136da414
JB
4654 if ((str = atof_ieee (str, 's', words)) != NULL)
4655 {
4656 unsigned fpword = 0;
4657 int i;
5f4273c7 4658
136da414
JB
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4661 {
4662 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4663 fpword |= words[i];
4664 }
5f4273c7 4665
c96612cc 4666 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4667 *immed = fpword;
4668 else
4669 return FAIL;
4670
4671 *ccp = str;
5f4273c7 4672
136da414
JB
4673 return SUCCESS;
4674 }
5f4273c7 4675
136da414
JB
4676 return FAIL;
4677}
4678
c19d1205
ZW
4679/* Shift operands. */
4680enum shift_kind
b99bd4ef 4681{
c19d1205
ZW
4682 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4683};
b99bd4ef 4684
c19d1205
ZW
4685struct asm_shift_name
4686{
4687 const char *name;
4688 enum shift_kind kind;
4689};
b99bd4ef 4690
c19d1205
ZW
4691/* Third argument to parse_shift. */
4692enum parse_shift_mode
4693{
4694 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4699};
b99bd4ef 4700
c19d1205
ZW
4701/* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
b99bd4ef 4703
c19d1205
ZW
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4706 RRX
b99bd4ef 4707
c19d1205
ZW
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4710
c19d1205
ZW
4711static int
4712parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4713{
c19d1205
ZW
4714 const struct asm_shift_name *shift_name;
4715 enum shift_kind shift;
4716 char *s = *str;
4717 char *p = s;
4718 int reg;
b99bd4ef 4719
c19d1205
ZW
4720 for (p = *str; ISALPHA (*p); p++)
4721 ;
b99bd4ef 4722
c19d1205 4723 if (p == *str)
b99bd4ef 4724 {
c19d1205
ZW
4725 inst.error = _("shift expression expected");
4726 return FAIL;
b99bd4ef
NC
4727 }
4728
21d799b5
NC
4729 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4730 p - *str);
c19d1205
ZW
4731
4732 if (shift_name == NULL)
b99bd4ef 4733 {
c19d1205
ZW
4734 inst.error = _("shift expression expected");
4735 return FAIL;
b99bd4ef
NC
4736 }
4737
c19d1205 4738 shift = shift_name->kind;
b99bd4ef 4739
c19d1205
ZW
4740 switch (mode)
4741 {
4742 case NO_SHIFT_RESTRICT:
4743 case SHIFT_IMMEDIATE: break;
b99bd4ef 4744
c19d1205
ZW
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4746 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4747 {
4748 inst.error = _("'LSL' or 'ASR' required");
4749 return FAIL;
4750 }
4751 break;
b99bd4ef 4752
c19d1205
ZW
4753 case SHIFT_LSL_IMMEDIATE:
4754 if (shift != SHIFT_LSL)
4755 {
4756 inst.error = _("'LSL' required");
4757 return FAIL;
4758 }
4759 break;
b99bd4ef 4760
c19d1205
ZW
4761 case SHIFT_ASR_IMMEDIATE:
4762 if (shift != SHIFT_ASR)
4763 {
4764 inst.error = _("'ASR' required");
4765 return FAIL;
4766 }
4767 break;
b99bd4ef 4768
c19d1205
ZW
4769 default: abort ();
4770 }
b99bd4ef 4771
c19d1205
ZW
4772 if (shift != SHIFT_RRX)
4773 {
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p);
b99bd4ef 4776
c19d1205 4777 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4778 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4779 {
4780 inst.operands[i].imm = reg;
4781 inst.operands[i].immisreg = 1;
4782 }
4783 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4784 return FAIL;
4785 }
4786 inst.operands[i].shift_kind = shift;
4787 inst.operands[i].shifted = 1;
4788 *str = p;
4789 return SUCCESS;
b99bd4ef
NC
4790}
4791
c19d1205 4792/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4793
c19d1205
ZW
4794 #<immediate>
4795 #<immediate>, <rotate>
4796 <Rm>
4797 <Rm>, <shift>
b99bd4ef 4798
c19d1205
ZW
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4801 is deferred to md_apply_fix. */
b99bd4ef 4802
c19d1205
ZW
4803static int
4804parse_shifter_operand (char **str, int i)
4805{
4806 int value;
91d6fa6a 4807 expressionS exp;
b99bd4ef 4808
dcbf9037 4809 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4810 {
4811 inst.operands[i].reg = value;
4812 inst.operands[i].isreg = 1;
b99bd4ef 4813
c19d1205
ZW
4814 /* parse_shift will override this if appropriate */
4815 inst.reloc.exp.X_op = O_constant;
4816 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4817
c19d1205
ZW
4818 if (skip_past_comma (str) == FAIL)
4819 return SUCCESS;
b99bd4ef 4820
c19d1205
ZW
4821 /* Shift operation on register. */
4822 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4823 }
4824
c19d1205
ZW
4825 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4826 return FAIL;
b99bd4ef 4827
c19d1205 4828 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4829 {
c19d1205 4830 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4831 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4832 return FAIL;
b99bd4ef 4833
91d6fa6a 4834 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4835 {
4836 inst.error = _("constant expression expected");
4837 return FAIL;
4838 }
b99bd4ef 4839
91d6fa6a 4840 value = exp.X_add_number;
c19d1205
ZW
4841 if (value < 0 || value > 30 || value % 2 != 0)
4842 {
4843 inst.error = _("invalid rotation");
4844 return FAIL;
4845 }
4846 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4847 {
4848 inst.error = _("invalid constant");
4849 return FAIL;
4850 }
09d92015 4851
55cf6793 4852 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4853 inst.reloc.exp.X_add_number
4854 = (((inst.reloc.exp.X_add_number << (32 - value))
4855 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4856 }
4857
c19d1205
ZW
4858 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4859 inst.reloc.pc_rel = 0;
4860 return SUCCESS;
09d92015
MM
4861}
4862
4962c51a
MS
4863/* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4869
4870struct group_reloc_table_entry
4871{
4872 const char *name;
4873 int alu_code;
4874 int ldr_code;
4875 int ldrs_code;
4876 int ldc_code;
4877};
4878
4879typedef enum
4880{
4881 /* Varieties of non-ALU group relocation. */
4882
4883 GROUP_LDR,
4884 GROUP_LDRS,
4885 GROUP_LDC
4886} group_reloc_type;
4887
4888static struct group_reloc_table_entry group_reloc_table[] =
4889 { /* Program counter relative: */
4890 { "pc_g0_nc",
4891 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4892 0, /* LDR */
4893 0, /* LDRS */
4894 0 }, /* LDC */
4895 { "pc_g0",
4896 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4900 { "pc_g1_nc",
4901 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4902 0, /* LDR */
4903 0, /* LDRS */
4904 0 }, /* LDC */
4905 { "pc_g1",
4906 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4910 { "pc_g2",
4911 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4915 /* Section base relative */
4916 { "sb_g0_nc",
4917 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4918 0, /* LDR */
4919 0, /* LDRS */
4920 0 }, /* LDC */
4921 { "sb_g0",
4922 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4926 { "sb_g1_nc",
4927 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4928 0, /* LDR */
4929 0, /* LDRS */
4930 0 }, /* LDC */
4931 { "sb_g1",
4932 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4936 { "sb_g2",
4937 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4941
4942/* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4948
4949static int
4950find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4951{
4952 unsigned int i;
4953 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4954 {
4955 int length = strlen (group_reloc_table[i].name);
4956
5f4273c7
NC
4957 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4958 && (*str)[length] == ':')
4962c51a
MS
4959 {
4960 *out = &group_reloc_table[i];
4961 *str += (length + 1);
4962 return SUCCESS;
4963 }
4964 }
4965
4966 return FAIL;
4967}
4968
4969/* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4971
4972 #<immediate>
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4975 <Rm>
4976 <Rm>, <shift>
4977
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4980
4981 Everything else is as for parse_shifter_operand. */
4982
4983static parse_operand_result
4984parse_shifter_operand_group_reloc (char **str, int i)
4985{
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4989
4990 if (((*str)[0] == '#' && (*str)[1] == ':')
4991 || (*str)[0] == ':')
4992 {
4993 struct group_reloc_table_entry *entry;
4994
4995 if ((*str)[0] == '#')
4996 (*str) += 2;
4997 else
4998 (*str)++;
4999
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5002 {
5003 inst.error = _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5005 }
5006
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5011
5012 /* Record the relocation type (always the ALU variant here). */
21d799b5 5013 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5014 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5015
5016 return PARSE_OPERAND_SUCCESS;
5017 }
5018 else
5019 return parse_shifter_operand (str, i) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5021
5022 /* Never reached. */
5023}
5024
8e560766
MGD
5025/* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5027
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029static parse_operand_result
5030parse_neon_alignment (char **str, int i)
5031{
5032 char *p = *str;
5033 expressionS exp;
5034
5035 my_get_expression (&exp, &p, GE_NO_PREFIX);
5036
5037 if (exp.X_op != O_constant)
5038 {
5039 inst.error = _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL;
5041 }
5042
5043 inst.operands[i].imm = exp.X_add_number << 8;
5044 inst.operands[i].immisalign = 1;
5045 /* Alignments are not pre-indexes. */
5046 inst.operands[i].preind = 0;
5047
5048 *str = p;
5049 return PARSE_OPERAND_SUCCESS;
5050}
5051
c19d1205
ZW
5052/* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
09d92015 5054
c19d1205 5055 Preindexed addressing (.preind=1):
09d92015 5056
c19d1205
ZW
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5061
c19d1205 5062 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5063
c19d1205 5064 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5065
c19d1205
ZW
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5070
c19d1205 5071 Unindexed addressing (.preind=0, .postind=0):
09d92015 5072
c19d1205 5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5074
c19d1205 5075 Other:
09d92015 5076
c19d1205
ZW
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5080
c19d1205
ZW
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5083
4962c51a
MS
5084static parse_operand_result
5085parse_address_main (char **str, int i, int group_relocations,
5086 group_reloc_type group_type)
09d92015 5087{
c19d1205
ZW
5088 char *p = *str;
5089 int reg;
09d92015 5090
c19d1205 5091 if (skip_past_char (&p, '[') == FAIL)
09d92015 5092 {
c19d1205
ZW
5093 if (skip_past_char (&p, '=') == FAIL)
5094 {
974da60d 5095 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5096 inst.reloc.pc_rel = 1;
5097 inst.operands[i].reg = REG_PC;
5098 inst.operands[i].isreg = 1;
5099 inst.operands[i].preind = 1;
5100 }
974da60d 5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5102
c19d1205 5103 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5104 return PARSE_OPERAND_FAIL;
09d92015 5105
c19d1205 5106 *str = p;
4962c51a 5107 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5108 }
5109
dcbf9037 5110 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5111 {
c19d1205 5112 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5113 return PARSE_OPERAND_FAIL;
09d92015 5114 }
c19d1205
ZW
5115 inst.operands[i].reg = reg;
5116 inst.operands[i].isreg = 1;
09d92015 5117
c19d1205 5118 if (skip_past_comma (&p) == SUCCESS)
09d92015 5119 {
c19d1205 5120 inst.operands[i].preind = 1;
09d92015 5121
c19d1205
ZW
5122 if (*p == '+') p++;
5123 else if (*p == '-') p++, inst.operands[i].negative = 1;
5124
dcbf9037 5125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5126 {
c19d1205
ZW
5127 inst.operands[i].imm = reg;
5128 inst.operands[i].immisreg = 1;
5129
5130 if (skip_past_comma (&p) == SUCCESS)
5131 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5132 return PARSE_OPERAND_FAIL;
c19d1205 5133 }
5287ad62 5134 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5135 {
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5138 change. */
5139 parse_operand_result result = parse_neon_alignment (&p, i);
5140
5141 if (result != PARSE_OPERAND_SUCCESS)
5142 return result;
5143 }
c19d1205
ZW
5144 else
5145 {
5146 if (inst.operands[i].negative)
5147 {
5148 inst.operands[i].negative = 0;
5149 p--;
5150 }
4962c51a 5151
5f4273c7
NC
5152 if (group_relocations
5153 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5154 {
5155 struct group_reloc_table_entry *entry;
5156
5157 /* Skip over the #: or : sequence. */
5158 if (*p == '#')
5159 p += 2;
5160 else
5161 p++;
5162
5163 /* Try to parse a group relocation. Anything else is an
5164 error. */
5165 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5166 {
5167 inst.error = _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5169 }
5170
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5173 expression. */
5174 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5176
5177 /* Record the relocation type. */
5178 switch (group_type)
5179 {
5180 case GROUP_LDR:
21d799b5 5181 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5182 break;
5183
5184 case GROUP_LDRS:
21d799b5 5185 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5186 break;
5187
5188 case GROUP_LDC:
21d799b5 5189 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5190 break;
5191
5192 default:
9c2799c2 5193 gas_assert (0);
4962c51a
MS
5194 }
5195
5196 if (inst.reloc.type == 0)
5197 {
5198 inst.error = _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5200 }
5201 }
5202 else
5203 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5204 return PARSE_OPERAND_FAIL;
09d92015
MM
5205 }
5206 }
8e560766
MGD
5207 else if (skip_past_char (&p, ':') == SUCCESS)
5208 {
5209 /* FIXME: '@' should be used here, but it's filtered out by generic code
5210 before we get to see it here. This may be subject to change. */
5211 parse_operand_result result = parse_neon_alignment (&p, i);
5212
5213 if (result != PARSE_OPERAND_SUCCESS)
5214 return result;
5215 }
09d92015 5216
c19d1205 5217 if (skip_past_char (&p, ']') == FAIL)
09d92015 5218 {
c19d1205 5219 inst.error = _("']' expected");
4962c51a 5220 return PARSE_OPERAND_FAIL;
09d92015
MM
5221 }
5222
c19d1205
ZW
5223 if (skip_past_char (&p, '!') == SUCCESS)
5224 inst.operands[i].writeback = 1;
09d92015 5225
c19d1205 5226 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5227 {
c19d1205
ZW
5228 if (skip_past_char (&p, '{') == SUCCESS)
5229 {
5230 /* [Rn], {expr} - unindexed, with option */
5231 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5232 0, 255, TRUE) == FAIL)
4962c51a 5233 return PARSE_OPERAND_FAIL;
09d92015 5234
c19d1205
ZW
5235 if (skip_past_char (&p, '}') == FAIL)
5236 {
5237 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5238 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5239 }
5240 if (inst.operands[i].preind)
5241 {
5242 inst.error = _("cannot combine index with option");
4962c51a 5243 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5244 }
5245 *str = p;
4962c51a 5246 return PARSE_OPERAND_SUCCESS;
09d92015 5247 }
c19d1205
ZW
5248 else
5249 {
5250 inst.operands[i].postind = 1;
5251 inst.operands[i].writeback = 1;
09d92015 5252
c19d1205
ZW
5253 if (inst.operands[i].preind)
5254 {
5255 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5256 return PARSE_OPERAND_FAIL;
c19d1205 5257 }
09d92015 5258
c19d1205
ZW
5259 if (*p == '+') p++;
5260 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5261
dcbf9037 5262 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5263 {
5287ad62
JB
5264 /* We might be using the immediate for alignment already. If we
5265 are, OR the register number into the low-order bits. */
5266 if (inst.operands[i].immisalign)
5267 inst.operands[i].imm |= reg;
5268 else
5269 inst.operands[i].imm = reg;
c19d1205 5270 inst.operands[i].immisreg = 1;
a737bd4d 5271
c19d1205
ZW
5272 if (skip_past_comma (&p) == SUCCESS)
5273 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5274 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5275 }
5276 else
5277 {
5278 if (inst.operands[i].negative)
5279 {
5280 inst.operands[i].negative = 0;
5281 p--;
5282 }
5283 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5284 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5285 }
5286 }
a737bd4d
NC
5287 }
5288
c19d1205
ZW
5289 /* If at this point neither .preind nor .postind is set, we have a
5290 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5291 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5292 {
5293 inst.operands[i].preind = 1;
5294 inst.reloc.exp.X_op = O_constant;
5295 inst.reloc.exp.X_add_number = 0;
5296 }
5297 *str = p;
4962c51a
MS
5298 return PARSE_OPERAND_SUCCESS;
5299}
5300
5301static int
5302parse_address (char **str, int i)
5303{
21d799b5 5304 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5305 ? SUCCESS : FAIL;
5306}
5307
5308static parse_operand_result
5309parse_address_group_reloc (char **str, int i, group_reloc_type type)
5310{
5311 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5312}
5313
b6895b4f
PB
5314/* Parse an operand for a MOVW or MOVT instruction. */
5315static int
5316parse_half (char **str)
5317{
5318 char * p;
5f4273c7 5319
b6895b4f
PB
5320 p = *str;
5321 skip_past_char (&p, '#');
5f4273c7 5322 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5323 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5324 else if (strncasecmp (p, ":upper16:", 9) == 0)
5325 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5326
5327 if (inst.reloc.type != BFD_RELOC_UNUSED)
5328 {
5329 p += 9;
5f4273c7 5330 skip_whitespace (p);
b6895b4f
PB
5331 }
5332
5333 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5334 return FAIL;
5335
5336 if (inst.reloc.type == BFD_RELOC_UNUSED)
5337 {
5338 if (inst.reloc.exp.X_op != O_constant)
5339 {
5340 inst.error = _("constant expression expected");
5341 return FAIL;
5342 }
5343 if (inst.reloc.exp.X_add_number < 0
5344 || inst.reloc.exp.X_add_number > 0xffff)
5345 {
5346 inst.error = _("immediate value out of range");
5347 return FAIL;
5348 }
5349 }
5350 *str = p;
5351 return SUCCESS;
5352}
5353
c19d1205 5354/* Miscellaneous. */
a737bd4d 5355
c19d1205
ZW
5356/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5357 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5358static int
d2cd1205 5359parse_psr (char **str, bfd_boolean lhs)
09d92015 5360{
c19d1205
ZW
5361 char *p;
5362 unsigned long psr_field;
62b3e311
PB
5363 const struct asm_psr *psr;
5364 char *start;
d2cd1205 5365 bfd_boolean is_apsr = FALSE;
ac7f631b 5366 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5367
c19d1205
ZW
5368 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5369 feature for ease of use and backwards compatibility. */
5370 p = *str;
62b3e311 5371 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5372 {
5373 if (m_profile)
5374 goto unsupported_psr;
5375
5376 psr_field = SPSR_BIT;
5377 }
5378 else if (strncasecmp (p, "CPSR", 4) == 0)
5379 {
5380 if (m_profile)
5381 goto unsupported_psr;
5382
5383 psr_field = 0;
5384 }
5385 else if (strncasecmp (p, "APSR", 4) == 0)
5386 {
5387 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5388 and ARMv7-R architecture CPUs. */
5389 is_apsr = TRUE;
5390 psr_field = 0;
5391 }
5392 else if (m_profile)
62b3e311
PB
5393 {
5394 start = p;
5395 do
5396 p++;
5397 while (ISALNUM (*p) || *p == '_');
5398
d2cd1205
JB
5399 if (strncasecmp (start, "iapsr", 5) == 0
5400 || strncasecmp (start, "eapsr", 5) == 0
5401 || strncasecmp (start, "xpsr", 4) == 0
5402 || strncasecmp (start, "psr", 3) == 0)
5403 p = start + strcspn (start, "rR") + 1;
5404
21d799b5
NC
5405 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5406 p - start);
d2cd1205 5407
62b3e311
PB
5408 if (!psr)
5409 return FAIL;
09d92015 5410
d2cd1205
JB
5411 /* If APSR is being written, a bitfield may be specified. Note that
5412 APSR itself is handled above. */
5413 if (psr->field <= 3)
5414 {
5415 psr_field = psr->field;
5416 is_apsr = TRUE;
5417 goto check_suffix;
5418 }
5419
62b3e311 5420 *str = p;
d2cd1205
JB
5421 /* M-profile MSR instructions have the mask field set to "10", except
5422 *PSR variants which modify APSR, which may use a different mask (and
5423 have been handled already). Do that by setting the PSR_f field
5424 here. */
5425 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5426 }
d2cd1205
JB
5427 else
5428 goto unsupported_psr;
09d92015 5429
62b3e311 5430 p += 4;
d2cd1205 5431check_suffix:
c19d1205
ZW
5432 if (*p == '_')
5433 {
5434 /* A suffix follows. */
c19d1205
ZW
5435 p++;
5436 start = p;
a737bd4d 5437
c19d1205
ZW
5438 do
5439 p++;
5440 while (ISALNUM (*p) || *p == '_');
a737bd4d 5441
d2cd1205
JB
5442 if (is_apsr)
5443 {
5444 /* APSR uses a notation for bits, rather than fields. */
5445 unsigned int nzcvq_bits = 0;
5446 unsigned int g_bit = 0;
5447 char *bit;
5448
5449 for (bit = start; bit != p; bit++)
5450 {
5451 switch (TOLOWER (*bit))
5452 {
5453 case 'n':
5454 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5455 break;
5456
5457 case 'z':
5458 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5459 break;
5460
5461 case 'c':
5462 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5463 break;
5464
5465 case 'v':
5466 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5467 break;
5468
5469 case 'q':
5470 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5471 break;
5472
5473 case 'g':
5474 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5475 break;
5476
5477 default:
5478 inst.error = _("unexpected bit specified after APSR");
5479 return FAIL;
5480 }
5481 }
5482
5483 if (nzcvq_bits == 0x1f)
5484 psr_field |= PSR_f;
5485
5486 if (g_bit == 0x1)
5487 {
5488 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5489 {
5490 inst.error = _("selected processor does not "
5491 "support DSP extension");
5492 return FAIL;
5493 }
5494
5495 psr_field |= PSR_s;
5496 }
5497
5498 if ((nzcvq_bits & 0x20) != 0
5499 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5500 || (g_bit & 0x2) != 0)
5501 {
5502 inst.error = _("bad bitmask specified after APSR");
5503 return FAIL;
5504 }
5505 }
5506 else
5507 {
5508 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5509 p - start);
5510 if (!psr)
5511 goto error;
a737bd4d 5512
d2cd1205
JB
5513 psr_field |= psr->field;
5514 }
a737bd4d 5515 }
c19d1205 5516 else
a737bd4d 5517 {
c19d1205
ZW
5518 if (ISALNUM (*p))
5519 goto error; /* Garbage after "[CS]PSR". */
5520
d2cd1205
JB
5521 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5522 is deprecated, but allow it anyway. */
5523 if (is_apsr && lhs)
5524 {
5525 psr_field |= PSR_f;
5526 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5527 "deprecated"));
5528 }
5529 else if (!m_profile)
5530 /* These bits are never right for M-profile devices: don't set them
5531 (only code paths which read/write APSR reach here). */
5532 psr_field |= (PSR_c | PSR_f);
a737bd4d 5533 }
c19d1205
ZW
5534 *str = p;
5535 return psr_field;
a737bd4d 5536
d2cd1205
JB
5537 unsupported_psr:
5538 inst.error = _("selected processor does not support requested special "
5539 "purpose register");
5540 return FAIL;
5541
c19d1205
ZW
5542 error:
5543 inst.error = _("flag for {c}psr instruction expected");
5544 return FAIL;
a737bd4d
NC
5545}
5546
c19d1205
ZW
5547/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5548 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5549
c19d1205
ZW
5550static int
5551parse_cps_flags (char **str)
a737bd4d 5552{
c19d1205
ZW
5553 int val = 0;
5554 int saw_a_flag = 0;
5555 char *s = *str;
a737bd4d 5556
c19d1205
ZW
5557 for (;;)
5558 switch (*s++)
5559 {
5560 case '\0': case ',':
5561 goto done;
a737bd4d 5562
c19d1205
ZW
5563 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5564 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5565 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5566
c19d1205
ZW
5567 default:
5568 inst.error = _("unrecognized CPS flag");
5569 return FAIL;
5570 }
a737bd4d 5571
c19d1205
ZW
5572 done:
5573 if (saw_a_flag == 0)
a737bd4d 5574 {
c19d1205
ZW
5575 inst.error = _("missing CPS flags");
5576 return FAIL;
a737bd4d 5577 }
a737bd4d 5578
c19d1205
ZW
5579 *str = s - 1;
5580 return val;
a737bd4d
NC
5581}
5582
c19d1205
ZW
5583/* Parse an endian specifier ("BE" or "LE", case insensitive);
5584 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5585
5586static int
c19d1205 5587parse_endian_specifier (char **str)
a737bd4d 5588{
c19d1205
ZW
5589 int little_endian;
5590 char *s = *str;
a737bd4d 5591
c19d1205
ZW
5592 if (strncasecmp (s, "BE", 2))
5593 little_endian = 0;
5594 else if (strncasecmp (s, "LE", 2))
5595 little_endian = 1;
5596 else
a737bd4d 5597 {
c19d1205 5598 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5599 return FAIL;
5600 }
5601
c19d1205 5602 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5603 {
c19d1205 5604 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5605 return FAIL;
5606 }
5607
c19d1205
ZW
5608 *str = s + 2;
5609 return little_endian;
5610}
a737bd4d 5611
c19d1205
ZW
5612/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5613 value suitable for poking into the rotate field of an sxt or sxta
5614 instruction, or FAIL on error. */
5615
5616static int
5617parse_ror (char **str)
5618{
5619 int rot;
5620 char *s = *str;
5621
5622 if (strncasecmp (s, "ROR", 3) == 0)
5623 s += 3;
5624 else
a737bd4d 5625 {
c19d1205 5626 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5627 return FAIL;
5628 }
c19d1205
ZW
5629
5630 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5631 return FAIL;
5632
5633 switch (rot)
a737bd4d 5634 {
c19d1205
ZW
5635 case 0: *str = s; return 0x0;
5636 case 8: *str = s; return 0x1;
5637 case 16: *str = s; return 0x2;
5638 case 24: *str = s; return 0x3;
5639
5640 default:
5641 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5642 return FAIL;
5643 }
c19d1205 5644}
a737bd4d 5645
c19d1205
ZW
5646/* Parse a conditional code (from conds[] below). The value returned is in the
5647 range 0 .. 14, or FAIL. */
5648static int
5649parse_cond (char **str)
5650{
c462b453 5651 char *q;
c19d1205 5652 const struct asm_cond *c;
c462b453
PB
5653 int n;
5654 /* Condition codes are always 2 characters, so matching up to
5655 3 characters is sufficient. */
5656 char cond[3];
a737bd4d 5657
c462b453
PB
5658 q = *str;
5659 n = 0;
5660 while (ISALPHA (*q) && n < 3)
5661 {
e07e6e58 5662 cond[n] = TOLOWER (*q);
c462b453
PB
5663 q++;
5664 n++;
5665 }
a737bd4d 5666
21d799b5 5667 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5668 if (!c)
a737bd4d 5669 {
c19d1205 5670 inst.error = _("condition required");
a737bd4d
NC
5671 return FAIL;
5672 }
5673
c19d1205
ZW
5674 *str = q;
5675 return c->value;
5676}
5677
62b3e311
PB
5678/* Parse an option for a barrier instruction. Returns the encoding for the
5679 option, or FAIL. */
5680static int
5681parse_barrier (char **str)
5682{
5683 char *p, *q;
5684 const struct asm_barrier_opt *o;
5685
5686 p = q = *str;
5687 while (ISALPHA (*q))
5688 q++;
5689
21d799b5
NC
5690 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5691 q - p);
62b3e311
PB
5692 if (!o)
5693 return FAIL;
5694
5695 *str = q;
5696 return o->value;
5697}
5698
92e90b6e
PB
5699/* Parse the operands of a table branch instruction. Similar to a memory
5700 operand. */
5701static int
5702parse_tb (char **str)
5703{
5704 char * p = *str;
5705 int reg;
5706
5707 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5708 {
5709 inst.error = _("'[' expected");
5710 return FAIL;
5711 }
92e90b6e 5712
dcbf9037 5713 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5714 {
5715 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5716 return FAIL;
5717 }
5718 inst.operands[0].reg = reg;
5719
5720 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5721 {
5722 inst.error = _("',' expected");
5723 return FAIL;
5724 }
5f4273c7 5725
dcbf9037 5726 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5727 {
5728 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5729 return FAIL;
5730 }
5731 inst.operands[0].imm = reg;
5732
5733 if (skip_past_comma (&p) == SUCCESS)
5734 {
5735 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5736 return FAIL;
5737 if (inst.reloc.exp.X_add_number != 1)
5738 {
5739 inst.error = _("invalid shift");
5740 return FAIL;
5741 }
5742 inst.operands[0].shifted = 1;
5743 }
5744
5745 if (skip_past_char (&p, ']') == FAIL)
5746 {
5747 inst.error = _("']' expected");
5748 return FAIL;
5749 }
5750 *str = p;
5751 return SUCCESS;
5752}
5753
5287ad62
JB
5754/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5755 information on the types the operands can take and how they are encoded.
037e8744
JB
5756 Up to four operands may be read; this function handles setting the
5757 ".present" field for each read operand itself.
5287ad62
JB
5758 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5759 else returns FAIL. */
5760
5761static int
5762parse_neon_mov (char **str, int *which_operand)
5763{
5764 int i = *which_operand, val;
5765 enum arm_reg_type rtype;
5766 char *ptr = *str;
dcbf9037 5767 struct neon_type_el optype;
5f4273c7 5768
dcbf9037 5769 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5770 {
5771 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5772 inst.operands[i].reg = val;
5773 inst.operands[i].isscalar = 1;
dcbf9037 5774 inst.operands[i].vectype = optype;
5287ad62
JB
5775 inst.operands[i++].present = 1;
5776
5777 if (skip_past_comma (&ptr) == FAIL)
5778 goto wanted_comma;
5f4273c7 5779
dcbf9037 5780 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5781 goto wanted_arm;
5f4273c7 5782
5287ad62
JB
5783 inst.operands[i].reg = val;
5784 inst.operands[i].isreg = 1;
5785 inst.operands[i].present = 1;
5786 }
037e8744 5787 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5788 != FAIL)
5287ad62
JB
5789 {
5790 /* Cases 0, 1, 2, 3, 5 (D only). */
5791 if (skip_past_comma (&ptr) == FAIL)
5792 goto wanted_comma;
5f4273c7 5793
5287ad62
JB
5794 inst.operands[i].reg = val;
5795 inst.operands[i].isreg = 1;
5796 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5797 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5798 inst.operands[i].isvec = 1;
dcbf9037 5799 inst.operands[i].vectype = optype;
5287ad62
JB
5800 inst.operands[i++].present = 1;
5801
dcbf9037 5802 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5803 {
037e8744
JB
5804 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5805 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5806 inst.operands[i].reg = val;
5807 inst.operands[i].isreg = 1;
037e8744 5808 inst.operands[i].present = 1;
5287ad62
JB
5809
5810 if (rtype == REG_TYPE_NQ)
5811 {
dcbf9037 5812 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5813 return FAIL;
5814 }
037e8744
JB
5815 else if (rtype != REG_TYPE_VFS)
5816 {
5817 i++;
5818 if (skip_past_comma (&ptr) == FAIL)
5819 goto wanted_comma;
5820 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5821 goto wanted_arm;
5822 inst.operands[i].reg = val;
5823 inst.operands[i].isreg = 1;
5824 inst.operands[i].present = 1;
5825 }
5287ad62 5826 }
037e8744
JB
5827 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5828 &optype)) != FAIL)
5287ad62
JB
5829 {
5830 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5831 Case 1: VMOV<c><q> <Dd>, <Dm>
5832 Case 8: VMOV.F32 <Sd>, <Sm>
5833 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5834
5835 inst.operands[i].reg = val;
5836 inst.operands[i].isreg = 1;
5837 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5838 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5839 inst.operands[i].isvec = 1;
dcbf9037 5840 inst.operands[i].vectype = optype;
5287ad62 5841 inst.operands[i].present = 1;
5f4273c7 5842
037e8744
JB
5843 if (skip_past_comma (&ptr) == SUCCESS)
5844 {
5845 /* Case 15. */
5846 i++;
5847
5848 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5849 goto wanted_arm;
5850
5851 inst.operands[i].reg = val;
5852 inst.operands[i].isreg = 1;
5853 inst.operands[i++].present = 1;
5f4273c7 5854
037e8744
JB
5855 if (skip_past_comma (&ptr) == FAIL)
5856 goto wanted_comma;
5f4273c7 5857
037e8744
JB
5858 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5859 goto wanted_arm;
5f4273c7 5860
037e8744
JB
5861 inst.operands[i].reg = val;
5862 inst.operands[i].isreg = 1;
5863 inst.operands[i++].present = 1;
5864 }
5287ad62 5865 }
4641781c
PB
5866 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5867 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5868 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5869 Case 10: VMOV.F32 <Sd>, #<imm>
5870 Case 11: VMOV.F64 <Dd>, #<imm> */
5871 inst.operands[i].immisfloat = 1;
5872 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5873 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5874 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5875 ;
5287ad62
JB
5876 else
5877 {
dcbf9037 5878 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5879 return FAIL;
5880 }
5881 }
dcbf9037 5882 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5883 {
5884 /* Cases 6, 7. */
5885 inst.operands[i].reg = val;
5886 inst.operands[i].isreg = 1;
5887 inst.operands[i++].present = 1;
5f4273c7 5888
5287ad62
JB
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5f4273c7 5891
dcbf9037 5892 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5893 {
5894 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5895 inst.operands[i].reg = val;
5896 inst.operands[i].isscalar = 1;
5897 inst.operands[i].present = 1;
dcbf9037 5898 inst.operands[i].vectype = optype;
5287ad62 5899 }
dcbf9037 5900 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5901 {
5902 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5903 inst.operands[i].reg = val;
5904 inst.operands[i].isreg = 1;
5905 inst.operands[i++].present = 1;
5f4273c7 5906
5287ad62
JB
5907 if (skip_past_comma (&ptr) == FAIL)
5908 goto wanted_comma;
5f4273c7 5909
037e8744 5910 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5911 == FAIL)
5287ad62 5912 {
037e8744 5913 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5914 return FAIL;
5915 }
5916
5917 inst.operands[i].reg = val;
5918 inst.operands[i].isreg = 1;
037e8744
JB
5919 inst.operands[i].isvec = 1;
5920 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5921 inst.operands[i].vectype = optype;
5287ad62 5922 inst.operands[i].present = 1;
5f4273c7 5923
037e8744
JB
5924 if (rtype == REG_TYPE_VFS)
5925 {
5926 /* Case 14. */
5927 i++;
5928 if (skip_past_comma (&ptr) == FAIL)
5929 goto wanted_comma;
5930 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5931 &optype)) == FAIL)
5932 {
5933 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5934 return FAIL;
5935 }
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].isvec = 1;
5939 inst.operands[i].issingle = 1;
5940 inst.operands[i].vectype = optype;
5941 inst.operands[i].present = 1;
5942 }
5943 }
5944 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5945 != FAIL)
5946 {
5947 /* Case 13. */
5948 inst.operands[i].reg = val;
5949 inst.operands[i].isreg = 1;
5950 inst.operands[i].isvec = 1;
5951 inst.operands[i].issingle = 1;
5952 inst.operands[i].vectype = optype;
5953 inst.operands[i++].present = 1;
5287ad62
JB
5954 }
5955 }
5956 else
5957 {
dcbf9037 5958 first_error (_("parse error"));
5287ad62
JB
5959 return FAIL;
5960 }
5961
5962 /* Successfully parsed the operands. Update args. */
5963 *which_operand = i;
5964 *str = ptr;
5965 return SUCCESS;
5966
5f4273c7 5967 wanted_comma:
dcbf9037 5968 first_error (_("expected comma"));
5287ad62 5969 return FAIL;
5f4273c7
NC
5970
5971 wanted_arm:
dcbf9037 5972 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5973 return FAIL;
5287ad62
JB
5974}
5975
5be8be5d
DG
5976/* Use this macro when the operand constraints are different
5977 for ARM and THUMB (e.g. ldrd). */
5978#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5979 ((arm_operand) | ((thumb_operand) << 16))
5980
c19d1205
ZW
5981/* Matcher codes for parse_operands. */
5982enum operand_parse_code
5983{
5984 OP_stop, /* end of line */
5985
5986 OP_RR, /* ARM register */
5987 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5988 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 5989 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
5990 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5991 optional trailing ! */
c19d1205
ZW
5992 OP_RRw, /* ARM register, not r15, optional trailing ! */
5993 OP_RCP, /* Coprocessor number */
5994 OP_RCN, /* Coprocessor register */
5995 OP_RF, /* FPA register */
5996 OP_RVS, /* VFP single precision register */
5287ad62
JB
5997 OP_RVD, /* VFP double precision register (0..15) */
5998 OP_RND, /* Neon double precision register (0..31) */
5999 OP_RNQ, /* Neon quad precision register */
037e8744 6000 OP_RVSD, /* VFP single or double precision register */
5287ad62 6001 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6002 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6003 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6004 OP_RVC, /* VFP control register */
6005 OP_RMF, /* Maverick F register */
6006 OP_RMD, /* Maverick D register */
6007 OP_RMFX, /* Maverick FX register */
6008 OP_RMDX, /* Maverick DX register */
6009 OP_RMAX, /* Maverick AX register */
6010 OP_RMDS, /* Maverick DSPSC register */
6011 OP_RIWR, /* iWMMXt wR register */
6012 OP_RIWC, /* iWMMXt wC register */
6013 OP_RIWG, /* iWMMXt wCG register */
6014 OP_RXA, /* XScale accumulator register */
6015
6016 OP_REGLST, /* ARM register list */
6017 OP_VRSLST, /* VFP single-precision register list */
6018 OP_VRDLST, /* VFP double-precision register list */
037e8744 6019 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6020 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6021 OP_NSTRLST, /* Neon element/structure list */
6022
5287ad62 6023 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6024 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6025 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6026 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6027 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6028 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6029 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6030 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6031 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6032 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6033
6034 OP_I0, /* immediate zero */
c19d1205
ZW
6035 OP_I7, /* immediate value 0 .. 7 */
6036 OP_I15, /* 0 .. 15 */
6037 OP_I16, /* 1 .. 16 */
5287ad62 6038 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6039 OP_I31, /* 0 .. 31 */
6040 OP_I31w, /* 0 .. 31, optional trailing ! */
6041 OP_I32, /* 1 .. 32 */
5287ad62
JB
6042 OP_I32z, /* 0 .. 32 */
6043 OP_I63, /* 0 .. 63 */
c19d1205 6044 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6045 OP_I64, /* 1 .. 64 */
6046 OP_I64z, /* 0 .. 64 */
c19d1205 6047 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6048
6049 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6050 OP_I7b, /* 0 .. 7 */
6051 OP_I15b, /* 0 .. 15 */
6052 OP_I31b, /* 0 .. 31 */
6053
6054 OP_SH, /* shifter operand */
4962c51a 6055 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6056 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6057 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6058 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6059 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6060 OP_EXP, /* arbitrary expression */
6061 OP_EXPi, /* same, with optional immediate prefix */
6062 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6063 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6064
6065 OP_CPSF, /* CPS flags */
6066 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6067 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6068 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6069 OP_COND, /* conditional code */
92e90b6e 6070 OP_TB, /* Table branch. */
c19d1205 6071
037e8744
JB
6072 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6073
c19d1205
ZW
6074 OP_RRnpc_I0, /* ARM register or literal 0 */
6075 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6076 OP_RR_EXi, /* ARM register or expression with imm prefix */
6077 OP_RF_IF, /* FPA register or immediate */
6078 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6079 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6080
6081 /* Optional operands. */
6082 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6083 OP_oI31b, /* 0 .. 31 */
5287ad62 6084 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
6085 OP_oIffffb, /* 0 .. 65535 */
6086 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6087
6088 OP_oRR, /* ARM register */
6089 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6090 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6091 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6092 OP_oRND, /* Optional Neon double precision register */
6093 OP_oRNQ, /* Optional Neon quad precision register */
6094 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6095 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6096 OP_oSHll, /* LSL immediate */
6097 OP_oSHar, /* ASR immediate */
6098 OP_oSHllar, /* LSL or ASR immediate */
6099 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6100 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6101
5be8be5d
DG
6102 /* Some pre-defined mixed (ARM/THUMB) operands. */
6103 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6104 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6105 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6106
c19d1205
ZW
6107 OP_FIRST_OPTIONAL = OP_oI7b
6108};
a737bd4d 6109
c19d1205
ZW
6110/* Generic instruction operand parser. This does no encoding and no
6111 semantic validation; it merely squirrels values away in the inst
6112 structure. Returns SUCCESS or FAIL depending on whether the
6113 specified grammar matched. */
6114static int
5be8be5d 6115parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6116{
5be8be5d 6117 unsigned const int *upat = pattern;
c19d1205
ZW
6118 char *backtrack_pos = 0;
6119 const char *backtrack_error = 0;
6120 int i, val, backtrack_index = 0;
5287ad62 6121 enum arm_reg_type rtype;
4962c51a 6122 parse_operand_result result;
5be8be5d 6123 unsigned int op_parse_code;
c19d1205 6124
e07e6e58
NC
6125#define po_char_or_fail(chr) \
6126 do \
6127 { \
6128 if (skip_past_char (&str, chr) == FAIL) \
6129 goto bad_args; \
6130 } \
6131 while (0)
c19d1205 6132
e07e6e58
NC
6133#define po_reg_or_fail(regtype) \
6134 do \
dcbf9037 6135 { \
e07e6e58
NC
6136 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6137 & inst.operands[i].vectype); \
6138 if (val == FAIL) \
6139 { \
6140 first_error (_(reg_expected_msgs[regtype])); \
6141 goto failure; \
6142 } \
6143 inst.operands[i].reg = val; \
6144 inst.operands[i].isreg = 1; \
6145 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6146 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6147 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6148 || rtype == REG_TYPE_VFD \
6149 || rtype == REG_TYPE_NQ); \
dcbf9037 6150 } \
e07e6e58
NC
6151 while (0)
6152
6153#define po_reg_or_goto(regtype, label) \
6154 do \
6155 { \
6156 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6157 & inst.operands[i].vectype); \
6158 if (val == FAIL) \
6159 goto label; \
dcbf9037 6160 \
e07e6e58
NC
6161 inst.operands[i].reg = val; \
6162 inst.operands[i].isreg = 1; \
6163 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6164 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6165 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6166 || rtype == REG_TYPE_VFD \
6167 || rtype == REG_TYPE_NQ); \
6168 } \
6169 while (0)
6170
6171#define po_imm_or_fail(min, max, popt) \
6172 do \
6173 { \
6174 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6175 goto failure; \
6176 inst.operands[i].imm = val; \
6177 } \
6178 while (0)
6179
6180#define po_scalar_or_goto(elsz, label) \
6181 do \
6182 { \
6183 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6184 if (val == FAIL) \
6185 goto label; \
6186 inst.operands[i].reg = val; \
6187 inst.operands[i].isscalar = 1; \
6188 } \
6189 while (0)
6190
6191#define po_misc_or_fail(expr) \
6192 do \
6193 { \
6194 if (expr) \
6195 goto failure; \
6196 } \
6197 while (0)
6198
6199#define po_misc_or_fail_no_backtrack(expr) \
6200 do \
6201 { \
6202 result = expr; \
6203 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6204 backtrack_pos = 0; \
6205 if (result != PARSE_OPERAND_SUCCESS) \
6206 goto failure; \
6207 } \
6208 while (0)
4962c51a 6209
52e7f43d
RE
6210#define po_barrier_or_imm(str) \
6211 do \
6212 { \
6213 val = parse_barrier (&str); \
6214 if (val == FAIL) \
6215 { \
6216 if (ISALPHA (*str)) \
6217 goto failure; \
6218 else \
6219 goto immediate; \
6220 } \
6221 else \
6222 { \
6223 if ((inst.instruction & 0xf0) == 0x60 \
6224 && val != 0xf) \
6225 { \
6226 /* ISB can only take SY as an option. */ \
6227 inst.error = _("invalid barrier type"); \
6228 goto failure; \
6229 } \
6230 } \
6231 } \
6232 while (0)
6233
c19d1205
ZW
6234 skip_whitespace (str);
6235
6236 for (i = 0; upat[i] != OP_stop; i++)
6237 {
5be8be5d
DG
6238 op_parse_code = upat[i];
6239 if (op_parse_code >= 1<<16)
6240 op_parse_code = thumb ? (op_parse_code >> 16)
6241 : (op_parse_code & ((1<<16)-1));
6242
6243 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6244 {
6245 /* Remember where we are in case we need to backtrack. */
9c2799c2 6246 gas_assert (!backtrack_pos);
c19d1205
ZW
6247 backtrack_pos = str;
6248 backtrack_error = inst.error;
6249 backtrack_index = i;
6250 }
6251
b6702015 6252 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6253 po_char_or_fail (',');
6254
5be8be5d 6255 switch (op_parse_code)
c19d1205
ZW
6256 {
6257 /* Registers */
6258 case OP_oRRnpc:
5be8be5d 6259 case OP_oRRnpcsp:
c19d1205 6260 case OP_RRnpc:
5be8be5d 6261 case OP_RRnpcsp:
c19d1205
ZW
6262 case OP_oRR:
6263 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6264 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6265 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6266 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6267 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6268 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6269 case OP_oRND:
6270 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6271 case OP_RVC:
6272 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6273 break;
6274 /* Also accept generic coprocessor regs for unknown registers. */
6275 coproc_reg:
6276 po_reg_or_fail (REG_TYPE_CN);
6277 break;
c19d1205
ZW
6278 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6279 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6280 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6281 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6282 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6283 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6284 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6285 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6286 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6287 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6288 case OP_oRNQ:
6289 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6290 case OP_oRNDQ:
6291 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6292 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6293 case OP_oRNSDQ:
6294 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6295
6296 /* Neon scalar. Using an element size of 8 means that some invalid
6297 scalars are accepted here, so deal with those in later code. */
6298 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6299
5287ad62
JB
6300 case OP_RNDQ_I0:
6301 {
6302 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6303 break;
6304 try_imm0:
6305 po_imm_or_fail (0, 0, TRUE);
6306 }
6307 break;
6308
037e8744
JB
6309 case OP_RVSD_I0:
6310 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6311 break;
6312
5287ad62
JB
6313 case OP_RR_RNSC:
6314 {
6315 po_scalar_or_goto (8, try_rr);
6316 break;
6317 try_rr:
6318 po_reg_or_fail (REG_TYPE_RN);
6319 }
6320 break;
6321
037e8744
JB
6322 case OP_RNSDQ_RNSC:
6323 {
6324 po_scalar_or_goto (8, try_nsdq);
6325 break;
6326 try_nsdq:
6327 po_reg_or_fail (REG_TYPE_NSDQ);
6328 }
6329 break;
6330
5287ad62
JB
6331 case OP_RNDQ_RNSC:
6332 {
6333 po_scalar_or_goto (8, try_ndq);
6334 break;
6335 try_ndq:
6336 po_reg_or_fail (REG_TYPE_NDQ);
6337 }
6338 break;
6339
6340 case OP_RND_RNSC:
6341 {
6342 po_scalar_or_goto (8, try_vfd);
6343 break;
6344 try_vfd:
6345 po_reg_or_fail (REG_TYPE_VFD);
6346 }
6347 break;
6348
6349 case OP_VMOV:
6350 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6351 not careful then bad things might happen. */
6352 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6353 break;
6354
4316f0d2 6355 case OP_RNDQ_Ibig:
5287ad62 6356 {
4316f0d2 6357 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6358 break;
4316f0d2 6359 try_immbig:
5287ad62
JB
6360 /* There's a possibility of getting a 64-bit immediate here, so
6361 we need special handling. */
6362 if (parse_big_immediate (&str, i) == FAIL)
6363 {
6364 inst.error = _("immediate value is out of range");
6365 goto failure;
6366 }
6367 }
6368 break;
6369
6370 case OP_RNDQ_I63b:
6371 {
6372 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6373 break;
6374 try_shimm:
6375 po_imm_or_fail (0, 63, TRUE);
6376 }
6377 break;
c19d1205
ZW
6378
6379 case OP_RRnpcb:
6380 po_char_or_fail ('[');
6381 po_reg_or_fail (REG_TYPE_RN);
6382 po_char_or_fail (']');
6383 break;
a737bd4d 6384
55881a11 6385 case OP_RRnpctw:
c19d1205 6386 case OP_RRw:
b6702015 6387 case OP_oRRw:
c19d1205
ZW
6388 po_reg_or_fail (REG_TYPE_RN);
6389 if (skip_past_char (&str, '!') == SUCCESS)
6390 inst.operands[i].writeback = 1;
6391 break;
6392
6393 /* Immediates */
6394 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6395 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6396 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6397 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6398 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6399 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6400 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6401 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6402 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6403 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6404 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6405 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6406
6407 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6408 case OP_oI7b:
6409 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6410 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6411 case OP_oI31b:
6412 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6413 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6414 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6415
6416 /* Immediate variants */
6417 case OP_oI255c:
6418 po_char_or_fail ('{');
6419 po_imm_or_fail (0, 255, TRUE);
6420 po_char_or_fail ('}');
6421 break;
6422
6423 case OP_I31w:
6424 /* The expression parser chokes on a trailing !, so we have
6425 to find it first and zap it. */
6426 {
6427 char *s = str;
6428 while (*s && *s != ',')
6429 s++;
6430 if (s[-1] == '!')
6431 {
6432 s[-1] = '\0';
6433 inst.operands[i].writeback = 1;
6434 }
6435 po_imm_or_fail (0, 31, TRUE);
6436 if (str == s - 1)
6437 str = s;
6438 }
6439 break;
6440
6441 /* Expressions */
6442 case OP_EXPi: EXPi:
6443 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6444 GE_OPT_PREFIX));
6445 break;
6446
6447 case OP_EXP:
6448 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6449 GE_NO_PREFIX));
6450 break;
6451
6452 case OP_EXPr: EXPr:
6453 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6454 GE_NO_PREFIX));
6455 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6456 {
c19d1205
ZW
6457 val = parse_reloc (&str);
6458 if (val == -1)
6459 {
6460 inst.error = _("unrecognized relocation suffix");
6461 goto failure;
6462 }
6463 else if (val != BFD_RELOC_UNUSED)
6464 {
6465 inst.operands[i].imm = val;
6466 inst.operands[i].hasreloc = 1;
6467 }
a737bd4d 6468 }
c19d1205 6469 break;
a737bd4d 6470
b6895b4f
PB
6471 /* Operand for MOVW or MOVT. */
6472 case OP_HALF:
6473 po_misc_or_fail (parse_half (&str));
6474 break;
6475
e07e6e58 6476 /* Register or expression. */
c19d1205
ZW
6477 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6478 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6479
e07e6e58 6480 /* Register or immediate. */
c19d1205
ZW
6481 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6482 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6483
c19d1205
ZW
6484 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6485 IF:
6486 if (!is_immediate_prefix (*str))
6487 goto bad_args;
6488 str++;
6489 val = parse_fpa_immediate (&str);
6490 if (val == FAIL)
6491 goto failure;
6492 /* FPA immediates are encoded as registers 8-15.
6493 parse_fpa_immediate has already applied the offset. */
6494 inst.operands[i].reg = val;
6495 inst.operands[i].isreg = 1;
6496 break;
09d92015 6497
2d447fca
JM
6498 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6499 I32z: po_imm_or_fail (0, 32, FALSE); break;
6500
e07e6e58 6501 /* Two kinds of register. */
c19d1205
ZW
6502 case OP_RIWR_RIWC:
6503 {
6504 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6505 if (!rege
6506 || (rege->type != REG_TYPE_MMXWR
6507 && rege->type != REG_TYPE_MMXWC
6508 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6509 {
6510 inst.error = _("iWMMXt data or control register expected");
6511 goto failure;
6512 }
6513 inst.operands[i].reg = rege->number;
6514 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6515 }
6516 break;
09d92015 6517
41adaa5c
JM
6518 case OP_RIWC_RIWG:
6519 {
6520 struct reg_entry *rege = arm_reg_parse_multi (&str);
6521 if (!rege
6522 || (rege->type != REG_TYPE_MMXWC
6523 && rege->type != REG_TYPE_MMXWCG))
6524 {
6525 inst.error = _("iWMMXt control register expected");
6526 goto failure;
6527 }
6528 inst.operands[i].reg = rege->number;
6529 inst.operands[i].isreg = 1;
6530 }
6531 break;
6532
c19d1205
ZW
6533 /* Misc */
6534 case OP_CPSF: val = parse_cps_flags (&str); break;
6535 case OP_ENDI: val = parse_endian_specifier (&str); break;
6536 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6537 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6538 case OP_oBARRIER_I15:
6539 po_barrier_or_imm (str); break;
6540 immediate:
6541 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6542 goto failure;
6543 break;
c19d1205 6544
d2cd1205
JB
6545 case OP_wPSR:
6546 case OP_rPSR:
90ec0d68
MGD
6547 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6549 {
6550 inst.error = _("Banked registers are not available with this "
6551 "architecture.");
6552 goto failure;
6553 }
6554 break;
d2cd1205
JB
6555 try_psr:
6556 val = parse_psr (&str, op_parse_code == OP_wPSR);
6557 break;
037e8744
JB
6558
6559 case OP_APSR_RR:
6560 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6561 break;
6562 try_apsr:
6563 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6564 instruction). */
6565 if (strncasecmp (str, "APSR_", 5) == 0)
6566 {
6567 unsigned found = 0;
6568 str += 5;
6569 while (found < 15)
6570 switch (*str++)
6571 {
6572 case 'c': found = (found & 1) ? 16 : found | 1; break;
6573 case 'n': found = (found & 2) ? 16 : found | 2; break;
6574 case 'z': found = (found & 4) ? 16 : found | 4; break;
6575 case 'v': found = (found & 8) ? 16 : found | 8; break;
6576 default: found = 16;
6577 }
6578 if (found != 15)
6579 goto failure;
6580 inst.operands[i].isvec = 1;
f7c21dc7
NC
6581 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6582 inst.operands[i].reg = REG_PC;
037e8744
JB
6583 }
6584 else
6585 goto failure;
6586 break;
6587
92e90b6e
PB
6588 case OP_TB:
6589 po_misc_or_fail (parse_tb (&str));
6590 break;
6591
e07e6e58 6592 /* Register lists. */
c19d1205
ZW
6593 case OP_REGLST:
6594 val = parse_reg_list (&str);
6595 if (*str == '^')
6596 {
6597 inst.operands[1].writeback = 1;
6598 str++;
6599 }
6600 break;
09d92015 6601
c19d1205 6602 case OP_VRSLST:
5287ad62 6603 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6604 break;
09d92015 6605
c19d1205 6606 case OP_VRDLST:
5287ad62 6607 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6608 break;
a737bd4d 6609
037e8744
JB
6610 case OP_VRSDLST:
6611 /* Allow Q registers too. */
6612 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6613 REGLIST_NEON_D);
6614 if (val == FAIL)
6615 {
6616 inst.error = NULL;
6617 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6618 REGLIST_VFP_S);
6619 inst.operands[i].issingle = 1;
6620 }
6621 break;
6622
5287ad62
JB
6623 case OP_NRDLST:
6624 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6625 REGLIST_NEON_D);
6626 break;
6627
6628 case OP_NSTRLST:
dcbf9037
JB
6629 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6630 &inst.operands[i].vectype);
5287ad62
JB
6631 break;
6632
c19d1205
ZW
6633 /* Addressing modes */
6634 case OP_ADDR:
6635 po_misc_or_fail (parse_address (&str, i));
6636 break;
09d92015 6637
4962c51a
MS
6638 case OP_ADDRGLDR:
6639 po_misc_or_fail_no_backtrack (
6640 parse_address_group_reloc (&str, i, GROUP_LDR));
6641 break;
6642
6643 case OP_ADDRGLDRS:
6644 po_misc_or_fail_no_backtrack (
6645 parse_address_group_reloc (&str, i, GROUP_LDRS));
6646 break;
6647
6648 case OP_ADDRGLDC:
6649 po_misc_or_fail_no_backtrack (
6650 parse_address_group_reloc (&str, i, GROUP_LDC));
6651 break;
6652
c19d1205
ZW
6653 case OP_SH:
6654 po_misc_or_fail (parse_shifter_operand (&str, i));
6655 break;
09d92015 6656
4962c51a
MS
6657 case OP_SHG:
6658 po_misc_or_fail_no_backtrack (
6659 parse_shifter_operand_group_reloc (&str, i));
6660 break;
6661
c19d1205
ZW
6662 case OP_oSHll:
6663 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6664 break;
09d92015 6665
c19d1205
ZW
6666 case OP_oSHar:
6667 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6668 break;
09d92015 6669
c19d1205
ZW
6670 case OP_oSHllar:
6671 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6672 break;
09d92015 6673
c19d1205 6674 default:
5be8be5d 6675 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6676 }
09d92015 6677
c19d1205
ZW
6678 /* Various value-based sanity checks and shared operations. We
6679 do not signal immediate failures for the register constraints;
6680 this allows a syntax error to take precedence. */
5be8be5d 6681 switch (op_parse_code)
c19d1205
ZW
6682 {
6683 case OP_oRRnpc:
6684 case OP_RRnpc:
6685 case OP_RRnpcb:
6686 case OP_RRw:
b6702015 6687 case OP_oRRw:
c19d1205
ZW
6688 case OP_RRnpc_I0:
6689 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6690 inst.error = BAD_PC;
6691 break;
09d92015 6692
5be8be5d
DG
6693 case OP_oRRnpcsp:
6694 case OP_RRnpcsp:
6695 if (inst.operands[i].isreg)
6696 {
6697 if (inst.operands[i].reg == REG_PC)
6698 inst.error = BAD_PC;
6699 else if (inst.operands[i].reg == REG_SP)
6700 inst.error = BAD_SP;
6701 }
6702 break;
6703
55881a11
MGD
6704 case OP_RRnpctw:
6705 if (inst.operands[i].isreg
6706 && inst.operands[i].reg == REG_PC
6707 && (inst.operands[i].writeback || thumb))
6708 inst.error = BAD_PC;
6709 break;
6710
c19d1205
ZW
6711 case OP_CPSF:
6712 case OP_ENDI:
6713 case OP_oROR:
d2cd1205
JB
6714 case OP_wPSR:
6715 case OP_rPSR:
c19d1205 6716 case OP_COND:
52e7f43d 6717 case OP_oBARRIER_I15:
c19d1205
ZW
6718 case OP_REGLST:
6719 case OP_VRSLST:
6720 case OP_VRDLST:
037e8744 6721 case OP_VRSDLST:
5287ad62
JB
6722 case OP_NRDLST:
6723 case OP_NSTRLST:
c19d1205
ZW
6724 if (val == FAIL)
6725 goto failure;
6726 inst.operands[i].imm = val;
6727 break;
a737bd4d 6728
c19d1205
ZW
6729 default:
6730 break;
6731 }
09d92015 6732
c19d1205
ZW
6733 /* If we get here, this operand was successfully parsed. */
6734 inst.operands[i].present = 1;
6735 continue;
09d92015 6736
c19d1205 6737 bad_args:
09d92015 6738 inst.error = BAD_ARGS;
c19d1205
ZW
6739
6740 failure:
6741 if (!backtrack_pos)
d252fdde
PB
6742 {
6743 /* The parse routine should already have set inst.error, but set a
5f4273c7 6744 default here just in case. */
d252fdde
PB
6745 if (!inst.error)
6746 inst.error = _("syntax error");
6747 return FAIL;
6748 }
c19d1205
ZW
6749
6750 /* Do not backtrack over a trailing optional argument that
6751 absorbed some text. We will only fail again, with the
6752 'garbage following instruction' error message, which is
6753 probably less helpful than the current one. */
6754 if (backtrack_index == i && backtrack_pos != str
6755 && upat[i+1] == OP_stop)
d252fdde
PB
6756 {
6757 if (!inst.error)
6758 inst.error = _("syntax error");
6759 return FAIL;
6760 }
c19d1205
ZW
6761
6762 /* Try again, skipping the optional argument at backtrack_pos. */
6763 str = backtrack_pos;
6764 inst.error = backtrack_error;
6765 inst.operands[backtrack_index].present = 0;
6766 i = backtrack_index;
6767 backtrack_pos = 0;
09d92015 6768 }
09d92015 6769
c19d1205
ZW
6770 /* Check that we have parsed all the arguments. */
6771 if (*str != '\0' && !inst.error)
6772 inst.error = _("garbage following instruction");
09d92015 6773
c19d1205 6774 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6775}
6776
c19d1205
ZW
6777#undef po_char_or_fail
6778#undef po_reg_or_fail
6779#undef po_reg_or_goto
6780#undef po_imm_or_fail
5287ad62 6781#undef po_scalar_or_fail
52e7f43d 6782#undef po_barrier_or_imm
e07e6e58 6783
c19d1205 6784/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6785#define constraint(expr, err) \
6786 do \
c19d1205 6787 { \
e07e6e58
NC
6788 if (expr) \
6789 { \
6790 inst.error = err; \
6791 return; \
6792 } \
c19d1205 6793 } \
e07e6e58 6794 while (0)
c19d1205 6795
fdfde340
JM
6796/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6797 instructions are unpredictable if these registers are used. This
6798 is the BadReg predicate in ARM's Thumb-2 documentation. */
6799#define reject_bad_reg(reg) \
6800 do \
6801 if (reg == REG_SP || reg == REG_PC) \
6802 { \
6803 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6804 return; \
6805 } \
6806 while (0)
6807
94206790
MM
6808/* If REG is R13 (the stack pointer), warn that its use is
6809 deprecated. */
6810#define warn_deprecated_sp(reg) \
6811 do \
6812 if (warn_on_deprecated && reg == REG_SP) \
6813 as_warn (_("use of r13 is deprecated")); \
6814 while (0)
6815
c19d1205
ZW
6816/* Functions for operand encoding. ARM, then Thumb. */
6817
6818#define rotate_left(v, n) (v << n | v >> (32 - n))
6819
6820/* If VAL can be encoded in the immediate field of an ARM instruction,
6821 return the encoded form. Otherwise, return FAIL. */
6822
6823static unsigned int
6824encode_arm_immediate (unsigned int val)
09d92015 6825{
c19d1205
ZW
6826 unsigned int a, i;
6827
6828 for (i = 0; i < 32; i += 2)
6829 if ((a = rotate_left (val, i)) <= 0xff)
6830 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6831
6832 return FAIL;
09d92015
MM
6833}
6834
c19d1205
ZW
6835/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6836 return the encoded form. Otherwise, return FAIL. */
6837static unsigned int
6838encode_thumb32_immediate (unsigned int val)
09d92015 6839{
c19d1205 6840 unsigned int a, i;
09d92015 6841
9c3c69f2 6842 if (val <= 0xff)
c19d1205 6843 return val;
a737bd4d 6844
9c3c69f2 6845 for (i = 1; i <= 24; i++)
09d92015 6846 {
9c3c69f2
PB
6847 a = val >> i;
6848 if ((val & ~(0xff << i)) == 0)
6849 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6850 }
a737bd4d 6851
c19d1205
ZW
6852 a = val & 0xff;
6853 if (val == ((a << 16) | a))
6854 return 0x100 | a;
6855 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6856 return 0x300 | a;
09d92015 6857
c19d1205
ZW
6858 a = val & 0xff00;
6859 if (val == ((a << 16) | a))
6860 return 0x200 | (a >> 8);
a737bd4d 6861
c19d1205 6862 return FAIL;
09d92015 6863}
5287ad62 6864/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6865
6866static void
5287ad62
JB
6867encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6868{
6869 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6870 && reg > 15)
6871 {
b1cc4aeb 6872 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6873 {
6874 if (thumb_mode)
6875 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6876 fpu_vfp_ext_d32);
5287ad62
JB
6877 else
6878 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6879 fpu_vfp_ext_d32);
5287ad62
JB
6880 }
6881 else
6882 {
dcbf9037 6883 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6884 return;
6885 }
6886 }
6887
c19d1205 6888 switch (pos)
09d92015 6889 {
c19d1205
ZW
6890 case VFP_REG_Sd:
6891 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6892 break;
6893
6894 case VFP_REG_Sn:
6895 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6896 break;
6897
6898 case VFP_REG_Sm:
6899 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6900 break;
6901
5287ad62
JB
6902 case VFP_REG_Dd:
6903 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6904 break;
5f4273c7 6905
5287ad62
JB
6906 case VFP_REG_Dn:
6907 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6908 break;
5f4273c7 6909
5287ad62
JB
6910 case VFP_REG_Dm:
6911 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6912 break;
6913
c19d1205
ZW
6914 default:
6915 abort ();
09d92015 6916 }
09d92015
MM
6917}
6918
c19d1205 6919/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6920 if any, is handled by md_apply_fix. */
09d92015 6921static void
c19d1205 6922encode_arm_shift (int i)
09d92015 6923{
c19d1205
ZW
6924 if (inst.operands[i].shift_kind == SHIFT_RRX)
6925 inst.instruction |= SHIFT_ROR << 5;
6926 else
09d92015 6927 {
c19d1205
ZW
6928 inst.instruction |= inst.operands[i].shift_kind << 5;
6929 if (inst.operands[i].immisreg)
6930 {
6931 inst.instruction |= SHIFT_BY_REG;
6932 inst.instruction |= inst.operands[i].imm << 8;
6933 }
6934 else
6935 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6936 }
c19d1205 6937}
09d92015 6938
c19d1205
ZW
6939static void
6940encode_arm_shifter_operand (int i)
6941{
6942 if (inst.operands[i].isreg)
09d92015 6943 {
c19d1205
ZW
6944 inst.instruction |= inst.operands[i].reg;
6945 encode_arm_shift (i);
09d92015 6946 }
c19d1205
ZW
6947 else
6948 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6949}
6950
c19d1205 6951/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6952static void
c19d1205 6953encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6954{
9c2799c2 6955 gas_assert (inst.operands[i].isreg);
c19d1205 6956 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6957
c19d1205 6958 if (inst.operands[i].preind)
09d92015 6959 {
c19d1205
ZW
6960 if (is_t)
6961 {
6962 inst.error = _("instruction does not accept preindexed addressing");
6963 return;
6964 }
6965 inst.instruction |= PRE_INDEX;
6966 if (inst.operands[i].writeback)
6967 inst.instruction |= WRITE_BACK;
09d92015 6968
c19d1205
ZW
6969 }
6970 else if (inst.operands[i].postind)
6971 {
9c2799c2 6972 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6973 if (is_t)
6974 inst.instruction |= WRITE_BACK;
6975 }
6976 else /* unindexed - only for coprocessor */
09d92015 6977 {
c19d1205 6978 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6979 return;
6980 }
6981
c19d1205
ZW
6982 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6983 && (((inst.instruction & 0x000f0000) >> 16)
6984 == ((inst.instruction & 0x0000f000) >> 12)))
6985 as_warn ((inst.instruction & LOAD_BIT)
6986 ? _("destination register same as write-back base")
6987 : _("source register same as write-back base"));
09d92015
MM
6988}
6989
c19d1205
ZW
6990/* inst.operands[i] was set up by parse_address. Encode it into an
6991 ARM-format mode 2 load or store instruction. If is_t is true,
6992 reject forms that cannot be used with a T instruction (i.e. not
6993 post-indexed). */
a737bd4d 6994static void
c19d1205 6995encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6996{
5be8be5d
DG
6997 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6998
c19d1205 6999 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7000
c19d1205 7001 if (inst.operands[i].immisreg)
09d92015 7002 {
5be8be5d
DG
7003 constraint ((inst.operands[i].imm == REG_PC
7004 || (is_pc && inst.operands[i].writeback)),
7005 BAD_PC_ADDRESSING);
c19d1205
ZW
7006 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7007 inst.instruction |= inst.operands[i].imm;
7008 if (!inst.operands[i].negative)
7009 inst.instruction |= INDEX_UP;
7010 if (inst.operands[i].shifted)
7011 {
7012 if (inst.operands[i].shift_kind == SHIFT_RRX)
7013 inst.instruction |= SHIFT_ROR << 5;
7014 else
7015 {
7016 inst.instruction |= inst.operands[i].shift_kind << 5;
7017 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7018 }
7019 }
09d92015 7020 }
c19d1205 7021 else /* immediate offset in inst.reloc */
09d92015 7022 {
5be8be5d
DG
7023 if (is_pc && !inst.reloc.pc_rel)
7024 {
7025 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7026
7027 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7028 cannot use PC in addressing.
7029 PC cannot be used in writeback addressing, either. */
7030 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7031 BAD_PC_ADDRESSING);
23a10334 7032
dc5ec521 7033 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7034 if (warn_on_deprecated
7035 && !is_load
7036 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7037 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7038 }
7039
c19d1205
ZW
7040 if (inst.reloc.type == BFD_RELOC_UNUSED)
7041 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 7042 }
09d92015
MM
7043}
7044
c19d1205
ZW
7045/* inst.operands[i] was set up by parse_address. Encode it into an
7046 ARM-format mode 3 load or store instruction. Reject forms that
7047 cannot be used with such instructions. If is_t is true, reject
7048 forms that cannot be used with a T instruction (i.e. not
7049 post-indexed). */
7050static void
7051encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7052{
c19d1205 7053 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7054 {
c19d1205
ZW
7055 inst.error = _("instruction does not accept scaled register index");
7056 return;
09d92015 7057 }
a737bd4d 7058
c19d1205 7059 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7060
c19d1205
ZW
7061 if (inst.operands[i].immisreg)
7062 {
5be8be5d
DG
7063 constraint ((inst.operands[i].imm == REG_PC
7064 || inst.operands[i].reg == REG_PC),
7065 BAD_PC_ADDRESSING);
c19d1205
ZW
7066 inst.instruction |= inst.operands[i].imm;
7067 if (!inst.operands[i].negative)
7068 inst.instruction |= INDEX_UP;
7069 }
7070 else /* immediate offset in inst.reloc */
7071 {
5be8be5d
DG
7072 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7073 && inst.operands[i].writeback),
7074 BAD_PC_WRITEBACK);
c19d1205
ZW
7075 inst.instruction |= HWOFFSET_IMM;
7076 if (inst.reloc.type == BFD_RELOC_UNUSED)
7077 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 7078 }
a737bd4d
NC
7079}
7080
c19d1205
ZW
7081/* inst.operands[i] was set up by parse_address. Encode it into an
7082 ARM-format instruction. Reject all forms which cannot be encoded
7083 into a coprocessor load/store instruction. If wb_ok is false,
7084 reject use of writeback; if unind_ok is false, reject use of
7085 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7086 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7087 (in which case it is preserved). */
09d92015 7088
c19d1205
ZW
7089static int
7090encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7091{
c19d1205 7092 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7093
9c2799c2 7094 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7095
c19d1205 7096 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7097 {
9c2799c2 7098 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7099 if (!unind_ok)
7100 {
7101 inst.error = _("instruction does not support unindexed addressing");
7102 return FAIL;
7103 }
7104 inst.instruction |= inst.operands[i].imm;
7105 inst.instruction |= INDEX_UP;
7106 return SUCCESS;
09d92015 7107 }
a737bd4d 7108
c19d1205
ZW
7109 if (inst.operands[i].preind)
7110 inst.instruction |= PRE_INDEX;
a737bd4d 7111
c19d1205 7112 if (inst.operands[i].writeback)
09d92015 7113 {
c19d1205
ZW
7114 if (inst.operands[i].reg == REG_PC)
7115 {
7116 inst.error = _("pc may not be used with write-back");
7117 return FAIL;
7118 }
7119 if (!wb_ok)
7120 {
7121 inst.error = _("instruction does not support writeback");
7122 return FAIL;
7123 }
7124 inst.instruction |= WRITE_BACK;
09d92015 7125 }
a737bd4d 7126
c19d1205 7127 if (reloc_override)
21d799b5 7128 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7129 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7130 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7131 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7132 {
7133 if (thumb_mode)
7134 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7135 else
7136 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7137 }
7138
c19d1205
ZW
7139 return SUCCESS;
7140}
a737bd4d 7141
c19d1205
ZW
7142/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7143 Determine whether it can be performed with a move instruction; if
7144 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7145 return TRUE; if it can't, convert inst.instruction to a literal-pool
7146 load and return FALSE. If this is not a valid thing to do in the
7147 current context, set inst.error and return TRUE.
a737bd4d 7148
c19d1205
ZW
7149 inst.operands[i] describes the destination register. */
7150
c921be7d 7151static bfd_boolean
c19d1205
ZW
7152move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7153{
53365c0d
PB
7154 unsigned long tbit;
7155
7156 if (thumb_p)
7157 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7158 else
7159 tbit = LOAD_BIT;
7160
7161 if ((inst.instruction & tbit) == 0)
09d92015 7162 {
c19d1205 7163 inst.error = _("invalid pseudo operation");
c921be7d 7164 return TRUE;
09d92015 7165 }
c19d1205 7166 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7167 {
7168 inst.error = _("constant expression expected");
c921be7d 7169 return TRUE;
09d92015 7170 }
c19d1205 7171 if (inst.reloc.exp.X_op == O_constant)
09d92015 7172 {
c19d1205
ZW
7173 if (thumb_p)
7174 {
53365c0d 7175 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7176 {
7177 /* This can be done with a mov(1) instruction. */
7178 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7179 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7180 return TRUE;
c19d1205
ZW
7181 }
7182 }
7183 else
7184 {
7185 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7186 if (value != FAIL)
7187 {
7188 /* This can be done with a mov instruction. */
7189 inst.instruction &= LITERAL_MASK;
7190 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7191 inst.instruction |= value & 0xfff;
c921be7d 7192 return TRUE;
c19d1205 7193 }
09d92015 7194
c19d1205
ZW
7195 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7196 if (value != FAIL)
7197 {
7198 /* This can be done with a mvn instruction. */
7199 inst.instruction &= LITERAL_MASK;
7200 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7201 inst.instruction |= value & 0xfff;
c921be7d 7202 return TRUE;
c19d1205
ZW
7203 }
7204 }
09d92015
MM
7205 }
7206
c19d1205
ZW
7207 if (add_to_lit_pool () == FAIL)
7208 {
7209 inst.error = _("literal pool insertion failed");
c921be7d 7210 return TRUE;
c19d1205
ZW
7211 }
7212 inst.operands[1].reg = REG_PC;
7213 inst.operands[1].isreg = 1;
7214 inst.operands[1].preind = 1;
7215 inst.reloc.pc_rel = 1;
7216 inst.reloc.type = (thumb_p
7217 ? BFD_RELOC_ARM_THUMB_OFFSET
7218 : (mode_3
7219 ? BFD_RELOC_ARM_HWLITERAL
7220 : BFD_RELOC_ARM_LITERAL));
c921be7d 7221 return FALSE;
09d92015
MM
7222}
7223
5f4273c7 7224/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7225 First some generics; their names are taken from the conventional
7226 bit positions for register arguments in ARM format instructions. */
09d92015 7227
a737bd4d 7228static void
c19d1205 7229do_noargs (void)
09d92015 7230{
c19d1205 7231}
a737bd4d 7232
c19d1205
ZW
7233static void
7234do_rd (void)
7235{
7236 inst.instruction |= inst.operands[0].reg << 12;
7237}
a737bd4d 7238
c19d1205
ZW
7239static void
7240do_rd_rm (void)
7241{
7242 inst.instruction |= inst.operands[0].reg << 12;
7243 inst.instruction |= inst.operands[1].reg;
7244}
09d92015 7245
c19d1205
ZW
7246static void
7247do_rd_rn (void)
7248{
7249 inst.instruction |= inst.operands[0].reg << 12;
7250 inst.instruction |= inst.operands[1].reg << 16;
7251}
a737bd4d 7252
c19d1205
ZW
7253static void
7254do_rn_rd (void)
7255{
7256 inst.instruction |= inst.operands[0].reg << 16;
7257 inst.instruction |= inst.operands[1].reg << 12;
7258}
09d92015 7259
c19d1205
ZW
7260static void
7261do_rd_rm_rn (void)
7262{
9a64e435 7263 unsigned Rn = inst.operands[2].reg;
708587a4 7264 /* Enforce restrictions on SWP instruction. */
9a64e435 7265 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7266 {
7267 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7268 _("Rn must not overlap other operands"));
7269
7270 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7271 if (warn_on_deprecated
7272 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7273 as_warn (_("swp{b} use is deprecated for this architecture"));
7274
7275 }
c19d1205
ZW
7276 inst.instruction |= inst.operands[0].reg << 12;
7277 inst.instruction |= inst.operands[1].reg;
9a64e435 7278 inst.instruction |= Rn << 16;
c19d1205 7279}
09d92015 7280
c19d1205
ZW
7281static void
7282do_rd_rn_rm (void)
7283{
7284 inst.instruction |= inst.operands[0].reg << 12;
7285 inst.instruction |= inst.operands[1].reg << 16;
7286 inst.instruction |= inst.operands[2].reg;
7287}
a737bd4d 7288
c19d1205
ZW
7289static void
7290do_rm_rd_rn (void)
7291{
5be8be5d
DG
7292 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7293 constraint (((inst.reloc.exp.X_op != O_constant
7294 && inst.reloc.exp.X_op != O_illegal)
7295 || inst.reloc.exp.X_add_number != 0),
7296 BAD_ADDR_MODE);
c19d1205
ZW
7297 inst.instruction |= inst.operands[0].reg;
7298 inst.instruction |= inst.operands[1].reg << 12;
7299 inst.instruction |= inst.operands[2].reg << 16;
7300}
09d92015 7301
c19d1205
ZW
7302static void
7303do_imm0 (void)
7304{
7305 inst.instruction |= inst.operands[0].imm;
7306}
09d92015 7307
c19d1205
ZW
7308static void
7309do_rd_cpaddr (void)
7310{
7311 inst.instruction |= inst.operands[0].reg << 12;
7312 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7313}
a737bd4d 7314
c19d1205
ZW
7315/* ARM instructions, in alphabetical order by function name (except
7316 that wrapper functions appear immediately after the function they
7317 wrap). */
09d92015 7318
c19d1205
ZW
7319/* This is a pseudo-op of the form "adr rd, label" to be converted
7320 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7321
7322static void
c19d1205 7323do_adr (void)
09d92015 7324{
c19d1205 7325 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7326
c19d1205
ZW
7327 /* Frag hacking will turn this into a sub instruction if the offset turns
7328 out to be negative. */
7329 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7330 inst.reloc.pc_rel = 1;
2fc8bdac 7331 inst.reloc.exp.X_add_number -= 8;
c19d1205 7332}
b99bd4ef 7333
c19d1205
ZW
7334/* This is a pseudo-op of the form "adrl rd, label" to be converted
7335 into a relative address of the form:
7336 add rd, pc, #low(label-.-8)"
7337 add rd, rd, #high(label-.-8)" */
b99bd4ef 7338
c19d1205
ZW
7339static void
7340do_adrl (void)
7341{
7342 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7343
c19d1205
ZW
7344 /* Frag hacking will turn this into a sub instruction if the offset turns
7345 out to be negative. */
7346 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7347 inst.reloc.pc_rel = 1;
7348 inst.size = INSN_SIZE * 2;
2fc8bdac 7349 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7350}
7351
b99bd4ef 7352static void
c19d1205 7353do_arit (void)
b99bd4ef 7354{
c19d1205
ZW
7355 if (!inst.operands[1].present)
7356 inst.operands[1].reg = inst.operands[0].reg;
7357 inst.instruction |= inst.operands[0].reg << 12;
7358 inst.instruction |= inst.operands[1].reg << 16;
7359 encode_arm_shifter_operand (2);
7360}
b99bd4ef 7361
62b3e311
PB
7362static void
7363do_barrier (void)
7364{
7365 if (inst.operands[0].present)
7366 {
7367 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7368 && inst.operands[0].imm > 0xf
7369 && inst.operands[0].imm < 0x0,
bd3ba5d1 7370 _("bad barrier type"));
62b3e311
PB
7371 inst.instruction |= inst.operands[0].imm;
7372 }
7373 else
7374 inst.instruction |= 0xf;
7375}
7376
c19d1205
ZW
7377static void
7378do_bfc (void)
7379{
7380 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7381 constraint (msb > 32, _("bit-field extends past end of register"));
7382 /* The instruction encoding stores the LSB and MSB,
7383 not the LSB and width. */
7384 inst.instruction |= inst.operands[0].reg << 12;
7385 inst.instruction |= inst.operands[1].imm << 7;
7386 inst.instruction |= (msb - 1) << 16;
7387}
b99bd4ef 7388
c19d1205
ZW
7389static void
7390do_bfi (void)
7391{
7392 unsigned int msb;
b99bd4ef 7393
c19d1205
ZW
7394 /* #0 in second position is alternative syntax for bfc, which is
7395 the same instruction but with REG_PC in the Rm field. */
7396 if (!inst.operands[1].isreg)
7397 inst.operands[1].reg = REG_PC;
b99bd4ef 7398
c19d1205
ZW
7399 msb = inst.operands[2].imm + inst.operands[3].imm;
7400 constraint (msb > 32, _("bit-field extends past end of register"));
7401 /* The instruction encoding stores the LSB and MSB,
7402 not the LSB and width. */
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 inst.instruction |= inst.operands[1].reg;
7405 inst.instruction |= inst.operands[2].imm << 7;
7406 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7407}
7408
b99bd4ef 7409static void
c19d1205 7410do_bfx (void)
b99bd4ef 7411{
c19d1205
ZW
7412 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7413 _("bit-field extends past end of register"));
7414 inst.instruction |= inst.operands[0].reg << 12;
7415 inst.instruction |= inst.operands[1].reg;
7416 inst.instruction |= inst.operands[2].imm << 7;
7417 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7418}
09d92015 7419
c19d1205
ZW
7420/* ARM V5 breakpoint instruction (argument parse)
7421 BKPT <16 bit unsigned immediate>
7422 Instruction is not conditional.
7423 The bit pattern given in insns[] has the COND_ALWAYS condition,
7424 and it is an error if the caller tried to override that. */
b99bd4ef 7425
c19d1205
ZW
7426static void
7427do_bkpt (void)
7428{
7429 /* Top 12 of 16 bits to bits 19:8. */
7430 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7431
c19d1205
ZW
7432 /* Bottom 4 of 16 bits to bits 3:0. */
7433 inst.instruction |= inst.operands[0].imm & 0xf;
7434}
09d92015 7435
c19d1205
ZW
7436static void
7437encode_branch (int default_reloc)
7438{
7439 if (inst.operands[0].hasreloc)
7440 {
0855e32b
NS
7441 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7442 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7443 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7444 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7445 ? BFD_RELOC_ARM_PLT32
7446 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7447 }
b99bd4ef 7448 else
9ae92b05 7449 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7450 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7451}
7452
b99bd4ef 7453static void
c19d1205 7454do_branch (void)
b99bd4ef 7455{
39b41c9c
PB
7456#ifdef OBJ_ELF
7457 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7458 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7459 else
7460#endif
7461 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7462}
7463
7464static void
7465do_bl (void)
7466{
7467#ifdef OBJ_ELF
7468 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7469 {
7470 if (inst.cond == COND_ALWAYS)
7471 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7472 else
7473 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7474 }
7475 else
7476#endif
7477 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7478}
b99bd4ef 7479
c19d1205
ZW
7480/* ARM V5 branch-link-exchange instruction (argument parse)
7481 BLX <target_addr> ie BLX(1)
7482 BLX{<condition>} <Rm> ie BLX(2)
7483 Unfortunately, there are two different opcodes for this mnemonic.
7484 So, the insns[].value is not used, and the code here zaps values
7485 into inst.instruction.
7486 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7487
c19d1205
ZW
7488static void
7489do_blx (void)
7490{
7491 if (inst.operands[0].isreg)
b99bd4ef 7492 {
c19d1205
ZW
7493 /* Arg is a register; the opcode provided by insns[] is correct.
7494 It is not illegal to do "blx pc", just useless. */
7495 if (inst.operands[0].reg == REG_PC)
7496 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7497
c19d1205
ZW
7498 inst.instruction |= inst.operands[0].reg;
7499 }
7500 else
b99bd4ef 7501 {
c19d1205 7502 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7503 conditionally, and the opcode must be adjusted.
7504 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7505 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7506 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7507 inst.instruction = 0xfa000000;
267bf995 7508 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7509 }
c19d1205
ZW
7510}
7511
7512static void
7513do_bx (void)
7514{
845b51d6
PB
7515 bfd_boolean want_reloc;
7516
c19d1205
ZW
7517 if (inst.operands[0].reg == REG_PC)
7518 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7519
c19d1205 7520 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7521 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7522 it is for ARMv4t or earlier. */
7523 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7524 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7525 want_reloc = TRUE;
7526
5ad34203 7527#ifdef OBJ_ELF
845b51d6 7528 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7529#endif
584206db 7530 want_reloc = FALSE;
845b51d6
PB
7531
7532 if (want_reloc)
7533 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7534}
7535
c19d1205
ZW
7536
7537/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7538
7539static void
c19d1205 7540do_bxj (void)
a737bd4d 7541{
c19d1205
ZW
7542 if (inst.operands[0].reg == REG_PC)
7543 as_tsktsk (_("use of r15 in bxj is not really useful"));
7544
7545 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7546}
7547
c19d1205
ZW
7548/* Co-processor data operation:
7549 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7550 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7551static void
7552do_cdp (void)
7553{
7554 inst.instruction |= inst.operands[0].reg << 8;
7555 inst.instruction |= inst.operands[1].imm << 20;
7556 inst.instruction |= inst.operands[2].reg << 12;
7557 inst.instruction |= inst.operands[3].reg << 16;
7558 inst.instruction |= inst.operands[4].reg;
7559 inst.instruction |= inst.operands[5].imm << 5;
7560}
a737bd4d
NC
7561
7562static void
c19d1205 7563do_cmp (void)
a737bd4d 7564{
c19d1205
ZW
7565 inst.instruction |= inst.operands[0].reg << 16;
7566 encode_arm_shifter_operand (1);
a737bd4d
NC
7567}
7568
c19d1205
ZW
7569/* Transfer between coprocessor and ARM registers.
7570 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7571 MRC2
7572 MCR{cond}
7573 MCR2
7574
7575 No special properties. */
09d92015
MM
7576
7577static void
c19d1205 7578do_co_reg (void)
09d92015 7579{
fdfde340
JM
7580 unsigned Rd;
7581
7582 Rd = inst.operands[2].reg;
7583 if (thumb_mode)
7584 {
7585 if (inst.instruction == 0xee000010
7586 || inst.instruction == 0xfe000010)
7587 /* MCR, MCR2 */
7588 reject_bad_reg (Rd);
7589 else
7590 /* MRC, MRC2 */
7591 constraint (Rd == REG_SP, BAD_SP);
7592 }
7593 else
7594 {
7595 /* MCR */
7596 if (inst.instruction == 0xe000010)
7597 constraint (Rd == REG_PC, BAD_PC);
7598 }
7599
7600
c19d1205
ZW
7601 inst.instruction |= inst.operands[0].reg << 8;
7602 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7603 inst.instruction |= Rd << 12;
c19d1205
ZW
7604 inst.instruction |= inst.operands[3].reg << 16;
7605 inst.instruction |= inst.operands[4].reg;
7606 inst.instruction |= inst.operands[5].imm << 5;
7607}
09d92015 7608
c19d1205
ZW
7609/* Transfer between coprocessor register and pair of ARM registers.
7610 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7611 MCRR2
7612 MRRC{cond}
7613 MRRC2
b99bd4ef 7614
c19d1205 7615 Two XScale instructions are special cases of these:
09d92015 7616
c19d1205
ZW
7617 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7618 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7619
5f4273c7 7620 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7621
c19d1205
ZW
7622static void
7623do_co_reg2c (void)
7624{
fdfde340
JM
7625 unsigned Rd, Rn;
7626
7627 Rd = inst.operands[2].reg;
7628 Rn = inst.operands[3].reg;
7629
7630 if (thumb_mode)
7631 {
7632 reject_bad_reg (Rd);
7633 reject_bad_reg (Rn);
7634 }
7635 else
7636 {
7637 constraint (Rd == REG_PC, BAD_PC);
7638 constraint (Rn == REG_PC, BAD_PC);
7639 }
7640
c19d1205
ZW
7641 inst.instruction |= inst.operands[0].reg << 8;
7642 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7643 inst.instruction |= Rd << 12;
7644 inst.instruction |= Rn << 16;
c19d1205 7645 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7646}
7647
c19d1205
ZW
7648static void
7649do_cpsi (void)
7650{
7651 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7652 if (inst.operands[1].present)
7653 {
7654 inst.instruction |= CPSI_MMOD;
7655 inst.instruction |= inst.operands[1].imm;
7656 }
c19d1205 7657}
b99bd4ef 7658
62b3e311
PB
7659static void
7660do_dbg (void)
7661{
7662 inst.instruction |= inst.operands[0].imm;
7663}
7664
eea54501
MGD
7665static void
7666do_div (void)
7667{
7668 unsigned Rd, Rn, Rm;
7669
7670 Rd = inst.operands[0].reg;
7671 Rn = (inst.operands[1].present
7672 ? inst.operands[1].reg : Rd);
7673 Rm = inst.operands[2].reg;
7674
7675 constraint ((Rd == REG_PC), BAD_PC);
7676 constraint ((Rn == REG_PC), BAD_PC);
7677 constraint ((Rm == REG_PC), BAD_PC);
7678
7679 inst.instruction |= Rd << 16;
7680 inst.instruction |= Rn << 0;
7681 inst.instruction |= Rm << 8;
7682}
7683
b99bd4ef 7684static void
c19d1205 7685do_it (void)
b99bd4ef 7686{
c19d1205 7687 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7688 process it to do the validation as if in
7689 thumb mode, just in case the code gets
7690 assembled for thumb using the unified syntax. */
7691
c19d1205 7692 inst.size = 0;
e07e6e58
NC
7693 if (unified_syntax)
7694 {
7695 set_it_insn_type (IT_INSN);
7696 now_it.mask = (inst.instruction & 0xf) | 0x10;
7697 now_it.cc = inst.operands[0].imm;
7698 }
09d92015 7699}
b99bd4ef 7700
09d92015 7701static void
c19d1205 7702do_ldmstm (void)
ea6ef066 7703{
c19d1205
ZW
7704 int base_reg = inst.operands[0].reg;
7705 int range = inst.operands[1].imm;
ea6ef066 7706
c19d1205
ZW
7707 inst.instruction |= base_reg << 16;
7708 inst.instruction |= range;
ea6ef066 7709
c19d1205
ZW
7710 if (inst.operands[1].writeback)
7711 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7712
c19d1205 7713 if (inst.operands[0].writeback)
ea6ef066 7714 {
c19d1205
ZW
7715 inst.instruction |= WRITE_BACK;
7716 /* Check for unpredictable uses of writeback. */
7717 if (inst.instruction & LOAD_BIT)
09d92015 7718 {
c19d1205
ZW
7719 /* Not allowed in LDM type 2. */
7720 if ((inst.instruction & LDM_TYPE_2_OR_3)
7721 && ((range & (1 << REG_PC)) == 0))
7722 as_warn (_("writeback of base register is UNPREDICTABLE"));
7723 /* Only allowed if base reg not in list for other types. */
7724 else if (range & (1 << base_reg))
7725 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7726 }
7727 else /* STM. */
7728 {
7729 /* Not allowed for type 2. */
7730 if (inst.instruction & LDM_TYPE_2_OR_3)
7731 as_warn (_("writeback of base register is UNPREDICTABLE"));
7732 /* Only allowed if base reg not in list, or first in list. */
7733 else if ((range & (1 << base_reg))
7734 && (range & ((1 << base_reg) - 1)))
7735 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7736 }
ea6ef066 7737 }
a737bd4d
NC
7738}
7739
c19d1205
ZW
7740/* ARMv5TE load-consecutive (argument parse)
7741 Mode is like LDRH.
7742
7743 LDRccD R, mode
7744 STRccD R, mode. */
7745
a737bd4d 7746static void
c19d1205 7747do_ldrd (void)
a737bd4d 7748{
c19d1205
ZW
7749 constraint (inst.operands[0].reg % 2 != 0,
7750 _("first destination register must be even"));
7751 constraint (inst.operands[1].present
7752 && inst.operands[1].reg != inst.operands[0].reg + 1,
7753 _("can only load two consecutive registers"));
7754 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7755 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7756
c19d1205
ZW
7757 if (!inst.operands[1].present)
7758 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7759
c19d1205 7760 if (inst.instruction & LOAD_BIT)
a737bd4d 7761 {
c19d1205
ZW
7762 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7763 register and the first register written; we have to diagnose
7764 overlap between the base and the second register written here. */
ea6ef066 7765
c19d1205
ZW
7766 if (inst.operands[2].reg == inst.operands[1].reg
7767 && (inst.operands[2].writeback || inst.operands[2].postind))
7768 as_warn (_("base register written back, and overlaps "
7769 "second destination register"));
b05fe5cf 7770
c19d1205
ZW
7771 /* For an index-register load, the index register must not overlap the
7772 destination (even if not write-back). */
7773 else if (inst.operands[2].immisreg
ca3f61f7
NC
7774 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7775 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7776 as_warn (_("index register overlaps destination register"));
b05fe5cf 7777 }
c19d1205
ZW
7778
7779 inst.instruction |= inst.operands[0].reg << 12;
7780 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7781}
7782
7783static void
c19d1205 7784do_ldrex (void)
b05fe5cf 7785{
c19d1205
ZW
7786 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7787 || inst.operands[1].postind || inst.operands[1].writeback
7788 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7789 || inst.operands[1].negative
7790 /* This can arise if the programmer has written
7791 strex rN, rM, foo
7792 or if they have mistakenly used a register name as the last
7793 operand, eg:
7794 strex rN, rM, rX
7795 It is very difficult to distinguish between these two cases
7796 because "rX" might actually be a label. ie the register
7797 name has been occluded by a symbol of the same name. So we
7798 just generate a general 'bad addressing mode' type error
7799 message and leave it up to the programmer to discover the
7800 true cause and fix their mistake. */
7801 || (inst.operands[1].reg == REG_PC),
7802 BAD_ADDR_MODE);
b05fe5cf 7803
c19d1205
ZW
7804 constraint (inst.reloc.exp.X_op != O_constant
7805 || inst.reloc.exp.X_add_number != 0,
7806 _("offset must be zero in ARM encoding"));
b05fe5cf 7807
5be8be5d
DG
7808 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7809
c19d1205
ZW
7810 inst.instruction |= inst.operands[0].reg << 12;
7811 inst.instruction |= inst.operands[1].reg << 16;
7812 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7813}
7814
7815static void
c19d1205 7816do_ldrexd (void)
b05fe5cf 7817{
c19d1205
ZW
7818 constraint (inst.operands[0].reg % 2 != 0,
7819 _("even register required"));
7820 constraint (inst.operands[1].present
7821 && inst.operands[1].reg != inst.operands[0].reg + 1,
7822 _("can only load two consecutive registers"));
7823 /* If op 1 were present and equal to PC, this function wouldn't
7824 have been called in the first place. */
7825 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7826
c19d1205
ZW
7827 inst.instruction |= inst.operands[0].reg << 12;
7828 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7829}
7830
7831static void
c19d1205 7832do_ldst (void)
b05fe5cf 7833{
c19d1205
ZW
7834 inst.instruction |= inst.operands[0].reg << 12;
7835 if (!inst.operands[1].isreg)
7836 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7837 return;
c19d1205 7838 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7839}
7840
7841static void
c19d1205 7842do_ldstt (void)
b05fe5cf 7843{
c19d1205
ZW
7844 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7845 reject [Rn,...]. */
7846 if (inst.operands[1].preind)
b05fe5cf 7847 {
bd3ba5d1
NC
7848 constraint (inst.reloc.exp.X_op != O_constant
7849 || inst.reloc.exp.X_add_number != 0,
c19d1205 7850 _("this instruction requires a post-indexed address"));
b05fe5cf 7851
c19d1205
ZW
7852 inst.operands[1].preind = 0;
7853 inst.operands[1].postind = 1;
7854 inst.operands[1].writeback = 1;
b05fe5cf 7855 }
c19d1205
ZW
7856 inst.instruction |= inst.operands[0].reg << 12;
7857 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7858}
b05fe5cf 7859
c19d1205 7860/* Halfword and signed-byte load/store operations. */
b05fe5cf 7861
c19d1205
ZW
7862static void
7863do_ldstv4 (void)
7864{
ff4a8d2b 7865 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7866 inst.instruction |= inst.operands[0].reg << 12;
7867 if (!inst.operands[1].isreg)
7868 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7869 return;
c19d1205 7870 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7871}
7872
7873static void
c19d1205 7874do_ldsttv4 (void)
b05fe5cf 7875{
c19d1205
ZW
7876 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7877 reject [Rn,...]. */
7878 if (inst.operands[1].preind)
b05fe5cf 7879 {
bd3ba5d1
NC
7880 constraint (inst.reloc.exp.X_op != O_constant
7881 || inst.reloc.exp.X_add_number != 0,
c19d1205 7882 _("this instruction requires a post-indexed address"));
b05fe5cf 7883
c19d1205
ZW
7884 inst.operands[1].preind = 0;
7885 inst.operands[1].postind = 1;
7886 inst.operands[1].writeback = 1;
b05fe5cf 7887 }
c19d1205
ZW
7888 inst.instruction |= inst.operands[0].reg << 12;
7889 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7890}
b05fe5cf 7891
c19d1205
ZW
7892/* Co-processor register load/store.
7893 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7894static void
7895do_lstc (void)
7896{
7897 inst.instruction |= inst.operands[0].reg << 8;
7898 inst.instruction |= inst.operands[1].reg << 12;
7899 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7900}
7901
b05fe5cf 7902static void
c19d1205 7903do_mlas (void)
b05fe5cf 7904{
8fb9d7b9 7905 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7906 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7907 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7908 && !(inst.instruction & 0x00400000))
8fb9d7b9 7909 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7910
c19d1205
ZW
7911 inst.instruction |= inst.operands[0].reg << 16;
7912 inst.instruction |= inst.operands[1].reg;
7913 inst.instruction |= inst.operands[2].reg << 8;
7914 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7915}
b05fe5cf 7916
c19d1205
ZW
7917static void
7918do_mov (void)
7919{
7920 inst.instruction |= inst.operands[0].reg << 12;
7921 encode_arm_shifter_operand (1);
7922}
b05fe5cf 7923
c19d1205
ZW
7924/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7925static void
7926do_mov16 (void)
7927{
b6895b4f
PB
7928 bfd_vma imm;
7929 bfd_boolean top;
7930
7931 top = (inst.instruction & 0x00400000) != 0;
7932 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7933 _(":lower16: not allowed this instruction"));
7934 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7935 _(":upper16: not allowed instruction"));
c19d1205 7936 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7937 if (inst.reloc.type == BFD_RELOC_UNUSED)
7938 {
7939 imm = inst.reloc.exp.X_add_number;
7940 /* The value is in two pieces: 0:11, 16:19. */
7941 inst.instruction |= (imm & 0x00000fff);
7942 inst.instruction |= (imm & 0x0000f000) << 4;
7943 }
b05fe5cf 7944}
b99bd4ef 7945
037e8744
JB
7946static void do_vfp_nsyn_opcode (const char *);
7947
7948static int
7949do_vfp_nsyn_mrs (void)
7950{
7951 if (inst.operands[0].isvec)
7952 {
7953 if (inst.operands[1].reg != 1)
7954 first_error (_("operand 1 must be FPSCR"));
7955 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7956 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7957 do_vfp_nsyn_opcode ("fmstat");
7958 }
7959 else if (inst.operands[1].isvec)
7960 do_vfp_nsyn_opcode ("fmrx");
7961 else
7962 return FAIL;
5f4273c7 7963
037e8744
JB
7964 return SUCCESS;
7965}
7966
7967static int
7968do_vfp_nsyn_msr (void)
7969{
7970 if (inst.operands[0].isvec)
7971 do_vfp_nsyn_opcode ("fmxr");
7972 else
7973 return FAIL;
7974
7975 return SUCCESS;
7976}
7977
f7c21dc7
NC
7978static void
7979do_vmrs (void)
7980{
7981 unsigned Rt = inst.operands[0].reg;
7982
7983 if (thumb_mode && inst.operands[0].reg == REG_SP)
7984 {
7985 inst.error = BAD_SP;
7986 return;
7987 }
7988
7989 /* APSR_ sets isvec. All other refs to PC are illegal. */
7990 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7991 {
7992 inst.error = BAD_PC;
7993 return;
7994 }
7995
7996 if (inst.operands[1].reg != 1)
7997 first_error (_("operand 1 must be FPSCR"));
7998
7999 inst.instruction |= (Rt << 12);
8000}
8001
8002static void
8003do_vmsr (void)
8004{
8005 unsigned Rt = inst.operands[1].reg;
8006
8007 if (thumb_mode)
8008 reject_bad_reg (Rt);
8009 else if (Rt == REG_PC)
8010 {
8011 inst.error = BAD_PC;
8012 return;
8013 }
8014
8015 if (inst.operands[0].reg != 1)
8016 first_error (_("operand 0 must be FPSCR"));
8017
8018 inst.instruction |= (Rt << 12);
8019}
8020
b99bd4ef 8021static void
c19d1205 8022do_mrs (void)
b99bd4ef 8023{
90ec0d68
MGD
8024 unsigned br;
8025
037e8744
JB
8026 if (do_vfp_nsyn_mrs () == SUCCESS)
8027 return;
8028
ff4a8d2b 8029 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8030 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8031
8032 if (inst.operands[1].isreg)
8033 {
8034 br = inst.operands[1].reg;
8035 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8036 as_bad (_("bad register for mrs"));
8037 }
8038 else
8039 {
8040 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8041 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8042 != (PSR_c|PSR_f),
d2cd1205 8043 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8044 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8045 }
8046
8047 inst.instruction |= br;
c19d1205 8048}
b99bd4ef 8049
c19d1205
ZW
8050/* Two possible forms:
8051 "{C|S}PSR_<field>, Rm",
8052 "{C|S}PSR_f, #expression". */
b99bd4ef 8053
c19d1205
ZW
8054static void
8055do_msr (void)
8056{
037e8744
JB
8057 if (do_vfp_nsyn_msr () == SUCCESS)
8058 return;
8059
c19d1205
ZW
8060 inst.instruction |= inst.operands[0].imm;
8061 if (inst.operands[1].isreg)
8062 inst.instruction |= inst.operands[1].reg;
8063 else
b99bd4ef 8064 {
c19d1205
ZW
8065 inst.instruction |= INST_IMMEDIATE;
8066 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8067 inst.reloc.pc_rel = 0;
b99bd4ef 8068 }
b99bd4ef
NC
8069}
8070
c19d1205
ZW
8071static void
8072do_mul (void)
a737bd4d 8073{
ff4a8d2b
NC
8074 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8075
c19d1205
ZW
8076 if (!inst.operands[2].present)
8077 inst.operands[2].reg = inst.operands[0].reg;
8078 inst.instruction |= inst.operands[0].reg << 16;
8079 inst.instruction |= inst.operands[1].reg;
8080 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8081
8fb9d7b9
MS
8082 if (inst.operands[0].reg == inst.operands[1].reg
8083 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8084 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8085}
8086
c19d1205
ZW
8087/* Long Multiply Parser
8088 UMULL RdLo, RdHi, Rm, Rs
8089 SMULL RdLo, RdHi, Rm, Rs
8090 UMLAL RdLo, RdHi, Rm, Rs
8091 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8092
8093static void
c19d1205 8094do_mull (void)
b99bd4ef 8095{
c19d1205
ZW
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 inst.instruction |= inst.operands[1].reg << 16;
8098 inst.instruction |= inst.operands[2].reg;
8099 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8100
682b27ad
PB
8101 /* rdhi and rdlo must be different. */
8102 if (inst.operands[0].reg == inst.operands[1].reg)
8103 as_tsktsk (_("rdhi and rdlo must be different"));
8104
8105 /* rdhi, rdlo and rm must all be different before armv6. */
8106 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8107 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8108 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8109 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8110}
b99bd4ef 8111
c19d1205
ZW
8112static void
8113do_nop (void)
8114{
e7495e45
NS
8115 if (inst.operands[0].present
8116 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8117 {
8118 /* Architectural NOP hints are CPSR sets with no bits selected. */
8119 inst.instruction &= 0xf0000000;
e7495e45
NS
8120 inst.instruction |= 0x0320f000;
8121 if (inst.operands[0].present)
8122 inst.instruction |= inst.operands[0].imm;
c19d1205 8123 }
b99bd4ef
NC
8124}
8125
c19d1205
ZW
8126/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8127 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8128 Condition defaults to COND_ALWAYS.
8129 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8130
8131static void
c19d1205 8132do_pkhbt (void)
b99bd4ef 8133{
c19d1205
ZW
8134 inst.instruction |= inst.operands[0].reg << 12;
8135 inst.instruction |= inst.operands[1].reg << 16;
8136 inst.instruction |= inst.operands[2].reg;
8137 if (inst.operands[3].present)
8138 encode_arm_shift (3);
8139}
b99bd4ef 8140
c19d1205 8141/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8142
c19d1205
ZW
8143static void
8144do_pkhtb (void)
8145{
8146 if (!inst.operands[3].present)
b99bd4ef 8147 {
c19d1205
ZW
8148 /* If the shift specifier is omitted, turn the instruction
8149 into pkhbt rd, rm, rn. */
8150 inst.instruction &= 0xfff00010;
8151 inst.instruction |= inst.operands[0].reg << 12;
8152 inst.instruction |= inst.operands[1].reg;
8153 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8154 }
8155 else
8156 {
c19d1205
ZW
8157 inst.instruction |= inst.operands[0].reg << 12;
8158 inst.instruction |= inst.operands[1].reg << 16;
8159 inst.instruction |= inst.operands[2].reg;
8160 encode_arm_shift (3);
b99bd4ef
NC
8161 }
8162}
8163
c19d1205 8164/* ARMv5TE: Preload-Cache
60e5ef9f 8165 MP Extensions: Preload for write
c19d1205 8166
60e5ef9f 8167 PLD(W) <addr_mode>
c19d1205
ZW
8168
8169 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8170
8171static void
c19d1205 8172do_pld (void)
b99bd4ef 8173{
c19d1205
ZW
8174 constraint (!inst.operands[0].isreg,
8175 _("'[' expected after PLD mnemonic"));
8176 constraint (inst.operands[0].postind,
8177 _("post-indexed expression used in preload instruction"));
8178 constraint (inst.operands[0].writeback,
8179 _("writeback used in preload instruction"));
8180 constraint (!inst.operands[0].preind,
8181 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8182 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8183}
b99bd4ef 8184
62b3e311
PB
8185/* ARMv7: PLI <addr_mode> */
8186static void
8187do_pli (void)
8188{
8189 constraint (!inst.operands[0].isreg,
8190 _("'[' expected after PLI mnemonic"));
8191 constraint (inst.operands[0].postind,
8192 _("post-indexed expression used in preload instruction"));
8193 constraint (inst.operands[0].writeback,
8194 _("writeback used in preload instruction"));
8195 constraint (!inst.operands[0].preind,
8196 _("unindexed addressing used in preload instruction"));
8197 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8198 inst.instruction &= ~PRE_INDEX;
8199}
8200
c19d1205
ZW
8201static void
8202do_push_pop (void)
8203{
8204 inst.operands[1] = inst.operands[0];
8205 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8206 inst.operands[0].isreg = 1;
8207 inst.operands[0].writeback = 1;
8208 inst.operands[0].reg = REG_SP;
8209 do_ldmstm ();
8210}
b99bd4ef 8211
c19d1205
ZW
8212/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8213 word at the specified address and the following word
8214 respectively.
8215 Unconditionally executed.
8216 Error if Rn is R15. */
b99bd4ef 8217
c19d1205
ZW
8218static void
8219do_rfe (void)
8220{
8221 inst.instruction |= inst.operands[0].reg << 16;
8222 if (inst.operands[0].writeback)
8223 inst.instruction |= WRITE_BACK;
8224}
b99bd4ef 8225
c19d1205 8226/* ARM V6 ssat (argument parse). */
b99bd4ef 8227
c19d1205
ZW
8228static void
8229do_ssat (void)
8230{
8231 inst.instruction |= inst.operands[0].reg << 12;
8232 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8233 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8234
c19d1205
ZW
8235 if (inst.operands[3].present)
8236 encode_arm_shift (3);
b99bd4ef
NC
8237}
8238
c19d1205 8239/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8240
8241static void
c19d1205 8242do_usat (void)
b99bd4ef 8243{
c19d1205
ZW
8244 inst.instruction |= inst.operands[0].reg << 12;
8245 inst.instruction |= inst.operands[1].imm << 16;
8246 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8247
c19d1205
ZW
8248 if (inst.operands[3].present)
8249 encode_arm_shift (3);
b99bd4ef
NC
8250}
8251
c19d1205 8252/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8253
8254static void
c19d1205 8255do_ssat16 (void)
09d92015 8256{
c19d1205
ZW
8257 inst.instruction |= inst.operands[0].reg << 12;
8258 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8259 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8260}
8261
c19d1205
ZW
8262static void
8263do_usat16 (void)
a737bd4d 8264{
c19d1205
ZW
8265 inst.instruction |= inst.operands[0].reg << 12;
8266 inst.instruction |= inst.operands[1].imm << 16;
8267 inst.instruction |= inst.operands[2].reg;
8268}
a737bd4d 8269
c19d1205
ZW
8270/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8271 preserving the other bits.
a737bd4d 8272
c19d1205
ZW
8273 setend <endian_specifier>, where <endian_specifier> is either
8274 BE or LE. */
a737bd4d 8275
c19d1205
ZW
8276static void
8277do_setend (void)
8278{
8279 if (inst.operands[0].imm)
8280 inst.instruction |= 0x200;
a737bd4d
NC
8281}
8282
8283static void
c19d1205 8284do_shift (void)
a737bd4d 8285{
c19d1205
ZW
8286 unsigned int Rm = (inst.operands[1].present
8287 ? inst.operands[1].reg
8288 : inst.operands[0].reg);
a737bd4d 8289
c19d1205
ZW
8290 inst.instruction |= inst.operands[0].reg << 12;
8291 inst.instruction |= Rm;
8292 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8293 {
c19d1205
ZW
8294 inst.instruction |= inst.operands[2].reg << 8;
8295 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8296 }
8297 else
c19d1205 8298 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8299}
8300
09d92015 8301static void
3eb17e6b 8302do_smc (void)
09d92015 8303{
3eb17e6b 8304 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8305 inst.reloc.pc_rel = 0;
09d92015
MM
8306}
8307
90ec0d68
MGD
8308static void
8309do_hvc (void)
8310{
8311 inst.reloc.type = BFD_RELOC_ARM_HVC;
8312 inst.reloc.pc_rel = 0;
8313}
8314
09d92015 8315static void
c19d1205 8316do_swi (void)
09d92015 8317{
c19d1205
ZW
8318 inst.reloc.type = BFD_RELOC_ARM_SWI;
8319 inst.reloc.pc_rel = 0;
09d92015
MM
8320}
8321
c19d1205
ZW
8322/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8323 SMLAxy{cond} Rd,Rm,Rs,Rn
8324 SMLAWy{cond} Rd,Rm,Rs,Rn
8325 Error if any register is R15. */
e16bb312 8326
c19d1205
ZW
8327static void
8328do_smla (void)
e16bb312 8329{
c19d1205
ZW
8330 inst.instruction |= inst.operands[0].reg << 16;
8331 inst.instruction |= inst.operands[1].reg;
8332 inst.instruction |= inst.operands[2].reg << 8;
8333 inst.instruction |= inst.operands[3].reg << 12;
8334}
a737bd4d 8335
c19d1205
ZW
8336/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8337 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8338 Error if any register is R15.
8339 Warning if Rdlo == Rdhi. */
a737bd4d 8340
c19d1205
ZW
8341static void
8342do_smlal (void)
8343{
8344 inst.instruction |= inst.operands[0].reg << 12;
8345 inst.instruction |= inst.operands[1].reg << 16;
8346 inst.instruction |= inst.operands[2].reg;
8347 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8348
c19d1205
ZW
8349 if (inst.operands[0].reg == inst.operands[1].reg)
8350 as_tsktsk (_("rdhi and rdlo must be different"));
8351}
a737bd4d 8352
c19d1205
ZW
8353/* ARM V5E (El Segundo) signed-multiply (argument parse)
8354 SMULxy{cond} Rd,Rm,Rs
8355 Error if any register is R15. */
a737bd4d 8356
c19d1205
ZW
8357static void
8358do_smul (void)
8359{
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363}
a737bd4d 8364
b6702015
PB
8365/* ARM V6 srs (argument parse). The variable fields in the encoding are
8366 the same for both ARM and Thumb-2. */
a737bd4d 8367
c19d1205
ZW
8368static void
8369do_srs (void)
8370{
b6702015
PB
8371 int reg;
8372
8373 if (inst.operands[0].present)
8374 {
8375 reg = inst.operands[0].reg;
fdfde340 8376 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8377 }
8378 else
fdfde340 8379 reg = REG_SP;
b6702015
PB
8380
8381 inst.instruction |= reg << 16;
8382 inst.instruction |= inst.operands[1].imm;
8383 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8384 inst.instruction |= WRITE_BACK;
8385}
a737bd4d 8386
c19d1205 8387/* ARM V6 strex (argument parse). */
a737bd4d 8388
c19d1205
ZW
8389static void
8390do_strex (void)
8391{
8392 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8393 || inst.operands[2].postind || inst.operands[2].writeback
8394 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8395 || inst.operands[2].negative
8396 /* See comment in do_ldrex(). */
8397 || (inst.operands[2].reg == REG_PC),
8398 BAD_ADDR_MODE);
a737bd4d 8399
c19d1205
ZW
8400 constraint (inst.operands[0].reg == inst.operands[1].reg
8401 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8402
c19d1205
ZW
8403 constraint (inst.reloc.exp.X_op != O_constant
8404 || inst.reloc.exp.X_add_number != 0,
8405 _("offset must be zero in ARM encoding"));
a737bd4d 8406
c19d1205
ZW
8407 inst.instruction |= inst.operands[0].reg << 12;
8408 inst.instruction |= inst.operands[1].reg;
8409 inst.instruction |= inst.operands[2].reg << 16;
8410 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8411}
8412
8413static void
c19d1205 8414do_strexd (void)
e16bb312 8415{
c19d1205
ZW
8416 constraint (inst.operands[1].reg % 2 != 0,
8417 _("even register required"));
8418 constraint (inst.operands[2].present
8419 && inst.operands[2].reg != inst.operands[1].reg + 1,
8420 _("can only store two consecutive registers"));
8421 /* If op 2 were present and equal to PC, this function wouldn't
8422 have been called in the first place. */
8423 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8424
c19d1205
ZW
8425 constraint (inst.operands[0].reg == inst.operands[1].reg
8426 || inst.operands[0].reg == inst.operands[1].reg + 1
8427 || inst.operands[0].reg == inst.operands[3].reg,
8428 BAD_OVERLAP);
e16bb312 8429
c19d1205
ZW
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 inst.instruction |= inst.operands[1].reg;
8432 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8433}
8434
c19d1205
ZW
8435/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8436 extends it to 32-bits, and adds the result to a value in another
8437 register. You can specify a rotation by 0, 8, 16, or 24 bits
8438 before extracting the 16-bit value.
8439 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8440 Condition defaults to COND_ALWAYS.
8441 Error if any register uses R15. */
8442
e16bb312 8443static void
c19d1205 8444do_sxtah (void)
e16bb312 8445{
c19d1205
ZW
8446 inst.instruction |= inst.operands[0].reg << 12;
8447 inst.instruction |= inst.operands[1].reg << 16;
8448 inst.instruction |= inst.operands[2].reg;
8449 inst.instruction |= inst.operands[3].imm << 10;
8450}
e16bb312 8451
c19d1205 8452/* ARM V6 SXTH.
e16bb312 8453
c19d1205
ZW
8454 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8455 Condition defaults to COND_ALWAYS.
8456 Error if any register uses R15. */
e16bb312
NC
8457
8458static void
c19d1205 8459do_sxth (void)
e16bb312 8460{
c19d1205
ZW
8461 inst.instruction |= inst.operands[0].reg << 12;
8462 inst.instruction |= inst.operands[1].reg;
8463 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8464}
c19d1205
ZW
8465\f
8466/* VFP instructions. In a logical order: SP variant first, monad
8467 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8468
8469static void
c19d1205 8470do_vfp_sp_monadic (void)
e16bb312 8471{
5287ad62
JB
8472 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8473 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8474}
8475
8476static void
c19d1205 8477do_vfp_sp_dyadic (void)
e16bb312 8478{
5287ad62
JB
8479 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8480 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8481 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8482}
8483
8484static void
c19d1205 8485do_vfp_sp_compare_z (void)
e16bb312 8486{
5287ad62 8487 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8488}
8489
8490static void
c19d1205 8491do_vfp_dp_sp_cvt (void)
e16bb312 8492{
5287ad62
JB
8493 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8494 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8495}
8496
8497static void
c19d1205 8498do_vfp_sp_dp_cvt (void)
e16bb312 8499{
5287ad62
JB
8500 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8501 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8502}
8503
8504static void
c19d1205 8505do_vfp_reg_from_sp (void)
e16bb312 8506{
c19d1205 8507 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8508 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8509}
8510
8511static void
c19d1205 8512do_vfp_reg2_from_sp2 (void)
e16bb312 8513{
c19d1205
ZW
8514 constraint (inst.operands[2].imm != 2,
8515 _("only two consecutive VFP SP registers allowed here"));
8516 inst.instruction |= inst.operands[0].reg << 12;
8517 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8518 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8519}
8520
8521static void
c19d1205 8522do_vfp_sp_from_reg (void)
e16bb312 8523{
5287ad62 8524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8525 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8526}
8527
8528static void
c19d1205 8529do_vfp_sp2_from_reg2 (void)
e16bb312 8530{
c19d1205
ZW
8531 constraint (inst.operands[0].imm != 2,
8532 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8533 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8534 inst.instruction |= inst.operands[1].reg << 12;
8535 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8536}
8537
8538static void
c19d1205 8539do_vfp_sp_ldst (void)
e16bb312 8540{
5287ad62 8541 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8542 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8543}
8544
8545static void
c19d1205 8546do_vfp_dp_ldst (void)
e16bb312 8547{
5287ad62 8548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8549 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8550}
8551
c19d1205 8552
e16bb312 8553static void
c19d1205 8554vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8555{
c19d1205
ZW
8556 if (inst.operands[0].writeback)
8557 inst.instruction |= WRITE_BACK;
8558 else
8559 constraint (ldstm_type != VFP_LDSTMIA,
8560 _("this addressing mode requires base-register writeback"));
8561 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8562 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8563 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8564}
8565
8566static void
c19d1205 8567vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8568{
c19d1205 8569 int count;
e16bb312 8570
c19d1205
ZW
8571 if (inst.operands[0].writeback)
8572 inst.instruction |= WRITE_BACK;
8573 else
8574 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8575 _("this addressing mode requires base-register writeback"));
e16bb312 8576
c19d1205 8577 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8578 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8579
c19d1205
ZW
8580 count = inst.operands[1].imm << 1;
8581 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8582 count += 1;
e16bb312 8583
c19d1205 8584 inst.instruction |= count;
e16bb312
NC
8585}
8586
8587static void
c19d1205 8588do_vfp_sp_ldstmia (void)
e16bb312 8589{
c19d1205 8590 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8591}
8592
8593static void
c19d1205 8594do_vfp_sp_ldstmdb (void)
e16bb312 8595{
c19d1205 8596 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8597}
8598
8599static void
c19d1205 8600do_vfp_dp_ldstmia (void)
e16bb312 8601{
c19d1205 8602 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8603}
8604
8605static void
c19d1205 8606do_vfp_dp_ldstmdb (void)
e16bb312 8607{
c19d1205 8608 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8609}
8610
8611static void
c19d1205 8612do_vfp_xp_ldstmia (void)
e16bb312 8613{
c19d1205
ZW
8614 vfp_dp_ldstm (VFP_LDSTMIAX);
8615}
e16bb312 8616
c19d1205
ZW
8617static void
8618do_vfp_xp_ldstmdb (void)
8619{
8620 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8621}
5287ad62
JB
8622
8623static void
8624do_vfp_dp_rd_rm (void)
8625{
8626 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8627 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8628}
8629
8630static void
8631do_vfp_dp_rn_rd (void)
8632{
8633 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8634 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8635}
8636
8637static void
8638do_vfp_dp_rd_rn (void)
8639{
8640 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8641 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8642}
8643
8644static void
8645do_vfp_dp_rd_rn_rm (void)
8646{
8647 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8648 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8649 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8650}
8651
8652static void
8653do_vfp_dp_rd (void)
8654{
8655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8656}
8657
8658static void
8659do_vfp_dp_rm_rd_rn (void)
8660{
8661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8662 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8663 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8664}
8665
8666/* VFPv3 instructions. */
8667static void
8668do_vfp_sp_const (void)
8669{
8670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8671 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8672 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8673}
8674
8675static void
8676do_vfp_dp_const (void)
8677{
8678 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8679 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8680 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8681}
8682
8683static void
8684vfp_conv (int srcsize)
8685{
8686 unsigned immbits = srcsize - inst.operands[1].imm;
8687 inst.instruction |= (immbits & 1) << 5;
8688 inst.instruction |= (immbits >> 1);
8689}
8690
8691static void
8692do_vfp_sp_conv_16 (void)
8693{
8694 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8695 vfp_conv (16);
8696}
8697
8698static void
8699do_vfp_dp_conv_16 (void)
8700{
8701 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8702 vfp_conv (16);
8703}
8704
8705static void
8706do_vfp_sp_conv_32 (void)
8707{
8708 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8709 vfp_conv (32);
8710}
8711
8712static void
8713do_vfp_dp_conv_32 (void)
8714{
8715 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8716 vfp_conv (32);
8717}
c19d1205
ZW
8718\f
8719/* FPA instructions. Also in a logical order. */
e16bb312 8720
c19d1205
ZW
8721static void
8722do_fpa_cmp (void)
8723{
8724 inst.instruction |= inst.operands[0].reg << 16;
8725 inst.instruction |= inst.operands[1].reg;
8726}
b99bd4ef
NC
8727
8728static void
c19d1205 8729do_fpa_ldmstm (void)
b99bd4ef 8730{
c19d1205
ZW
8731 inst.instruction |= inst.operands[0].reg << 12;
8732 switch (inst.operands[1].imm)
8733 {
8734 case 1: inst.instruction |= CP_T_X; break;
8735 case 2: inst.instruction |= CP_T_Y; break;
8736 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8737 case 4: break;
8738 default: abort ();
8739 }
b99bd4ef 8740
c19d1205
ZW
8741 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8742 {
8743 /* The instruction specified "ea" or "fd", so we can only accept
8744 [Rn]{!}. The instruction does not really support stacking or
8745 unstacking, so we have to emulate these by setting appropriate
8746 bits and offsets. */
8747 constraint (inst.reloc.exp.X_op != O_constant
8748 || inst.reloc.exp.X_add_number != 0,
8749 _("this instruction does not support indexing"));
b99bd4ef 8750
c19d1205
ZW
8751 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8752 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8753
c19d1205
ZW
8754 if (!(inst.instruction & INDEX_UP))
8755 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8756
c19d1205
ZW
8757 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8758 {
8759 inst.operands[2].preind = 0;
8760 inst.operands[2].postind = 1;
8761 }
8762 }
b99bd4ef 8763
c19d1205 8764 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8765}
c19d1205
ZW
8766\f
8767/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8768
c19d1205
ZW
8769static void
8770do_iwmmxt_tandorc (void)
8771{
8772 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8773}
b99bd4ef 8774
c19d1205
ZW
8775static void
8776do_iwmmxt_textrc (void)
8777{
8778 inst.instruction |= inst.operands[0].reg << 12;
8779 inst.instruction |= inst.operands[1].imm;
8780}
b99bd4ef
NC
8781
8782static void
c19d1205 8783do_iwmmxt_textrm (void)
b99bd4ef 8784{
c19d1205
ZW
8785 inst.instruction |= inst.operands[0].reg << 12;
8786 inst.instruction |= inst.operands[1].reg << 16;
8787 inst.instruction |= inst.operands[2].imm;
8788}
b99bd4ef 8789
c19d1205
ZW
8790static void
8791do_iwmmxt_tinsr (void)
8792{
8793 inst.instruction |= inst.operands[0].reg << 16;
8794 inst.instruction |= inst.operands[1].reg << 12;
8795 inst.instruction |= inst.operands[2].imm;
8796}
b99bd4ef 8797
c19d1205
ZW
8798static void
8799do_iwmmxt_tmia (void)
8800{
8801 inst.instruction |= inst.operands[0].reg << 5;
8802 inst.instruction |= inst.operands[1].reg;
8803 inst.instruction |= inst.operands[2].reg << 12;
8804}
b99bd4ef 8805
c19d1205
ZW
8806static void
8807do_iwmmxt_waligni (void)
8808{
8809 inst.instruction |= inst.operands[0].reg << 12;
8810 inst.instruction |= inst.operands[1].reg << 16;
8811 inst.instruction |= inst.operands[2].reg;
8812 inst.instruction |= inst.operands[3].imm << 20;
8813}
b99bd4ef 8814
2d447fca
JM
8815static void
8816do_iwmmxt_wmerge (void)
8817{
8818 inst.instruction |= inst.operands[0].reg << 12;
8819 inst.instruction |= inst.operands[1].reg << 16;
8820 inst.instruction |= inst.operands[2].reg;
8821 inst.instruction |= inst.operands[3].imm << 21;
8822}
8823
c19d1205
ZW
8824static void
8825do_iwmmxt_wmov (void)
8826{
8827 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8828 inst.instruction |= inst.operands[0].reg << 12;
8829 inst.instruction |= inst.operands[1].reg << 16;
8830 inst.instruction |= inst.operands[1].reg;
8831}
b99bd4ef 8832
c19d1205
ZW
8833static void
8834do_iwmmxt_wldstbh (void)
8835{
8f06b2d8 8836 int reloc;
c19d1205 8837 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8838 if (thumb_mode)
8839 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8840 else
8841 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8842 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8843}
8844
c19d1205
ZW
8845static void
8846do_iwmmxt_wldstw (void)
8847{
8848 /* RIWR_RIWC clears .isreg for a control register. */
8849 if (!inst.operands[0].isreg)
8850 {
8851 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8852 inst.instruction |= 0xf0000000;
8853 }
b99bd4ef 8854
c19d1205
ZW
8855 inst.instruction |= inst.operands[0].reg << 12;
8856 encode_arm_cp_address (1, TRUE, TRUE, 0);
8857}
b99bd4ef
NC
8858
8859static void
c19d1205 8860do_iwmmxt_wldstd (void)
b99bd4ef 8861{
c19d1205 8862 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8863 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8864 && inst.operands[1].immisreg)
8865 {
8866 inst.instruction &= ~0x1a000ff;
8867 inst.instruction |= (0xf << 28);
8868 if (inst.operands[1].preind)
8869 inst.instruction |= PRE_INDEX;
8870 if (!inst.operands[1].negative)
8871 inst.instruction |= INDEX_UP;
8872 if (inst.operands[1].writeback)
8873 inst.instruction |= WRITE_BACK;
8874 inst.instruction |= inst.operands[1].reg << 16;
8875 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8876 inst.instruction |= inst.operands[1].imm;
8877 }
8878 else
8879 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8880}
b99bd4ef 8881
c19d1205
ZW
8882static void
8883do_iwmmxt_wshufh (void)
8884{
8885 inst.instruction |= inst.operands[0].reg << 12;
8886 inst.instruction |= inst.operands[1].reg << 16;
8887 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8888 inst.instruction |= (inst.operands[2].imm & 0x0f);
8889}
b99bd4ef 8890
c19d1205
ZW
8891static void
8892do_iwmmxt_wzero (void)
8893{
8894 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8895 inst.instruction |= inst.operands[0].reg;
8896 inst.instruction |= inst.operands[0].reg << 12;
8897 inst.instruction |= inst.operands[0].reg << 16;
8898}
2d447fca
JM
8899
8900static void
8901do_iwmmxt_wrwrwr_or_imm5 (void)
8902{
8903 if (inst.operands[2].isreg)
8904 do_rd_rn_rm ();
8905 else {
8906 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8907 _("immediate operand requires iWMMXt2"));
8908 do_rd_rn ();
8909 if (inst.operands[2].imm == 0)
8910 {
8911 switch ((inst.instruction >> 20) & 0xf)
8912 {
8913 case 4:
8914 case 5:
8915 case 6:
5f4273c7 8916 case 7:
2d447fca
JM
8917 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8918 inst.operands[2].imm = 16;
8919 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8920 break;
8921 case 8:
8922 case 9:
8923 case 10:
8924 case 11:
8925 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8926 inst.operands[2].imm = 32;
8927 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8928 break;
8929 case 12:
8930 case 13:
8931 case 14:
8932 case 15:
8933 {
8934 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8935 unsigned long wrn;
8936 wrn = (inst.instruction >> 16) & 0xf;
8937 inst.instruction &= 0xff0fff0f;
8938 inst.instruction |= wrn;
8939 /* Bail out here; the instruction is now assembled. */
8940 return;
8941 }
8942 }
8943 }
8944 /* Map 32 -> 0, etc. */
8945 inst.operands[2].imm &= 0x1f;
8946 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8947 }
8948}
c19d1205
ZW
8949\f
8950/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8951 operations first, then control, shift, and load/store. */
b99bd4ef 8952
c19d1205 8953/* Insns like "foo X,Y,Z". */
b99bd4ef 8954
c19d1205
ZW
8955static void
8956do_mav_triple (void)
8957{
8958 inst.instruction |= inst.operands[0].reg << 16;
8959 inst.instruction |= inst.operands[1].reg;
8960 inst.instruction |= inst.operands[2].reg << 12;
8961}
b99bd4ef 8962
c19d1205
ZW
8963/* Insns like "foo W,X,Y,Z".
8964 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8965
c19d1205
ZW
8966static void
8967do_mav_quad (void)
8968{
8969 inst.instruction |= inst.operands[0].reg << 5;
8970 inst.instruction |= inst.operands[1].reg << 12;
8971 inst.instruction |= inst.operands[2].reg << 16;
8972 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8973}
8974
c19d1205
ZW
8975/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8976static void
8977do_mav_dspsc (void)
a737bd4d 8978{
c19d1205
ZW
8979 inst.instruction |= inst.operands[1].reg << 12;
8980}
a737bd4d 8981
c19d1205
ZW
8982/* Maverick shift immediate instructions.
8983 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8984 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8985
c19d1205
ZW
8986static void
8987do_mav_shift (void)
8988{
8989 int imm = inst.operands[2].imm;
a737bd4d 8990
c19d1205
ZW
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8993
c19d1205
ZW
8994 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8995 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8996 Bit 4 should be 0. */
8997 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8998
c19d1205
ZW
8999 inst.instruction |= imm;
9000}
9001\f
9002/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9003
c19d1205
ZW
9004/* Xscale multiply-accumulate (argument parse)
9005 MIAcc acc0,Rm,Rs
9006 MIAPHcc acc0,Rm,Rs
9007 MIAxycc acc0,Rm,Rs. */
a737bd4d 9008
c19d1205
ZW
9009static void
9010do_xsc_mia (void)
9011{
9012 inst.instruction |= inst.operands[1].reg;
9013 inst.instruction |= inst.operands[2].reg << 12;
9014}
a737bd4d 9015
c19d1205 9016/* Xscale move-accumulator-register (argument parse)
a737bd4d 9017
c19d1205 9018 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9019
c19d1205
ZW
9020static void
9021do_xsc_mar (void)
9022{
9023 inst.instruction |= inst.operands[1].reg << 12;
9024 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9025}
9026
c19d1205 9027/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9028
c19d1205 9029 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9030
9031static void
c19d1205 9032do_xsc_mra (void)
b99bd4ef 9033{
c19d1205
ZW
9034 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9035 inst.instruction |= inst.operands[0].reg << 12;
9036 inst.instruction |= inst.operands[1].reg << 16;
9037}
9038\f
9039/* Encoding functions relevant only to Thumb. */
b99bd4ef 9040
c19d1205
ZW
9041/* inst.operands[i] is a shifted-register operand; encode
9042 it into inst.instruction in the format used by Thumb32. */
9043
9044static void
9045encode_thumb32_shifted_operand (int i)
9046{
9047 unsigned int value = inst.reloc.exp.X_add_number;
9048 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9049
9c3c69f2
PB
9050 constraint (inst.operands[i].immisreg,
9051 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9052 inst.instruction |= inst.operands[i].reg;
9053 if (shift == SHIFT_RRX)
9054 inst.instruction |= SHIFT_ROR << 4;
9055 else
b99bd4ef 9056 {
c19d1205
ZW
9057 constraint (inst.reloc.exp.X_op != O_constant,
9058 _("expression too complex"));
9059
9060 constraint (value > 32
9061 || (value == 32 && (shift == SHIFT_LSL
9062 || shift == SHIFT_ROR)),
9063 _("shift expression is too large"));
9064
9065 if (value == 0)
9066 shift = SHIFT_LSL;
9067 else if (value == 32)
9068 value = 0;
9069
9070 inst.instruction |= shift << 4;
9071 inst.instruction |= (value & 0x1c) << 10;
9072 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9073 }
c19d1205 9074}
b99bd4ef 9075
b99bd4ef 9076
c19d1205
ZW
9077/* inst.operands[i] was set up by parse_address. Encode it into a
9078 Thumb32 format load or store instruction. Reject forms that cannot
9079 be used with such instructions. If is_t is true, reject forms that
9080 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9081 that cannot be used with a D instruction. If it is a store insn,
9082 reject PC in Rn. */
b99bd4ef 9083
c19d1205
ZW
9084static void
9085encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9086{
5be8be5d 9087 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9088
9089 constraint (!inst.operands[i].isreg,
53365c0d 9090 _("Instruction does not support =N addresses"));
b99bd4ef 9091
c19d1205
ZW
9092 inst.instruction |= inst.operands[i].reg << 16;
9093 if (inst.operands[i].immisreg)
b99bd4ef 9094 {
5be8be5d 9095 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9096 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9097 constraint (inst.operands[i].negative,
9098 _("Thumb does not support negative register indexing"));
9099 constraint (inst.operands[i].postind,
9100 _("Thumb does not support register post-indexing"));
9101 constraint (inst.operands[i].writeback,
9102 _("Thumb does not support register indexing with writeback"));
9103 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9104 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9105
f40d1643 9106 inst.instruction |= inst.operands[i].imm;
c19d1205 9107 if (inst.operands[i].shifted)
b99bd4ef 9108 {
c19d1205
ZW
9109 constraint (inst.reloc.exp.X_op != O_constant,
9110 _("expression too complex"));
9c3c69f2
PB
9111 constraint (inst.reloc.exp.X_add_number < 0
9112 || inst.reloc.exp.X_add_number > 3,
c19d1205 9113 _("shift out of range"));
9c3c69f2 9114 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9115 }
9116 inst.reloc.type = BFD_RELOC_UNUSED;
9117 }
9118 else if (inst.operands[i].preind)
9119 {
5be8be5d 9120 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9121 constraint (is_t && inst.operands[i].writeback,
c19d1205 9122 _("cannot use writeback with this instruction"));
5be8be5d
DG
9123 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9124 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9125
9126 if (is_d)
9127 {
9128 inst.instruction |= 0x01000000;
9129 if (inst.operands[i].writeback)
9130 inst.instruction |= 0x00200000;
b99bd4ef 9131 }
c19d1205 9132 else
b99bd4ef 9133 {
c19d1205
ZW
9134 inst.instruction |= 0x00000c00;
9135 if (inst.operands[i].writeback)
9136 inst.instruction |= 0x00000100;
b99bd4ef 9137 }
c19d1205 9138 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9139 }
c19d1205 9140 else if (inst.operands[i].postind)
b99bd4ef 9141 {
9c2799c2 9142 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9143 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9144 constraint (is_t, _("cannot use post-indexing with this instruction"));
9145
9146 if (is_d)
9147 inst.instruction |= 0x00200000;
9148 else
9149 inst.instruction |= 0x00000900;
9150 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9151 }
9152 else /* unindexed - only for coprocessor */
9153 inst.error = _("instruction does not accept unindexed addressing");
9154}
9155
9156/* Table of Thumb instructions which exist in both 16- and 32-bit
9157 encodings (the latter only in post-V6T2 cores). The index is the
9158 value used in the insns table below. When there is more than one
9159 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9160 holds variant (1).
9161 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9162#define T16_32_TAB \
21d799b5
NC
9163 X(_adc, 4140, eb400000), \
9164 X(_adcs, 4140, eb500000), \
9165 X(_add, 1c00, eb000000), \
9166 X(_adds, 1c00, eb100000), \
9167 X(_addi, 0000, f1000000), \
9168 X(_addis, 0000, f1100000), \
9169 X(_add_pc,000f, f20f0000), \
9170 X(_add_sp,000d, f10d0000), \
9171 X(_adr, 000f, f20f0000), \
9172 X(_and, 4000, ea000000), \
9173 X(_ands, 4000, ea100000), \
9174 X(_asr, 1000, fa40f000), \
9175 X(_asrs, 1000, fa50f000), \
9176 X(_b, e000, f000b000), \
9177 X(_bcond, d000, f0008000), \
9178 X(_bic, 4380, ea200000), \
9179 X(_bics, 4380, ea300000), \
9180 X(_cmn, 42c0, eb100f00), \
9181 X(_cmp, 2800, ebb00f00), \
9182 X(_cpsie, b660, f3af8400), \
9183 X(_cpsid, b670, f3af8600), \
9184 X(_cpy, 4600, ea4f0000), \
9185 X(_dec_sp,80dd, f1ad0d00), \
9186 X(_eor, 4040, ea800000), \
9187 X(_eors, 4040, ea900000), \
9188 X(_inc_sp,00dd, f10d0d00), \
9189 X(_ldmia, c800, e8900000), \
9190 X(_ldr, 6800, f8500000), \
9191 X(_ldrb, 7800, f8100000), \
9192 X(_ldrh, 8800, f8300000), \
9193 X(_ldrsb, 5600, f9100000), \
9194 X(_ldrsh, 5e00, f9300000), \
9195 X(_ldr_pc,4800, f85f0000), \
9196 X(_ldr_pc2,4800, f85f0000), \
9197 X(_ldr_sp,9800, f85d0000), \
9198 X(_lsl, 0000, fa00f000), \
9199 X(_lsls, 0000, fa10f000), \
9200 X(_lsr, 0800, fa20f000), \
9201 X(_lsrs, 0800, fa30f000), \
9202 X(_mov, 2000, ea4f0000), \
9203 X(_movs, 2000, ea5f0000), \
9204 X(_mul, 4340, fb00f000), \
9205 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9206 X(_mvn, 43c0, ea6f0000), \
9207 X(_mvns, 43c0, ea7f0000), \
9208 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9209 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9210 X(_orr, 4300, ea400000), \
9211 X(_orrs, 4300, ea500000), \
9212 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9213 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9214 X(_rev, ba00, fa90f080), \
9215 X(_rev16, ba40, fa90f090), \
9216 X(_revsh, bac0, fa90f0b0), \
9217 X(_ror, 41c0, fa60f000), \
9218 X(_rors, 41c0, fa70f000), \
9219 X(_sbc, 4180, eb600000), \
9220 X(_sbcs, 4180, eb700000), \
9221 X(_stmia, c000, e8800000), \
9222 X(_str, 6000, f8400000), \
9223 X(_strb, 7000, f8000000), \
9224 X(_strh, 8000, f8200000), \
9225 X(_str_sp,9000, f84d0000), \
9226 X(_sub, 1e00, eba00000), \
9227 X(_subs, 1e00, ebb00000), \
9228 X(_subi, 8000, f1a00000), \
9229 X(_subis, 8000, f1b00000), \
9230 X(_sxtb, b240, fa4ff080), \
9231 X(_sxth, b200, fa0ff080), \
9232 X(_tst, 4200, ea100f00), \
9233 X(_uxtb, b2c0, fa5ff080), \
9234 X(_uxth, b280, fa1ff080), \
9235 X(_nop, bf00, f3af8000), \
9236 X(_yield, bf10, f3af8001), \
9237 X(_wfe, bf20, f3af8002), \
9238 X(_wfi, bf30, f3af8003), \
9239 X(_sev, bf40, f3af8004),
c19d1205
ZW
9240
9241/* To catch errors in encoding functions, the codes are all offset by
9242 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9243 as 16-bit instructions. */
21d799b5 9244#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9245enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9246#undef X
9247
9248#define X(a,b,c) 0x##b
9249static const unsigned short thumb_op16[] = { T16_32_TAB };
9250#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9251#undef X
9252
9253#define X(a,b,c) 0x##c
9254static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9255#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9256#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9257#undef X
9258#undef T16_32_TAB
9259
9260/* Thumb instruction encoders, in alphabetical order. */
9261
92e90b6e 9262/* ADDW or SUBW. */
c921be7d 9263
92e90b6e
PB
9264static void
9265do_t_add_sub_w (void)
9266{
9267 int Rd, Rn;
9268
9269 Rd = inst.operands[0].reg;
9270 Rn = inst.operands[1].reg;
9271
539d4391
NC
9272 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9273 is the SP-{plus,minus}-immediate form of the instruction. */
9274 if (Rn == REG_SP)
9275 constraint (Rd == REG_PC, BAD_PC);
9276 else
9277 reject_bad_reg (Rd);
fdfde340 9278
92e90b6e
PB
9279 inst.instruction |= (Rn << 16) | (Rd << 8);
9280 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9281}
9282
c19d1205
ZW
9283/* Parse an add or subtract instruction. We get here with inst.instruction
9284 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9285
9286static void
9287do_t_add_sub (void)
9288{
9289 int Rd, Rs, Rn;
9290
9291 Rd = inst.operands[0].reg;
9292 Rs = (inst.operands[1].present
9293 ? inst.operands[1].reg /* Rd, Rs, foo */
9294 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9295
e07e6e58
NC
9296 if (Rd == REG_PC)
9297 set_it_insn_type_last ();
9298
c19d1205
ZW
9299 if (unified_syntax)
9300 {
0110f2b8
PB
9301 bfd_boolean flags;
9302 bfd_boolean narrow;
9303 int opcode;
9304
9305 flags = (inst.instruction == T_MNEM_adds
9306 || inst.instruction == T_MNEM_subs);
9307 if (flags)
e07e6e58 9308 narrow = !in_it_block ();
0110f2b8 9309 else
e07e6e58 9310 narrow = in_it_block ();
c19d1205 9311 if (!inst.operands[2].isreg)
b99bd4ef 9312 {
16805f35
PB
9313 int add;
9314
fdfde340
JM
9315 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9316
16805f35
PB
9317 add = (inst.instruction == T_MNEM_add
9318 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9319 opcode = 0;
9320 if (inst.size_req != 4)
9321 {
0110f2b8
PB
9322 /* Attempt to use a narrow opcode, with relaxation if
9323 appropriate. */
9324 if (Rd == REG_SP && Rs == REG_SP && !flags)
9325 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9326 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9327 opcode = T_MNEM_add_sp;
9328 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9329 opcode = T_MNEM_add_pc;
9330 else if (Rd <= 7 && Rs <= 7 && narrow)
9331 {
9332 if (flags)
9333 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9334 else
9335 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9336 }
9337 if (opcode)
9338 {
9339 inst.instruction = THUMB_OP16(opcode);
9340 inst.instruction |= (Rd << 4) | Rs;
9341 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9342 if (inst.size_req != 2)
9343 inst.relax = opcode;
9344 }
9345 else
9346 constraint (inst.size_req == 2, BAD_HIREG);
9347 }
9348 if (inst.size_req == 4
9349 || (inst.size_req != 2 && !opcode))
9350 {
efd81785
PB
9351 if (Rd == REG_PC)
9352 {
fdfde340 9353 constraint (add, BAD_PC);
efd81785
PB
9354 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9355 _("only SUBS PC, LR, #const allowed"));
9356 constraint (inst.reloc.exp.X_op != O_constant,
9357 _("expression too complex"));
9358 constraint (inst.reloc.exp.X_add_number < 0
9359 || inst.reloc.exp.X_add_number > 0xff,
9360 _("immediate value out of range"));
9361 inst.instruction = T2_SUBS_PC_LR
9362 | inst.reloc.exp.X_add_number;
9363 inst.reloc.type = BFD_RELOC_UNUSED;
9364 return;
9365 }
9366 else if (Rs == REG_PC)
16805f35
PB
9367 {
9368 /* Always use addw/subw. */
9369 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9370 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9371 }
9372 else
9373 {
9374 inst.instruction = THUMB_OP32 (inst.instruction);
9375 inst.instruction = (inst.instruction & 0xe1ffffff)
9376 | 0x10000000;
9377 if (flags)
9378 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9379 else
9380 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9381 }
dc4503c6
PB
9382 inst.instruction |= Rd << 8;
9383 inst.instruction |= Rs << 16;
0110f2b8 9384 }
b99bd4ef 9385 }
c19d1205
ZW
9386 else
9387 {
9388 Rn = inst.operands[2].reg;
9389 /* See if we can do this with a 16-bit instruction. */
9390 if (!inst.operands[2].shifted && inst.size_req != 4)
9391 {
e27ec89e
PB
9392 if (Rd > 7 || Rs > 7 || Rn > 7)
9393 narrow = FALSE;
9394
9395 if (narrow)
c19d1205 9396 {
e27ec89e
PB
9397 inst.instruction = ((inst.instruction == T_MNEM_adds
9398 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9399 ? T_OPCODE_ADD_R3
9400 : T_OPCODE_SUB_R3);
9401 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9402 return;
9403 }
b99bd4ef 9404
7e806470 9405 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9406 {
7e806470
PB
9407 /* Thumb-1 cores (except v6-M) require at least one high
9408 register in a narrow non flag setting add. */
9409 if (Rd > 7 || Rn > 7
9410 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9411 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9412 {
7e806470
PB
9413 if (Rd == Rn)
9414 {
9415 Rn = Rs;
9416 Rs = Rd;
9417 }
c19d1205
ZW
9418 inst.instruction = T_OPCODE_ADD_HI;
9419 inst.instruction |= (Rd & 8) << 4;
9420 inst.instruction |= (Rd & 7);
9421 inst.instruction |= Rn << 3;
9422 return;
9423 }
c19d1205
ZW
9424 }
9425 }
c921be7d 9426
fdfde340
JM
9427 constraint (Rd == REG_PC, BAD_PC);
9428 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9429 constraint (Rs == REG_PC, BAD_PC);
9430 reject_bad_reg (Rn);
9431
c19d1205
ZW
9432 /* If we get here, it can't be done in 16 bits. */
9433 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9434 _("shift must be constant"));
9435 inst.instruction = THUMB_OP32 (inst.instruction);
9436 inst.instruction |= Rd << 8;
9437 inst.instruction |= Rs << 16;
9438 encode_thumb32_shifted_operand (2);
9439 }
9440 }
9441 else
9442 {
9443 constraint (inst.instruction == T_MNEM_adds
9444 || inst.instruction == T_MNEM_subs,
9445 BAD_THUMB32);
b99bd4ef 9446
c19d1205 9447 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9448 {
c19d1205
ZW
9449 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9450 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9451 BAD_HIREG);
9452
9453 inst.instruction = (inst.instruction == T_MNEM_add
9454 ? 0x0000 : 0x8000);
9455 inst.instruction |= (Rd << 4) | Rs;
9456 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9457 return;
9458 }
9459
c19d1205
ZW
9460 Rn = inst.operands[2].reg;
9461 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9462
c19d1205
ZW
9463 /* We now have Rd, Rs, and Rn set to registers. */
9464 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9465 {
c19d1205
ZW
9466 /* Can't do this for SUB. */
9467 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9468 inst.instruction = T_OPCODE_ADD_HI;
9469 inst.instruction |= (Rd & 8) << 4;
9470 inst.instruction |= (Rd & 7);
9471 if (Rs == Rd)
9472 inst.instruction |= Rn << 3;
9473 else if (Rn == Rd)
9474 inst.instruction |= Rs << 3;
9475 else
9476 constraint (1, _("dest must overlap one source register"));
9477 }
9478 else
9479 {
9480 inst.instruction = (inst.instruction == T_MNEM_add
9481 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9482 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9483 }
b99bd4ef 9484 }
b99bd4ef
NC
9485}
9486
c19d1205
ZW
9487static void
9488do_t_adr (void)
9489{
fdfde340
JM
9490 unsigned Rd;
9491
9492 Rd = inst.operands[0].reg;
9493 reject_bad_reg (Rd);
9494
9495 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9496 {
9497 /* Defer to section relaxation. */
9498 inst.relax = inst.instruction;
9499 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9500 inst.instruction |= Rd << 4;
0110f2b8
PB
9501 }
9502 else if (unified_syntax && inst.size_req != 2)
e9f89963 9503 {
0110f2b8 9504 /* Generate a 32-bit opcode. */
e9f89963 9505 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9506 inst.instruction |= Rd << 8;
e9f89963
PB
9507 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9508 inst.reloc.pc_rel = 1;
9509 }
9510 else
9511 {
0110f2b8 9512 /* Generate a 16-bit opcode. */
e9f89963
PB
9513 inst.instruction = THUMB_OP16 (inst.instruction);
9514 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9515 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9516 inst.reloc.pc_rel = 1;
b99bd4ef 9517
fdfde340 9518 inst.instruction |= Rd << 4;
e9f89963 9519 }
c19d1205 9520}
b99bd4ef 9521
c19d1205
ZW
9522/* Arithmetic instructions for which there is just one 16-bit
9523 instruction encoding, and it allows only two low registers.
9524 For maximal compatibility with ARM syntax, we allow three register
9525 operands even when Thumb-32 instructions are not available, as long
9526 as the first two are identical. For instance, both "sbc r0,r1" and
9527 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9528static void
c19d1205 9529do_t_arit3 (void)
b99bd4ef 9530{
c19d1205 9531 int Rd, Rs, Rn;
b99bd4ef 9532
c19d1205
ZW
9533 Rd = inst.operands[0].reg;
9534 Rs = (inst.operands[1].present
9535 ? inst.operands[1].reg /* Rd, Rs, foo */
9536 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9537 Rn = inst.operands[2].reg;
b99bd4ef 9538
fdfde340
JM
9539 reject_bad_reg (Rd);
9540 reject_bad_reg (Rs);
9541 if (inst.operands[2].isreg)
9542 reject_bad_reg (Rn);
9543
c19d1205 9544 if (unified_syntax)
b99bd4ef 9545 {
c19d1205
ZW
9546 if (!inst.operands[2].isreg)
9547 {
9548 /* For an immediate, we always generate a 32-bit opcode;
9549 section relaxation will shrink it later if possible. */
9550 inst.instruction = THUMB_OP32 (inst.instruction);
9551 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9552 inst.instruction |= Rd << 8;
9553 inst.instruction |= Rs << 16;
9554 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9555 }
9556 else
9557 {
e27ec89e
PB
9558 bfd_boolean narrow;
9559
c19d1205 9560 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9561 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9562 narrow = !in_it_block ();
e27ec89e 9563 else
e07e6e58 9564 narrow = in_it_block ();
e27ec89e
PB
9565
9566 if (Rd > 7 || Rn > 7 || Rs > 7)
9567 narrow = FALSE;
9568 if (inst.operands[2].shifted)
9569 narrow = FALSE;
9570 if (inst.size_req == 4)
9571 narrow = FALSE;
9572
9573 if (narrow
c19d1205
ZW
9574 && Rd == Rs)
9575 {
9576 inst.instruction = THUMB_OP16 (inst.instruction);
9577 inst.instruction |= Rd;
9578 inst.instruction |= Rn << 3;
9579 return;
9580 }
b99bd4ef 9581
c19d1205
ZW
9582 /* If we get here, it can't be done in 16 bits. */
9583 constraint (inst.operands[2].shifted
9584 && inst.operands[2].immisreg,
9585 _("shift must be constant"));
9586 inst.instruction = THUMB_OP32 (inst.instruction);
9587 inst.instruction |= Rd << 8;
9588 inst.instruction |= Rs << 16;
9589 encode_thumb32_shifted_operand (2);
9590 }
a737bd4d 9591 }
c19d1205 9592 else
b99bd4ef 9593 {
c19d1205
ZW
9594 /* On its face this is a lie - the instruction does set the
9595 flags. However, the only supported mnemonic in this mode
9596 says it doesn't. */
9597 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9598
c19d1205
ZW
9599 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9600 _("unshifted register required"));
9601 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9602 constraint (Rd != Rs,
9603 _("dest and source1 must be the same register"));
a737bd4d 9604
c19d1205
ZW
9605 inst.instruction = THUMB_OP16 (inst.instruction);
9606 inst.instruction |= Rd;
9607 inst.instruction |= Rn << 3;
b99bd4ef 9608 }
a737bd4d 9609}
b99bd4ef 9610
c19d1205
ZW
9611/* Similarly, but for instructions where the arithmetic operation is
9612 commutative, so we can allow either of them to be different from
9613 the destination operand in a 16-bit instruction. For instance, all
9614 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9615 accepted. */
9616static void
9617do_t_arit3c (void)
a737bd4d 9618{
c19d1205 9619 int Rd, Rs, Rn;
b99bd4ef 9620
c19d1205
ZW
9621 Rd = inst.operands[0].reg;
9622 Rs = (inst.operands[1].present
9623 ? inst.operands[1].reg /* Rd, Rs, foo */
9624 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9625 Rn = inst.operands[2].reg;
c921be7d 9626
fdfde340
JM
9627 reject_bad_reg (Rd);
9628 reject_bad_reg (Rs);
9629 if (inst.operands[2].isreg)
9630 reject_bad_reg (Rn);
a737bd4d 9631
c19d1205 9632 if (unified_syntax)
a737bd4d 9633 {
c19d1205 9634 if (!inst.operands[2].isreg)
b99bd4ef 9635 {
c19d1205
ZW
9636 /* For an immediate, we always generate a 32-bit opcode;
9637 section relaxation will shrink it later if possible. */
9638 inst.instruction = THUMB_OP32 (inst.instruction);
9639 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9640 inst.instruction |= Rd << 8;
9641 inst.instruction |= Rs << 16;
9642 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9643 }
c19d1205 9644 else
a737bd4d 9645 {
e27ec89e
PB
9646 bfd_boolean narrow;
9647
c19d1205 9648 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9649 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9650 narrow = !in_it_block ();
e27ec89e 9651 else
e07e6e58 9652 narrow = in_it_block ();
e27ec89e
PB
9653
9654 if (Rd > 7 || Rn > 7 || Rs > 7)
9655 narrow = FALSE;
9656 if (inst.operands[2].shifted)
9657 narrow = FALSE;
9658 if (inst.size_req == 4)
9659 narrow = FALSE;
9660
9661 if (narrow)
a737bd4d 9662 {
c19d1205 9663 if (Rd == Rs)
a737bd4d 9664 {
c19d1205
ZW
9665 inst.instruction = THUMB_OP16 (inst.instruction);
9666 inst.instruction |= Rd;
9667 inst.instruction |= Rn << 3;
9668 return;
a737bd4d 9669 }
c19d1205 9670 if (Rd == Rn)
a737bd4d 9671 {
c19d1205
ZW
9672 inst.instruction = THUMB_OP16 (inst.instruction);
9673 inst.instruction |= Rd;
9674 inst.instruction |= Rs << 3;
9675 return;
a737bd4d
NC
9676 }
9677 }
c19d1205
ZW
9678
9679 /* If we get here, it can't be done in 16 bits. */
9680 constraint (inst.operands[2].shifted
9681 && inst.operands[2].immisreg,
9682 _("shift must be constant"));
9683 inst.instruction = THUMB_OP32 (inst.instruction);
9684 inst.instruction |= Rd << 8;
9685 inst.instruction |= Rs << 16;
9686 encode_thumb32_shifted_operand (2);
a737bd4d 9687 }
b99bd4ef 9688 }
c19d1205
ZW
9689 else
9690 {
9691 /* On its face this is a lie - the instruction does set the
9692 flags. However, the only supported mnemonic in this mode
9693 says it doesn't. */
9694 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9695
c19d1205
ZW
9696 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9697 _("unshifted register required"));
9698 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9699
9700 inst.instruction = THUMB_OP16 (inst.instruction);
9701 inst.instruction |= Rd;
9702
9703 if (Rd == Rs)
9704 inst.instruction |= Rn << 3;
9705 else if (Rd == Rn)
9706 inst.instruction |= Rs << 3;
9707 else
9708 constraint (1, _("dest must overlap one source register"));
9709 }
a737bd4d
NC
9710}
9711
62b3e311
PB
9712static void
9713do_t_barrier (void)
9714{
9715 if (inst.operands[0].present)
9716 {
9717 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9718 && inst.operands[0].imm > 0xf
9719 && inst.operands[0].imm < 0x0,
bd3ba5d1 9720 _("bad barrier type"));
62b3e311
PB
9721 inst.instruction |= inst.operands[0].imm;
9722 }
9723 else
9724 inst.instruction |= 0xf;
9725}
9726
c19d1205
ZW
9727static void
9728do_t_bfc (void)
a737bd4d 9729{
fdfde340 9730 unsigned Rd;
c19d1205
ZW
9731 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9732 constraint (msb > 32, _("bit-field extends past end of register"));
9733 /* The instruction encoding stores the LSB and MSB,
9734 not the LSB and width. */
fdfde340
JM
9735 Rd = inst.operands[0].reg;
9736 reject_bad_reg (Rd);
9737 inst.instruction |= Rd << 8;
c19d1205
ZW
9738 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9739 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9740 inst.instruction |= msb - 1;
b99bd4ef
NC
9741}
9742
c19d1205
ZW
9743static void
9744do_t_bfi (void)
b99bd4ef 9745{
fdfde340 9746 int Rd, Rn;
c19d1205 9747 unsigned int msb;
b99bd4ef 9748
fdfde340
JM
9749 Rd = inst.operands[0].reg;
9750 reject_bad_reg (Rd);
9751
c19d1205
ZW
9752 /* #0 in second position is alternative syntax for bfc, which is
9753 the same instruction but with REG_PC in the Rm field. */
9754 if (!inst.operands[1].isreg)
fdfde340
JM
9755 Rn = REG_PC;
9756 else
9757 {
9758 Rn = inst.operands[1].reg;
9759 reject_bad_reg (Rn);
9760 }
b99bd4ef 9761
c19d1205
ZW
9762 msb = inst.operands[2].imm + inst.operands[3].imm;
9763 constraint (msb > 32, _("bit-field extends past end of register"));
9764 /* The instruction encoding stores the LSB and MSB,
9765 not the LSB and width. */
fdfde340
JM
9766 inst.instruction |= Rd << 8;
9767 inst.instruction |= Rn << 16;
c19d1205
ZW
9768 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9769 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9770 inst.instruction |= msb - 1;
b99bd4ef
NC
9771}
9772
c19d1205
ZW
9773static void
9774do_t_bfx (void)
b99bd4ef 9775{
fdfde340
JM
9776 unsigned Rd, Rn;
9777
9778 Rd = inst.operands[0].reg;
9779 Rn = inst.operands[1].reg;
9780
9781 reject_bad_reg (Rd);
9782 reject_bad_reg (Rn);
9783
c19d1205
ZW
9784 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9785 _("bit-field extends past end of register"));
fdfde340
JM
9786 inst.instruction |= Rd << 8;
9787 inst.instruction |= Rn << 16;
c19d1205
ZW
9788 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9789 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9790 inst.instruction |= inst.operands[3].imm - 1;
9791}
b99bd4ef 9792
c19d1205
ZW
9793/* ARM V5 Thumb BLX (argument parse)
9794 BLX <target_addr> which is BLX(1)
9795 BLX <Rm> which is BLX(2)
9796 Unfortunately, there are two different opcodes for this mnemonic.
9797 So, the insns[].value is not used, and the code here zaps values
9798 into inst.instruction.
b99bd4ef 9799
c19d1205
ZW
9800 ??? How to take advantage of the additional two bits of displacement
9801 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9802
c19d1205
ZW
9803static void
9804do_t_blx (void)
9805{
e07e6e58
NC
9806 set_it_insn_type_last ();
9807
c19d1205 9808 if (inst.operands[0].isreg)
fdfde340
JM
9809 {
9810 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9811 /* We have a register, so this is BLX(2). */
9812 inst.instruction |= inst.operands[0].reg << 3;
9813 }
b99bd4ef
NC
9814 else
9815 {
c19d1205 9816 /* No register. This must be BLX(1). */
2fc8bdac 9817 inst.instruction = 0xf000e800;
0855e32b 9818 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9819 }
9820}
9821
c19d1205
ZW
9822static void
9823do_t_branch (void)
b99bd4ef 9824{
0110f2b8 9825 int opcode;
dfa9f0d5 9826 int cond;
9ae92b05 9827 int reloc;
dfa9f0d5 9828
e07e6e58
NC
9829 cond = inst.cond;
9830 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9831
9832 if (in_it_block ())
dfa9f0d5
PB
9833 {
9834 /* Conditional branches inside IT blocks are encoded as unconditional
9835 branches. */
9836 cond = COND_ALWAYS;
dfa9f0d5
PB
9837 }
9838 else
9839 cond = inst.cond;
9840
9841 if (cond != COND_ALWAYS)
0110f2b8
PB
9842 opcode = T_MNEM_bcond;
9843 else
9844 opcode = inst.instruction;
9845
12d6b0b7
RS
9846 if (unified_syntax
9847 && (inst.size_req == 4
10960bfb
PB
9848 || (inst.size_req != 2
9849 && (inst.operands[0].hasreloc
9850 || inst.reloc.exp.X_op == O_constant))))
c19d1205 9851 {
0110f2b8 9852 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9853 if (cond == COND_ALWAYS)
9ae92b05 9854 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9855 else
9856 {
9c2799c2 9857 gas_assert (cond != 0xF);
dfa9f0d5 9858 inst.instruction |= cond << 22;
9ae92b05 9859 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9860 }
9861 }
b99bd4ef
NC
9862 else
9863 {
0110f2b8 9864 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9865 if (cond == COND_ALWAYS)
9ae92b05 9866 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9867 else
b99bd4ef 9868 {
dfa9f0d5 9869 inst.instruction |= cond << 8;
9ae92b05 9870 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9871 }
0110f2b8
PB
9872 /* Allow section relaxation. */
9873 if (unified_syntax && inst.size_req != 2)
9874 inst.relax = opcode;
b99bd4ef 9875 }
9ae92b05 9876 inst.reloc.type = reloc;
c19d1205 9877 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9878}
9879
9880static void
c19d1205 9881do_t_bkpt (void)
b99bd4ef 9882{
dfa9f0d5
PB
9883 constraint (inst.cond != COND_ALWAYS,
9884 _("instruction is always unconditional"));
c19d1205 9885 if (inst.operands[0].present)
b99bd4ef 9886 {
c19d1205
ZW
9887 constraint (inst.operands[0].imm > 255,
9888 _("immediate value out of range"));
9889 inst.instruction |= inst.operands[0].imm;
e07e6e58 9890 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9891 }
b99bd4ef
NC
9892}
9893
9894static void
c19d1205 9895do_t_branch23 (void)
b99bd4ef 9896{
e07e6e58 9897 set_it_insn_type_last ();
0855e32b
NS
9898 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9899
9900 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9901 this file. We used to simply ignore the PLT reloc type here --
9902 the branch encoding is now needed to deal with TLSCALL relocs.
9903 So if we see a PLT reloc now, put it back to how it used to be to
9904 keep the preexisting behaviour. */
9905 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9906 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 9907
4343666d 9908#if defined(OBJ_COFF)
c19d1205
ZW
9909 /* If the destination of the branch is a defined symbol which does not have
9910 the THUMB_FUNC attribute, then we must be calling a function which has
9911 the (interfacearm) attribute. We look for the Thumb entry point to that
9912 function and change the branch to refer to that function instead. */
9913 if ( inst.reloc.exp.X_op == O_symbol
9914 && inst.reloc.exp.X_add_symbol != NULL
9915 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9916 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9917 inst.reloc.exp.X_add_symbol =
9918 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9919#endif
90e4755a
RE
9920}
9921
9922static void
c19d1205 9923do_t_bx (void)
90e4755a 9924{
e07e6e58 9925 set_it_insn_type_last ();
c19d1205
ZW
9926 inst.instruction |= inst.operands[0].reg << 3;
9927 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9928 should cause the alignment to be checked once it is known. This is
9929 because BX PC only works if the instruction is word aligned. */
9930}
90e4755a 9931
c19d1205
ZW
9932static void
9933do_t_bxj (void)
9934{
fdfde340 9935 int Rm;
90e4755a 9936
e07e6e58 9937 set_it_insn_type_last ();
fdfde340
JM
9938 Rm = inst.operands[0].reg;
9939 reject_bad_reg (Rm);
9940 inst.instruction |= Rm << 16;
90e4755a
RE
9941}
9942
9943static void
c19d1205 9944do_t_clz (void)
90e4755a 9945{
fdfde340
JM
9946 unsigned Rd;
9947 unsigned Rm;
9948
9949 Rd = inst.operands[0].reg;
9950 Rm = inst.operands[1].reg;
9951
9952 reject_bad_reg (Rd);
9953 reject_bad_reg (Rm);
9954
9955 inst.instruction |= Rd << 8;
9956 inst.instruction |= Rm << 16;
9957 inst.instruction |= Rm;
c19d1205 9958}
90e4755a 9959
dfa9f0d5
PB
9960static void
9961do_t_cps (void)
9962{
e07e6e58 9963 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9964 inst.instruction |= inst.operands[0].imm;
9965}
9966
c19d1205
ZW
9967static void
9968do_t_cpsi (void)
9969{
e07e6e58 9970 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9971 if (unified_syntax
62b3e311
PB
9972 && (inst.operands[1].present || inst.size_req == 4)
9973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9974 {
c19d1205
ZW
9975 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9976 inst.instruction = 0xf3af8000;
9977 inst.instruction |= imod << 9;
9978 inst.instruction |= inst.operands[0].imm << 5;
9979 if (inst.operands[1].present)
9980 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9981 }
c19d1205 9982 else
90e4755a 9983 {
62b3e311
PB
9984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9985 && (inst.operands[0].imm & 4),
9986 _("selected processor does not support 'A' form "
9987 "of this instruction"));
9988 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9989 _("Thumb does not support the 2-argument "
9990 "form of this instruction"));
9991 inst.instruction |= inst.operands[0].imm;
90e4755a 9992 }
90e4755a
RE
9993}
9994
c19d1205
ZW
9995/* THUMB CPY instruction (argument parse). */
9996
90e4755a 9997static void
c19d1205 9998do_t_cpy (void)
90e4755a 9999{
c19d1205 10000 if (inst.size_req == 4)
90e4755a 10001 {
c19d1205
ZW
10002 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10003 inst.instruction |= inst.operands[0].reg << 8;
10004 inst.instruction |= inst.operands[1].reg;
90e4755a 10005 }
c19d1205 10006 else
90e4755a 10007 {
c19d1205
ZW
10008 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10009 inst.instruction |= (inst.operands[0].reg & 0x7);
10010 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10011 }
90e4755a
RE
10012}
10013
90e4755a 10014static void
25fe350b 10015do_t_cbz (void)
90e4755a 10016{
e07e6e58 10017 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10018 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10019 inst.instruction |= inst.operands[0].reg;
10020 inst.reloc.pc_rel = 1;
10021 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10022}
90e4755a 10023
62b3e311
PB
10024static void
10025do_t_dbg (void)
10026{
10027 inst.instruction |= inst.operands[0].imm;
10028}
10029
10030static void
10031do_t_div (void)
10032{
fdfde340
JM
10033 unsigned Rd, Rn, Rm;
10034
10035 Rd = inst.operands[0].reg;
10036 Rn = (inst.operands[1].present
10037 ? inst.operands[1].reg : Rd);
10038 Rm = inst.operands[2].reg;
10039
10040 reject_bad_reg (Rd);
10041 reject_bad_reg (Rn);
10042 reject_bad_reg (Rm);
10043
10044 inst.instruction |= Rd << 8;
10045 inst.instruction |= Rn << 16;
10046 inst.instruction |= Rm;
62b3e311
PB
10047}
10048
c19d1205
ZW
10049static void
10050do_t_hint (void)
10051{
10052 if (unified_syntax && inst.size_req == 4)
10053 inst.instruction = THUMB_OP32 (inst.instruction);
10054 else
10055 inst.instruction = THUMB_OP16 (inst.instruction);
10056}
90e4755a 10057
c19d1205
ZW
10058static void
10059do_t_it (void)
10060{
10061 unsigned int cond = inst.operands[0].imm;
e27ec89e 10062
e07e6e58
NC
10063 set_it_insn_type (IT_INSN);
10064 now_it.mask = (inst.instruction & 0xf) | 0x10;
10065 now_it.cc = cond;
e27ec89e
PB
10066
10067 /* If the condition is a negative condition, invert the mask. */
c19d1205 10068 if ((cond & 0x1) == 0x0)
90e4755a 10069 {
c19d1205 10070 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10071
c19d1205
ZW
10072 if ((mask & 0x7) == 0)
10073 /* no conversion needed */;
10074 else if ((mask & 0x3) == 0)
e27ec89e
PB
10075 mask ^= 0x8;
10076 else if ((mask & 0x1) == 0)
10077 mask ^= 0xC;
c19d1205 10078 else
e27ec89e 10079 mask ^= 0xE;
90e4755a 10080
e27ec89e
PB
10081 inst.instruction &= 0xfff0;
10082 inst.instruction |= mask;
c19d1205 10083 }
90e4755a 10084
c19d1205
ZW
10085 inst.instruction |= cond << 4;
10086}
90e4755a 10087
3c707909
PB
10088/* Helper function used for both push/pop and ldm/stm. */
10089static void
10090encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10091{
10092 bfd_boolean load;
10093
10094 load = (inst.instruction & (1 << 20)) != 0;
10095
10096 if (mask & (1 << 13))
10097 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10098
10099 if ((mask & (1 << base)) != 0
10100 && writeback)
10101 inst.error = _("having the base register in the register list when "
10102 "using write back is UNPREDICTABLE");
10103
3c707909
PB
10104 if (load)
10105 {
e07e6e58
NC
10106 if (mask & (1 << 15))
10107 {
10108 if (mask & (1 << 14))
10109 inst.error = _("LR and PC should not both be in register list");
10110 else
10111 set_it_insn_type_last ();
10112 }
3c707909
PB
10113 }
10114 else
10115 {
10116 if (mask & (1 << 15))
10117 inst.error = _("PC not allowed in register list");
3c707909
PB
10118 }
10119
10120 if ((mask & (mask - 1)) == 0)
10121 {
10122 /* Single register transfers implemented as str/ldr. */
10123 if (writeback)
10124 {
10125 if (inst.instruction & (1 << 23))
10126 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10127 else
10128 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10129 }
10130 else
10131 {
10132 if (inst.instruction & (1 << 23))
10133 inst.instruction = 0x00800000; /* ia -> [base] */
10134 else
10135 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10136 }
10137
10138 inst.instruction |= 0xf8400000;
10139 if (load)
10140 inst.instruction |= 0x00100000;
10141
5f4273c7 10142 mask = ffs (mask) - 1;
3c707909
PB
10143 mask <<= 12;
10144 }
10145 else if (writeback)
10146 inst.instruction |= WRITE_BACK;
10147
10148 inst.instruction |= mask;
10149 inst.instruction |= base << 16;
10150}
10151
c19d1205
ZW
10152static void
10153do_t_ldmstm (void)
10154{
10155 /* This really doesn't seem worth it. */
10156 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10157 _("expression too complex"));
10158 constraint (inst.operands[1].writeback,
10159 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10160
c19d1205
ZW
10161 if (unified_syntax)
10162 {
3c707909
PB
10163 bfd_boolean narrow;
10164 unsigned mask;
10165
10166 narrow = FALSE;
c19d1205
ZW
10167 /* See if we can use a 16-bit instruction. */
10168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10169 && inst.size_req != 4
3c707909 10170 && !(inst.operands[1].imm & ~0xff))
90e4755a 10171 {
3c707909 10172 mask = 1 << inst.operands[0].reg;
90e4755a 10173
eab4f823 10174 if (inst.operands[0].reg <= 7)
90e4755a 10175 {
3c707909 10176 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10177 ? inst.operands[0].writeback
10178 : (inst.operands[0].writeback
10179 == !(inst.operands[1].imm & mask)))
10180 {
10181 if (inst.instruction == T_MNEM_stmia
10182 && (inst.operands[1].imm & mask)
10183 && (inst.operands[1].imm & (mask - 1)))
10184 as_warn (_("value stored for r%d is UNKNOWN"),
10185 inst.operands[0].reg);
3c707909 10186
eab4f823
MGD
10187 inst.instruction = THUMB_OP16 (inst.instruction);
10188 inst.instruction |= inst.operands[0].reg << 8;
10189 inst.instruction |= inst.operands[1].imm;
10190 narrow = TRUE;
10191 }
10192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10193 {
10194 /* This means 1 register in reg list one of 3 situations:
10195 1. Instruction is stmia, but without writeback.
10196 2. lmdia without writeback, but with Rn not in
10197 reglist.
10198 3. ldmia with writeback, but with Rn in reglist.
10199 Case 3 is UNPREDICTABLE behaviour, so we handle
10200 case 1 and 2 which can be converted into a 16-bit
10201 str or ldr. The SP cases are handled below. */
10202 unsigned long opcode;
10203 /* First, record an error for Case 3. */
10204 if (inst.operands[1].imm & mask
10205 && inst.operands[0].writeback)
10206 inst.error =
10207 _("having the base register in the register list when "
10208 "using write back is UNPREDICTABLE");
10209
10210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10211 : T_MNEM_ldr);
10212 inst.instruction = THUMB_OP16 (opcode);
10213 inst.instruction |= inst.operands[0].reg << 3;
10214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10215 narrow = TRUE;
10216 }
90e4755a 10217 }
eab4f823 10218 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10219 {
eab4f823
MGD
10220 if (inst.operands[0].writeback)
10221 {
10222 inst.instruction =
10223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10224 ? T_MNEM_push : T_MNEM_pop);
10225 inst.instruction |= inst.operands[1].imm;
10226 narrow = TRUE;
10227 }
10228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10229 {
10230 inst.instruction =
10231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10234 narrow = TRUE;
10235 }
90e4755a 10236 }
3c707909
PB
10237 }
10238
10239 if (!narrow)
10240 {
c19d1205
ZW
10241 if (inst.instruction < 0xffff)
10242 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10243
5f4273c7
NC
10244 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10245 inst.operands[0].writeback);
90e4755a
RE
10246 }
10247 }
c19d1205 10248 else
90e4755a 10249 {
c19d1205
ZW
10250 constraint (inst.operands[0].reg > 7
10251 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10252 constraint (inst.instruction != T_MNEM_ldmia
10253 && inst.instruction != T_MNEM_stmia,
10254 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10255 if (inst.instruction == T_MNEM_stmia)
f03698e6 10256 {
c19d1205
ZW
10257 if (!inst.operands[0].writeback)
10258 as_warn (_("this instruction will write back the base register"));
10259 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10260 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10261 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10262 inst.operands[0].reg);
f03698e6 10263 }
c19d1205 10264 else
90e4755a 10265 {
c19d1205
ZW
10266 if (!inst.operands[0].writeback
10267 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10268 as_warn (_("this instruction will write back the base register"));
10269 else if (inst.operands[0].writeback
10270 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10271 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10272 }
10273
c19d1205
ZW
10274 inst.instruction = THUMB_OP16 (inst.instruction);
10275 inst.instruction |= inst.operands[0].reg << 8;
10276 inst.instruction |= inst.operands[1].imm;
10277 }
10278}
e28cd48c 10279
c19d1205
ZW
10280static void
10281do_t_ldrex (void)
10282{
10283 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10284 || inst.operands[1].postind || inst.operands[1].writeback
10285 || inst.operands[1].immisreg || inst.operands[1].shifted
10286 || inst.operands[1].negative,
01cfc07f 10287 BAD_ADDR_MODE);
e28cd48c 10288
5be8be5d
DG
10289 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10290
c19d1205
ZW
10291 inst.instruction |= inst.operands[0].reg << 12;
10292 inst.instruction |= inst.operands[1].reg << 16;
10293 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10294}
e28cd48c 10295
c19d1205
ZW
10296static void
10297do_t_ldrexd (void)
10298{
10299 if (!inst.operands[1].present)
1cac9012 10300 {
c19d1205
ZW
10301 constraint (inst.operands[0].reg == REG_LR,
10302 _("r14 not allowed as first register "
10303 "when second register is omitted"));
10304 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10305 }
c19d1205
ZW
10306 constraint (inst.operands[0].reg == inst.operands[1].reg,
10307 BAD_OVERLAP);
b99bd4ef 10308
c19d1205
ZW
10309 inst.instruction |= inst.operands[0].reg << 12;
10310 inst.instruction |= inst.operands[1].reg << 8;
10311 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10312}
10313
10314static void
c19d1205 10315do_t_ldst (void)
b99bd4ef 10316{
0110f2b8
PB
10317 unsigned long opcode;
10318 int Rn;
10319
e07e6e58
NC
10320 if (inst.operands[0].isreg
10321 && !inst.operands[0].preind
10322 && inst.operands[0].reg == REG_PC)
10323 set_it_insn_type_last ();
10324
0110f2b8 10325 opcode = inst.instruction;
c19d1205 10326 if (unified_syntax)
b99bd4ef 10327 {
53365c0d
PB
10328 if (!inst.operands[1].isreg)
10329 {
10330 if (opcode <= 0xffff)
10331 inst.instruction = THUMB_OP32 (opcode);
10332 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10333 return;
10334 }
0110f2b8
PB
10335 if (inst.operands[1].isreg
10336 && !inst.operands[1].writeback
c19d1205
ZW
10337 && !inst.operands[1].shifted && !inst.operands[1].postind
10338 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10339 && opcode <= 0xffff
10340 && inst.size_req != 4)
c19d1205 10341 {
0110f2b8
PB
10342 /* Insn may have a 16-bit form. */
10343 Rn = inst.operands[1].reg;
10344 if (inst.operands[1].immisreg)
10345 {
10346 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10347 /* [Rn, Rik] */
0110f2b8
PB
10348 if (Rn <= 7 && inst.operands[1].imm <= 7)
10349 goto op16;
5be8be5d
DG
10350 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10351 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10352 }
10353 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10354 && opcode != T_MNEM_ldrsb)
10355 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10356 || (Rn == REG_SP && opcode == T_MNEM_str))
10357 {
10358 /* [Rn, #const] */
10359 if (Rn > 7)
10360 {
10361 if (Rn == REG_PC)
10362 {
10363 if (inst.reloc.pc_rel)
10364 opcode = T_MNEM_ldr_pc2;
10365 else
10366 opcode = T_MNEM_ldr_pc;
10367 }
10368 else
10369 {
10370 if (opcode == T_MNEM_ldr)
10371 opcode = T_MNEM_ldr_sp;
10372 else
10373 opcode = T_MNEM_str_sp;
10374 }
10375 inst.instruction = inst.operands[0].reg << 8;
10376 }
10377 else
10378 {
10379 inst.instruction = inst.operands[0].reg;
10380 inst.instruction |= inst.operands[1].reg << 3;
10381 }
10382 inst.instruction |= THUMB_OP16 (opcode);
10383 if (inst.size_req == 2)
10384 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10385 else
10386 inst.relax = opcode;
10387 return;
10388 }
c19d1205 10389 }
0110f2b8 10390 /* Definitely a 32-bit variant. */
5be8be5d 10391
8d67f500
NC
10392 /* Warning for Erratum 752419. */
10393 if (opcode == T_MNEM_ldr
10394 && inst.operands[0].reg == REG_SP
10395 && inst.operands[1].writeback == 1
10396 && !inst.operands[1].immisreg)
10397 {
10398 if (no_cpu_selected ()
10399 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10400 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10402 as_warn (_("This instruction may be unpredictable "
10403 "if executed on M-profile cores "
10404 "with interrupts enabled."));
10405 }
10406
5be8be5d
DG
10407 /* Do some validations regarding addressing modes. */
10408 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10409 && opcode != T_MNEM_str)
10410 reject_bad_reg (inst.operands[1].imm);
10411
0110f2b8 10412 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10413 inst.instruction |= inst.operands[0].reg << 12;
10414 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10415 return;
10416 }
10417
c19d1205
ZW
10418 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10419
10420 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10421 {
c19d1205
ZW
10422 /* Only [Rn,Rm] is acceptable. */
10423 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10424 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10425 || inst.operands[1].postind || inst.operands[1].shifted
10426 || inst.operands[1].negative,
10427 _("Thumb does not support this addressing mode"));
10428 inst.instruction = THUMB_OP16 (inst.instruction);
10429 goto op16;
b99bd4ef 10430 }
5f4273c7 10431
c19d1205
ZW
10432 inst.instruction = THUMB_OP16 (inst.instruction);
10433 if (!inst.operands[1].isreg)
10434 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10435 return;
b99bd4ef 10436
c19d1205
ZW
10437 constraint (!inst.operands[1].preind
10438 || inst.operands[1].shifted
10439 || inst.operands[1].writeback,
10440 _("Thumb does not support this addressing mode"));
10441 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10442 {
c19d1205
ZW
10443 constraint (inst.instruction & 0x0600,
10444 _("byte or halfword not valid for base register"));
10445 constraint (inst.operands[1].reg == REG_PC
10446 && !(inst.instruction & THUMB_LOAD_BIT),
10447 _("r15 based store not allowed"));
10448 constraint (inst.operands[1].immisreg,
10449 _("invalid base register for register offset"));
b99bd4ef 10450
c19d1205
ZW
10451 if (inst.operands[1].reg == REG_PC)
10452 inst.instruction = T_OPCODE_LDR_PC;
10453 else if (inst.instruction & THUMB_LOAD_BIT)
10454 inst.instruction = T_OPCODE_LDR_SP;
10455 else
10456 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10457
c19d1205
ZW
10458 inst.instruction |= inst.operands[0].reg << 8;
10459 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10460 return;
10461 }
90e4755a 10462
c19d1205
ZW
10463 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10464 if (!inst.operands[1].immisreg)
10465 {
10466 /* Immediate offset. */
10467 inst.instruction |= inst.operands[0].reg;
10468 inst.instruction |= inst.operands[1].reg << 3;
10469 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10470 return;
10471 }
90e4755a 10472
c19d1205
ZW
10473 /* Register offset. */
10474 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10475 constraint (inst.operands[1].negative,
10476 _("Thumb does not support this addressing mode"));
90e4755a 10477
c19d1205
ZW
10478 op16:
10479 switch (inst.instruction)
10480 {
10481 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10482 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10483 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10484 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10485 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10486 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10487 case 0x5600 /* ldrsb */:
10488 case 0x5e00 /* ldrsh */: break;
10489 default: abort ();
10490 }
90e4755a 10491
c19d1205
ZW
10492 inst.instruction |= inst.operands[0].reg;
10493 inst.instruction |= inst.operands[1].reg << 3;
10494 inst.instruction |= inst.operands[1].imm << 6;
10495}
90e4755a 10496
c19d1205
ZW
10497static void
10498do_t_ldstd (void)
10499{
10500 if (!inst.operands[1].present)
b99bd4ef 10501 {
c19d1205
ZW
10502 inst.operands[1].reg = inst.operands[0].reg + 1;
10503 constraint (inst.operands[0].reg == REG_LR,
10504 _("r14 not allowed here"));
b99bd4ef 10505 }
c19d1205
ZW
10506 inst.instruction |= inst.operands[0].reg << 12;
10507 inst.instruction |= inst.operands[1].reg << 8;
10508 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10509}
10510
c19d1205
ZW
10511static void
10512do_t_ldstt (void)
10513{
10514 inst.instruction |= inst.operands[0].reg << 12;
10515 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10516}
a737bd4d 10517
b99bd4ef 10518static void
c19d1205 10519do_t_mla (void)
b99bd4ef 10520{
fdfde340 10521 unsigned Rd, Rn, Rm, Ra;
c921be7d 10522
fdfde340
JM
10523 Rd = inst.operands[0].reg;
10524 Rn = inst.operands[1].reg;
10525 Rm = inst.operands[2].reg;
10526 Ra = inst.operands[3].reg;
10527
10528 reject_bad_reg (Rd);
10529 reject_bad_reg (Rn);
10530 reject_bad_reg (Rm);
10531 reject_bad_reg (Ra);
10532
10533 inst.instruction |= Rd << 8;
10534 inst.instruction |= Rn << 16;
10535 inst.instruction |= Rm;
10536 inst.instruction |= Ra << 12;
c19d1205 10537}
b99bd4ef 10538
c19d1205
ZW
10539static void
10540do_t_mlal (void)
10541{
fdfde340
JM
10542 unsigned RdLo, RdHi, Rn, Rm;
10543
10544 RdLo = inst.operands[0].reg;
10545 RdHi = inst.operands[1].reg;
10546 Rn = inst.operands[2].reg;
10547 Rm = inst.operands[3].reg;
10548
10549 reject_bad_reg (RdLo);
10550 reject_bad_reg (RdHi);
10551 reject_bad_reg (Rn);
10552 reject_bad_reg (Rm);
10553
10554 inst.instruction |= RdLo << 12;
10555 inst.instruction |= RdHi << 8;
10556 inst.instruction |= Rn << 16;
10557 inst.instruction |= Rm;
c19d1205 10558}
b99bd4ef 10559
c19d1205
ZW
10560static void
10561do_t_mov_cmp (void)
10562{
fdfde340
JM
10563 unsigned Rn, Rm;
10564
10565 Rn = inst.operands[0].reg;
10566 Rm = inst.operands[1].reg;
10567
e07e6e58
NC
10568 if (Rn == REG_PC)
10569 set_it_insn_type_last ();
10570
c19d1205 10571 if (unified_syntax)
b99bd4ef 10572 {
c19d1205
ZW
10573 int r0off = (inst.instruction == T_MNEM_mov
10574 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10575 unsigned long opcode;
3d388997
PB
10576 bfd_boolean narrow;
10577 bfd_boolean low_regs;
10578
fdfde340 10579 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10580 opcode = inst.instruction;
e07e6e58 10581 if (in_it_block ())
0110f2b8 10582 narrow = opcode != T_MNEM_movs;
3d388997 10583 else
0110f2b8 10584 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10585 if (inst.size_req == 4
10586 || inst.operands[1].shifted)
10587 narrow = FALSE;
10588
efd81785
PB
10589 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10590 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10591 && !inst.operands[1].shifted
fdfde340
JM
10592 && Rn == REG_PC
10593 && Rm == REG_LR)
efd81785
PB
10594 {
10595 inst.instruction = T2_SUBS_PC_LR;
10596 return;
10597 }
10598
fdfde340
JM
10599 if (opcode == T_MNEM_cmp)
10600 {
10601 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10602 if (narrow)
10603 {
10604 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10605 but valid. */
10606 warn_deprecated_sp (Rm);
10607 /* R15 was documented as a valid choice for Rm in ARMv6,
10608 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10609 tools reject R15, so we do too. */
10610 constraint (Rm == REG_PC, BAD_PC);
10611 }
10612 else
10613 reject_bad_reg (Rm);
fdfde340
JM
10614 }
10615 else if (opcode == T_MNEM_mov
10616 || opcode == T_MNEM_movs)
10617 {
10618 if (inst.operands[1].isreg)
10619 {
10620 if (opcode == T_MNEM_movs)
10621 {
10622 reject_bad_reg (Rn);
10623 reject_bad_reg (Rm);
10624 }
76fa04a4
MGD
10625 else if (narrow)
10626 {
10627 /* This is mov.n. */
10628 if ((Rn == REG_SP || Rn == REG_PC)
10629 && (Rm == REG_SP || Rm == REG_PC))
10630 {
10631 as_warn (_("Use of r%u as a source register is "
10632 "deprecated when r%u is the destination "
10633 "register."), Rm, Rn);
10634 }
10635 }
10636 else
10637 {
10638 /* This is mov.w. */
10639 constraint (Rn == REG_PC, BAD_PC);
10640 constraint (Rm == REG_PC, BAD_PC);
10641 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10642 }
fdfde340
JM
10643 }
10644 else
10645 reject_bad_reg (Rn);
10646 }
10647
c19d1205
ZW
10648 if (!inst.operands[1].isreg)
10649 {
0110f2b8 10650 /* Immediate operand. */
e07e6e58 10651 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10652 narrow = 0;
10653 if (low_regs && narrow)
10654 {
10655 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10656 inst.instruction |= Rn << 8;
0110f2b8
PB
10657 if (inst.size_req == 2)
10658 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10659 else
10660 inst.relax = opcode;
10661 }
10662 else
10663 {
10664 inst.instruction = THUMB_OP32 (inst.instruction);
10665 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10666 inst.instruction |= Rn << r0off;
0110f2b8
PB
10667 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10668 }
c19d1205 10669 }
728ca7c9
PB
10670 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10671 && (inst.instruction == T_MNEM_mov
10672 || inst.instruction == T_MNEM_movs))
10673 {
10674 /* Register shifts are encoded as separate shift instructions. */
10675 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10676
e07e6e58 10677 if (in_it_block ())
728ca7c9
PB
10678 narrow = !flags;
10679 else
10680 narrow = flags;
10681
10682 if (inst.size_req == 4)
10683 narrow = FALSE;
10684
10685 if (!low_regs || inst.operands[1].imm > 7)
10686 narrow = FALSE;
10687
fdfde340 10688 if (Rn != Rm)
728ca7c9
PB
10689 narrow = FALSE;
10690
10691 switch (inst.operands[1].shift_kind)
10692 {
10693 case SHIFT_LSL:
10694 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10695 break;
10696 case SHIFT_ASR:
10697 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10698 break;
10699 case SHIFT_LSR:
10700 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10701 break;
10702 case SHIFT_ROR:
10703 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10704 break;
10705 default:
5f4273c7 10706 abort ();
728ca7c9
PB
10707 }
10708
10709 inst.instruction = opcode;
10710 if (narrow)
10711 {
fdfde340 10712 inst.instruction |= Rn;
728ca7c9
PB
10713 inst.instruction |= inst.operands[1].imm << 3;
10714 }
10715 else
10716 {
10717 if (flags)
10718 inst.instruction |= CONDS_BIT;
10719
fdfde340
JM
10720 inst.instruction |= Rn << 8;
10721 inst.instruction |= Rm << 16;
728ca7c9
PB
10722 inst.instruction |= inst.operands[1].imm;
10723 }
10724 }
3d388997 10725 else if (!narrow)
c19d1205 10726 {
728ca7c9
PB
10727 /* Some mov with immediate shift have narrow variants.
10728 Register shifts are handled above. */
10729 if (low_regs && inst.operands[1].shifted
10730 && (inst.instruction == T_MNEM_mov
10731 || inst.instruction == T_MNEM_movs))
10732 {
e07e6e58 10733 if (in_it_block ())
728ca7c9
PB
10734 narrow = (inst.instruction == T_MNEM_mov);
10735 else
10736 narrow = (inst.instruction == T_MNEM_movs);
10737 }
10738
10739 if (narrow)
10740 {
10741 switch (inst.operands[1].shift_kind)
10742 {
10743 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10744 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10745 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10746 default: narrow = FALSE; break;
10747 }
10748 }
10749
10750 if (narrow)
10751 {
fdfde340
JM
10752 inst.instruction |= Rn;
10753 inst.instruction |= Rm << 3;
728ca7c9
PB
10754 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10755 }
10756 else
10757 {
10758 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10759 inst.instruction |= Rn << r0off;
728ca7c9
PB
10760 encode_thumb32_shifted_operand (1);
10761 }
c19d1205
ZW
10762 }
10763 else
10764 switch (inst.instruction)
10765 {
10766 case T_MNEM_mov:
10767 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10768 inst.instruction |= (Rn & 0x8) << 4;
10769 inst.instruction |= (Rn & 0x7);
10770 inst.instruction |= Rm << 3;
c19d1205 10771 break;
b99bd4ef 10772
c19d1205
ZW
10773 case T_MNEM_movs:
10774 /* We know we have low registers at this point.
941a8a52
MGD
10775 Generate LSLS Rd, Rs, #0. */
10776 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10777 inst.instruction |= Rn;
10778 inst.instruction |= Rm << 3;
c19d1205
ZW
10779 break;
10780
10781 case T_MNEM_cmp:
3d388997 10782 if (low_regs)
c19d1205
ZW
10783 {
10784 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10785 inst.instruction |= Rn;
10786 inst.instruction |= Rm << 3;
c19d1205
ZW
10787 }
10788 else
10789 {
10790 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10791 inst.instruction |= (Rn & 0x8) << 4;
10792 inst.instruction |= (Rn & 0x7);
10793 inst.instruction |= Rm << 3;
c19d1205
ZW
10794 }
10795 break;
10796 }
b99bd4ef
NC
10797 return;
10798 }
10799
c19d1205 10800 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10801
10802 /* PR 10443: Do not silently ignore shifted operands. */
10803 constraint (inst.operands[1].shifted,
10804 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10805
c19d1205 10806 if (inst.operands[1].isreg)
b99bd4ef 10807 {
fdfde340 10808 if (Rn < 8 && Rm < 8)
b99bd4ef 10809 {
c19d1205
ZW
10810 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10811 since a MOV instruction produces unpredictable results. */
10812 if (inst.instruction == T_OPCODE_MOV_I8)
10813 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10814 else
c19d1205 10815 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10816
fdfde340
JM
10817 inst.instruction |= Rn;
10818 inst.instruction |= Rm << 3;
b99bd4ef
NC
10819 }
10820 else
10821 {
c19d1205
ZW
10822 if (inst.instruction == T_OPCODE_MOV_I8)
10823 inst.instruction = T_OPCODE_MOV_HR;
10824 else
10825 inst.instruction = T_OPCODE_CMP_HR;
10826 do_t_cpy ();
b99bd4ef
NC
10827 }
10828 }
c19d1205 10829 else
b99bd4ef 10830 {
fdfde340 10831 constraint (Rn > 7,
c19d1205 10832 _("only lo regs allowed with immediate"));
fdfde340 10833 inst.instruction |= Rn << 8;
c19d1205
ZW
10834 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10835 }
10836}
b99bd4ef 10837
c19d1205
ZW
10838static void
10839do_t_mov16 (void)
10840{
fdfde340 10841 unsigned Rd;
b6895b4f
PB
10842 bfd_vma imm;
10843 bfd_boolean top;
10844
10845 top = (inst.instruction & 0x00800000) != 0;
10846 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10847 {
10848 constraint (top, _(":lower16: not allowed this instruction"));
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10850 }
10851 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10852 {
10853 constraint (!top, _(":upper16: not allowed this instruction"));
10854 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10855 }
10856
fdfde340
JM
10857 Rd = inst.operands[0].reg;
10858 reject_bad_reg (Rd);
10859
10860 inst.instruction |= Rd << 8;
b6895b4f
PB
10861 if (inst.reloc.type == BFD_RELOC_UNUSED)
10862 {
10863 imm = inst.reloc.exp.X_add_number;
10864 inst.instruction |= (imm & 0xf000) << 4;
10865 inst.instruction |= (imm & 0x0800) << 15;
10866 inst.instruction |= (imm & 0x0700) << 4;
10867 inst.instruction |= (imm & 0x00ff);
10868 }
c19d1205 10869}
b99bd4ef 10870
c19d1205
ZW
10871static void
10872do_t_mvn_tst (void)
10873{
fdfde340 10874 unsigned Rn, Rm;
c921be7d 10875
fdfde340
JM
10876 Rn = inst.operands[0].reg;
10877 Rm = inst.operands[1].reg;
10878
10879 if (inst.instruction == T_MNEM_cmp
10880 || inst.instruction == T_MNEM_cmn)
10881 constraint (Rn == REG_PC, BAD_PC);
10882 else
10883 reject_bad_reg (Rn);
10884 reject_bad_reg (Rm);
10885
c19d1205
ZW
10886 if (unified_syntax)
10887 {
10888 int r0off = (inst.instruction == T_MNEM_mvn
10889 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10890 bfd_boolean narrow;
10891
10892 if (inst.size_req == 4
10893 || inst.instruction > 0xffff
10894 || inst.operands[1].shifted
fdfde340 10895 || Rn > 7 || Rm > 7)
3d388997
PB
10896 narrow = FALSE;
10897 else if (inst.instruction == T_MNEM_cmn)
10898 narrow = TRUE;
10899 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10900 narrow = !in_it_block ();
3d388997 10901 else
e07e6e58 10902 narrow = in_it_block ();
3d388997 10903
c19d1205 10904 if (!inst.operands[1].isreg)
b99bd4ef 10905 {
c19d1205
ZW
10906 /* For an immediate, we always generate a 32-bit opcode;
10907 section relaxation will shrink it later if possible. */
10908 if (inst.instruction < 0xffff)
10909 inst.instruction = THUMB_OP32 (inst.instruction);
10910 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10911 inst.instruction |= Rn << r0off;
c19d1205 10912 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10913 }
c19d1205 10914 else
b99bd4ef 10915 {
c19d1205 10916 /* See if we can do this with a 16-bit instruction. */
3d388997 10917 if (narrow)
b99bd4ef 10918 {
c19d1205 10919 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10920 inst.instruction |= Rn;
10921 inst.instruction |= Rm << 3;
b99bd4ef 10922 }
c19d1205 10923 else
b99bd4ef 10924 {
c19d1205
ZW
10925 constraint (inst.operands[1].shifted
10926 && inst.operands[1].immisreg,
10927 _("shift must be constant"));
10928 if (inst.instruction < 0xffff)
10929 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10930 inst.instruction |= Rn << r0off;
c19d1205 10931 encode_thumb32_shifted_operand (1);
b99bd4ef 10932 }
b99bd4ef
NC
10933 }
10934 }
10935 else
10936 {
c19d1205
ZW
10937 constraint (inst.instruction > 0xffff
10938 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10939 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10940 _("unshifted register required"));
fdfde340 10941 constraint (Rn > 7 || Rm > 7,
c19d1205 10942 BAD_HIREG);
b99bd4ef 10943
c19d1205 10944 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10945 inst.instruction |= Rn;
10946 inst.instruction |= Rm << 3;
b99bd4ef 10947 }
b99bd4ef
NC
10948}
10949
b05fe5cf 10950static void
c19d1205 10951do_t_mrs (void)
b05fe5cf 10952{
fdfde340 10953 unsigned Rd;
037e8744
JB
10954
10955 if (do_vfp_nsyn_mrs () == SUCCESS)
10956 return;
10957
90ec0d68
MGD
10958 Rd = inst.operands[0].reg;
10959 reject_bad_reg (Rd);
10960 inst.instruction |= Rd << 8;
10961
10962 if (inst.operands[1].isreg)
62b3e311 10963 {
90ec0d68
MGD
10964 unsigned br = inst.operands[1].reg;
10965 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10966 as_bad (_("bad register for mrs"));
10967
10968 inst.instruction |= br & (0xf << 16);
10969 inst.instruction |= (br & 0x300) >> 4;
10970 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
10971 }
10972 else
10973 {
90ec0d68 10974 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 10975
d2cd1205
JB
10976 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
10977 constraint (flags != 0, _("selected processor does not support "
10978 "requested special purpose register"));
90ec0d68 10979 else
d2cd1205
JB
10980 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
10981 devices). */
10982 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10983 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 10984
90ec0d68
MGD
10985 inst.instruction |= (flags & SPSR_BIT) >> 2;
10986 inst.instruction |= inst.operands[1].imm & 0xff;
10987 inst.instruction |= 0xf0000;
10988 }
c19d1205 10989}
b05fe5cf 10990
c19d1205
ZW
10991static void
10992do_t_msr (void)
10993{
62b3e311 10994 int flags;
fdfde340 10995 unsigned Rn;
62b3e311 10996
037e8744
JB
10997 if (do_vfp_nsyn_msr () == SUCCESS)
10998 return;
10999
c19d1205
ZW
11000 constraint (!inst.operands[1].isreg,
11001 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11002
11003 if (inst.operands[0].isreg)
11004 flags = (int)(inst.operands[0].reg);
11005 else
11006 flags = inst.operands[0].imm;
11007
d2cd1205 11008 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11009 {
d2cd1205
JB
11010 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11011
11012 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11013 && (bits & ~(PSR_s | PSR_f)) != 0)
11014 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11015 && bits != PSR_f),
11016 _("selected processor does not support requested special "
11017 "purpose register"));
62b3e311
PB
11018 }
11019 else
d2cd1205
JB
11020 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11021 "requested special purpose register"));
c921be7d 11022
fdfde340
JM
11023 Rn = inst.operands[1].reg;
11024 reject_bad_reg (Rn);
11025
62b3e311 11026 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11027 inst.instruction |= (flags & 0xf0000) >> 8;
11028 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11029 inst.instruction |= (flags & 0xff);
fdfde340 11030 inst.instruction |= Rn << 16;
c19d1205 11031}
b05fe5cf 11032
c19d1205
ZW
11033static void
11034do_t_mul (void)
11035{
17828f45 11036 bfd_boolean narrow;
fdfde340 11037 unsigned Rd, Rn, Rm;
17828f45 11038
c19d1205
ZW
11039 if (!inst.operands[2].present)
11040 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11041
fdfde340
JM
11042 Rd = inst.operands[0].reg;
11043 Rn = inst.operands[1].reg;
11044 Rm = inst.operands[2].reg;
11045
17828f45 11046 if (unified_syntax)
b05fe5cf 11047 {
17828f45 11048 if (inst.size_req == 4
fdfde340
JM
11049 || (Rd != Rn
11050 && Rd != Rm)
11051 || Rn > 7
11052 || Rm > 7)
17828f45
JM
11053 narrow = FALSE;
11054 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11055 narrow = !in_it_block ();
17828f45 11056 else
e07e6e58 11057 narrow = in_it_block ();
b05fe5cf 11058 }
c19d1205 11059 else
b05fe5cf 11060 {
17828f45 11061 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11062 constraint (Rn > 7 || Rm > 7,
c19d1205 11063 BAD_HIREG);
17828f45
JM
11064 narrow = TRUE;
11065 }
b05fe5cf 11066
17828f45
JM
11067 if (narrow)
11068 {
11069 /* 16-bit MULS/Conditional MUL. */
c19d1205 11070 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11071 inst.instruction |= Rd;
b05fe5cf 11072
fdfde340
JM
11073 if (Rd == Rn)
11074 inst.instruction |= Rm << 3;
11075 else if (Rd == Rm)
11076 inst.instruction |= Rn << 3;
c19d1205
ZW
11077 else
11078 constraint (1, _("dest must overlap one source register"));
11079 }
17828f45
JM
11080 else
11081 {
e07e6e58
NC
11082 constraint (inst.instruction != T_MNEM_mul,
11083 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11084 /* 32-bit MUL. */
11085 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11086 inst.instruction |= Rd << 8;
11087 inst.instruction |= Rn << 16;
11088 inst.instruction |= Rm << 0;
11089
11090 reject_bad_reg (Rd);
11091 reject_bad_reg (Rn);
11092 reject_bad_reg (Rm);
17828f45 11093 }
c19d1205 11094}
b05fe5cf 11095
c19d1205
ZW
11096static void
11097do_t_mull (void)
11098{
fdfde340 11099 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11100
fdfde340
JM
11101 RdLo = inst.operands[0].reg;
11102 RdHi = inst.operands[1].reg;
11103 Rn = inst.operands[2].reg;
11104 Rm = inst.operands[3].reg;
11105
11106 reject_bad_reg (RdLo);
11107 reject_bad_reg (RdHi);
11108 reject_bad_reg (Rn);
11109 reject_bad_reg (Rm);
11110
11111 inst.instruction |= RdLo << 12;
11112 inst.instruction |= RdHi << 8;
11113 inst.instruction |= Rn << 16;
11114 inst.instruction |= Rm;
11115
11116 if (RdLo == RdHi)
c19d1205
ZW
11117 as_tsktsk (_("rdhi and rdlo must be different"));
11118}
b05fe5cf 11119
c19d1205
ZW
11120static void
11121do_t_nop (void)
11122{
e07e6e58
NC
11123 set_it_insn_type (NEUTRAL_IT_INSN);
11124
c19d1205
ZW
11125 if (unified_syntax)
11126 {
11127 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11128 {
c19d1205
ZW
11129 inst.instruction = THUMB_OP32 (inst.instruction);
11130 inst.instruction |= inst.operands[0].imm;
11131 }
11132 else
11133 {
bc2d1808
NC
11134 /* PR9722: Check for Thumb2 availability before
11135 generating a thumb2 nop instruction. */
afa62d5e 11136 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11137 {
11138 inst.instruction = THUMB_OP16 (inst.instruction);
11139 inst.instruction |= inst.operands[0].imm << 4;
11140 }
11141 else
11142 inst.instruction = 0x46c0;
c19d1205
ZW
11143 }
11144 }
11145 else
11146 {
11147 constraint (inst.operands[0].present,
11148 _("Thumb does not support NOP with hints"));
11149 inst.instruction = 0x46c0;
11150 }
11151}
b05fe5cf 11152
c19d1205
ZW
11153static void
11154do_t_neg (void)
11155{
11156 if (unified_syntax)
11157 {
3d388997
PB
11158 bfd_boolean narrow;
11159
11160 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11161 narrow = !in_it_block ();
3d388997 11162 else
e07e6e58 11163 narrow = in_it_block ();
3d388997
PB
11164 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11165 narrow = FALSE;
11166 if (inst.size_req == 4)
11167 narrow = FALSE;
11168
11169 if (!narrow)
c19d1205
ZW
11170 {
11171 inst.instruction = THUMB_OP32 (inst.instruction);
11172 inst.instruction |= inst.operands[0].reg << 8;
11173 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11174 }
11175 else
11176 {
c19d1205
ZW
11177 inst.instruction = THUMB_OP16 (inst.instruction);
11178 inst.instruction |= inst.operands[0].reg;
11179 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11180 }
11181 }
11182 else
11183 {
c19d1205
ZW
11184 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11185 BAD_HIREG);
11186 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11187
11188 inst.instruction = THUMB_OP16 (inst.instruction);
11189 inst.instruction |= inst.operands[0].reg;
11190 inst.instruction |= inst.operands[1].reg << 3;
11191 }
11192}
11193
1c444d06
JM
11194static void
11195do_t_orn (void)
11196{
11197 unsigned Rd, Rn;
11198
11199 Rd = inst.operands[0].reg;
11200 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11201
fdfde340
JM
11202 reject_bad_reg (Rd);
11203 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11204 reject_bad_reg (Rn);
11205
1c444d06
JM
11206 inst.instruction |= Rd << 8;
11207 inst.instruction |= Rn << 16;
11208
11209 if (!inst.operands[2].isreg)
11210 {
11211 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11212 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11213 }
11214 else
11215 {
11216 unsigned Rm;
11217
11218 Rm = inst.operands[2].reg;
fdfde340 11219 reject_bad_reg (Rm);
1c444d06
JM
11220
11221 constraint (inst.operands[2].shifted
11222 && inst.operands[2].immisreg,
11223 _("shift must be constant"));
11224 encode_thumb32_shifted_operand (2);
11225 }
11226}
11227
c19d1205
ZW
11228static void
11229do_t_pkhbt (void)
11230{
fdfde340
JM
11231 unsigned Rd, Rn, Rm;
11232
11233 Rd = inst.operands[0].reg;
11234 Rn = inst.operands[1].reg;
11235 Rm = inst.operands[2].reg;
11236
11237 reject_bad_reg (Rd);
11238 reject_bad_reg (Rn);
11239 reject_bad_reg (Rm);
11240
11241 inst.instruction |= Rd << 8;
11242 inst.instruction |= Rn << 16;
11243 inst.instruction |= Rm;
c19d1205
ZW
11244 if (inst.operands[3].present)
11245 {
11246 unsigned int val = inst.reloc.exp.X_add_number;
11247 constraint (inst.reloc.exp.X_op != O_constant,
11248 _("expression too complex"));
11249 inst.instruction |= (val & 0x1c) << 10;
11250 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11251 }
c19d1205 11252}
b05fe5cf 11253
c19d1205
ZW
11254static void
11255do_t_pkhtb (void)
11256{
11257 if (!inst.operands[3].present)
1ef52f49
NC
11258 {
11259 unsigned Rtmp;
11260
11261 inst.instruction &= ~0x00000020;
11262
11263 /* PR 10168. Swap the Rm and Rn registers. */
11264 Rtmp = inst.operands[1].reg;
11265 inst.operands[1].reg = inst.operands[2].reg;
11266 inst.operands[2].reg = Rtmp;
11267 }
c19d1205 11268 do_t_pkhbt ();
b05fe5cf
ZW
11269}
11270
c19d1205
ZW
11271static void
11272do_t_pld (void)
11273{
fdfde340
JM
11274 if (inst.operands[0].immisreg)
11275 reject_bad_reg (inst.operands[0].imm);
11276
c19d1205
ZW
11277 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11278}
b05fe5cf 11279
c19d1205
ZW
11280static void
11281do_t_push_pop (void)
b99bd4ef 11282{
e9f89963 11283 unsigned mask;
5f4273c7 11284
c19d1205
ZW
11285 constraint (inst.operands[0].writeback,
11286 _("push/pop do not support {reglist}^"));
11287 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11288 _("expression too complex"));
b99bd4ef 11289
e9f89963
PB
11290 mask = inst.operands[0].imm;
11291 if ((mask & ~0xff) == 0)
3c707909 11292 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11293 else if ((inst.instruction == T_MNEM_push
e9f89963 11294 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11295 || (inst.instruction == T_MNEM_pop
e9f89963 11296 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11297 {
c19d1205
ZW
11298 inst.instruction = THUMB_OP16 (inst.instruction);
11299 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11300 inst.instruction |= mask & 0xff;
c19d1205
ZW
11301 }
11302 else if (unified_syntax)
11303 {
3c707909 11304 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11305 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11306 }
11307 else
11308 {
11309 inst.error = _("invalid register list to push/pop instruction");
11310 return;
11311 }
c19d1205 11312}
b99bd4ef 11313
c19d1205
ZW
11314static void
11315do_t_rbit (void)
11316{
fdfde340
JM
11317 unsigned Rd, Rm;
11318
11319 Rd = inst.operands[0].reg;
11320 Rm = inst.operands[1].reg;
11321
11322 reject_bad_reg (Rd);
11323 reject_bad_reg (Rm);
11324
11325 inst.instruction |= Rd << 8;
11326 inst.instruction |= Rm << 16;
11327 inst.instruction |= Rm;
c19d1205 11328}
b99bd4ef 11329
c19d1205
ZW
11330static void
11331do_t_rev (void)
11332{
fdfde340
JM
11333 unsigned Rd, Rm;
11334
11335 Rd = inst.operands[0].reg;
11336 Rm = inst.operands[1].reg;
11337
11338 reject_bad_reg (Rd);
11339 reject_bad_reg (Rm);
11340
11341 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11342 && inst.size_req != 4)
11343 {
11344 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11345 inst.instruction |= Rd;
11346 inst.instruction |= Rm << 3;
c19d1205
ZW
11347 }
11348 else if (unified_syntax)
11349 {
11350 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11351 inst.instruction |= Rd << 8;
11352 inst.instruction |= Rm << 16;
11353 inst.instruction |= Rm;
c19d1205
ZW
11354 }
11355 else
11356 inst.error = BAD_HIREG;
11357}
b99bd4ef 11358
1c444d06
JM
11359static void
11360do_t_rrx (void)
11361{
11362 unsigned Rd, Rm;
11363
11364 Rd = inst.operands[0].reg;
11365 Rm = inst.operands[1].reg;
11366
fdfde340
JM
11367 reject_bad_reg (Rd);
11368 reject_bad_reg (Rm);
c921be7d 11369
1c444d06
JM
11370 inst.instruction |= Rd << 8;
11371 inst.instruction |= Rm;
11372}
11373
c19d1205
ZW
11374static void
11375do_t_rsb (void)
11376{
fdfde340 11377 unsigned Rd, Rs;
b99bd4ef 11378
c19d1205
ZW
11379 Rd = inst.operands[0].reg;
11380 Rs = (inst.operands[1].present
11381 ? inst.operands[1].reg /* Rd, Rs, foo */
11382 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11383
fdfde340
JM
11384 reject_bad_reg (Rd);
11385 reject_bad_reg (Rs);
11386 if (inst.operands[2].isreg)
11387 reject_bad_reg (inst.operands[2].reg);
11388
c19d1205
ZW
11389 inst.instruction |= Rd << 8;
11390 inst.instruction |= Rs << 16;
11391 if (!inst.operands[2].isreg)
11392 {
026d3abb
PB
11393 bfd_boolean narrow;
11394
11395 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11396 narrow = !in_it_block ();
026d3abb 11397 else
e07e6e58 11398 narrow = in_it_block ();
026d3abb
PB
11399
11400 if (Rd > 7 || Rs > 7)
11401 narrow = FALSE;
11402
11403 if (inst.size_req == 4 || !unified_syntax)
11404 narrow = FALSE;
11405
11406 if (inst.reloc.exp.X_op != O_constant
11407 || inst.reloc.exp.X_add_number != 0)
11408 narrow = FALSE;
11409
11410 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11411 relaxation, but it doesn't seem worth the hassle. */
11412 if (narrow)
11413 {
11414 inst.reloc.type = BFD_RELOC_UNUSED;
11415 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11416 inst.instruction |= Rs << 3;
11417 inst.instruction |= Rd;
11418 }
11419 else
11420 {
11421 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11422 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11423 }
c19d1205
ZW
11424 }
11425 else
11426 encode_thumb32_shifted_operand (2);
11427}
b99bd4ef 11428
c19d1205
ZW
11429static void
11430do_t_setend (void)
11431{
e07e6e58 11432 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11433 if (inst.operands[0].imm)
11434 inst.instruction |= 0x8;
11435}
b99bd4ef 11436
c19d1205
ZW
11437static void
11438do_t_shift (void)
11439{
11440 if (!inst.operands[1].present)
11441 inst.operands[1].reg = inst.operands[0].reg;
11442
11443 if (unified_syntax)
11444 {
3d388997
PB
11445 bfd_boolean narrow;
11446 int shift_kind;
11447
11448 switch (inst.instruction)
11449 {
11450 case T_MNEM_asr:
11451 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11452 case T_MNEM_lsl:
11453 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11454 case T_MNEM_lsr:
11455 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11456 case T_MNEM_ror:
11457 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11458 default: abort ();
11459 }
11460
11461 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11462 narrow = !in_it_block ();
3d388997 11463 else
e07e6e58 11464 narrow = in_it_block ();
3d388997
PB
11465 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11466 narrow = FALSE;
11467 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11468 narrow = FALSE;
11469 if (inst.operands[2].isreg
11470 && (inst.operands[1].reg != inst.operands[0].reg
11471 || inst.operands[2].reg > 7))
11472 narrow = FALSE;
11473 if (inst.size_req == 4)
11474 narrow = FALSE;
11475
fdfde340
JM
11476 reject_bad_reg (inst.operands[0].reg);
11477 reject_bad_reg (inst.operands[1].reg);
c921be7d 11478
3d388997 11479 if (!narrow)
c19d1205
ZW
11480 {
11481 if (inst.operands[2].isreg)
b99bd4ef 11482 {
fdfde340 11483 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11484 inst.instruction = THUMB_OP32 (inst.instruction);
11485 inst.instruction |= inst.operands[0].reg << 8;
11486 inst.instruction |= inst.operands[1].reg << 16;
11487 inst.instruction |= inst.operands[2].reg;
11488 }
11489 else
11490 {
11491 inst.operands[1].shifted = 1;
3d388997 11492 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11493 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11494 ? T_MNEM_movs : T_MNEM_mov);
11495 inst.instruction |= inst.operands[0].reg << 8;
11496 encode_thumb32_shifted_operand (1);
11497 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11498 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11499 }
11500 }
11501 else
11502 {
c19d1205 11503 if (inst.operands[2].isreg)
b99bd4ef 11504 {
3d388997 11505 switch (shift_kind)
b99bd4ef 11506 {
3d388997
PB
11507 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11508 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11509 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11510 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11511 default: abort ();
b99bd4ef 11512 }
5f4273c7 11513
c19d1205
ZW
11514 inst.instruction |= inst.operands[0].reg;
11515 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11516 }
11517 else
11518 {
3d388997 11519 switch (shift_kind)
b99bd4ef 11520 {
3d388997
PB
11521 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11522 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11523 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11524 default: abort ();
b99bd4ef 11525 }
c19d1205
ZW
11526 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11527 inst.instruction |= inst.operands[0].reg;
11528 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11529 }
11530 }
c19d1205
ZW
11531 }
11532 else
11533 {
11534 constraint (inst.operands[0].reg > 7
11535 || inst.operands[1].reg > 7, BAD_HIREG);
11536 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11537
c19d1205
ZW
11538 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11539 {
11540 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11541 constraint (inst.operands[0].reg != inst.operands[1].reg,
11542 _("source1 and dest must be same register"));
b99bd4ef 11543
c19d1205
ZW
11544 switch (inst.instruction)
11545 {
11546 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11547 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11548 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11549 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11550 default: abort ();
11551 }
5f4273c7 11552
c19d1205
ZW
11553 inst.instruction |= inst.operands[0].reg;
11554 inst.instruction |= inst.operands[2].reg << 3;
11555 }
11556 else
b99bd4ef 11557 {
c19d1205
ZW
11558 switch (inst.instruction)
11559 {
11560 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11561 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11562 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11563 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11564 default: abort ();
11565 }
11566 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11567 inst.instruction |= inst.operands[0].reg;
11568 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11569 }
11570 }
b99bd4ef
NC
11571}
11572
11573static void
c19d1205 11574do_t_simd (void)
b99bd4ef 11575{
fdfde340
JM
11576 unsigned Rd, Rn, Rm;
11577
11578 Rd = inst.operands[0].reg;
11579 Rn = inst.operands[1].reg;
11580 Rm = inst.operands[2].reg;
11581
11582 reject_bad_reg (Rd);
11583 reject_bad_reg (Rn);
11584 reject_bad_reg (Rm);
11585
11586 inst.instruction |= Rd << 8;
11587 inst.instruction |= Rn << 16;
11588 inst.instruction |= Rm;
c19d1205 11589}
b99bd4ef 11590
03ee1b7f
NC
11591static void
11592do_t_simd2 (void)
11593{
11594 unsigned Rd, Rn, Rm;
11595
11596 Rd = inst.operands[0].reg;
11597 Rm = inst.operands[1].reg;
11598 Rn = inst.operands[2].reg;
11599
11600 reject_bad_reg (Rd);
11601 reject_bad_reg (Rn);
11602 reject_bad_reg (Rm);
11603
11604 inst.instruction |= Rd << 8;
11605 inst.instruction |= Rn << 16;
11606 inst.instruction |= Rm;
11607}
11608
c19d1205 11609static void
3eb17e6b 11610do_t_smc (void)
c19d1205
ZW
11611{
11612 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11613 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11614 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11615 constraint (inst.reloc.exp.X_op != O_constant,
11616 _("expression too complex"));
11617 inst.reloc.type = BFD_RELOC_UNUSED;
11618 inst.instruction |= (value & 0xf000) >> 12;
11619 inst.instruction |= (value & 0x0ff0);
11620 inst.instruction |= (value & 0x000f) << 16;
11621}
b99bd4ef 11622
90ec0d68
MGD
11623static void
11624do_t_hvc (void)
11625{
11626 unsigned int value = inst.reloc.exp.X_add_number;
11627
11628 inst.reloc.type = BFD_RELOC_UNUSED;
11629 inst.instruction |= (value & 0x0fff);
11630 inst.instruction |= (value & 0xf000) << 4;
11631}
11632
c19d1205 11633static void
3a21c15a 11634do_t_ssat_usat (int bias)
c19d1205 11635{
fdfde340
JM
11636 unsigned Rd, Rn;
11637
11638 Rd = inst.operands[0].reg;
11639 Rn = inst.operands[2].reg;
11640
11641 reject_bad_reg (Rd);
11642 reject_bad_reg (Rn);
11643
11644 inst.instruction |= Rd << 8;
3a21c15a 11645 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11646 inst.instruction |= Rn << 16;
b99bd4ef 11647
c19d1205 11648 if (inst.operands[3].present)
b99bd4ef 11649 {
3a21c15a
NC
11650 offsetT shift_amount = inst.reloc.exp.X_add_number;
11651
11652 inst.reloc.type = BFD_RELOC_UNUSED;
11653
c19d1205
ZW
11654 constraint (inst.reloc.exp.X_op != O_constant,
11655 _("expression too complex"));
b99bd4ef 11656
3a21c15a 11657 if (shift_amount != 0)
6189168b 11658 {
3a21c15a
NC
11659 constraint (shift_amount > 31,
11660 _("shift expression is too large"));
11661
c19d1205 11662 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11663 inst.instruction |= 0x00200000; /* sh bit. */
11664
11665 inst.instruction |= (shift_amount & 0x1c) << 10;
11666 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11667 }
11668 }
b99bd4ef 11669}
c921be7d 11670
3a21c15a
NC
11671static void
11672do_t_ssat (void)
11673{
11674 do_t_ssat_usat (1);
11675}
b99bd4ef 11676
0dd132b6 11677static void
c19d1205 11678do_t_ssat16 (void)
0dd132b6 11679{
fdfde340
JM
11680 unsigned Rd, Rn;
11681
11682 Rd = inst.operands[0].reg;
11683 Rn = inst.operands[2].reg;
11684
11685 reject_bad_reg (Rd);
11686 reject_bad_reg (Rn);
11687
11688 inst.instruction |= Rd << 8;
c19d1205 11689 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11690 inst.instruction |= Rn << 16;
c19d1205 11691}
0dd132b6 11692
c19d1205
ZW
11693static void
11694do_t_strex (void)
11695{
11696 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11697 || inst.operands[2].postind || inst.operands[2].writeback
11698 || inst.operands[2].immisreg || inst.operands[2].shifted
11699 || inst.operands[2].negative,
01cfc07f 11700 BAD_ADDR_MODE);
0dd132b6 11701
5be8be5d
DG
11702 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11703
c19d1205
ZW
11704 inst.instruction |= inst.operands[0].reg << 8;
11705 inst.instruction |= inst.operands[1].reg << 12;
11706 inst.instruction |= inst.operands[2].reg << 16;
11707 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11708}
11709
b99bd4ef 11710static void
c19d1205 11711do_t_strexd (void)
b99bd4ef 11712{
c19d1205
ZW
11713 if (!inst.operands[2].present)
11714 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11715
c19d1205
ZW
11716 constraint (inst.operands[0].reg == inst.operands[1].reg
11717 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11718 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11719 BAD_OVERLAP);
b99bd4ef 11720
c19d1205
ZW
11721 inst.instruction |= inst.operands[0].reg;
11722 inst.instruction |= inst.operands[1].reg << 12;
11723 inst.instruction |= inst.operands[2].reg << 8;
11724 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11725}
11726
11727static void
c19d1205 11728do_t_sxtah (void)
b99bd4ef 11729{
fdfde340
JM
11730 unsigned Rd, Rn, Rm;
11731
11732 Rd = inst.operands[0].reg;
11733 Rn = inst.operands[1].reg;
11734 Rm = inst.operands[2].reg;
11735
11736 reject_bad_reg (Rd);
11737 reject_bad_reg (Rn);
11738 reject_bad_reg (Rm);
11739
11740 inst.instruction |= Rd << 8;
11741 inst.instruction |= Rn << 16;
11742 inst.instruction |= Rm;
c19d1205
ZW
11743 inst.instruction |= inst.operands[3].imm << 4;
11744}
b99bd4ef 11745
c19d1205
ZW
11746static void
11747do_t_sxth (void)
11748{
fdfde340
JM
11749 unsigned Rd, Rm;
11750
11751 Rd = inst.operands[0].reg;
11752 Rm = inst.operands[1].reg;
11753
11754 reject_bad_reg (Rd);
11755 reject_bad_reg (Rm);
c921be7d
NC
11756
11757 if (inst.instruction <= 0xffff
11758 && inst.size_req != 4
fdfde340 11759 && Rd <= 7 && Rm <= 7
c19d1205 11760 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11761 {
c19d1205 11762 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11763 inst.instruction |= Rd;
11764 inst.instruction |= Rm << 3;
b99bd4ef 11765 }
c19d1205 11766 else if (unified_syntax)
b99bd4ef 11767 {
c19d1205
ZW
11768 if (inst.instruction <= 0xffff)
11769 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11770 inst.instruction |= Rd << 8;
11771 inst.instruction |= Rm;
c19d1205 11772 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11773 }
c19d1205 11774 else
b99bd4ef 11775 {
c19d1205
ZW
11776 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11777 _("Thumb encoding does not support rotation"));
11778 constraint (1, BAD_HIREG);
b99bd4ef 11779 }
c19d1205 11780}
b99bd4ef 11781
c19d1205
ZW
11782static void
11783do_t_swi (void)
11784{
b2a5fbdc
MGD
11785 /* We have to do the following check manually as ARM_EXT_OS only applies
11786 to ARM_EXT_V6M. */
11787 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11788 {
ac7f631b
NC
11789 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11790 /* This only applies to the v6m howver, not later architectures. */
11791 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11792 as_bad (_("SVC is not permitted on this architecture"));
11793 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11794 }
11795
c19d1205
ZW
11796 inst.reloc.type = BFD_RELOC_ARM_SWI;
11797}
b99bd4ef 11798
92e90b6e
PB
11799static void
11800do_t_tb (void)
11801{
fdfde340 11802 unsigned Rn, Rm;
92e90b6e
PB
11803 int half;
11804
11805 half = (inst.instruction & 0x10) != 0;
e07e6e58 11806 set_it_insn_type_last ();
dfa9f0d5
PB
11807 constraint (inst.operands[0].immisreg,
11808 _("instruction requires register index"));
fdfde340
JM
11809
11810 Rn = inst.operands[0].reg;
11811 Rm = inst.operands[0].imm;
c921be7d 11812
fdfde340
JM
11813 constraint (Rn == REG_SP, BAD_SP);
11814 reject_bad_reg (Rm);
11815
92e90b6e
PB
11816 constraint (!half && inst.operands[0].shifted,
11817 _("instruction does not allow shifted index"));
fdfde340 11818 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11819}
11820
c19d1205
ZW
11821static void
11822do_t_usat (void)
11823{
3a21c15a 11824 do_t_ssat_usat (0);
b99bd4ef
NC
11825}
11826
11827static void
c19d1205 11828do_t_usat16 (void)
b99bd4ef 11829{
fdfde340
JM
11830 unsigned Rd, Rn;
11831
11832 Rd = inst.operands[0].reg;
11833 Rn = inst.operands[2].reg;
11834
11835 reject_bad_reg (Rd);
11836 reject_bad_reg (Rn);
11837
11838 inst.instruction |= Rd << 8;
c19d1205 11839 inst.instruction |= inst.operands[1].imm;
fdfde340 11840 inst.instruction |= Rn << 16;
b99bd4ef 11841}
c19d1205 11842
5287ad62 11843/* Neon instruction encoder helpers. */
5f4273c7 11844
5287ad62 11845/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11846
5287ad62
JB
11847/* An "invalid" code for the following tables. */
11848#define N_INV -1u
11849
11850struct neon_tab_entry
b99bd4ef 11851{
5287ad62
JB
11852 unsigned integer;
11853 unsigned float_or_poly;
11854 unsigned scalar_or_imm;
11855};
5f4273c7 11856
5287ad62
JB
11857/* Map overloaded Neon opcodes to their respective encodings. */
11858#define NEON_ENC_TAB \
11859 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11860 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11861 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11862 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11863 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11864 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11865 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11866 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11867 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11868 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11869 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11870 /* Register variants of the following two instructions are encoded as
e07e6e58 11871 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11872 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11873 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11874 X(vfma, N_INV, 0x0000c10, N_INV), \
11875 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11876 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11877 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11878 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11879 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11880 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11881 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11882 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11883 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11884 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11885 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11886 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11887 X(vshl, 0x0000400, N_INV, 0x0800510), \
11888 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11889 X(vand, 0x0000110, N_INV, 0x0800030), \
11890 X(vbic, 0x0100110, N_INV, 0x0800030), \
11891 X(veor, 0x1000110, N_INV, N_INV), \
11892 X(vorn, 0x0300110, N_INV, 0x0800010), \
11893 X(vorr, 0x0200110, N_INV, 0x0800010), \
11894 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11895 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11896 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11897 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11898 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11899 X(vst1, 0x0000000, 0x0800000, N_INV), \
11900 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11901 X(vst2, 0x0000100, 0x0800100, N_INV), \
11902 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11903 X(vst3, 0x0000200, 0x0800200, N_INV), \
11904 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11905 X(vst4, 0x0000300, 0x0800300, N_INV), \
11906 X(vmovn, 0x1b20200, N_INV, N_INV), \
11907 X(vtrn, 0x1b20080, N_INV, N_INV), \
11908 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11909 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11910 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11911 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11912 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11913 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11914 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11915 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11916 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11917 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11918 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11919
11920enum neon_opc
11921{
11922#define X(OPC,I,F,S) N_MNEM_##OPC
11923NEON_ENC_TAB
11924#undef X
11925};
b99bd4ef 11926
5287ad62
JB
11927static const struct neon_tab_entry neon_enc_tab[] =
11928{
11929#define X(OPC,I,F,S) { (I), (F), (S) }
11930NEON_ENC_TAB
11931#undef X
11932};
b99bd4ef 11933
88714cb8
DG
11934/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11935#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11936#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11937#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11938#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11939#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11940#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11941#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11942#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11943#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11944#define NEON_ENC_SINGLE_(X) \
037e8744 11945 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11946#define NEON_ENC_DOUBLE_(X) \
037e8744 11947 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11948
88714cb8
DG
11949#define NEON_ENCODE(type, inst) \
11950 do \
11951 { \
11952 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11953 inst.is_neon = 1; \
11954 } \
11955 while (0)
11956
11957#define check_neon_suffixes \
11958 do \
11959 { \
11960 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11961 { \
11962 as_bad (_("invalid neon suffix for non neon instruction")); \
11963 return; \
11964 } \
11965 } \
11966 while (0)
11967
037e8744
JB
11968/* Define shapes for instruction operands. The following mnemonic characters
11969 are used in this table:
5287ad62 11970
037e8744 11971 F - VFP S<n> register
5287ad62
JB
11972 D - Neon D<n> register
11973 Q - Neon Q<n> register
11974 I - Immediate
11975 S - Scalar
11976 R - ARM register
11977 L - D<n> register list
5f4273c7 11978
037e8744
JB
11979 This table is used to generate various data:
11980 - enumerations of the form NS_DDR to be used as arguments to
11981 neon_select_shape.
11982 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11983 - a table used to drive neon_select_shape. */
b99bd4ef 11984
037e8744
JB
11985#define NEON_SHAPE_DEF \
11986 X(3, (D, D, D), DOUBLE), \
11987 X(3, (Q, Q, Q), QUAD), \
11988 X(3, (D, D, I), DOUBLE), \
11989 X(3, (Q, Q, I), QUAD), \
11990 X(3, (D, D, S), DOUBLE), \
11991 X(3, (Q, Q, S), QUAD), \
11992 X(2, (D, D), DOUBLE), \
11993 X(2, (Q, Q), QUAD), \
11994 X(2, (D, S), DOUBLE), \
11995 X(2, (Q, S), QUAD), \
11996 X(2, (D, R), DOUBLE), \
11997 X(2, (Q, R), QUAD), \
11998 X(2, (D, I), DOUBLE), \
11999 X(2, (Q, I), QUAD), \
12000 X(3, (D, L, D), DOUBLE), \
12001 X(2, (D, Q), MIXED), \
12002 X(2, (Q, D), MIXED), \
12003 X(3, (D, Q, I), MIXED), \
12004 X(3, (Q, D, I), MIXED), \
12005 X(3, (Q, D, D), MIXED), \
12006 X(3, (D, Q, Q), MIXED), \
12007 X(3, (Q, Q, D), MIXED), \
12008 X(3, (Q, D, S), MIXED), \
12009 X(3, (D, Q, S), MIXED), \
12010 X(4, (D, D, D, I), DOUBLE), \
12011 X(4, (Q, Q, Q, I), QUAD), \
12012 X(2, (F, F), SINGLE), \
12013 X(3, (F, F, F), SINGLE), \
12014 X(2, (F, I), SINGLE), \
12015 X(2, (F, D), MIXED), \
12016 X(2, (D, F), MIXED), \
12017 X(3, (F, F, I), MIXED), \
12018 X(4, (R, R, F, F), SINGLE), \
12019 X(4, (F, F, R, R), SINGLE), \
12020 X(3, (D, R, R), DOUBLE), \
12021 X(3, (R, R, D), DOUBLE), \
12022 X(2, (S, R), SINGLE), \
12023 X(2, (R, S), SINGLE), \
12024 X(2, (F, R), SINGLE), \
12025 X(2, (R, F), SINGLE)
12026
12027#define S2(A,B) NS_##A##B
12028#define S3(A,B,C) NS_##A##B##C
12029#define S4(A,B,C,D) NS_##A##B##C##D
12030
12031#define X(N, L, C) S##N L
12032
5287ad62
JB
12033enum neon_shape
12034{
037e8744
JB
12035 NEON_SHAPE_DEF,
12036 NS_NULL
5287ad62 12037};
b99bd4ef 12038
037e8744
JB
12039#undef X
12040#undef S2
12041#undef S3
12042#undef S4
12043
12044enum neon_shape_class
12045{
12046 SC_SINGLE,
12047 SC_DOUBLE,
12048 SC_QUAD,
12049 SC_MIXED
12050};
12051
12052#define X(N, L, C) SC_##C
12053
12054static enum neon_shape_class neon_shape_class[] =
12055{
12056 NEON_SHAPE_DEF
12057};
12058
12059#undef X
12060
12061enum neon_shape_el
12062{
12063 SE_F,
12064 SE_D,
12065 SE_Q,
12066 SE_I,
12067 SE_S,
12068 SE_R,
12069 SE_L
12070};
12071
12072/* Register widths of above. */
12073static unsigned neon_shape_el_size[] =
12074{
12075 32,
12076 64,
12077 128,
12078 0,
12079 32,
12080 32,
12081 0
12082};
12083
12084struct neon_shape_info
12085{
12086 unsigned els;
12087 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12088};
12089
12090#define S2(A,B) { SE_##A, SE_##B }
12091#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12092#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12093
12094#define X(N, L, C) { N, S##N L }
12095
12096static struct neon_shape_info neon_shape_tab[] =
12097{
12098 NEON_SHAPE_DEF
12099};
12100
12101#undef X
12102#undef S2
12103#undef S3
12104#undef S4
12105
5287ad62
JB
12106/* Bit masks used in type checking given instructions.
12107 'N_EQK' means the type must be the same as (or based on in some way) the key
12108 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12109 set, various other bits can be set as well in order to modify the meaning of
12110 the type constraint. */
12111
12112enum neon_type_mask
12113{
8e79c3df
CM
12114 N_S8 = 0x0000001,
12115 N_S16 = 0x0000002,
12116 N_S32 = 0x0000004,
12117 N_S64 = 0x0000008,
12118 N_U8 = 0x0000010,
12119 N_U16 = 0x0000020,
12120 N_U32 = 0x0000040,
12121 N_U64 = 0x0000080,
12122 N_I8 = 0x0000100,
12123 N_I16 = 0x0000200,
12124 N_I32 = 0x0000400,
12125 N_I64 = 0x0000800,
12126 N_8 = 0x0001000,
12127 N_16 = 0x0002000,
12128 N_32 = 0x0004000,
12129 N_64 = 0x0008000,
12130 N_P8 = 0x0010000,
12131 N_P16 = 0x0020000,
12132 N_F16 = 0x0040000,
12133 N_F32 = 0x0080000,
12134 N_F64 = 0x0100000,
c921be7d
NC
12135 N_KEY = 0x1000000, /* Key element (main type specifier). */
12136 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12137 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12138 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12139 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12140 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12141 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12142 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12143 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12144 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12145 N_UTYP = 0,
037e8744 12146 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12147};
12148
dcbf9037
JB
12149#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12150
5287ad62
JB
12151#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12152#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12153#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12154#define N_SUF_32 (N_SU_32 | N_F32)
12155#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12156#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12157
12158/* Pass this as the first type argument to neon_check_type to ignore types
12159 altogether. */
12160#define N_IGNORE_TYPE (N_KEY | N_EQK)
12161
037e8744
JB
12162/* Select a "shape" for the current instruction (describing register types or
12163 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12164 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12165 function of operand parsing, so this function doesn't need to be called.
12166 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12167
12168static enum neon_shape
037e8744 12169neon_select_shape (enum neon_shape shape, ...)
5287ad62 12170{
037e8744
JB
12171 va_list ap;
12172 enum neon_shape first_shape = shape;
5287ad62
JB
12173
12174 /* Fix missing optional operands. FIXME: we don't know at this point how
12175 many arguments we should have, so this makes the assumption that we have
12176 > 1. This is true of all current Neon opcodes, I think, but may not be
12177 true in the future. */
12178 if (!inst.operands[1].present)
12179 inst.operands[1] = inst.operands[0];
12180
037e8744 12181 va_start (ap, shape);
5f4273c7 12182
21d799b5 12183 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12184 {
12185 unsigned j;
12186 int matches = 1;
12187
12188 for (j = 0; j < neon_shape_tab[shape].els; j++)
12189 {
12190 if (!inst.operands[j].present)
12191 {
12192 matches = 0;
12193 break;
12194 }
12195
12196 switch (neon_shape_tab[shape].el[j])
12197 {
12198 case SE_F:
12199 if (!(inst.operands[j].isreg
12200 && inst.operands[j].isvec
12201 && inst.operands[j].issingle
12202 && !inst.operands[j].isquad))
12203 matches = 0;
12204 break;
12205
12206 case SE_D:
12207 if (!(inst.operands[j].isreg
12208 && inst.operands[j].isvec
12209 && !inst.operands[j].isquad
12210 && !inst.operands[j].issingle))
12211 matches = 0;
12212 break;
12213
12214 case SE_R:
12215 if (!(inst.operands[j].isreg
12216 && !inst.operands[j].isvec))
12217 matches = 0;
12218 break;
12219
12220 case SE_Q:
12221 if (!(inst.operands[j].isreg
12222 && inst.operands[j].isvec
12223 && inst.operands[j].isquad
12224 && !inst.operands[j].issingle))
12225 matches = 0;
12226 break;
12227
12228 case SE_I:
12229 if (!(!inst.operands[j].isreg
12230 && !inst.operands[j].isscalar))
12231 matches = 0;
12232 break;
12233
12234 case SE_S:
12235 if (!(!inst.operands[j].isreg
12236 && inst.operands[j].isscalar))
12237 matches = 0;
12238 break;
12239
12240 case SE_L:
12241 break;
12242 }
3fde54a2
JZ
12243 if (!matches)
12244 break;
037e8744
JB
12245 }
12246 if (matches)
5287ad62 12247 break;
037e8744 12248 }
5f4273c7 12249
037e8744 12250 va_end (ap);
5287ad62 12251
037e8744
JB
12252 if (shape == NS_NULL && first_shape != NS_NULL)
12253 first_error (_("invalid instruction shape"));
5287ad62 12254
037e8744
JB
12255 return shape;
12256}
5287ad62 12257
037e8744
JB
12258/* True if SHAPE is predominantly a quadword operation (most of the time, this
12259 means the Q bit should be set). */
12260
12261static int
12262neon_quad (enum neon_shape shape)
12263{
12264 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12265}
037e8744 12266
5287ad62
JB
12267static void
12268neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12269 unsigned *g_size)
12270{
12271 /* Allow modification to be made to types which are constrained to be
12272 based on the key element, based on bits set alongside N_EQK. */
12273 if ((typebits & N_EQK) != 0)
12274 {
12275 if ((typebits & N_HLF) != 0)
12276 *g_size /= 2;
12277 else if ((typebits & N_DBL) != 0)
12278 *g_size *= 2;
12279 if ((typebits & N_SGN) != 0)
12280 *g_type = NT_signed;
12281 else if ((typebits & N_UNS) != 0)
12282 *g_type = NT_unsigned;
12283 else if ((typebits & N_INT) != 0)
12284 *g_type = NT_integer;
12285 else if ((typebits & N_FLT) != 0)
12286 *g_type = NT_float;
dcbf9037
JB
12287 else if ((typebits & N_SIZ) != 0)
12288 *g_type = NT_untyped;
5287ad62
JB
12289 }
12290}
5f4273c7 12291
5287ad62
JB
12292/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12293 operand type, i.e. the single type specified in a Neon instruction when it
12294 is the only one given. */
12295
12296static struct neon_type_el
12297neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12298{
12299 struct neon_type_el dest = *key;
5f4273c7 12300
9c2799c2 12301 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12302
5287ad62
JB
12303 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12304
12305 return dest;
12306}
12307
12308/* Convert Neon type and size into compact bitmask representation. */
12309
12310static enum neon_type_mask
12311type_chk_of_el_type (enum neon_el_type type, unsigned size)
12312{
12313 switch (type)
12314 {
12315 case NT_untyped:
12316 switch (size)
12317 {
12318 case 8: return N_8;
12319 case 16: return N_16;
12320 case 32: return N_32;
12321 case 64: return N_64;
12322 default: ;
12323 }
12324 break;
12325
12326 case NT_integer:
12327 switch (size)
12328 {
12329 case 8: return N_I8;
12330 case 16: return N_I16;
12331 case 32: return N_I32;
12332 case 64: return N_I64;
12333 default: ;
12334 }
12335 break;
12336
12337 case NT_float:
037e8744
JB
12338 switch (size)
12339 {
8e79c3df 12340 case 16: return N_F16;
037e8744
JB
12341 case 32: return N_F32;
12342 case 64: return N_F64;
12343 default: ;
12344 }
5287ad62
JB
12345 break;
12346
12347 case NT_poly:
12348 switch (size)
12349 {
12350 case 8: return N_P8;
12351 case 16: return N_P16;
12352 default: ;
12353 }
12354 break;
12355
12356 case NT_signed:
12357 switch (size)
12358 {
12359 case 8: return N_S8;
12360 case 16: return N_S16;
12361 case 32: return N_S32;
12362 case 64: return N_S64;
12363 default: ;
12364 }
12365 break;
12366
12367 case NT_unsigned:
12368 switch (size)
12369 {
12370 case 8: return N_U8;
12371 case 16: return N_U16;
12372 case 32: return N_U32;
12373 case 64: return N_U64;
12374 default: ;
12375 }
12376 break;
12377
12378 default: ;
12379 }
5f4273c7 12380
5287ad62
JB
12381 return N_UTYP;
12382}
12383
12384/* Convert compact Neon bitmask type representation to a type and size. Only
12385 handles the case where a single bit is set in the mask. */
12386
dcbf9037 12387static int
5287ad62
JB
12388el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12389 enum neon_type_mask mask)
12390{
dcbf9037
JB
12391 if ((mask & N_EQK) != 0)
12392 return FAIL;
12393
5287ad62
JB
12394 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12395 *size = 8;
dcbf9037 12396 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12397 *size = 16;
dcbf9037 12398 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12399 *size = 32;
037e8744 12400 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12401 *size = 64;
dcbf9037
JB
12402 else
12403 return FAIL;
12404
5287ad62
JB
12405 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12406 *type = NT_signed;
dcbf9037 12407 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12408 *type = NT_unsigned;
dcbf9037 12409 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12410 *type = NT_integer;
dcbf9037 12411 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12412 *type = NT_untyped;
dcbf9037 12413 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12414 *type = NT_poly;
037e8744 12415 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12416 *type = NT_float;
dcbf9037
JB
12417 else
12418 return FAIL;
5f4273c7 12419
dcbf9037 12420 return SUCCESS;
5287ad62
JB
12421}
12422
12423/* Modify a bitmask of allowed types. This is only needed for type
12424 relaxation. */
12425
12426static unsigned
12427modify_types_allowed (unsigned allowed, unsigned mods)
12428{
12429 unsigned size;
12430 enum neon_el_type type;
12431 unsigned destmask;
12432 int i;
5f4273c7 12433
5287ad62 12434 destmask = 0;
5f4273c7 12435
5287ad62
JB
12436 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12437 {
21d799b5
NC
12438 if (el_type_of_type_chk (&type, &size,
12439 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12440 {
12441 neon_modify_type_size (mods, &type, &size);
12442 destmask |= type_chk_of_el_type (type, size);
12443 }
5287ad62 12444 }
5f4273c7 12445
5287ad62
JB
12446 return destmask;
12447}
12448
12449/* Check type and return type classification.
12450 The manual states (paraphrase): If one datatype is given, it indicates the
12451 type given in:
12452 - the second operand, if there is one
12453 - the operand, if there is no second operand
12454 - the result, if there are no operands.
12455 This isn't quite good enough though, so we use a concept of a "key" datatype
12456 which is set on a per-instruction basis, which is the one which matters when
12457 only one data type is written.
12458 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12459 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12460
12461static struct neon_type_el
12462neon_check_type (unsigned els, enum neon_shape ns, ...)
12463{
12464 va_list ap;
12465 unsigned i, pass, key_el = 0;
12466 unsigned types[NEON_MAX_TYPE_ELS];
12467 enum neon_el_type k_type = NT_invtype;
12468 unsigned k_size = -1u;
12469 struct neon_type_el badtype = {NT_invtype, -1};
12470 unsigned key_allowed = 0;
12471
12472 /* Optional registers in Neon instructions are always (not) in operand 1.
12473 Fill in the missing operand here, if it was omitted. */
12474 if (els > 1 && !inst.operands[1].present)
12475 inst.operands[1] = inst.operands[0];
12476
12477 /* Suck up all the varargs. */
12478 va_start (ap, ns);
12479 for (i = 0; i < els; i++)
12480 {
12481 unsigned thisarg = va_arg (ap, unsigned);
12482 if (thisarg == N_IGNORE_TYPE)
12483 {
12484 va_end (ap);
12485 return badtype;
12486 }
12487 types[i] = thisarg;
12488 if ((thisarg & N_KEY) != 0)
12489 key_el = i;
12490 }
12491 va_end (ap);
12492
dcbf9037
JB
12493 if (inst.vectype.elems > 0)
12494 for (i = 0; i < els; i++)
12495 if (inst.operands[i].vectype.type != NT_invtype)
12496 {
12497 first_error (_("types specified in both the mnemonic and operands"));
12498 return badtype;
12499 }
12500
5287ad62
JB
12501 /* Duplicate inst.vectype elements here as necessary.
12502 FIXME: No idea if this is exactly the same as the ARM assembler,
12503 particularly when an insn takes one register and one non-register
12504 operand. */
12505 if (inst.vectype.elems == 1 && els > 1)
12506 {
12507 unsigned j;
12508 inst.vectype.elems = els;
12509 inst.vectype.el[key_el] = inst.vectype.el[0];
12510 for (j = 0; j < els; j++)
dcbf9037
JB
12511 if (j != key_el)
12512 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12513 types[j]);
12514 }
12515 else if (inst.vectype.elems == 0 && els > 0)
12516 {
12517 unsigned j;
12518 /* No types were given after the mnemonic, so look for types specified
12519 after each operand. We allow some flexibility here; as long as the
12520 "key" operand has a type, we can infer the others. */
12521 for (j = 0; j < els; j++)
12522 if (inst.operands[j].vectype.type != NT_invtype)
12523 inst.vectype.el[j] = inst.operands[j].vectype;
12524
12525 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12526 {
dcbf9037
JB
12527 for (j = 0; j < els; j++)
12528 if (inst.operands[j].vectype.type == NT_invtype)
12529 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12530 types[j]);
12531 }
12532 else
12533 {
12534 first_error (_("operand types can't be inferred"));
12535 return badtype;
5287ad62
JB
12536 }
12537 }
12538 else if (inst.vectype.elems != els)
12539 {
dcbf9037 12540 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12541 return badtype;
12542 }
12543
12544 for (pass = 0; pass < 2; pass++)
12545 {
12546 for (i = 0; i < els; i++)
12547 {
12548 unsigned thisarg = types[i];
12549 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12550 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12551 enum neon_el_type g_type = inst.vectype.el[i].type;
12552 unsigned g_size = inst.vectype.el[i].size;
12553
12554 /* Decay more-specific signed & unsigned types to sign-insensitive
12555 integer types if sign-specific variants are unavailable. */
12556 if ((g_type == NT_signed || g_type == NT_unsigned)
12557 && (types_allowed & N_SU_ALL) == 0)
12558 g_type = NT_integer;
12559
12560 /* If only untyped args are allowed, decay any more specific types to
12561 them. Some instructions only care about signs for some element
12562 sizes, so handle that properly. */
12563 if ((g_size == 8 && (types_allowed & N_8) != 0)
12564 || (g_size == 16 && (types_allowed & N_16) != 0)
12565 || (g_size == 32 && (types_allowed & N_32) != 0)
12566 || (g_size == 64 && (types_allowed & N_64) != 0))
12567 g_type = NT_untyped;
12568
12569 if (pass == 0)
12570 {
12571 if ((thisarg & N_KEY) != 0)
12572 {
12573 k_type = g_type;
12574 k_size = g_size;
12575 key_allowed = thisarg & ~N_KEY;
12576 }
12577 }
12578 else
12579 {
037e8744
JB
12580 if ((thisarg & N_VFP) != 0)
12581 {
99b253c5
NC
12582 enum neon_shape_el regshape;
12583 unsigned regwidth, match;
12584
12585 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12586 if (ns == NS_NULL)
12587 {
12588 first_error (_("invalid instruction shape"));
12589 return badtype;
12590 }
12591 regshape = neon_shape_tab[ns].el[i];
12592 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12593
12594 /* In VFP mode, operands must match register widths. If we
12595 have a key operand, use its width, else use the width of
12596 the current operand. */
12597 if (k_size != -1u)
12598 match = k_size;
12599 else
12600 match = g_size;
12601
12602 if (regwidth != match)
12603 {
12604 first_error (_("operand size must match register width"));
12605 return badtype;
12606 }
12607 }
5f4273c7 12608
5287ad62
JB
12609 if ((thisarg & N_EQK) == 0)
12610 {
12611 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12612
12613 if ((given_type & types_allowed) == 0)
12614 {
dcbf9037 12615 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12616 return badtype;
12617 }
12618 }
12619 else
12620 {
12621 enum neon_el_type mod_k_type = k_type;
12622 unsigned mod_k_size = k_size;
12623 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12624 if (g_type != mod_k_type || g_size != mod_k_size)
12625 {
dcbf9037 12626 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12627 return badtype;
12628 }
12629 }
12630 }
12631 }
12632 }
12633
12634 return inst.vectype.el[key_el];
12635}
12636
037e8744 12637/* Neon-style VFP instruction forwarding. */
5287ad62 12638
037e8744
JB
12639/* Thumb VFP instructions have 0xE in the condition field. */
12640
12641static void
12642do_vfp_cond_or_thumb (void)
5287ad62 12643{
88714cb8
DG
12644 inst.is_neon = 1;
12645
5287ad62 12646 if (thumb_mode)
037e8744 12647 inst.instruction |= 0xe0000000;
5287ad62 12648 else
037e8744 12649 inst.instruction |= inst.cond << 28;
5287ad62
JB
12650}
12651
037e8744
JB
12652/* Look up and encode a simple mnemonic, for use as a helper function for the
12653 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12654 etc. It is assumed that operand parsing has already been done, and that the
12655 operands are in the form expected by the given opcode (this isn't necessarily
12656 the same as the form in which they were parsed, hence some massaging must
12657 take place before this function is called).
12658 Checks current arch version against that in the looked-up opcode. */
5287ad62 12659
037e8744
JB
12660static void
12661do_vfp_nsyn_opcode (const char *opname)
5287ad62 12662{
037e8744 12663 const struct asm_opcode *opcode;
5f4273c7 12664
21d799b5 12665 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12666
037e8744
JB
12667 if (!opcode)
12668 abort ();
5287ad62 12669
037e8744
JB
12670 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12671 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12672 _(BAD_FPU));
5287ad62 12673
88714cb8
DG
12674 inst.is_neon = 1;
12675
037e8744
JB
12676 if (thumb_mode)
12677 {
12678 inst.instruction = opcode->tvalue;
12679 opcode->tencode ();
12680 }
12681 else
12682 {
12683 inst.instruction = (inst.cond << 28) | opcode->avalue;
12684 opcode->aencode ();
12685 }
12686}
5287ad62
JB
12687
12688static void
037e8744 12689do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12690{
037e8744
JB
12691 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12692
12693 if (rs == NS_FFF)
12694 {
12695 if (is_add)
12696 do_vfp_nsyn_opcode ("fadds");
12697 else
12698 do_vfp_nsyn_opcode ("fsubs");
12699 }
12700 else
12701 {
12702 if (is_add)
12703 do_vfp_nsyn_opcode ("faddd");
12704 else
12705 do_vfp_nsyn_opcode ("fsubd");
12706 }
12707}
12708
12709/* Check operand types to see if this is a VFP instruction, and if so call
12710 PFN (). */
12711
12712static int
12713try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12714{
12715 enum neon_shape rs;
12716 struct neon_type_el et;
12717
12718 switch (args)
12719 {
12720 case 2:
12721 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12722 et = neon_check_type (2, rs,
12723 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12724 break;
5f4273c7 12725
037e8744
JB
12726 case 3:
12727 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12728 et = neon_check_type (3, rs,
12729 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12730 break;
12731
12732 default:
12733 abort ();
12734 }
12735
12736 if (et.type != NT_invtype)
12737 {
12738 pfn (rs);
12739 return SUCCESS;
12740 }
037e8744 12741
99b253c5 12742 inst.error = NULL;
037e8744
JB
12743 return FAIL;
12744}
12745
12746static void
12747do_vfp_nsyn_mla_mls (enum neon_shape rs)
12748{
12749 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12750
037e8744
JB
12751 if (rs == NS_FFF)
12752 {
12753 if (is_mla)
12754 do_vfp_nsyn_opcode ("fmacs");
12755 else
1ee69515 12756 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12757 }
12758 else
12759 {
12760 if (is_mla)
12761 do_vfp_nsyn_opcode ("fmacd");
12762 else
1ee69515 12763 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12764 }
12765}
12766
62f3b8c8
PB
12767static void
12768do_vfp_nsyn_fma_fms (enum neon_shape rs)
12769{
12770 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12771
12772 if (rs == NS_FFF)
12773 {
12774 if (is_fma)
12775 do_vfp_nsyn_opcode ("ffmas");
12776 else
12777 do_vfp_nsyn_opcode ("ffnmas");
12778 }
12779 else
12780 {
12781 if (is_fma)
12782 do_vfp_nsyn_opcode ("ffmad");
12783 else
12784 do_vfp_nsyn_opcode ("ffnmad");
12785 }
12786}
12787
037e8744
JB
12788static void
12789do_vfp_nsyn_mul (enum neon_shape rs)
12790{
12791 if (rs == NS_FFF)
12792 do_vfp_nsyn_opcode ("fmuls");
12793 else
12794 do_vfp_nsyn_opcode ("fmuld");
12795}
12796
12797static void
12798do_vfp_nsyn_abs_neg (enum neon_shape rs)
12799{
12800 int is_neg = (inst.instruction & 0x80) != 0;
12801 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12802
12803 if (rs == NS_FF)
12804 {
12805 if (is_neg)
12806 do_vfp_nsyn_opcode ("fnegs");
12807 else
12808 do_vfp_nsyn_opcode ("fabss");
12809 }
12810 else
12811 {
12812 if (is_neg)
12813 do_vfp_nsyn_opcode ("fnegd");
12814 else
12815 do_vfp_nsyn_opcode ("fabsd");
12816 }
12817}
12818
12819/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12820 insns belong to Neon, and are handled elsewhere. */
12821
12822static void
12823do_vfp_nsyn_ldm_stm (int is_dbmode)
12824{
12825 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12826 if (is_ldm)
12827 {
12828 if (is_dbmode)
12829 do_vfp_nsyn_opcode ("fldmdbs");
12830 else
12831 do_vfp_nsyn_opcode ("fldmias");
12832 }
12833 else
12834 {
12835 if (is_dbmode)
12836 do_vfp_nsyn_opcode ("fstmdbs");
12837 else
12838 do_vfp_nsyn_opcode ("fstmias");
12839 }
12840}
12841
037e8744
JB
12842static void
12843do_vfp_nsyn_sqrt (void)
12844{
12845 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12846 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12847
037e8744
JB
12848 if (rs == NS_FF)
12849 do_vfp_nsyn_opcode ("fsqrts");
12850 else
12851 do_vfp_nsyn_opcode ("fsqrtd");
12852}
12853
12854static void
12855do_vfp_nsyn_div (void)
12856{
12857 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12858 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12859 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12860
037e8744
JB
12861 if (rs == NS_FFF)
12862 do_vfp_nsyn_opcode ("fdivs");
12863 else
12864 do_vfp_nsyn_opcode ("fdivd");
12865}
12866
12867static void
12868do_vfp_nsyn_nmul (void)
12869{
12870 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12871 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12872 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12873
037e8744
JB
12874 if (rs == NS_FFF)
12875 {
88714cb8 12876 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12877 do_vfp_sp_dyadic ();
12878 }
12879 else
12880 {
88714cb8 12881 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12882 do_vfp_dp_rd_rn_rm ();
12883 }
12884 do_vfp_cond_or_thumb ();
12885}
12886
12887static void
12888do_vfp_nsyn_cmp (void)
12889{
12890 if (inst.operands[1].isreg)
12891 {
12892 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12893 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12894
037e8744
JB
12895 if (rs == NS_FF)
12896 {
88714cb8 12897 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12898 do_vfp_sp_monadic ();
12899 }
12900 else
12901 {
88714cb8 12902 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12903 do_vfp_dp_rd_rm ();
12904 }
12905 }
12906 else
12907 {
12908 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12909 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12910
12911 switch (inst.instruction & 0x0fffffff)
12912 {
12913 case N_MNEM_vcmp:
12914 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12915 break;
12916 case N_MNEM_vcmpe:
12917 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12918 break;
12919 default:
12920 abort ();
12921 }
5f4273c7 12922
037e8744
JB
12923 if (rs == NS_FI)
12924 {
88714cb8 12925 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12926 do_vfp_sp_compare_z ();
12927 }
12928 else
12929 {
88714cb8 12930 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12931 do_vfp_dp_rd ();
12932 }
12933 }
12934 do_vfp_cond_or_thumb ();
12935}
12936
12937static void
12938nsyn_insert_sp (void)
12939{
12940 inst.operands[1] = inst.operands[0];
12941 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12942 inst.operands[0].reg = REG_SP;
037e8744
JB
12943 inst.operands[0].isreg = 1;
12944 inst.operands[0].writeback = 1;
12945 inst.operands[0].present = 1;
12946}
12947
12948static void
12949do_vfp_nsyn_push (void)
12950{
12951 nsyn_insert_sp ();
12952 if (inst.operands[1].issingle)
12953 do_vfp_nsyn_opcode ("fstmdbs");
12954 else
12955 do_vfp_nsyn_opcode ("fstmdbd");
12956}
12957
12958static void
12959do_vfp_nsyn_pop (void)
12960{
12961 nsyn_insert_sp ();
12962 if (inst.operands[1].issingle)
22b5b651 12963 do_vfp_nsyn_opcode ("fldmias");
037e8744 12964 else
22b5b651 12965 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12966}
12967
12968/* Fix up Neon data-processing instructions, ORing in the correct bits for
12969 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12970
88714cb8
DG
12971static void
12972neon_dp_fixup (struct arm_it* insn)
037e8744 12973{
88714cb8
DG
12974 unsigned int i = insn->instruction;
12975 insn->is_neon = 1;
12976
037e8744
JB
12977 if (thumb_mode)
12978 {
12979 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12980 if (i & (1 << 24))
12981 i |= 1 << 28;
5f4273c7 12982
037e8744 12983 i &= ~(1 << 24);
5f4273c7 12984
037e8744
JB
12985 i |= 0xef000000;
12986 }
12987 else
12988 i |= 0xf2000000;
5f4273c7 12989
88714cb8 12990 insn->instruction = i;
037e8744
JB
12991}
12992
12993/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12994 (0, 1, 2, 3). */
12995
12996static unsigned
12997neon_logbits (unsigned x)
12998{
12999 return ffs (x) - 4;
13000}
13001
13002#define LOW4(R) ((R) & 0xf)
13003#define HI1(R) (((R) >> 4) & 1)
13004
13005/* Encode insns with bit pattern:
13006
13007 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13008 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13009
037e8744
JB
13010 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13011 different meaning for some instruction. */
13012
13013static void
13014neon_three_same (int isquad, int ubit, int size)
13015{
13016 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13017 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13018 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13019 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13020 inst.instruction |= LOW4 (inst.operands[2].reg);
13021 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13022 inst.instruction |= (isquad != 0) << 6;
13023 inst.instruction |= (ubit != 0) << 24;
13024 if (size != -1)
13025 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13026
88714cb8 13027 neon_dp_fixup (&inst);
037e8744
JB
13028}
13029
13030/* Encode instructions of the form:
13031
13032 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13033 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13034
13035 Don't write size if SIZE == -1. */
13036
13037static void
13038neon_two_same (int qbit, int ubit, int size)
13039{
13040 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13041 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13042 inst.instruction |= LOW4 (inst.operands[1].reg);
13043 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13044 inst.instruction |= (qbit != 0) << 6;
13045 inst.instruction |= (ubit != 0) << 24;
13046
13047 if (size != -1)
13048 inst.instruction |= neon_logbits (size) << 18;
13049
88714cb8 13050 neon_dp_fixup (&inst);
5287ad62
JB
13051}
13052
13053/* Neon instruction encoders, in approximate order of appearance. */
13054
13055static void
13056do_neon_dyadic_i_su (void)
13057{
037e8744 13058 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13059 struct neon_type_el et = neon_check_type (3, rs,
13060 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13061 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13062}
13063
13064static void
13065do_neon_dyadic_i64_su (void)
13066{
037e8744 13067 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13068 struct neon_type_el et = neon_check_type (3, rs,
13069 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13070 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13071}
13072
13073static void
13074neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13075 unsigned immbits)
13076{
13077 unsigned size = et.size >> 3;
13078 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13079 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13080 inst.instruction |= LOW4 (inst.operands[1].reg);
13081 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13082 inst.instruction |= (isquad != 0) << 6;
13083 inst.instruction |= immbits << 16;
13084 inst.instruction |= (size >> 3) << 7;
13085 inst.instruction |= (size & 0x7) << 19;
13086 if (write_ubit)
13087 inst.instruction |= (uval != 0) << 24;
13088
88714cb8 13089 neon_dp_fixup (&inst);
5287ad62
JB
13090}
13091
13092static void
13093do_neon_shl_imm (void)
13094{
13095 if (!inst.operands[2].isreg)
13096 {
037e8744 13097 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13098 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13099 NEON_ENCODE (IMMED, inst);
037e8744 13100 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13101 }
13102 else
13103 {
037e8744 13104 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13105 struct neon_type_el et = neon_check_type (3, rs,
13106 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13107 unsigned int tmp;
13108
13109 /* VSHL/VQSHL 3-register variants have syntax such as:
13110 vshl.xx Dd, Dm, Dn
13111 whereas other 3-register operations encoded by neon_three_same have
13112 syntax like:
13113 vadd.xx Dd, Dn, Dm
13114 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13115 here. */
13116 tmp = inst.operands[2].reg;
13117 inst.operands[2].reg = inst.operands[1].reg;
13118 inst.operands[1].reg = tmp;
88714cb8 13119 NEON_ENCODE (INTEGER, inst);
037e8744 13120 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13121 }
13122}
13123
13124static void
13125do_neon_qshl_imm (void)
13126{
13127 if (!inst.operands[2].isreg)
13128 {
037e8744 13129 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13130 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13131
88714cb8 13132 NEON_ENCODE (IMMED, inst);
037e8744 13133 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13134 inst.operands[2].imm);
13135 }
13136 else
13137 {
037e8744 13138 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13139 struct neon_type_el et = neon_check_type (3, rs,
13140 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13141 unsigned int tmp;
13142
13143 /* See note in do_neon_shl_imm. */
13144 tmp = inst.operands[2].reg;
13145 inst.operands[2].reg = inst.operands[1].reg;
13146 inst.operands[1].reg = tmp;
88714cb8 13147 NEON_ENCODE (INTEGER, inst);
037e8744 13148 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13149 }
13150}
13151
627907b7
JB
13152static void
13153do_neon_rshl (void)
13154{
13155 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13156 struct neon_type_el et = neon_check_type (3, rs,
13157 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13158 unsigned int tmp;
13159
13160 tmp = inst.operands[2].reg;
13161 inst.operands[2].reg = inst.operands[1].reg;
13162 inst.operands[1].reg = tmp;
13163 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13164}
13165
5287ad62
JB
13166static int
13167neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13168{
036dc3f7
PB
13169 /* Handle .I8 pseudo-instructions. */
13170 if (size == 8)
5287ad62 13171 {
5287ad62
JB
13172 /* Unfortunately, this will make everything apart from zero out-of-range.
13173 FIXME is this the intended semantics? There doesn't seem much point in
13174 accepting .I8 if so. */
13175 immediate |= immediate << 8;
13176 size = 16;
036dc3f7
PB
13177 }
13178
13179 if (size >= 32)
13180 {
13181 if (immediate == (immediate & 0x000000ff))
13182 {
13183 *immbits = immediate;
13184 return 0x1;
13185 }
13186 else if (immediate == (immediate & 0x0000ff00))
13187 {
13188 *immbits = immediate >> 8;
13189 return 0x3;
13190 }
13191 else if (immediate == (immediate & 0x00ff0000))
13192 {
13193 *immbits = immediate >> 16;
13194 return 0x5;
13195 }
13196 else if (immediate == (immediate & 0xff000000))
13197 {
13198 *immbits = immediate >> 24;
13199 return 0x7;
13200 }
13201 if ((immediate & 0xffff) != (immediate >> 16))
13202 goto bad_immediate;
13203 immediate &= 0xffff;
5287ad62
JB
13204 }
13205
13206 if (immediate == (immediate & 0x000000ff))
13207 {
13208 *immbits = immediate;
036dc3f7 13209 return 0x9;
5287ad62
JB
13210 }
13211 else if (immediate == (immediate & 0x0000ff00))
13212 {
13213 *immbits = immediate >> 8;
036dc3f7 13214 return 0xb;
5287ad62
JB
13215 }
13216
13217 bad_immediate:
dcbf9037 13218 first_error (_("immediate value out of range"));
5287ad62
JB
13219 return FAIL;
13220}
13221
13222/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13223 A, B, C, D. */
13224
13225static int
13226neon_bits_same_in_bytes (unsigned imm)
13227{
13228 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13229 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13230 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13231 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13232}
13233
13234/* For immediate of above form, return 0bABCD. */
13235
13236static unsigned
13237neon_squash_bits (unsigned imm)
13238{
13239 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13240 | ((imm & 0x01000000) >> 21);
13241}
13242
136da414 13243/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13244
13245static unsigned
13246neon_qfloat_bits (unsigned imm)
13247{
136da414 13248 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13249}
13250
13251/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13252 the instruction. *OP is passed as the initial value of the op field, and
13253 may be set to a different value depending on the constant (i.e.
13254 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13255 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13256 try smaller element sizes. */
5287ad62
JB
13257
13258static int
c96612cc
JB
13259neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13260 unsigned *immbits, int *op, int size,
13261 enum neon_el_type type)
5287ad62 13262{
c96612cc
JB
13263 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13264 float. */
13265 if (type == NT_float && !float_p)
13266 return FAIL;
13267
136da414
JB
13268 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13269 {
13270 if (size != 32 || *op == 1)
13271 return FAIL;
13272 *immbits = neon_qfloat_bits (immlo);
13273 return 0xf;
13274 }
036dc3f7
PB
13275
13276 if (size == 64)
5287ad62 13277 {
036dc3f7
PB
13278 if (neon_bits_same_in_bytes (immhi)
13279 && neon_bits_same_in_bytes (immlo))
13280 {
13281 if (*op == 1)
13282 return FAIL;
13283 *immbits = (neon_squash_bits (immhi) << 4)
13284 | neon_squash_bits (immlo);
13285 *op = 1;
13286 return 0xe;
13287 }
13288
13289 if (immhi != immlo)
13290 return FAIL;
5287ad62 13291 }
036dc3f7
PB
13292
13293 if (size >= 32)
5287ad62 13294 {
036dc3f7
PB
13295 if (immlo == (immlo & 0x000000ff))
13296 {
13297 *immbits = immlo;
13298 return 0x0;
13299 }
13300 else if (immlo == (immlo & 0x0000ff00))
13301 {
13302 *immbits = immlo >> 8;
13303 return 0x2;
13304 }
13305 else if (immlo == (immlo & 0x00ff0000))
13306 {
13307 *immbits = immlo >> 16;
13308 return 0x4;
13309 }
13310 else if (immlo == (immlo & 0xff000000))
13311 {
13312 *immbits = immlo >> 24;
13313 return 0x6;
13314 }
13315 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13316 {
13317 *immbits = (immlo >> 8) & 0xff;
13318 return 0xc;
13319 }
13320 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13321 {
13322 *immbits = (immlo >> 16) & 0xff;
13323 return 0xd;
13324 }
13325
13326 if ((immlo & 0xffff) != (immlo >> 16))
13327 return FAIL;
13328 immlo &= 0xffff;
5287ad62 13329 }
036dc3f7
PB
13330
13331 if (size >= 16)
5287ad62 13332 {
036dc3f7
PB
13333 if (immlo == (immlo & 0x000000ff))
13334 {
13335 *immbits = immlo;
13336 return 0x8;
13337 }
13338 else if (immlo == (immlo & 0x0000ff00))
13339 {
13340 *immbits = immlo >> 8;
13341 return 0xa;
13342 }
13343
13344 if ((immlo & 0xff) != (immlo >> 8))
13345 return FAIL;
13346 immlo &= 0xff;
5287ad62 13347 }
036dc3f7
PB
13348
13349 if (immlo == (immlo & 0x000000ff))
5287ad62 13350 {
036dc3f7
PB
13351 /* Don't allow MVN with 8-bit immediate. */
13352 if (*op == 1)
13353 return FAIL;
13354 *immbits = immlo;
13355 return 0xe;
5287ad62 13356 }
5287ad62
JB
13357
13358 return FAIL;
13359}
13360
13361/* Write immediate bits [7:0] to the following locations:
13362
13363 |28/24|23 19|18 16|15 4|3 0|
13364 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13365
13366 This function is used by VMOV/VMVN/VORR/VBIC. */
13367
13368static void
13369neon_write_immbits (unsigned immbits)
13370{
13371 inst.instruction |= immbits & 0xf;
13372 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13373 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13374}
13375
13376/* Invert low-order SIZE bits of XHI:XLO. */
13377
13378static void
13379neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13380{
13381 unsigned immlo = xlo ? *xlo : 0;
13382 unsigned immhi = xhi ? *xhi : 0;
13383
13384 switch (size)
13385 {
13386 case 8:
13387 immlo = (~immlo) & 0xff;
13388 break;
13389
13390 case 16:
13391 immlo = (~immlo) & 0xffff;
13392 break;
13393
13394 case 64:
13395 immhi = (~immhi) & 0xffffffff;
13396 /* fall through. */
13397
13398 case 32:
13399 immlo = (~immlo) & 0xffffffff;
13400 break;
13401
13402 default:
13403 abort ();
13404 }
13405
13406 if (xlo)
13407 *xlo = immlo;
13408
13409 if (xhi)
13410 *xhi = immhi;
13411}
13412
13413static void
13414do_neon_logic (void)
13415{
13416 if (inst.operands[2].present && inst.operands[2].isreg)
13417 {
037e8744 13418 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13419 neon_check_type (3, rs, N_IGNORE_TYPE);
13420 /* U bit and size field were set as part of the bitmask. */
88714cb8 13421 NEON_ENCODE (INTEGER, inst);
037e8744 13422 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13423 }
13424 else
13425 {
4316f0d2
DG
13426 const int three_ops_form = (inst.operands[2].present
13427 && !inst.operands[2].isreg);
13428 const int immoperand = (three_ops_form ? 2 : 1);
13429 enum neon_shape rs = (three_ops_form
13430 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13431 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13432 struct neon_type_el et = neon_check_type (2, rs,
13433 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13434 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13435 unsigned immbits;
13436 int cmode;
5f4273c7 13437
5287ad62
JB
13438 if (et.type == NT_invtype)
13439 return;
5f4273c7 13440
4316f0d2
DG
13441 if (three_ops_form)
13442 constraint (inst.operands[0].reg != inst.operands[1].reg,
13443 _("first and second operands shall be the same register"));
13444
88714cb8 13445 NEON_ENCODE (IMMED, inst);
5287ad62 13446
4316f0d2 13447 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13448 if (et.size == 64)
13449 {
13450 /* .i64 is a pseudo-op, so the immediate must be a repeating
13451 pattern. */
4316f0d2
DG
13452 if (immbits != (inst.operands[immoperand].regisimm ?
13453 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13454 {
13455 /* Set immbits to an invalid constant. */
13456 immbits = 0xdeadbeef;
13457 }
13458 }
13459
5287ad62
JB
13460 switch (opcode)
13461 {
13462 case N_MNEM_vbic:
036dc3f7 13463 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13464 break;
5f4273c7 13465
5287ad62 13466 case N_MNEM_vorr:
036dc3f7 13467 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13468 break;
5f4273c7 13469
5287ad62
JB
13470 case N_MNEM_vand:
13471 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13472 neon_invert_size (&immbits, 0, et.size);
13473 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13474 break;
5f4273c7 13475
5287ad62
JB
13476 case N_MNEM_vorn:
13477 /* Pseudo-instruction for VORR. */
5287ad62
JB
13478 neon_invert_size (&immbits, 0, et.size);
13479 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13480 break;
5f4273c7 13481
5287ad62
JB
13482 default:
13483 abort ();
13484 }
13485
13486 if (cmode == FAIL)
13487 return;
13488
037e8744 13489 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13490 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13491 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13492 inst.instruction |= cmode << 8;
13493 neon_write_immbits (immbits);
5f4273c7 13494
88714cb8 13495 neon_dp_fixup (&inst);
5287ad62
JB
13496 }
13497}
13498
13499static void
13500do_neon_bitfield (void)
13501{
037e8744 13502 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13503 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13504 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13505}
13506
13507static void
dcbf9037
JB
13508neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13509 unsigned destbits)
5287ad62 13510{
037e8744 13511 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13512 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13513 types | N_KEY);
5287ad62
JB
13514 if (et.type == NT_float)
13515 {
88714cb8 13516 NEON_ENCODE (FLOAT, inst);
037e8744 13517 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13518 }
13519 else
13520 {
88714cb8 13521 NEON_ENCODE (INTEGER, inst);
037e8744 13522 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13523 }
13524}
13525
13526static void
13527do_neon_dyadic_if_su (void)
13528{
dcbf9037 13529 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13530}
13531
13532static void
13533do_neon_dyadic_if_su_d (void)
13534{
13535 /* This version only allow D registers, but that constraint is enforced during
13536 operand parsing so we don't need to do anything extra here. */
dcbf9037 13537 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13538}
13539
5287ad62
JB
13540static void
13541do_neon_dyadic_if_i_d (void)
13542{
428e3f1f
PB
13543 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13544 affected if we specify unsigned args. */
13545 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13546}
13547
037e8744
JB
13548enum vfp_or_neon_is_neon_bits
13549{
13550 NEON_CHECK_CC = 1,
13551 NEON_CHECK_ARCH = 2
13552};
13553
13554/* Call this function if an instruction which may have belonged to the VFP or
13555 Neon instruction sets, but turned out to be a Neon instruction (due to the
13556 operand types involved, etc.). We have to check and/or fix-up a couple of
13557 things:
13558
13559 - Make sure the user hasn't attempted to make a Neon instruction
13560 conditional.
13561 - Alter the value in the condition code field if necessary.
13562 - Make sure that the arch supports Neon instructions.
13563
13564 Which of these operations take place depends on bits from enum
13565 vfp_or_neon_is_neon_bits.
13566
13567 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13568 current instruction's condition is COND_ALWAYS, the condition field is
13569 changed to inst.uncond_value. This is necessary because instructions shared
13570 between VFP and Neon may be conditional for the VFP variants only, and the
13571 unconditional Neon version must have, e.g., 0xF in the condition field. */
13572
13573static int
13574vfp_or_neon_is_neon (unsigned check)
13575{
13576 /* Conditions are always legal in Thumb mode (IT blocks). */
13577 if (!thumb_mode && (check & NEON_CHECK_CC))
13578 {
13579 if (inst.cond != COND_ALWAYS)
13580 {
13581 first_error (_(BAD_COND));
13582 return FAIL;
13583 }
13584 if (inst.uncond_value != -1)
13585 inst.instruction |= inst.uncond_value << 28;
13586 }
5f4273c7 13587
037e8744
JB
13588 if ((check & NEON_CHECK_ARCH)
13589 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13590 {
13591 first_error (_(BAD_FPU));
13592 return FAIL;
13593 }
5f4273c7 13594
037e8744
JB
13595 return SUCCESS;
13596}
13597
5287ad62
JB
13598static void
13599do_neon_addsub_if_i (void)
13600{
037e8744
JB
13601 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13602 return;
13603
13604 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13605 return;
13606
5287ad62
JB
13607 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13608 affected if we specify unsigned args. */
dcbf9037 13609 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13610}
13611
13612/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13613 result to be:
13614 V<op> A,B (A is operand 0, B is operand 2)
13615 to mean:
13616 V<op> A,B,A
13617 not:
13618 V<op> A,B,B
13619 so handle that case specially. */
13620
13621static void
13622neon_exchange_operands (void)
13623{
13624 void *scratch = alloca (sizeof (inst.operands[0]));
13625 if (inst.operands[1].present)
13626 {
13627 /* Swap operands[1] and operands[2]. */
13628 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13629 inst.operands[1] = inst.operands[2];
13630 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13631 }
13632 else
13633 {
13634 inst.operands[1] = inst.operands[2];
13635 inst.operands[2] = inst.operands[0];
13636 }
13637}
13638
13639static void
13640neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13641{
13642 if (inst.operands[2].isreg)
13643 {
13644 if (invert)
13645 neon_exchange_operands ();
dcbf9037 13646 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13647 }
13648 else
13649 {
037e8744 13650 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13651 struct neon_type_el et = neon_check_type (2, rs,
13652 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13653
88714cb8 13654 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13657 inst.instruction |= LOW4 (inst.operands[1].reg);
13658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13659 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13660 inst.instruction |= (et.type == NT_float) << 10;
13661 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13662
88714cb8 13663 neon_dp_fixup (&inst);
5287ad62
JB
13664 }
13665}
13666
13667static void
13668do_neon_cmp (void)
13669{
13670 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13671}
13672
13673static void
13674do_neon_cmp_inv (void)
13675{
13676 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13677}
13678
13679static void
13680do_neon_ceq (void)
13681{
13682 neon_compare (N_IF_32, N_IF_32, FALSE);
13683}
13684
13685/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13686 scalars, which are encoded in 5 bits, M : Rm.
13687 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13688 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13689 index in M. */
13690
13691static unsigned
13692neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13693{
dcbf9037
JB
13694 unsigned regno = NEON_SCALAR_REG (scalar);
13695 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13696
13697 switch (elsize)
13698 {
13699 case 16:
13700 if (regno > 7 || elno > 3)
13701 goto bad_scalar;
13702 return regno | (elno << 3);
5f4273c7 13703
5287ad62
JB
13704 case 32:
13705 if (regno > 15 || elno > 1)
13706 goto bad_scalar;
13707 return regno | (elno << 4);
13708
13709 default:
13710 bad_scalar:
dcbf9037 13711 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13712 }
13713
13714 return 0;
13715}
13716
13717/* Encode multiply / multiply-accumulate scalar instructions. */
13718
13719static void
13720neon_mul_mac (struct neon_type_el et, int ubit)
13721{
dcbf9037
JB
13722 unsigned scalar;
13723
13724 /* Give a more helpful error message if we have an invalid type. */
13725 if (et.type == NT_invtype)
13726 return;
5f4273c7 13727
dcbf9037 13728 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13730 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13731 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13732 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13733 inst.instruction |= LOW4 (scalar);
13734 inst.instruction |= HI1 (scalar) << 5;
13735 inst.instruction |= (et.type == NT_float) << 8;
13736 inst.instruction |= neon_logbits (et.size) << 20;
13737 inst.instruction |= (ubit != 0) << 24;
13738
88714cb8 13739 neon_dp_fixup (&inst);
5287ad62
JB
13740}
13741
13742static void
13743do_neon_mac_maybe_scalar (void)
13744{
037e8744
JB
13745 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13746 return;
13747
13748 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13749 return;
13750
5287ad62
JB
13751 if (inst.operands[2].isscalar)
13752 {
037e8744 13753 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13754 struct neon_type_el et = neon_check_type (3, rs,
13755 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13756 NEON_ENCODE (SCALAR, inst);
037e8744 13757 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13758 }
13759 else
428e3f1f
PB
13760 {
13761 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13762 affected if we specify unsigned args. */
13763 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13764 }
5287ad62
JB
13765}
13766
62f3b8c8
PB
13767static void
13768do_neon_fmac (void)
13769{
13770 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13771 return;
13772
13773 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13774 return;
13775
13776 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13777}
13778
5287ad62
JB
13779static void
13780do_neon_tst (void)
13781{
037e8744 13782 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13783 struct neon_type_el et = neon_check_type (3, rs,
13784 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13785 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13786}
13787
13788/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13789 same types as the MAC equivalents. The polynomial type for this instruction
13790 is encoded the same as the integer type. */
13791
13792static void
13793do_neon_mul (void)
13794{
037e8744
JB
13795 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13796 return;
13797
13798 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13799 return;
13800
5287ad62
JB
13801 if (inst.operands[2].isscalar)
13802 do_neon_mac_maybe_scalar ();
13803 else
dcbf9037 13804 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13805}
13806
13807static void
13808do_neon_qdmulh (void)
13809{
13810 if (inst.operands[2].isscalar)
13811 {
037e8744 13812 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13813 struct neon_type_el et = neon_check_type (3, rs,
13814 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13815 NEON_ENCODE (SCALAR, inst);
037e8744 13816 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13817 }
13818 else
13819 {
037e8744 13820 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13821 struct neon_type_el et = neon_check_type (3, rs,
13822 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13823 NEON_ENCODE (INTEGER, inst);
5287ad62 13824 /* The U bit (rounding) comes from bit mask. */
037e8744 13825 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13826 }
13827}
13828
13829static void
13830do_neon_fcmp_absolute (void)
13831{
037e8744 13832 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13833 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13834 /* Size field comes from bit mask. */
037e8744 13835 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13836}
13837
13838static void
13839do_neon_fcmp_absolute_inv (void)
13840{
13841 neon_exchange_operands ();
13842 do_neon_fcmp_absolute ();
13843}
13844
13845static void
13846do_neon_step (void)
13847{
037e8744 13848 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13849 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13850 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13851}
13852
13853static void
13854do_neon_abs_neg (void)
13855{
037e8744
JB
13856 enum neon_shape rs;
13857 struct neon_type_el et;
5f4273c7 13858
037e8744
JB
13859 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13860 return;
13861
13862 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13863 return;
13864
13865 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13866 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13867
5287ad62
JB
13868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13870 inst.instruction |= LOW4 (inst.operands[1].reg);
13871 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13872 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13873 inst.instruction |= (et.type == NT_float) << 10;
13874 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13875
88714cb8 13876 neon_dp_fixup (&inst);
5287ad62
JB
13877}
13878
13879static void
13880do_neon_sli (void)
13881{
037e8744 13882 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13883 struct neon_type_el et = neon_check_type (2, rs,
13884 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13885 int imm = inst.operands[2].imm;
13886 constraint (imm < 0 || (unsigned)imm >= et.size,
13887 _("immediate out of range for insert"));
037e8744 13888 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13889}
13890
13891static void
13892do_neon_sri (void)
13893{
037e8744 13894 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13895 struct neon_type_el et = neon_check_type (2, rs,
13896 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13897 int imm = inst.operands[2].imm;
13898 constraint (imm < 1 || (unsigned)imm > et.size,
13899 _("immediate out of range for insert"));
037e8744 13900 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13901}
13902
13903static void
13904do_neon_qshlu_imm (void)
13905{
037e8744 13906 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13907 struct neon_type_el et = neon_check_type (2, rs,
13908 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13909 int imm = inst.operands[2].imm;
13910 constraint (imm < 0 || (unsigned)imm >= et.size,
13911 _("immediate out of range for shift"));
13912 /* Only encodes the 'U present' variant of the instruction.
13913 In this case, signed types have OP (bit 8) set to 0.
13914 Unsigned types have OP set to 1. */
13915 inst.instruction |= (et.type == NT_unsigned) << 8;
13916 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13917 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13918}
13919
13920static void
13921do_neon_qmovn (void)
13922{
13923 struct neon_type_el et = neon_check_type (2, NS_DQ,
13924 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13925 /* Saturating move where operands can be signed or unsigned, and the
13926 destination has the same signedness. */
88714cb8 13927 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13928 if (et.type == NT_unsigned)
13929 inst.instruction |= 0xc0;
13930 else
13931 inst.instruction |= 0x80;
13932 neon_two_same (0, 1, et.size / 2);
13933}
13934
13935static void
13936do_neon_qmovun (void)
13937{
13938 struct neon_type_el et = neon_check_type (2, NS_DQ,
13939 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13940 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13941 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13942 neon_two_same (0, 1, et.size / 2);
13943}
13944
13945static void
13946do_neon_rshift_sat_narrow (void)
13947{
13948 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13949 or unsigned. If operands are unsigned, results must also be unsigned. */
13950 struct neon_type_el et = neon_check_type (2, NS_DQI,
13951 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13952 int imm = inst.operands[2].imm;
13953 /* This gets the bounds check, size encoding and immediate bits calculation
13954 right. */
13955 et.size /= 2;
5f4273c7 13956
5287ad62
JB
13957 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13958 VQMOVN.I<size> <Dd>, <Qm>. */
13959 if (imm == 0)
13960 {
13961 inst.operands[2].present = 0;
13962 inst.instruction = N_MNEM_vqmovn;
13963 do_neon_qmovn ();
13964 return;
13965 }
5f4273c7 13966
5287ad62
JB
13967 constraint (imm < 1 || (unsigned)imm > et.size,
13968 _("immediate out of range"));
13969 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13970}
13971
13972static void
13973do_neon_rshift_sat_narrow_u (void)
13974{
13975 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13976 or unsigned. If operands are unsigned, results must also be unsigned. */
13977 struct neon_type_el et = neon_check_type (2, NS_DQI,
13978 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13979 int imm = inst.operands[2].imm;
13980 /* This gets the bounds check, size encoding and immediate bits calculation
13981 right. */
13982 et.size /= 2;
13983
13984 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13985 VQMOVUN.I<size> <Dd>, <Qm>. */
13986 if (imm == 0)
13987 {
13988 inst.operands[2].present = 0;
13989 inst.instruction = N_MNEM_vqmovun;
13990 do_neon_qmovun ();
13991 return;
13992 }
13993
13994 constraint (imm < 1 || (unsigned)imm > et.size,
13995 _("immediate out of range"));
13996 /* FIXME: The manual is kind of unclear about what value U should have in
13997 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13998 must be 1. */
13999 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14000}
14001
14002static void
14003do_neon_movn (void)
14004{
14005 struct neon_type_el et = neon_check_type (2, NS_DQ,
14006 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14007 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14008 neon_two_same (0, 1, et.size / 2);
14009}
14010
14011static void
14012do_neon_rshift_narrow (void)
14013{
14014 struct neon_type_el et = neon_check_type (2, NS_DQI,
14015 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14016 int imm = inst.operands[2].imm;
14017 /* This gets the bounds check, size encoding and immediate bits calculation
14018 right. */
14019 et.size /= 2;
5f4273c7 14020
5287ad62
JB
14021 /* If immediate is zero then we are a pseudo-instruction for
14022 VMOVN.I<size> <Dd>, <Qm> */
14023 if (imm == 0)
14024 {
14025 inst.operands[2].present = 0;
14026 inst.instruction = N_MNEM_vmovn;
14027 do_neon_movn ();
14028 return;
14029 }
5f4273c7 14030
5287ad62
JB
14031 constraint (imm < 1 || (unsigned)imm > et.size,
14032 _("immediate out of range for narrowing operation"));
14033 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14034}
14035
14036static void
14037do_neon_shll (void)
14038{
14039 /* FIXME: Type checking when lengthening. */
14040 struct neon_type_el et = neon_check_type (2, NS_QDI,
14041 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14042 unsigned imm = inst.operands[2].imm;
14043
14044 if (imm == et.size)
14045 {
14046 /* Maximum shift variant. */
88714cb8 14047 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14048 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14049 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14050 inst.instruction |= LOW4 (inst.operands[1].reg);
14051 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14052 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14053
88714cb8 14054 neon_dp_fixup (&inst);
5287ad62
JB
14055 }
14056 else
14057 {
14058 /* A more-specific type check for non-max versions. */
14059 et = neon_check_type (2, NS_QDI,
14060 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14061 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14062 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14063 }
14064}
14065
037e8744 14066/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14067 the current instruction is. */
14068
14069static int
14070neon_cvt_flavour (enum neon_shape rs)
14071{
037e8744
JB
14072#define CVT_VAR(C,X,Y) \
14073 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14074 if (et.type != NT_invtype) \
14075 { \
14076 inst.error = NULL; \
14077 return (C); \
5287ad62
JB
14078 }
14079 struct neon_type_el et;
037e8744
JB
14080 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14081 || rs == NS_FF) ? N_VFP : 0;
14082 /* The instruction versions which take an immediate take one register
14083 argument, which is extended to the width of the full register. Thus the
14084 "source" and "destination" registers must have the same width. Hack that
14085 here by making the size equal to the key (wider, in this case) operand. */
14086 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14087
5287ad62
JB
14088 CVT_VAR (0, N_S32, N_F32);
14089 CVT_VAR (1, N_U32, N_F32);
14090 CVT_VAR (2, N_F32, N_S32);
14091 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14092 /* Half-precision conversions. */
14093 CVT_VAR (4, N_F32, N_F16);
14094 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14095
037e8744 14096 whole_reg = N_VFP;
5f4273c7 14097
037e8744 14098 /* VFP instructions. */
8e79c3df
CM
14099 CVT_VAR (6, N_F32, N_F64);
14100 CVT_VAR (7, N_F64, N_F32);
14101 CVT_VAR (8, N_S32, N_F64 | key);
14102 CVT_VAR (9, N_U32, N_F64 | key);
14103 CVT_VAR (10, N_F64 | key, N_S32);
14104 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14105 /* VFP instructions with bitshift. */
8e79c3df
CM
14106 CVT_VAR (12, N_F32 | key, N_S16);
14107 CVT_VAR (13, N_F32 | key, N_U16);
14108 CVT_VAR (14, N_F64 | key, N_S16);
14109 CVT_VAR (15, N_F64 | key, N_U16);
14110 CVT_VAR (16, N_S16, N_F32 | key);
14111 CVT_VAR (17, N_U16, N_F32 | key);
14112 CVT_VAR (18, N_S16, N_F64 | key);
14113 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14114
5287ad62
JB
14115 return -1;
14116#undef CVT_VAR
14117}
14118
037e8744
JB
14119/* Neon-syntax VFP conversions. */
14120
5287ad62 14121static void
037e8744 14122do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14123{
037e8744 14124 const char *opname = 0;
5f4273c7 14125
037e8744 14126 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14127 {
037e8744
JB
14128 /* Conversions with immediate bitshift. */
14129 const char *enc[] =
14130 {
14131 "ftosls",
14132 "ftouls",
14133 "fsltos",
14134 "fultos",
14135 NULL,
14136 NULL,
8e79c3df
CM
14137 NULL,
14138 NULL,
037e8744
JB
14139 "ftosld",
14140 "ftould",
14141 "fsltod",
14142 "fultod",
14143 "fshtos",
14144 "fuhtos",
14145 "fshtod",
14146 "fuhtod",
14147 "ftoshs",
14148 "ftouhs",
14149 "ftoshd",
14150 "ftouhd"
14151 };
14152
14153 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14154 {
14155 opname = enc[flavour];
14156 constraint (inst.operands[0].reg != inst.operands[1].reg,
14157 _("operands 0 and 1 must be the same register"));
14158 inst.operands[1] = inst.operands[2];
14159 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14160 }
5287ad62
JB
14161 }
14162 else
14163 {
037e8744
JB
14164 /* Conversions without bitshift. */
14165 const char *enc[] =
14166 {
14167 "ftosis",
14168 "ftouis",
14169 "fsitos",
14170 "fuitos",
8e79c3df
CM
14171 "NULL",
14172 "NULL",
037e8744
JB
14173 "fcvtsd",
14174 "fcvtds",
14175 "ftosid",
14176 "ftouid",
14177 "fsitod",
14178 "fuitod"
14179 };
14180
14181 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14182 opname = enc[flavour];
14183 }
14184
14185 if (opname)
14186 do_vfp_nsyn_opcode (opname);
14187}
14188
14189static void
14190do_vfp_nsyn_cvtz (void)
14191{
14192 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14193 int flavour = neon_cvt_flavour (rs);
14194 const char *enc[] =
14195 {
14196 "ftosizs",
14197 "ftouizs",
14198 NULL,
14199 NULL,
14200 NULL,
14201 NULL,
8e79c3df
CM
14202 NULL,
14203 NULL,
037e8744
JB
14204 "ftosizd",
14205 "ftouizd"
14206 };
14207
14208 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14209 do_vfp_nsyn_opcode (enc[flavour]);
14210}
f31fef98 14211
037e8744 14212static void
e3e535bc 14213do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14214{
14215 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14216 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14217 int flavour = neon_cvt_flavour (rs);
14218
e3e535bc
NC
14219 /* PR11109: Handle round-to-zero for VCVT conversions. */
14220 if (round_to_zero
14221 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14222 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14223 && (rs == NS_FD || rs == NS_FF))
14224 {
14225 do_vfp_nsyn_cvtz ();
14226 return;
14227 }
14228
037e8744 14229 /* VFP rather than Neon conversions. */
8e79c3df 14230 if (flavour >= 6)
037e8744
JB
14231 {
14232 do_vfp_nsyn_cvt (rs, flavour);
14233 return;
14234 }
14235
14236 switch (rs)
14237 {
14238 case NS_DDI:
14239 case NS_QQI:
14240 {
35997600
NC
14241 unsigned immbits;
14242 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14243
037e8744
JB
14244 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14245 return;
14246
14247 /* Fixed-point conversion with #0 immediate is encoded as an
14248 integer conversion. */
14249 if (inst.operands[2].present && inst.operands[2].imm == 0)
14250 goto int_encode;
35997600 14251 immbits = 32 - inst.operands[2].imm;
88714cb8 14252 NEON_ENCODE (IMMED, inst);
037e8744
JB
14253 if (flavour != -1)
14254 inst.instruction |= enctab[flavour];
14255 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14256 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14257 inst.instruction |= LOW4 (inst.operands[1].reg);
14258 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14259 inst.instruction |= neon_quad (rs) << 6;
14260 inst.instruction |= 1 << 21;
14261 inst.instruction |= immbits << 16;
14262
88714cb8 14263 neon_dp_fixup (&inst);
037e8744
JB
14264 }
14265 break;
14266
14267 case NS_DD:
14268 case NS_QQ:
14269 int_encode:
14270 {
14271 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14272
88714cb8 14273 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14274
14275 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14276 return;
14277
14278 if (flavour != -1)
14279 inst.instruction |= enctab[flavour];
14280
14281 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14282 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14283 inst.instruction |= LOW4 (inst.operands[1].reg);
14284 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14285 inst.instruction |= neon_quad (rs) << 6;
14286 inst.instruction |= 2 << 18;
14287
88714cb8 14288 neon_dp_fixup (&inst);
037e8744
JB
14289 }
14290 break;
14291
8e79c3df
CM
14292 /* Half-precision conversions for Advanced SIMD -- neon. */
14293 case NS_QD:
14294 case NS_DQ:
14295
14296 if ((rs == NS_DQ)
14297 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14298 {
14299 as_bad (_("operand size must match register width"));
14300 break;
14301 }
14302
14303 if ((rs == NS_QD)
14304 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14305 {
14306 as_bad (_("operand size must match register width"));
14307 break;
14308 }
14309
14310 if (rs == NS_DQ)
14311 inst.instruction = 0x3b60600;
14312 else
14313 inst.instruction = 0x3b60700;
14314
14315 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14316 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14317 inst.instruction |= LOW4 (inst.operands[1].reg);
14318 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14319 neon_dp_fixup (&inst);
8e79c3df
CM
14320 break;
14321
037e8744
JB
14322 default:
14323 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14324 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14325 }
5287ad62
JB
14326}
14327
e3e535bc
NC
14328static void
14329do_neon_cvtr (void)
14330{
14331 do_neon_cvt_1 (FALSE);
14332}
14333
14334static void
14335do_neon_cvt (void)
14336{
14337 do_neon_cvt_1 (TRUE);
14338}
14339
8e79c3df
CM
14340static void
14341do_neon_cvtb (void)
14342{
14343 inst.instruction = 0xeb20a40;
14344
14345 /* The sizes are attached to the mnemonic. */
14346 if (inst.vectype.el[0].type != NT_invtype
14347 && inst.vectype.el[0].size == 16)
14348 inst.instruction |= 0x00010000;
14349
14350 /* Programmer's syntax: the sizes are attached to the operands. */
14351 else if (inst.operands[0].vectype.type != NT_invtype
14352 && inst.operands[0].vectype.size == 16)
14353 inst.instruction |= 0x00010000;
14354
14355 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14356 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14357 do_vfp_cond_or_thumb ();
14358}
14359
14360
14361static void
14362do_neon_cvtt (void)
14363{
14364 do_neon_cvtb ();
14365 inst.instruction |= 0x80;
14366}
14367
5287ad62
JB
14368static void
14369neon_move_immediate (void)
14370{
037e8744
JB
14371 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14372 struct neon_type_el et = neon_check_type (2, rs,
14373 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14374 unsigned immlo, immhi = 0, immbits;
c96612cc 14375 int op, cmode, float_p;
5287ad62 14376
037e8744
JB
14377 constraint (et.type == NT_invtype,
14378 _("operand size must be specified for immediate VMOV"));
14379
5287ad62
JB
14380 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14381 op = (inst.instruction & (1 << 5)) != 0;
14382
14383 immlo = inst.operands[1].imm;
14384 if (inst.operands[1].regisimm)
14385 immhi = inst.operands[1].reg;
14386
14387 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14388 _("immediate has bits set outside the operand size"));
14389
c96612cc
JB
14390 float_p = inst.operands[1].immisfloat;
14391
14392 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14393 et.size, et.type)) == FAIL)
5287ad62
JB
14394 {
14395 /* Invert relevant bits only. */
14396 neon_invert_size (&immlo, &immhi, et.size);
14397 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14398 with one or the other; those cases are caught by
14399 neon_cmode_for_move_imm. */
14400 op = !op;
c96612cc
JB
14401 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14402 &op, et.size, et.type)) == FAIL)
5287ad62 14403 {
dcbf9037 14404 first_error (_("immediate out of range"));
5287ad62
JB
14405 return;
14406 }
14407 }
14408
14409 inst.instruction &= ~(1 << 5);
14410 inst.instruction |= op << 5;
14411
14412 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14413 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14414 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14415 inst.instruction |= cmode << 8;
14416
14417 neon_write_immbits (immbits);
14418}
14419
14420static void
14421do_neon_mvn (void)
14422{
14423 if (inst.operands[1].isreg)
14424 {
037e8744 14425 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14426
88714cb8 14427 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14428 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14429 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14430 inst.instruction |= LOW4 (inst.operands[1].reg);
14431 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14432 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14433 }
14434 else
14435 {
88714cb8 14436 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14437 neon_move_immediate ();
14438 }
14439
88714cb8 14440 neon_dp_fixup (&inst);
5287ad62
JB
14441}
14442
14443/* Encode instructions of form:
14444
14445 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14446 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14447
14448static void
14449neon_mixed_length (struct neon_type_el et, unsigned size)
14450{
14451 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14452 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14453 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14454 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14455 inst.instruction |= LOW4 (inst.operands[2].reg);
14456 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14457 inst.instruction |= (et.type == NT_unsigned) << 24;
14458 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14459
88714cb8 14460 neon_dp_fixup (&inst);
5287ad62
JB
14461}
14462
14463static void
14464do_neon_dyadic_long (void)
14465{
14466 /* FIXME: Type checking for lengthening op. */
14467 struct neon_type_el et = neon_check_type (3, NS_QDD,
14468 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14469 neon_mixed_length (et, et.size);
14470}
14471
14472static void
14473do_neon_abal (void)
14474{
14475 struct neon_type_el et = neon_check_type (3, NS_QDD,
14476 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14477 neon_mixed_length (et, et.size);
14478}
14479
14480static void
14481neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14482{
14483 if (inst.operands[2].isscalar)
14484 {
dcbf9037
JB
14485 struct neon_type_el et = neon_check_type (3, NS_QDS,
14486 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14487 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14488 neon_mul_mac (et, et.type == NT_unsigned);
14489 }
14490 else
14491 {
14492 struct neon_type_el et = neon_check_type (3, NS_QDD,
14493 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14494 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14495 neon_mixed_length (et, et.size);
14496 }
14497}
14498
14499static void
14500do_neon_mac_maybe_scalar_long (void)
14501{
14502 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14503}
14504
14505static void
14506do_neon_dyadic_wide (void)
14507{
14508 struct neon_type_el et = neon_check_type (3, NS_QQD,
14509 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14510 neon_mixed_length (et, et.size);
14511}
14512
14513static void
14514do_neon_dyadic_narrow (void)
14515{
14516 struct neon_type_el et = neon_check_type (3, NS_QDD,
14517 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14518 /* Operand sign is unimportant, and the U bit is part of the opcode,
14519 so force the operand type to integer. */
14520 et.type = NT_integer;
5287ad62
JB
14521 neon_mixed_length (et, et.size / 2);
14522}
14523
14524static void
14525do_neon_mul_sat_scalar_long (void)
14526{
14527 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14528}
14529
14530static void
14531do_neon_vmull (void)
14532{
14533 if (inst.operands[2].isscalar)
14534 do_neon_mac_maybe_scalar_long ();
14535 else
14536 {
14537 struct neon_type_el et = neon_check_type (3, NS_QDD,
14538 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14539 if (et.type == NT_poly)
88714cb8 14540 NEON_ENCODE (POLY, inst);
5287ad62 14541 else
88714cb8 14542 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14543 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14544 zero. Should be OK as-is. */
14545 neon_mixed_length (et, et.size);
14546 }
14547}
14548
14549static void
14550do_neon_ext (void)
14551{
037e8744 14552 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14553 struct neon_type_el et = neon_check_type (3, rs,
14554 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14555 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14556
14557 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14558 _("shift out of range"));
5287ad62
JB
14559 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14560 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14561 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14562 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14563 inst.instruction |= LOW4 (inst.operands[2].reg);
14564 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14565 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14566 inst.instruction |= imm << 8;
5f4273c7 14567
88714cb8 14568 neon_dp_fixup (&inst);
5287ad62
JB
14569}
14570
14571static void
14572do_neon_rev (void)
14573{
037e8744 14574 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14575 struct neon_type_el et = neon_check_type (2, rs,
14576 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14577 unsigned op = (inst.instruction >> 7) & 3;
14578 /* N (width of reversed regions) is encoded as part of the bitmask. We
14579 extract it here to check the elements to be reversed are smaller.
14580 Otherwise we'd get a reserved instruction. */
14581 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14582 gas_assert (elsize != 0);
5287ad62
JB
14583 constraint (et.size >= elsize,
14584 _("elements must be smaller than reversal region"));
037e8744 14585 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14586}
14587
14588static void
14589do_neon_dup (void)
14590{
14591 if (inst.operands[1].isscalar)
14592 {
037e8744 14593 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14594 struct neon_type_el et = neon_check_type (2, rs,
14595 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14596 unsigned sizebits = et.size >> 3;
dcbf9037 14597 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14598 int logsize = neon_logbits (et.size);
dcbf9037 14599 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14600
14601 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14602 return;
14603
88714cb8 14604 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14606 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14607 inst.instruction |= LOW4 (dm);
14608 inst.instruction |= HI1 (dm) << 5;
037e8744 14609 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14610 inst.instruction |= x << 17;
14611 inst.instruction |= sizebits << 16;
5f4273c7 14612
88714cb8 14613 neon_dp_fixup (&inst);
5287ad62
JB
14614 }
14615 else
14616 {
037e8744
JB
14617 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14618 struct neon_type_el et = neon_check_type (2, rs,
14619 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14620 /* Duplicate ARM register to lanes of vector. */
88714cb8 14621 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14622 switch (et.size)
14623 {
14624 case 8: inst.instruction |= 0x400000; break;
14625 case 16: inst.instruction |= 0x000020; break;
14626 case 32: inst.instruction |= 0x000000; break;
14627 default: break;
14628 }
14629 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14630 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14631 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14632 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14633 /* The encoding for this instruction is identical for the ARM and Thumb
14634 variants, except for the condition field. */
037e8744 14635 do_vfp_cond_or_thumb ();
5287ad62
JB
14636 }
14637}
14638
14639/* VMOV has particularly many variations. It can be one of:
14640 0. VMOV<c><q> <Qd>, <Qm>
14641 1. VMOV<c><q> <Dd>, <Dm>
14642 (Register operations, which are VORR with Rm = Rn.)
14643 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14644 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14645 (Immediate loads.)
14646 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14647 (ARM register to scalar.)
14648 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14649 (Two ARM registers to vector.)
14650 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14651 (Scalar to ARM register.)
14652 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14653 (Vector to two ARM registers.)
037e8744
JB
14654 8. VMOV.F32 <Sd>, <Sm>
14655 9. VMOV.F64 <Dd>, <Dm>
14656 (VFP register moves.)
14657 10. VMOV.F32 <Sd>, #imm
14658 11. VMOV.F64 <Dd>, #imm
14659 (VFP float immediate load.)
14660 12. VMOV <Rd>, <Sm>
14661 (VFP single to ARM reg.)
14662 13. VMOV <Sd>, <Rm>
14663 (ARM reg to VFP single.)
14664 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14665 (Two ARM regs to two VFP singles.)
14666 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14667 (Two VFP singles to two ARM regs.)
5f4273c7 14668
037e8744
JB
14669 These cases can be disambiguated using neon_select_shape, except cases 1/9
14670 and 3/11 which depend on the operand type too.
5f4273c7 14671
5287ad62 14672 All the encoded bits are hardcoded by this function.
5f4273c7 14673
b7fc2769
JB
14674 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14675 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14676
5287ad62 14677 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14678 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14679
14680static void
14681do_neon_mov (void)
14682{
037e8744
JB
14683 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14684 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14685 NS_NULL);
14686 struct neon_type_el et;
14687 const char *ldconst = 0;
5287ad62 14688
037e8744 14689 switch (rs)
5287ad62 14690 {
037e8744
JB
14691 case NS_DD: /* case 1/9. */
14692 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14693 /* It is not an error here if no type is given. */
14694 inst.error = NULL;
14695 if (et.type == NT_float && et.size == 64)
5287ad62 14696 {
037e8744
JB
14697 do_vfp_nsyn_opcode ("fcpyd");
14698 break;
5287ad62 14699 }
037e8744 14700 /* fall through. */
5287ad62 14701
037e8744
JB
14702 case NS_QQ: /* case 0/1. */
14703 {
14704 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14705 return;
14706 /* The architecture manual I have doesn't explicitly state which
14707 value the U bit should have for register->register moves, but
14708 the equivalent VORR instruction has U = 0, so do that. */
14709 inst.instruction = 0x0200110;
14710 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14711 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14712 inst.instruction |= LOW4 (inst.operands[1].reg);
14713 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14714 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14715 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14716 inst.instruction |= neon_quad (rs) << 6;
14717
88714cb8 14718 neon_dp_fixup (&inst);
037e8744
JB
14719 }
14720 break;
5f4273c7 14721
037e8744
JB
14722 case NS_DI: /* case 3/11. */
14723 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14724 inst.error = NULL;
14725 if (et.type == NT_float && et.size == 64)
5287ad62 14726 {
037e8744
JB
14727 /* case 11 (fconstd). */
14728 ldconst = "fconstd";
14729 goto encode_fconstd;
5287ad62 14730 }
037e8744
JB
14731 /* fall through. */
14732
14733 case NS_QI: /* case 2/3. */
14734 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14735 return;
14736 inst.instruction = 0x0800010;
14737 neon_move_immediate ();
88714cb8 14738 neon_dp_fixup (&inst);
5287ad62 14739 break;
5f4273c7 14740
037e8744
JB
14741 case NS_SR: /* case 4. */
14742 {
14743 unsigned bcdebits = 0;
91d6fa6a 14744 int logsize;
037e8744
JB
14745 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14746 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14747
91d6fa6a
NC
14748 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14749 logsize = neon_logbits (et.size);
14750
037e8744
JB
14751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14752 _(BAD_FPU));
14753 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14754 && et.size != 32, _(BAD_FPU));
14755 constraint (et.type == NT_invtype, _("bad type for scalar"));
14756 constraint (x >= 64 / et.size, _("scalar index out of range"));
14757
14758 switch (et.size)
14759 {
14760 case 8: bcdebits = 0x8; break;
14761 case 16: bcdebits = 0x1; break;
14762 case 32: bcdebits = 0x0; break;
14763 default: ;
14764 }
14765
14766 bcdebits |= x << logsize;
14767
14768 inst.instruction = 0xe000b10;
14769 do_vfp_cond_or_thumb ();
14770 inst.instruction |= LOW4 (dn) << 16;
14771 inst.instruction |= HI1 (dn) << 7;
14772 inst.instruction |= inst.operands[1].reg << 12;
14773 inst.instruction |= (bcdebits & 3) << 5;
14774 inst.instruction |= (bcdebits >> 2) << 21;
14775 }
14776 break;
5f4273c7 14777
037e8744 14778 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14779 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14780 _(BAD_FPU));
b7fc2769 14781
037e8744
JB
14782 inst.instruction = 0xc400b10;
14783 do_vfp_cond_or_thumb ();
14784 inst.instruction |= LOW4 (inst.operands[0].reg);
14785 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14786 inst.instruction |= inst.operands[1].reg << 12;
14787 inst.instruction |= inst.operands[2].reg << 16;
14788 break;
5f4273c7 14789
037e8744
JB
14790 case NS_RS: /* case 6. */
14791 {
91d6fa6a 14792 unsigned logsize;
037e8744
JB
14793 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14794 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14795 unsigned abcdebits = 0;
14796
91d6fa6a
NC
14797 et = neon_check_type (2, NS_NULL,
14798 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14799 logsize = neon_logbits (et.size);
14800
037e8744
JB
14801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14802 _(BAD_FPU));
14803 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14804 && et.size != 32, _(BAD_FPU));
14805 constraint (et.type == NT_invtype, _("bad type for scalar"));
14806 constraint (x >= 64 / et.size, _("scalar index out of range"));
14807
14808 switch (et.size)
14809 {
14810 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14811 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14812 case 32: abcdebits = 0x00; break;
14813 default: ;
14814 }
14815
14816 abcdebits |= x << logsize;
14817 inst.instruction = 0xe100b10;
14818 do_vfp_cond_or_thumb ();
14819 inst.instruction |= LOW4 (dn) << 16;
14820 inst.instruction |= HI1 (dn) << 7;
14821 inst.instruction |= inst.operands[0].reg << 12;
14822 inst.instruction |= (abcdebits & 3) << 5;
14823 inst.instruction |= (abcdebits >> 2) << 21;
14824 }
14825 break;
5f4273c7 14826
037e8744
JB
14827 case NS_RRD: /* case 7 (fmrrd). */
14828 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14829 _(BAD_FPU));
14830
14831 inst.instruction = 0xc500b10;
14832 do_vfp_cond_or_thumb ();
14833 inst.instruction |= inst.operands[0].reg << 12;
14834 inst.instruction |= inst.operands[1].reg << 16;
14835 inst.instruction |= LOW4 (inst.operands[2].reg);
14836 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14837 break;
5f4273c7 14838
037e8744
JB
14839 case NS_FF: /* case 8 (fcpys). */
14840 do_vfp_nsyn_opcode ("fcpys");
14841 break;
5f4273c7 14842
037e8744
JB
14843 case NS_FI: /* case 10 (fconsts). */
14844 ldconst = "fconsts";
14845 encode_fconstd:
14846 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14847 {
037e8744
JB
14848 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14849 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14850 }
14851 else
037e8744
JB
14852 first_error (_("immediate out of range"));
14853 break;
5f4273c7 14854
037e8744
JB
14855 case NS_RF: /* case 12 (fmrs). */
14856 do_vfp_nsyn_opcode ("fmrs");
14857 break;
5f4273c7 14858
037e8744
JB
14859 case NS_FR: /* case 13 (fmsr). */
14860 do_vfp_nsyn_opcode ("fmsr");
14861 break;
5f4273c7 14862
037e8744
JB
14863 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14864 (one of which is a list), but we have parsed four. Do some fiddling to
14865 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14866 expect. */
14867 case NS_RRFF: /* case 14 (fmrrs). */
14868 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14869 _("VFP registers must be adjacent"));
14870 inst.operands[2].imm = 2;
14871 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14872 do_vfp_nsyn_opcode ("fmrrs");
14873 break;
5f4273c7 14874
037e8744
JB
14875 case NS_FFRR: /* case 15 (fmsrr). */
14876 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14877 _("VFP registers must be adjacent"));
14878 inst.operands[1] = inst.operands[2];
14879 inst.operands[2] = inst.operands[3];
14880 inst.operands[0].imm = 2;
14881 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14882 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14883 break;
5f4273c7 14884
5287ad62
JB
14885 default:
14886 abort ();
14887 }
14888}
14889
14890static void
14891do_neon_rshift_round_imm (void)
14892{
037e8744 14893 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14894 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14895 int imm = inst.operands[2].imm;
14896
14897 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14898 if (imm == 0)
14899 {
14900 inst.operands[2].present = 0;
14901 do_neon_mov ();
14902 return;
14903 }
14904
14905 constraint (imm < 1 || (unsigned)imm > et.size,
14906 _("immediate out of range for shift"));
037e8744 14907 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14908 et.size - imm);
14909}
14910
14911static void
14912do_neon_movl (void)
14913{
14914 struct neon_type_el et = neon_check_type (2, NS_QD,
14915 N_EQK | N_DBL, N_SU_32 | N_KEY);
14916 unsigned sizebits = et.size >> 3;
14917 inst.instruction |= sizebits << 19;
14918 neon_two_same (0, et.type == NT_unsigned, -1);
14919}
14920
14921static void
14922do_neon_trn (void)
14923{
037e8744 14924 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14925 struct neon_type_el et = neon_check_type (2, rs,
14926 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14927 NEON_ENCODE (INTEGER, inst);
037e8744 14928 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14929}
14930
14931static void
14932do_neon_zip_uzp (void)
14933{
037e8744 14934 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14935 struct neon_type_el et = neon_check_type (2, rs,
14936 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14937 if (rs == NS_DD && et.size == 32)
14938 {
14939 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14940 inst.instruction = N_MNEM_vtrn;
14941 do_neon_trn ();
14942 return;
14943 }
037e8744 14944 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14945}
14946
14947static void
14948do_neon_sat_abs_neg (void)
14949{
037e8744 14950 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14951 struct neon_type_el et = neon_check_type (2, rs,
14952 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14953 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14954}
14955
14956static void
14957do_neon_pair_long (void)
14958{
037e8744 14959 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14960 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14961 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14962 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14963 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14964}
14965
14966static void
14967do_neon_recip_est (void)
14968{
037e8744 14969 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14970 struct neon_type_el et = neon_check_type (2, rs,
14971 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14972 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14973 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14974}
14975
14976static void
14977do_neon_cls (void)
14978{
037e8744 14979 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14980 struct neon_type_el et = neon_check_type (2, rs,
14981 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14982 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14983}
14984
14985static void
14986do_neon_clz (void)
14987{
037e8744 14988 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14989 struct neon_type_el et = neon_check_type (2, rs,
14990 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14991 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14992}
14993
14994static void
14995do_neon_cnt (void)
14996{
037e8744 14997 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14998 struct neon_type_el et = neon_check_type (2, rs,
14999 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15000 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15001}
15002
15003static void
15004do_neon_swp (void)
15005{
037e8744
JB
15006 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15007 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15008}
15009
15010static void
15011do_neon_tbl_tbx (void)
15012{
15013 unsigned listlenbits;
dcbf9037 15014 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15015
5287ad62
JB
15016 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15017 {
dcbf9037 15018 first_error (_("bad list length for table lookup"));
5287ad62
JB
15019 return;
15020 }
5f4273c7 15021
5287ad62
JB
15022 listlenbits = inst.operands[1].imm - 1;
15023 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15024 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15025 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15026 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15027 inst.instruction |= LOW4 (inst.operands[2].reg);
15028 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15029 inst.instruction |= listlenbits << 8;
5f4273c7 15030
88714cb8 15031 neon_dp_fixup (&inst);
5287ad62
JB
15032}
15033
15034static void
15035do_neon_ldm_stm (void)
15036{
15037 /* P, U and L bits are part of bitmask. */
15038 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15039 unsigned offsetbits = inst.operands[1].imm * 2;
15040
037e8744
JB
15041 if (inst.operands[1].issingle)
15042 {
15043 do_vfp_nsyn_ldm_stm (is_dbmode);
15044 return;
15045 }
15046
5287ad62
JB
15047 constraint (is_dbmode && !inst.operands[0].writeback,
15048 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15049
15050 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15051 _("register list must contain at least 1 and at most 16 "
15052 "registers"));
15053
15054 inst.instruction |= inst.operands[0].reg << 16;
15055 inst.instruction |= inst.operands[0].writeback << 21;
15056 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15057 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15058
15059 inst.instruction |= offsetbits;
5f4273c7 15060
037e8744 15061 do_vfp_cond_or_thumb ();
5287ad62
JB
15062}
15063
15064static void
15065do_neon_ldr_str (void)
15066{
5287ad62 15067 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15068
6844b2c2
MGD
15069 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15070 And is UNPREDICTABLE in thumb mode. */
15071 if (!is_ldr
15072 && inst.operands[1].reg == REG_PC
15073 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15074 {
15075 if (!thumb_mode && warn_on_deprecated)
15076 as_warn (_("Use of PC here is deprecated"));
15077 else
15078 inst.error = _("Use of PC here is UNPREDICTABLE");
15079 }
15080
037e8744
JB
15081 if (inst.operands[0].issingle)
15082 {
cd2f129f
JB
15083 if (is_ldr)
15084 do_vfp_nsyn_opcode ("flds");
15085 else
15086 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15087 }
15088 else
5287ad62 15089 {
cd2f129f
JB
15090 if (is_ldr)
15091 do_vfp_nsyn_opcode ("fldd");
5287ad62 15092 else
cd2f129f 15093 do_vfp_nsyn_opcode ("fstd");
5287ad62 15094 }
5287ad62
JB
15095}
15096
15097/* "interleave" version also handles non-interleaving register VLD1/VST1
15098 instructions. */
15099
15100static void
15101do_neon_ld_st_interleave (void)
15102{
037e8744 15103 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15104 N_8 | N_16 | N_32 | N_64);
15105 unsigned alignbits = 0;
15106 unsigned idx;
15107 /* The bits in this table go:
15108 0: register stride of one (0) or two (1)
15109 1,2: register list length, minus one (1, 2, 3, 4).
15110 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15111 We use -1 for invalid entries. */
15112 const int typetable[] =
15113 {
15114 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15115 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15116 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15117 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15118 };
15119 int typebits;
15120
dcbf9037
JB
15121 if (et.type == NT_invtype)
15122 return;
15123
5287ad62
JB
15124 if (inst.operands[1].immisalign)
15125 switch (inst.operands[1].imm >> 8)
15126 {
15127 case 64: alignbits = 1; break;
15128 case 128:
e23c0ad8
JZ
15129 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15130 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15131 goto bad_alignment;
15132 alignbits = 2;
15133 break;
15134 case 256:
e23c0ad8 15135 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15136 goto bad_alignment;
15137 alignbits = 3;
15138 break;
15139 default:
15140 bad_alignment:
dcbf9037 15141 first_error (_("bad alignment"));
5287ad62
JB
15142 return;
15143 }
15144
15145 inst.instruction |= alignbits << 4;
15146 inst.instruction |= neon_logbits (et.size) << 6;
15147
15148 /* Bits [4:6] of the immediate in a list specifier encode register stride
15149 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15150 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15151 up the right value for "type" in a table based on this value and the given
15152 list style, then stick it back. */
15153 idx = ((inst.operands[0].imm >> 4) & 7)
15154 | (((inst.instruction >> 8) & 3) << 3);
15155
15156 typebits = typetable[idx];
5f4273c7 15157
5287ad62
JB
15158 constraint (typebits == -1, _("bad list type for instruction"));
15159
15160 inst.instruction &= ~0xf00;
15161 inst.instruction |= typebits << 8;
15162}
15163
15164/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15165 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15166 otherwise. The variable arguments are a list of pairs of legal (size, align)
15167 values, terminated with -1. */
15168
15169static int
15170neon_alignment_bit (int size, int align, int *do_align, ...)
15171{
15172 va_list ap;
15173 int result = FAIL, thissize, thisalign;
5f4273c7 15174
5287ad62
JB
15175 if (!inst.operands[1].immisalign)
15176 {
15177 *do_align = 0;
15178 return SUCCESS;
15179 }
5f4273c7 15180
5287ad62
JB
15181 va_start (ap, do_align);
15182
15183 do
15184 {
15185 thissize = va_arg (ap, int);
15186 if (thissize == -1)
15187 break;
15188 thisalign = va_arg (ap, int);
15189
15190 if (size == thissize && align == thisalign)
15191 result = SUCCESS;
15192 }
15193 while (result != SUCCESS);
15194
15195 va_end (ap);
15196
15197 if (result == SUCCESS)
15198 *do_align = 1;
15199 else
dcbf9037 15200 first_error (_("unsupported alignment for instruction"));
5f4273c7 15201
5287ad62
JB
15202 return result;
15203}
15204
15205static void
15206do_neon_ld_st_lane (void)
15207{
037e8744 15208 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15209 int align_good, do_align = 0;
15210 int logsize = neon_logbits (et.size);
15211 int align = inst.operands[1].imm >> 8;
15212 int n = (inst.instruction >> 8) & 3;
15213 int max_el = 64 / et.size;
5f4273c7 15214
dcbf9037
JB
15215 if (et.type == NT_invtype)
15216 return;
5f4273c7 15217
5287ad62
JB
15218 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15219 _("bad list length"));
15220 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15221 _("scalar index out of range"));
15222 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15223 && et.size == 8,
15224 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15225
5287ad62
JB
15226 switch (n)
15227 {
15228 case 0: /* VLD1 / VST1. */
15229 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15230 32, 32, -1);
15231 if (align_good == FAIL)
15232 return;
15233 if (do_align)
15234 {
15235 unsigned alignbits = 0;
15236 switch (et.size)
15237 {
15238 case 16: alignbits = 0x1; break;
15239 case 32: alignbits = 0x3; break;
15240 default: ;
15241 }
15242 inst.instruction |= alignbits << 4;
15243 }
15244 break;
15245
15246 case 1: /* VLD2 / VST2. */
15247 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15248 32, 64, -1);
15249 if (align_good == FAIL)
15250 return;
15251 if (do_align)
15252 inst.instruction |= 1 << 4;
15253 break;
15254
15255 case 2: /* VLD3 / VST3. */
15256 constraint (inst.operands[1].immisalign,
15257 _("can't use alignment with this instruction"));
15258 break;
15259
15260 case 3: /* VLD4 / VST4. */
15261 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15262 16, 64, 32, 64, 32, 128, -1);
15263 if (align_good == FAIL)
15264 return;
15265 if (do_align)
15266 {
15267 unsigned alignbits = 0;
15268 switch (et.size)
15269 {
15270 case 8: alignbits = 0x1; break;
15271 case 16: alignbits = 0x1; break;
15272 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15273 default: ;
15274 }
15275 inst.instruction |= alignbits << 4;
15276 }
15277 break;
15278
15279 default: ;
15280 }
15281
15282 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15283 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15284 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15285
5287ad62
JB
15286 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15287 inst.instruction |= logsize << 10;
15288}
15289
15290/* Encode single n-element structure to all lanes VLD<n> instructions. */
15291
15292static void
15293do_neon_ld_dup (void)
15294{
037e8744 15295 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15296 int align_good, do_align = 0;
15297
dcbf9037
JB
15298 if (et.type == NT_invtype)
15299 return;
15300
5287ad62
JB
15301 switch ((inst.instruction >> 8) & 3)
15302 {
15303 case 0: /* VLD1. */
9c2799c2 15304 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15305 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15306 &do_align, 16, 16, 32, 32, -1);
15307 if (align_good == FAIL)
15308 return;
15309 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15310 {
15311 case 1: break;
15312 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15313 default: first_error (_("bad list length")); return;
5287ad62
JB
15314 }
15315 inst.instruction |= neon_logbits (et.size) << 6;
15316 break;
15317
15318 case 1: /* VLD2. */
15319 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15320 &do_align, 8, 16, 16, 32, 32, 64, -1);
15321 if (align_good == FAIL)
15322 return;
15323 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15324 _("bad list length"));
15325 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15326 inst.instruction |= 1 << 5;
15327 inst.instruction |= neon_logbits (et.size) << 6;
15328 break;
15329
15330 case 2: /* VLD3. */
15331 constraint (inst.operands[1].immisalign,
15332 _("can't use alignment with this instruction"));
15333 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15334 _("bad list length"));
15335 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15336 inst.instruction |= 1 << 5;
15337 inst.instruction |= neon_logbits (et.size) << 6;
15338 break;
15339
15340 case 3: /* VLD4. */
15341 {
15342 int align = inst.operands[1].imm >> 8;
15343 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15344 16, 64, 32, 64, 32, 128, -1);
15345 if (align_good == FAIL)
15346 return;
15347 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15348 _("bad list length"));
15349 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15350 inst.instruction |= 1 << 5;
15351 if (et.size == 32 && align == 128)
15352 inst.instruction |= 0x3 << 6;
15353 else
15354 inst.instruction |= neon_logbits (et.size) << 6;
15355 }
15356 break;
15357
15358 default: ;
15359 }
15360
15361 inst.instruction |= do_align << 4;
15362}
15363
15364/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15365 apart from bits [11:4]. */
15366
15367static void
15368do_neon_ldx_stx (void)
15369{
b1a769ed
DG
15370 if (inst.operands[1].isreg)
15371 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15372
5287ad62
JB
15373 switch (NEON_LANE (inst.operands[0].imm))
15374 {
15375 case NEON_INTERLEAVE_LANES:
88714cb8 15376 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15377 do_neon_ld_st_interleave ();
15378 break;
5f4273c7 15379
5287ad62 15380 case NEON_ALL_LANES:
88714cb8 15381 NEON_ENCODE (DUP, inst);
5287ad62
JB
15382 do_neon_ld_dup ();
15383 break;
5f4273c7 15384
5287ad62 15385 default:
88714cb8 15386 NEON_ENCODE (LANE, inst);
5287ad62
JB
15387 do_neon_ld_st_lane ();
15388 }
15389
15390 /* L bit comes from bit mask. */
15391 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15392 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15393 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15394
5287ad62
JB
15395 if (inst.operands[1].postind)
15396 {
15397 int postreg = inst.operands[1].imm & 0xf;
15398 constraint (!inst.operands[1].immisreg,
15399 _("post-index must be a register"));
15400 constraint (postreg == 0xd || postreg == 0xf,
15401 _("bad register for post-index"));
15402 inst.instruction |= postreg;
15403 }
15404 else if (inst.operands[1].writeback)
15405 {
15406 inst.instruction |= 0xd;
15407 }
15408 else
5f4273c7
NC
15409 inst.instruction |= 0xf;
15410
5287ad62
JB
15411 if (thumb_mode)
15412 inst.instruction |= 0xf9000000;
15413 else
15414 inst.instruction |= 0xf4000000;
15415}
5287ad62
JB
15416\f
15417/* Overall per-instruction processing. */
15418
15419/* We need to be able to fix up arbitrary expressions in some statements.
15420 This is so that we can handle symbols that are an arbitrary distance from
15421 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15422 which returns part of an address in a form which will be valid for
15423 a data instruction. We do this by pushing the expression into a symbol
15424 in the expr_section, and creating a fix for that. */
15425
15426static void
15427fix_new_arm (fragS * frag,
15428 int where,
15429 short int size,
15430 expressionS * exp,
15431 int pc_rel,
15432 int reloc)
15433{
15434 fixS * new_fix;
15435
15436 switch (exp->X_op)
15437 {
15438 case O_constant:
6e7ce2cd
PB
15439 if (pc_rel)
15440 {
15441 /* Create an absolute valued symbol, so we have something to
15442 refer to in the object file. Unfortunately for us, gas's
15443 generic expression parsing will already have folded out
15444 any use of .set foo/.type foo %function that may have
15445 been used to set type information of the target location,
15446 that's being specified symbolically. We have to presume
15447 the user knows what they are doing. */
15448 char name[16 + 8];
15449 symbolS *symbol;
15450
15451 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15452
15453 symbol = symbol_find_or_make (name);
15454 S_SET_SEGMENT (symbol, absolute_section);
15455 symbol_set_frag (symbol, &zero_address_frag);
15456 S_SET_VALUE (symbol, exp->X_add_number);
15457 exp->X_op = O_symbol;
15458 exp->X_add_symbol = symbol;
15459 exp->X_add_number = 0;
15460 }
15461 /* FALLTHROUGH */
5287ad62
JB
15462 case O_symbol:
15463 case O_add:
15464 case O_subtract:
21d799b5
NC
15465 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15466 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15467 break;
15468
15469 default:
21d799b5
NC
15470 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15471 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15472 break;
15473 }
15474
15475 /* Mark whether the fix is to a THUMB instruction, or an ARM
15476 instruction. */
15477 new_fix->tc_fix_data = thumb_mode;
15478}
15479
15480/* Create a frg for an instruction requiring relaxation. */
15481static void
15482output_relax_insn (void)
15483{
15484 char * to;
15485 symbolS *sym;
0110f2b8
PB
15486 int offset;
15487
6e1cb1a6
PB
15488 /* The size of the instruction is unknown, so tie the debug info to the
15489 start of the instruction. */
15490 dwarf2_emit_insn (0);
6e1cb1a6 15491
0110f2b8
PB
15492 switch (inst.reloc.exp.X_op)
15493 {
15494 case O_symbol:
15495 sym = inst.reloc.exp.X_add_symbol;
15496 offset = inst.reloc.exp.X_add_number;
15497 break;
15498 case O_constant:
15499 sym = NULL;
15500 offset = inst.reloc.exp.X_add_number;
15501 break;
15502 default:
15503 sym = make_expr_symbol (&inst.reloc.exp);
15504 offset = 0;
15505 break;
15506 }
15507 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15508 inst.relax, sym, offset, NULL/*offset, opcode*/);
15509 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15510}
15511
15512/* Write a 32-bit thumb instruction to buf. */
15513static void
15514put_thumb32_insn (char * buf, unsigned long insn)
15515{
15516 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15517 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15518}
15519
b99bd4ef 15520static void
c19d1205 15521output_inst (const char * str)
b99bd4ef 15522{
c19d1205 15523 char * to = NULL;
b99bd4ef 15524
c19d1205 15525 if (inst.error)
b99bd4ef 15526 {
c19d1205 15527 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15528 return;
15529 }
5f4273c7
NC
15530 if (inst.relax)
15531 {
15532 output_relax_insn ();
0110f2b8 15533 return;
5f4273c7 15534 }
c19d1205
ZW
15535 if (inst.size == 0)
15536 return;
b99bd4ef 15537
c19d1205 15538 to = frag_more (inst.size);
8dc2430f
NC
15539 /* PR 9814: Record the thumb mode into the current frag so that we know
15540 what type of NOP padding to use, if necessary. We override any previous
15541 setting so that if the mode has changed then the NOPS that we use will
15542 match the encoding of the last instruction in the frag. */
cd000bff 15543 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15544
15545 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15546 {
9c2799c2 15547 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15548 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15549 }
c19d1205 15550 else if (inst.size > INSN_SIZE)
b99bd4ef 15551 {
9c2799c2 15552 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15553 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15554 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15555 }
c19d1205
ZW
15556 else
15557 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15558
c19d1205
ZW
15559 if (inst.reloc.type != BFD_RELOC_UNUSED)
15560 fix_new_arm (frag_now, to - frag_now->fr_literal,
15561 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15562 inst.reloc.type);
b99bd4ef 15563
c19d1205 15564 dwarf2_emit_insn (inst.size);
c19d1205 15565}
b99bd4ef 15566
e07e6e58
NC
15567static char *
15568output_it_inst (int cond, int mask, char * to)
15569{
15570 unsigned long instruction = 0xbf00;
15571
15572 mask &= 0xf;
15573 instruction |= mask;
15574 instruction |= cond << 4;
15575
15576 if (to == NULL)
15577 {
15578 to = frag_more (2);
15579#ifdef OBJ_ELF
15580 dwarf2_emit_insn (2);
15581#endif
15582 }
15583
15584 md_number_to_chars (to, instruction, 2);
15585
15586 return to;
15587}
15588
c19d1205
ZW
15589/* Tag values used in struct asm_opcode's tag field. */
15590enum opcode_tag
15591{
15592 OT_unconditional, /* Instruction cannot be conditionalized.
15593 The ARM condition field is still 0xE. */
15594 OT_unconditionalF, /* Instruction cannot be conditionalized
15595 and carries 0xF in its ARM condition field. */
15596 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15597 OT_csuffixF, /* Some forms of the instruction take a conditional
15598 suffix, others place 0xF where the condition field
15599 would be. */
c19d1205
ZW
15600 OT_cinfix3, /* Instruction takes a conditional infix,
15601 beginning at character index 3. (In
15602 unified mode, it becomes a suffix.) */
088fa78e
KH
15603 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15604 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15605 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15606 character index 3, even in unified mode. Used for
15607 legacy instructions where suffix and infix forms
15608 may be ambiguous. */
c19d1205 15609 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15610 suffix or an infix at character index 3. */
c19d1205
ZW
15611 OT_odd_infix_unc, /* This is the unconditional variant of an
15612 instruction that takes a conditional infix
15613 at an unusual position. In unified mode,
15614 this variant will accept a suffix. */
15615 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15616 are the conditional variants of instructions that
15617 take conditional infixes in unusual positions.
15618 The infix appears at character index
15619 (tag - OT_odd_infix_0). These are not accepted
15620 in unified mode. */
15621};
b99bd4ef 15622
c19d1205
ZW
15623/* Subroutine of md_assemble, responsible for looking up the primary
15624 opcode from the mnemonic the user wrote. STR points to the
15625 beginning of the mnemonic.
15626
15627 This is not simply a hash table lookup, because of conditional
15628 variants. Most instructions have conditional variants, which are
15629 expressed with a _conditional affix_ to the mnemonic. If we were
15630 to encode each conditional variant as a literal string in the opcode
15631 table, it would have approximately 20,000 entries.
15632
15633 Most mnemonics take this affix as a suffix, and in unified syntax,
15634 'most' is upgraded to 'all'. However, in the divided syntax, some
15635 instructions take the affix as an infix, notably the s-variants of
15636 the arithmetic instructions. Of those instructions, all but six
15637 have the infix appear after the third character of the mnemonic.
15638
15639 Accordingly, the algorithm for looking up primary opcodes given
15640 an identifier is:
15641
15642 1. Look up the identifier in the opcode table.
15643 If we find a match, go to step U.
15644
15645 2. Look up the last two characters of the identifier in the
15646 conditions table. If we find a match, look up the first N-2
15647 characters of the identifier in the opcode table. If we
15648 find a match, go to step CE.
15649
15650 3. Look up the fourth and fifth characters of the identifier in
15651 the conditions table. If we find a match, extract those
15652 characters from the identifier, and look up the remaining
15653 characters in the opcode table. If we find a match, go
15654 to step CM.
15655
15656 4. Fail.
15657
15658 U. Examine the tag field of the opcode structure, in case this is
15659 one of the six instructions with its conditional infix in an
15660 unusual place. If it is, the tag tells us where to find the
15661 infix; look it up in the conditions table and set inst.cond
15662 accordingly. Otherwise, this is an unconditional instruction.
15663 Again set inst.cond accordingly. Return the opcode structure.
15664
15665 CE. Examine the tag field to make sure this is an instruction that
15666 should receive a conditional suffix. If it is not, fail.
15667 Otherwise, set inst.cond from the suffix we already looked up,
15668 and return the opcode structure.
15669
15670 CM. Examine the tag field to make sure this is an instruction that
15671 should receive a conditional infix after the third character.
15672 If it is not, fail. Otherwise, undo the edits to the current
15673 line of input and proceed as for case CE. */
15674
15675static const struct asm_opcode *
15676opcode_lookup (char **str)
15677{
15678 char *end, *base;
15679 char *affix;
15680 const struct asm_opcode *opcode;
15681 const struct asm_cond *cond;
e3cb604e 15682 char save[2];
c19d1205
ZW
15683
15684 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15685 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15686 for (base = end = *str; *end != '\0'; end++)
721a8186 15687 if (*end == ' ' || *end == '.')
c19d1205 15688 break;
b99bd4ef 15689
c19d1205 15690 if (end == base)
c921be7d 15691 return NULL;
b99bd4ef 15692
5287ad62 15693 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15694 if (end[0] == '.')
b99bd4ef 15695 {
5287ad62 15696 int offset = 2;
5f4273c7 15697
267d2029
JB
15698 /* The .w and .n suffixes are only valid if the unified syntax is in
15699 use. */
15700 if (unified_syntax && end[1] == 'w')
c19d1205 15701 inst.size_req = 4;
267d2029 15702 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15703 inst.size_req = 2;
15704 else
5287ad62
JB
15705 offset = 0;
15706
15707 inst.vectype.elems = 0;
15708
15709 *str = end + offset;
b99bd4ef 15710
5f4273c7 15711 if (end[offset] == '.')
5287ad62 15712 {
267d2029
JB
15713 /* See if we have a Neon type suffix (possible in either unified or
15714 non-unified ARM syntax mode). */
dcbf9037 15715 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15716 return NULL;
5287ad62
JB
15717 }
15718 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15719 return NULL;
b99bd4ef 15720 }
c19d1205
ZW
15721 else
15722 *str = end;
b99bd4ef 15723
c19d1205 15724 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15725 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15726 end - base);
c19d1205 15727 if (opcode)
b99bd4ef 15728 {
c19d1205
ZW
15729 /* step U */
15730 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15731 {
c19d1205
ZW
15732 inst.cond = COND_ALWAYS;
15733 return opcode;
b99bd4ef 15734 }
b99bd4ef 15735
278df34e 15736 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15737 as_warn (_("conditional infixes are deprecated in unified syntax"));
15738 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15739 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15740 gas_assert (cond);
b99bd4ef 15741
c19d1205
ZW
15742 inst.cond = cond->value;
15743 return opcode;
15744 }
b99bd4ef 15745
c19d1205
ZW
15746 /* Cannot have a conditional suffix on a mnemonic of less than two
15747 characters. */
15748 if (end - base < 3)
c921be7d 15749 return NULL;
b99bd4ef 15750
c19d1205
ZW
15751 /* Look for suffixed mnemonic. */
15752 affix = end - 2;
21d799b5
NC
15753 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15754 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15755 affix - base);
c19d1205
ZW
15756 if (opcode && cond)
15757 {
15758 /* step CE */
15759 switch (opcode->tag)
15760 {
e3cb604e
PB
15761 case OT_cinfix3_legacy:
15762 /* Ignore conditional suffixes matched on infix only mnemonics. */
15763 break;
15764
c19d1205 15765 case OT_cinfix3:
088fa78e 15766 case OT_cinfix3_deprecated:
c19d1205
ZW
15767 case OT_odd_infix_unc:
15768 if (!unified_syntax)
e3cb604e 15769 return 0;
c19d1205
ZW
15770 /* else fall through */
15771
15772 case OT_csuffix:
037e8744 15773 case OT_csuffixF:
c19d1205
ZW
15774 case OT_csuf_or_in3:
15775 inst.cond = cond->value;
15776 return opcode;
15777
15778 case OT_unconditional:
15779 case OT_unconditionalF:
dfa9f0d5 15780 if (thumb_mode)
c921be7d 15781 inst.cond = cond->value;
dfa9f0d5
PB
15782 else
15783 {
c921be7d 15784 /* Delayed diagnostic. */
dfa9f0d5
PB
15785 inst.error = BAD_COND;
15786 inst.cond = COND_ALWAYS;
15787 }
c19d1205 15788 return opcode;
b99bd4ef 15789
c19d1205 15790 default:
c921be7d 15791 return NULL;
c19d1205
ZW
15792 }
15793 }
b99bd4ef 15794
c19d1205
ZW
15795 /* Cannot have a usual-position infix on a mnemonic of less than
15796 six characters (five would be a suffix). */
15797 if (end - base < 6)
c921be7d 15798 return NULL;
b99bd4ef 15799
c19d1205
ZW
15800 /* Look for infixed mnemonic in the usual position. */
15801 affix = base + 3;
21d799b5 15802 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15803 if (!cond)
c921be7d 15804 return NULL;
e3cb604e
PB
15805
15806 memcpy (save, affix, 2);
15807 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15808 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15809 (end - base) - 2);
e3cb604e
PB
15810 memmove (affix + 2, affix, (end - affix) - 2);
15811 memcpy (affix, save, 2);
15812
088fa78e
KH
15813 if (opcode
15814 && (opcode->tag == OT_cinfix3
15815 || opcode->tag == OT_cinfix3_deprecated
15816 || opcode->tag == OT_csuf_or_in3
15817 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15818 {
c921be7d 15819 /* Step CM. */
278df34e 15820 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15821 && (opcode->tag == OT_cinfix3
15822 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15823 as_warn (_("conditional infixes are deprecated in unified syntax"));
15824
15825 inst.cond = cond->value;
15826 return opcode;
b99bd4ef
NC
15827 }
15828
c921be7d 15829 return NULL;
b99bd4ef
NC
15830}
15831
e07e6e58
NC
15832/* This function generates an initial IT instruction, leaving its block
15833 virtually open for the new instructions. Eventually,
15834 the mask will be updated by now_it_add_mask () each time
15835 a new instruction needs to be included in the IT block.
15836 Finally, the block is closed with close_automatic_it_block ().
15837 The block closure can be requested either from md_assemble (),
15838 a tencode (), or due to a label hook. */
15839
15840static void
15841new_automatic_it_block (int cond)
15842{
15843 now_it.state = AUTOMATIC_IT_BLOCK;
15844 now_it.mask = 0x18;
15845 now_it.cc = cond;
15846 now_it.block_length = 1;
cd000bff 15847 mapping_state (MAP_THUMB);
e07e6e58
NC
15848 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15849}
15850
15851/* Close an automatic IT block.
15852 See comments in new_automatic_it_block (). */
15853
15854static void
15855close_automatic_it_block (void)
15856{
15857 now_it.mask = 0x10;
15858 now_it.block_length = 0;
15859}
15860
15861/* Update the mask of the current automatically-generated IT
15862 instruction. See comments in new_automatic_it_block (). */
15863
15864static void
15865now_it_add_mask (int cond)
15866{
15867#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15868#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15869 | ((bitvalue) << (nbit)))
e07e6e58 15870 const int resulting_bit = (cond & 1);
c921be7d 15871
e07e6e58
NC
15872 now_it.mask &= 0xf;
15873 now_it.mask = SET_BIT_VALUE (now_it.mask,
15874 resulting_bit,
15875 (5 - now_it.block_length));
15876 now_it.mask = SET_BIT_VALUE (now_it.mask,
15877 1,
15878 ((5 - now_it.block_length) - 1) );
15879 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15880
15881#undef CLEAR_BIT
15882#undef SET_BIT_VALUE
e07e6e58
NC
15883}
15884
15885/* The IT blocks handling machinery is accessed through the these functions:
15886 it_fsm_pre_encode () from md_assemble ()
15887 set_it_insn_type () optional, from the tencode functions
15888 set_it_insn_type_last () ditto
15889 in_it_block () ditto
15890 it_fsm_post_encode () from md_assemble ()
15891 force_automatic_it_block_close () from label habdling functions
15892
15893 Rationale:
15894 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15895 initializing the IT insn type with a generic initial value depending
15896 on the inst.condition.
15897 2) During the tencode function, two things may happen:
15898 a) The tencode function overrides the IT insn type by
15899 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15900 b) The tencode function queries the IT block state by
15901 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15902
15903 Both set_it_insn_type and in_it_block run the internal FSM state
15904 handling function (handle_it_state), because: a) setting the IT insn
15905 type may incur in an invalid state (exiting the function),
15906 and b) querying the state requires the FSM to be updated.
15907 Specifically we want to avoid creating an IT block for conditional
15908 branches, so it_fsm_pre_encode is actually a guess and we can't
15909 determine whether an IT block is required until the tencode () routine
15910 has decided what type of instruction this actually it.
15911 Because of this, if set_it_insn_type and in_it_block have to be used,
15912 set_it_insn_type has to be called first.
15913
15914 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15915 determines the insn IT type depending on the inst.cond code.
15916 When a tencode () routine encodes an instruction that can be
15917 either outside an IT block, or, in the case of being inside, has to be
15918 the last one, set_it_insn_type_last () will determine the proper
15919 IT instruction type based on the inst.cond code. Otherwise,
15920 set_it_insn_type can be called for overriding that logic or
15921 for covering other cases.
15922
15923 Calling handle_it_state () may not transition the IT block state to
15924 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15925 still queried. Instead, if the FSM determines that the state should
15926 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15927 after the tencode () function: that's what it_fsm_post_encode () does.
15928
15929 Since in_it_block () calls the state handling function to get an
15930 updated state, an error may occur (due to invalid insns combination).
15931 In that case, inst.error is set.
15932 Therefore, inst.error has to be checked after the execution of
15933 the tencode () routine.
15934
15935 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15936 any pending state change (if any) that didn't take place in
15937 handle_it_state () as explained above. */
15938
15939static void
15940it_fsm_pre_encode (void)
15941{
15942 if (inst.cond != COND_ALWAYS)
15943 inst.it_insn_type = INSIDE_IT_INSN;
15944 else
15945 inst.it_insn_type = OUTSIDE_IT_INSN;
15946
15947 now_it.state_handled = 0;
15948}
15949
15950/* IT state FSM handling function. */
15951
15952static int
15953handle_it_state (void)
15954{
15955 now_it.state_handled = 1;
15956
15957 switch (now_it.state)
15958 {
15959 case OUTSIDE_IT_BLOCK:
15960 switch (inst.it_insn_type)
15961 {
15962 case OUTSIDE_IT_INSN:
15963 break;
15964
15965 case INSIDE_IT_INSN:
15966 case INSIDE_IT_LAST_INSN:
15967 if (thumb_mode == 0)
15968 {
c921be7d 15969 if (unified_syntax
e07e6e58
NC
15970 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15971 as_tsktsk (_("Warning: conditional outside an IT block"\
15972 " for Thumb."));
15973 }
15974 else
15975 {
15976 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15977 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15978 {
15979 /* Automatically generate the IT instruction. */
15980 new_automatic_it_block (inst.cond);
15981 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15982 close_automatic_it_block ();
15983 }
15984 else
15985 {
15986 inst.error = BAD_OUT_IT;
15987 return FAIL;
15988 }
15989 }
15990 break;
15991
15992 case IF_INSIDE_IT_LAST_INSN:
15993 case NEUTRAL_IT_INSN:
15994 break;
15995
15996 case IT_INSN:
15997 now_it.state = MANUAL_IT_BLOCK;
15998 now_it.block_length = 0;
15999 break;
16000 }
16001 break;
16002
16003 case AUTOMATIC_IT_BLOCK:
16004 /* Three things may happen now:
16005 a) We should increment current it block size;
16006 b) We should close current it block (closing insn or 4 insns);
16007 c) We should close current it block and start a new one (due
16008 to incompatible conditions or
16009 4 insns-length block reached). */
16010
16011 switch (inst.it_insn_type)
16012 {
16013 case OUTSIDE_IT_INSN:
16014 /* The closure of the block shall happen immediatelly,
16015 so any in_it_block () call reports the block as closed. */
16016 force_automatic_it_block_close ();
16017 break;
16018
16019 case INSIDE_IT_INSN:
16020 case INSIDE_IT_LAST_INSN:
16021 case IF_INSIDE_IT_LAST_INSN:
16022 now_it.block_length++;
16023
16024 if (now_it.block_length > 4
16025 || !now_it_compatible (inst.cond))
16026 {
16027 force_automatic_it_block_close ();
16028 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16029 new_automatic_it_block (inst.cond);
16030 }
16031 else
16032 {
16033 now_it_add_mask (inst.cond);
16034 }
16035
16036 if (now_it.state == AUTOMATIC_IT_BLOCK
16037 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16038 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16039 close_automatic_it_block ();
16040 break;
16041
16042 case NEUTRAL_IT_INSN:
16043 now_it.block_length++;
16044
16045 if (now_it.block_length > 4)
16046 force_automatic_it_block_close ();
16047 else
16048 now_it_add_mask (now_it.cc & 1);
16049 break;
16050
16051 case IT_INSN:
16052 close_automatic_it_block ();
16053 now_it.state = MANUAL_IT_BLOCK;
16054 break;
16055 }
16056 break;
16057
16058 case MANUAL_IT_BLOCK:
16059 {
16060 /* Check conditional suffixes. */
16061 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16062 int is_last;
16063 now_it.mask <<= 1;
16064 now_it.mask &= 0x1f;
16065 is_last = (now_it.mask == 0x10);
16066
16067 switch (inst.it_insn_type)
16068 {
16069 case OUTSIDE_IT_INSN:
16070 inst.error = BAD_NOT_IT;
16071 return FAIL;
16072
16073 case INSIDE_IT_INSN:
16074 if (cond != inst.cond)
16075 {
16076 inst.error = BAD_IT_COND;
16077 return FAIL;
16078 }
16079 break;
16080
16081 case INSIDE_IT_LAST_INSN:
16082 case IF_INSIDE_IT_LAST_INSN:
16083 if (cond != inst.cond)
16084 {
16085 inst.error = BAD_IT_COND;
16086 return FAIL;
16087 }
16088 if (!is_last)
16089 {
16090 inst.error = BAD_BRANCH;
16091 return FAIL;
16092 }
16093 break;
16094
16095 case NEUTRAL_IT_INSN:
16096 /* The BKPT instruction is unconditional even in an IT block. */
16097 break;
16098
16099 case IT_INSN:
16100 inst.error = BAD_IT_IT;
16101 return FAIL;
16102 }
16103 }
16104 break;
16105 }
16106
16107 return SUCCESS;
16108}
16109
16110static void
16111it_fsm_post_encode (void)
16112{
16113 int is_last;
16114
16115 if (!now_it.state_handled)
16116 handle_it_state ();
16117
16118 is_last = (now_it.mask == 0x10);
16119 if (is_last)
16120 {
16121 now_it.state = OUTSIDE_IT_BLOCK;
16122 now_it.mask = 0;
16123 }
16124}
16125
16126static void
16127force_automatic_it_block_close (void)
16128{
16129 if (now_it.state == AUTOMATIC_IT_BLOCK)
16130 {
16131 close_automatic_it_block ();
16132 now_it.state = OUTSIDE_IT_BLOCK;
16133 now_it.mask = 0;
16134 }
16135}
16136
16137static int
16138in_it_block (void)
16139{
16140 if (!now_it.state_handled)
16141 handle_it_state ();
16142
16143 return now_it.state != OUTSIDE_IT_BLOCK;
16144}
16145
c19d1205
ZW
16146void
16147md_assemble (char *str)
b99bd4ef 16148{
c19d1205
ZW
16149 char *p = str;
16150 const struct asm_opcode * opcode;
b99bd4ef 16151
c19d1205
ZW
16152 /* Align the previous label if needed. */
16153 if (last_label_seen != NULL)
b99bd4ef 16154 {
c19d1205
ZW
16155 symbol_set_frag (last_label_seen, frag_now);
16156 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16157 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16158 }
16159
c19d1205
ZW
16160 memset (&inst, '\0', sizeof (inst));
16161 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16162
c19d1205
ZW
16163 opcode = opcode_lookup (&p);
16164 if (!opcode)
b99bd4ef 16165 {
c19d1205 16166 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16167 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16168 if (! create_register_alias (str, p)
16169 && ! create_neon_reg_alias (str, p))
c19d1205 16170 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16171
b99bd4ef
NC
16172 return;
16173 }
16174
278df34e 16175 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16176 as_warn (_("s suffix on comparison instruction is deprecated"));
16177
037e8744
JB
16178 /* The value which unconditional instructions should have in place of the
16179 condition field. */
16180 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16181
c19d1205 16182 if (thumb_mode)
b99bd4ef 16183 {
e74cfd16 16184 arm_feature_set variant;
8f06b2d8
PB
16185
16186 variant = cpu_variant;
16187 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16188 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16189 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16190 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16191 if (!opcode->tvariant
16192 || (thumb_mode == 1
16193 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16194 {
bf3eeda7 16195 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16196 return;
16197 }
c19d1205
ZW
16198 if (inst.cond != COND_ALWAYS && !unified_syntax
16199 && opcode->tencode != do_t_branch)
b99bd4ef 16200 {
c19d1205 16201 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16202 return;
16203 }
16204
752d5da4 16205 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16206 {
7e806470 16207 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16208 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16209 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16210 {
16211 /* Two things are addressed here.
16212 1) Implicit require narrow instructions on Thumb-1.
16213 This avoids relaxation accidentally introducing Thumb-2
16214 instructions.
16215 2) Reject wide instructions in non Thumb-2 cores. */
16216 if (inst.size_req == 0)
16217 inst.size_req = 2;
16218 else if (inst.size_req == 4)
16219 {
bf3eeda7 16220 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16221 return;
16222 }
16223 }
076d447c
PB
16224 }
16225
c19d1205
ZW
16226 inst.instruction = opcode->tvalue;
16227
5be8be5d 16228 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16229 {
16230 /* Prepare the it_insn_type for those encodings that don't set
16231 it. */
16232 it_fsm_pre_encode ();
c19d1205 16233
e07e6e58
NC
16234 opcode->tencode ();
16235
16236 it_fsm_post_encode ();
16237 }
e27ec89e 16238
0110f2b8 16239 if (!(inst.error || inst.relax))
b99bd4ef 16240 {
9c2799c2 16241 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16242 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16243 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16244 {
c19d1205 16245 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16246 return;
16247 }
16248 }
076d447c
PB
16249
16250 /* Something has gone badly wrong if we try to relax a fixed size
16251 instruction. */
9c2799c2 16252 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16253
e74cfd16
PB
16254 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16255 *opcode->tvariant);
ee065d83 16256 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16257 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16258 anything other than bl/blx and v6-M instructions.
ee065d83 16259 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16260 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16261 || inst.relax)
e07e6e58
NC
16262 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16263 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16264 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16265 arm_ext_v6t2);
cd000bff 16266
88714cb8
DG
16267 check_neon_suffixes;
16268
cd000bff 16269 if (!inst.error)
c877a2f2
NC
16270 {
16271 mapping_state (MAP_THUMB);
16272 }
c19d1205 16273 }
3e9e4fcf 16274 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16275 {
845b51d6
PB
16276 bfd_boolean is_bx;
16277
16278 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16279 is_bx = (opcode->aencode == do_bx);
16280
c19d1205 16281 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16282 if (!(is_bx && fix_v4bx)
16283 && !(opcode->avariant &&
16284 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16285 {
bf3eeda7 16286 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16287 return;
b99bd4ef 16288 }
c19d1205 16289 if (inst.size_req)
b99bd4ef 16290 {
c19d1205
ZW
16291 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16292 return;
b99bd4ef
NC
16293 }
16294
c19d1205
ZW
16295 inst.instruction = opcode->avalue;
16296 if (opcode->tag == OT_unconditionalF)
16297 inst.instruction |= 0xF << 28;
16298 else
16299 inst.instruction |= inst.cond << 28;
16300 inst.size = INSN_SIZE;
5be8be5d 16301 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16302 {
16303 it_fsm_pre_encode ();
16304 opcode->aencode ();
16305 it_fsm_post_encode ();
16306 }
ee065d83
PB
16307 /* Arm mode bx is marked as both v4T and v5 because it's still required
16308 on a hypothetical non-thumb v5 core. */
845b51d6 16309 if (is_bx)
e74cfd16 16310 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16311 else
e74cfd16
PB
16312 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16313 *opcode->avariant);
88714cb8
DG
16314
16315 check_neon_suffixes;
16316
cd000bff 16317 if (!inst.error)
c877a2f2
NC
16318 {
16319 mapping_state (MAP_ARM);
16320 }
b99bd4ef 16321 }
3e9e4fcf
JB
16322 else
16323 {
16324 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16325 "-- `%s'"), str);
16326 return;
16327 }
c19d1205
ZW
16328 output_inst (str);
16329}
b99bd4ef 16330
e07e6e58
NC
16331static void
16332check_it_blocks_finished (void)
16333{
16334#ifdef OBJ_ELF
16335 asection *sect;
16336
16337 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16338 if (seg_info (sect)->tc_segment_info_data.current_it.state
16339 == MANUAL_IT_BLOCK)
16340 {
16341 as_warn (_("section '%s' finished with an open IT block."),
16342 sect->name);
16343 }
16344#else
16345 if (now_it.state == MANUAL_IT_BLOCK)
16346 as_warn (_("file finished with an open IT block."));
16347#endif
16348}
16349
c19d1205
ZW
16350/* Various frobbings of labels and their addresses. */
16351
16352void
16353arm_start_line_hook (void)
16354{
16355 last_label_seen = NULL;
b99bd4ef
NC
16356}
16357
c19d1205
ZW
16358void
16359arm_frob_label (symbolS * sym)
b99bd4ef 16360{
c19d1205 16361 last_label_seen = sym;
b99bd4ef 16362
c19d1205 16363 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16364
c19d1205
ZW
16365#if defined OBJ_COFF || defined OBJ_ELF
16366 ARM_SET_INTERWORK (sym, support_interwork);
16367#endif
b99bd4ef 16368
e07e6e58
NC
16369 force_automatic_it_block_close ();
16370
5f4273c7 16371 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16372 as Thumb functions. This is because these labels, whilst
16373 they exist inside Thumb code, are not the entry points for
16374 possible ARM->Thumb calls. Also, these labels can be used
16375 as part of a computed goto or switch statement. eg gcc
16376 can generate code that looks like this:
b99bd4ef 16377
c19d1205
ZW
16378 ldr r2, [pc, .Laaa]
16379 lsl r3, r3, #2
16380 ldr r2, [r3, r2]
16381 mov pc, r2
b99bd4ef 16382
c19d1205
ZW
16383 .Lbbb: .word .Lxxx
16384 .Lccc: .word .Lyyy
16385 ..etc...
16386 .Laaa: .word Lbbb
b99bd4ef 16387
c19d1205
ZW
16388 The first instruction loads the address of the jump table.
16389 The second instruction converts a table index into a byte offset.
16390 The third instruction gets the jump address out of the table.
16391 The fourth instruction performs the jump.
b99bd4ef 16392
c19d1205
ZW
16393 If the address stored at .Laaa is that of a symbol which has the
16394 Thumb_Func bit set, then the linker will arrange for this address
16395 to have the bottom bit set, which in turn would mean that the
16396 address computation performed by the third instruction would end
16397 up with the bottom bit set. Since the ARM is capable of unaligned
16398 word loads, the instruction would then load the incorrect address
16399 out of the jump table, and chaos would ensue. */
16400 if (label_is_thumb_function_name
16401 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16402 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16403 {
c19d1205
ZW
16404 /* When the address of a Thumb function is taken the bottom
16405 bit of that address should be set. This will allow
16406 interworking between Arm and Thumb functions to work
16407 correctly. */
b99bd4ef 16408
c19d1205 16409 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16410
c19d1205 16411 label_is_thumb_function_name = FALSE;
b99bd4ef 16412 }
07a53e5c 16413
07a53e5c 16414 dwarf2_emit_label (sym);
b99bd4ef
NC
16415}
16416
c921be7d 16417bfd_boolean
c19d1205 16418arm_data_in_code (void)
b99bd4ef 16419{
c19d1205 16420 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16421 {
c19d1205
ZW
16422 *input_line_pointer = '/';
16423 input_line_pointer += 5;
16424 *input_line_pointer = 0;
c921be7d 16425 return TRUE;
b99bd4ef
NC
16426 }
16427
c921be7d 16428 return FALSE;
b99bd4ef
NC
16429}
16430
c19d1205
ZW
16431char *
16432arm_canonicalize_symbol_name (char * name)
b99bd4ef 16433{
c19d1205 16434 int len;
b99bd4ef 16435
c19d1205
ZW
16436 if (thumb_mode && (len = strlen (name)) > 5
16437 && streq (name + len - 5, "/data"))
16438 *(name + len - 5) = 0;
b99bd4ef 16439
c19d1205 16440 return name;
b99bd4ef 16441}
c19d1205
ZW
16442\f
16443/* Table of all register names defined by default. The user can
16444 define additional names with .req. Note that all register names
16445 should appear in both upper and lowercase variants. Some registers
16446 also have mixed-case names. */
b99bd4ef 16447
dcbf9037 16448#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16449#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16450#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16451#define REGSET(p,t) \
16452 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16453 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16454 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16455 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16456#define REGSETH(p,t) \
16457 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16458 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16459 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16460 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16461#define REGSET2(p,t) \
16462 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16463 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16464 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16465 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16466#define SPLRBANK(base,bank,t) \
16467 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16468 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16469 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16470 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16471 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16472 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16473
c19d1205 16474static const struct reg_entry reg_names[] =
7ed4c4c5 16475{
c19d1205
ZW
16476 /* ARM integer registers. */
16477 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16478
c19d1205
ZW
16479 /* ATPCS synonyms. */
16480 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16481 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16482 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16483
c19d1205
ZW
16484 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16485 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16486 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16487
c19d1205
ZW
16488 /* Well-known aliases. */
16489 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16490 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16491
16492 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16493 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16494
16495 /* Coprocessor numbers. */
16496 REGSET(p, CP), REGSET(P, CP),
16497
16498 /* Coprocessor register numbers. The "cr" variants are for backward
16499 compatibility. */
16500 REGSET(c, CN), REGSET(C, CN),
16501 REGSET(cr, CN), REGSET(CR, CN),
16502
90ec0d68
MGD
16503 /* ARM banked registers. */
16504 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16505 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16506 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16507 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16508 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16509 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16510 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16511
16512 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16513 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16514 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16515 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16516 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16517 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16518 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16519 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16520
16521 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16522 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16523 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16524 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16525 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16526 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16527 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16528 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16529 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16530
c19d1205
ZW
16531 /* FPA registers. */
16532 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16533 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16534
16535 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16536 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16537
16538 /* VFP SP registers. */
5287ad62
JB
16539 REGSET(s,VFS), REGSET(S,VFS),
16540 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16541
16542 /* VFP DP Registers. */
5287ad62
JB
16543 REGSET(d,VFD), REGSET(D,VFD),
16544 /* Extra Neon DP registers. */
16545 REGSETH(d,VFD), REGSETH(D,VFD),
16546
16547 /* Neon QP registers. */
16548 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16549
16550 /* VFP control registers. */
16551 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16552 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16553 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16554 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16555 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16556 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16557
16558 /* Maverick DSP coprocessor registers. */
16559 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16560 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16561
16562 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16563 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16564 REGDEF(dspsc,0,DSPSC),
16565
16566 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16567 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16568 REGDEF(DSPSC,0,DSPSC),
16569
16570 /* iWMMXt data registers - p0, c0-15. */
16571 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16572
16573 /* iWMMXt control registers - p1, c0-3. */
16574 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16575 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16576 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16577 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16578
16579 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16580 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16581 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16582 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16583 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16584
16585 /* XScale accumulator registers. */
16586 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16587};
16588#undef REGDEF
16589#undef REGNUM
16590#undef REGSET
7ed4c4c5 16591
c19d1205
ZW
16592/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16593 within psr_required_here. */
16594static const struct asm_psr psrs[] =
16595{
16596 /* Backward compatibility notation. Note that "all" is no longer
16597 truly all possible PSR bits. */
16598 {"all", PSR_c | PSR_f},
16599 {"flg", PSR_f},
16600 {"ctl", PSR_c},
16601
16602 /* Individual flags. */
16603 {"f", PSR_f},
16604 {"c", PSR_c},
16605 {"x", PSR_x},
16606 {"s", PSR_s},
59b42a0d 16607
c19d1205
ZW
16608 /* Combinations of flags. */
16609 {"fs", PSR_f | PSR_s},
16610 {"fx", PSR_f | PSR_x},
16611 {"fc", PSR_f | PSR_c},
16612 {"sf", PSR_s | PSR_f},
16613 {"sx", PSR_s | PSR_x},
16614 {"sc", PSR_s | PSR_c},
16615 {"xf", PSR_x | PSR_f},
16616 {"xs", PSR_x | PSR_s},
16617 {"xc", PSR_x | PSR_c},
16618 {"cf", PSR_c | PSR_f},
16619 {"cs", PSR_c | PSR_s},
16620 {"cx", PSR_c | PSR_x},
16621 {"fsx", PSR_f | PSR_s | PSR_x},
16622 {"fsc", PSR_f | PSR_s | PSR_c},
16623 {"fxs", PSR_f | PSR_x | PSR_s},
16624 {"fxc", PSR_f | PSR_x | PSR_c},
16625 {"fcs", PSR_f | PSR_c | PSR_s},
16626 {"fcx", PSR_f | PSR_c | PSR_x},
16627 {"sfx", PSR_s | PSR_f | PSR_x},
16628 {"sfc", PSR_s | PSR_f | PSR_c},
16629 {"sxf", PSR_s | PSR_x | PSR_f},
16630 {"sxc", PSR_s | PSR_x | PSR_c},
16631 {"scf", PSR_s | PSR_c | PSR_f},
16632 {"scx", PSR_s | PSR_c | PSR_x},
16633 {"xfs", PSR_x | PSR_f | PSR_s},
16634 {"xfc", PSR_x | PSR_f | PSR_c},
16635 {"xsf", PSR_x | PSR_s | PSR_f},
16636 {"xsc", PSR_x | PSR_s | PSR_c},
16637 {"xcf", PSR_x | PSR_c | PSR_f},
16638 {"xcs", PSR_x | PSR_c | PSR_s},
16639 {"cfs", PSR_c | PSR_f | PSR_s},
16640 {"cfx", PSR_c | PSR_f | PSR_x},
16641 {"csf", PSR_c | PSR_s | PSR_f},
16642 {"csx", PSR_c | PSR_s | PSR_x},
16643 {"cxf", PSR_c | PSR_x | PSR_f},
16644 {"cxs", PSR_c | PSR_x | PSR_s},
16645 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16646 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16647 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16648 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16649 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16650 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16651 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16652 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16653 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16654 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16655 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16656 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16657 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16658 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16659 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16660 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16661 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16662 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16663 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16664 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16665 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16666 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16667 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16668 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16669};
16670
62b3e311
PB
16671/* Table of V7M psr names. */
16672static const struct asm_psr v7m_psrs[] =
16673{
2b744c99
PB
16674 {"apsr", 0 }, {"APSR", 0 },
16675 {"iapsr", 1 }, {"IAPSR", 1 },
16676 {"eapsr", 2 }, {"EAPSR", 2 },
16677 {"psr", 3 }, {"PSR", 3 },
16678 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16679 {"ipsr", 5 }, {"IPSR", 5 },
16680 {"epsr", 6 }, {"EPSR", 6 },
16681 {"iepsr", 7 }, {"IEPSR", 7 },
16682 {"msp", 8 }, {"MSP", 8 },
16683 {"psp", 9 }, {"PSP", 9 },
16684 {"primask", 16}, {"PRIMASK", 16},
16685 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16686 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16687 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16688 {"faultmask", 19}, {"FAULTMASK", 19},
16689 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16690};
16691
c19d1205
ZW
16692/* Table of all shift-in-operand names. */
16693static const struct asm_shift_name shift_names [] =
b99bd4ef 16694{
c19d1205
ZW
16695 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16696 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16697 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16698 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16699 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16700 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16701};
b99bd4ef 16702
c19d1205
ZW
16703/* Table of all explicit relocation names. */
16704#ifdef OBJ_ELF
16705static struct reloc_entry reloc_names[] =
16706{
16707 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16708 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16709 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16710 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16711 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16712 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16713 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16714 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16715 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16716 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16717 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16718 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16719 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16720 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16721 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16722 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16723 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16724 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16725};
16726#endif
b99bd4ef 16727
c19d1205
ZW
16728/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16729static const struct asm_cond conds[] =
16730{
16731 {"eq", 0x0},
16732 {"ne", 0x1},
16733 {"cs", 0x2}, {"hs", 0x2},
16734 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16735 {"mi", 0x4},
16736 {"pl", 0x5},
16737 {"vs", 0x6},
16738 {"vc", 0x7},
16739 {"hi", 0x8},
16740 {"ls", 0x9},
16741 {"ge", 0xa},
16742 {"lt", 0xb},
16743 {"gt", 0xc},
16744 {"le", 0xd},
16745 {"al", 0xe}
16746};
bfae80f2 16747
62b3e311
PB
16748static struct asm_barrier_opt barrier_opt_names[] =
16749{
52e7f43d
RE
16750 { "sy", 0xf }, { "SY", 0xf },
16751 { "un", 0x7 }, { "UN", 0x7 },
16752 { "st", 0xe }, { "ST", 0xe },
16753 { "unst", 0x6 }, { "UNST", 0x6 },
16754 { "ish", 0xb }, { "ISH", 0xb },
16755 { "sh", 0xb }, { "SH", 0xb },
16756 { "ishst", 0xa }, { "ISHST", 0xa },
16757 { "shst", 0xa }, { "SHST", 0xa },
16758 { "nsh", 0x7 }, { "NSH", 0x7 },
16759 { "nshst", 0x6 }, { "NSHST", 0x6 },
16760 { "osh", 0x3 }, { "OSH", 0x3 },
16761 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16762};
16763
c19d1205
ZW
16764/* Table of ARM-format instructions. */
16765
16766/* Macros for gluing together operand strings. N.B. In all cases
16767 other than OPS0, the trailing OP_stop comes from default
16768 zero-initialization of the unspecified elements of the array. */
16769#define OPS0() { OP_stop, }
16770#define OPS1(a) { OP_##a, }
16771#define OPS2(a,b) { OP_##a,OP_##b, }
16772#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16773#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16774#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16775#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16776
5be8be5d
DG
16777/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16778 This is useful when mixing operands for ARM and THUMB, i.e. using the
16779 MIX_ARM_THUMB_OPERANDS macro.
16780 In order to use these macros, prefix the number of operands with _
16781 e.g. _3. */
16782#define OPS_1(a) { a, }
16783#define OPS_2(a,b) { a,b, }
16784#define OPS_3(a,b,c) { a,b,c, }
16785#define OPS_4(a,b,c,d) { a,b,c,d, }
16786#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16787#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16788
c19d1205
ZW
16789/* These macros abstract out the exact format of the mnemonic table and
16790 save some repeated characters. */
16791
16792/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16793#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16794 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16795 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16796
16797/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16798 a T_MNEM_xyz enumerator. */
16799#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16800 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16801#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16802 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16803
16804/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16805 infix after the third character. */
16806#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16807 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16808 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16809#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16810 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16811 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16812#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16813 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16814#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16815 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16816#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16817 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16818#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16819 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16820
16821/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16822 appear in the condition table. */
16823#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16824 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16825 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16826
16827#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16828 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16829 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16830 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16831 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16832 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16833 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16834 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16835 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16836 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16837 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16838 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16839 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16840 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16841 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16842 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16843 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16844 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16845 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16846 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16847
16848#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16849 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16850#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16851 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16852
16853/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16854 field is still 0xE. Many of the Thumb variants can be executed
16855 conditionally, so this is checked separately. */
c19d1205 16856#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16857 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16858 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16859
16860/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16861 condition code field. */
16862#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16863 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16864 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16865
16866/* ARM-only variants of all the above. */
6a86118a 16867#define CE(mnem, op, nops, ops, ae) \
21d799b5 16868 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16869
16870#define C3(mnem, op, nops, ops, ae) \
16871 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16872
e3cb604e
PB
16873/* Legacy mnemonics that always have conditional infix after the third
16874 character. */
16875#define CL(mnem, op, nops, ops, ae) \
21d799b5 16876 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16877 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16878
8f06b2d8
PB
16879/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16880#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16881 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16882
e3cb604e
PB
16883/* Legacy coprocessor instructions where conditional infix and conditional
16884 suffix are ambiguous. For consistency this includes all FPA instructions,
16885 not just the potentially ambiguous ones. */
16886#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16887 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16888 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16889
16890/* Coprocessor, takes either a suffix or a position-3 infix
16891 (for an FPA corner case). */
16892#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16893 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16894 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16895
6a86118a 16896#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16897 { m1 #m2 m3, OPS##nops ops, \
16898 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16899 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16900
16901#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16902 xCM_ (m1, , m2, op, nops, ops, ae), \
16903 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16904 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16905 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16906 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16907 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16908 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16909 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16910 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16911 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16912 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16913 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16914 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16915 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16916 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16917 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16918 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16919 xCM_ (m1, le, m2, op, nops, ops, ae), \
16920 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16921
16922#define UE(mnem, op, nops, ops, ae) \
16923 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16924
16925#define UF(mnem, op, nops, ops, ae) \
16926 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16927
5287ad62
JB
16928/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16929 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16930 use the same encoding function for each. */
16931#define NUF(mnem, op, nops, ops, enc) \
16932 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16933 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16934
16935/* Neon data processing, version which indirects through neon_enc_tab for
16936 the various overloaded versions of opcodes. */
16937#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16938 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16939 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16940
16941/* Neon insn with conditional suffix for the ARM version, non-overloaded
16942 version. */
037e8744
JB
16943#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16944 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16945 THUMB_VARIANT, do_##enc, do_##enc }
16946
037e8744 16947#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16948 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16949
16950#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16951 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16952
5287ad62 16953/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16954#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16955 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16956 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16957
037e8744 16958#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16959 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16960
16961#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16962 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16963
c19d1205
ZW
16964#define do_0 0
16965
c19d1205 16966static const struct asm_opcode insns[] =
bfae80f2 16967{
e74cfd16
PB
16968#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16969#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16970 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16971 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16972 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16973 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16974 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16975 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16976 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16977 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16978 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16979 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16980 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16981 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16982 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16983 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16984 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16985 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16986
16987 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16988 for setting PSR flag bits. They are obsolete in V6 and do not
16989 have Thumb equivalents. */
21d799b5
NC
16990 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16991 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16992 CL("tstp", 110f000, 2, (RR, SH), cmp),
16993 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16994 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16995 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16996 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16997 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16998 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16999
17000 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17001 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17002 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17003 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17004
17005 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17006 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17007 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17008 OP_RRnpc),
17009 OP_ADDRGLDR),ldst, t_ldst),
17010 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17011
17012 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17013 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17014 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17015 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17016 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17017 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17018
17019 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17020 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17021 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17022 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17023
c19d1205 17024 /* Pseudo ops. */
21d799b5 17025 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17026 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17027 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17028
17029 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17030 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17031 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17032 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17033 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17034 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17035 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17036 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17037 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17038 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17039 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17040 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17041 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17042
16a4cf17 17043 /* These may simplify to neg. */
21d799b5
NC
17044 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17045 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17046
c921be7d
NC
17047#undef THUMB_VARIANT
17048#define THUMB_VARIANT & arm_ext_v6
17049
21d799b5 17050 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17051
17052 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17053#undef THUMB_VARIANT
17054#define THUMB_VARIANT & arm_ext_v6t2
17055
21d799b5
NC
17056 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17057 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17058 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17059
5be8be5d
DG
17060 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17061 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17062 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17063 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17064
21d799b5
NC
17065 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17066 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17067
21d799b5
NC
17068 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17069 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17070
17071 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17072 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17073 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17074
17075 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17076 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17077 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17078 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17079 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17080 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17081 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17082 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17083
c921be7d
NC
17084#undef ARM_VARIANT
17085#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17086#undef THUMB_VARIANT
17087#define THUMB_VARIANT & arm_ext_v4t
17088
21d799b5
NC
17089 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17090 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17091
c921be7d
NC
17092#undef THUMB_VARIANT
17093#define THUMB_VARIANT & arm_ext_v6t2
17094
21d799b5 17095 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17096 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17097
17098 /* Generic coprocessor instructions. */
21d799b5
NC
17099 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17100 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17101 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17102 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17103 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17104 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17105 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17106
c921be7d
NC
17107#undef ARM_VARIANT
17108#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17109
21d799b5 17110 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17111 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17112
c921be7d
NC
17113#undef ARM_VARIANT
17114#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17115#undef THUMB_VARIANT
17116#define THUMB_VARIANT & arm_ext_msr
17117
d2cd1205
JB
17118 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17119 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17120
c921be7d
NC
17121#undef ARM_VARIANT
17122#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17123#undef THUMB_VARIANT
17124#define THUMB_VARIANT & arm_ext_v6t2
17125
21d799b5
NC
17126 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17127 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17128 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17129 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17130 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17131 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17132 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17133 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17134
c921be7d
NC
17135#undef ARM_VARIANT
17136#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17137#undef THUMB_VARIANT
17138#define THUMB_VARIANT & arm_ext_v4t
17139
5be8be5d
DG
17140 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17141 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17142 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17143 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17144 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17145 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17146
c921be7d
NC
17147#undef ARM_VARIANT
17148#define ARM_VARIANT & arm_ext_v4t_5
17149
c19d1205
ZW
17150 /* ARM Architecture 4T. */
17151 /* Note: bx (and blx) are required on V5, even if the processor does
17152 not support Thumb. */
21d799b5 17153 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17154
c921be7d
NC
17155#undef ARM_VARIANT
17156#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17157#undef THUMB_VARIANT
17158#define THUMB_VARIANT & arm_ext_v5t
17159
c19d1205
ZW
17160 /* Note: blx has 2 variants; the .value coded here is for
17161 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17162 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17163 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17164
c921be7d
NC
17165#undef THUMB_VARIANT
17166#define THUMB_VARIANT & arm_ext_v6t2
17167
21d799b5
NC
17168 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17169 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17170 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17171 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17172 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17173 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17174 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17175 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17176
c921be7d
NC
17177#undef ARM_VARIANT
17178#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17179#undef THUMB_VARIANT
17180#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17181
21d799b5
NC
17182 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17183 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17184 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17185 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17186
21d799b5
NC
17187 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17188 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17189
21d799b5
NC
17190 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17191 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17192 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17193 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17194
21d799b5
NC
17195 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17196 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17197 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17198 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17199
21d799b5
NC
17200 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17201 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17202
03ee1b7f
NC
17203 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17204 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17205 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17206 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17207
c921be7d
NC
17208#undef ARM_VARIANT
17209#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17210#undef THUMB_VARIANT
17211#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17212
21d799b5 17213 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17214 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17215 ldrd, t_ldstd),
17216 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17217 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17218
21d799b5
NC
17219 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17220 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17221
c921be7d
NC
17222#undef ARM_VARIANT
17223#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17224
21d799b5 17225 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17226
c921be7d
NC
17227#undef ARM_VARIANT
17228#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17229#undef THUMB_VARIANT
17230#define THUMB_VARIANT & arm_ext_v6
17231
21d799b5
NC
17232 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17233 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17234 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17235 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17236 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17237 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17238 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17239 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17240 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17241 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17242
c921be7d
NC
17243#undef THUMB_VARIANT
17244#define THUMB_VARIANT & arm_ext_v6t2
17245
5be8be5d
DG
17246 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17247 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17248 strex, t_strex),
21d799b5
NC
17249 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17250 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17251
21d799b5
NC
17252 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17253 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17254
9e3c6df6 17255/* ARM V6 not included in V7M. */
c921be7d
NC
17256#undef THUMB_VARIANT
17257#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17258 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17259 UF(rfeib, 9900a00, 1, (RRw), rfe),
17260 UF(rfeda, 8100a00, 1, (RRw), rfe),
17261 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17262 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17263 UF(rfefa, 9900a00, 1, (RRw), rfe),
17264 UF(rfeea, 8100a00, 1, (RRw), rfe),
17265 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17266 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17267 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17268 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17269 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17270
9e3c6df6
PB
17271/* ARM V6 not included in V7M (eg. integer SIMD). */
17272#undef THUMB_VARIANT
17273#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17274 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17275 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17276 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17277 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17278 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17279 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17280 /* Old name for QASX. */
21d799b5
NC
17281 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17282 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17283 /* Old name for QSAX. */
21d799b5
NC
17284 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17285 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17286 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17287 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17288 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17289 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17290 /* Old name for SASX. */
21d799b5
NC
17291 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17292 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17293 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17294 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17295 /* Old name for SHASX. */
21d799b5
NC
17296 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17297 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17298 /* Old name for SHSAX. */
21d799b5
NC
17299 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17300 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17301 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17302 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17303 /* Old name for SSAX. */
21d799b5
NC
17304 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17305 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17306 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17307 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17308 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17309 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17310 /* Old name for UASX. */
21d799b5
NC
17311 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17312 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17313 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17314 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17315 /* Old name for UHASX. */
21d799b5
NC
17316 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17317 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17318 /* Old name for UHSAX. */
21d799b5
NC
17319 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17320 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17321 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17322 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17323 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17324 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17325 /* Old name for UQASX. */
21d799b5
NC
17326 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17327 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17328 /* Old name for UQSAX. */
21d799b5
NC
17329 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17330 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17331 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17332 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17333 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17334 /* Old name for USAX. */
21d799b5
NC
17335 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17336 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17337 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17338 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17339 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17340 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17341 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17342 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17343 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17344 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17345 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17346 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17347 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17348 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17349 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17350 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17351 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17352 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17353 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17354 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17355 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17356 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17357 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17358 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17359 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17360 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17361 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17362 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17363 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17364 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17365 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17366 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17367 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17368 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17369
c921be7d
NC
17370#undef ARM_VARIANT
17371#define ARM_VARIANT & arm_ext_v6k
17372#undef THUMB_VARIANT
17373#define THUMB_VARIANT & arm_ext_v6k
17374
21d799b5
NC
17375 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17376 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17377 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17378 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17379
c921be7d
NC
17380#undef THUMB_VARIANT
17381#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17382 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17383 ldrexd, t_ldrexd),
17384 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17385 RRnpcb), strexd, t_strexd),
ebdca51a 17386
c921be7d
NC
17387#undef THUMB_VARIANT
17388#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17389 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17390 rd_rn, rd_rn),
17391 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17392 rd_rn, rd_rn),
17393 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17394 strex, rm_rd_rn),
17395 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17396 strex, rm_rd_rn),
21d799b5 17397 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17398
c921be7d 17399#undef ARM_VARIANT
f4c65163
MGD
17400#define ARM_VARIANT & arm_ext_sec
17401#undef THUMB_VARIANT
17402#define THUMB_VARIANT & arm_ext_sec
c921be7d 17403
21d799b5 17404 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17405
90ec0d68
MGD
17406#undef ARM_VARIANT
17407#define ARM_VARIANT & arm_ext_virt
17408#undef THUMB_VARIANT
17409#define THUMB_VARIANT & arm_ext_virt
17410
17411 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17412 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17413
c921be7d
NC
17414#undef ARM_VARIANT
17415#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17416#undef THUMB_VARIANT
17417#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17418
21d799b5
NC
17419 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17420 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17421 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17422 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17423
21d799b5
NC
17424 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17425 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17426 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17427 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17428
5be8be5d
DG
17429 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17430 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17431 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17432 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17433
bf3eeda7
NS
17434 /* Thumb-only instructions. */
17435#undef ARM_VARIANT
17436#define ARM_VARIANT NULL
17437 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17438 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17439
17440 /* ARM does not really have an IT instruction, so always allow it.
17441 The opcode is copied from Thumb in order to allow warnings in
17442 -mimplicit-it=[never | arm] modes. */
17443#undef ARM_VARIANT
17444#define ARM_VARIANT & arm_ext_v1
17445
21d799b5
NC
17446 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17447 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17448 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17449 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17450 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17451 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17452 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17453 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17454 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17455 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17456 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17457 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17458 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17459 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17460 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17461 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17462 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17463 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17464
92e90b6e 17465 /* Thumb2 only instructions. */
c921be7d
NC
17466#undef ARM_VARIANT
17467#define ARM_VARIANT NULL
92e90b6e 17468
21d799b5
NC
17469 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17470 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17471 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17472 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17473 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17474 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17475
eea54501
MGD
17476 /* Hardware division instructions. */
17477#undef ARM_VARIANT
17478#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17479#undef THUMB_VARIANT
17480#define THUMB_VARIANT & arm_ext_div
17481
eea54501
MGD
17482 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17483 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17484
7e806470 17485 /* ARM V6M/V7 instructions. */
c921be7d
NC
17486#undef ARM_VARIANT
17487#define ARM_VARIANT & arm_ext_barrier
17488#undef THUMB_VARIANT
17489#define THUMB_VARIANT & arm_ext_barrier
17490
52e7f43d
RE
17491 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17492 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17493 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17494
62b3e311 17495 /* ARM V7 instructions. */
c921be7d
NC
17496#undef ARM_VARIANT
17497#define ARM_VARIANT & arm_ext_v7
17498#undef THUMB_VARIANT
17499#define THUMB_VARIANT & arm_ext_v7
17500
21d799b5
NC
17501 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17502 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17503
60e5ef9f
MGD
17504#undef ARM_VARIANT
17505#define ARM_VARIANT & arm_ext_mp
17506#undef THUMB_VARIANT
17507#define THUMB_VARIANT & arm_ext_mp
17508
17509 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17510
c921be7d
NC
17511#undef ARM_VARIANT
17512#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17513
21d799b5
NC
17514 cCE("wfs", e200110, 1, (RR), rd),
17515 cCE("rfs", e300110, 1, (RR), rd),
17516 cCE("wfc", e400110, 1, (RR), rd),
17517 cCE("rfc", e500110, 1, (RR), rd),
17518
17519 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17520 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17521 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17522 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17523
17524 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17525 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17526 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17527 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17528
17529 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17530 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17531 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17532 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17533 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17534 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17535 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17536 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17537 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17538 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17539 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17540 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17541
17542 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17543 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17544 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17545 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17546 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17547 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17548 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17549 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17550 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17551 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17552 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17553 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17554
17555 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17556 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17557 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17558 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17559 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17560 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17561 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17562 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17563 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17564 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17565 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17566 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17567
17568 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17569 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17570 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17571 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17572 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17573 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17574 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17575 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17576 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17577 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17578 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17579 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17580
17581 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17582 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17583 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17584 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17585 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17586 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17587 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17588 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17589 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17590 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17591 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17592 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17593
17594 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17595 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17596 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17597 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17598 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17599 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17600 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17601 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17602 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17603 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17604 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17605 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17606
17607 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17608 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17609 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17610 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17611 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17612 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17613 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17614 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17615 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17616 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17617 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17618 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17619
17620 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17621 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17622 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17623 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17624 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17625 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17626 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17627 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17628 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17629 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17630 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17631 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17632
17633 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17634 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17635 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17636 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17637 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17638 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17639 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17640 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17641 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17642 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17643 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17644 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17645
17646 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17647 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17648 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17649 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17650 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17651 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17652 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17653 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17654 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17655 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17656 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17657 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17658
17659 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17660 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17661 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17662 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17663 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17664 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17665 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17666 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17667 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17668 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17669 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17670 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17671
17672 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17673 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17674 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17675 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17676 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17677 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17678 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17679 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17680 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17681 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17682 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17683 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17684
17685 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17686 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17687 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17688 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17689 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17690 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17691 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17692 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17693 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17694 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17695 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17696 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17697
17698 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17699 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17700 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17701 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17702 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17703 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17704 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17705 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17706 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17707 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17708 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17709 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17710
17711 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17712 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17713 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17714 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17715 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17716 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17717 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17718 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17719 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17720 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17721 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17722 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17723
17724 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17725 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17726 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17727 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17728 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17729 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17730 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17731 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17732 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17733 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17734 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17735 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17736
17737 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17738 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17739 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17740 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17741 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17742 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17743 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17744 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17745 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17746 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17747 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17748 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17749
17750 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17751 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17752 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17753 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17754 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17755 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17756 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17757 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17758 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17759 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17760 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17761 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17762
17763 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17764 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17765 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17766 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17767 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17768 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17769 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17770 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17771 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17772 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17773 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17774 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17775
17776 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17777 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17778 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17779 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17780 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17781 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17782 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17783 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17784 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17785 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17786 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17787 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17788
17789 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17791 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17792 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17794 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17795 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17799 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17800 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17801
17802 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17804 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17805 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17812 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17813 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17814
17815 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17817 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17818 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17825 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17826 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17827
17828 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17830 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17831 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17838 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17839 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17840
17841 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17843 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17844 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17851 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17852 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17853
17854 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17856 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17857 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17858 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17859 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17860 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17861 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17862 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17863 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17864 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17865 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17866
17867 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17868 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17869 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17870 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17871 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17872 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17873 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17874 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17875 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17876 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17877 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17878 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17879
17880 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17885 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17886 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17889 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17890 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17891 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17892
17893 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17898 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17903 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17904 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17905
17906 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17907 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17908 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17909 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17910
17911 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17912 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17913 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17914 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17915 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17916 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17917 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17918 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17919 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17920 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17921 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17922 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17923
c19d1205
ZW
17924 /* The implementation of the FIX instruction is broken on some
17925 assemblers, in that it accepts a precision specifier as well as a
17926 rounding specifier, despite the fact that this is meaningless.
17927 To be more compatible, we accept it as well, though of course it
17928 does not set any bits. */
21d799b5
NC
17929 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17930 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17931 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17932 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17933 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17934 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17935 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17936 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17937 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17938 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17939 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17940 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17941 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17942
c19d1205 17943 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17944#undef ARM_VARIANT
17945#define ARM_VARIANT & fpu_fpa_ext_v2
17946
21d799b5
NC
17947 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17948 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17949 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17950 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17951 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17952 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17953
c921be7d
NC
17954#undef ARM_VARIANT
17955#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17956
c19d1205 17957 /* Moves and type conversions. */
21d799b5
NC
17958 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17959 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17960 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17961 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17962 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17963 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17964 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17965 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17966 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17967 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17968 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17969 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17970 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17971 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17972
17973 /* Memory operations. */
21d799b5
NC
17974 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17975 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
17976 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17977 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17978 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17979 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17980 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17981 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17982 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17983 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17984 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17985 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17986 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17987 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17988 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17989 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17990 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17991 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17992
c19d1205 17993 /* Monadic operations. */
21d799b5
NC
17994 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17995 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17996 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17997
17998 /* Dyadic operations. */
21d799b5
NC
17999 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18000 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18001 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18002 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18003 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18004 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18005 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18006 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18007 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18008
c19d1205 18009 /* Comparisons. */
21d799b5
NC
18010 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18011 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18012 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18013 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18014
62f3b8c8
PB
18015 /* Double precision load/store are still present on single precision
18016 implementations. */
18017 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18018 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18019 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18020 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18021 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18022 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18023 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18024 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18025 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18026 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18027
c921be7d
NC
18028#undef ARM_VARIANT
18029#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18030
c19d1205 18031 /* Moves and type conversions. */
21d799b5
NC
18032 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18033 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18034 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18035 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18036 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18037 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18038 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18039 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18040 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18041 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18042 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18043 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18044 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18045
c19d1205 18046 /* Monadic operations. */
21d799b5
NC
18047 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18048 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18049 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18050
18051 /* Dyadic operations. */
21d799b5
NC
18052 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18053 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18054 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18055 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18056 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18057 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18058 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18059 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18060 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18061
c19d1205 18062 /* Comparisons. */
21d799b5
NC
18063 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18064 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18065 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18066 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18067
c921be7d
NC
18068#undef ARM_VARIANT
18069#define ARM_VARIANT & fpu_vfp_ext_v2
18070
21d799b5
NC
18071 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18072 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18073 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18074 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18075
037e8744
JB
18076/* Instructions which may belong to either the Neon or VFP instruction sets.
18077 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18078#undef ARM_VARIANT
18079#define ARM_VARIANT & fpu_vfp_ext_v1xd
18080#undef THUMB_VARIANT
18081#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18082
037e8744
JB
18083 /* These mnemonics are unique to VFP. */
18084 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18085 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18086 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18087 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18088 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18089 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18090 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18091 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18092 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18093 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18094
18095 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18096 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18097 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18098 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18099
21d799b5
NC
18100 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18101 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18102
18103 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18104 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18105
55881a11
MGD
18106 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18107 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18108 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18109 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18110 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18111 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18112 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18113 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18114
e3e535bc
NC
18115 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18116 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18117 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18118 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18119
037e8744
JB
18120
18121 /* NOTE: All VMOV encoding is special-cased! */
18122 NCE(vmov, 0, 1, (VMOV), neon_mov),
18123 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18124
c921be7d
NC
18125#undef THUMB_VARIANT
18126#define THUMB_VARIANT & fpu_neon_ext_v1
18127#undef ARM_VARIANT
18128#define ARM_VARIANT & fpu_neon_ext_v1
18129
5287ad62
JB
18130 /* Data processing with three registers of the same length. */
18131 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18132 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18133 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18134 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18135 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18136 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18137 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18138 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18139 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18140 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18141 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18142 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18143 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18144 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18145 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18146 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18147 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18148 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18149 /* If not immediate, fall back to neon_dyadic_i64_su.
18150 shl_imm should accept I8 I16 I32 I64,
18151 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18152 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18153 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18154 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18155 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18156 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18157 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18158 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18159 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18160 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18161 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18162 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18163 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18164 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18165 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18166 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18167 /* Bitfield ops, untyped. */
18168 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18169 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18170 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18171 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18172 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18173 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18174 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18175 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18176 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18177 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18178 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18179 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18180 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18181 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18182 back to neon_dyadic_if_su. */
21d799b5
NC
18183 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18184 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18185 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18186 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18187 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18188 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18189 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18190 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18191 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18192 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18193 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18194 /* As above, D registers only. */
21d799b5
NC
18195 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18196 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18197 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18198 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18199 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18200 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18201 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18202 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18203 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18204 /* vtst takes sizes 8, 16, 32. */
18205 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18206 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18207 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18208 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18209 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18210 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18211 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18212 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18213 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18214 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18215 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18216 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18217 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18218 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18219 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18220 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18221 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18222 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18223 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18224 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18225 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18226
18227 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18228 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18229 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18230
18231 /* Data processing with two registers and a shift amount. */
18232 /* Right shifts, and variants with rounding.
18233 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18234 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18235 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18236 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18237 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18238 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18239 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18240 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18241 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18242 /* Shift and insert. Sizes accepted 8 16 32 64. */
18243 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18244 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18245 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18246 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18247 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18248 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18249 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18250 /* Right shift immediate, saturating & narrowing, with rounding variants.
18251 Types accepted S16 S32 S64 U16 U32 U64. */
18252 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18253 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18254 /* As above, unsigned. Types accepted S16 S32 S64. */
18255 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18256 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18257 /* Right shift narrowing. Types accepted I16 I32 I64. */
18258 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18259 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18260 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18261 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18262 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18263 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18264
4316f0d2
DG
18265 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18266 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18267
18268 /* Data processing, three registers of different lengths. */
18269 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18270 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18271 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18272 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18273 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18274 /* If not scalar, fall back to neon_dyadic_long.
18275 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18276 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18277 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18278 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18279 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18280 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18281 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18282 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18283 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18284 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18285 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18286 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18287 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18288 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18289 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18290 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18291 S16 S32 U16 U32. */
21d799b5 18292 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18293
18294 /* Extract. Size 8. */
3b8d421e
PB
18295 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18296 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18297
18298 /* Two registers, miscellaneous. */
18299 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18300 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18301 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18302 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18303 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18304 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18305 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18306 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18307 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18308 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18309 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18310 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18311 /* VMOVN. Types I16 I32 I64. */
21d799b5 18312 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18313 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18314 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18315 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18316 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18317 /* VZIP / VUZP. Sizes 8 16 32. */
18318 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18319 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18320 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18321 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18322 /* VQABS / VQNEG. Types S8 S16 S32. */
18323 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18324 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18325 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18326 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18327 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18328 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18329 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18330 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18331 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18332 /* Reciprocal estimates. Types U32 F32. */
18333 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18334 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18335 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18336 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18337 /* VCLS. Types S8 S16 S32. */
18338 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18339 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18340 /* VCLZ. Types I8 I16 I32. */
18341 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18342 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18343 /* VCNT. Size 8. */
18344 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18345 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18346 /* Two address, untyped. */
18347 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18348 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18349 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18350 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18351 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18352
18353 /* Table lookup. Size 8. */
18354 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18355 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18356
c921be7d
NC
18357#undef THUMB_VARIANT
18358#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18359#undef ARM_VARIANT
18360#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18361
5287ad62 18362 /* Neon element/structure load/store. */
21d799b5
NC
18363 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18364 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18365 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18366 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18367 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18368 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18369 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18370 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18371
c921be7d 18372#undef THUMB_VARIANT
62f3b8c8
PB
18373#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18374#undef ARM_VARIANT
18375#define ARM_VARIANT &fpu_vfp_ext_v3xd
18376 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18377 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18378 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18379 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18380 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18381 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18382 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18383 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18384 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18385
18386#undef THUMB_VARIANT
c921be7d
NC
18387#define THUMB_VARIANT & fpu_vfp_ext_v3
18388#undef ARM_VARIANT
18389#define ARM_VARIANT & fpu_vfp_ext_v3
18390
21d799b5 18391 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18392 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18393 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18394 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18395 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18396 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18397 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18398 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18399 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18400
62f3b8c8
PB
18401#undef ARM_VARIANT
18402#define ARM_VARIANT &fpu_vfp_ext_fma
18403#undef THUMB_VARIANT
18404#define THUMB_VARIANT &fpu_vfp_ext_fma
18405 /* Mnemonics shared by Neon and VFP. These are included in the
18406 VFP FMA variant; NEON and VFP FMA always includes the NEON
18407 FMA instructions. */
18408 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18409 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18410 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18411 the v form should always be used. */
18412 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18413 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18414 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18415 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18416 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18417 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18418
5287ad62 18419#undef THUMB_VARIANT
c921be7d
NC
18420#undef ARM_VARIANT
18421#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18422
21d799b5
NC
18423 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18424 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18425 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18426 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18427 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18428 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18429 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18430 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18431
c921be7d
NC
18432#undef ARM_VARIANT
18433#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18434
21d799b5
NC
18435 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18436 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18437 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18438 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18439 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18440 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18441 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18442 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18443 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18444 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18445 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18446 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18447 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18448 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18449 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18450 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18451 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18452 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18453 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18454 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18455 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18456 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18457 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18458 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18459 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18460 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18461 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18462 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18463 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18464 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18465 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18466 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18467 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18468 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18469 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18470 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18471 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18472 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18473 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18474 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18475 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18476 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18477 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18478 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18479 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18480 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18481 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18482 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18483 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18484 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18485 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18486 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18487 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18488 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18489 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18490 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18491 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18492 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18493 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18494 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18495 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18496 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18497 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18498 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18499 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18500 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18501 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18502 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18503 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18504 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18505 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18506 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18507 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18508 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18509 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18510 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18511 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18512 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18513 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18514 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18515 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18516 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18517 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18518 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18519 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18520 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18521 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18522 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18523 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18524 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18527 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18529 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18530 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18531 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18532 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18533 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18534 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18535 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18536 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18537 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18538 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18539 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18540 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18541 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18542 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18543 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18546 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18547 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18548 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18549 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18550 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18551 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18552 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18553 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18554 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18555 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18556 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18557 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18558 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18559 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18560 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18561 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18562 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18563 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18564 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18565 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18566 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18567 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18568 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18569 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18573 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18578 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18579 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18580 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18581 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18582 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18583 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18585 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18586 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18587 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18588 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18589 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18590 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18591 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18592 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18595 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18596 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18597
c921be7d
NC
18598#undef ARM_VARIANT
18599#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18600
21d799b5
NC
18601 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18602 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18603 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18604 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18605 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18606 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18607 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18608 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18609 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18610 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18611 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18612 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18613 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18614 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18615 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18616 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18617 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18618 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18619 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18620 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18621 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18622 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18623 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18624 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18625 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18626 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18627 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18628 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18629 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18630 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18631 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18632 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18633 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18634 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18637 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18638 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18642 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18643 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18644 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18648 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18658
c921be7d
NC
18659#undef ARM_VARIANT
18660#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18661
21d799b5
NC
18662 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18663 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18664 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18665 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18666 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18667 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18668 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18669 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18670 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18671 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18672 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18673 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18674 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18675 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18676 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18677 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18678 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18679 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18680 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18681 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18682 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18683 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18684 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18685 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18686 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18687 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18688 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18689 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18690 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18691 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18692 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18693 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18694 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18695 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18696 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18697 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18698 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18699 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18700 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18701 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18702 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18703 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18704 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18705 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18706 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18707 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18708 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18709 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18710 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18711 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18712 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18713 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18714 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18715 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18716 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18717 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18718 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18719 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18720 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18721 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18722 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18723 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18724 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18725 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18726 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18727 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18728 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18729 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18730 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18731 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18732 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18733 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18734 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18735 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18736 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18737 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18738};
18739#undef ARM_VARIANT
18740#undef THUMB_VARIANT
18741#undef TCE
18742#undef TCM
18743#undef TUE
18744#undef TUF
18745#undef TCC
8f06b2d8 18746#undef cCE
e3cb604e
PB
18747#undef cCL
18748#undef C3E
c19d1205
ZW
18749#undef CE
18750#undef CM
18751#undef UE
18752#undef UF
18753#undef UT
5287ad62
JB
18754#undef NUF
18755#undef nUF
18756#undef NCE
18757#undef nCE
c19d1205
ZW
18758#undef OPS0
18759#undef OPS1
18760#undef OPS2
18761#undef OPS3
18762#undef OPS4
18763#undef OPS5
18764#undef OPS6
18765#undef do_0
18766\f
18767/* MD interface: bits in the object file. */
bfae80f2 18768
c19d1205
ZW
18769/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18770 for use in the a.out file, and stores them in the array pointed to by buf.
18771 This knows about the endian-ness of the target machine and does
18772 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18773 2 (short) and 4 (long) Floating numbers are put out as a series of
18774 LITTLENUMS (shorts, here at least). */
b99bd4ef 18775
c19d1205
ZW
18776void
18777md_number_to_chars (char * buf, valueT val, int n)
18778{
18779 if (target_big_endian)
18780 number_to_chars_bigendian (buf, val, n);
18781 else
18782 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18783}
18784
c19d1205
ZW
18785static valueT
18786md_chars_to_number (char * buf, int n)
bfae80f2 18787{
c19d1205
ZW
18788 valueT result = 0;
18789 unsigned char * where = (unsigned char *) buf;
bfae80f2 18790
c19d1205 18791 if (target_big_endian)
b99bd4ef 18792 {
c19d1205
ZW
18793 while (n--)
18794 {
18795 result <<= 8;
18796 result |= (*where++ & 255);
18797 }
b99bd4ef 18798 }
c19d1205 18799 else
b99bd4ef 18800 {
c19d1205
ZW
18801 while (n--)
18802 {
18803 result <<= 8;
18804 result |= (where[n] & 255);
18805 }
bfae80f2 18806 }
b99bd4ef 18807
c19d1205 18808 return result;
bfae80f2 18809}
b99bd4ef 18810
c19d1205 18811/* MD interface: Sections. */
b99bd4ef 18812
0110f2b8
PB
18813/* Estimate the size of a frag before relaxing. Assume everything fits in
18814 2 bytes. */
18815
c19d1205 18816int
0110f2b8 18817md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18818 segT segtype ATTRIBUTE_UNUSED)
18819{
0110f2b8
PB
18820 fragp->fr_var = 2;
18821 return 2;
18822}
18823
18824/* Convert a machine dependent frag. */
18825
18826void
18827md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18828{
18829 unsigned long insn;
18830 unsigned long old_op;
18831 char *buf;
18832 expressionS exp;
18833 fixS *fixp;
18834 int reloc_type;
18835 int pc_rel;
18836 int opcode;
18837
18838 buf = fragp->fr_literal + fragp->fr_fix;
18839
18840 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18841 if (fragp->fr_symbol)
18842 {
0110f2b8
PB
18843 exp.X_op = O_symbol;
18844 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18845 }
18846 else
18847 {
0110f2b8 18848 exp.X_op = O_constant;
5f4273c7 18849 }
0110f2b8
PB
18850 exp.X_add_number = fragp->fr_offset;
18851 opcode = fragp->fr_subtype;
18852 switch (opcode)
18853 {
18854 case T_MNEM_ldr_pc:
18855 case T_MNEM_ldr_pc2:
18856 case T_MNEM_ldr_sp:
18857 case T_MNEM_str_sp:
18858 case T_MNEM_ldr:
18859 case T_MNEM_ldrb:
18860 case T_MNEM_ldrh:
18861 case T_MNEM_str:
18862 case T_MNEM_strb:
18863 case T_MNEM_strh:
18864 if (fragp->fr_var == 4)
18865 {
5f4273c7 18866 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18867 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18868 {
18869 insn |= (old_op & 0x700) << 4;
18870 }
18871 else
18872 {
18873 insn |= (old_op & 7) << 12;
18874 insn |= (old_op & 0x38) << 13;
18875 }
18876 insn |= 0x00000c00;
18877 put_thumb32_insn (buf, insn);
18878 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18879 }
18880 else
18881 {
18882 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18883 }
18884 pc_rel = (opcode == T_MNEM_ldr_pc2);
18885 break;
18886 case T_MNEM_adr:
18887 if (fragp->fr_var == 4)
18888 {
18889 insn = THUMB_OP32 (opcode);
18890 insn |= (old_op & 0xf0) << 4;
18891 put_thumb32_insn (buf, insn);
18892 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18893 }
18894 else
18895 {
18896 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18897 exp.X_add_number -= 4;
18898 }
18899 pc_rel = 1;
18900 break;
18901 case T_MNEM_mov:
18902 case T_MNEM_movs:
18903 case T_MNEM_cmp:
18904 case T_MNEM_cmn:
18905 if (fragp->fr_var == 4)
18906 {
18907 int r0off = (opcode == T_MNEM_mov
18908 || opcode == T_MNEM_movs) ? 0 : 8;
18909 insn = THUMB_OP32 (opcode);
18910 insn = (insn & 0xe1ffffff) | 0x10000000;
18911 insn |= (old_op & 0x700) << r0off;
18912 put_thumb32_insn (buf, insn);
18913 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18914 }
18915 else
18916 {
18917 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18918 }
18919 pc_rel = 0;
18920 break;
18921 case T_MNEM_b:
18922 if (fragp->fr_var == 4)
18923 {
18924 insn = THUMB_OP32(opcode);
18925 put_thumb32_insn (buf, insn);
18926 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18927 }
18928 else
18929 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18930 pc_rel = 1;
18931 break;
18932 case T_MNEM_bcond:
18933 if (fragp->fr_var == 4)
18934 {
18935 insn = THUMB_OP32(opcode);
18936 insn |= (old_op & 0xf00) << 14;
18937 put_thumb32_insn (buf, insn);
18938 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18939 }
18940 else
18941 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18942 pc_rel = 1;
18943 break;
18944 case T_MNEM_add_sp:
18945 case T_MNEM_add_pc:
18946 case T_MNEM_inc_sp:
18947 case T_MNEM_dec_sp:
18948 if (fragp->fr_var == 4)
18949 {
18950 /* ??? Choose between add and addw. */
18951 insn = THUMB_OP32 (opcode);
18952 insn |= (old_op & 0xf0) << 4;
18953 put_thumb32_insn (buf, insn);
16805f35
PB
18954 if (opcode == T_MNEM_add_pc)
18955 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18956 else
18957 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18958 }
18959 else
18960 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18961 pc_rel = 0;
18962 break;
18963
18964 case T_MNEM_addi:
18965 case T_MNEM_addis:
18966 case T_MNEM_subi:
18967 case T_MNEM_subis:
18968 if (fragp->fr_var == 4)
18969 {
18970 insn = THUMB_OP32 (opcode);
18971 insn |= (old_op & 0xf0) << 4;
18972 insn |= (old_op & 0xf) << 16;
18973 put_thumb32_insn (buf, insn);
16805f35
PB
18974 if (insn & (1 << 20))
18975 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18976 else
18977 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18978 }
18979 else
18980 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18981 pc_rel = 0;
18982 break;
18983 default:
5f4273c7 18984 abort ();
0110f2b8
PB
18985 }
18986 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18987 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18988 fixp->fx_file = fragp->fr_file;
18989 fixp->fx_line = fragp->fr_line;
18990 fragp->fr_fix += fragp->fr_var;
18991}
18992
18993/* Return the size of a relaxable immediate operand instruction.
18994 SHIFT and SIZE specify the form of the allowable immediate. */
18995static int
18996relax_immediate (fragS *fragp, int size, int shift)
18997{
18998 offsetT offset;
18999 offsetT mask;
19000 offsetT low;
19001
19002 /* ??? Should be able to do better than this. */
19003 if (fragp->fr_symbol)
19004 return 4;
19005
19006 low = (1 << shift) - 1;
19007 mask = (1 << (shift + size)) - (1 << shift);
19008 offset = fragp->fr_offset;
19009 /* Force misaligned offsets to 32-bit variant. */
19010 if (offset & low)
5e77afaa 19011 return 4;
0110f2b8
PB
19012 if (offset & ~mask)
19013 return 4;
19014 return 2;
19015}
19016
5e77afaa
PB
19017/* Get the address of a symbol during relaxation. */
19018static addressT
5f4273c7 19019relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19020{
19021 fragS *sym_frag;
19022 addressT addr;
19023 symbolS *sym;
19024
19025 sym = fragp->fr_symbol;
19026 sym_frag = symbol_get_frag (sym);
19027 know (S_GET_SEGMENT (sym) != absolute_section
19028 || sym_frag == &zero_address_frag);
19029 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19030
19031 /* If frag has yet to be reached on this pass, assume it will
19032 move by STRETCH just as we did. If this is not so, it will
19033 be because some frag between grows, and that will force
19034 another pass. */
19035
19036 if (stretch != 0
19037 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19038 {
19039 fragS *f;
19040
19041 /* Adjust stretch for any alignment frag. Note that if have
19042 been expanding the earlier code, the symbol may be
19043 defined in what appears to be an earlier frag. FIXME:
19044 This doesn't handle the fr_subtype field, which specifies
19045 a maximum number of bytes to skip when doing an
19046 alignment. */
19047 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19048 {
19049 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19050 {
19051 if (stretch < 0)
19052 stretch = - ((- stretch)
19053 & ~ ((1 << (int) f->fr_offset) - 1));
19054 else
19055 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19056 if (stretch == 0)
19057 break;
19058 }
19059 }
19060 if (f != NULL)
19061 addr += stretch;
19062 }
5e77afaa
PB
19063
19064 return addr;
19065}
19066
0110f2b8
PB
19067/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19068 load. */
19069static int
5e77afaa 19070relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19071{
19072 addressT addr;
19073 offsetT val;
19074
19075 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19076 if (fragp->fr_symbol == NULL
19077 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19078 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19079 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19080 return 4;
19081
5f4273c7 19082 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19083 addr = fragp->fr_address + fragp->fr_fix;
19084 addr = (addr + 4) & ~3;
5e77afaa 19085 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19086 if (val & 3)
5e77afaa 19087 return 4;
0110f2b8
PB
19088 val -= addr;
19089 if (val < 0 || val > 1020)
19090 return 4;
19091 return 2;
19092}
19093
19094/* Return the size of a relaxable add/sub immediate instruction. */
19095static int
19096relax_addsub (fragS *fragp, asection *sec)
19097{
19098 char *buf;
19099 int op;
19100
19101 buf = fragp->fr_literal + fragp->fr_fix;
19102 op = bfd_get_16(sec->owner, buf);
19103 if ((op & 0xf) == ((op >> 4) & 0xf))
19104 return relax_immediate (fragp, 8, 0);
19105 else
19106 return relax_immediate (fragp, 3, 0);
19107}
19108
19109
19110/* Return the size of a relaxable branch instruction. BITS is the
19111 size of the offset field in the narrow instruction. */
19112
19113static int
5e77afaa 19114relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19115{
19116 addressT addr;
19117 offsetT val;
19118 offsetT limit;
19119
19120 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19121 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19122 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19123 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19124 return 4;
19125
267bf995
RR
19126#ifdef OBJ_ELF
19127 if (S_IS_DEFINED (fragp->fr_symbol)
19128 && ARM_IS_FUNC (fragp->fr_symbol))
19129 return 4;
0d9b4b55
NC
19130
19131 /* PR 12532. Global symbols with default visibility might
19132 be preempted, so do not relax relocations to them. */
19133 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19134 && (! S_IS_LOCAL (fragp->fr_symbol)))
19135 return 4;
267bf995
RR
19136#endif
19137
5f4273c7 19138 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19139 addr = fragp->fr_address + fragp->fr_fix + 4;
19140 val -= addr;
19141
19142 /* Offset is a signed value *2 */
19143 limit = 1 << bits;
19144 if (val >= limit || val < -limit)
19145 return 4;
19146 return 2;
19147}
19148
19149
19150/* Relax a machine dependent frag. This returns the amount by which
19151 the current size of the frag should change. */
19152
19153int
5e77afaa 19154arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19155{
19156 int oldsize;
19157 int newsize;
19158
19159 oldsize = fragp->fr_var;
19160 switch (fragp->fr_subtype)
19161 {
19162 case T_MNEM_ldr_pc2:
5f4273c7 19163 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19164 break;
19165 case T_MNEM_ldr_pc:
19166 case T_MNEM_ldr_sp:
19167 case T_MNEM_str_sp:
5f4273c7 19168 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19169 break;
19170 case T_MNEM_ldr:
19171 case T_MNEM_str:
5f4273c7 19172 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19173 break;
19174 case T_MNEM_ldrh:
19175 case T_MNEM_strh:
5f4273c7 19176 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19177 break;
19178 case T_MNEM_ldrb:
19179 case T_MNEM_strb:
5f4273c7 19180 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19181 break;
19182 case T_MNEM_adr:
5f4273c7 19183 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19184 break;
19185 case T_MNEM_mov:
19186 case T_MNEM_movs:
19187 case T_MNEM_cmp:
19188 case T_MNEM_cmn:
5f4273c7 19189 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19190 break;
19191 case T_MNEM_b:
5f4273c7 19192 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19193 break;
19194 case T_MNEM_bcond:
5f4273c7 19195 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19196 break;
19197 case T_MNEM_add_sp:
19198 case T_MNEM_add_pc:
19199 newsize = relax_immediate (fragp, 8, 2);
19200 break;
19201 case T_MNEM_inc_sp:
19202 case T_MNEM_dec_sp:
19203 newsize = relax_immediate (fragp, 7, 2);
19204 break;
19205 case T_MNEM_addi:
19206 case T_MNEM_addis:
19207 case T_MNEM_subi:
19208 case T_MNEM_subis:
19209 newsize = relax_addsub (fragp, sec);
19210 break;
19211 default:
5f4273c7 19212 abort ();
0110f2b8 19213 }
5e77afaa
PB
19214
19215 fragp->fr_var = newsize;
19216 /* Freeze wide instructions that are at or before the same location as
19217 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19218 Don't freeze them unconditionally because targets may be artificially
19219 misaligned by the expansion of preceding frags. */
5e77afaa 19220 if (stretch <= 0 && newsize > 2)
0110f2b8 19221 {
0110f2b8 19222 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19223 frag_wane (fragp);
0110f2b8 19224 }
5e77afaa 19225
0110f2b8 19226 return newsize - oldsize;
c19d1205 19227}
b99bd4ef 19228
c19d1205 19229/* Round up a section size to the appropriate boundary. */
b99bd4ef 19230
c19d1205
ZW
19231valueT
19232md_section_align (segT segment ATTRIBUTE_UNUSED,
19233 valueT size)
19234{
f0927246
NC
19235#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19236 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19237 {
19238 /* For a.out, force the section size to be aligned. If we don't do
19239 this, BFD will align it for us, but it will not write out the
19240 final bytes of the section. This may be a bug in BFD, but it is
19241 easier to fix it here since that is how the other a.out targets
19242 work. */
19243 int align;
19244
19245 align = bfd_get_section_alignment (stdoutput, segment);
19246 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19247 }
c19d1205 19248#endif
f0927246
NC
19249
19250 return size;
bfae80f2 19251}
b99bd4ef 19252
c19d1205
ZW
19253/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19254 of an rs_align_code fragment. */
19255
19256void
19257arm_handle_align (fragS * fragP)
bfae80f2 19258{
e7495e45
NS
19259 static char const arm_noop[2][2][4] =
19260 {
19261 { /* ARMv1 */
19262 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19263 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19264 },
19265 { /* ARMv6k */
19266 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19267 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19268 },
19269 };
19270 static char const thumb_noop[2][2][2] =
19271 {
19272 { /* Thumb-1 */
19273 {0xc0, 0x46}, /* LE */
19274 {0x46, 0xc0}, /* BE */
19275 },
19276 { /* Thumb-2 */
19277 {0x00, 0xbf}, /* LE */
19278 {0xbf, 0x00} /* BE */
19279 }
19280 };
19281 static char const wide_thumb_noop[2][4] =
19282 { /* Wide Thumb-2 */
19283 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19284 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19285 };
c921be7d 19286
e7495e45 19287 unsigned bytes, fix, noop_size;
c19d1205
ZW
19288 char * p;
19289 const char * noop;
e7495e45 19290 const char *narrow_noop = NULL;
cd000bff
DJ
19291#ifdef OBJ_ELF
19292 enum mstate state;
19293#endif
bfae80f2 19294
c19d1205 19295 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19296 return;
19297
c19d1205
ZW
19298 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19299 p = fragP->fr_literal + fragP->fr_fix;
19300 fix = 0;
bfae80f2 19301
c19d1205
ZW
19302 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19303 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19304
cd000bff 19305 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19306
cd000bff 19307 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19308 {
e7495e45
NS
19309 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19310 {
19311 narrow_noop = thumb_noop[1][target_big_endian];
19312 noop = wide_thumb_noop[target_big_endian];
19313 }
c19d1205 19314 else
e7495e45
NS
19315 noop = thumb_noop[0][target_big_endian];
19316 noop_size = 2;
cd000bff
DJ
19317#ifdef OBJ_ELF
19318 state = MAP_THUMB;
19319#endif
7ed4c4c5
NC
19320 }
19321 else
19322 {
e7495e45
NS
19323 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19324 [target_big_endian];
19325 noop_size = 4;
cd000bff
DJ
19326#ifdef OBJ_ELF
19327 state = MAP_ARM;
19328#endif
7ed4c4c5 19329 }
c921be7d 19330
e7495e45 19331 fragP->fr_var = noop_size;
c921be7d 19332
c19d1205 19333 if (bytes & (noop_size - 1))
7ed4c4c5 19334 {
c19d1205 19335 fix = bytes & (noop_size - 1);
cd000bff
DJ
19336#ifdef OBJ_ELF
19337 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19338#endif
c19d1205
ZW
19339 memset (p, 0, fix);
19340 p += fix;
19341 bytes -= fix;
a737bd4d 19342 }
a737bd4d 19343
e7495e45
NS
19344 if (narrow_noop)
19345 {
19346 if (bytes & noop_size)
19347 {
19348 /* Insert a narrow noop. */
19349 memcpy (p, narrow_noop, noop_size);
19350 p += noop_size;
19351 bytes -= noop_size;
19352 fix += noop_size;
19353 }
19354
19355 /* Use wide noops for the remainder */
19356 noop_size = 4;
19357 }
19358
c19d1205 19359 while (bytes >= noop_size)
a737bd4d 19360 {
c19d1205
ZW
19361 memcpy (p, noop, noop_size);
19362 p += noop_size;
19363 bytes -= noop_size;
19364 fix += noop_size;
a737bd4d
NC
19365 }
19366
c19d1205 19367 fragP->fr_fix += fix;
a737bd4d
NC
19368}
19369
c19d1205
ZW
19370/* Called from md_do_align. Used to create an alignment
19371 frag in a code section. */
19372
19373void
19374arm_frag_align_code (int n, int max)
bfae80f2 19375{
c19d1205 19376 char * p;
7ed4c4c5 19377
c19d1205 19378 /* We assume that there will never be a requirement
6ec8e702 19379 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19380 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19381 {
19382 char err_msg[128];
19383
19384 sprintf (err_msg,
19385 _("alignments greater than %d bytes not supported in .text sections."),
19386 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19387 as_fatal ("%s", err_msg);
6ec8e702 19388 }
bfae80f2 19389
c19d1205
ZW
19390 p = frag_var (rs_align_code,
19391 MAX_MEM_FOR_RS_ALIGN_CODE,
19392 1,
19393 (relax_substateT) max,
19394 (symbolS *) NULL,
19395 (offsetT) n,
19396 (char *) NULL);
19397 *p = 0;
19398}
bfae80f2 19399
8dc2430f
NC
19400/* Perform target specific initialisation of a frag.
19401 Note - despite the name this initialisation is not done when the frag
19402 is created, but only when its type is assigned. A frag can be created
19403 and used a long time before its type is set, so beware of assuming that
19404 this initialisationis performed first. */
bfae80f2 19405
cd000bff
DJ
19406#ifndef OBJ_ELF
19407void
19408arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19409{
19410 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19411 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19412}
19413
19414#else /* OBJ_ELF is defined. */
c19d1205 19415void
cd000bff 19416arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19417{
8dc2430f
NC
19418 /* If the current ARM vs THUMB mode has not already
19419 been recorded into this frag then do so now. */
cd000bff
DJ
19420 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19421 {
19422 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19423
19424 /* Record a mapping symbol for alignment frags. We will delete this
19425 later if the alignment ends up empty. */
19426 switch (fragP->fr_type)
19427 {
19428 case rs_align:
19429 case rs_align_test:
19430 case rs_fill:
19431 mapping_state_2 (MAP_DATA, max_chars);
19432 break;
19433 case rs_align_code:
19434 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19435 break;
19436 default:
19437 break;
19438 }
19439 }
bfae80f2
RE
19440}
19441
c19d1205
ZW
19442/* When we change sections we need to issue a new mapping symbol. */
19443
19444void
19445arm_elf_change_section (void)
bfae80f2 19446{
c19d1205
ZW
19447 /* Link an unlinked unwind index table section to the .text section. */
19448 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19449 && elf_linked_to_section (now_seg) == NULL)
19450 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19451}
19452
c19d1205
ZW
19453int
19454arm_elf_section_type (const char * str, size_t len)
e45d0630 19455{
c19d1205
ZW
19456 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19457 return SHT_ARM_EXIDX;
e45d0630 19458
c19d1205
ZW
19459 return -1;
19460}
19461\f
19462/* Code to deal with unwinding tables. */
e45d0630 19463
c19d1205 19464static void add_unwind_adjustsp (offsetT);
e45d0630 19465
5f4273c7 19466/* Generate any deferred unwind frame offset. */
e45d0630 19467
bfae80f2 19468static void
c19d1205 19469flush_pending_unwind (void)
bfae80f2 19470{
c19d1205 19471 offsetT offset;
bfae80f2 19472
c19d1205
ZW
19473 offset = unwind.pending_offset;
19474 unwind.pending_offset = 0;
19475 if (offset != 0)
19476 add_unwind_adjustsp (offset);
bfae80f2
RE
19477}
19478
c19d1205
ZW
19479/* Add an opcode to this list for this function. Two-byte opcodes should
19480 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19481 order. */
19482
bfae80f2 19483static void
c19d1205 19484add_unwind_opcode (valueT op, int length)
bfae80f2 19485{
c19d1205
ZW
19486 /* Add any deferred stack adjustment. */
19487 if (unwind.pending_offset)
19488 flush_pending_unwind ();
bfae80f2 19489
c19d1205 19490 unwind.sp_restored = 0;
bfae80f2 19491
c19d1205 19492 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19493 {
c19d1205
ZW
19494 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19495 if (unwind.opcodes)
21d799b5
NC
19496 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19497 unwind.opcode_alloc);
c19d1205 19498 else
21d799b5 19499 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19500 }
c19d1205 19501 while (length > 0)
bfae80f2 19502 {
c19d1205
ZW
19503 length--;
19504 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19505 op >>= 8;
19506 unwind.opcode_count++;
bfae80f2 19507 }
bfae80f2
RE
19508}
19509
c19d1205
ZW
19510/* Add unwind opcodes to adjust the stack pointer. */
19511
bfae80f2 19512static void
c19d1205 19513add_unwind_adjustsp (offsetT offset)
bfae80f2 19514{
c19d1205 19515 valueT op;
bfae80f2 19516
c19d1205 19517 if (offset > 0x200)
bfae80f2 19518 {
c19d1205
ZW
19519 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19520 char bytes[5];
19521 int n;
19522 valueT o;
bfae80f2 19523
c19d1205
ZW
19524 /* Long form: 0xb2, uleb128. */
19525 /* This might not fit in a word so add the individual bytes,
19526 remembering the list is built in reverse order. */
19527 o = (valueT) ((offset - 0x204) >> 2);
19528 if (o == 0)
19529 add_unwind_opcode (0, 1);
bfae80f2 19530
c19d1205
ZW
19531 /* Calculate the uleb128 encoding of the offset. */
19532 n = 0;
19533 while (o)
19534 {
19535 bytes[n] = o & 0x7f;
19536 o >>= 7;
19537 if (o)
19538 bytes[n] |= 0x80;
19539 n++;
19540 }
19541 /* Add the insn. */
19542 for (; n; n--)
19543 add_unwind_opcode (bytes[n - 1], 1);
19544 add_unwind_opcode (0xb2, 1);
19545 }
19546 else if (offset > 0x100)
bfae80f2 19547 {
c19d1205
ZW
19548 /* Two short opcodes. */
19549 add_unwind_opcode (0x3f, 1);
19550 op = (offset - 0x104) >> 2;
19551 add_unwind_opcode (op, 1);
bfae80f2 19552 }
c19d1205
ZW
19553 else if (offset > 0)
19554 {
19555 /* Short opcode. */
19556 op = (offset - 4) >> 2;
19557 add_unwind_opcode (op, 1);
19558 }
19559 else if (offset < 0)
bfae80f2 19560 {
c19d1205
ZW
19561 offset = -offset;
19562 while (offset > 0x100)
bfae80f2 19563 {
c19d1205
ZW
19564 add_unwind_opcode (0x7f, 1);
19565 offset -= 0x100;
bfae80f2 19566 }
c19d1205
ZW
19567 op = ((offset - 4) >> 2) | 0x40;
19568 add_unwind_opcode (op, 1);
bfae80f2 19569 }
bfae80f2
RE
19570}
19571
c19d1205
ZW
19572/* Finish the list of unwind opcodes for this function. */
19573static void
19574finish_unwind_opcodes (void)
bfae80f2 19575{
c19d1205 19576 valueT op;
bfae80f2 19577
c19d1205 19578 if (unwind.fp_used)
bfae80f2 19579 {
708587a4 19580 /* Adjust sp as necessary. */
c19d1205
ZW
19581 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19582 flush_pending_unwind ();
bfae80f2 19583
c19d1205
ZW
19584 /* After restoring sp from the frame pointer. */
19585 op = 0x90 | unwind.fp_reg;
19586 add_unwind_opcode (op, 1);
19587 }
19588 else
19589 flush_pending_unwind ();
bfae80f2
RE
19590}
19591
bfae80f2 19592
c19d1205
ZW
19593/* Start an exception table entry. If idx is nonzero this is an index table
19594 entry. */
bfae80f2
RE
19595
19596static void
c19d1205 19597start_unwind_section (const segT text_seg, int idx)
bfae80f2 19598{
c19d1205
ZW
19599 const char * text_name;
19600 const char * prefix;
19601 const char * prefix_once;
19602 const char * group_name;
19603 size_t prefix_len;
19604 size_t text_len;
19605 char * sec_name;
19606 size_t sec_name_len;
19607 int type;
19608 int flags;
19609 int linkonce;
bfae80f2 19610
c19d1205 19611 if (idx)
bfae80f2 19612 {
c19d1205
ZW
19613 prefix = ELF_STRING_ARM_unwind;
19614 prefix_once = ELF_STRING_ARM_unwind_once;
19615 type = SHT_ARM_EXIDX;
bfae80f2 19616 }
c19d1205 19617 else
bfae80f2 19618 {
c19d1205
ZW
19619 prefix = ELF_STRING_ARM_unwind_info;
19620 prefix_once = ELF_STRING_ARM_unwind_info_once;
19621 type = SHT_PROGBITS;
bfae80f2
RE
19622 }
19623
c19d1205
ZW
19624 text_name = segment_name (text_seg);
19625 if (streq (text_name, ".text"))
19626 text_name = "";
19627
19628 if (strncmp (text_name, ".gnu.linkonce.t.",
19629 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19630 {
c19d1205
ZW
19631 prefix = prefix_once;
19632 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19633 }
19634
c19d1205
ZW
19635 prefix_len = strlen (prefix);
19636 text_len = strlen (text_name);
19637 sec_name_len = prefix_len + text_len;
21d799b5 19638 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19639 memcpy (sec_name, prefix, prefix_len);
19640 memcpy (sec_name + prefix_len, text_name, text_len);
19641 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19642
c19d1205
ZW
19643 flags = SHF_ALLOC;
19644 linkonce = 0;
19645 group_name = 0;
bfae80f2 19646
c19d1205
ZW
19647 /* Handle COMDAT group. */
19648 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19649 {
c19d1205
ZW
19650 group_name = elf_group_name (text_seg);
19651 if (group_name == NULL)
19652 {
bd3ba5d1 19653 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19654 segment_name (text_seg));
19655 ignore_rest_of_line ();
19656 return;
19657 }
19658 flags |= SHF_GROUP;
19659 linkonce = 1;
bfae80f2
RE
19660 }
19661
c19d1205 19662 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19663
5f4273c7 19664 /* Set the section link for index tables. */
c19d1205
ZW
19665 if (idx)
19666 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19667}
19668
bfae80f2 19669
c19d1205
ZW
19670/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19671 personality routine data. Returns zero, or the index table value for
19672 and inline entry. */
19673
19674static valueT
19675create_unwind_entry (int have_data)
bfae80f2 19676{
c19d1205
ZW
19677 int size;
19678 addressT where;
19679 char *ptr;
19680 /* The current word of data. */
19681 valueT data;
19682 /* The number of bytes left in this word. */
19683 int n;
bfae80f2 19684
c19d1205 19685 finish_unwind_opcodes ();
bfae80f2 19686
c19d1205
ZW
19687 /* Remember the current text section. */
19688 unwind.saved_seg = now_seg;
19689 unwind.saved_subseg = now_subseg;
bfae80f2 19690
c19d1205 19691 start_unwind_section (now_seg, 0);
bfae80f2 19692
c19d1205 19693 if (unwind.personality_routine == NULL)
bfae80f2 19694 {
c19d1205
ZW
19695 if (unwind.personality_index == -2)
19696 {
19697 if (have_data)
5f4273c7 19698 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19699 return 1; /* EXIDX_CANTUNWIND. */
19700 }
bfae80f2 19701
c19d1205
ZW
19702 /* Use a default personality routine if none is specified. */
19703 if (unwind.personality_index == -1)
19704 {
19705 if (unwind.opcode_count > 3)
19706 unwind.personality_index = 1;
19707 else
19708 unwind.personality_index = 0;
19709 }
bfae80f2 19710
c19d1205
ZW
19711 /* Space for the personality routine entry. */
19712 if (unwind.personality_index == 0)
19713 {
19714 if (unwind.opcode_count > 3)
19715 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19716
c19d1205
ZW
19717 if (!have_data)
19718 {
19719 /* All the data is inline in the index table. */
19720 data = 0x80;
19721 n = 3;
19722 while (unwind.opcode_count > 0)
19723 {
19724 unwind.opcode_count--;
19725 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19726 n--;
19727 }
bfae80f2 19728
c19d1205
ZW
19729 /* Pad with "finish" opcodes. */
19730 while (n--)
19731 data = (data << 8) | 0xb0;
bfae80f2 19732
c19d1205
ZW
19733 return data;
19734 }
19735 size = 0;
19736 }
19737 else
19738 /* We get two opcodes "free" in the first word. */
19739 size = unwind.opcode_count - 2;
19740 }
19741 else
19742 /* An extra byte is required for the opcode count. */
19743 size = unwind.opcode_count + 1;
bfae80f2 19744
c19d1205
ZW
19745 size = (size + 3) >> 2;
19746 if (size > 0xff)
19747 as_bad (_("too many unwind opcodes"));
bfae80f2 19748
c19d1205
ZW
19749 frag_align (2, 0, 0);
19750 record_alignment (now_seg, 2);
19751 unwind.table_entry = expr_build_dot ();
19752
19753 /* Allocate the table entry. */
19754 ptr = frag_more ((size << 2) + 4);
19755 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19756
c19d1205 19757 switch (unwind.personality_index)
bfae80f2 19758 {
c19d1205
ZW
19759 case -1:
19760 /* ??? Should this be a PLT generating relocation? */
19761 /* Custom personality routine. */
19762 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19763 BFD_RELOC_ARM_PREL31);
bfae80f2 19764
c19d1205
ZW
19765 where += 4;
19766 ptr += 4;
bfae80f2 19767
c19d1205
ZW
19768 /* Set the first byte to the number of additional words. */
19769 data = size - 1;
19770 n = 3;
19771 break;
bfae80f2 19772
c19d1205
ZW
19773 /* ABI defined personality routines. */
19774 case 0:
19775 /* Three opcodes bytes are packed into the first word. */
19776 data = 0x80;
19777 n = 3;
19778 break;
bfae80f2 19779
c19d1205
ZW
19780 case 1:
19781 case 2:
19782 /* The size and first two opcode bytes go in the first word. */
19783 data = ((0x80 + unwind.personality_index) << 8) | size;
19784 n = 2;
19785 break;
bfae80f2 19786
c19d1205
ZW
19787 default:
19788 /* Should never happen. */
19789 abort ();
19790 }
bfae80f2 19791
c19d1205
ZW
19792 /* Pack the opcodes into words (MSB first), reversing the list at the same
19793 time. */
19794 while (unwind.opcode_count > 0)
19795 {
19796 if (n == 0)
19797 {
19798 md_number_to_chars (ptr, data, 4);
19799 ptr += 4;
19800 n = 4;
19801 data = 0;
19802 }
19803 unwind.opcode_count--;
19804 n--;
19805 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19806 }
19807
19808 /* Finish off the last word. */
19809 if (n < 4)
19810 {
19811 /* Pad with "finish" opcodes. */
19812 while (n--)
19813 data = (data << 8) | 0xb0;
19814
19815 md_number_to_chars (ptr, data, 4);
19816 }
19817
19818 if (!have_data)
19819 {
19820 /* Add an empty descriptor if there is no user-specified data. */
19821 ptr = frag_more (4);
19822 md_number_to_chars (ptr, 0, 4);
19823 }
19824
19825 return 0;
bfae80f2
RE
19826}
19827
f0927246
NC
19828
19829/* Initialize the DWARF-2 unwind information for this procedure. */
19830
19831void
19832tc_arm_frame_initial_instructions (void)
19833{
19834 cfi_add_CFA_def_cfa (REG_SP, 0);
19835}
19836#endif /* OBJ_ELF */
19837
c19d1205
ZW
19838/* Convert REGNAME to a DWARF-2 register number. */
19839
19840int
1df69f4f 19841tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19842{
1df69f4f 19843 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19844
19845 if (reg == FAIL)
19846 return -1;
19847
19848 return reg;
bfae80f2
RE
19849}
19850
f0927246 19851#ifdef TE_PE
c19d1205 19852void
f0927246 19853tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19854{
91d6fa6a 19855 expressionS exp;
bfae80f2 19856
91d6fa6a
NC
19857 exp.X_op = O_secrel;
19858 exp.X_add_symbol = symbol;
19859 exp.X_add_number = 0;
19860 emit_expr (&exp, size);
f0927246
NC
19861}
19862#endif
bfae80f2 19863
c19d1205 19864/* MD interface: Symbol and relocation handling. */
bfae80f2 19865
2fc8bdac
ZW
19866/* Return the address within the segment that a PC-relative fixup is
19867 relative to. For ARM, PC-relative fixups applied to instructions
19868 are generally relative to the location of the fixup plus 8 bytes.
19869 Thumb branches are offset by 4, and Thumb loads relative to PC
19870 require special handling. */
bfae80f2 19871
c19d1205 19872long
2fc8bdac 19873md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19874{
2fc8bdac
ZW
19875 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19876
19877 /* If this is pc-relative and we are going to emit a relocation
19878 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19879 will need. Otherwise we want to use the calculated base.
19880 For WinCE we skip the bias for externals as well, since this
19881 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19882 if (fixP->fx_pcrel
2fc8bdac 19883 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19884 || (arm_force_relocation (fixP)
19885#ifdef TE_WINCE
19886 && !S_IS_EXTERNAL (fixP->fx_addsy)
19887#endif
19888 )))
2fc8bdac 19889 base = 0;
bfae80f2 19890
267bf995 19891
c19d1205 19892 switch (fixP->fx_r_type)
bfae80f2 19893 {
2fc8bdac
ZW
19894 /* PC relative addressing on the Thumb is slightly odd as the
19895 bottom two bits of the PC are forced to zero for the
19896 calculation. This happens *after* application of the
19897 pipeline offset. However, Thumb adrl already adjusts for
19898 this, so we need not do it again. */
c19d1205 19899 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19900 return base & ~3;
c19d1205
ZW
19901
19902 case BFD_RELOC_ARM_THUMB_OFFSET:
19903 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19904 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19905 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19906 return (base + 4) & ~3;
c19d1205 19907
2fc8bdac
ZW
19908 /* Thumb branches are simply offset by +4. */
19909 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19910 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19911 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19912 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19913 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19914 return base + 4;
bfae80f2 19915
267bf995 19916 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19917 if (fixP->fx_addsy
19918 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19919 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19920 && ARM_IS_FUNC (fixP->fx_addsy)
19921 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19922 base = fixP->fx_where + fixP->fx_frag->fr_address;
19923 return base + 4;
19924
00adf2d4
JB
19925 /* BLX is like branches above, but forces the low two bits of PC to
19926 zero. */
486499d0
CL
19927 case BFD_RELOC_THUMB_PCREL_BLX:
19928 if (fixP->fx_addsy
19929 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19930 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19931 && THUMB_IS_FUNC (fixP->fx_addsy)
19932 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19933 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19934 return (base + 4) & ~3;
19935
2fc8bdac
ZW
19936 /* ARM mode branches are offset by +8. However, the Windows CE
19937 loader expects the relocation not to take this into account. */
267bf995 19938 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19939 if (fixP->fx_addsy
19940 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19941 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19942 && ARM_IS_FUNC (fixP->fx_addsy)
19943 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19944 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19945 return base + 8;
267bf995 19946
486499d0
CL
19947 case BFD_RELOC_ARM_PCREL_CALL:
19948 if (fixP->fx_addsy
19949 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19950 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19951 && THUMB_IS_FUNC (fixP->fx_addsy)
19952 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19953 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19954 return base + 8;
267bf995 19955
2fc8bdac 19956 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19957 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19958 case BFD_RELOC_ARM_PLT32:
c19d1205 19959#ifdef TE_WINCE
5f4273c7 19960 /* When handling fixups immediately, because we have already
53baae48
NC
19961 discovered the value of a symbol, or the address of the frag involved
19962 we must account for the offset by +8, as the OS loader will never see the reloc.
19963 see fixup_segment() in write.c
19964 The S_IS_EXTERNAL test handles the case of global symbols.
19965 Those need the calculated base, not just the pipe compensation the linker will need. */
19966 if (fixP->fx_pcrel
19967 && fixP->fx_addsy != NULL
19968 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19969 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19970 return base + 8;
2fc8bdac 19971 return base;
c19d1205 19972#else
2fc8bdac 19973 return base + 8;
c19d1205 19974#endif
2fc8bdac 19975
267bf995 19976
2fc8bdac
ZW
19977 /* ARM mode loads relative to PC are also offset by +8. Unlike
19978 branches, the Windows CE loader *does* expect the relocation
19979 to take this into account. */
19980 case BFD_RELOC_ARM_OFFSET_IMM:
19981 case BFD_RELOC_ARM_OFFSET_IMM8:
19982 case BFD_RELOC_ARM_HWLITERAL:
19983 case BFD_RELOC_ARM_LITERAL:
19984 case BFD_RELOC_ARM_CP_OFF_IMM:
19985 return base + 8;
19986
19987
19988 /* Other PC-relative relocations are un-offset. */
19989 default:
19990 return base;
19991 }
bfae80f2
RE
19992}
19993
c19d1205
ZW
19994/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19995 Otherwise we have no need to default values of symbols. */
19996
19997symbolS *
19998md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19999{
c19d1205
ZW
20000#ifdef OBJ_ELF
20001 if (name[0] == '_' && name[1] == 'G'
20002 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20003 {
20004 if (!GOT_symbol)
20005 {
20006 if (symbol_find (name))
bd3ba5d1 20007 as_bad (_("GOT already in the symbol table"));
bfae80f2 20008
c19d1205
ZW
20009 GOT_symbol = symbol_new (name, undefined_section,
20010 (valueT) 0, & zero_address_frag);
20011 }
bfae80f2 20012
c19d1205 20013 return GOT_symbol;
bfae80f2 20014 }
c19d1205 20015#endif
bfae80f2 20016
c921be7d 20017 return NULL;
bfae80f2
RE
20018}
20019
55cf6793 20020/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20021 computed as two separate immediate values, added together. We
20022 already know that this value cannot be computed by just one ARM
20023 instruction. */
20024
20025static unsigned int
20026validate_immediate_twopart (unsigned int val,
20027 unsigned int * highpart)
bfae80f2 20028{
c19d1205
ZW
20029 unsigned int a;
20030 unsigned int i;
bfae80f2 20031
c19d1205
ZW
20032 for (i = 0; i < 32; i += 2)
20033 if (((a = rotate_left (val, i)) & 0xff) != 0)
20034 {
20035 if (a & 0xff00)
20036 {
20037 if (a & ~ 0xffff)
20038 continue;
20039 * highpart = (a >> 8) | ((i + 24) << 7);
20040 }
20041 else if (a & 0xff0000)
20042 {
20043 if (a & 0xff000000)
20044 continue;
20045 * highpart = (a >> 16) | ((i + 16) << 7);
20046 }
20047 else
20048 {
9c2799c2 20049 gas_assert (a & 0xff000000);
c19d1205
ZW
20050 * highpart = (a >> 24) | ((i + 8) << 7);
20051 }
bfae80f2 20052
c19d1205
ZW
20053 return (a & 0xff) | (i << 7);
20054 }
bfae80f2 20055
c19d1205 20056 return FAIL;
bfae80f2
RE
20057}
20058
c19d1205
ZW
20059static int
20060validate_offset_imm (unsigned int val, int hwse)
20061{
20062 if ((hwse && val > 255) || val > 4095)
20063 return FAIL;
20064 return val;
20065}
bfae80f2 20066
55cf6793 20067/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20068 negative immediate constant by altering the instruction. A bit of
20069 a hack really.
20070 MOV <-> MVN
20071 AND <-> BIC
20072 ADC <-> SBC
20073 by inverting the second operand, and
20074 ADD <-> SUB
20075 CMP <-> CMN
20076 by negating the second operand. */
bfae80f2 20077
c19d1205
ZW
20078static int
20079negate_data_op (unsigned long * instruction,
20080 unsigned long value)
bfae80f2 20081{
c19d1205
ZW
20082 int op, new_inst;
20083 unsigned long negated, inverted;
bfae80f2 20084
c19d1205
ZW
20085 negated = encode_arm_immediate (-value);
20086 inverted = encode_arm_immediate (~value);
bfae80f2 20087
c19d1205
ZW
20088 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20089 switch (op)
bfae80f2 20090 {
c19d1205
ZW
20091 /* First negates. */
20092 case OPCODE_SUB: /* ADD <-> SUB */
20093 new_inst = OPCODE_ADD;
20094 value = negated;
20095 break;
bfae80f2 20096
c19d1205
ZW
20097 case OPCODE_ADD:
20098 new_inst = OPCODE_SUB;
20099 value = negated;
20100 break;
bfae80f2 20101
c19d1205
ZW
20102 case OPCODE_CMP: /* CMP <-> CMN */
20103 new_inst = OPCODE_CMN;
20104 value = negated;
20105 break;
bfae80f2 20106
c19d1205
ZW
20107 case OPCODE_CMN:
20108 new_inst = OPCODE_CMP;
20109 value = negated;
20110 break;
bfae80f2 20111
c19d1205
ZW
20112 /* Now Inverted ops. */
20113 case OPCODE_MOV: /* MOV <-> MVN */
20114 new_inst = OPCODE_MVN;
20115 value = inverted;
20116 break;
bfae80f2 20117
c19d1205
ZW
20118 case OPCODE_MVN:
20119 new_inst = OPCODE_MOV;
20120 value = inverted;
20121 break;
bfae80f2 20122
c19d1205
ZW
20123 case OPCODE_AND: /* AND <-> BIC */
20124 new_inst = OPCODE_BIC;
20125 value = inverted;
20126 break;
bfae80f2 20127
c19d1205
ZW
20128 case OPCODE_BIC:
20129 new_inst = OPCODE_AND;
20130 value = inverted;
20131 break;
bfae80f2 20132
c19d1205
ZW
20133 case OPCODE_ADC: /* ADC <-> SBC */
20134 new_inst = OPCODE_SBC;
20135 value = inverted;
20136 break;
bfae80f2 20137
c19d1205
ZW
20138 case OPCODE_SBC:
20139 new_inst = OPCODE_ADC;
20140 value = inverted;
20141 break;
bfae80f2 20142
c19d1205
ZW
20143 /* We cannot do anything. */
20144 default:
20145 return FAIL;
b99bd4ef
NC
20146 }
20147
c19d1205
ZW
20148 if (value == (unsigned) FAIL)
20149 return FAIL;
20150
20151 *instruction &= OPCODE_MASK;
20152 *instruction |= new_inst << DATA_OP_SHIFT;
20153 return value;
b99bd4ef
NC
20154}
20155
ef8d22e6
PB
20156/* Like negate_data_op, but for Thumb-2. */
20157
20158static unsigned int
16dd5e42 20159thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20160{
20161 int op, new_inst;
20162 int rd;
16dd5e42 20163 unsigned int negated, inverted;
ef8d22e6
PB
20164
20165 negated = encode_thumb32_immediate (-value);
20166 inverted = encode_thumb32_immediate (~value);
20167
20168 rd = (*instruction >> 8) & 0xf;
20169 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20170 switch (op)
20171 {
20172 /* ADD <-> SUB. Includes CMP <-> CMN. */
20173 case T2_OPCODE_SUB:
20174 new_inst = T2_OPCODE_ADD;
20175 value = negated;
20176 break;
20177
20178 case T2_OPCODE_ADD:
20179 new_inst = T2_OPCODE_SUB;
20180 value = negated;
20181 break;
20182
20183 /* ORR <-> ORN. Includes MOV <-> MVN. */
20184 case T2_OPCODE_ORR:
20185 new_inst = T2_OPCODE_ORN;
20186 value = inverted;
20187 break;
20188
20189 case T2_OPCODE_ORN:
20190 new_inst = T2_OPCODE_ORR;
20191 value = inverted;
20192 break;
20193
20194 /* AND <-> BIC. TST has no inverted equivalent. */
20195 case T2_OPCODE_AND:
20196 new_inst = T2_OPCODE_BIC;
20197 if (rd == 15)
20198 value = FAIL;
20199 else
20200 value = inverted;
20201 break;
20202
20203 case T2_OPCODE_BIC:
20204 new_inst = T2_OPCODE_AND;
20205 value = inverted;
20206 break;
20207
20208 /* ADC <-> SBC */
20209 case T2_OPCODE_ADC:
20210 new_inst = T2_OPCODE_SBC;
20211 value = inverted;
20212 break;
20213
20214 case T2_OPCODE_SBC:
20215 new_inst = T2_OPCODE_ADC;
20216 value = inverted;
20217 break;
20218
20219 /* We cannot do anything. */
20220 default:
20221 return FAIL;
20222 }
20223
16dd5e42 20224 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20225 return FAIL;
20226
20227 *instruction &= T2_OPCODE_MASK;
20228 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20229 return value;
20230}
20231
8f06b2d8
PB
20232/* Read a 32-bit thumb instruction from buf. */
20233static unsigned long
20234get_thumb32_insn (char * buf)
20235{
20236 unsigned long insn;
20237 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20238 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20239
20240 return insn;
20241}
20242
a8bc6c78
PB
20243
20244/* We usually want to set the low bit on the address of thumb function
20245 symbols. In particular .word foo - . should have the low bit set.
20246 Generic code tries to fold the difference of two symbols to
20247 a constant. Prevent this and force a relocation when the first symbols
20248 is a thumb function. */
c921be7d
NC
20249
20250bfd_boolean
a8bc6c78
PB
20251arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20252{
20253 if (op == O_subtract
20254 && l->X_op == O_symbol
20255 && r->X_op == O_symbol
20256 && THUMB_IS_FUNC (l->X_add_symbol))
20257 {
20258 l->X_op = O_subtract;
20259 l->X_op_symbol = r->X_add_symbol;
20260 l->X_add_number -= r->X_add_number;
c921be7d 20261 return TRUE;
a8bc6c78 20262 }
c921be7d 20263
a8bc6c78 20264 /* Process as normal. */
c921be7d 20265 return FALSE;
a8bc6c78
PB
20266}
20267
4a42ebbc
RR
20268/* Encode Thumb2 unconditional branches and calls. The encoding
20269 for the 2 are identical for the immediate values. */
20270
20271static void
20272encode_thumb2_b_bl_offset (char * buf, offsetT value)
20273{
20274#define T2I1I2MASK ((1 << 13) | (1 << 11))
20275 offsetT newval;
20276 offsetT newval2;
20277 addressT S, I1, I2, lo, hi;
20278
20279 S = (value >> 24) & 0x01;
20280 I1 = (value >> 23) & 0x01;
20281 I2 = (value >> 22) & 0x01;
20282 hi = (value >> 12) & 0x3ff;
20283 lo = (value >> 1) & 0x7ff;
20284 newval = md_chars_to_number (buf, THUMB_SIZE);
20285 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20286 newval |= (S << 10) | hi;
20287 newval2 &= ~T2I1I2MASK;
20288 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20289 md_number_to_chars (buf, newval, THUMB_SIZE);
20290 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20291}
20292
c19d1205 20293void
55cf6793 20294md_apply_fix (fixS * fixP,
c19d1205
ZW
20295 valueT * valP,
20296 segT seg)
20297{
20298 offsetT value = * valP;
20299 offsetT newval;
20300 unsigned int newimm;
20301 unsigned long temp;
20302 int sign;
20303 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20304
9c2799c2 20305 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20306
c19d1205 20307 /* Note whether this will delete the relocation. */
4962c51a 20308
c19d1205
ZW
20309 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20310 fixP->fx_done = 1;
b99bd4ef 20311
adbaf948 20312 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20313 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20314 for emit_reloc. */
20315 value &= 0xffffffff;
20316 value ^= 0x80000000;
5f4273c7 20317 value -= 0x80000000;
adbaf948
ZW
20318
20319 *valP = value;
c19d1205 20320 fixP->fx_addnumber = value;
b99bd4ef 20321
adbaf948
ZW
20322 /* Same treatment for fixP->fx_offset. */
20323 fixP->fx_offset &= 0xffffffff;
20324 fixP->fx_offset ^= 0x80000000;
20325 fixP->fx_offset -= 0x80000000;
20326
c19d1205 20327 switch (fixP->fx_r_type)
b99bd4ef 20328 {
c19d1205
ZW
20329 case BFD_RELOC_NONE:
20330 /* This will need to go in the object file. */
20331 fixP->fx_done = 0;
20332 break;
b99bd4ef 20333
c19d1205
ZW
20334 case BFD_RELOC_ARM_IMMEDIATE:
20335 /* We claim that this fixup has been processed here,
20336 even if in fact we generate an error because we do
20337 not have a reloc for it, so tc_gen_reloc will reject it. */
20338 fixP->fx_done = 1;
b99bd4ef 20339
77db8e2e 20340 if (fixP->fx_addsy)
b99bd4ef 20341 {
77db8e2e 20342 const char *msg = 0;
b99bd4ef 20343
77db8e2e
NC
20344 if (! S_IS_DEFINED (fixP->fx_addsy))
20345 msg = _("undefined symbol %s used as an immediate value");
20346 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20347 msg = _("symbol %s is in a different section");
20348 else if (S_IS_WEAK (fixP->fx_addsy))
20349 msg = _("symbol %s is weak and may be overridden later");
20350
20351 if (msg)
20352 {
20353 as_bad_where (fixP->fx_file, fixP->fx_line,
20354 msg, S_GET_NAME (fixP->fx_addsy));
20355 break;
20356 }
42e5fcbf
AS
20357 }
20358
c19d1205
ZW
20359 newimm = encode_arm_immediate (value);
20360 temp = md_chars_to_number (buf, INSN_SIZE);
20361
20362 /* If the instruction will fail, see if we can fix things up by
20363 changing the opcode. */
20364 if (newimm == (unsigned int) FAIL
20365 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20366 {
c19d1205
ZW
20367 as_bad_where (fixP->fx_file, fixP->fx_line,
20368 _("invalid constant (%lx) after fixup"),
20369 (unsigned long) value);
20370 break;
b99bd4ef 20371 }
b99bd4ef 20372
c19d1205
ZW
20373 newimm |= (temp & 0xfffff000);
20374 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20375 break;
b99bd4ef 20376
c19d1205
ZW
20377 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20378 {
20379 unsigned int highpart = 0;
20380 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20381
77db8e2e 20382 if (fixP->fx_addsy)
42e5fcbf 20383 {
77db8e2e 20384 const char *msg = 0;
42e5fcbf 20385
77db8e2e
NC
20386 if (! S_IS_DEFINED (fixP->fx_addsy))
20387 msg = _("undefined symbol %s used as an immediate value");
20388 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20389 msg = _("symbol %s is in a different section");
20390 else if (S_IS_WEAK (fixP->fx_addsy))
20391 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20392
77db8e2e
NC
20393 if (msg)
20394 {
20395 as_bad_where (fixP->fx_file, fixP->fx_line,
20396 msg, S_GET_NAME (fixP->fx_addsy));
20397 break;
20398 }
20399 }
20400
c19d1205
ZW
20401 newimm = encode_arm_immediate (value);
20402 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20403
c19d1205
ZW
20404 /* If the instruction will fail, see if we can fix things up by
20405 changing the opcode. */
20406 if (newimm == (unsigned int) FAIL
20407 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20408 {
20409 /* No ? OK - try using two ADD instructions to generate
20410 the value. */
20411 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20412
c19d1205
ZW
20413 /* Yes - then make sure that the second instruction is
20414 also an add. */
20415 if (newimm != (unsigned int) FAIL)
20416 newinsn = temp;
20417 /* Still No ? Try using a negated value. */
20418 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20419 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20420 /* Otherwise - give up. */
20421 else
20422 {
20423 as_bad_where (fixP->fx_file, fixP->fx_line,
20424 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20425 (long) value);
20426 break;
20427 }
b99bd4ef 20428
c19d1205
ZW
20429 /* Replace the first operand in the 2nd instruction (which
20430 is the PC) with the destination register. We have
20431 already added in the PC in the first instruction and we
20432 do not want to do it again. */
20433 newinsn &= ~ 0xf0000;
20434 newinsn |= ((newinsn & 0x0f000) << 4);
20435 }
b99bd4ef 20436
c19d1205
ZW
20437 newimm |= (temp & 0xfffff000);
20438 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20439
c19d1205
ZW
20440 highpart |= (newinsn & 0xfffff000);
20441 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20442 }
20443 break;
b99bd4ef 20444
c19d1205 20445 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20446 if (!fixP->fx_done && seg->use_rela_p)
20447 value = 0;
20448
c19d1205
ZW
20449 case BFD_RELOC_ARM_LITERAL:
20450 sign = value >= 0;
b99bd4ef 20451
c19d1205
ZW
20452 if (value < 0)
20453 value = - value;
b99bd4ef 20454
c19d1205 20455 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20456 {
c19d1205
ZW
20457 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20458 as_bad_where (fixP->fx_file, fixP->fx_line,
20459 _("invalid literal constant: pool needs to be closer"));
20460 else
20461 as_bad_where (fixP->fx_file, fixP->fx_line,
20462 _("bad immediate value for offset (%ld)"),
20463 (long) value);
20464 break;
f03698e6
RE
20465 }
20466
c19d1205
ZW
20467 newval = md_chars_to_number (buf, INSN_SIZE);
20468 newval &= 0xff7ff000;
20469 newval |= value | (sign ? INDEX_UP : 0);
20470 md_number_to_chars (buf, newval, INSN_SIZE);
20471 break;
b99bd4ef 20472
c19d1205
ZW
20473 case BFD_RELOC_ARM_OFFSET_IMM8:
20474 case BFD_RELOC_ARM_HWLITERAL:
20475 sign = value >= 0;
b99bd4ef 20476
c19d1205
ZW
20477 if (value < 0)
20478 value = - value;
b99bd4ef 20479
c19d1205 20480 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20481 {
c19d1205
ZW
20482 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20483 as_bad_where (fixP->fx_file, fixP->fx_line,
20484 _("invalid literal constant: pool needs to be closer"));
20485 else
f9d4405b 20486 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20487 (long) value);
20488 break;
b99bd4ef
NC
20489 }
20490
c19d1205
ZW
20491 newval = md_chars_to_number (buf, INSN_SIZE);
20492 newval &= 0xff7ff0f0;
20493 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20494 md_number_to_chars (buf, newval, INSN_SIZE);
20495 break;
b99bd4ef 20496
c19d1205
ZW
20497 case BFD_RELOC_ARM_T32_OFFSET_U8:
20498 if (value < 0 || value > 1020 || value % 4 != 0)
20499 as_bad_where (fixP->fx_file, fixP->fx_line,
20500 _("bad immediate value for offset (%ld)"), (long) value);
20501 value /= 4;
b99bd4ef 20502
c19d1205 20503 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20504 newval |= value;
20505 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20506 break;
b99bd4ef 20507
c19d1205
ZW
20508 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20509 /* This is a complicated relocation used for all varieties of Thumb32
20510 load/store instruction with immediate offset:
20511
20512 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20513 *4, optional writeback(W)
20514 (doubleword load/store)
20515
20516 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20517 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20518 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20519 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20520 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20521
20522 Uppercase letters indicate bits that are already encoded at
20523 this point. Lowercase letters are our problem. For the
20524 second block of instructions, the secondary opcode nybble
20525 (bits 8..11) is present, and bit 23 is zero, even if this is
20526 a PC-relative operation. */
20527 newval = md_chars_to_number (buf, THUMB_SIZE);
20528 newval <<= 16;
20529 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20530
c19d1205 20531 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20532 {
c19d1205
ZW
20533 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20534 if (value >= 0)
20535 newval |= (1 << 23);
20536 else
20537 value = -value;
20538 if (value % 4 != 0)
20539 {
20540 as_bad_where (fixP->fx_file, fixP->fx_line,
20541 _("offset not a multiple of 4"));
20542 break;
20543 }
20544 value /= 4;
216d22bc 20545 if (value > 0xff)
c19d1205
ZW
20546 {
20547 as_bad_where (fixP->fx_file, fixP->fx_line,
20548 _("offset out of range"));
20549 break;
20550 }
20551 newval &= ~0xff;
b99bd4ef 20552 }
c19d1205 20553 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20554 {
c19d1205
ZW
20555 /* PC-relative, 12-bit offset. */
20556 if (value >= 0)
20557 newval |= (1 << 23);
20558 else
20559 value = -value;
216d22bc 20560 if (value > 0xfff)
c19d1205
ZW
20561 {
20562 as_bad_where (fixP->fx_file, fixP->fx_line,
20563 _("offset out of range"));
20564 break;
20565 }
20566 newval &= ~0xfff;
b99bd4ef 20567 }
c19d1205 20568 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20569 {
c19d1205
ZW
20570 /* Writeback: 8-bit, +/- offset. */
20571 if (value >= 0)
20572 newval |= (1 << 9);
20573 else
20574 value = -value;
216d22bc 20575 if (value > 0xff)
c19d1205
ZW
20576 {
20577 as_bad_where (fixP->fx_file, fixP->fx_line,
20578 _("offset out of range"));
20579 break;
20580 }
20581 newval &= ~0xff;
b99bd4ef 20582 }
c19d1205 20583 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20584 {
c19d1205 20585 /* T-instruction: positive 8-bit offset. */
216d22bc 20586 if (value < 0 || value > 0xff)
b99bd4ef 20587 {
c19d1205
ZW
20588 as_bad_where (fixP->fx_file, fixP->fx_line,
20589 _("offset out of range"));
20590 break;
b99bd4ef 20591 }
c19d1205
ZW
20592 newval &= ~0xff;
20593 newval |= value;
b99bd4ef
NC
20594 }
20595 else
b99bd4ef 20596 {
c19d1205
ZW
20597 /* Positive 12-bit or negative 8-bit offset. */
20598 int limit;
20599 if (value >= 0)
b99bd4ef 20600 {
c19d1205
ZW
20601 newval |= (1 << 23);
20602 limit = 0xfff;
20603 }
20604 else
20605 {
20606 value = -value;
20607 limit = 0xff;
20608 }
20609 if (value > limit)
20610 {
20611 as_bad_where (fixP->fx_file, fixP->fx_line,
20612 _("offset out of range"));
20613 break;
b99bd4ef 20614 }
c19d1205 20615 newval &= ~limit;
b99bd4ef 20616 }
b99bd4ef 20617
c19d1205
ZW
20618 newval |= value;
20619 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20620 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20621 break;
404ff6b5 20622
c19d1205
ZW
20623 case BFD_RELOC_ARM_SHIFT_IMM:
20624 newval = md_chars_to_number (buf, INSN_SIZE);
20625 if (((unsigned long) value) > 32
20626 || (value == 32
20627 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20628 {
20629 as_bad_where (fixP->fx_file, fixP->fx_line,
20630 _("shift expression is too large"));
20631 break;
20632 }
404ff6b5 20633
c19d1205
ZW
20634 if (value == 0)
20635 /* Shifts of zero must be done as lsl. */
20636 newval &= ~0x60;
20637 else if (value == 32)
20638 value = 0;
20639 newval &= 0xfffff07f;
20640 newval |= (value & 0x1f) << 7;
20641 md_number_to_chars (buf, newval, INSN_SIZE);
20642 break;
404ff6b5 20643
c19d1205 20644 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20645 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20646 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20647 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20648 /* We claim that this fixup has been processed here,
20649 even if in fact we generate an error because we do
20650 not have a reloc for it, so tc_gen_reloc will reject it. */
20651 fixP->fx_done = 1;
404ff6b5 20652
c19d1205
ZW
20653 if (fixP->fx_addsy
20654 && ! S_IS_DEFINED (fixP->fx_addsy))
20655 {
20656 as_bad_where (fixP->fx_file, fixP->fx_line,
20657 _("undefined symbol %s used as an immediate value"),
20658 S_GET_NAME (fixP->fx_addsy));
20659 break;
20660 }
404ff6b5 20661
c19d1205
ZW
20662 newval = md_chars_to_number (buf, THUMB_SIZE);
20663 newval <<= 16;
20664 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20665
16805f35
PB
20666 newimm = FAIL;
20667 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20668 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20669 {
20670 newimm = encode_thumb32_immediate (value);
20671 if (newimm == (unsigned int) FAIL)
20672 newimm = thumb32_negate_data_op (&newval, value);
20673 }
16805f35
PB
20674 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20675 && newimm == (unsigned int) FAIL)
92e90b6e 20676 {
16805f35
PB
20677 /* Turn add/sum into addw/subw. */
20678 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20679 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20680 /* No flat 12-bit imm encoding for addsw/subsw. */
20681 if ((newval & 0x00100000) == 0)
e9f89963 20682 {
40f246e3
NC
20683 /* 12 bit immediate for addw/subw. */
20684 if (value < 0)
20685 {
20686 value = -value;
20687 newval ^= 0x00a00000;
20688 }
20689 if (value > 0xfff)
20690 newimm = (unsigned int) FAIL;
20691 else
20692 newimm = value;
e9f89963 20693 }
92e90b6e 20694 }
cc8a6dd0 20695
c19d1205 20696 if (newimm == (unsigned int)FAIL)
3631a3c8 20697 {
c19d1205
ZW
20698 as_bad_where (fixP->fx_file, fixP->fx_line,
20699 _("invalid constant (%lx) after fixup"),
20700 (unsigned long) value);
20701 break;
3631a3c8
NC
20702 }
20703
c19d1205
ZW
20704 newval |= (newimm & 0x800) << 15;
20705 newval |= (newimm & 0x700) << 4;
20706 newval |= (newimm & 0x0ff);
cc8a6dd0 20707
c19d1205
ZW
20708 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20709 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20710 break;
a737bd4d 20711
3eb17e6b 20712 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20713 if (((unsigned long) value) > 0xffff)
20714 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20715 _("invalid smc expression"));
2fc8bdac 20716 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20717 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20718 md_number_to_chars (buf, newval, INSN_SIZE);
20719 break;
a737bd4d 20720
90ec0d68
MGD
20721 case BFD_RELOC_ARM_HVC:
20722 if (((unsigned long) value) > 0xffff)
20723 as_bad_where (fixP->fx_file, fixP->fx_line,
20724 _("invalid hvc expression"));
20725 newval = md_chars_to_number (buf, INSN_SIZE);
20726 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20727 md_number_to_chars (buf, newval, INSN_SIZE);
20728 break;
20729
c19d1205 20730 case BFD_RELOC_ARM_SWI:
adbaf948 20731 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20732 {
20733 if (((unsigned long) value) > 0xff)
20734 as_bad_where (fixP->fx_file, fixP->fx_line,
20735 _("invalid swi expression"));
2fc8bdac 20736 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20737 newval |= value;
20738 md_number_to_chars (buf, newval, THUMB_SIZE);
20739 }
20740 else
20741 {
20742 if (((unsigned long) value) > 0x00ffffff)
20743 as_bad_where (fixP->fx_file, fixP->fx_line,
20744 _("invalid swi expression"));
2fc8bdac 20745 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20746 newval |= value;
20747 md_number_to_chars (buf, newval, INSN_SIZE);
20748 }
20749 break;
a737bd4d 20750
c19d1205
ZW
20751 case BFD_RELOC_ARM_MULTI:
20752 if (((unsigned long) value) > 0xffff)
20753 as_bad_where (fixP->fx_file, fixP->fx_line,
20754 _("invalid expression in load/store multiple"));
20755 newval = value | md_chars_to_number (buf, INSN_SIZE);
20756 md_number_to_chars (buf, newval, INSN_SIZE);
20757 break;
a737bd4d 20758
c19d1205 20759#ifdef OBJ_ELF
39b41c9c 20760 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20761
20762 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20763 && fixP->fx_addsy
34e77a92 20764 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20765 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20766 && THUMB_IS_FUNC (fixP->fx_addsy))
20767 /* Flip the bl to blx. This is a simple flip
20768 bit here because we generate PCREL_CALL for
20769 unconditional bls. */
20770 {
20771 newval = md_chars_to_number (buf, INSN_SIZE);
20772 newval = newval | 0x10000000;
20773 md_number_to_chars (buf, newval, INSN_SIZE);
20774 temp = 1;
20775 fixP->fx_done = 1;
20776 }
39b41c9c
PB
20777 else
20778 temp = 3;
20779 goto arm_branch_common;
20780
20781 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20782 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20783 && fixP->fx_addsy
34e77a92 20784 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20785 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20786 && THUMB_IS_FUNC (fixP->fx_addsy))
20787 {
20788 /* This would map to a bl<cond>, b<cond>,
20789 b<always> to a Thumb function. We
20790 need to force a relocation for this particular
20791 case. */
20792 newval = md_chars_to_number (buf, INSN_SIZE);
20793 fixP->fx_done = 0;
20794 }
20795
2fc8bdac 20796 case BFD_RELOC_ARM_PLT32:
c19d1205 20797#endif
39b41c9c
PB
20798 case BFD_RELOC_ARM_PCREL_BRANCH:
20799 temp = 3;
20800 goto arm_branch_common;
a737bd4d 20801
39b41c9c 20802 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20803
39b41c9c 20804 temp = 1;
267bf995
RR
20805 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20806 && fixP->fx_addsy
34e77a92 20807 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20808 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20809 && ARM_IS_FUNC (fixP->fx_addsy))
20810 {
20811 /* Flip the blx to a bl and warn. */
20812 const char *name = S_GET_NAME (fixP->fx_addsy);
20813 newval = 0xeb000000;
20814 as_warn_where (fixP->fx_file, fixP->fx_line,
20815 _("blx to '%s' an ARM ISA state function changed to bl"),
20816 name);
20817 md_number_to_chars (buf, newval, INSN_SIZE);
20818 temp = 3;
20819 fixP->fx_done = 1;
20820 }
20821
20822#ifdef OBJ_ELF
20823 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20824 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20825#endif
20826
39b41c9c 20827 arm_branch_common:
c19d1205 20828 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20829 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20830 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20831 also be be clear. */
20832 if (value & temp)
c19d1205 20833 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20834 _("misaligned branch destination"));
20835 if ((value & (offsetT)0xfe000000) != (offsetT)0
20836 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20837 as_bad_where (fixP->fx_file, fixP->fx_line,
20838 _("branch out of range"));
a737bd4d 20839
2fc8bdac 20840 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20841 {
2fc8bdac
ZW
20842 newval = md_chars_to_number (buf, INSN_SIZE);
20843 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20844 /* Set the H bit on BLX instructions. */
20845 if (temp == 1)
20846 {
20847 if (value & 2)
20848 newval |= 0x01000000;
20849 else
20850 newval &= ~0x01000000;
20851 }
2fc8bdac 20852 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20853 }
c19d1205 20854 break;
a737bd4d 20855
25fe350b
MS
20856 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20857 /* CBZ can only branch forward. */
a737bd4d 20858
738755b0
MS
20859 /* Attempts to use CBZ to branch to the next instruction
20860 (which, strictly speaking, are prohibited) will be turned into
20861 no-ops.
20862
20863 FIXME: It may be better to remove the instruction completely and
20864 perform relaxation. */
20865 if (value == -2)
2fc8bdac
ZW
20866 {
20867 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20868 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20869 md_number_to_chars (buf, newval, THUMB_SIZE);
20870 }
738755b0
MS
20871 else
20872 {
20873 if (value & ~0x7e)
20874 as_bad_where (fixP->fx_file, fixP->fx_line,
20875 _("branch out of range"));
20876
20877 if (fixP->fx_done || !seg->use_rela_p)
20878 {
20879 newval = md_chars_to_number (buf, THUMB_SIZE);
20880 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20881 md_number_to_chars (buf, newval, THUMB_SIZE);
20882 }
20883 }
c19d1205 20884 break;
a737bd4d 20885
c19d1205 20886 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20887 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20888 as_bad_where (fixP->fx_file, fixP->fx_line,
20889 _("branch out of range"));
a737bd4d 20890
2fc8bdac
ZW
20891 if (fixP->fx_done || !seg->use_rela_p)
20892 {
20893 newval = md_chars_to_number (buf, THUMB_SIZE);
20894 newval |= (value & 0x1ff) >> 1;
20895 md_number_to_chars (buf, newval, THUMB_SIZE);
20896 }
c19d1205 20897 break;
a737bd4d 20898
c19d1205 20899 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20900 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20901 as_bad_where (fixP->fx_file, fixP->fx_line,
20902 _("branch out of range"));
a737bd4d 20903
2fc8bdac
ZW
20904 if (fixP->fx_done || !seg->use_rela_p)
20905 {
20906 newval = md_chars_to_number (buf, THUMB_SIZE);
20907 newval |= (value & 0xfff) >> 1;
20908 md_number_to_chars (buf, newval, THUMB_SIZE);
20909 }
c19d1205 20910 break;
a737bd4d 20911
c19d1205 20912 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20913 if (fixP->fx_addsy
20914 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20915 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20916 && ARM_IS_FUNC (fixP->fx_addsy)
20917 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20918 {
20919 /* Force a relocation for a branch 20 bits wide. */
20920 fixP->fx_done = 0;
20921 }
2fc8bdac
ZW
20922 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20923 as_bad_where (fixP->fx_file, fixP->fx_line,
20924 _("conditional branch out of range"));
404ff6b5 20925
2fc8bdac
ZW
20926 if (fixP->fx_done || !seg->use_rela_p)
20927 {
20928 offsetT newval2;
20929 addressT S, J1, J2, lo, hi;
404ff6b5 20930
2fc8bdac
ZW
20931 S = (value & 0x00100000) >> 20;
20932 J2 = (value & 0x00080000) >> 19;
20933 J1 = (value & 0x00040000) >> 18;
20934 hi = (value & 0x0003f000) >> 12;
20935 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20936
2fc8bdac
ZW
20937 newval = md_chars_to_number (buf, THUMB_SIZE);
20938 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20939 newval |= (S << 10) | hi;
20940 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20941 md_number_to_chars (buf, newval, THUMB_SIZE);
20942 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20943 }
c19d1205 20944 break;
6c43fab6 20945
c19d1205 20946 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20947
20948 /* If there is a blx from a thumb state function to
20949 another thumb function flip this to a bl and warn
20950 about it. */
20951
20952 if (fixP->fx_addsy
34e77a92 20953 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20954 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20955 && THUMB_IS_FUNC (fixP->fx_addsy))
20956 {
20957 const char *name = S_GET_NAME (fixP->fx_addsy);
20958 as_warn_where (fixP->fx_file, fixP->fx_line,
20959 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20960 name);
20961 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20962 newval = newval | 0x1000;
20963 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20964 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20965 fixP->fx_done = 1;
20966 }
20967
20968
20969 goto thumb_bl_common;
20970
c19d1205 20971 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20972
20973 /* A bl from Thumb state ISA to an internal ARM state function
20974 is converted to a blx. */
20975 if (fixP->fx_addsy
20976 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20977 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20978 && ARM_IS_FUNC (fixP->fx_addsy)
20979 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20980 {
20981 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20982 newval = newval & ~0x1000;
20983 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20984 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20985 fixP->fx_done = 1;
20986 }
20987
20988 thumb_bl_common:
20989
20990#ifdef OBJ_ELF
20991 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20992 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20993 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20994#endif
20995
2fc8bdac
ZW
20996 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20997 /* For a BLX instruction, make sure that the relocation is rounded up
20998 to a word boundary. This follows the semantics of the instruction
20999 which specifies that bit 1 of the target address will come from bit
21000 1 of the base address. */
21001 value = (value + 1) & ~ 1;
404ff6b5 21002
2fc8bdac 21003
4a42ebbc
RR
21004 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21005 {
21006 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21007 {
21008 as_bad_where (fixP->fx_file, fixP->fx_line,
21009 _("branch out of range"));
21010 }
21011 else if ((value & ~0x1ffffff)
21012 && ((value & ~0x1ffffff) != ~0x1ffffff))
21013 {
21014 as_bad_where (fixP->fx_file, fixP->fx_line,
21015 _("Thumb2 branch out of range"));
21016 }
c19d1205 21017 }
4a42ebbc
RR
21018
21019 if (fixP->fx_done || !seg->use_rela_p)
21020 encode_thumb2_b_bl_offset (buf, value);
21021
c19d1205 21022 break;
404ff6b5 21023
c19d1205 21024 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
21025 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
21026 as_bad_where (fixP->fx_file, fixP->fx_line,
21027 _("branch out of range"));
6c43fab6 21028
2fc8bdac 21029 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21030 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21031
2fc8bdac 21032 break;
a737bd4d 21033
2fc8bdac
ZW
21034 case BFD_RELOC_8:
21035 if (fixP->fx_done || !seg->use_rela_p)
21036 md_number_to_chars (buf, value, 1);
c19d1205 21037 break;
a737bd4d 21038
c19d1205 21039 case BFD_RELOC_16:
2fc8bdac 21040 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21041 md_number_to_chars (buf, value, 2);
c19d1205 21042 break;
a737bd4d 21043
c19d1205 21044#ifdef OBJ_ELF
0855e32b
NS
21045 case BFD_RELOC_ARM_TLS_CALL:
21046 case BFD_RELOC_ARM_THM_TLS_CALL:
21047 case BFD_RELOC_ARM_TLS_DESCSEQ:
21048 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21049 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21050 break;
21051
21052 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21053 case BFD_RELOC_ARM_TLS_GD32:
21054 case BFD_RELOC_ARM_TLS_LE32:
21055 case BFD_RELOC_ARM_TLS_IE32:
21056 case BFD_RELOC_ARM_TLS_LDM32:
21057 case BFD_RELOC_ARM_TLS_LDO32:
21058 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21059 /* fall through */
6c43fab6 21060
c19d1205
ZW
21061 case BFD_RELOC_ARM_GOT32:
21062 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21063 if (fixP->fx_done || !seg->use_rela_p)
21064 md_number_to_chars (buf, 0, 4);
c19d1205 21065 break;
b43420e6
NC
21066
21067 case BFD_RELOC_ARM_GOT_PREL:
21068 if (fixP->fx_done || !seg->use_rela_p)
21069 md_number_to_chars (buf, value, 4);
21070 break;
21071
9a6f4e97
NS
21072 case BFD_RELOC_ARM_TARGET2:
21073 /* TARGET2 is not partial-inplace, so we need to write the
21074 addend here for REL targets, because it won't be written out
21075 during reloc processing later. */
21076 if (fixP->fx_done || !seg->use_rela_p)
21077 md_number_to_chars (buf, fixP->fx_offset, 4);
21078 break;
c19d1205 21079#endif
6c43fab6 21080
c19d1205
ZW
21081 case BFD_RELOC_RVA:
21082 case BFD_RELOC_32:
21083 case BFD_RELOC_ARM_TARGET1:
21084 case BFD_RELOC_ARM_ROSEGREL32:
21085 case BFD_RELOC_ARM_SBREL32:
21086 case BFD_RELOC_32_PCREL:
f0927246
NC
21087#ifdef TE_PE
21088 case BFD_RELOC_32_SECREL:
21089#endif
2fc8bdac 21090 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21091#ifdef TE_WINCE
21092 /* For WinCE we only do this for pcrel fixups. */
21093 if (fixP->fx_done || fixP->fx_pcrel)
21094#endif
21095 md_number_to_chars (buf, value, 4);
c19d1205 21096 break;
6c43fab6 21097
c19d1205
ZW
21098#ifdef OBJ_ELF
21099 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21100 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21101 {
21102 newval = md_chars_to_number (buf, 4) & 0x80000000;
21103 if ((value ^ (value >> 1)) & 0x40000000)
21104 {
21105 as_bad_where (fixP->fx_file, fixP->fx_line,
21106 _("rel31 relocation overflow"));
21107 }
21108 newval |= value & 0x7fffffff;
21109 md_number_to_chars (buf, newval, 4);
21110 }
21111 break;
c19d1205 21112#endif
a737bd4d 21113
c19d1205 21114 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21115 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21116 if (value < -1023 || value > 1023 || (value & 3))
21117 as_bad_where (fixP->fx_file, fixP->fx_line,
21118 _("co-processor offset out of range"));
21119 cp_off_common:
21120 sign = value >= 0;
21121 if (value < 0)
21122 value = -value;
8f06b2d8
PB
21123 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21124 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21125 newval = md_chars_to_number (buf, INSN_SIZE);
21126 else
21127 newval = get_thumb32_insn (buf);
21128 newval &= 0xff7fff00;
c19d1205 21129 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
21130 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21131 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21132 md_number_to_chars (buf, newval, INSN_SIZE);
21133 else
21134 put_thumb32_insn (buf, newval);
c19d1205 21135 break;
a737bd4d 21136
c19d1205 21137 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21138 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21139 if (value < -255 || value > 255)
21140 as_bad_where (fixP->fx_file, fixP->fx_line,
21141 _("co-processor offset out of range"));
df7849c5 21142 value *= 4;
c19d1205 21143 goto cp_off_common;
6c43fab6 21144
c19d1205
ZW
21145 case BFD_RELOC_ARM_THUMB_OFFSET:
21146 newval = md_chars_to_number (buf, THUMB_SIZE);
21147 /* Exactly what ranges, and where the offset is inserted depends
21148 on the type of instruction, we can establish this from the
21149 top 4 bits. */
21150 switch (newval >> 12)
21151 {
21152 case 4: /* PC load. */
21153 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21154 forced to zero for these loads; md_pcrel_from has already
21155 compensated for this. */
21156 if (value & 3)
21157 as_bad_where (fixP->fx_file, fixP->fx_line,
21158 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21159 (((unsigned long) fixP->fx_frag->fr_address
21160 + (unsigned long) fixP->fx_where) & ~3)
21161 + (unsigned long) value);
a737bd4d 21162
c19d1205
ZW
21163 if (value & ~0x3fc)
21164 as_bad_where (fixP->fx_file, fixP->fx_line,
21165 _("invalid offset, value too big (0x%08lX)"),
21166 (long) value);
a737bd4d 21167
c19d1205
ZW
21168 newval |= value >> 2;
21169 break;
a737bd4d 21170
c19d1205
ZW
21171 case 9: /* SP load/store. */
21172 if (value & ~0x3fc)
21173 as_bad_where (fixP->fx_file, fixP->fx_line,
21174 _("invalid offset, value too big (0x%08lX)"),
21175 (long) value);
21176 newval |= value >> 2;
21177 break;
6c43fab6 21178
c19d1205
ZW
21179 case 6: /* Word load/store. */
21180 if (value & ~0x7c)
21181 as_bad_where (fixP->fx_file, fixP->fx_line,
21182 _("invalid offset, value too big (0x%08lX)"),
21183 (long) value);
21184 newval |= value << 4; /* 6 - 2. */
21185 break;
a737bd4d 21186
c19d1205
ZW
21187 case 7: /* Byte load/store. */
21188 if (value & ~0x1f)
21189 as_bad_where (fixP->fx_file, fixP->fx_line,
21190 _("invalid offset, value too big (0x%08lX)"),
21191 (long) value);
21192 newval |= value << 6;
21193 break;
a737bd4d 21194
c19d1205
ZW
21195 case 8: /* Halfword load/store. */
21196 if (value & ~0x3e)
21197 as_bad_where (fixP->fx_file, fixP->fx_line,
21198 _("invalid offset, value too big (0x%08lX)"),
21199 (long) value);
21200 newval |= value << 5; /* 6 - 1. */
21201 break;
a737bd4d 21202
c19d1205
ZW
21203 default:
21204 as_bad_where (fixP->fx_file, fixP->fx_line,
21205 "Unable to process relocation for thumb opcode: %lx",
21206 (unsigned long) newval);
21207 break;
21208 }
21209 md_number_to_chars (buf, newval, THUMB_SIZE);
21210 break;
a737bd4d 21211
c19d1205
ZW
21212 case BFD_RELOC_ARM_THUMB_ADD:
21213 /* This is a complicated relocation, since we use it for all of
21214 the following immediate relocations:
a737bd4d 21215
c19d1205
ZW
21216 3bit ADD/SUB
21217 8bit ADD/SUB
21218 9bit ADD/SUB SP word-aligned
21219 10bit ADD PC/SP word-aligned
a737bd4d 21220
c19d1205
ZW
21221 The type of instruction being processed is encoded in the
21222 instruction field:
a737bd4d 21223
c19d1205
ZW
21224 0x8000 SUB
21225 0x00F0 Rd
21226 0x000F Rs
21227 */
21228 newval = md_chars_to_number (buf, THUMB_SIZE);
21229 {
21230 int rd = (newval >> 4) & 0xf;
21231 int rs = newval & 0xf;
21232 int subtract = !!(newval & 0x8000);
a737bd4d 21233
c19d1205
ZW
21234 /* Check for HI regs, only very restricted cases allowed:
21235 Adjusting SP, and using PC or SP to get an address. */
21236 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21237 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21238 as_bad_where (fixP->fx_file, fixP->fx_line,
21239 _("invalid Hi register with immediate"));
a737bd4d 21240
c19d1205
ZW
21241 /* If value is negative, choose the opposite instruction. */
21242 if (value < 0)
21243 {
21244 value = -value;
21245 subtract = !subtract;
21246 if (value < 0)
21247 as_bad_where (fixP->fx_file, fixP->fx_line,
21248 _("immediate value out of range"));
21249 }
a737bd4d 21250
c19d1205
ZW
21251 if (rd == REG_SP)
21252 {
21253 if (value & ~0x1fc)
21254 as_bad_where (fixP->fx_file, fixP->fx_line,
21255 _("invalid immediate for stack address calculation"));
21256 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21257 newval |= value >> 2;
21258 }
21259 else if (rs == REG_PC || rs == REG_SP)
21260 {
21261 if (subtract || value & ~0x3fc)
21262 as_bad_where (fixP->fx_file, fixP->fx_line,
21263 _("invalid immediate for address calculation (value = 0x%08lX)"),
21264 (unsigned long) value);
21265 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21266 newval |= rd << 8;
21267 newval |= value >> 2;
21268 }
21269 else if (rs == rd)
21270 {
21271 if (value & ~0xff)
21272 as_bad_where (fixP->fx_file, fixP->fx_line,
21273 _("immediate value out of range"));
21274 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21275 newval |= (rd << 8) | value;
21276 }
21277 else
21278 {
21279 if (value & ~0x7)
21280 as_bad_where (fixP->fx_file, fixP->fx_line,
21281 _("immediate value out of range"));
21282 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21283 newval |= rd | (rs << 3) | (value << 6);
21284 }
21285 }
21286 md_number_to_chars (buf, newval, THUMB_SIZE);
21287 break;
a737bd4d 21288
c19d1205
ZW
21289 case BFD_RELOC_ARM_THUMB_IMM:
21290 newval = md_chars_to_number (buf, THUMB_SIZE);
21291 if (value < 0 || value > 255)
21292 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21293 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21294 (long) value);
21295 newval |= value;
21296 md_number_to_chars (buf, newval, THUMB_SIZE);
21297 break;
a737bd4d 21298
c19d1205
ZW
21299 case BFD_RELOC_ARM_THUMB_SHIFT:
21300 /* 5bit shift value (0..32). LSL cannot take 32. */
21301 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21302 temp = newval & 0xf800;
21303 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21304 as_bad_where (fixP->fx_file, fixP->fx_line,
21305 _("invalid shift value: %ld"), (long) value);
21306 /* Shifts of zero must be encoded as LSL. */
21307 if (value == 0)
21308 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21309 /* Shifts of 32 are encoded as zero. */
21310 else if (value == 32)
21311 value = 0;
21312 newval |= value << 6;
21313 md_number_to_chars (buf, newval, THUMB_SIZE);
21314 break;
a737bd4d 21315
c19d1205
ZW
21316 case BFD_RELOC_VTABLE_INHERIT:
21317 case BFD_RELOC_VTABLE_ENTRY:
21318 fixP->fx_done = 0;
21319 return;
6c43fab6 21320
b6895b4f
PB
21321 case BFD_RELOC_ARM_MOVW:
21322 case BFD_RELOC_ARM_MOVT:
21323 case BFD_RELOC_ARM_THUMB_MOVW:
21324 case BFD_RELOC_ARM_THUMB_MOVT:
21325 if (fixP->fx_done || !seg->use_rela_p)
21326 {
21327 /* REL format relocations are limited to a 16-bit addend. */
21328 if (!fixP->fx_done)
21329 {
39623e12 21330 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21331 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21332 _("offset out of range"));
b6895b4f
PB
21333 }
21334 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21335 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21336 {
21337 value >>= 16;
21338 }
21339
21340 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21341 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21342 {
21343 newval = get_thumb32_insn (buf);
21344 newval &= 0xfbf08f00;
21345 newval |= (value & 0xf000) << 4;
21346 newval |= (value & 0x0800) << 15;
21347 newval |= (value & 0x0700) << 4;
21348 newval |= (value & 0x00ff);
21349 put_thumb32_insn (buf, newval);
21350 }
21351 else
21352 {
21353 newval = md_chars_to_number (buf, 4);
21354 newval &= 0xfff0f000;
21355 newval |= value & 0x0fff;
21356 newval |= (value & 0xf000) << 4;
21357 md_number_to_chars (buf, newval, 4);
21358 }
21359 }
21360 return;
21361
4962c51a
MS
21362 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21363 case BFD_RELOC_ARM_ALU_PC_G0:
21364 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21365 case BFD_RELOC_ARM_ALU_PC_G1:
21366 case BFD_RELOC_ARM_ALU_PC_G2:
21367 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21368 case BFD_RELOC_ARM_ALU_SB_G0:
21369 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21370 case BFD_RELOC_ARM_ALU_SB_G1:
21371 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21372 gas_assert (!fixP->fx_done);
4962c51a
MS
21373 if (!seg->use_rela_p)
21374 {
21375 bfd_vma insn;
21376 bfd_vma encoded_addend;
21377 bfd_vma addend_abs = abs (value);
21378
21379 /* Check that the absolute value of the addend can be
21380 expressed as an 8-bit constant plus a rotation. */
21381 encoded_addend = encode_arm_immediate (addend_abs);
21382 if (encoded_addend == (unsigned int) FAIL)
21383 as_bad_where (fixP->fx_file, fixP->fx_line,
21384 _("the offset 0x%08lX is not representable"),
495bde8e 21385 (unsigned long) addend_abs);
4962c51a
MS
21386
21387 /* Extract the instruction. */
21388 insn = md_chars_to_number (buf, INSN_SIZE);
21389
21390 /* If the addend is positive, use an ADD instruction.
21391 Otherwise use a SUB. Take care not to destroy the S bit. */
21392 insn &= 0xff1fffff;
21393 if (value < 0)
21394 insn |= 1 << 22;
21395 else
21396 insn |= 1 << 23;
21397
21398 /* Place the encoded addend into the first 12 bits of the
21399 instruction. */
21400 insn &= 0xfffff000;
21401 insn |= encoded_addend;
5f4273c7
NC
21402
21403 /* Update the instruction. */
4962c51a
MS
21404 md_number_to_chars (buf, insn, INSN_SIZE);
21405 }
21406 break;
21407
21408 case BFD_RELOC_ARM_LDR_PC_G0:
21409 case BFD_RELOC_ARM_LDR_PC_G1:
21410 case BFD_RELOC_ARM_LDR_PC_G2:
21411 case BFD_RELOC_ARM_LDR_SB_G0:
21412 case BFD_RELOC_ARM_LDR_SB_G1:
21413 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21414 gas_assert (!fixP->fx_done);
4962c51a
MS
21415 if (!seg->use_rela_p)
21416 {
21417 bfd_vma insn;
21418 bfd_vma addend_abs = abs (value);
21419
21420 /* Check that the absolute value of the addend can be
21421 encoded in 12 bits. */
21422 if (addend_abs >= 0x1000)
21423 as_bad_where (fixP->fx_file, fixP->fx_line,
21424 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21425 (unsigned long) addend_abs);
4962c51a
MS
21426
21427 /* Extract the instruction. */
21428 insn = md_chars_to_number (buf, INSN_SIZE);
21429
21430 /* If the addend is negative, clear bit 23 of the instruction.
21431 Otherwise set it. */
21432 if (value < 0)
21433 insn &= ~(1 << 23);
21434 else
21435 insn |= 1 << 23;
21436
21437 /* Place the absolute value of the addend into the first 12 bits
21438 of the instruction. */
21439 insn &= 0xfffff000;
21440 insn |= addend_abs;
5f4273c7
NC
21441
21442 /* Update the instruction. */
4962c51a
MS
21443 md_number_to_chars (buf, insn, INSN_SIZE);
21444 }
21445 break;
21446
21447 case BFD_RELOC_ARM_LDRS_PC_G0:
21448 case BFD_RELOC_ARM_LDRS_PC_G1:
21449 case BFD_RELOC_ARM_LDRS_PC_G2:
21450 case BFD_RELOC_ARM_LDRS_SB_G0:
21451 case BFD_RELOC_ARM_LDRS_SB_G1:
21452 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21453 gas_assert (!fixP->fx_done);
4962c51a
MS
21454 if (!seg->use_rela_p)
21455 {
21456 bfd_vma insn;
21457 bfd_vma addend_abs = abs (value);
21458
21459 /* Check that the absolute value of the addend can be
21460 encoded in 8 bits. */
21461 if (addend_abs >= 0x100)
21462 as_bad_where (fixP->fx_file, fixP->fx_line,
21463 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21464 (unsigned long) addend_abs);
4962c51a
MS
21465
21466 /* Extract the instruction. */
21467 insn = md_chars_to_number (buf, INSN_SIZE);
21468
21469 /* If the addend is negative, clear bit 23 of the instruction.
21470 Otherwise set it. */
21471 if (value < 0)
21472 insn &= ~(1 << 23);
21473 else
21474 insn |= 1 << 23;
21475
21476 /* Place the first four bits of the absolute value of the addend
21477 into the first 4 bits of the instruction, and the remaining
21478 four into bits 8 .. 11. */
21479 insn &= 0xfffff0f0;
21480 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21481
21482 /* Update the instruction. */
4962c51a
MS
21483 md_number_to_chars (buf, insn, INSN_SIZE);
21484 }
21485 break;
21486
21487 case BFD_RELOC_ARM_LDC_PC_G0:
21488 case BFD_RELOC_ARM_LDC_PC_G1:
21489 case BFD_RELOC_ARM_LDC_PC_G2:
21490 case BFD_RELOC_ARM_LDC_SB_G0:
21491 case BFD_RELOC_ARM_LDC_SB_G1:
21492 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21493 gas_assert (!fixP->fx_done);
4962c51a
MS
21494 if (!seg->use_rela_p)
21495 {
21496 bfd_vma insn;
21497 bfd_vma addend_abs = abs (value);
21498
21499 /* Check that the absolute value of the addend is a multiple of
21500 four and, when divided by four, fits in 8 bits. */
21501 if (addend_abs & 0x3)
21502 as_bad_where (fixP->fx_file, fixP->fx_line,
21503 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21504 (unsigned long) addend_abs);
4962c51a
MS
21505
21506 if ((addend_abs >> 2) > 0xff)
21507 as_bad_where (fixP->fx_file, fixP->fx_line,
21508 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21509 (unsigned long) addend_abs);
4962c51a
MS
21510
21511 /* Extract the instruction. */
21512 insn = md_chars_to_number (buf, INSN_SIZE);
21513
21514 /* If the addend is negative, clear bit 23 of the instruction.
21515 Otherwise set it. */
21516 if (value < 0)
21517 insn &= ~(1 << 23);
21518 else
21519 insn |= 1 << 23;
21520
21521 /* Place the addend (divided by four) into the first eight
21522 bits of the instruction. */
21523 insn &= 0xfffffff0;
21524 insn |= addend_abs >> 2;
5f4273c7
NC
21525
21526 /* Update the instruction. */
4962c51a
MS
21527 md_number_to_chars (buf, insn, INSN_SIZE);
21528 }
21529 break;
21530
845b51d6
PB
21531 case BFD_RELOC_ARM_V4BX:
21532 /* This will need to go in the object file. */
21533 fixP->fx_done = 0;
21534 break;
21535
c19d1205
ZW
21536 case BFD_RELOC_UNUSED:
21537 default:
21538 as_bad_where (fixP->fx_file, fixP->fx_line,
21539 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21540 }
6c43fab6
RE
21541}
21542
c19d1205
ZW
21543/* Translate internal representation of relocation info to BFD target
21544 format. */
a737bd4d 21545
c19d1205 21546arelent *
00a97672 21547tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21548{
c19d1205
ZW
21549 arelent * reloc;
21550 bfd_reloc_code_real_type code;
a737bd4d 21551
21d799b5 21552 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21553
21d799b5 21554 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21555 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21556 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21557
2fc8bdac 21558 if (fixp->fx_pcrel)
00a97672
RS
21559 {
21560 if (section->use_rela_p)
21561 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21562 else
21563 fixp->fx_offset = reloc->address;
21564 }
c19d1205 21565 reloc->addend = fixp->fx_offset;
a737bd4d 21566
c19d1205 21567 switch (fixp->fx_r_type)
a737bd4d 21568 {
c19d1205
ZW
21569 case BFD_RELOC_8:
21570 if (fixp->fx_pcrel)
21571 {
21572 code = BFD_RELOC_8_PCREL;
21573 break;
21574 }
a737bd4d 21575
c19d1205
ZW
21576 case BFD_RELOC_16:
21577 if (fixp->fx_pcrel)
21578 {
21579 code = BFD_RELOC_16_PCREL;
21580 break;
21581 }
6c43fab6 21582
c19d1205
ZW
21583 case BFD_RELOC_32:
21584 if (fixp->fx_pcrel)
21585 {
21586 code = BFD_RELOC_32_PCREL;
21587 break;
21588 }
a737bd4d 21589
b6895b4f
PB
21590 case BFD_RELOC_ARM_MOVW:
21591 if (fixp->fx_pcrel)
21592 {
21593 code = BFD_RELOC_ARM_MOVW_PCREL;
21594 break;
21595 }
21596
21597 case BFD_RELOC_ARM_MOVT:
21598 if (fixp->fx_pcrel)
21599 {
21600 code = BFD_RELOC_ARM_MOVT_PCREL;
21601 break;
21602 }
21603
21604 case BFD_RELOC_ARM_THUMB_MOVW:
21605 if (fixp->fx_pcrel)
21606 {
21607 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21608 break;
21609 }
21610
21611 case BFD_RELOC_ARM_THUMB_MOVT:
21612 if (fixp->fx_pcrel)
21613 {
21614 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21615 break;
21616 }
21617
c19d1205
ZW
21618 case BFD_RELOC_NONE:
21619 case BFD_RELOC_ARM_PCREL_BRANCH:
21620 case BFD_RELOC_ARM_PCREL_BLX:
21621 case BFD_RELOC_RVA:
21622 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21623 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21624 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21625 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21626 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21627 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21628 case BFD_RELOC_VTABLE_ENTRY:
21629 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21630#ifdef TE_PE
21631 case BFD_RELOC_32_SECREL:
21632#endif
c19d1205
ZW
21633 code = fixp->fx_r_type;
21634 break;
a737bd4d 21635
00adf2d4
JB
21636 case BFD_RELOC_THUMB_PCREL_BLX:
21637#ifdef OBJ_ELF
21638 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21639 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21640 else
21641#endif
21642 code = BFD_RELOC_THUMB_PCREL_BLX;
21643 break;
21644
c19d1205
ZW
21645 case BFD_RELOC_ARM_LITERAL:
21646 case BFD_RELOC_ARM_HWLITERAL:
21647 /* If this is called then the a literal has
21648 been referenced across a section boundary. */
21649 as_bad_where (fixp->fx_file, fixp->fx_line,
21650 _("literal referenced across section boundary"));
21651 return NULL;
a737bd4d 21652
c19d1205 21653#ifdef OBJ_ELF
0855e32b
NS
21654 case BFD_RELOC_ARM_TLS_CALL:
21655 case BFD_RELOC_ARM_THM_TLS_CALL:
21656 case BFD_RELOC_ARM_TLS_DESCSEQ:
21657 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21658 case BFD_RELOC_ARM_GOT32:
21659 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21660 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21661 case BFD_RELOC_ARM_PLT32:
21662 case BFD_RELOC_ARM_TARGET1:
21663 case BFD_RELOC_ARM_ROSEGREL32:
21664 case BFD_RELOC_ARM_SBREL32:
21665 case BFD_RELOC_ARM_PREL31:
21666 case BFD_RELOC_ARM_TARGET2:
21667 case BFD_RELOC_ARM_TLS_LE32:
21668 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21669 case BFD_RELOC_ARM_PCREL_CALL:
21670 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21671 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21672 case BFD_RELOC_ARM_ALU_PC_G0:
21673 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21674 case BFD_RELOC_ARM_ALU_PC_G1:
21675 case BFD_RELOC_ARM_ALU_PC_G2:
21676 case BFD_RELOC_ARM_LDR_PC_G0:
21677 case BFD_RELOC_ARM_LDR_PC_G1:
21678 case BFD_RELOC_ARM_LDR_PC_G2:
21679 case BFD_RELOC_ARM_LDRS_PC_G0:
21680 case BFD_RELOC_ARM_LDRS_PC_G1:
21681 case BFD_RELOC_ARM_LDRS_PC_G2:
21682 case BFD_RELOC_ARM_LDC_PC_G0:
21683 case BFD_RELOC_ARM_LDC_PC_G1:
21684 case BFD_RELOC_ARM_LDC_PC_G2:
21685 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21686 case BFD_RELOC_ARM_ALU_SB_G0:
21687 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21688 case BFD_RELOC_ARM_ALU_SB_G1:
21689 case BFD_RELOC_ARM_ALU_SB_G2:
21690 case BFD_RELOC_ARM_LDR_SB_G0:
21691 case BFD_RELOC_ARM_LDR_SB_G1:
21692 case BFD_RELOC_ARM_LDR_SB_G2:
21693 case BFD_RELOC_ARM_LDRS_SB_G0:
21694 case BFD_RELOC_ARM_LDRS_SB_G1:
21695 case BFD_RELOC_ARM_LDRS_SB_G2:
21696 case BFD_RELOC_ARM_LDC_SB_G0:
21697 case BFD_RELOC_ARM_LDC_SB_G1:
21698 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21699 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21700 code = fixp->fx_r_type;
21701 break;
a737bd4d 21702
0855e32b 21703 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21704 case BFD_RELOC_ARM_TLS_GD32:
21705 case BFD_RELOC_ARM_TLS_IE32:
21706 case BFD_RELOC_ARM_TLS_LDM32:
21707 /* BFD will include the symbol's address in the addend.
21708 But we don't want that, so subtract it out again here. */
21709 if (!S_IS_COMMON (fixp->fx_addsy))
21710 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21711 code = fixp->fx_r_type;
21712 break;
21713#endif
a737bd4d 21714
c19d1205
ZW
21715 case BFD_RELOC_ARM_IMMEDIATE:
21716 as_bad_where (fixp->fx_file, fixp->fx_line,
21717 _("internal relocation (type: IMMEDIATE) not fixed up"));
21718 return NULL;
a737bd4d 21719
c19d1205
ZW
21720 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21721 as_bad_where (fixp->fx_file, fixp->fx_line,
21722 _("ADRL used for a symbol not defined in the same file"));
21723 return NULL;
a737bd4d 21724
c19d1205 21725 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21726 if (section->use_rela_p)
21727 {
21728 code = fixp->fx_r_type;
21729 break;
21730 }
21731
c19d1205
ZW
21732 if (fixp->fx_addsy != NULL
21733 && !S_IS_DEFINED (fixp->fx_addsy)
21734 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21735 {
c19d1205
ZW
21736 as_bad_where (fixp->fx_file, fixp->fx_line,
21737 _("undefined local label `%s'"),
21738 S_GET_NAME (fixp->fx_addsy));
21739 return NULL;
a737bd4d
NC
21740 }
21741
c19d1205
ZW
21742 as_bad_where (fixp->fx_file, fixp->fx_line,
21743 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21744 return NULL;
a737bd4d 21745
c19d1205
ZW
21746 default:
21747 {
21748 char * type;
6c43fab6 21749
c19d1205
ZW
21750 switch (fixp->fx_r_type)
21751 {
21752 case BFD_RELOC_NONE: type = "NONE"; break;
21753 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21754 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21755 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21756 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21757 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21758 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21759 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21760 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21761 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21762 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21763 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21764 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21765 default: type = _("<unknown>"); break;
21766 }
21767 as_bad_where (fixp->fx_file, fixp->fx_line,
21768 _("cannot represent %s relocation in this object file format"),
21769 type);
21770 return NULL;
21771 }
a737bd4d 21772 }
6c43fab6 21773
c19d1205
ZW
21774#ifdef OBJ_ELF
21775 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21776 && GOT_symbol
21777 && fixp->fx_addsy == GOT_symbol)
21778 {
21779 code = BFD_RELOC_ARM_GOTPC;
21780 reloc->addend = fixp->fx_offset = reloc->address;
21781 }
21782#endif
6c43fab6 21783
c19d1205 21784 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21785
c19d1205
ZW
21786 if (reloc->howto == NULL)
21787 {
21788 as_bad_where (fixp->fx_file, fixp->fx_line,
21789 _("cannot represent %s relocation in this object file format"),
21790 bfd_get_reloc_code_name (code));
21791 return NULL;
21792 }
6c43fab6 21793
c19d1205
ZW
21794 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21795 vtable entry to be used in the relocation's section offset. */
21796 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21797 reloc->address = fixp->fx_offset;
6c43fab6 21798
c19d1205 21799 return reloc;
6c43fab6
RE
21800}
21801
c19d1205 21802/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21803
c19d1205
ZW
21804void
21805cons_fix_new_arm (fragS * frag,
21806 int where,
21807 int size,
21808 expressionS * exp)
6c43fab6 21809{
c19d1205
ZW
21810 bfd_reloc_code_real_type type;
21811 int pcrel = 0;
6c43fab6 21812
c19d1205
ZW
21813 /* Pick a reloc.
21814 FIXME: @@ Should look at CPU word size. */
21815 switch (size)
21816 {
21817 case 1:
21818 type = BFD_RELOC_8;
21819 break;
21820 case 2:
21821 type = BFD_RELOC_16;
21822 break;
21823 case 4:
21824 default:
21825 type = BFD_RELOC_32;
21826 break;
21827 case 8:
21828 type = BFD_RELOC_64;
21829 break;
21830 }
6c43fab6 21831
f0927246
NC
21832#ifdef TE_PE
21833 if (exp->X_op == O_secrel)
21834 {
21835 exp->X_op = O_symbol;
21836 type = BFD_RELOC_32_SECREL;
21837 }
21838#endif
21839
c19d1205
ZW
21840 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21841}
6c43fab6 21842
4343666d 21843#if defined (OBJ_COFF)
c19d1205
ZW
21844void
21845arm_validate_fix (fixS * fixP)
6c43fab6 21846{
c19d1205
ZW
21847 /* If the destination of the branch is a defined symbol which does not have
21848 the THUMB_FUNC attribute, then we must be calling a function which has
21849 the (interfacearm) attribute. We look for the Thumb entry point to that
21850 function and change the branch to refer to that function instead. */
21851 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21852 && fixP->fx_addsy != NULL
21853 && S_IS_DEFINED (fixP->fx_addsy)
21854 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21855 {
c19d1205 21856 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21857 }
c19d1205
ZW
21858}
21859#endif
6c43fab6 21860
267bf995 21861
c19d1205
ZW
21862int
21863arm_force_relocation (struct fix * fixp)
21864{
21865#if defined (OBJ_COFF) && defined (TE_PE)
21866 if (fixp->fx_r_type == BFD_RELOC_RVA)
21867 return 1;
21868#endif
6c43fab6 21869
267bf995
RR
21870 /* In case we have a call or a branch to a function in ARM ISA mode from
21871 a thumb function or vice-versa force the relocation. These relocations
21872 are cleared off for some cores that might have blx and simple transformations
21873 are possible. */
21874
21875#ifdef OBJ_ELF
21876 switch (fixp->fx_r_type)
21877 {
21878 case BFD_RELOC_ARM_PCREL_JUMP:
21879 case BFD_RELOC_ARM_PCREL_CALL:
21880 case BFD_RELOC_THUMB_PCREL_BLX:
21881 if (THUMB_IS_FUNC (fixp->fx_addsy))
21882 return 1;
21883 break;
21884
21885 case BFD_RELOC_ARM_PCREL_BLX:
21886 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21887 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21888 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21889 if (ARM_IS_FUNC (fixp->fx_addsy))
21890 return 1;
21891 break;
21892
21893 default:
21894 break;
21895 }
21896#endif
21897
c19d1205
ZW
21898 /* Resolve these relocations even if the symbol is extern or weak. */
21899 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21900 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21901 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21902 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21903 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21904 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21905 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21906 return 0;
a737bd4d 21907
4962c51a
MS
21908 /* Always leave these relocations for the linker. */
21909 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21910 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21911 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21912 return 1;
21913
f0291e4c
PB
21914 /* Always generate relocations against function symbols. */
21915 if (fixp->fx_r_type == BFD_RELOC_32
21916 && fixp->fx_addsy
21917 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21918 return 1;
21919
c19d1205 21920 return generic_force_reloc (fixp);
404ff6b5
AH
21921}
21922
0ffdc86c 21923#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21924/* Relocations against function names must be left unadjusted,
21925 so that the linker can use this information to generate interworking
21926 stubs. The MIPS version of this function
c19d1205
ZW
21927 also prevents relocations that are mips-16 specific, but I do not
21928 know why it does this.
404ff6b5 21929
c19d1205
ZW
21930 FIXME:
21931 There is one other problem that ought to be addressed here, but
21932 which currently is not: Taking the address of a label (rather
21933 than a function) and then later jumping to that address. Such
21934 addresses also ought to have their bottom bit set (assuming that
21935 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21936
c19d1205
ZW
21937bfd_boolean
21938arm_fix_adjustable (fixS * fixP)
404ff6b5 21939{
c19d1205
ZW
21940 if (fixP->fx_addsy == NULL)
21941 return 1;
404ff6b5 21942
e28387c3
PB
21943 /* Preserve relocations against symbols with function type. */
21944 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21945 return FALSE;
e28387c3 21946
c19d1205
ZW
21947 if (THUMB_IS_FUNC (fixP->fx_addsy)
21948 && fixP->fx_subsy == NULL)
c921be7d 21949 return FALSE;
a737bd4d 21950
c19d1205
ZW
21951 /* We need the symbol name for the VTABLE entries. */
21952 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21953 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21954 return FALSE;
404ff6b5 21955
c19d1205
ZW
21956 /* Don't allow symbols to be discarded on GOT related relocs. */
21957 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21958 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21959 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21960 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21961 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21962 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21963 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21964 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
21965 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
21966 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
21967 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
21968 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
21969 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 21970 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21971 return FALSE;
a737bd4d 21972
4962c51a
MS
21973 /* Similarly for group relocations. */
21974 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21975 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21976 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21977 return FALSE;
4962c51a 21978
79947c54
CD
21979 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21980 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21981 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21982 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21983 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21984 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21985 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21986 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21987 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21988 return FALSE;
79947c54 21989
c921be7d 21990 return TRUE;
a737bd4d 21991}
0ffdc86c
NC
21992#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21993
21994#ifdef OBJ_ELF
404ff6b5 21995
c19d1205
ZW
21996const char *
21997elf32_arm_target_format (void)
404ff6b5 21998{
c19d1205
ZW
21999#ifdef TE_SYMBIAN
22000 return (target_big_endian
22001 ? "elf32-bigarm-symbian"
22002 : "elf32-littlearm-symbian");
22003#elif defined (TE_VXWORKS)
22004 return (target_big_endian
22005 ? "elf32-bigarm-vxworks"
22006 : "elf32-littlearm-vxworks");
22007#else
22008 if (target_big_endian)
22009 return "elf32-bigarm";
22010 else
22011 return "elf32-littlearm";
22012#endif
404ff6b5
AH
22013}
22014
c19d1205
ZW
22015void
22016armelf_frob_symbol (symbolS * symp,
22017 int * puntp)
404ff6b5 22018{
c19d1205
ZW
22019 elf_frob_symbol (symp, puntp);
22020}
22021#endif
404ff6b5 22022
c19d1205 22023/* MD interface: Finalization. */
a737bd4d 22024
c19d1205
ZW
22025void
22026arm_cleanup (void)
22027{
22028 literal_pool * pool;
a737bd4d 22029
e07e6e58
NC
22030 /* Ensure that all the IT blocks are properly closed. */
22031 check_it_blocks_finished ();
22032
c19d1205
ZW
22033 for (pool = list_of_pools; pool; pool = pool->next)
22034 {
5f4273c7 22035 /* Put it at the end of the relevant section. */
c19d1205
ZW
22036 subseg_set (pool->section, pool->sub_section);
22037#ifdef OBJ_ELF
22038 arm_elf_change_section ();
22039#endif
22040 s_ltorg (0);
22041 }
404ff6b5
AH
22042}
22043
cd000bff
DJ
22044#ifdef OBJ_ELF
22045/* Remove any excess mapping symbols generated for alignment frags in
22046 SEC. We may have created a mapping symbol before a zero byte
22047 alignment; remove it if there's a mapping symbol after the
22048 alignment. */
22049static void
22050check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22051 void *dummy ATTRIBUTE_UNUSED)
22052{
22053 segment_info_type *seginfo = seg_info (sec);
22054 fragS *fragp;
22055
22056 if (seginfo == NULL || seginfo->frchainP == NULL)
22057 return;
22058
22059 for (fragp = seginfo->frchainP->frch_root;
22060 fragp != NULL;
22061 fragp = fragp->fr_next)
22062 {
22063 symbolS *sym = fragp->tc_frag_data.last_map;
22064 fragS *next = fragp->fr_next;
22065
22066 /* Variable-sized frags have been converted to fixed size by
22067 this point. But if this was variable-sized to start with,
22068 there will be a fixed-size frag after it. So don't handle
22069 next == NULL. */
22070 if (sym == NULL || next == NULL)
22071 continue;
22072
22073 if (S_GET_VALUE (sym) < next->fr_address)
22074 /* Not at the end of this frag. */
22075 continue;
22076 know (S_GET_VALUE (sym) == next->fr_address);
22077
22078 do
22079 {
22080 if (next->tc_frag_data.first_map != NULL)
22081 {
22082 /* Next frag starts with a mapping symbol. Discard this
22083 one. */
22084 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22085 break;
22086 }
22087
22088 if (next->fr_next == NULL)
22089 {
22090 /* This mapping symbol is at the end of the section. Discard
22091 it. */
22092 know (next->fr_fix == 0 && next->fr_var == 0);
22093 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22094 break;
22095 }
22096
22097 /* As long as we have empty frags without any mapping symbols,
22098 keep looking. */
22099 /* If the next frag is non-empty and does not start with a
22100 mapping symbol, then this mapping symbol is required. */
22101 if (next->fr_address != next->fr_next->fr_address)
22102 break;
22103
22104 next = next->fr_next;
22105 }
22106 while (next != NULL);
22107 }
22108}
22109#endif
22110
c19d1205
ZW
22111/* Adjust the symbol table. This marks Thumb symbols as distinct from
22112 ARM ones. */
404ff6b5 22113
c19d1205
ZW
22114void
22115arm_adjust_symtab (void)
404ff6b5 22116{
c19d1205
ZW
22117#ifdef OBJ_COFF
22118 symbolS * sym;
404ff6b5 22119
c19d1205
ZW
22120 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22121 {
22122 if (ARM_IS_THUMB (sym))
22123 {
22124 if (THUMB_IS_FUNC (sym))
22125 {
22126 /* Mark the symbol as a Thumb function. */
22127 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22128 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22129 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22130
c19d1205
ZW
22131 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22132 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22133 else
22134 as_bad (_("%s: unexpected function type: %d"),
22135 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22136 }
22137 else switch (S_GET_STORAGE_CLASS (sym))
22138 {
22139 case C_EXT:
22140 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22141 break;
22142 case C_STAT:
22143 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22144 break;
22145 case C_LABEL:
22146 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22147 break;
22148 default:
22149 /* Do nothing. */
22150 break;
22151 }
22152 }
a737bd4d 22153
c19d1205
ZW
22154 if (ARM_IS_INTERWORK (sym))
22155 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22156 }
c19d1205
ZW
22157#endif
22158#ifdef OBJ_ELF
22159 symbolS * sym;
22160 char bind;
404ff6b5 22161
c19d1205 22162 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22163 {
c19d1205
ZW
22164 if (ARM_IS_THUMB (sym))
22165 {
22166 elf_symbol_type * elf_sym;
404ff6b5 22167
c19d1205
ZW
22168 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22169 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22170
b0796911
PB
22171 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22172 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22173 {
22174 /* If it's a .thumb_func, declare it as so,
22175 otherwise tag label as .code 16. */
22176 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22177 elf_sym->internal_elf_sym.st_target_internal
22178 = ST_BRANCH_TO_THUMB;
3ba67470 22179 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22180 elf_sym->internal_elf_sym.st_info =
22181 ELF_ST_INFO (bind, STT_ARM_16BIT);
22182 }
22183 }
22184 }
cd000bff
DJ
22185
22186 /* Remove any overlapping mapping symbols generated by alignment frags. */
22187 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22188 /* Now do generic ELF adjustments. */
22189 elf_adjust_symtab ();
c19d1205 22190#endif
404ff6b5
AH
22191}
22192
c19d1205 22193/* MD interface: Initialization. */
404ff6b5 22194
a737bd4d 22195static void
c19d1205 22196set_constant_flonums (void)
a737bd4d 22197{
c19d1205 22198 int i;
404ff6b5 22199
c19d1205
ZW
22200 for (i = 0; i < NUM_FLOAT_VALS; i++)
22201 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22202 abort ();
a737bd4d 22203}
404ff6b5 22204
3e9e4fcf
JB
22205/* Auto-select Thumb mode if it's the only available instruction set for the
22206 given architecture. */
22207
22208static void
22209autoselect_thumb_from_cpu_variant (void)
22210{
22211 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22212 opcode_select (16);
22213}
22214
c19d1205
ZW
22215void
22216md_begin (void)
a737bd4d 22217{
c19d1205
ZW
22218 unsigned mach;
22219 unsigned int i;
404ff6b5 22220
c19d1205
ZW
22221 if ( (arm_ops_hsh = hash_new ()) == NULL
22222 || (arm_cond_hsh = hash_new ()) == NULL
22223 || (arm_shift_hsh = hash_new ()) == NULL
22224 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22225 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22226 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22227 || (arm_reloc_hsh = hash_new ()) == NULL
22228 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22229 as_fatal (_("virtual memory exhausted"));
22230
22231 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22232 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22233 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22234 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22235 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22236 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22237 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22238 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22239 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22240 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22241 (void *) (v7m_psrs + i));
c19d1205 22242 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22243 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22244 for (i = 0;
22245 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22246 i++)
d3ce72d0 22247 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22248 (void *) (barrier_opt_names + i));
c19d1205
ZW
22249#ifdef OBJ_ELF
22250 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22251 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22252#endif
22253
22254 set_constant_flonums ();
404ff6b5 22255
c19d1205
ZW
22256 /* Set the cpu variant based on the command-line options. We prefer
22257 -mcpu= over -march= if both are set (as for GCC); and we prefer
22258 -mfpu= over any other way of setting the floating point unit.
22259 Use of legacy options with new options are faulted. */
e74cfd16 22260 if (legacy_cpu)
404ff6b5 22261 {
e74cfd16 22262 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22263 as_bad (_("use of old and new-style options to set CPU type"));
22264
22265 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22266 }
e74cfd16 22267 else if (!mcpu_cpu_opt)
c19d1205 22268 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22269
e74cfd16 22270 if (legacy_fpu)
c19d1205 22271 {
e74cfd16 22272 if (mfpu_opt)
c19d1205 22273 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22274
22275 mfpu_opt = legacy_fpu;
22276 }
e74cfd16 22277 else if (!mfpu_opt)
03b1477f 22278 {
45eb4c1b
NS
22279#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22280 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22281 /* Some environments specify a default FPU. If they don't, infer it
22282 from the processor. */
e74cfd16 22283 if (mcpu_fpu_opt)
03b1477f
RE
22284 mfpu_opt = mcpu_fpu_opt;
22285 else
22286 mfpu_opt = march_fpu_opt;
39c2da32 22287#else
e74cfd16 22288 mfpu_opt = &fpu_default;
39c2da32 22289#endif
03b1477f
RE
22290 }
22291
e74cfd16 22292 if (!mfpu_opt)
03b1477f 22293 {
493cb6ef 22294 if (mcpu_cpu_opt != NULL)
e74cfd16 22295 mfpu_opt = &fpu_default;
493cb6ef 22296 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22297 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22298 else
e74cfd16 22299 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22300 }
22301
ee065d83 22302#ifdef CPU_DEFAULT
e74cfd16 22303 if (!mcpu_cpu_opt)
ee065d83 22304 {
e74cfd16
PB
22305 mcpu_cpu_opt = &cpu_default;
22306 selected_cpu = cpu_default;
ee065d83 22307 }
e74cfd16
PB
22308#else
22309 if (mcpu_cpu_opt)
22310 selected_cpu = *mcpu_cpu_opt;
ee065d83 22311 else
e74cfd16 22312 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22313#endif
03b1477f 22314
e74cfd16 22315 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22316
3e9e4fcf
JB
22317 autoselect_thumb_from_cpu_variant ();
22318
e74cfd16 22319 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22320
f17c130b 22321#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22322 {
7cc69913
NC
22323 unsigned int flags = 0;
22324
22325#if defined OBJ_ELF
22326 flags = meabi_flags;
d507cf36
PB
22327
22328 switch (meabi_flags)
33a392fb 22329 {
d507cf36 22330 case EF_ARM_EABI_UNKNOWN:
7cc69913 22331#endif
d507cf36
PB
22332 /* Set the flags in the private structure. */
22333 if (uses_apcs_26) flags |= F_APCS26;
22334 if (support_interwork) flags |= F_INTERWORK;
22335 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22336 if (pic_code) flags |= F_PIC;
e74cfd16 22337 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22338 flags |= F_SOFT_FLOAT;
22339
d507cf36
PB
22340 switch (mfloat_abi_opt)
22341 {
22342 case ARM_FLOAT_ABI_SOFT:
22343 case ARM_FLOAT_ABI_SOFTFP:
22344 flags |= F_SOFT_FLOAT;
22345 break;
33a392fb 22346
d507cf36
PB
22347 case ARM_FLOAT_ABI_HARD:
22348 if (flags & F_SOFT_FLOAT)
22349 as_bad (_("hard-float conflicts with specified fpu"));
22350 break;
22351 }
03b1477f 22352
e74cfd16
PB
22353 /* Using pure-endian doubles (even if soft-float). */
22354 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22355 flags |= F_VFP_FLOAT;
f17c130b 22356
fde78edd 22357#if defined OBJ_ELF
e74cfd16 22358 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22359 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22360 break;
22361
8cb51566 22362 case EF_ARM_EABI_VER4:
3a4a14e9 22363 case EF_ARM_EABI_VER5:
c19d1205 22364 /* No additional flags to set. */
d507cf36
PB
22365 break;
22366
22367 default:
22368 abort ();
22369 }
7cc69913 22370#endif
b99bd4ef
NC
22371 bfd_set_private_flags (stdoutput, flags);
22372
22373 /* We have run out flags in the COFF header to encode the
22374 status of ATPCS support, so instead we create a dummy,
c19d1205 22375 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22376 if (atpcs)
22377 {
22378 asection * sec;
22379
22380 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22381
22382 if (sec != NULL)
22383 {
22384 bfd_set_section_flags
22385 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22386 bfd_set_section_size (stdoutput, sec, 0);
22387 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22388 }
22389 }
7cc69913 22390 }
f17c130b 22391#endif
b99bd4ef
NC
22392
22393 /* Record the CPU type as well. */
2d447fca
JM
22394 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22395 mach = bfd_mach_arm_iWMMXt2;
22396 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22397 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22398 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22399 mach = bfd_mach_arm_XScale;
e74cfd16 22400 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22401 mach = bfd_mach_arm_ep9312;
e74cfd16 22402 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22403 mach = bfd_mach_arm_5TE;
e74cfd16 22404 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22405 {
e74cfd16 22406 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22407 mach = bfd_mach_arm_5T;
22408 else
22409 mach = bfd_mach_arm_5;
22410 }
e74cfd16 22411 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22412 {
e74cfd16 22413 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22414 mach = bfd_mach_arm_4T;
22415 else
22416 mach = bfd_mach_arm_4;
22417 }
e74cfd16 22418 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22419 mach = bfd_mach_arm_3M;
e74cfd16
PB
22420 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22421 mach = bfd_mach_arm_3;
22422 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22423 mach = bfd_mach_arm_2a;
22424 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22425 mach = bfd_mach_arm_2;
22426 else
22427 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22428
22429 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22430}
22431
c19d1205 22432/* Command line processing. */
b99bd4ef 22433
c19d1205
ZW
22434/* md_parse_option
22435 Invocation line includes a switch not recognized by the base assembler.
22436 See if it's a processor-specific option.
b99bd4ef 22437
c19d1205
ZW
22438 This routine is somewhat complicated by the need for backwards
22439 compatibility (since older releases of gcc can't be changed).
22440 The new options try to make the interface as compatible as
22441 possible with GCC.
b99bd4ef 22442
c19d1205 22443 New options (supported) are:
b99bd4ef 22444
c19d1205
ZW
22445 -mcpu=<cpu name> Assemble for selected processor
22446 -march=<architecture name> Assemble for selected architecture
22447 -mfpu=<fpu architecture> Assemble for selected FPU.
22448 -EB/-mbig-endian Big-endian
22449 -EL/-mlittle-endian Little-endian
22450 -k Generate PIC code
22451 -mthumb Start in Thumb mode
22452 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22453
278df34e 22454 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22455
c19d1205 22456 For now we will also provide support for:
b99bd4ef 22457
c19d1205
ZW
22458 -mapcs-32 32-bit Program counter
22459 -mapcs-26 26-bit Program counter
22460 -macps-float Floats passed in FP registers
22461 -mapcs-reentrant Reentrant code
22462 -matpcs
22463 (sometime these will probably be replaced with -mapcs=<list of options>
22464 and -matpcs=<list of options>)
b99bd4ef 22465
c19d1205
ZW
22466 The remaining options are only supported for back-wards compatibility.
22467 Cpu variants, the arm part is optional:
22468 -m[arm]1 Currently not supported.
22469 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22470 -m[arm]3 Arm 3 processor
22471 -m[arm]6[xx], Arm 6 processors
22472 -m[arm]7[xx][t][[d]m] Arm 7 processors
22473 -m[arm]8[10] Arm 8 processors
22474 -m[arm]9[20][tdmi] Arm 9 processors
22475 -mstrongarm[110[0]] StrongARM processors
22476 -mxscale XScale processors
22477 -m[arm]v[2345[t[e]]] Arm architectures
22478 -mall All (except the ARM1)
22479 FP variants:
22480 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22481 -mfpe-old (No float load/store multiples)
22482 -mvfpxd VFP Single precision
22483 -mvfp All VFP
22484 -mno-fpu Disable all floating point instructions
b99bd4ef 22485
c19d1205
ZW
22486 The following CPU names are recognized:
22487 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22488 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22489 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22490 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22491 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22492 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22493 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22494
c19d1205 22495 */
b99bd4ef 22496
c19d1205 22497const char * md_shortopts = "m:k";
b99bd4ef 22498
c19d1205
ZW
22499#ifdef ARM_BI_ENDIAN
22500#define OPTION_EB (OPTION_MD_BASE + 0)
22501#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22502#else
c19d1205
ZW
22503#if TARGET_BYTES_BIG_ENDIAN
22504#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22505#else
c19d1205
ZW
22506#define OPTION_EL (OPTION_MD_BASE + 1)
22507#endif
b99bd4ef 22508#endif
845b51d6 22509#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22510
c19d1205 22511struct option md_longopts[] =
b99bd4ef 22512{
c19d1205
ZW
22513#ifdef OPTION_EB
22514 {"EB", no_argument, NULL, OPTION_EB},
22515#endif
22516#ifdef OPTION_EL
22517 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22518#endif
845b51d6 22519 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22520 {NULL, no_argument, NULL, 0}
22521};
b99bd4ef 22522
c19d1205 22523size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22524
c19d1205 22525struct arm_option_table
b99bd4ef 22526{
c19d1205
ZW
22527 char *option; /* Option name to match. */
22528 char *help; /* Help information. */
22529 int *var; /* Variable to change. */
22530 int value; /* What to change it to. */
22531 char *deprecated; /* If non-null, print this message. */
22532};
b99bd4ef 22533
c19d1205
ZW
22534struct arm_option_table arm_opts[] =
22535{
22536 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22537 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22538 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22539 &support_interwork, 1, NULL},
22540 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22541 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22542 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22543 1, NULL},
22544 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22545 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22546 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22547 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22548 NULL},
b99bd4ef 22549
c19d1205
ZW
22550 /* These are recognized by the assembler, but have no affect on code. */
22551 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22552 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22553
22554 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22555 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22556 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22557 {NULL, NULL, NULL, 0, NULL}
22558};
22559
22560struct arm_legacy_option_table
22561{
22562 char *option; /* Option name to match. */
22563 const arm_feature_set **var; /* Variable to change. */
22564 const arm_feature_set value; /* What to change it to. */
22565 char *deprecated; /* If non-null, print this message. */
22566};
b99bd4ef 22567
e74cfd16
PB
22568const struct arm_legacy_option_table arm_legacy_opts[] =
22569{
c19d1205
ZW
22570 /* DON'T add any new processors to this list -- we want the whole list
22571 to go away... Add them to the processors table instead. */
e74cfd16
PB
22572 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22573 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22574 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22575 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22576 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22577 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22578 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22579 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22580 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22581 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22582 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22583 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22584 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22585 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22586 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22587 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22588 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22589 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22590 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22591 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22592 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22593 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22594 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22595 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22596 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22597 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22598 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22599 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22600 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22601 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22602 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22603 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22604 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22605 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22606 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22607 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22608 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22609 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22610 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22611 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22612 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22613 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22614 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22615 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22616 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22617 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22618 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22619 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22620 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22621 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22622 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22623 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22624 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22625 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22626 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22627 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22628 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22629 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22630 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22631 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22632 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22633 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22634 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22635 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22636 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22637 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22638 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22639 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22640 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22641 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22642 N_("use -mcpu=strongarm110")},
e74cfd16 22643 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22644 N_("use -mcpu=strongarm1100")},
e74cfd16 22645 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22646 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22647 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22648 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22649 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22650
c19d1205 22651 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22652 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22653 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22654 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22655 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22656 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22657 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22658 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22659 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22660 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22661 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22662 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22663 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22664 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22665 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22666 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22667 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22668 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22669 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22670
c19d1205 22671 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22672 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22673 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22674 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22675 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22676 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22677
e74cfd16 22678 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22679};
7ed4c4c5 22680
c19d1205 22681struct arm_cpu_option_table
7ed4c4c5 22682{
c19d1205 22683 char *name;
e74cfd16 22684 const arm_feature_set value;
c19d1205
ZW
22685 /* For some CPUs we assume an FPU unless the user explicitly sets
22686 -mfpu=... */
e74cfd16 22687 const arm_feature_set default_fpu;
ee065d83
PB
22688 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22689 case. */
22690 const char *canonical_name;
c19d1205 22691};
7ed4c4c5 22692
c19d1205
ZW
22693/* This list should, at a minimum, contain all the cpu names
22694 recognized by GCC. */
e74cfd16 22695static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22696{
ee065d83
PB
22697 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22698 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22699 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22700 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22701 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22702 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22703 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22704 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22705 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22706 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22707 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22708 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22709 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22710 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22711 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22712 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22713 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22714 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22715 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22716 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22717 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22718 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22719 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22720 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22721 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22722 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22723 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22724 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22725 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22726 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22727 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22728 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22729 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22730 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22731 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22732 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22733 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22734 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22735 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22736 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22737 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22738 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22739 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22740 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22741 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22742 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22743 /* For V5 or later processors we default to using VFP; but the user
22744 should really set the FPU type explicitly. */
ee065d83
PB
22745 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22746 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22747 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22748 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22749 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22750 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22751 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22752 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22753 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22754 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22755 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22756 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22757 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22758 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22759 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22760 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22761 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22762 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22763 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22764 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22765 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
4a58c4bd
NC
22766 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22767 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22768 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22769 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
7fac0536 22770 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22771 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22772 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22773 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22774 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22775 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22776 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22777 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22778 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22779 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22780 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22781 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22782 FPU_NONE, "Cortex-A5"},
22783 {"cortex-a8", ARM_ARCH_V7A_SEC,
22784 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22785 | FPU_NEON_EXT_V1),
4ff9b924 22786 "Cortex-A8"},
f4c65163
MGD
22787 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22788 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22789 | FPU_NEON_EXT_V1),
4ff9b924 22790 "Cortex-A9"},
90ec0d68 22791 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22792 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22793 "Cortex-A15"},
4ff9b924
MGD
22794 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22795 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22796 "Cortex-R4F"},
22797 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22798 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22799 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22800 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22801 /* ??? XSCALE is really an architecture. */
ee065d83 22802 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22803 /* ??? iwmmxt is not a processor. */
ee065d83 22804 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22805 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22806 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22807 /* Maverick */
e07e6e58 22808 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22809 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22810};
7ed4c4c5 22811
c19d1205 22812struct arm_arch_option_table
7ed4c4c5 22813{
c19d1205 22814 char *name;
e74cfd16
PB
22815 const arm_feature_set value;
22816 const arm_feature_set default_fpu;
c19d1205 22817};
7ed4c4c5 22818
c19d1205
ZW
22819/* This list should, at a minimum, contain all the architecture names
22820 recognized by GCC. */
e74cfd16 22821static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22822{
22823 {"all", ARM_ANY, FPU_ARCH_FPA},
22824 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22825 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22826 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22827 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22828 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22829 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22830 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22831 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22832 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22833 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22834 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22835 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22836 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22837 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22838 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22839 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22840 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22841 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22842 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22843 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22844 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22845 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22846 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22847 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22848 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22849 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22850 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22851 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22852 /* The official spelling of the ARMv7 profile variants is the dashed form.
22853 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22854 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22855 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22856 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22857 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22858 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22859 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22860 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22861 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22862 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22863 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22864 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22865};
7ed4c4c5 22866
69133863
MGD
22867/* ISA extensions in the co-processor and main instruction set space. */
22868struct arm_option_extension_value_table
c19d1205
ZW
22869{
22870 char *name;
e74cfd16 22871 const arm_feature_set value;
69133863 22872 const arm_feature_set allowed_archs;
c19d1205 22873};
7ed4c4c5 22874
69133863
MGD
22875/* The following table must be in alphabetical order with a NULL last entry.
22876 */
22877static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22878{
eea54501
MGD
22879 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22880 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863
MGD
22881 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22882 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22883 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22884 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22885 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22886 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22887 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22888 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22889 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22890 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22891 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22892 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22893 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22894};
22895
22896/* ISA floating-point and Advanced SIMD extensions. */
22897struct arm_option_fpu_value_table
22898{
22899 char *name;
22900 const arm_feature_set value;
c19d1205 22901};
7ed4c4c5 22902
c19d1205
ZW
22903/* This list should, at a minimum, contain all the fpu names
22904 recognized by GCC. */
69133863 22905static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22906{
22907 {"softfpa", FPU_NONE},
22908 {"fpe", FPU_ARCH_FPE},
22909 {"fpe2", FPU_ARCH_FPE},
22910 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22911 {"fpa", FPU_ARCH_FPA},
22912 {"fpa10", FPU_ARCH_FPA},
22913 {"fpa11", FPU_ARCH_FPA},
22914 {"arm7500fe", FPU_ARCH_FPA},
22915 {"softvfp", FPU_ARCH_VFP},
22916 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22917 {"vfp", FPU_ARCH_VFP_V2},
22918 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22919 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22920 {"vfp10", FPU_ARCH_VFP_V2},
22921 {"vfp10-r0", FPU_ARCH_VFP_V1},
22922 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22923 {"vfpv2", FPU_ARCH_VFP_V2},
22924 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22925 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22926 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22927 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22928 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22929 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22930 {"arm1020t", FPU_ARCH_VFP_V1},
22931 {"arm1020e", FPU_ARCH_VFP_V2},
22932 {"arm1136jfs", FPU_ARCH_VFP_V2},
22933 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22934 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22935 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22936 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22937 {"vfpv4", FPU_ARCH_VFP_V4},
22938 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22939 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22940 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22941 {NULL, ARM_ARCH_NONE}
22942};
22943
22944struct arm_option_value_table
22945{
22946 char *name;
22947 long value;
c19d1205 22948};
7ed4c4c5 22949
e74cfd16 22950static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22951{
22952 {"hard", ARM_FLOAT_ABI_HARD},
22953 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22954 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22955 {NULL, 0}
c19d1205 22956};
7ed4c4c5 22957
c19d1205 22958#ifdef OBJ_ELF
3a4a14e9 22959/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22960static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22961{
22962 {"gnu", EF_ARM_EABI_UNKNOWN},
22963 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22964 {"5", EF_ARM_EABI_VER5},
e74cfd16 22965 {NULL, 0}
c19d1205
ZW
22966};
22967#endif
7ed4c4c5 22968
c19d1205
ZW
22969struct arm_long_option_table
22970{
22971 char * option; /* Substring to match. */
22972 char * help; /* Help information. */
22973 int (* func) (char * subopt); /* Function to decode sub-option. */
22974 char * deprecated; /* If non-null, print this message. */
22975};
7ed4c4c5 22976
c921be7d 22977static bfd_boolean
e74cfd16 22978arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22979{
21d799b5
NC
22980 arm_feature_set *ext_set = (arm_feature_set *)
22981 xmalloc (sizeof (arm_feature_set));
e74cfd16 22982
69133863
MGD
22983 /* We insist on extensions being specified in alphabetical order, and with
22984 extensions being added before being removed. We achieve this by having
22985 the global ARM_EXTENSIONS table in alphabetical order, and using the
22986 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22987 or removing it (0) and only allowing it to change in the order
22988 -1 -> 1 -> 0. */
22989 const struct arm_option_extension_value_table * opt = NULL;
22990 int adding_value = -1;
22991
e74cfd16
PB
22992 /* Copy the feature set, so that we can modify it. */
22993 *ext_set = **opt_p;
22994 *opt_p = ext_set;
22995
c19d1205 22996 while (str != NULL && *str != 0)
7ed4c4c5 22997 {
c19d1205 22998 char * ext;
69133863 22999 size_t optlen;
7ed4c4c5 23000
c19d1205
ZW
23001 if (*str != '+')
23002 {
23003 as_bad (_("invalid architectural extension"));
c921be7d 23004 return FALSE;
c19d1205 23005 }
7ed4c4c5 23006
c19d1205
ZW
23007 str++;
23008 ext = strchr (str, '+');
7ed4c4c5 23009
c19d1205
ZW
23010 if (ext != NULL)
23011 optlen = ext - str;
23012 else
23013 optlen = strlen (str);
7ed4c4c5 23014
69133863
MGD
23015 if (optlen >= 2
23016 && strncmp (str, "no", 2) == 0)
23017 {
23018 if (adding_value != 0)
23019 {
23020 adding_value = 0;
23021 opt = arm_extensions;
23022 }
23023
23024 optlen -= 2;
23025 str += 2;
23026 }
23027 else if (optlen > 0)
23028 {
23029 if (adding_value == -1)
23030 {
23031 adding_value = 1;
23032 opt = arm_extensions;
23033 }
23034 else if (adding_value != 1)
23035 {
23036 as_bad (_("must specify extensions to add before specifying "
23037 "those to remove"));
23038 return FALSE;
23039 }
23040 }
23041
c19d1205
ZW
23042 if (optlen == 0)
23043 {
23044 as_bad (_("missing architectural extension"));
c921be7d 23045 return FALSE;
c19d1205 23046 }
7ed4c4c5 23047
69133863
MGD
23048 gas_assert (adding_value != -1);
23049 gas_assert (opt != NULL);
23050
23051 /* Scan over the options table trying to find an exact match. */
23052 for (; opt->name != NULL; opt++)
23053 if (strncmp (opt->name, str, optlen) == 0
23054 && strlen (opt->name) == optlen)
c19d1205 23055 {
69133863
MGD
23056 /* Check we can apply the extension to this architecture. */
23057 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23058 {
23059 as_bad (_("extension does not apply to the base architecture"));
23060 return FALSE;
23061 }
23062
23063 /* Add or remove the extension. */
23064 if (adding_value)
23065 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23066 else
23067 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23068
c19d1205
ZW
23069 break;
23070 }
7ed4c4c5 23071
c19d1205
ZW
23072 if (opt->name == NULL)
23073 {
69133863
MGD
23074 /* Did we fail to find an extension because it wasn't specified in
23075 alphabetical order, or because it does not exist? */
23076
23077 for (opt = arm_extensions; opt->name != NULL; opt++)
23078 if (strncmp (opt->name, str, optlen) == 0)
23079 break;
23080
23081 if (opt->name == NULL)
23082 as_bad (_("unknown architectural extension `%s'"), str);
23083 else
23084 as_bad (_("architectural extensions must be specified in "
23085 "alphabetical order"));
23086
c921be7d 23087 return FALSE;
c19d1205 23088 }
69133863
MGD
23089 else
23090 {
23091 /* We should skip the extension we've just matched the next time
23092 round. */
23093 opt++;
23094 }
7ed4c4c5 23095
c19d1205
ZW
23096 str = ext;
23097 };
7ed4c4c5 23098
c921be7d 23099 return TRUE;
c19d1205 23100}
7ed4c4c5 23101
c921be7d 23102static bfd_boolean
c19d1205 23103arm_parse_cpu (char * str)
7ed4c4c5 23104{
e74cfd16 23105 const struct arm_cpu_option_table * opt;
c19d1205
ZW
23106 char * ext = strchr (str, '+');
23107 int optlen;
7ed4c4c5 23108
c19d1205
ZW
23109 if (ext != NULL)
23110 optlen = ext - str;
7ed4c4c5 23111 else
c19d1205 23112 optlen = strlen (str);
7ed4c4c5 23113
c19d1205 23114 if (optlen == 0)
7ed4c4c5 23115 {
c19d1205 23116 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23117 return FALSE;
7ed4c4c5
NC
23118 }
23119
c19d1205
ZW
23120 for (opt = arm_cpus; opt->name != NULL; opt++)
23121 if (strncmp (opt->name, str, optlen) == 0)
23122 {
e74cfd16
PB
23123 mcpu_cpu_opt = &opt->value;
23124 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23125 if (opt->canonical_name)
5f4273c7 23126 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23127 else
23128 {
23129 int i;
c921be7d 23130
ee065d83
PB
23131 for (i = 0; i < optlen; i++)
23132 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23133 selected_cpu_name[i] = 0;
23134 }
7ed4c4c5 23135
c19d1205
ZW
23136 if (ext != NULL)
23137 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23138
c921be7d 23139 return TRUE;
c19d1205 23140 }
7ed4c4c5 23141
c19d1205 23142 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23143 return FALSE;
7ed4c4c5
NC
23144}
23145
c921be7d 23146static bfd_boolean
c19d1205 23147arm_parse_arch (char * str)
7ed4c4c5 23148{
e74cfd16 23149 const struct arm_arch_option_table *opt;
c19d1205
ZW
23150 char *ext = strchr (str, '+');
23151 int optlen;
7ed4c4c5 23152
c19d1205
ZW
23153 if (ext != NULL)
23154 optlen = ext - str;
7ed4c4c5 23155 else
c19d1205 23156 optlen = strlen (str);
7ed4c4c5 23157
c19d1205 23158 if (optlen == 0)
7ed4c4c5 23159 {
c19d1205 23160 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23161 return FALSE;
7ed4c4c5
NC
23162 }
23163
c19d1205 23164 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 23165 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 23166 {
e74cfd16
PB
23167 march_cpu_opt = &opt->value;
23168 march_fpu_opt = &opt->default_fpu;
5f4273c7 23169 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23170
c19d1205
ZW
23171 if (ext != NULL)
23172 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23173
c921be7d 23174 return TRUE;
c19d1205
ZW
23175 }
23176
23177 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23178 return FALSE;
7ed4c4c5 23179}
eb043451 23180
c921be7d 23181static bfd_boolean
c19d1205
ZW
23182arm_parse_fpu (char * str)
23183{
69133863 23184 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23185
c19d1205
ZW
23186 for (opt = arm_fpus; opt->name != NULL; opt++)
23187 if (streq (opt->name, str))
23188 {
e74cfd16 23189 mfpu_opt = &opt->value;
c921be7d 23190 return TRUE;
c19d1205 23191 }
b99bd4ef 23192
c19d1205 23193 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23194 return FALSE;
c19d1205
ZW
23195}
23196
c921be7d 23197static bfd_boolean
c19d1205 23198arm_parse_float_abi (char * str)
b99bd4ef 23199{
e74cfd16 23200 const struct arm_option_value_table * opt;
b99bd4ef 23201
c19d1205
ZW
23202 for (opt = arm_float_abis; opt->name != NULL; opt++)
23203 if (streq (opt->name, str))
23204 {
23205 mfloat_abi_opt = opt->value;
c921be7d 23206 return TRUE;
c19d1205 23207 }
cc8a6dd0 23208
c19d1205 23209 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23210 return FALSE;
c19d1205 23211}
b99bd4ef 23212
c19d1205 23213#ifdef OBJ_ELF
c921be7d 23214static bfd_boolean
c19d1205
ZW
23215arm_parse_eabi (char * str)
23216{
e74cfd16 23217 const struct arm_option_value_table *opt;
cc8a6dd0 23218
c19d1205
ZW
23219 for (opt = arm_eabis; opt->name != NULL; opt++)
23220 if (streq (opt->name, str))
23221 {
23222 meabi_flags = opt->value;
c921be7d 23223 return TRUE;
c19d1205
ZW
23224 }
23225 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23226 return FALSE;
c19d1205
ZW
23227}
23228#endif
cc8a6dd0 23229
c921be7d 23230static bfd_boolean
e07e6e58
NC
23231arm_parse_it_mode (char * str)
23232{
c921be7d 23233 bfd_boolean ret = TRUE;
e07e6e58
NC
23234
23235 if (streq ("arm", str))
23236 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23237 else if (streq ("thumb", str))
23238 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23239 else if (streq ("always", str))
23240 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23241 else if (streq ("never", str))
23242 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23243 else
23244 {
23245 as_bad (_("unknown implicit IT mode `%s', should be "\
23246 "arm, thumb, always, or never."), str);
c921be7d 23247 ret = FALSE;
e07e6e58
NC
23248 }
23249
23250 return ret;
23251}
23252
c19d1205
ZW
23253struct arm_long_option_table arm_long_opts[] =
23254{
23255 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23256 arm_parse_cpu, NULL},
23257 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23258 arm_parse_arch, NULL},
23259 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23260 arm_parse_fpu, NULL},
23261 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23262 arm_parse_float_abi, NULL},
23263#ifdef OBJ_ELF
7fac0536 23264 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23265 arm_parse_eabi, NULL},
23266#endif
e07e6e58
NC
23267 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23268 arm_parse_it_mode, NULL},
c19d1205
ZW
23269 {NULL, NULL, 0, NULL}
23270};
cc8a6dd0 23271
c19d1205
ZW
23272int
23273md_parse_option (int c, char * arg)
23274{
23275 struct arm_option_table *opt;
e74cfd16 23276 const struct arm_legacy_option_table *fopt;
c19d1205 23277 struct arm_long_option_table *lopt;
b99bd4ef 23278
c19d1205 23279 switch (c)
b99bd4ef 23280 {
c19d1205
ZW
23281#ifdef OPTION_EB
23282 case OPTION_EB:
23283 target_big_endian = 1;
23284 break;
23285#endif
cc8a6dd0 23286
c19d1205
ZW
23287#ifdef OPTION_EL
23288 case OPTION_EL:
23289 target_big_endian = 0;
23290 break;
23291#endif
b99bd4ef 23292
845b51d6
PB
23293 case OPTION_FIX_V4BX:
23294 fix_v4bx = TRUE;
23295 break;
23296
c19d1205
ZW
23297 case 'a':
23298 /* Listing option. Just ignore these, we don't support additional
23299 ones. */
23300 return 0;
b99bd4ef 23301
c19d1205
ZW
23302 default:
23303 for (opt = arm_opts; opt->option != NULL; opt++)
23304 {
23305 if (c == opt->option[0]
23306 && ((arg == NULL && opt->option[1] == 0)
23307 || streq (arg, opt->option + 1)))
23308 {
c19d1205 23309 /* If the option is deprecated, tell the user. */
278df34e 23310 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23311 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23312 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23313
c19d1205
ZW
23314 if (opt->var != NULL)
23315 *opt->var = opt->value;
cc8a6dd0 23316
c19d1205
ZW
23317 return 1;
23318 }
23319 }
b99bd4ef 23320
e74cfd16
PB
23321 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23322 {
23323 if (c == fopt->option[0]
23324 && ((arg == NULL && fopt->option[1] == 0)
23325 || streq (arg, fopt->option + 1)))
23326 {
e74cfd16 23327 /* If the option is deprecated, tell the user. */
278df34e 23328 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23329 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23330 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23331
23332 if (fopt->var != NULL)
23333 *fopt->var = &fopt->value;
23334
23335 return 1;
23336 }
23337 }
23338
c19d1205
ZW
23339 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23340 {
23341 /* These options are expected to have an argument. */
23342 if (c == lopt->option[0]
23343 && arg != NULL
23344 && strncmp (arg, lopt->option + 1,
23345 strlen (lopt->option + 1)) == 0)
23346 {
c19d1205 23347 /* If the option is deprecated, tell the user. */
278df34e 23348 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23349 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23350 _(lopt->deprecated));
b99bd4ef 23351
c19d1205
ZW
23352 /* Call the sup-option parser. */
23353 return lopt->func (arg + strlen (lopt->option) - 1);
23354 }
23355 }
a737bd4d 23356
c19d1205
ZW
23357 return 0;
23358 }
a394c00f 23359
c19d1205
ZW
23360 return 1;
23361}
a394c00f 23362
c19d1205
ZW
23363void
23364md_show_usage (FILE * fp)
a394c00f 23365{
c19d1205
ZW
23366 struct arm_option_table *opt;
23367 struct arm_long_option_table *lopt;
a394c00f 23368
c19d1205 23369 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23370
c19d1205
ZW
23371 for (opt = arm_opts; opt->option != NULL; opt++)
23372 if (opt->help != NULL)
23373 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23374
c19d1205
ZW
23375 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23376 if (lopt->help != NULL)
23377 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23378
c19d1205
ZW
23379#ifdef OPTION_EB
23380 fprintf (fp, _("\
23381 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23382#endif
23383
c19d1205
ZW
23384#ifdef OPTION_EL
23385 fprintf (fp, _("\
23386 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23387#endif
845b51d6
PB
23388
23389 fprintf (fp, _("\
23390 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23391}
ee065d83
PB
23392
23393
23394#ifdef OBJ_ELF
62b3e311
PB
23395typedef struct
23396{
23397 int val;
23398 arm_feature_set flags;
23399} cpu_arch_ver_table;
23400
23401/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23402 least features first. */
23403static const cpu_arch_ver_table cpu_arch_ver[] =
23404{
23405 {1, ARM_ARCH_V4},
23406 {2, ARM_ARCH_V4T},
23407 {3, ARM_ARCH_V5},
ee3c0378 23408 {3, ARM_ARCH_V5T},
62b3e311
PB
23409 {4, ARM_ARCH_V5TE},
23410 {5, ARM_ARCH_V5TEJ},
23411 {6, ARM_ARCH_V6},
7e806470 23412 {9, ARM_ARCH_V6K},
f4c65163 23413 {7, ARM_ARCH_V6Z},
91e22acd 23414 {11, ARM_ARCH_V6M},
b2a5fbdc 23415 {12, ARM_ARCH_V6SM},
7e806470 23416 {8, ARM_ARCH_V6T2},
62b3e311
PB
23417 {10, ARM_ARCH_V7A},
23418 {10, ARM_ARCH_V7R},
23419 {10, ARM_ARCH_V7M},
23420 {0, ARM_ARCH_NONE}
23421};
23422
ee3c0378
AS
23423/* Set an attribute if it has not already been set by the user. */
23424static void
23425aeabi_set_attribute_int (int tag, int value)
23426{
23427 if (tag < 1
23428 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23429 || !attributes_set_explicitly[tag])
23430 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23431}
23432
23433static void
23434aeabi_set_attribute_string (int tag, const char *value)
23435{
23436 if (tag < 1
23437 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23438 || !attributes_set_explicitly[tag])
23439 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23440}
23441
ee065d83
PB
23442/* Set the public EABI object attributes. */
23443static void
23444aeabi_set_public_attributes (void)
23445{
23446 int arch;
90ec0d68 23447 int virt_sec = 0;
e74cfd16 23448 arm_feature_set flags;
62b3e311
PB
23449 arm_feature_set tmp;
23450 const cpu_arch_ver_table *p;
ee065d83
PB
23451
23452 /* Choose the architecture based on the capabilities of the requested cpu
23453 (if any) and/or the instructions actually used. */
e74cfd16
PB
23454 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23455 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23456 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23457 /*Allow the user to override the reported architecture. */
23458 if (object_arch)
23459 {
23460 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23461 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23462 }
23463
251665fc
MGD
23464 /* We need to make sure that the attributes do not identify us as v6S-M
23465 when the only v6S-M feature in use is the Operating System Extensions. */
23466 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23467 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23468 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23469
62b3e311
PB
23470 tmp = flags;
23471 arch = 0;
23472 for (p = cpu_arch_ver; p->val; p++)
23473 {
23474 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23475 {
23476 arch = p->val;
23477 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23478 }
23479 }
ee065d83 23480
9e3c6df6
PB
23481 /* The table lookup above finds the last architecture to contribute
23482 a new feature. Unfortunately, Tag13 is a subset of the union of
23483 v6T2 and v7-M, so it is never seen as contributing a new feature.
23484 We can not search for the last entry which is entirely used,
23485 because if no CPU is specified we build up only those flags
23486 actually used. Perhaps we should separate out the specified
23487 and implicit cases. Avoid taking this path for -march=all by
23488 checking for contradictory v7-A / v7-M features. */
23489 if (arch == 10
23490 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23491 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23492 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23493 arch = 13;
23494
ee065d83
PB
23495 /* Tag_CPU_name. */
23496 if (selected_cpu_name[0])
23497 {
91d6fa6a 23498 char *q;
ee065d83 23499
91d6fa6a
NC
23500 q = selected_cpu_name;
23501 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23502 {
23503 int i;
5f4273c7 23504
91d6fa6a
NC
23505 q += 4;
23506 for (i = 0; q[i]; i++)
23507 q[i] = TOUPPER (q[i]);
ee065d83 23508 }
91d6fa6a 23509 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23510 }
62f3b8c8 23511
ee065d83 23512 /* Tag_CPU_arch. */
ee3c0378 23513 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23514
62b3e311
PB
23515 /* Tag_CPU_arch_profile. */
23516 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23517 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23518 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23519 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23520 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23521 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23522
ee065d83 23523 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23524 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23525 || arch == 0)
23526 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23527
ee065d83 23528 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23529 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23530 || arch == 0)
23531 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23532 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23533
ee065d83 23534 /* Tag_VFP_arch. */
62f3b8c8
PB
23535 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23536 aeabi_set_attribute_int (Tag_VFP_arch,
23537 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23538 ? 5 : 6);
23539 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23540 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23541 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23542 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23543 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23544 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23545 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23546 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23547 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23548
4547cb56
NC
23549 /* Tag_ABI_HardFP_use. */
23550 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23551 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23552 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23553
ee065d83 23554 /* Tag_WMMX_arch. */
ee3c0378
AS
23555 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23556 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23557 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23558 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23559
ee3c0378 23560 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23561 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23562 aeabi_set_attribute_int
23563 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23564 ? 2 : 1));
23565
ee3c0378 23566 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23567 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23568 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23569
23570 /* Tag_DIV_use. */
eea54501
MGD
23571 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23572 aeabi_set_attribute_int (Tag_DIV_use, 2);
23573 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23574 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23575 else
23576 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23577
23578 /* Tag_MP_extension_use. */
23579 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23580 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23581
23582 /* Tag Virtualization_use. */
23583 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23584 virt_sec |= 1;
23585 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23586 virt_sec |= 2;
23587 if (virt_sec != 0)
23588 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23589}
23590
104d59d1 23591/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23592void
23593arm_md_end (void)
23594{
ee065d83
PB
23595 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23596 return;
23597
23598 aeabi_set_public_attributes ();
ee065d83 23599}
8463be01 23600#endif /* OBJ_ELF */
ee065d83
PB
23601
23602
23603/* Parse a .cpu directive. */
23604
23605static void
23606s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23607{
e74cfd16 23608 const struct arm_cpu_option_table *opt;
ee065d83
PB
23609 char *name;
23610 char saved_char;
23611
23612 name = input_line_pointer;
5f4273c7 23613 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23614 input_line_pointer++;
23615 saved_char = *input_line_pointer;
23616 *input_line_pointer = 0;
23617
23618 /* Skip the first "all" entry. */
23619 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23620 if (streq (opt->name, name))
23621 {
e74cfd16
PB
23622 mcpu_cpu_opt = &opt->value;
23623 selected_cpu = opt->value;
ee065d83 23624 if (opt->canonical_name)
5f4273c7 23625 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23626 else
23627 {
23628 int i;
23629 for (i = 0; opt->name[i]; i++)
23630 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23631 selected_cpu_name[i] = 0;
23632 }
e74cfd16 23633 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23634 *input_line_pointer = saved_char;
23635 demand_empty_rest_of_line ();
23636 return;
23637 }
23638 as_bad (_("unknown cpu `%s'"), name);
23639 *input_line_pointer = saved_char;
23640 ignore_rest_of_line ();
23641}
23642
23643
23644/* Parse a .arch directive. */
23645
23646static void
23647s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23648{
e74cfd16 23649 const struct arm_arch_option_table *opt;
ee065d83
PB
23650 char saved_char;
23651 char *name;
23652
23653 name = input_line_pointer;
5f4273c7 23654 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23655 input_line_pointer++;
23656 saved_char = *input_line_pointer;
23657 *input_line_pointer = 0;
23658
23659 /* Skip the first "all" entry. */
23660 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23661 if (streq (opt->name, name))
23662 {
e74cfd16
PB
23663 mcpu_cpu_opt = &opt->value;
23664 selected_cpu = opt->value;
5f4273c7 23665 strcpy (selected_cpu_name, opt->name);
e74cfd16 23666 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23667 *input_line_pointer = saved_char;
23668 demand_empty_rest_of_line ();
23669 return;
23670 }
23671
23672 as_bad (_("unknown architecture `%s'\n"), name);
23673 *input_line_pointer = saved_char;
23674 ignore_rest_of_line ();
23675}
23676
23677
7a1d4c38
PB
23678/* Parse a .object_arch directive. */
23679
23680static void
23681s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23682{
23683 const struct arm_arch_option_table *opt;
23684 char saved_char;
23685 char *name;
23686
23687 name = input_line_pointer;
5f4273c7 23688 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23689 input_line_pointer++;
23690 saved_char = *input_line_pointer;
23691 *input_line_pointer = 0;
23692
23693 /* Skip the first "all" entry. */
23694 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23695 if (streq (opt->name, name))
23696 {
23697 object_arch = &opt->value;
23698 *input_line_pointer = saved_char;
23699 demand_empty_rest_of_line ();
23700 return;
23701 }
23702
23703 as_bad (_("unknown architecture `%s'\n"), name);
23704 *input_line_pointer = saved_char;
23705 ignore_rest_of_line ();
23706}
23707
69133863
MGD
23708/* Parse a .arch_extension directive. */
23709
23710static void
23711s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23712{
23713 const struct arm_option_extension_value_table *opt;
23714 char saved_char;
23715 char *name;
23716 int adding_value = 1;
23717
23718 name = input_line_pointer;
23719 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23720 input_line_pointer++;
23721 saved_char = *input_line_pointer;
23722 *input_line_pointer = 0;
23723
23724 if (strlen (name) >= 2
23725 && strncmp (name, "no", 2) == 0)
23726 {
23727 adding_value = 0;
23728 name += 2;
23729 }
23730
23731 for (opt = arm_extensions; opt->name != NULL; opt++)
23732 if (streq (opt->name, name))
23733 {
23734 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23735 {
23736 as_bad (_("architectural extension `%s' is not allowed for the "
23737 "current base architecture"), name);
23738 break;
23739 }
23740
23741 if (adding_value)
23742 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23743 else
23744 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23745
23746 mcpu_cpu_opt = &selected_cpu;
23747 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23748 *input_line_pointer = saved_char;
23749 demand_empty_rest_of_line ();
23750 return;
23751 }
23752
23753 if (opt->name == NULL)
23754 as_bad (_("unknown architecture `%s'\n"), name);
23755
23756 *input_line_pointer = saved_char;
23757 ignore_rest_of_line ();
23758}
23759
ee065d83
PB
23760/* Parse a .fpu directive. */
23761
23762static void
23763s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23764{
69133863 23765 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23766 char saved_char;
23767 char *name;
23768
23769 name = input_line_pointer;
5f4273c7 23770 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23771 input_line_pointer++;
23772 saved_char = *input_line_pointer;
23773 *input_line_pointer = 0;
5f4273c7 23774
ee065d83
PB
23775 for (opt = arm_fpus; opt->name != NULL; opt++)
23776 if (streq (opt->name, name))
23777 {
e74cfd16
PB
23778 mfpu_opt = &opt->value;
23779 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23780 *input_line_pointer = saved_char;
23781 demand_empty_rest_of_line ();
23782 return;
23783 }
23784
23785 as_bad (_("unknown floating point format `%s'\n"), name);
23786 *input_line_pointer = saved_char;
23787 ignore_rest_of_line ();
23788}
ee065d83 23789
794ba86a 23790/* Copy symbol information. */
f31fef98 23791
794ba86a
DJ
23792void
23793arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23794{
23795 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23796}
e04befd0 23797
f31fef98 23798#ifdef OBJ_ELF
e04befd0
AS
23799/* Given a symbolic attribute NAME, return the proper integer value.
23800 Returns -1 if the attribute is not known. */
f31fef98 23801
e04befd0
AS
23802int
23803arm_convert_symbolic_attribute (const char *name)
23804{
f31fef98
NC
23805 static const struct
23806 {
23807 const char * name;
23808 const int tag;
23809 }
23810 attribute_table[] =
23811 {
23812 /* When you modify this table you should
23813 also modify the list in doc/c-arm.texi. */
e04befd0 23814#define T(tag) {#tag, tag}
f31fef98
NC
23815 T (Tag_CPU_raw_name),
23816 T (Tag_CPU_name),
23817 T (Tag_CPU_arch),
23818 T (Tag_CPU_arch_profile),
23819 T (Tag_ARM_ISA_use),
23820 T (Tag_THUMB_ISA_use),
75375b3e 23821 T (Tag_FP_arch),
f31fef98
NC
23822 T (Tag_VFP_arch),
23823 T (Tag_WMMX_arch),
23824 T (Tag_Advanced_SIMD_arch),
23825 T (Tag_PCS_config),
23826 T (Tag_ABI_PCS_R9_use),
23827 T (Tag_ABI_PCS_RW_data),
23828 T (Tag_ABI_PCS_RO_data),
23829 T (Tag_ABI_PCS_GOT_use),
23830 T (Tag_ABI_PCS_wchar_t),
23831 T (Tag_ABI_FP_rounding),
23832 T (Tag_ABI_FP_denormal),
23833 T (Tag_ABI_FP_exceptions),
23834 T (Tag_ABI_FP_user_exceptions),
23835 T (Tag_ABI_FP_number_model),
75375b3e 23836 T (Tag_ABI_align_needed),
f31fef98 23837 T (Tag_ABI_align8_needed),
75375b3e 23838 T (Tag_ABI_align_preserved),
f31fef98
NC
23839 T (Tag_ABI_align8_preserved),
23840 T (Tag_ABI_enum_size),
23841 T (Tag_ABI_HardFP_use),
23842 T (Tag_ABI_VFP_args),
23843 T (Tag_ABI_WMMX_args),
23844 T (Tag_ABI_optimization_goals),
23845 T (Tag_ABI_FP_optimization_goals),
23846 T (Tag_compatibility),
23847 T (Tag_CPU_unaligned_access),
75375b3e 23848 T (Tag_FP_HP_extension),
f31fef98
NC
23849 T (Tag_VFP_HP_extension),
23850 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23851 T (Tag_MPextension_use),
23852 T (Tag_DIV_use),
f31fef98
NC
23853 T (Tag_nodefaults),
23854 T (Tag_also_compatible_with),
23855 T (Tag_conformance),
23856 T (Tag_T2EE_use),
23857 T (Tag_Virtualization_use),
cd21e546 23858 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23859#undef T
f31fef98 23860 };
e04befd0
AS
23861 unsigned int i;
23862
23863 if (name == NULL)
23864 return -1;
23865
f31fef98 23866 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23867 if (streq (name, attribute_table[i].name))
e04befd0
AS
23868 return attribute_table[i].tag;
23869
23870 return -1;
23871}
267bf995
RR
23872
23873
23874/* Apply sym value for relocations only in the case that
23875 they are for local symbols and you have the respective
23876 architectural feature for blx and simple switches. */
23877int
23878arm_apply_sym_value (struct fix * fixP)
23879{
23880 if (fixP->fx_addsy
23881 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 23882 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
23883 {
23884 switch (fixP->fx_r_type)
23885 {
23886 case BFD_RELOC_ARM_PCREL_BLX:
23887 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23888 if (ARM_IS_FUNC (fixP->fx_addsy))
23889 return 1;
23890 break;
23891
23892 case BFD_RELOC_ARM_PCREL_CALL:
23893 case BFD_RELOC_THUMB_PCREL_BLX:
23894 if (THUMB_IS_FUNC (fixP->fx_addsy))
23895 return 1;
23896 break;
23897
23898 default:
23899 break;
23900 }
23901
23902 }
23903 return 0;
23904}
f31fef98 23905#endif /* OBJ_ELF */
This page took 2.391233 seconds and 4 git commands to generate.