[PATCH 18/57][Arm][GAS] Add support for MVE instructions: vhcadd, vhadd, vhsub and...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6926
60f993ce
AV
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
a302e574
AV
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
c19d1205 6933 OP_REGLST, /* ARM register list */
4b5a202f 6934 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
037e8744 6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6943
5287ad62 6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
5287ad62 6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
5287ad62 6954 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5d281bf0 6955 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6956 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6957 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6958 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6959 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6960 OP_RNDQMQ_Ibig,
5287ad62 6961 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6962 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6963 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6964
6965 OP_I0, /* immediate zero */
c19d1205
ZW
6966 OP_I7, /* immediate value 0 .. 7 */
6967 OP_I15, /* 0 .. 15 */
6968 OP_I16, /* 1 .. 16 */
5287ad62 6969 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6970 OP_I31, /* 0 .. 31 */
6971 OP_I31w, /* 0 .. 31, optional trailing ! */
6972 OP_I32, /* 1 .. 32 */
5287ad62
JB
6973 OP_I32z, /* 0 .. 32 */
6974 OP_I63, /* 0 .. 63 */
c19d1205 6975 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6976 OP_I64, /* 1 .. 64 */
6977 OP_I64z, /* 0 .. 64 */
c19d1205 6978 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6979
6980 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6981 OP_I7b, /* 0 .. 7 */
6982 OP_I15b, /* 0 .. 15 */
6983 OP_I31b, /* 0 .. 31 */
6984
6985 OP_SH, /* shifter operand */
4962c51a 6986 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6987 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6988 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6989 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6990 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6991 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6992 OP_EXP, /* arbitrary expression */
6993 OP_EXPi, /* same, with optional immediate prefix */
6994 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6995 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6996 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6997 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6998 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6999
7000 OP_CPSF, /* CPS flags */
7001 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7002 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7003 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7004 OP_COND, /* conditional code */
92e90b6e 7005 OP_TB, /* Table branch. */
c19d1205 7006
037e8744
JB
7007 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7008
c19d1205 7009 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7010 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7011 OP_RR_EXi, /* ARM register or expression with imm prefix */
7012 OP_RF_IF, /* FPA register or immediate */
7013 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7014 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7015
7016 /* Optional operands. */
7017 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7018 OP_oI31b, /* 0 .. 31 */
5287ad62 7019 OP_oI32b, /* 1 .. 32 */
5f1af56b 7020 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7021 OP_oIffffb, /* 0 .. 65535 */
7022 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7023
7024 OP_oRR, /* ARM register */
60f993ce 7025 OP_oLR, /* ARM LR register */
c19d1205 7026 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7027 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7028 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7029 OP_oRND, /* Optional Neon double precision register */
7030 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7031 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7032 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7033 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7034 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7035 register. */
c19d1205
ZW
7036 OP_oSHll, /* LSL immediate */
7037 OP_oSHar, /* ASR immediate */
7038 OP_oSHllar, /* LSL or ASR immediate */
7039 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7040 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7041
1b883319
AV
7042 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7043
5be8be5d
DG
7044 /* Some pre-defined mixed (ARM/THUMB) operands. */
7045 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7046 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7047 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7048
c19d1205
ZW
7049 OP_FIRST_OPTIONAL = OP_oI7b
7050};
a737bd4d 7051
c19d1205
ZW
7052/* Generic instruction operand parser. This does no encoding and no
7053 semantic validation; it merely squirrels values away in the inst
7054 structure. Returns SUCCESS or FAIL depending on whether the
7055 specified grammar matched. */
7056static int
5be8be5d 7057parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7058{
5be8be5d 7059 unsigned const int *upat = pattern;
c19d1205
ZW
7060 char *backtrack_pos = 0;
7061 const char *backtrack_error = 0;
99aad254 7062 int i, val = 0, backtrack_index = 0;
5287ad62 7063 enum arm_reg_type rtype;
4962c51a 7064 parse_operand_result result;
5be8be5d 7065 unsigned int op_parse_code;
efd6b359 7066 bfd_boolean partial_match;
c19d1205 7067
e07e6e58
NC
7068#define po_char_or_fail(chr) \
7069 do \
7070 { \
7071 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7072 goto bad_args; \
e07e6e58
NC
7073 } \
7074 while (0)
c19d1205 7075
e07e6e58
NC
7076#define po_reg_or_fail(regtype) \
7077 do \
dcbf9037 7078 { \
e07e6e58 7079 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7080 & inst.operands[i].vectype); \
e07e6e58 7081 if (val == FAIL) \
477330fc
RM
7082 { \
7083 first_error (_(reg_expected_msgs[regtype])); \
7084 goto failure; \
7085 } \
e07e6e58
NC
7086 inst.operands[i].reg = val; \
7087 inst.operands[i].isreg = 1; \
7088 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7089 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7090 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7091 || rtype == REG_TYPE_VFD \
7092 || rtype == REG_TYPE_NQ); \
1b883319 7093 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7094 } \
e07e6e58
NC
7095 while (0)
7096
7097#define po_reg_or_goto(regtype, label) \
7098 do \
7099 { \
7100 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7101 & inst.operands[i].vectype); \
7102 if (val == FAIL) \
7103 goto label; \
dcbf9037 7104 \
e07e6e58
NC
7105 inst.operands[i].reg = val; \
7106 inst.operands[i].isreg = 1; \
7107 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7108 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7109 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7110 || rtype == REG_TYPE_VFD \
e07e6e58 7111 || rtype == REG_TYPE_NQ); \
1b883319 7112 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7113 } \
7114 while (0)
7115
7116#define po_imm_or_fail(min, max, popt) \
7117 do \
7118 { \
7119 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7120 goto failure; \
7121 inst.operands[i].imm = val; \
7122 } \
7123 while (0)
7124
57785aa2 7125#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7126 do \
7127 { \
57785aa2
AV
7128 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7129 reg_type); \
e07e6e58
NC
7130 if (val == FAIL) \
7131 goto label; \
7132 inst.operands[i].reg = val; \
7133 inst.operands[i].isscalar = 1; \
7134 } \
7135 while (0)
7136
7137#define po_misc_or_fail(expr) \
7138 do \
7139 { \
7140 if (expr) \
7141 goto failure; \
7142 } \
7143 while (0)
7144
7145#define po_misc_or_fail_no_backtrack(expr) \
7146 do \
7147 { \
7148 result = expr; \
7149 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7150 backtrack_pos = 0; \
7151 if (result != PARSE_OPERAND_SUCCESS) \
7152 goto failure; \
7153 } \
7154 while (0)
4962c51a 7155
52e7f43d
RE
7156#define po_barrier_or_imm(str) \
7157 do \
7158 { \
7159 val = parse_barrier (&str); \
ccb84d65
JB
7160 if (val == FAIL && ! ISALPHA (*str)) \
7161 goto immediate; \
7162 if (val == FAIL \
7163 /* ISB can only take SY as an option. */ \
7164 || ((inst.instruction & 0xf0) == 0x60 \
7165 && val != 0xf)) \
52e7f43d 7166 { \
ccb84d65
JB
7167 inst.error = _("invalid barrier type"); \
7168 backtrack_pos = 0; \
7169 goto failure; \
52e7f43d
RE
7170 } \
7171 } \
7172 while (0)
7173
c19d1205
ZW
7174 skip_whitespace (str);
7175
7176 for (i = 0; upat[i] != OP_stop; i++)
7177 {
5be8be5d
DG
7178 op_parse_code = upat[i];
7179 if (op_parse_code >= 1<<16)
7180 op_parse_code = thumb ? (op_parse_code >> 16)
7181 : (op_parse_code & ((1<<16)-1));
7182
7183 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7184 {
7185 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7186 backtrack_pos = str;
7187 backtrack_error = inst.error;
7188 backtrack_index = i;
7189 }
7190
b6702015 7191 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7192 po_char_or_fail (',');
7193
5be8be5d 7194 switch (op_parse_code)
c19d1205
ZW
7195 {
7196 /* Registers */
7197 case OP_oRRnpc:
5be8be5d 7198 case OP_oRRnpcsp:
c19d1205 7199 case OP_RRnpc:
5be8be5d 7200 case OP_RRnpcsp:
c19d1205 7201 case OP_oRR:
a302e574
AV
7202 case OP_RRe:
7203 case OP_RRo:
60f993ce
AV
7204 case OP_LR:
7205 case OP_oLR:
c19d1205
ZW
7206 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7207 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7208 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7209 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7210 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7211 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7212 case OP_oRND:
5ee91343
AV
7213 case OP_RNDMQR:
7214 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7215 break;
7216 try_rndmq:
7217 case OP_RNDMQ:
7218 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7219 break;
7220 try_rnd:
5287ad62 7221 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7222 case OP_RVC:
7223 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7224 break;
7225 /* Also accept generic coprocessor regs for unknown registers. */
7226 coproc_reg:
7227 po_reg_or_fail (REG_TYPE_CN);
7228 break;
c19d1205
ZW
7229 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7230 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7231 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7232 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7233 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7234 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7235 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7236 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7237 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7238 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7239 case OP_oRNQ:
5ee91343
AV
7240 case OP_RNQMQ:
7241 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7242 break;
7243 try_nq:
5287ad62 7244 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7245 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7246 case OP_RNDQMQR:
7247 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7248 break;
7249 try_rndqmq:
5ee91343
AV
7250 case OP_oRNDQMQ:
7251 case OP_RNDQMQ:
7252 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7253 break;
7254 try_rndq:
477330fc 7255 case OP_oRNDQ:
5287ad62 7256 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7257 case OP_RVSDMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7259 break;
7260 try_rvsd:
477330fc 7261 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7262 case OP_RVSD_COND:
7263 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7264 break;
477330fc
RM
7265 case OP_oRNSDQ:
7266 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7267 case OP_RNSDQMQR:
7268 po_reg_or_goto (REG_TYPE_RN, try_mq);
7269 break;
7270 try_mq:
7271 case OP_oRNSDQMQ:
7272 case OP_RNSDQMQ:
7273 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7274 break;
7275 try_nsdq2:
7276 po_reg_or_fail (REG_TYPE_NSDQ);
7277 inst.error = 0;
7278 break;
a302e574
AV
7279 case OP_RMQ:
7280 po_reg_or_fail (REG_TYPE_MQ);
7281 break;
477330fc
RM
7282 /* Neon scalar. Using an element size of 8 means that some invalid
7283 scalars are accepted here, so deal with those in later code. */
57785aa2 7284 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7285
7286 case OP_RNDQ_I0:
7287 {
7288 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7289 break;
7290 try_imm0:
7291 po_imm_or_fail (0, 0, TRUE);
7292 }
7293 break;
7294
7295 case OP_RVSD_I0:
7296 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7297 break;
7298
1b883319
AV
7299 case OP_RSVDMQ_FI0:
7300 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7301 break;
7302 try_rsvd_fi0:
aacf0b33
KT
7303 case OP_RSVD_FI0:
7304 {
7305 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7306 break;
7307 try_ifimm0:
7308 if (parse_ifimm_zero (&str))
7309 inst.operands[i].imm = 0;
7310 else
7311 {
7312 inst.error
7313 = _("only floating point zero is allowed as immediate value");
7314 goto failure;
7315 }
7316 }
7317 break;
7318
477330fc
RM
7319 case OP_RR_RNSC:
7320 {
57785aa2 7321 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7322 break;
7323 try_rr:
7324 po_reg_or_fail (REG_TYPE_RN);
7325 }
7326 break;
7327
886e1c73
AV
7328 case OP_RNSDQ_RNSC_MQ:
7329 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7330 break;
7331 try_rnsdq_rnsc:
477330fc
RM
7332 case OP_RNSDQ_RNSC:
7333 {
57785aa2
AV
7334 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7335 inst.error = 0;
477330fc
RM
7336 break;
7337 try_nsdq:
7338 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7339 inst.error = 0;
477330fc
RM
7340 }
7341 break;
7342
dec41383
JW
7343 case OP_RNSD_RNSC:
7344 {
57785aa2 7345 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7346 break;
7347 try_s_scalar:
57785aa2 7348 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7349 break;
7350 try_nsd:
7351 po_reg_or_fail (REG_TYPE_NSD);
7352 }
7353 break;
7354
5d281bf0
AV
7355 case OP_RNDQMQ_RNSC:
7356 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7357 break;
7358 try_rndq_rnsc:
477330fc
RM
7359 case OP_RNDQ_RNSC:
7360 {
57785aa2 7361 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7362 break;
7363 try_ndq:
7364 po_reg_or_fail (REG_TYPE_NDQ);
7365 }
7366 break;
7367
7368 case OP_RND_RNSC:
7369 {
57785aa2 7370 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7371 break;
7372 try_vfd:
7373 po_reg_or_fail (REG_TYPE_VFD);
7374 }
7375 break;
7376
7377 case OP_VMOV:
7378 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7379 not careful then bad things might happen. */
7380 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7381 break;
7382
f601a00c
AV
7383 case OP_RNDQMQ_Ibig:
7384 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7385 break;
7386 try_rndq_ibig:
477330fc
RM
7387 case OP_RNDQ_Ibig:
7388 {
7389 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7390 break;
7391 try_immbig:
7392 /* There's a possibility of getting a 64-bit immediate here, so
7393 we need special handling. */
8335d6aa
JW
7394 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7395 == FAIL)
477330fc
RM
7396 {
7397 inst.error = _("immediate value is out of range");
7398 goto failure;
7399 }
7400 }
7401 break;
7402
7403 case OP_RNDQ_I63b:
7404 {
7405 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7406 break;
7407 try_shimm:
7408 po_imm_or_fail (0, 63, TRUE);
7409 }
7410 break;
c19d1205
ZW
7411
7412 case OP_RRnpcb:
7413 po_char_or_fail ('[');
7414 po_reg_or_fail (REG_TYPE_RN);
7415 po_char_or_fail (']');
7416 break;
a737bd4d 7417
55881a11 7418 case OP_RRnpctw:
c19d1205 7419 case OP_RRw:
b6702015 7420 case OP_oRRw:
c19d1205
ZW
7421 po_reg_or_fail (REG_TYPE_RN);
7422 if (skip_past_char (&str, '!') == SUCCESS)
7423 inst.operands[i].writeback = 1;
7424 break;
7425
7426 /* Immediates */
7427 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7428 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7429 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7430 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7431 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7432 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7433 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7434 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7435 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7436 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7437 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7438 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7439
7440 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7441 case OP_oI7b:
7442 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7443 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7444 case OP_oI31b:
7445 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7446 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7447 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7448 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7449
7450 /* Immediate variants */
7451 case OP_oI255c:
7452 po_char_or_fail ('{');
7453 po_imm_or_fail (0, 255, TRUE);
7454 po_char_or_fail ('}');
7455 break;
7456
7457 case OP_I31w:
7458 /* The expression parser chokes on a trailing !, so we have
7459 to find it first and zap it. */
7460 {
7461 char *s = str;
7462 while (*s && *s != ',')
7463 s++;
7464 if (s[-1] == '!')
7465 {
7466 s[-1] = '\0';
7467 inst.operands[i].writeback = 1;
7468 }
7469 po_imm_or_fail (0, 31, TRUE);
7470 if (str == s - 1)
7471 str = s;
7472 }
7473 break;
7474
7475 /* Expressions */
7476 case OP_EXPi: EXPi:
e2b0ab59 7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7478 GE_OPT_PREFIX));
7479 break;
7480
7481 case OP_EXP:
e2b0ab59 7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7483 GE_NO_PREFIX));
7484 break;
7485
7486 case OP_EXPr: EXPr:
e2b0ab59 7487 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7488 GE_NO_PREFIX));
e2b0ab59 7489 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7490 {
c19d1205
ZW
7491 val = parse_reloc (&str);
7492 if (val == -1)
7493 {
7494 inst.error = _("unrecognized relocation suffix");
7495 goto failure;
7496 }
7497 else if (val != BFD_RELOC_UNUSED)
7498 {
7499 inst.operands[i].imm = val;
7500 inst.operands[i].hasreloc = 1;
7501 }
a737bd4d 7502 }
c19d1205 7503 break;
a737bd4d 7504
e2b0ab59
AV
7505 case OP_EXPs:
7506 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7507 GE_NO_PREFIX));
7508 if (inst.relocs[i].exp.X_op == O_symbol)
7509 {
7510 inst.operands[i].hasreloc = 1;
7511 }
7512 else if (inst.relocs[i].exp.X_op == O_constant)
7513 {
7514 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7515 inst.operands[i].hasreloc = 0;
7516 }
7517 break;
7518
b6895b4f
PB
7519 /* Operand for MOVW or MOVT. */
7520 case OP_HALF:
7521 po_misc_or_fail (parse_half (&str));
7522 break;
7523
e07e6e58 7524 /* Register or expression. */
c19d1205
ZW
7525 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7526 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7527
e07e6e58 7528 /* Register or immediate. */
c19d1205
ZW
7529 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7530 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7531
c19d1205
ZW
7532 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7533 IF:
7534 if (!is_immediate_prefix (*str))
7535 goto bad_args;
7536 str++;
7537 val = parse_fpa_immediate (&str);
7538 if (val == FAIL)
7539 goto failure;
7540 /* FPA immediates are encoded as registers 8-15.
7541 parse_fpa_immediate has already applied the offset. */
7542 inst.operands[i].reg = val;
7543 inst.operands[i].isreg = 1;
7544 break;
09d92015 7545
2d447fca
JM
7546 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7547 I32z: po_imm_or_fail (0, 32, FALSE); break;
7548
e07e6e58 7549 /* Two kinds of register. */
c19d1205
ZW
7550 case OP_RIWR_RIWC:
7551 {
7552 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7553 if (!rege
7554 || (rege->type != REG_TYPE_MMXWR
7555 && rege->type != REG_TYPE_MMXWC
7556 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7557 {
7558 inst.error = _("iWMMXt data or control register expected");
7559 goto failure;
7560 }
7561 inst.operands[i].reg = rege->number;
7562 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7563 }
7564 break;
09d92015 7565
41adaa5c
JM
7566 case OP_RIWC_RIWG:
7567 {
7568 struct reg_entry *rege = arm_reg_parse_multi (&str);
7569 if (!rege
7570 || (rege->type != REG_TYPE_MMXWC
7571 && rege->type != REG_TYPE_MMXWCG))
7572 {
7573 inst.error = _("iWMMXt control register expected");
7574 goto failure;
7575 }
7576 inst.operands[i].reg = rege->number;
7577 inst.operands[i].isreg = 1;
7578 }
7579 break;
7580
c19d1205
ZW
7581 /* Misc */
7582 case OP_CPSF: val = parse_cps_flags (&str); break;
7583 case OP_ENDI: val = parse_endian_specifier (&str); break;
7584 case OP_oROR: val = parse_ror (&str); break;
1b883319 7585 try_cond:
c19d1205 7586 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7587 case OP_oBARRIER_I15:
7588 po_barrier_or_imm (str); break;
7589 immediate:
7590 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7591 goto failure;
52e7f43d 7592 break;
c19d1205 7593
fa94de6b 7594 case OP_wPSR:
d2cd1205 7595 case OP_rPSR:
90ec0d68
MGD
7596 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7597 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7598 {
7599 inst.error = _("Banked registers are not available with this "
7600 "architecture.");
7601 goto failure;
7602 }
7603 break;
d2cd1205
JB
7604 try_psr:
7605 val = parse_psr (&str, op_parse_code == OP_wPSR);
7606 break;
037e8744 7607
32c36c3c
AV
7608 case OP_VLDR:
7609 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7610 break;
7611 try_sysreg:
7612 val = parse_sys_vldr_vstr (&str);
7613 break;
7614
477330fc
RM
7615 case OP_APSR_RR:
7616 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7617 break;
7618 try_apsr:
7619 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7620 instruction). */
7621 if (strncasecmp (str, "APSR_", 5) == 0)
7622 {
7623 unsigned found = 0;
7624 str += 5;
7625 while (found < 15)
7626 switch (*str++)
7627 {
7628 case 'c': found = (found & 1) ? 16 : found | 1; break;
7629 case 'n': found = (found & 2) ? 16 : found | 2; break;
7630 case 'z': found = (found & 4) ? 16 : found | 4; break;
7631 case 'v': found = (found & 8) ? 16 : found | 8; break;
7632 default: found = 16;
7633 }
7634 if (found != 15)
7635 goto failure;
7636 inst.operands[i].isvec = 1;
f7c21dc7
NC
7637 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7638 inst.operands[i].reg = REG_PC;
477330fc
RM
7639 }
7640 else
7641 goto failure;
7642 break;
037e8744 7643
92e90b6e
PB
7644 case OP_TB:
7645 po_misc_or_fail (parse_tb (&str));
7646 break;
7647
e07e6e58 7648 /* Register lists. */
c19d1205 7649 case OP_REGLST:
4b5a202f 7650 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7651 if (*str == '^')
7652 {
5e0d7f77 7653 inst.operands[i].writeback = 1;
c19d1205
ZW
7654 str++;
7655 }
7656 break;
09d92015 7657
4b5a202f
AV
7658 case OP_CLRMLST:
7659 val = parse_reg_list (&str, REGLIST_CLRM);
7660 break;
7661
c19d1205 7662 case OP_VRSLST:
efd6b359
AV
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7664 &partial_match);
c19d1205 7665 break;
09d92015 7666
c19d1205 7667 case OP_VRDLST:
efd6b359
AV
7668 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7669 &partial_match);
c19d1205 7670 break;
a737bd4d 7671
477330fc
RM
7672 case OP_VRSDLST:
7673 /* Allow Q registers too. */
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7675 REGLIST_NEON_D, &partial_match);
477330fc
RM
7676 if (val == FAIL)
7677 {
7678 inst.error = NULL;
7679 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7680 REGLIST_VFP_S, &partial_match);
7681 inst.operands[i].issingle = 1;
7682 }
7683 break;
7684
7685 case OP_VRSDVLST:
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_D_VPR, &partial_match);
7688 if (val == FAIL && !partial_match)
7689 {
7690 inst.error = NULL;
7691 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7692 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7693 inst.operands[i].issingle = 1;
7694 }
7695 break;
7696
7697 case OP_NRDLST:
7698 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7699 REGLIST_NEON_D, &partial_match);
477330fc 7700 break;
5287ad62 7701
35c228db
AV
7702 case OP_MSTRLST4:
7703 case OP_MSTRLST2:
7704 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7705 1, &inst.operands[i].vectype);
7706 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7707 goto failure;
7708 break;
5287ad62 7709 case OP_NSTRLST:
477330fc 7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7711 0, &inst.operands[i].vectype);
477330fc 7712 break;
5287ad62 7713
c19d1205 7714 /* Addressing modes */
35c228db
AV
7715 case OP_ADDRMVE:
7716 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7717 break;
7718
c19d1205
ZW
7719 case OP_ADDR:
7720 po_misc_or_fail (parse_address (&str, i));
7721 break;
09d92015 7722
4962c51a
MS
7723 case OP_ADDRGLDR:
7724 po_misc_or_fail_no_backtrack (
477330fc 7725 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7726 break;
7727
7728 case OP_ADDRGLDRS:
7729 po_misc_or_fail_no_backtrack (
477330fc 7730 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7731 break;
7732
7733 case OP_ADDRGLDC:
7734 po_misc_or_fail_no_backtrack (
477330fc 7735 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7736 break;
7737
c19d1205
ZW
7738 case OP_SH:
7739 po_misc_or_fail (parse_shifter_operand (&str, i));
7740 break;
09d92015 7741
4962c51a
MS
7742 case OP_SHG:
7743 po_misc_or_fail_no_backtrack (
477330fc 7744 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7745 break;
7746
c19d1205
ZW
7747 case OP_oSHll:
7748 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7749 break;
09d92015 7750
c19d1205
ZW
7751 case OP_oSHar:
7752 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7753 break;
09d92015 7754
c19d1205
ZW
7755 case OP_oSHllar:
7756 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7757 break;
09d92015 7758
1b883319
AV
7759 case OP_RMQRZ:
7760 case OP_oRMQRZ:
7761 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7762 break;
7763 try_rr_zr:
7764 po_reg_or_goto (REG_TYPE_RN, ZR);
7765 break;
7766 ZR:
7767 po_reg_or_fail (REG_TYPE_ZR);
7768 break;
7769
c19d1205 7770 default:
5be8be5d 7771 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7772 }
09d92015 7773
c19d1205
ZW
7774 /* Various value-based sanity checks and shared operations. We
7775 do not signal immediate failures for the register constraints;
7776 this allows a syntax error to take precedence. */
5be8be5d 7777 switch (op_parse_code)
c19d1205
ZW
7778 {
7779 case OP_oRRnpc:
7780 case OP_RRnpc:
7781 case OP_RRnpcb:
7782 case OP_RRw:
b6702015 7783 case OP_oRRw:
c19d1205
ZW
7784 case OP_RRnpc_I0:
7785 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7786 inst.error = BAD_PC;
7787 break;
09d92015 7788
5be8be5d
DG
7789 case OP_oRRnpcsp:
7790 case OP_RRnpcsp:
7791 if (inst.operands[i].isreg)
7792 {
7793 if (inst.operands[i].reg == REG_PC)
7794 inst.error = BAD_PC;
5c8ed6a4
JW
7795 else if (inst.operands[i].reg == REG_SP
7796 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7797 relaxed since ARMv8-A. */
7798 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7799 {
7800 gas_assert (thumb);
7801 inst.error = BAD_SP;
7802 }
5be8be5d
DG
7803 }
7804 break;
7805
55881a11 7806 case OP_RRnpctw:
fa94de6b
RM
7807 if (inst.operands[i].isreg
7808 && inst.operands[i].reg == REG_PC
55881a11
MGD
7809 && (inst.operands[i].writeback || thumb))
7810 inst.error = BAD_PC;
7811 break;
7812
1b883319 7813 case OP_RVSD_COND:
32c36c3c
AV
7814 case OP_VLDR:
7815 if (inst.operands[i].isreg)
7816 break;
7817 /* fall through. */
1b883319 7818
c19d1205
ZW
7819 case OP_CPSF:
7820 case OP_ENDI:
7821 case OP_oROR:
d2cd1205
JB
7822 case OP_wPSR:
7823 case OP_rPSR:
c19d1205 7824 case OP_COND:
52e7f43d 7825 case OP_oBARRIER_I15:
c19d1205 7826 case OP_REGLST:
4b5a202f 7827 case OP_CLRMLST:
c19d1205
ZW
7828 case OP_VRSLST:
7829 case OP_VRDLST:
477330fc 7830 case OP_VRSDLST:
efd6b359 7831 case OP_VRSDVLST:
477330fc
RM
7832 case OP_NRDLST:
7833 case OP_NSTRLST:
35c228db
AV
7834 case OP_MSTRLST2:
7835 case OP_MSTRLST4:
c19d1205
ZW
7836 if (val == FAIL)
7837 goto failure;
7838 inst.operands[i].imm = val;
7839 break;
a737bd4d 7840
60f993ce
AV
7841 case OP_LR:
7842 case OP_oLR:
7843 if (inst.operands[i].reg != REG_LR)
7844 inst.error = _("operand must be LR register");
7845 break;
7846
1b883319
AV
7847 case OP_RMQRZ:
7848 case OP_oRMQRZ:
7849 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7850 inst.error = BAD_PC;
7851 break;
7852
a302e574
AV
7853 case OP_RRe:
7854 if (inst.operands[i].isreg
7855 && (inst.operands[i].reg & 0x00000001) != 0)
7856 inst.error = BAD_ODD;
7857 break;
7858
7859 case OP_RRo:
7860 if (inst.operands[i].isreg)
7861 {
7862 if ((inst.operands[i].reg & 0x00000001) != 1)
7863 inst.error = BAD_EVEN;
7864 else if (inst.operands[i].reg == REG_SP)
7865 as_tsktsk (MVE_BAD_SP);
7866 else if (inst.operands[i].reg == REG_PC)
7867 inst.error = BAD_PC;
7868 }
7869 break;
7870
c19d1205
ZW
7871 default:
7872 break;
7873 }
09d92015 7874
c19d1205
ZW
7875 /* If we get here, this operand was successfully parsed. */
7876 inst.operands[i].present = 1;
7877 continue;
09d92015 7878
c19d1205 7879 bad_args:
09d92015 7880 inst.error = BAD_ARGS;
c19d1205
ZW
7881
7882 failure:
7883 if (!backtrack_pos)
d252fdde
PB
7884 {
7885 /* The parse routine should already have set inst.error, but set a
5f4273c7 7886 default here just in case. */
d252fdde 7887 if (!inst.error)
5ee91343 7888 inst.error = BAD_SYNTAX;
d252fdde
PB
7889 return FAIL;
7890 }
c19d1205
ZW
7891
7892 /* Do not backtrack over a trailing optional argument that
7893 absorbed some text. We will only fail again, with the
7894 'garbage following instruction' error message, which is
7895 probably less helpful than the current one. */
7896 if (backtrack_index == i && backtrack_pos != str
7897 && upat[i+1] == OP_stop)
d252fdde
PB
7898 {
7899 if (!inst.error)
5ee91343 7900 inst.error = BAD_SYNTAX;
d252fdde
PB
7901 return FAIL;
7902 }
c19d1205
ZW
7903
7904 /* Try again, skipping the optional argument at backtrack_pos. */
7905 str = backtrack_pos;
7906 inst.error = backtrack_error;
7907 inst.operands[backtrack_index].present = 0;
7908 i = backtrack_index;
7909 backtrack_pos = 0;
09d92015 7910 }
09d92015 7911
c19d1205
ZW
7912 /* Check that we have parsed all the arguments. */
7913 if (*str != '\0' && !inst.error)
7914 inst.error = _("garbage following instruction");
09d92015 7915
c19d1205 7916 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7917}
7918
c19d1205
ZW
7919#undef po_char_or_fail
7920#undef po_reg_or_fail
7921#undef po_reg_or_goto
7922#undef po_imm_or_fail
5287ad62 7923#undef po_scalar_or_fail
52e7f43d 7924#undef po_barrier_or_imm
e07e6e58 7925
c19d1205 7926/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7927#define constraint(expr, err) \
7928 do \
c19d1205 7929 { \
e07e6e58
NC
7930 if (expr) \
7931 { \
7932 inst.error = err; \
7933 return; \
7934 } \
c19d1205 7935 } \
e07e6e58 7936 while (0)
c19d1205 7937
fdfde340
JM
7938/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7939 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7940 is the BadReg predicate in ARM's Thumb-2 documentation.
7941
7942 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7943 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7944#define reject_bad_reg(reg) \
7945 do \
7946 if (reg == REG_PC) \
7947 { \
7948 inst.error = BAD_PC; \
7949 return; \
7950 } \
7951 else if (reg == REG_SP \
7952 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7953 { \
7954 inst.error = BAD_SP; \
7955 return; \
7956 } \
fdfde340
JM
7957 while (0)
7958
94206790
MM
7959/* If REG is R13 (the stack pointer), warn that its use is
7960 deprecated. */
7961#define warn_deprecated_sp(reg) \
7962 do \
7963 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7964 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7965 while (0)
7966
c19d1205
ZW
7967/* Functions for operand encoding. ARM, then Thumb. */
7968
d840c081 7969#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7970
9db2f6b4
RL
7971/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7972
7973 The only binary encoding difference is the Coprocessor number. Coprocessor
7974 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7975 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7976 exists for Single-Precision operation. */
7977
7978static void
7979do_scalar_fp16_v82_encode (void)
7980{
5ee91343 7981 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7982 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7983 " the behaviour is UNPREDICTABLE"));
7984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7985 _(BAD_FP16));
7986
7987 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7988 mark_feature_used (&arm_ext_fp16);
7989}
7990
c19d1205
ZW
7991/* If VAL can be encoded in the immediate field of an ARM instruction,
7992 return the encoded form. Otherwise, return FAIL. */
7993
7994static unsigned int
7995encode_arm_immediate (unsigned int val)
09d92015 7996{
c19d1205
ZW
7997 unsigned int a, i;
7998
4f1d6205
L
7999 if (val <= 0xff)
8000 return val;
8001
8002 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8003 if ((a = rotate_left (val, i)) <= 0xff)
8004 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8005
8006 return FAIL;
09d92015
MM
8007}
8008
c19d1205
ZW
8009/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8010 return the encoded form. Otherwise, return FAIL. */
8011static unsigned int
8012encode_thumb32_immediate (unsigned int val)
09d92015 8013{
c19d1205 8014 unsigned int a, i;
09d92015 8015
9c3c69f2 8016 if (val <= 0xff)
c19d1205 8017 return val;
a737bd4d 8018
9c3c69f2 8019 for (i = 1; i <= 24; i++)
09d92015 8020 {
9c3c69f2
PB
8021 a = val >> i;
8022 if ((val & ~(0xff << i)) == 0)
8023 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8024 }
a737bd4d 8025
c19d1205
ZW
8026 a = val & 0xff;
8027 if (val == ((a << 16) | a))
8028 return 0x100 | a;
8029 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8030 return 0x300 | a;
09d92015 8031
c19d1205
ZW
8032 a = val & 0xff00;
8033 if (val == ((a << 16) | a))
8034 return 0x200 | (a >> 8);
a737bd4d 8035
c19d1205 8036 return FAIL;
09d92015 8037}
5287ad62 8038/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8039
8040static void
5287ad62
JB
8041encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8042{
8043 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8044 && reg > 15)
8045 {
b1cc4aeb 8046 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8047 {
8048 if (thumb_mode)
8049 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8050 fpu_vfp_ext_d32);
8051 else
8052 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8053 fpu_vfp_ext_d32);
8054 }
5287ad62 8055 else
477330fc
RM
8056 {
8057 first_error (_("D register out of range for selected VFP version"));
8058 return;
8059 }
5287ad62
JB
8060 }
8061
c19d1205 8062 switch (pos)
09d92015 8063 {
c19d1205
ZW
8064 case VFP_REG_Sd:
8065 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8066 break;
8067
8068 case VFP_REG_Sn:
8069 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8070 break;
8071
8072 case VFP_REG_Sm:
8073 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8074 break;
8075
5287ad62
JB
8076 case VFP_REG_Dd:
8077 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8078 break;
5f4273c7 8079
5287ad62
JB
8080 case VFP_REG_Dn:
8081 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8082 break;
5f4273c7 8083
5287ad62
JB
8084 case VFP_REG_Dm:
8085 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8086 break;
8087
c19d1205
ZW
8088 default:
8089 abort ();
09d92015 8090 }
09d92015
MM
8091}
8092
c19d1205 8093/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8094 if any, is handled by md_apply_fix. */
09d92015 8095static void
c19d1205 8096encode_arm_shift (int i)
09d92015 8097{
008a97ef
RL
8098 /* register-shifted register. */
8099 if (inst.operands[i].immisreg)
8100 {
bf355b69
MR
8101 int op_index;
8102 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8103 {
5689c942
RL
8104 /* Check the operand only when it's presented. In pre-UAL syntax,
8105 if the destination register is the same as the first operand, two
8106 register form of the instruction can be used. */
bf355b69
MR
8107 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8108 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8109 as_warn (UNPRED_REG ("r15"));
8110 }
8111
8112 if (inst.operands[i].imm == REG_PC)
8113 as_warn (UNPRED_REG ("r15"));
8114 }
8115
c19d1205
ZW
8116 if (inst.operands[i].shift_kind == SHIFT_RRX)
8117 inst.instruction |= SHIFT_ROR << 5;
8118 else
09d92015 8119 {
c19d1205
ZW
8120 inst.instruction |= inst.operands[i].shift_kind << 5;
8121 if (inst.operands[i].immisreg)
8122 {
8123 inst.instruction |= SHIFT_BY_REG;
8124 inst.instruction |= inst.operands[i].imm << 8;
8125 }
8126 else
e2b0ab59 8127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8128 }
c19d1205 8129}
09d92015 8130
c19d1205
ZW
8131static void
8132encode_arm_shifter_operand (int i)
8133{
8134 if (inst.operands[i].isreg)
09d92015 8135 {
c19d1205
ZW
8136 inst.instruction |= inst.operands[i].reg;
8137 encode_arm_shift (i);
09d92015 8138 }
c19d1205 8139 else
a415b1cd
JB
8140 {
8141 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8142 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8143 inst.instruction |= inst.operands[i].imm;
8144 }
09d92015
MM
8145}
8146
c19d1205 8147/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8148static void
c19d1205 8149encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8150{
2b2f5df9
NC
8151 /* PR 14260:
8152 Generate an error if the operand is not a register. */
8153 constraint (!inst.operands[i].isreg,
8154 _("Instruction does not support =N addresses"));
8155
c19d1205 8156 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8157
c19d1205 8158 if (inst.operands[i].preind)
09d92015 8159 {
c19d1205
ZW
8160 if (is_t)
8161 {
8162 inst.error = _("instruction does not accept preindexed addressing");
8163 return;
8164 }
8165 inst.instruction |= PRE_INDEX;
8166 if (inst.operands[i].writeback)
8167 inst.instruction |= WRITE_BACK;
09d92015 8168
c19d1205
ZW
8169 }
8170 else if (inst.operands[i].postind)
8171 {
9c2799c2 8172 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8173 if (is_t)
8174 inst.instruction |= WRITE_BACK;
8175 }
8176 else /* unindexed - only for coprocessor */
09d92015 8177 {
c19d1205 8178 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8179 return;
8180 }
8181
c19d1205
ZW
8182 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8183 && (((inst.instruction & 0x000f0000) >> 16)
8184 == ((inst.instruction & 0x0000f000) >> 12)))
8185 as_warn ((inst.instruction & LOAD_BIT)
8186 ? _("destination register same as write-back base")
8187 : _("source register same as write-back base"));
09d92015
MM
8188}
8189
c19d1205
ZW
8190/* inst.operands[i] was set up by parse_address. Encode it into an
8191 ARM-format mode 2 load or store instruction. If is_t is true,
8192 reject forms that cannot be used with a T instruction (i.e. not
8193 post-indexed). */
a737bd4d 8194static void
c19d1205 8195encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8196{
5be8be5d
DG
8197 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8198
c19d1205 8199 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8200
c19d1205 8201 if (inst.operands[i].immisreg)
09d92015 8202 {
5be8be5d
DG
8203 constraint ((inst.operands[i].imm == REG_PC
8204 || (is_pc && inst.operands[i].writeback)),
8205 BAD_PC_ADDRESSING);
c19d1205
ZW
8206 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8207 inst.instruction |= inst.operands[i].imm;
8208 if (!inst.operands[i].negative)
8209 inst.instruction |= INDEX_UP;
8210 if (inst.operands[i].shifted)
8211 {
8212 if (inst.operands[i].shift_kind == SHIFT_RRX)
8213 inst.instruction |= SHIFT_ROR << 5;
8214 else
8215 {
8216 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8217 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8218 }
8219 }
09d92015 8220 }
e2b0ab59 8221 else /* immediate offset in inst.relocs[0] */
09d92015 8222 {
e2b0ab59 8223 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8224 {
8225 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8226
8227 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8228 cannot use PC in addressing.
8229 PC cannot be used in writeback addressing, either. */
8230 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8231 BAD_PC_ADDRESSING);
23a10334 8232
dc5ec521 8233 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8234 if (warn_on_deprecated
8235 && !is_load
8236 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8237 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8238 }
8239
e2b0ab59 8240 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8241 {
8242 /* Prefer + for zero encoded value. */
8243 if (!inst.operands[i].negative)
8244 inst.instruction |= INDEX_UP;
e2b0ab59 8245 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8246 }
09d92015 8247 }
09d92015
MM
8248}
8249
c19d1205
ZW
8250/* inst.operands[i] was set up by parse_address. Encode it into an
8251 ARM-format mode 3 load or store instruction. Reject forms that
8252 cannot be used with such instructions. If is_t is true, reject
8253 forms that cannot be used with a T instruction (i.e. not
8254 post-indexed). */
8255static void
8256encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8257{
c19d1205 8258 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8259 {
c19d1205
ZW
8260 inst.error = _("instruction does not accept scaled register index");
8261 return;
09d92015 8262 }
a737bd4d 8263
c19d1205 8264 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8265
c19d1205
ZW
8266 if (inst.operands[i].immisreg)
8267 {
5be8be5d 8268 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8269 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8270 BAD_PC_ADDRESSING);
eb9f3f00
JB
8271 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8272 BAD_PC_WRITEBACK);
c19d1205
ZW
8273 inst.instruction |= inst.operands[i].imm;
8274 if (!inst.operands[i].negative)
8275 inst.instruction |= INDEX_UP;
8276 }
e2b0ab59 8277 else /* immediate offset in inst.relocs[0] */
c19d1205 8278 {
e2b0ab59 8279 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8280 && inst.operands[i].writeback),
8281 BAD_PC_WRITEBACK);
c19d1205 8282 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8283 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8284 {
8285 /* Prefer + for zero encoded value. */
8286 if (!inst.operands[i].negative)
8287 inst.instruction |= INDEX_UP;
8288
e2b0ab59 8289 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8290 }
c19d1205 8291 }
a737bd4d
NC
8292}
8293
8335d6aa
JW
8294/* Write immediate bits [7:0] to the following locations:
8295
8296 |28/24|23 19|18 16|15 4|3 0|
8297 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8298
8299 This function is used by VMOV/VMVN/VORR/VBIC. */
8300
8301static void
8302neon_write_immbits (unsigned immbits)
8303{
8304 inst.instruction |= immbits & 0xf;
8305 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8306 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8307}
8308
8309/* Invert low-order SIZE bits of XHI:XLO. */
8310
8311static void
8312neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8313{
8314 unsigned immlo = xlo ? *xlo : 0;
8315 unsigned immhi = xhi ? *xhi : 0;
8316
8317 switch (size)
8318 {
8319 case 8:
8320 immlo = (~immlo) & 0xff;
8321 break;
8322
8323 case 16:
8324 immlo = (~immlo) & 0xffff;
8325 break;
8326
8327 case 64:
8328 immhi = (~immhi) & 0xffffffff;
8329 /* fall through. */
8330
8331 case 32:
8332 immlo = (~immlo) & 0xffffffff;
8333 break;
8334
8335 default:
8336 abort ();
8337 }
8338
8339 if (xlo)
8340 *xlo = immlo;
8341
8342 if (xhi)
8343 *xhi = immhi;
8344}
8345
8346/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8347 A, B, C, D. */
09d92015 8348
c19d1205 8349static int
8335d6aa 8350neon_bits_same_in_bytes (unsigned imm)
09d92015 8351{
8335d6aa
JW
8352 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8353 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8354 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8355 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8356}
a737bd4d 8357
8335d6aa 8358/* For immediate of above form, return 0bABCD. */
09d92015 8359
8335d6aa
JW
8360static unsigned
8361neon_squash_bits (unsigned imm)
8362{
8363 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8364 | ((imm & 0x01000000) >> 21);
8365}
8366
8367/* Compress quarter-float representation to 0b...000 abcdefgh. */
8368
8369static unsigned
8370neon_qfloat_bits (unsigned imm)
8371{
8372 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8373}
8374
8375/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8376 the instruction. *OP is passed as the initial value of the op field, and
8377 may be set to a different value depending on the constant (i.e.
8378 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8379 MVN). If the immediate looks like a repeated pattern then also
8380 try smaller element sizes. */
8381
8382static int
8383neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8384 unsigned *immbits, int *op, int size,
8385 enum neon_el_type type)
8386{
8387 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8388 float. */
8389 if (type == NT_float && !float_p)
8390 return FAIL;
8391
8392 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8393 {
8335d6aa
JW
8394 if (size != 32 || *op == 1)
8395 return FAIL;
8396 *immbits = neon_qfloat_bits (immlo);
8397 return 0xf;
8398 }
8399
8400 if (size == 64)
8401 {
8402 if (neon_bits_same_in_bytes (immhi)
8403 && neon_bits_same_in_bytes (immlo))
c19d1205 8404 {
8335d6aa
JW
8405 if (*op == 1)
8406 return FAIL;
8407 *immbits = (neon_squash_bits (immhi) << 4)
8408 | neon_squash_bits (immlo);
8409 *op = 1;
8410 return 0xe;
c19d1205 8411 }
a737bd4d 8412
8335d6aa
JW
8413 if (immhi != immlo)
8414 return FAIL;
8415 }
a737bd4d 8416
8335d6aa 8417 if (size >= 32)
09d92015 8418 {
8335d6aa 8419 if (immlo == (immlo & 0x000000ff))
c19d1205 8420 {
8335d6aa
JW
8421 *immbits = immlo;
8422 return 0x0;
c19d1205 8423 }
8335d6aa 8424 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8425 {
8335d6aa
JW
8426 *immbits = immlo >> 8;
8427 return 0x2;
c19d1205 8428 }
8335d6aa
JW
8429 else if (immlo == (immlo & 0x00ff0000))
8430 {
8431 *immbits = immlo >> 16;
8432 return 0x4;
8433 }
8434 else if (immlo == (immlo & 0xff000000))
8435 {
8436 *immbits = immlo >> 24;
8437 return 0x6;
8438 }
8439 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8440 {
8441 *immbits = (immlo >> 8) & 0xff;
8442 return 0xc;
8443 }
8444 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8445 {
8446 *immbits = (immlo >> 16) & 0xff;
8447 return 0xd;
8448 }
8449
8450 if ((immlo & 0xffff) != (immlo >> 16))
8451 return FAIL;
8452 immlo &= 0xffff;
09d92015 8453 }
a737bd4d 8454
8335d6aa 8455 if (size >= 16)
4962c51a 8456 {
8335d6aa
JW
8457 if (immlo == (immlo & 0x000000ff))
8458 {
8459 *immbits = immlo;
8460 return 0x8;
8461 }
8462 else if (immlo == (immlo & 0x0000ff00))
8463 {
8464 *immbits = immlo >> 8;
8465 return 0xa;
8466 }
8467
8468 if ((immlo & 0xff) != (immlo >> 8))
8469 return FAIL;
8470 immlo &= 0xff;
4962c51a
MS
8471 }
8472
8335d6aa
JW
8473 if (immlo == (immlo & 0x000000ff))
8474 {
8475 /* Don't allow MVN with 8-bit immediate. */
8476 if (*op == 1)
8477 return FAIL;
8478 *immbits = immlo;
8479 return 0xe;
8480 }
26d97720 8481
8335d6aa 8482 return FAIL;
c19d1205 8483}
a737bd4d 8484
5fc177c8 8485#if defined BFD_HOST_64_BIT
ba592044
AM
8486/* Returns TRUE if double precision value V may be cast
8487 to single precision without loss of accuracy. */
8488
8489static bfd_boolean
5fc177c8 8490is_double_a_single (bfd_int64_t v)
ba592044 8491{
5fc177c8 8492 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8493 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8494
8495 return (exp == 0 || exp == 0x7FF
8496 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8497 && (mantissa & 0x1FFFFFFFl) == 0;
8498}
8499
3739860c 8500/* Returns a double precision value casted to single precision
ba592044
AM
8501 (ignoring the least significant bits in exponent and mantissa). */
8502
8503static int
5fc177c8 8504double_to_single (bfd_int64_t v)
ba592044
AM
8505{
8506 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8507 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8508 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8509
8510 if (exp == 0x7FF)
8511 exp = 0xFF;
8512 else
8513 {
8514 exp = exp - 1023 + 127;
8515 if (exp >= 0xFF)
8516 {
8517 /* Infinity. */
8518 exp = 0x7F;
8519 mantissa = 0;
8520 }
8521 else if (exp < 0)
8522 {
8523 /* No denormalized numbers. */
8524 exp = 0;
8525 mantissa = 0;
8526 }
8527 }
8528 mantissa >>= 29;
8529 return (sign << 31) | (exp << 23) | mantissa;
8530}
5fc177c8 8531#endif /* BFD_HOST_64_BIT */
ba592044 8532
8335d6aa
JW
8533enum lit_type
8534{
8535 CONST_THUMB,
8536 CONST_ARM,
8537 CONST_VEC
8538};
8539
ba592044
AM
8540static void do_vfp_nsyn_opcode (const char *);
8541
e2b0ab59 8542/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8543 Determine whether it can be performed with a move instruction; if
8544 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8545 return TRUE; if it can't, convert inst.instruction to a literal-pool
8546 load and return FALSE. If this is not a valid thing to do in the
8547 current context, set inst.error and return TRUE.
a737bd4d 8548
c19d1205
ZW
8549 inst.operands[i] describes the destination register. */
8550
c921be7d 8551static bfd_boolean
8335d6aa 8552move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8553{
53365c0d 8554 unsigned long tbit;
8335d6aa
JW
8555 bfd_boolean thumb_p = (t == CONST_THUMB);
8556 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8557
8558 if (thumb_p)
8559 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8560 else
8561 tbit = LOAD_BIT;
8562
8563 if ((inst.instruction & tbit) == 0)
09d92015 8564 {
c19d1205 8565 inst.error = _("invalid pseudo operation");
c921be7d 8566 return TRUE;
09d92015 8567 }
ba592044 8568
e2b0ab59
AV
8569 if (inst.relocs[0].exp.X_op != O_constant
8570 && inst.relocs[0].exp.X_op != O_symbol
8571 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8572 {
8573 inst.error = _("constant expression expected");
c921be7d 8574 return TRUE;
09d92015 8575 }
ba592044 8576
e2b0ab59
AV
8577 if (inst.relocs[0].exp.X_op == O_constant
8578 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8579 {
5fc177c8
NC
8580#if defined BFD_HOST_64_BIT
8581 bfd_int64_t v;
8582#else
ba592044 8583 offsetT v;
5fc177c8 8584#endif
e2b0ab59 8585 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8586 {
ba592044
AM
8587 LITTLENUM_TYPE w[X_PRECISION];
8588 LITTLENUM_TYPE * l;
8589
e2b0ab59 8590 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8591 {
ba592044
AM
8592 gen_to_words (w, X_PRECISION, E_PRECISION);
8593 l = w;
8594 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8595 }
ba592044
AM
8596 else
8597 l = generic_bignum;
3739860c 8598
5fc177c8
NC
8599#if defined BFD_HOST_64_BIT
8600 v =
8601 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8602 << LITTLENUM_NUMBER_OF_BITS)
8603 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8604 << LITTLENUM_NUMBER_OF_BITS)
8605 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8606 << LITTLENUM_NUMBER_OF_BITS)
8607 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8608#else
ba592044
AM
8609 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8610 | (l[0] & LITTLENUM_MASK);
5fc177c8 8611#endif
8335d6aa 8612 }
ba592044 8613 else
e2b0ab59 8614 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8615
8616 if (!inst.operands[i].issingle)
8335d6aa 8617 {
12569877 8618 if (thumb_p)
8335d6aa 8619 {
53445554
TP
8620 /* LDR should not use lead in a flag-setting instruction being
8621 chosen so we do not check whether movs can be used. */
12569877 8622
53445554 8623 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8624 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8625 && inst.operands[i].reg != 13
8626 && inst.operands[i].reg != 15)
12569877 8627 {
fc289b0a
TP
8628 /* Check if on thumb2 it can be done with a mov.w, mvn or
8629 movw instruction. */
12569877
AM
8630 unsigned int newimm;
8631 bfd_boolean isNegated;
8632
8633 newimm = encode_thumb32_immediate (v);
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = FALSE;
8636 else
8637 {
582cfe03 8638 newimm = encode_thumb32_immediate (~v);
12569877
AM
8639 if (newimm != (unsigned int) FAIL)
8640 isNegated = TRUE;
8641 }
8642
fc289b0a
TP
8643 /* The number can be loaded with a mov.w or mvn
8644 instruction. */
ff8646ee
TP
8645 if (newimm != (unsigned int) FAIL
8646 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8647 {
fc289b0a 8648 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8649 | (inst.operands[i].reg << 8));
fc289b0a 8650 /* Change to MOVN. */
582cfe03 8651 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8652 inst.instruction |= (newimm & 0x800) << 15;
8653 inst.instruction |= (newimm & 0x700) << 4;
8654 inst.instruction |= (newimm & 0x0ff);
8655 return TRUE;
8656 }
fc289b0a 8657 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8658 else if ((v & ~0xFFFF) == 0
8659 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8660 {
582cfe03 8661 int imm = v & 0xFFFF;
12569877 8662
582cfe03 8663 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8664 inst.instruction |= (inst.operands[i].reg << 8);
8665 inst.instruction |= (imm & 0xf000) << 4;
8666 inst.instruction |= (imm & 0x0800) << 15;
8667 inst.instruction |= (imm & 0x0700) << 4;
8668 inst.instruction |= (imm & 0x00ff);
8669 return TRUE;
8670 }
8671 }
8335d6aa 8672 }
12569877 8673 else if (arm_p)
ba592044
AM
8674 {
8675 int value = encode_arm_immediate (v);
12569877 8676
ba592044
AM
8677 if (value != FAIL)
8678 {
8679 /* This can be done with a mov instruction. */
8680 inst.instruction &= LITERAL_MASK;
8681 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8682 inst.instruction |= value & 0xfff;
8683 return TRUE;
8684 }
8335d6aa 8685
ba592044
AM
8686 value = encode_arm_immediate (~ v);
8687 if (value != FAIL)
8688 {
8689 /* This can be done with a mvn instruction. */
8690 inst.instruction &= LITERAL_MASK;
8691 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8692 inst.instruction |= value & 0xfff;
8693 return TRUE;
8694 }
8695 }
934c2632 8696 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8697 {
ba592044
AM
8698 int op = 0;
8699 unsigned immbits = 0;
8700 unsigned immlo = inst.operands[1].imm;
8701 unsigned immhi = inst.operands[1].regisimm
8702 ? inst.operands[1].reg
e2b0ab59 8703 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8704 ? 0
8705 : ((bfd_int64_t)((int) immlo)) >> 32;
8706 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8707 &op, 64, NT_invtype);
8708
8709 if (cmode == FAIL)
8710 {
8711 neon_invert_size (&immlo, &immhi, 64);
8712 op = !op;
8713 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8714 &op, 64, NT_invtype);
8715 }
8716
8717 if (cmode != FAIL)
8718 {
8719 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8720 | (1 << 23)
8721 | (cmode << 8)
8722 | (op << 5)
8723 | (1 << 4);
8724
8725 /* Fill other bits in vmov encoding for both thumb and arm. */
8726 if (thumb_mode)
eff0bc54 8727 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8728 else
eff0bc54 8729 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8730 neon_write_immbits (immbits);
8731 return TRUE;
8732 }
8335d6aa
JW
8733 }
8734 }
8335d6aa 8735
ba592044
AM
8736 if (t == CONST_VEC)
8737 {
8738 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8739 if (inst.operands[i].issingle
8740 && is_quarter_float (inst.operands[1].imm)
8741 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8742 {
ba592044
AM
8743 inst.operands[1].imm =
8744 neon_qfloat_bits (v);
8745 do_vfp_nsyn_opcode ("fconsts");
8746 return TRUE;
8335d6aa 8747 }
5fc177c8
NC
8748
8749 /* If our host does not support a 64-bit type then we cannot perform
8750 the following optimization. This mean that there will be a
8751 discrepancy between the output produced by an assembler built for
8752 a 32-bit-only host and the output produced from a 64-bit host, but
8753 this cannot be helped. */
8754#if defined BFD_HOST_64_BIT
ba592044
AM
8755 else if (!inst.operands[1].issingle
8756 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8757 {
ba592044
AM
8758 if (is_double_a_single (v)
8759 && is_quarter_float (double_to_single (v)))
8760 {
8761 inst.operands[1].imm =
8762 neon_qfloat_bits (double_to_single (v));
8763 do_vfp_nsyn_opcode ("fconstd");
8764 return TRUE;
8765 }
8335d6aa 8766 }
5fc177c8 8767#endif
8335d6aa
JW
8768 }
8769 }
8770
8771 if (add_to_lit_pool ((!inst.operands[i].isvec
8772 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8773 return TRUE;
8774
8775 inst.operands[1].reg = REG_PC;
8776 inst.operands[1].isreg = 1;
8777 inst.operands[1].preind = 1;
e2b0ab59
AV
8778 inst.relocs[0].pc_rel = 1;
8779 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8780 ? BFD_RELOC_ARM_THUMB_OFFSET
8781 : (mode_3
8782 ? BFD_RELOC_ARM_HWLITERAL
8783 : BFD_RELOC_ARM_LITERAL));
8784 return FALSE;
8785}
8786
8787/* inst.operands[i] was set up by parse_address. Encode it into an
8788 ARM-format instruction. Reject all forms which cannot be encoded
8789 into a coprocessor load/store instruction. If wb_ok is false,
8790 reject use of writeback; if unind_ok is false, reject use of
8791 unindexed addressing. If reloc_override is not 0, use it instead
8792 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8793 (in which case it is preserved). */
8794
8795static int
8796encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8797{
8798 if (!inst.operands[i].isreg)
8799 {
99b2a2dd
NC
8800 /* PR 18256 */
8801 if (! inst.operands[0].isvec)
8802 {
8803 inst.error = _("invalid co-processor operand");
8804 return FAIL;
8805 }
8335d6aa
JW
8806 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8807 return SUCCESS;
8808 }
8809
8810 inst.instruction |= inst.operands[i].reg << 16;
8811
8812 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8813
8814 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8815 {
8816 gas_assert (!inst.operands[i].writeback);
8817 if (!unind_ok)
8818 {
8819 inst.error = _("instruction does not support unindexed addressing");
8820 return FAIL;
8821 }
8822 inst.instruction |= inst.operands[i].imm;
8823 inst.instruction |= INDEX_UP;
8824 return SUCCESS;
8825 }
8826
8827 if (inst.operands[i].preind)
8828 inst.instruction |= PRE_INDEX;
8829
8830 if (inst.operands[i].writeback)
09d92015 8831 {
8335d6aa 8832 if (inst.operands[i].reg == REG_PC)
c19d1205 8833 {
8335d6aa
JW
8834 inst.error = _("pc may not be used with write-back");
8835 return FAIL;
c19d1205 8836 }
8335d6aa 8837 if (!wb_ok)
c19d1205 8838 {
8335d6aa
JW
8839 inst.error = _("instruction does not support writeback");
8840 return FAIL;
c19d1205 8841 }
8335d6aa 8842 inst.instruction |= WRITE_BACK;
09d92015
MM
8843 }
8844
8335d6aa 8845 if (reloc_override)
e2b0ab59
AV
8846 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8847 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8848 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8849 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8850 {
8335d6aa 8851 if (thumb_mode)
e2b0ab59 8852 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8853 else
e2b0ab59 8854 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8855 }
8335d6aa
JW
8856
8857 /* Prefer + for zero encoded value. */
8858 if (!inst.operands[i].negative)
8859 inst.instruction |= INDEX_UP;
8860
8861 return SUCCESS;
09d92015
MM
8862}
8863
5f4273c7 8864/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8865 First some generics; their names are taken from the conventional
8866 bit positions for register arguments in ARM format instructions. */
09d92015 8867
a737bd4d 8868static void
c19d1205 8869do_noargs (void)
09d92015 8870{
c19d1205 8871}
a737bd4d 8872
c19d1205
ZW
8873static void
8874do_rd (void)
8875{
8876 inst.instruction |= inst.operands[0].reg << 12;
8877}
a737bd4d 8878
16a1fa25
TP
8879static void
8880do_rn (void)
8881{
8882 inst.instruction |= inst.operands[0].reg << 16;
8883}
8884
c19d1205
ZW
8885static void
8886do_rd_rm (void)
8887{
8888 inst.instruction |= inst.operands[0].reg << 12;
8889 inst.instruction |= inst.operands[1].reg;
8890}
09d92015 8891
9eb6c0f1
MGD
8892static void
8893do_rm_rn (void)
8894{
8895 inst.instruction |= inst.operands[0].reg;
8896 inst.instruction |= inst.operands[1].reg << 16;
8897}
8898
c19d1205
ZW
8899static void
8900do_rd_rn (void)
8901{
8902 inst.instruction |= inst.operands[0].reg << 12;
8903 inst.instruction |= inst.operands[1].reg << 16;
8904}
a737bd4d 8905
c19d1205
ZW
8906static void
8907do_rn_rd (void)
8908{
8909 inst.instruction |= inst.operands[0].reg << 16;
8910 inst.instruction |= inst.operands[1].reg << 12;
8911}
09d92015 8912
4ed7ed8d
TP
8913static void
8914do_tt (void)
8915{
8916 inst.instruction |= inst.operands[0].reg << 8;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918}
8919
59d09be6
MGD
8920static bfd_boolean
8921check_obsolete (const arm_feature_set *feature, const char *msg)
8922{
8923 if (ARM_CPU_IS_ANY (cpu_variant))
8924 {
5c3696f8 8925 as_tsktsk ("%s", msg);
59d09be6
MGD
8926 return TRUE;
8927 }
8928 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8929 {
8930 as_bad ("%s", msg);
8931 return TRUE;
8932 }
8933
8934 return FALSE;
8935}
8936
c19d1205
ZW
8937static void
8938do_rd_rm_rn (void)
8939{
9a64e435 8940 unsigned Rn = inst.operands[2].reg;
708587a4 8941 /* Enforce restrictions on SWP instruction. */
9a64e435 8942 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8943 {
8944 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8945 _("Rn must not overlap other operands"));
8946
59d09be6
MGD
8947 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8948 */
8949 if (!check_obsolete (&arm_ext_v8,
8950 _("swp{b} use is obsoleted for ARMv8 and later"))
8951 && warn_on_deprecated
8952 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8953 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8954 }
59d09be6 8955
c19d1205
ZW
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg;
9a64e435 8958 inst.instruction |= Rn << 16;
c19d1205 8959}
09d92015 8960
c19d1205
ZW
8961static void
8962do_rd_rn_rm (void)
8963{
8964 inst.instruction |= inst.operands[0].reg << 12;
8965 inst.instruction |= inst.operands[1].reg << 16;
8966 inst.instruction |= inst.operands[2].reg;
8967}
a737bd4d 8968
c19d1205
ZW
8969static void
8970do_rm_rd_rn (void)
8971{
5be8be5d 8972 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8973 constraint (((inst.relocs[0].exp.X_op != O_constant
8974 && inst.relocs[0].exp.X_op != O_illegal)
8975 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8976 BAD_ADDR_MODE);
c19d1205
ZW
8977 inst.instruction |= inst.operands[0].reg;
8978 inst.instruction |= inst.operands[1].reg << 12;
8979 inst.instruction |= inst.operands[2].reg << 16;
8980}
09d92015 8981
c19d1205
ZW
8982static void
8983do_imm0 (void)
8984{
8985 inst.instruction |= inst.operands[0].imm;
8986}
09d92015 8987
c19d1205
ZW
8988static void
8989do_rd_cpaddr (void)
8990{
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8993}
a737bd4d 8994
c19d1205
ZW
8995/* ARM instructions, in alphabetical order by function name (except
8996 that wrapper functions appear immediately after the function they
8997 wrap). */
09d92015 8998
c19d1205
ZW
8999/* This is a pseudo-op of the form "adr rd, label" to be converted
9000 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9001
9002static void
c19d1205 9003do_adr (void)
09d92015 9004{
c19d1205 9005 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9006
c19d1205
ZW
9007 /* Frag hacking will turn this into a sub instruction if the offset turns
9008 out to be negative. */
e2b0ab59
AV
9009 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9010 inst.relocs[0].pc_rel = 1;
9011 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9012
fc6141f0 9013 if (support_interwork
e2b0ab59
AV
9014 && inst.relocs[0].exp.X_op == O_symbol
9015 && inst.relocs[0].exp.X_add_symbol != NULL
9016 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9017 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9018 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9019}
b99bd4ef 9020
c19d1205
ZW
9021/* This is a pseudo-op of the form "adrl rd, label" to be converted
9022 into a relative address of the form:
9023 add rd, pc, #low(label-.-8)"
9024 add rd, rd, #high(label-.-8)" */
b99bd4ef 9025
c19d1205
ZW
9026static void
9027do_adrl (void)
9028{
9029 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9030
c19d1205
ZW
9031 /* Frag hacking will turn this into a sub instruction if the offset turns
9032 out to be negative. */
e2b0ab59
AV
9033 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9034 inst.relocs[0].pc_rel = 1;
c19d1205 9035 inst.size = INSN_SIZE * 2;
e2b0ab59 9036 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9037
fc6141f0 9038 if (support_interwork
e2b0ab59
AV
9039 && inst.relocs[0].exp.X_op == O_symbol
9040 && inst.relocs[0].exp.X_add_symbol != NULL
9041 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9042 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9043 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9044}
9045
b99bd4ef 9046static void
c19d1205 9047do_arit (void)
b99bd4ef 9048{
e2b0ab59
AV
9049 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9050 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9051 THUMB1_RELOC_ONLY);
c19d1205
ZW
9052 if (!inst.operands[1].present)
9053 inst.operands[1].reg = inst.operands[0].reg;
9054 inst.instruction |= inst.operands[0].reg << 12;
9055 inst.instruction |= inst.operands[1].reg << 16;
9056 encode_arm_shifter_operand (2);
9057}
b99bd4ef 9058
62b3e311
PB
9059static void
9060do_barrier (void)
9061{
9062 if (inst.operands[0].present)
ccb84d65 9063 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9064 else
9065 inst.instruction |= 0xf;
9066}
9067
c19d1205
ZW
9068static void
9069do_bfc (void)
9070{
9071 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9072 constraint (msb > 32, _("bit-field extends past end of register"));
9073 /* The instruction encoding stores the LSB and MSB,
9074 not the LSB and width. */
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].imm << 7;
9077 inst.instruction |= (msb - 1) << 16;
9078}
b99bd4ef 9079
c19d1205
ZW
9080static void
9081do_bfi (void)
9082{
9083 unsigned int msb;
b99bd4ef 9084
c19d1205
ZW
9085 /* #0 in second position is alternative syntax for bfc, which is
9086 the same instruction but with REG_PC in the Rm field. */
9087 if (!inst.operands[1].isreg)
9088 inst.operands[1].reg = REG_PC;
b99bd4ef 9089
c19d1205
ZW
9090 msb = inst.operands[2].imm + inst.operands[3].imm;
9091 constraint (msb > 32, _("bit-field extends past end of register"));
9092 /* The instruction encoding stores the LSB and MSB,
9093 not the LSB and width. */
9094 inst.instruction |= inst.operands[0].reg << 12;
9095 inst.instruction |= inst.operands[1].reg;
9096 inst.instruction |= inst.operands[2].imm << 7;
9097 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9098}
9099
b99bd4ef 9100static void
c19d1205 9101do_bfx (void)
b99bd4ef 9102{
c19d1205
ZW
9103 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9104 _("bit-field extends past end of register"));
9105 inst.instruction |= inst.operands[0].reg << 12;
9106 inst.instruction |= inst.operands[1].reg;
9107 inst.instruction |= inst.operands[2].imm << 7;
9108 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9109}
09d92015 9110
c19d1205
ZW
9111/* ARM V5 breakpoint instruction (argument parse)
9112 BKPT <16 bit unsigned immediate>
9113 Instruction is not conditional.
9114 The bit pattern given in insns[] has the COND_ALWAYS condition,
9115 and it is an error if the caller tried to override that. */
b99bd4ef 9116
c19d1205
ZW
9117static void
9118do_bkpt (void)
9119{
9120 /* Top 12 of 16 bits to bits 19:8. */
9121 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9122
c19d1205
ZW
9123 /* Bottom 4 of 16 bits to bits 3:0. */
9124 inst.instruction |= inst.operands[0].imm & 0xf;
9125}
09d92015 9126
c19d1205
ZW
9127static void
9128encode_branch (int default_reloc)
9129{
9130 if (inst.operands[0].hasreloc)
9131 {
0855e32b
NS
9132 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9133 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9134 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9135 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9136 ? BFD_RELOC_ARM_PLT32
9137 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9138 }
b99bd4ef 9139 else
e2b0ab59
AV
9140 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9141 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9142}
9143
b99bd4ef 9144static void
c19d1205 9145do_branch (void)
b99bd4ef 9146{
39b41c9c
PB
9147#ifdef OBJ_ELF
9148 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9149 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9150 else
9151#endif
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9153}
9154
9155static void
9156do_bl (void)
9157{
9158#ifdef OBJ_ELF
9159 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9160 {
9161 if (inst.cond == COND_ALWAYS)
9162 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9163 else
9164 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9165 }
9166 else
9167#endif
9168 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9169}
b99bd4ef 9170
c19d1205
ZW
9171/* ARM V5 branch-link-exchange instruction (argument parse)
9172 BLX <target_addr> ie BLX(1)
9173 BLX{<condition>} <Rm> ie BLX(2)
9174 Unfortunately, there are two different opcodes for this mnemonic.
9175 So, the insns[].value is not used, and the code here zaps values
9176 into inst.instruction.
9177 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9178
c19d1205
ZW
9179static void
9180do_blx (void)
9181{
9182 if (inst.operands[0].isreg)
b99bd4ef 9183 {
c19d1205
ZW
9184 /* Arg is a register; the opcode provided by insns[] is correct.
9185 It is not illegal to do "blx pc", just useless. */
9186 if (inst.operands[0].reg == REG_PC)
9187 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9188
c19d1205
ZW
9189 inst.instruction |= inst.operands[0].reg;
9190 }
9191 else
b99bd4ef 9192 {
c19d1205 9193 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9194 conditionally, and the opcode must be adjusted.
9195 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9196 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9197 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9198 inst.instruction = 0xfa000000;
267bf995 9199 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9200 }
c19d1205
ZW
9201}
9202
9203static void
9204do_bx (void)
9205{
845b51d6
PB
9206 bfd_boolean want_reloc;
9207
c19d1205
ZW
9208 if (inst.operands[0].reg == REG_PC)
9209 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9210
c19d1205 9211 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9212 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9213 it is for ARMv4t or earlier. */
9214 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9215 if (!ARM_FEATURE_ZERO (selected_object_arch)
9216 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9217 want_reloc = TRUE;
9218
5ad34203 9219#ifdef OBJ_ELF
845b51d6 9220 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9221#endif
584206db 9222 want_reloc = FALSE;
845b51d6
PB
9223
9224 if (want_reloc)
e2b0ab59 9225 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9226}
9227
c19d1205
ZW
9228
9229/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9230
9231static void
c19d1205 9232do_bxj (void)
a737bd4d 9233{
c19d1205
ZW
9234 if (inst.operands[0].reg == REG_PC)
9235 as_tsktsk (_("use of r15 in bxj is not really useful"));
9236
9237 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9238}
9239
c19d1205
ZW
9240/* Co-processor data operation:
9241 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9242 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9243static void
9244do_cdp (void)
9245{
9246 inst.instruction |= inst.operands[0].reg << 8;
9247 inst.instruction |= inst.operands[1].imm << 20;
9248 inst.instruction |= inst.operands[2].reg << 12;
9249 inst.instruction |= inst.operands[3].reg << 16;
9250 inst.instruction |= inst.operands[4].reg;
9251 inst.instruction |= inst.operands[5].imm << 5;
9252}
a737bd4d
NC
9253
9254static void
c19d1205 9255do_cmp (void)
a737bd4d 9256{
c19d1205
ZW
9257 inst.instruction |= inst.operands[0].reg << 16;
9258 encode_arm_shifter_operand (1);
a737bd4d
NC
9259}
9260
c19d1205
ZW
9261/* Transfer between coprocessor and ARM registers.
9262 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9263 MRC2
9264 MCR{cond}
9265 MCR2
9266
9267 No special properties. */
09d92015 9268
dcbd0d71
MGD
9269struct deprecated_coproc_regs_s
9270{
9271 unsigned cp;
9272 int opc1;
9273 unsigned crn;
9274 unsigned crm;
9275 int opc2;
9276 arm_feature_set deprecated;
9277 arm_feature_set obsoleted;
9278 const char *dep_msg;
9279 const char *obs_msg;
9280};
9281
9282#define DEPR_ACCESS_V8 \
9283 N_("This coprocessor register access is deprecated in ARMv8")
9284
9285/* Table of all deprecated coprocessor registers. */
9286static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9287{
9288 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9289 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9290 DEPR_ACCESS_V8, NULL},
9291 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9292 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9293 DEPR_ACCESS_V8, NULL},
9294 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9296 DEPR_ACCESS_V8, NULL},
9297 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9299 DEPR_ACCESS_V8, NULL},
9300 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9302 DEPR_ACCESS_V8, NULL},
9303};
9304
9305#undef DEPR_ACCESS_V8
9306
9307static const size_t deprecated_coproc_reg_count =
9308 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9309
09d92015 9310static void
c19d1205 9311do_co_reg (void)
09d92015 9312{
fdfde340 9313 unsigned Rd;
dcbd0d71 9314 size_t i;
fdfde340
JM
9315
9316 Rd = inst.operands[2].reg;
9317 if (thumb_mode)
9318 {
9319 if (inst.instruction == 0xee000010
9320 || inst.instruction == 0xfe000010)
9321 /* MCR, MCR2 */
9322 reject_bad_reg (Rd);
5c8ed6a4 9323 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9324 /* MRC, MRC2 */
9325 constraint (Rd == REG_SP, BAD_SP);
9326 }
9327 else
9328 {
9329 /* MCR */
9330 if (inst.instruction == 0xe000010)
9331 constraint (Rd == REG_PC, BAD_PC);
9332 }
9333
dcbd0d71
MGD
9334 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9335 {
9336 const struct deprecated_coproc_regs_s *r =
9337 deprecated_coproc_regs + i;
9338
9339 if (inst.operands[0].reg == r->cp
9340 && inst.operands[1].imm == r->opc1
9341 && inst.operands[3].reg == r->crn
9342 && inst.operands[4].reg == r->crm
9343 && inst.operands[5].imm == r->opc2)
9344 {
b10bf8c5 9345 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9346 && warn_on_deprecated
dcbd0d71 9347 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9348 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9349 }
9350 }
fdfde340 9351
c19d1205
ZW
9352 inst.instruction |= inst.operands[0].reg << 8;
9353 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9354 inst.instruction |= Rd << 12;
c19d1205
ZW
9355 inst.instruction |= inst.operands[3].reg << 16;
9356 inst.instruction |= inst.operands[4].reg;
9357 inst.instruction |= inst.operands[5].imm << 5;
9358}
09d92015 9359
c19d1205
ZW
9360/* Transfer between coprocessor register and pair of ARM registers.
9361 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9362 MCRR2
9363 MRRC{cond}
9364 MRRC2
b99bd4ef 9365
c19d1205 9366 Two XScale instructions are special cases of these:
09d92015 9367
c19d1205
ZW
9368 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9369 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9370
5f4273c7 9371 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9372
c19d1205
ZW
9373static void
9374do_co_reg2c (void)
9375{
fdfde340
JM
9376 unsigned Rd, Rn;
9377
9378 Rd = inst.operands[2].reg;
9379 Rn = inst.operands[3].reg;
9380
9381 if (thumb_mode)
9382 {
9383 reject_bad_reg (Rd);
9384 reject_bad_reg (Rn);
9385 }
9386 else
9387 {
9388 constraint (Rd == REG_PC, BAD_PC);
9389 constraint (Rn == REG_PC, BAD_PC);
9390 }
9391
873f10f0
TC
9392 /* Only check the MRRC{2} variants. */
9393 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9394 {
9395 /* If Rd == Rn, error that the operation is
9396 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9397 constraint (Rd == Rn, BAD_OVERLAP);
9398 }
9399
c19d1205
ZW
9400 inst.instruction |= inst.operands[0].reg << 8;
9401 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9402 inst.instruction |= Rd << 12;
9403 inst.instruction |= Rn << 16;
c19d1205 9404 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9405}
9406
c19d1205
ZW
9407static void
9408do_cpsi (void)
9409{
9410 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9411 if (inst.operands[1].present)
9412 {
9413 inst.instruction |= CPSI_MMOD;
9414 inst.instruction |= inst.operands[1].imm;
9415 }
c19d1205 9416}
b99bd4ef 9417
62b3e311
PB
9418static void
9419do_dbg (void)
9420{
9421 inst.instruction |= inst.operands[0].imm;
9422}
9423
eea54501
MGD
9424static void
9425do_div (void)
9426{
9427 unsigned Rd, Rn, Rm;
9428
9429 Rd = inst.operands[0].reg;
9430 Rn = (inst.operands[1].present
9431 ? inst.operands[1].reg : Rd);
9432 Rm = inst.operands[2].reg;
9433
9434 constraint ((Rd == REG_PC), BAD_PC);
9435 constraint ((Rn == REG_PC), BAD_PC);
9436 constraint ((Rm == REG_PC), BAD_PC);
9437
9438 inst.instruction |= Rd << 16;
9439 inst.instruction |= Rn << 0;
9440 inst.instruction |= Rm << 8;
9441}
9442
b99bd4ef 9443static void
c19d1205 9444do_it (void)
b99bd4ef 9445{
c19d1205 9446 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9447 process it to do the validation as if in
9448 thumb mode, just in case the code gets
9449 assembled for thumb using the unified syntax. */
9450
c19d1205 9451 inst.size = 0;
e07e6e58
NC
9452 if (unified_syntax)
9453 {
5ee91343
AV
9454 set_pred_insn_type (IT_INSN);
9455 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9456 now_pred.cc = inst.operands[0].imm;
e07e6e58 9457 }
09d92015 9458}
b99bd4ef 9459
6530b175
NC
9460/* If there is only one register in the register list,
9461 then return its register number. Otherwise return -1. */
9462static int
9463only_one_reg_in_list (int range)
9464{
9465 int i = ffs (range) - 1;
9466 return (i > 15 || range != (1 << i)) ? -1 : i;
9467}
9468
09d92015 9469static void
6530b175 9470encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9471{
c19d1205
ZW
9472 int base_reg = inst.operands[0].reg;
9473 int range = inst.operands[1].imm;
6530b175 9474 int one_reg;
ea6ef066 9475
c19d1205
ZW
9476 inst.instruction |= base_reg << 16;
9477 inst.instruction |= range;
ea6ef066 9478
c19d1205
ZW
9479 if (inst.operands[1].writeback)
9480 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9481
c19d1205 9482 if (inst.operands[0].writeback)
ea6ef066 9483 {
c19d1205
ZW
9484 inst.instruction |= WRITE_BACK;
9485 /* Check for unpredictable uses of writeback. */
9486 if (inst.instruction & LOAD_BIT)
09d92015 9487 {
c19d1205
ZW
9488 /* Not allowed in LDM type 2. */
9489 if ((inst.instruction & LDM_TYPE_2_OR_3)
9490 && ((range & (1 << REG_PC)) == 0))
9491 as_warn (_("writeback of base register is UNPREDICTABLE"));
9492 /* Only allowed if base reg not in list for other types. */
9493 else if (range & (1 << base_reg))
9494 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9495 }
9496 else /* STM. */
9497 {
9498 /* Not allowed for type 2. */
9499 if (inst.instruction & LDM_TYPE_2_OR_3)
9500 as_warn (_("writeback of base register is UNPREDICTABLE"));
9501 /* Only allowed if base reg not in list, or first in list. */
9502 else if ((range & (1 << base_reg))
9503 && (range & ((1 << base_reg) - 1)))
9504 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9505 }
ea6ef066 9506 }
6530b175
NC
9507
9508 /* If PUSH/POP has only one register, then use the A2 encoding. */
9509 one_reg = only_one_reg_in_list (range);
9510 if (from_push_pop_mnem && one_reg >= 0)
9511 {
9512 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9513
4f588891
NC
9514 if (is_push && one_reg == 13 /* SP */)
9515 /* PR 22483: The A2 encoding cannot be used when
9516 pushing the stack pointer as this is UNPREDICTABLE. */
9517 return;
9518
6530b175
NC
9519 inst.instruction &= A_COND_MASK;
9520 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9521 inst.instruction |= one_reg << 12;
9522 }
9523}
9524
9525static void
9526do_ldmstm (void)
9527{
9528 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9529}
9530
c19d1205
ZW
9531/* ARMv5TE load-consecutive (argument parse)
9532 Mode is like LDRH.
9533
9534 LDRccD R, mode
9535 STRccD R, mode. */
9536
a737bd4d 9537static void
c19d1205 9538do_ldrd (void)
a737bd4d 9539{
c19d1205 9540 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9541 _("first transfer register must be even"));
c19d1205
ZW
9542 constraint (inst.operands[1].present
9543 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9544 _("can only transfer two consecutive registers"));
c19d1205
ZW
9545 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9546 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9547
c19d1205
ZW
9548 if (!inst.operands[1].present)
9549 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9550
c56791bb
RE
9551 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9552 register and the first register written; we have to diagnose
9553 overlap between the base and the second register written here. */
ea6ef066 9554
c56791bb
RE
9555 if (inst.operands[2].reg == inst.operands[1].reg
9556 && (inst.operands[2].writeback || inst.operands[2].postind))
9557 as_warn (_("base register written back, and overlaps "
9558 "second transfer register"));
b05fe5cf 9559
c56791bb
RE
9560 if (!(inst.instruction & V4_STR_BIT))
9561 {
c19d1205 9562 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9563 destination (even if not write-back). */
9564 if (inst.operands[2].immisreg
9565 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9566 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9567 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9568 }
c19d1205
ZW
9569 inst.instruction |= inst.operands[0].reg << 12;
9570 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9571}
9572
9573static void
c19d1205 9574do_ldrex (void)
b05fe5cf 9575{
c19d1205
ZW
9576 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9577 || inst.operands[1].postind || inst.operands[1].writeback
9578 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9579 || inst.operands[1].negative
9580 /* This can arise if the programmer has written
9581 strex rN, rM, foo
9582 or if they have mistakenly used a register name as the last
9583 operand, eg:
9584 strex rN, rM, rX
9585 It is very difficult to distinguish between these two cases
9586 because "rX" might actually be a label. ie the register
9587 name has been occluded by a symbol of the same name. So we
9588 just generate a general 'bad addressing mode' type error
9589 message and leave it up to the programmer to discover the
9590 true cause and fix their mistake. */
9591 || (inst.operands[1].reg == REG_PC),
9592 BAD_ADDR_MODE);
b05fe5cf 9593
e2b0ab59
AV
9594 constraint (inst.relocs[0].exp.X_op != O_constant
9595 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9596 _("offset must be zero in ARM encoding"));
b05fe5cf 9597
5be8be5d
DG
9598 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9599
c19d1205
ZW
9600 inst.instruction |= inst.operands[0].reg << 12;
9601 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9602 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9603}
9604
9605static void
c19d1205 9606do_ldrexd (void)
b05fe5cf 9607{
c19d1205
ZW
9608 constraint (inst.operands[0].reg % 2 != 0,
9609 _("even register required"));
9610 constraint (inst.operands[1].present
9611 && inst.operands[1].reg != inst.operands[0].reg + 1,
9612 _("can only load two consecutive registers"));
9613 /* If op 1 were present and equal to PC, this function wouldn't
9614 have been called in the first place. */
9615 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9616
c19d1205
ZW
9617 inst.instruction |= inst.operands[0].reg << 12;
9618 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9619}
9620
1be5fd2e
NC
9621/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9622 which is not a multiple of four is UNPREDICTABLE. */
9623static void
9624check_ldr_r15_aligned (void)
9625{
9626 constraint (!(inst.operands[1].immisreg)
9627 && (inst.operands[0].reg == REG_PC
9628 && inst.operands[1].reg == REG_PC
e2b0ab59 9629 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9630 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9631}
9632
b05fe5cf 9633static void
c19d1205 9634do_ldst (void)
b05fe5cf 9635{
c19d1205
ZW
9636 inst.instruction |= inst.operands[0].reg << 12;
9637 if (!inst.operands[1].isreg)
8335d6aa 9638 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9639 return;
c19d1205 9640 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9641 check_ldr_r15_aligned ();
b05fe5cf
ZW
9642}
9643
9644static void
c19d1205 9645do_ldstt (void)
b05fe5cf 9646{
c19d1205
ZW
9647 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9648 reject [Rn,...]. */
9649 if (inst.operands[1].preind)
b05fe5cf 9650 {
e2b0ab59
AV
9651 constraint (inst.relocs[0].exp.X_op != O_constant
9652 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9653 _("this instruction requires a post-indexed address"));
b05fe5cf 9654
c19d1205
ZW
9655 inst.operands[1].preind = 0;
9656 inst.operands[1].postind = 1;
9657 inst.operands[1].writeback = 1;
b05fe5cf 9658 }
c19d1205
ZW
9659 inst.instruction |= inst.operands[0].reg << 12;
9660 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9661}
b05fe5cf 9662
c19d1205 9663/* Halfword and signed-byte load/store operations. */
b05fe5cf 9664
c19d1205
ZW
9665static void
9666do_ldstv4 (void)
9667{
ff4a8d2b 9668 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9669 inst.instruction |= inst.operands[0].reg << 12;
9670 if (!inst.operands[1].isreg)
8335d6aa 9671 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9672 return;
c19d1205 9673 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9674}
9675
9676static void
c19d1205 9677do_ldsttv4 (void)
b05fe5cf 9678{
c19d1205
ZW
9679 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9680 reject [Rn,...]. */
9681 if (inst.operands[1].preind)
b05fe5cf 9682 {
e2b0ab59
AV
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9685 _("this instruction requires a post-indexed address"));
b05fe5cf 9686
c19d1205
ZW
9687 inst.operands[1].preind = 0;
9688 inst.operands[1].postind = 1;
9689 inst.operands[1].writeback = 1;
b05fe5cf 9690 }
c19d1205
ZW
9691 inst.instruction |= inst.operands[0].reg << 12;
9692 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9693}
b05fe5cf 9694
c19d1205
ZW
9695/* Co-processor register load/store.
9696 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9697static void
9698do_lstc (void)
9699{
9700 inst.instruction |= inst.operands[0].reg << 8;
9701 inst.instruction |= inst.operands[1].reg << 12;
9702 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9703}
9704
b05fe5cf 9705static void
c19d1205 9706do_mlas (void)
b05fe5cf 9707{
8fb9d7b9 9708 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9709 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9710 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9711 && !(inst.instruction & 0x00400000))
8fb9d7b9 9712 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9713
c19d1205
ZW
9714 inst.instruction |= inst.operands[0].reg << 16;
9715 inst.instruction |= inst.operands[1].reg;
9716 inst.instruction |= inst.operands[2].reg << 8;
9717 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9718}
b05fe5cf 9719
c19d1205
ZW
9720static void
9721do_mov (void)
9722{
e2b0ab59
AV
9723 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9724 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9725 THUMB1_RELOC_ONLY);
c19d1205
ZW
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 encode_arm_shifter_operand (1);
9728}
b05fe5cf 9729
c19d1205
ZW
9730/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9731static void
9732do_mov16 (void)
9733{
b6895b4f
PB
9734 bfd_vma imm;
9735 bfd_boolean top;
9736
9737 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9738 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9739 _(":lower16: not allowed in this instruction"));
e2b0ab59 9740 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9741 _(":upper16: not allowed in this instruction"));
c19d1205 9742 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9743 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9744 {
e2b0ab59 9745 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9746 /* The value is in two pieces: 0:11, 16:19. */
9747 inst.instruction |= (imm & 0x00000fff);
9748 inst.instruction |= (imm & 0x0000f000) << 4;
9749 }
b05fe5cf 9750}
b99bd4ef 9751
037e8744
JB
9752static int
9753do_vfp_nsyn_mrs (void)
9754{
9755 if (inst.operands[0].isvec)
9756 {
9757 if (inst.operands[1].reg != 1)
477330fc 9758 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9759 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9760 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9761 do_vfp_nsyn_opcode ("fmstat");
9762 }
9763 else if (inst.operands[1].isvec)
9764 do_vfp_nsyn_opcode ("fmrx");
9765 else
9766 return FAIL;
5f4273c7 9767
037e8744
JB
9768 return SUCCESS;
9769}
9770
9771static int
9772do_vfp_nsyn_msr (void)
9773{
9774 if (inst.operands[0].isvec)
9775 do_vfp_nsyn_opcode ("fmxr");
9776 else
9777 return FAIL;
9778
9779 return SUCCESS;
9780}
9781
f7c21dc7
NC
9782static void
9783do_vmrs (void)
9784{
9785 unsigned Rt = inst.operands[0].reg;
fa94de6b 9786
16d02dc9 9787 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9788 {
9789 inst.error = BAD_SP;
9790 return;
9791 }
9792
40c7d507
RR
9793 /* MVFR2 is only valid at ARMv8-A. */
9794 if (inst.operands[1].reg == 5)
9795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9796 _(BAD_FPU));
9797
f7c21dc7 9798 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9799 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9800 {
9801 inst.error = BAD_PC;
9802 return;
9803 }
9804
16d02dc9
JB
9805 /* If we get through parsing the register name, we just insert the number
9806 generated into the instruction without further validation. */
9807 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9808 inst.instruction |= (Rt << 12);
9809}
9810
9811static void
9812do_vmsr (void)
9813{
9814 unsigned Rt = inst.operands[1].reg;
fa94de6b 9815
f7c21dc7
NC
9816 if (thumb_mode)
9817 reject_bad_reg (Rt);
9818 else if (Rt == REG_PC)
9819 {
9820 inst.error = BAD_PC;
9821 return;
9822 }
9823
40c7d507
RR
9824 /* MVFR2 is only valid for ARMv8-A. */
9825 if (inst.operands[0].reg == 5)
9826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9827 _(BAD_FPU));
9828
16d02dc9
JB
9829 /* If we get through parsing the register name, we just insert the number
9830 generated into the instruction without further validation. */
9831 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9832 inst.instruction |= (Rt << 12);
9833}
9834
b99bd4ef 9835static void
c19d1205 9836do_mrs (void)
b99bd4ef 9837{
90ec0d68
MGD
9838 unsigned br;
9839
037e8744
JB
9840 if (do_vfp_nsyn_mrs () == SUCCESS)
9841 return;
9842
ff4a8d2b 9843 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9844 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9845
9846 if (inst.operands[1].isreg)
9847 {
9848 br = inst.operands[1].reg;
806ab1c0 9849 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9850 as_bad (_("bad register for mrs"));
9851 }
9852 else
9853 {
9854 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9855 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9856 != (PSR_c|PSR_f),
d2cd1205 9857 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9858 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9859 }
9860
9861 inst.instruction |= br;
c19d1205 9862}
b99bd4ef 9863
c19d1205
ZW
9864/* Two possible forms:
9865 "{C|S}PSR_<field>, Rm",
9866 "{C|S}PSR_f, #expression". */
b99bd4ef 9867
c19d1205
ZW
9868static void
9869do_msr (void)
9870{
037e8744
JB
9871 if (do_vfp_nsyn_msr () == SUCCESS)
9872 return;
9873
c19d1205
ZW
9874 inst.instruction |= inst.operands[0].imm;
9875 if (inst.operands[1].isreg)
9876 inst.instruction |= inst.operands[1].reg;
9877 else
b99bd4ef 9878 {
c19d1205 9879 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9880 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9881 inst.relocs[0].pc_rel = 0;
b99bd4ef 9882 }
b99bd4ef
NC
9883}
9884
c19d1205
ZW
9885static void
9886do_mul (void)
a737bd4d 9887{
ff4a8d2b
NC
9888 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9889
c19d1205
ZW
9890 if (!inst.operands[2].present)
9891 inst.operands[2].reg = inst.operands[0].reg;
9892 inst.instruction |= inst.operands[0].reg << 16;
9893 inst.instruction |= inst.operands[1].reg;
9894 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9895
8fb9d7b9
MS
9896 if (inst.operands[0].reg == inst.operands[1].reg
9897 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9898 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9899}
9900
c19d1205
ZW
9901/* Long Multiply Parser
9902 UMULL RdLo, RdHi, Rm, Rs
9903 SMULL RdLo, RdHi, Rm, Rs
9904 UMLAL RdLo, RdHi, Rm, Rs
9905 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9906
9907static void
c19d1205 9908do_mull (void)
b99bd4ef 9909{
c19d1205
ZW
9910 inst.instruction |= inst.operands[0].reg << 12;
9911 inst.instruction |= inst.operands[1].reg << 16;
9912 inst.instruction |= inst.operands[2].reg;
9913 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9914
682b27ad
PB
9915 /* rdhi and rdlo must be different. */
9916 if (inst.operands[0].reg == inst.operands[1].reg)
9917 as_tsktsk (_("rdhi and rdlo must be different"));
9918
9919 /* rdhi, rdlo and rm must all be different before armv6. */
9920 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9921 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9923 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9924}
b99bd4ef 9925
c19d1205
ZW
9926static void
9927do_nop (void)
9928{
e7495e45
NS
9929 if (inst.operands[0].present
9930 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9931 {
9932 /* Architectural NOP hints are CPSR sets with no bits selected. */
9933 inst.instruction &= 0xf0000000;
e7495e45
NS
9934 inst.instruction |= 0x0320f000;
9935 if (inst.operands[0].present)
9936 inst.instruction |= inst.operands[0].imm;
c19d1205 9937 }
b99bd4ef
NC
9938}
9939
c19d1205
ZW
9940/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9941 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9942 Condition defaults to COND_ALWAYS.
9943 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9944
9945static void
c19d1205 9946do_pkhbt (void)
b99bd4ef 9947{
c19d1205
ZW
9948 inst.instruction |= inst.operands[0].reg << 12;
9949 inst.instruction |= inst.operands[1].reg << 16;
9950 inst.instruction |= inst.operands[2].reg;
9951 if (inst.operands[3].present)
9952 encode_arm_shift (3);
9953}
b99bd4ef 9954
c19d1205 9955/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9956
c19d1205
ZW
9957static void
9958do_pkhtb (void)
9959{
9960 if (!inst.operands[3].present)
b99bd4ef 9961 {
c19d1205
ZW
9962 /* If the shift specifier is omitted, turn the instruction
9963 into pkhbt rd, rm, rn. */
9964 inst.instruction &= 0xfff00010;
9965 inst.instruction |= inst.operands[0].reg << 12;
9966 inst.instruction |= inst.operands[1].reg;
9967 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9968 }
9969 else
9970 {
c19d1205
ZW
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg << 16;
9973 inst.instruction |= inst.operands[2].reg;
9974 encode_arm_shift (3);
b99bd4ef
NC
9975 }
9976}
9977
c19d1205 9978/* ARMv5TE: Preload-Cache
60e5ef9f 9979 MP Extensions: Preload for write
c19d1205 9980
60e5ef9f 9981 PLD(W) <addr_mode>
c19d1205
ZW
9982
9983 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9984
9985static void
c19d1205 9986do_pld (void)
b99bd4ef 9987{
c19d1205
ZW
9988 constraint (!inst.operands[0].isreg,
9989 _("'[' expected after PLD mnemonic"));
9990 constraint (inst.operands[0].postind,
9991 _("post-indexed expression used in preload instruction"));
9992 constraint (inst.operands[0].writeback,
9993 _("writeback used in preload instruction"));
9994 constraint (!inst.operands[0].preind,
9995 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9996 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9997}
b99bd4ef 9998
62b3e311
PB
9999/* ARMv7: PLI <addr_mode> */
10000static void
10001do_pli (void)
10002{
10003 constraint (!inst.operands[0].isreg,
10004 _("'[' expected after PLI mnemonic"));
10005 constraint (inst.operands[0].postind,
10006 _("post-indexed expression used in preload instruction"));
10007 constraint (inst.operands[0].writeback,
10008 _("writeback used in preload instruction"));
10009 constraint (!inst.operands[0].preind,
10010 _("unindexed addressing used in preload instruction"));
10011 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10012 inst.instruction &= ~PRE_INDEX;
10013}
10014
c19d1205
ZW
10015static void
10016do_push_pop (void)
10017{
5e0d7f77
MP
10018 constraint (inst.operands[0].writeback,
10019 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10020 inst.operands[1] = inst.operands[0];
10021 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10022 inst.operands[0].isreg = 1;
10023 inst.operands[0].writeback = 1;
10024 inst.operands[0].reg = REG_SP;
6530b175 10025 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10026}
b99bd4ef 10027
c19d1205
ZW
10028/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10029 word at the specified address and the following word
10030 respectively.
10031 Unconditionally executed.
10032 Error if Rn is R15. */
b99bd4ef 10033
c19d1205
ZW
10034static void
10035do_rfe (void)
10036{
10037 inst.instruction |= inst.operands[0].reg << 16;
10038 if (inst.operands[0].writeback)
10039 inst.instruction |= WRITE_BACK;
10040}
b99bd4ef 10041
c19d1205 10042/* ARM V6 ssat (argument parse). */
b99bd4ef 10043
c19d1205
ZW
10044static void
10045do_ssat (void)
10046{
10047 inst.instruction |= inst.operands[0].reg << 12;
10048 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10049 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10050
c19d1205
ZW
10051 if (inst.operands[3].present)
10052 encode_arm_shift (3);
b99bd4ef
NC
10053}
10054
c19d1205 10055/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10056
10057static void
c19d1205 10058do_usat (void)
b99bd4ef 10059{
c19d1205
ZW
10060 inst.instruction |= inst.operands[0].reg << 12;
10061 inst.instruction |= inst.operands[1].imm << 16;
10062 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10063
c19d1205
ZW
10064 if (inst.operands[3].present)
10065 encode_arm_shift (3);
b99bd4ef
NC
10066}
10067
c19d1205 10068/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10069
10070static void
c19d1205 10071do_ssat16 (void)
09d92015 10072{
c19d1205
ZW
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10075 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10076}
10077
c19d1205
ZW
10078static void
10079do_usat16 (void)
a737bd4d 10080{
c19d1205
ZW
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084}
a737bd4d 10085
c19d1205
ZW
10086/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10087 preserving the other bits.
a737bd4d 10088
c19d1205
ZW
10089 setend <endian_specifier>, where <endian_specifier> is either
10090 BE or LE. */
a737bd4d 10091
c19d1205
ZW
10092static void
10093do_setend (void)
10094{
12e37cbc
MGD
10095 if (warn_on_deprecated
10096 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10097 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10098
c19d1205
ZW
10099 if (inst.operands[0].imm)
10100 inst.instruction |= 0x200;
a737bd4d
NC
10101}
10102
10103static void
c19d1205 10104do_shift (void)
a737bd4d 10105{
c19d1205
ZW
10106 unsigned int Rm = (inst.operands[1].present
10107 ? inst.operands[1].reg
10108 : inst.operands[0].reg);
a737bd4d 10109
c19d1205
ZW
10110 inst.instruction |= inst.operands[0].reg << 12;
10111 inst.instruction |= Rm;
10112 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10113 {
c19d1205
ZW
10114 inst.instruction |= inst.operands[2].reg << 8;
10115 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10116 /* PR 12854: Error on extraneous shifts. */
10117 constraint (inst.operands[2].shifted,
10118 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10119 }
10120 else
e2b0ab59 10121 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10122}
10123
09d92015 10124static void
3eb17e6b 10125do_smc (void)
09d92015 10126{
e2b0ab59
AV
10127 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10128 inst.relocs[0].pc_rel = 0;
09d92015
MM
10129}
10130
90ec0d68
MGD
10131static void
10132do_hvc (void)
10133{
e2b0ab59
AV
10134 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10135 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10136}
10137
09d92015 10138static void
c19d1205 10139do_swi (void)
09d92015 10140{
e2b0ab59
AV
10141 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10142 inst.relocs[0].pc_rel = 0;
09d92015
MM
10143}
10144
ddfded2f
MW
10145static void
10146do_setpan (void)
10147{
10148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10149 _("selected processor does not support SETPAN instruction"));
10150
10151 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10152}
10153
10154static void
10155do_t_setpan (void)
10156{
10157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10158 _("selected processor does not support SETPAN instruction"));
10159
10160 inst.instruction |= (inst.operands[0].imm << 3);
10161}
10162
c19d1205
ZW
10163/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10164 SMLAxy{cond} Rd,Rm,Rs,Rn
10165 SMLAWy{cond} Rd,Rm,Rs,Rn
10166 Error if any register is R15. */
e16bb312 10167
c19d1205
ZW
10168static void
10169do_smla (void)
e16bb312 10170{
c19d1205
ZW
10171 inst.instruction |= inst.operands[0].reg << 16;
10172 inst.instruction |= inst.operands[1].reg;
10173 inst.instruction |= inst.operands[2].reg << 8;
10174 inst.instruction |= inst.operands[3].reg << 12;
10175}
a737bd4d 10176
c19d1205
ZW
10177/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10178 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10179 Error if any register is R15.
10180 Warning if Rdlo == Rdhi. */
a737bd4d 10181
c19d1205
ZW
10182static void
10183do_smlal (void)
10184{
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 inst.instruction |= inst.operands[1].reg << 16;
10187 inst.instruction |= inst.operands[2].reg;
10188 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10189
c19d1205
ZW
10190 if (inst.operands[0].reg == inst.operands[1].reg)
10191 as_tsktsk (_("rdhi and rdlo must be different"));
10192}
a737bd4d 10193
c19d1205
ZW
10194/* ARM V5E (El Segundo) signed-multiply (argument parse)
10195 SMULxy{cond} Rd,Rm,Rs
10196 Error if any register is R15. */
a737bd4d 10197
c19d1205
ZW
10198static void
10199do_smul (void)
10200{
10201 inst.instruction |= inst.operands[0].reg << 16;
10202 inst.instruction |= inst.operands[1].reg;
10203 inst.instruction |= inst.operands[2].reg << 8;
10204}
a737bd4d 10205
b6702015
PB
10206/* ARM V6 srs (argument parse). The variable fields in the encoding are
10207 the same for both ARM and Thumb-2. */
a737bd4d 10208
c19d1205
ZW
10209static void
10210do_srs (void)
10211{
b6702015
PB
10212 int reg;
10213
10214 if (inst.operands[0].present)
10215 {
10216 reg = inst.operands[0].reg;
fdfde340 10217 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10218 }
10219 else
fdfde340 10220 reg = REG_SP;
b6702015
PB
10221
10222 inst.instruction |= reg << 16;
10223 inst.instruction |= inst.operands[1].imm;
10224 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10225 inst.instruction |= WRITE_BACK;
10226}
a737bd4d 10227
c19d1205 10228/* ARM V6 strex (argument parse). */
a737bd4d 10229
c19d1205
ZW
10230static void
10231do_strex (void)
10232{
10233 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10234 || inst.operands[2].postind || inst.operands[2].writeback
10235 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10236 || inst.operands[2].negative
10237 /* See comment in do_ldrex(). */
10238 || (inst.operands[2].reg == REG_PC),
10239 BAD_ADDR_MODE);
a737bd4d 10240
c19d1205
ZW
10241 constraint (inst.operands[0].reg == inst.operands[1].reg
10242 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10243
e2b0ab59
AV
10244 constraint (inst.relocs[0].exp.X_op != O_constant
10245 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10246 _("offset must be zero in ARM encoding"));
a737bd4d 10247
c19d1205
ZW
10248 inst.instruction |= inst.operands[0].reg << 12;
10249 inst.instruction |= inst.operands[1].reg;
10250 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10251 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10252}
10253
877807f8
NC
10254static void
10255do_t_strexbh (void)
10256{
10257 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10258 || inst.operands[2].postind || inst.operands[2].writeback
10259 || inst.operands[2].immisreg || inst.operands[2].shifted
10260 || inst.operands[2].negative,
10261 BAD_ADDR_MODE);
10262
10263 constraint (inst.operands[0].reg == inst.operands[1].reg
10264 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10265
10266 do_rm_rd_rn ();
10267}
10268
e16bb312 10269static void
c19d1205 10270do_strexd (void)
e16bb312 10271{
c19d1205
ZW
10272 constraint (inst.operands[1].reg % 2 != 0,
10273 _("even register required"));
10274 constraint (inst.operands[2].present
10275 && inst.operands[2].reg != inst.operands[1].reg + 1,
10276 _("can only store two consecutive registers"));
10277 /* If op 2 were present and equal to PC, this function wouldn't
10278 have been called in the first place. */
10279 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10280
c19d1205
ZW
10281 constraint (inst.operands[0].reg == inst.operands[1].reg
10282 || inst.operands[0].reg == inst.operands[1].reg + 1
10283 || inst.operands[0].reg == inst.operands[3].reg,
10284 BAD_OVERLAP);
e16bb312 10285
c19d1205
ZW
10286 inst.instruction |= inst.operands[0].reg << 12;
10287 inst.instruction |= inst.operands[1].reg;
10288 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10289}
10290
9eb6c0f1
MGD
10291/* ARM V8 STRL. */
10292static void
4b8c8c02 10293do_stlex (void)
9eb6c0f1
MGD
10294{
10295 constraint (inst.operands[0].reg == inst.operands[1].reg
10296 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10297
10298 do_rd_rm_rn ();
10299}
10300
10301static void
4b8c8c02 10302do_t_stlex (void)
9eb6c0f1
MGD
10303{
10304 constraint (inst.operands[0].reg == inst.operands[1].reg
10305 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10306
10307 do_rm_rd_rn ();
10308}
10309
c19d1205
ZW
10310/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10311 extends it to 32-bits, and adds the result to a value in another
10312 register. You can specify a rotation by 0, 8, 16, or 24 bits
10313 before extracting the 16-bit value.
10314 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10315 Condition defaults to COND_ALWAYS.
10316 Error if any register uses R15. */
10317
e16bb312 10318static void
c19d1205 10319do_sxtah (void)
e16bb312 10320{
c19d1205
ZW
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323 inst.instruction |= inst.operands[2].reg;
10324 inst.instruction |= inst.operands[3].imm << 10;
10325}
e16bb312 10326
c19d1205 10327/* ARM V6 SXTH.
e16bb312 10328
c19d1205
ZW
10329 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10330 Condition defaults to COND_ALWAYS.
10331 Error if any register uses R15. */
e16bb312
NC
10332
10333static void
c19d1205 10334do_sxth (void)
e16bb312 10335{
c19d1205
ZW
10336 inst.instruction |= inst.operands[0].reg << 12;
10337 inst.instruction |= inst.operands[1].reg;
10338 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10339}
c19d1205
ZW
10340\f
10341/* VFP instructions. In a logical order: SP variant first, monad
10342 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10343
10344static void
c19d1205 10345do_vfp_sp_monadic (void)
e16bb312 10346{
57785aa2
AV
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10348 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10349 _(BAD_FPU));
10350
5287ad62
JB
10351 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10352 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10353}
10354
10355static void
c19d1205 10356do_vfp_sp_dyadic (void)
e16bb312 10357{
5287ad62
JB
10358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10359 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10360 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10361}
10362
10363static void
c19d1205 10364do_vfp_sp_compare_z (void)
e16bb312 10365{
5287ad62 10366 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10367}
10368
10369static void
c19d1205 10370do_vfp_dp_sp_cvt (void)
e16bb312 10371{
5287ad62
JB
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10374}
10375
10376static void
c19d1205 10377do_vfp_sp_dp_cvt (void)
e16bb312 10378{
5287ad62
JB
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10381}
10382
10383static void
c19d1205 10384do_vfp_reg_from_sp (void)
e16bb312 10385{
57785aa2
AV
10386 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10387 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10388 _(BAD_FPU));
10389
c19d1205 10390 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10391 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10392}
10393
10394static void
c19d1205 10395do_vfp_reg2_from_sp2 (void)
e16bb312 10396{
c19d1205
ZW
10397 constraint (inst.operands[2].imm != 2,
10398 _("only two consecutive VFP SP registers allowed here"));
10399 inst.instruction |= inst.operands[0].reg << 12;
10400 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10401 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10402}
10403
10404static void
c19d1205 10405do_vfp_sp_from_reg (void)
e16bb312 10406{
57785aa2
AV
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
5287ad62 10411 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10412 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10413}
10414
10415static void
c19d1205 10416do_vfp_sp2_from_reg2 (void)
e16bb312 10417{
c19d1205
ZW
10418 constraint (inst.operands[0].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10421 inst.instruction |= inst.operands[1].reg << 12;
10422 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10423}
10424
10425static void
c19d1205 10426do_vfp_sp_ldst (void)
e16bb312 10427{
5287ad62 10428 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10429 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10430}
10431
10432static void
c19d1205 10433do_vfp_dp_ldst (void)
e16bb312 10434{
5287ad62 10435 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10436 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10437}
10438
c19d1205 10439
e16bb312 10440static void
c19d1205 10441vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10442{
c19d1205
ZW
10443 if (inst.operands[0].writeback)
10444 inst.instruction |= WRITE_BACK;
10445 else
10446 constraint (ldstm_type != VFP_LDSTMIA,
10447 _("this addressing mode requires base-register writeback"));
10448 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10449 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10450 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10451}
10452
10453static void
c19d1205 10454vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10455{
c19d1205 10456 int count;
e16bb312 10457
c19d1205
ZW
10458 if (inst.operands[0].writeback)
10459 inst.instruction |= WRITE_BACK;
10460 else
10461 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10462 _("this addressing mode requires base-register writeback"));
e16bb312 10463
c19d1205 10464 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10465 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10466
c19d1205
ZW
10467 count = inst.operands[1].imm << 1;
10468 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10469 count += 1;
e16bb312 10470
c19d1205 10471 inst.instruction |= count;
e16bb312
NC
10472}
10473
10474static void
c19d1205 10475do_vfp_sp_ldstmia (void)
e16bb312 10476{
c19d1205 10477 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10478}
10479
10480static void
c19d1205 10481do_vfp_sp_ldstmdb (void)
e16bb312 10482{
c19d1205 10483 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10484}
10485
10486static void
c19d1205 10487do_vfp_dp_ldstmia (void)
e16bb312 10488{
c19d1205 10489 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10490}
10491
10492static void
c19d1205 10493do_vfp_dp_ldstmdb (void)
e16bb312 10494{
c19d1205 10495 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10496}
10497
10498static void
c19d1205 10499do_vfp_xp_ldstmia (void)
e16bb312 10500{
c19d1205
ZW
10501 vfp_dp_ldstm (VFP_LDSTMIAX);
10502}
e16bb312 10503
c19d1205
ZW
10504static void
10505do_vfp_xp_ldstmdb (void)
10506{
10507 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10508}
5287ad62
JB
10509
10510static void
10511do_vfp_dp_rd_rm (void)
10512{
57785aa2
AV
10513 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10514 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10515 _(BAD_FPU));
10516
5287ad62
JB
10517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10518 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10519}
10520
10521static void
10522do_vfp_dp_rn_rd (void)
10523{
10524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10525 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10526}
10527
10528static void
10529do_vfp_dp_rd_rn (void)
10530{
10531 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10532 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10533}
10534
10535static void
10536do_vfp_dp_rd_rn_rm (void)
10537{
57785aa2
AV
10538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10539 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10540 _(BAD_FPU));
10541
5287ad62
JB
10542 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10543 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10544 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10545}
10546
10547static void
10548do_vfp_dp_rd (void)
10549{
10550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10551}
10552
10553static void
10554do_vfp_dp_rm_rd_rn (void)
10555{
57785aa2
AV
10556 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10557 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10558 _(BAD_FPU));
10559
5287ad62
JB
10560 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10561 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10562 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10563}
10564
10565/* VFPv3 instructions. */
10566static void
10567do_vfp_sp_const (void)
10568{
10569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10570 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10571 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10572}
10573
10574static void
10575do_vfp_dp_const (void)
10576{
10577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10578 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10579 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10580}
10581
10582static void
10583vfp_conv (int srcsize)
10584{
5f1af56b
MGD
10585 int immbits = srcsize - inst.operands[1].imm;
10586
fa94de6b
RM
10587 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10588 {
5f1af56b 10589 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10590 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10591 inst.error = _("immediate value out of range, expected range [0, 16]");
10592 return;
10593 }
fa94de6b 10594 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10595 {
10596 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10597 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10598 inst.error = _("immediate value out of range, expected range [1, 32]");
10599 return;
10600 }
10601
5287ad62
JB
10602 inst.instruction |= (immbits & 1) << 5;
10603 inst.instruction |= (immbits >> 1);
10604}
10605
10606static void
10607do_vfp_sp_conv_16 (void)
10608{
10609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10610 vfp_conv (16);
10611}
10612
10613static void
10614do_vfp_dp_conv_16 (void)
10615{
10616 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10617 vfp_conv (16);
10618}
10619
10620static void
10621do_vfp_sp_conv_32 (void)
10622{
10623 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10624 vfp_conv (32);
10625}
10626
10627static void
10628do_vfp_dp_conv_32 (void)
10629{
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10631 vfp_conv (32);
10632}
c19d1205
ZW
10633\f
10634/* FPA instructions. Also in a logical order. */
e16bb312 10635
c19d1205
ZW
10636static void
10637do_fpa_cmp (void)
10638{
10639 inst.instruction |= inst.operands[0].reg << 16;
10640 inst.instruction |= inst.operands[1].reg;
10641}
b99bd4ef
NC
10642
10643static void
c19d1205 10644do_fpa_ldmstm (void)
b99bd4ef 10645{
c19d1205
ZW
10646 inst.instruction |= inst.operands[0].reg << 12;
10647 switch (inst.operands[1].imm)
10648 {
10649 case 1: inst.instruction |= CP_T_X; break;
10650 case 2: inst.instruction |= CP_T_Y; break;
10651 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10652 case 4: break;
10653 default: abort ();
10654 }
b99bd4ef 10655
c19d1205
ZW
10656 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10657 {
10658 /* The instruction specified "ea" or "fd", so we can only accept
10659 [Rn]{!}. The instruction does not really support stacking or
10660 unstacking, so we have to emulate these by setting appropriate
10661 bits and offsets. */
e2b0ab59
AV
10662 constraint (inst.relocs[0].exp.X_op != O_constant
10663 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10664 _("this instruction does not support indexing"));
b99bd4ef 10665
c19d1205 10666 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10667 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10668
c19d1205 10669 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10670 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10671
c19d1205
ZW
10672 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10673 {
10674 inst.operands[2].preind = 0;
10675 inst.operands[2].postind = 1;
10676 }
10677 }
b99bd4ef 10678
c19d1205 10679 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10680}
c19d1205
ZW
10681\f
10682/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10683
c19d1205
ZW
10684static void
10685do_iwmmxt_tandorc (void)
10686{
10687 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10688}
b99bd4ef 10689
c19d1205
ZW
10690static void
10691do_iwmmxt_textrc (void)
10692{
10693 inst.instruction |= inst.operands[0].reg << 12;
10694 inst.instruction |= inst.operands[1].imm;
10695}
b99bd4ef
NC
10696
10697static void
c19d1205 10698do_iwmmxt_textrm (void)
b99bd4ef 10699{
c19d1205
ZW
10700 inst.instruction |= inst.operands[0].reg << 12;
10701 inst.instruction |= inst.operands[1].reg << 16;
10702 inst.instruction |= inst.operands[2].imm;
10703}
b99bd4ef 10704
c19d1205
ZW
10705static void
10706do_iwmmxt_tinsr (void)
10707{
10708 inst.instruction |= inst.operands[0].reg << 16;
10709 inst.instruction |= inst.operands[1].reg << 12;
10710 inst.instruction |= inst.operands[2].imm;
10711}
b99bd4ef 10712
c19d1205
ZW
10713static void
10714do_iwmmxt_tmia (void)
10715{
10716 inst.instruction |= inst.operands[0].reg << 5;
10717 inst.instruction |= inst.operands[1].reg;
10718 inst.instruction |= inst.operands[2].reg << 12;
10719}
b99bd4ef 10720
c19d1205
ZW
10721static void
10722do_iwmmxt_waligni (void)
10723{
10724 inst.instruction |= inst.operands[0].reg << 12;
10725 inst.instruction |= inst.operands[1].reg << 16;
10726 inst.instruction |= inst.operands[2].reg;
10727 inst.instruction |= inst.operands[3].imm << 20;
10728}
b99bd4ef 10729
2d447fca
JM
10730static void
10731do_iwmmxt_wmerge (void)
10732{
10733 inst.instruction |= inst.operands[0].reg << 12;
10734 inst.instruction |= inst.operands[1].reg << 16;
10735 inst.instruction |= inst.operands[2].reg;
10736 inst.instruction |= inst.operands[3].imm << 21;
10737}
10738
c19d1205
ZW
10739static void
10740do_iwmmxt_wmov (void)
10741{
10742 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10743 inst.instruction |= inst.operands[0].reg << 12;
10744 inst.instruction |= inst.operands[1].reg << 16;
10745 inst.instruction |= inst.operands[1].reg;
10746}
b99bd4ef 10747
c19d1205
ZW
10748static void
10749do_iwmmxt_wldstbh (void)
10750{
8f06b2d8 10751 int reloc;
c19d1205 10752 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10753 if (thumb_mode)
10754 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10755 else
10756 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10757 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10758}
10759
c19d1205
ZW
10760static void
10761do_iwmmxt_wldstw (void)
10762{
10763 /* RIWR_RIWC clears .isreg for a control register. */
10764 if (!inst.operands[0].isreg)
10765 {
10766 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10767 inst.instruction |= 0xf0000000;
10768 }
b99bd4ef 10769
c19d1205
ZW
10770 inst.instruction |= inst.operands[0].reg << 12;
10771 encode_arm_cp_address (1, TRUE, TRUE, 0);
10772}
b99bd4ef
NC
10773
10774static void
c19d1205 10775do_iwmmxt_wldstd (void)
b99bd4ef 10776{
c19d1205 10777 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10778 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10779 && inst.operands[1].immisreg)
10780 {
10781 inst.instruction &= ~0x1a000ff;
eff0bc54 10782 inst.instruction |= (0xfU << 28);
2d447fca
JM
10783 if (inst.operands[1].preind)
10784 inst.instruction |= PRE_INDEX;
10785 if (!inst.operands[1].negative)
10786 inst.instruction |= INDEX_UP;
10787 if (inst.operands[1].writeback)
10788 inst.instruction |= WRITE_BACK;
10789 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10790 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10791 inst.instruction |= inst.operands[1].imm;
10792 }
10793 else
10794 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10795}
b99bd4ef 10796
c19d1205
ZW
10797static void
10798do_iwmmxt_wshufh (void)
10799{
10800 inst.instruction |= inst.operands[0].reg << 12;
10801 inst.instruction |= inst.operands[1].reg << 16;
10802 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10803 inst.instruction |= (inst.operands[2].imm & 0x0f);
10804}
b99bd4ef 10805
c19d1205
ZW
10806static void
10807do_iwmmxt_wzero (void)
10808{
10809 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10810 inst.instruction |= inst.operands[0].reg;
10811 inst.instruction |= inst.operands[0].reg << 12;
10812 inst.instruction |= inst.operands[0].reg << 16;
10813}
2d447fca
JM
10814
10815static void
10816do_iwmmxt_wrwrwr_or_imm5 (void)
10817{
10818 if (inst.operands[2].isreg)
10819 do_rd_rn_rm ();
10820 else {
10821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10822 _("immediate operand requires iWMMXt2"));
10823 do_rd_rn ();
10824 if (inst.operands[2].imm == 0)
10825 {
10826 switch ((inst.instruction >> 20) & 0xf)
10827 {
10828 case 4:
10829 case 5:
10830 case 6:
5f4273c7 10831 case 7:
2d447fca
JM
10832 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10833 inst.operands[2].imm = 16;
10834 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10835 break;
10836 case 8:
10837 case 9:
10838 case 10:
10839 case 11:
10840 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10841 inst.operands[2].imm = 32;
10842 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10843 break;
10844 case 12:
10845 case 13:
10846 case 14:
10847 case 15:
10848 {
10849 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10850 unsigned long wrn;
10851 wrn = (inst.instruction >> 16) & 0xf;
10852 inst.instruction &= 0xff0fff0f;
10853 inst.instruction |= wrn;
10854 /* Bail out here; the instruction is now assembled. */
10855 return;
10856 }
10857 }
10858 }
10859 /* Map 32 -> 0, etc. */
10860 inst.operands[2].imm &= 0x1f;
eff0bc54 10861 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10862 }
10863}
c19d1205
ZW
10864\f
10865/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10866 operations first, then control, shift, and load/store. */
b99bd4ef 10867
c19d1205 10868/* Insns like "foo X,Y,Z". */
b99bd4ef 10869
c19d1205
ZW
10870static void
10871do_mav_triple (void)
10872{
10873 inst.instruction |= inst.operands[0].reg << 16;
10874 inst.instruction |= inst.operands[1].reg;
10875 inst.instruction |= inst.operands[2].reg << 12;
10876}
b99bd4ef 10877
c19d1205
ZW
10878/* Insns like "foo W,X,Y,Z".
10879 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10880
c19d1205
ZW
10881static void
10882do_mav_quad (void)
10883{
10884 inst.instruction |= inst.operands[0].reg << 5;
10885 inst.instruction |= inst.operands[1].reg << 12;
10886 inst.instruction |= inst.operands[2].reg << 16;
10887 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10888}
10889
c19d1205
ZW
10890/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10891static void
10892do_mav_dspsc (void)
a737bd4d 10893{
c19d1205
ZW
10894 inst.instruction |= inst.operands[1].reg << 12;
10895}
a737bd4d 10896
c19d1205
ZW
10897/* Maverick shift immediate instructions.
10898 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10899 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10900
c19d1205
ZW
10901static void
10902do_mav_shift (void)
10903{
10904 int imm = inst.operands[2].imm;
a737bd4d 10905
c19d1205
ZW
10906 inst.instruction |= inst.operands[0].reg << 12;
10907 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10908
c19d1205
ZW
10909 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10910 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10911 Bit 4 should be 0. */
10912 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10913
c19d1205
ZW
10914 inst.instruction |= imm;
10915}
10916\f
10917/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10918
c19d1205
ZW
10919/* Xscale multiply-accumulate (argument parse)
10920 MIAcc acc0,Rm,Rs
10921 MIAPHcc acc0,Rm,Rs
10922 MIAxycc acc0,Rm,Rs. */
a737bd4d 10923
c19d1205
ZW
10924static void
10925do_xsc_mia (void)
10926{
10927 inst.instruction |= inst.operands[1].reg;
10928 inst.instruction |= inst.operands[2].reg << 12;
10929}
a737bd4d 10930
c19d1205 10931/* Xscale move-accumulator-register (argument parse)
a737bd4d 10932
c19d1205 10933 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10934
c19d1205
ZW
10935static void
10936do_xsc_mar (void)
10937{
10938 inst.instruction |= inst.operands[1].reg << 12;
10939 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10940}
10941
c19d1205 10942/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10943
c19d1205 10944 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10945
10946static void
c19d1205 10947do_xsc_mra (void)
b99bd4ef 10948{
c19d1205
ZW
10949 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10950 inst.instruction |= inst.operands[0].reg << 12;
10951 inst.instruction |= inst.operands[1].reg << 16;
10952}
10953\f
10954/* Encoding functions relevant only to Thumb. */
b99bd4ef 10955
c19d1205
ZW
10956/* inst.operands[i] is a shifted-register operand; encode
10957 it into inst.instruction in the format used by Thumb32. */
10958
10959static void
10960encode_thumb32_shifted_operand (int i)
10961{
e2b0ab59 10962 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10963 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10964
9c3c69f2
PB
10965 constraint (inst.operands[i].immisreg,
10966 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10967 inst.instruction |= inst.operands[i].reg;
10968 if (shift == SHIFT_RRX)
10969 inst.instruction |= SHIFT_ROR << 4;
10970 else
b99bd4ef 10971 {
e2b0ab59 10972 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10973 _("expression too complex"));
10974
10975 constraint (value > 32
10976 || (value == 32 && (shift == SHIFT_LSL
10977 || shift == SHIFT_ROR)),
10978 _("shift expression is too large"));
10979
10980 if (value == 0)
10981 shift = SHIFT_LSL;
10982 else if (value == 32)
10983 value = 0;
10984
10985 inst.instruction |= shift << 4;
10986 inst.instruction |= (value & 0x1c) << 10;
10987 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10988 }
c19d1205 10989}
b99bd4ef 10990
b99bd4ef 10991
c19d1205
ZW
10992/* inst.operands[i] was set up by parse_address. Encode it into a
10993 Thumb32 format load or store instruction. Reject forms that cannot
10994 be used with such instructions. If is_t is true, reject forms that
10995 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10996 that cannot be used with a D instruction. If it is a store insn,
10997 reject PC in Rn. */
b99bd4ef 10998
c19d1205
ZW
10999static void
11000encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11001{
5be8be5d 11002 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11003
11004 constraint (!inst.operands[i].isreg,
53365c0d 11005 _("Instruction does not support =N addresses"));
b99bd4ef 11006
c19d1205
ZW
11007 inst.instruction |= inst.operands[i].reg << 16;
11008 if (inst.operands[i].immisreg)
b99bd4ef 11009 {
5be8be5d 11010 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11011 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11012 constraint (inst.operands[i].negative,
11013 _("Thumb does not support negative register indexing"));
11014 constraint (inst.operands[i].postind,
11015 _("Thumb does not support register post-indexing"));
11016 constraint (inst.operands[i].writeback,
11017 _("Thumb does not support register indexing with writeback"));
11018 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11019 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11020
f40d1643 11021 inst.instruction |= inst.operands[i].imm;
c19d1205 11022 if (inst.operands[i].shifted)
b99bd4ef 11023 {
e2b0ab59 11024 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11025 _("expression too complex"));
e2b0ab59
AV
11026 constraint (inst.relocs[0].exp.X_add_number < 0
11027 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11028 _("shift out of range"));
e2b0ab59 11029 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11030 }
e2b0ab59 11031 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11032 }
11033 else if (inst.operands[i].preind)
11034 {
5be8be5d 11035 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11036 constraint (is_t && inst.operands[i].writeback,
c19d1205 11037 _("cannot use writeback with this instruction"));
4755303e
WN
11038 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11039 BAD_PC_ADDRESSING);
c19d1205
ZW
11040
11041 if (is_d)
11042 {
11043 inst.instruction |= 0x01000000;
11044 if (inst.operands[i].writeback)
11045 inst.instruction |= 0x00200000;
b99bd4ef 11046 }
c19d1205 11047 else
b99bd4ef 11048 {
c19d1205
ZW
11049 inst.instruction |= 0x00000c00;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00000100;
b99bd4ef 11052 }
e2b0ab59 11053 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11054 }
c19d1205 11055 else if (inst.operands[i].postind)
b99bd4ef 11056 {
9c2799c2 11057 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11058 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11059 constraint (is_t, _("cannot use post-indexing with this instruction"));
11060
11061 if (is_d)
11062 inst.instruction |= 0x00200000;
11063 else
11064 inst.instruction |= 0x00000900;
e2b0ab59 11065 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11066 }
11067 else /* unindexed - only for coprocessor */
11068 inst.error = _("instruction does not accept unindexed addressing");
11069}
11070
11071/* Table of Thumb instructions which exist in both 16- and 32-bit
11072 encodings (the latter only in post-V6T2 cores). The index is the
11073 value used in the insns table below. When there is more than one
11074 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11075 holds variant (1).
11076 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11077#define T16_32_TAB \
21d799b5
NC
11078 X(_adc, 4140, eb400000), \
11079 X(_adcs, 4140, eb500000), \
11080 X(_add, 1c00, eb000000), \
11081 X(_adds, 1c00, eb100000), \
11082 X(_addi, 0000, f1000000), \
11083 X(_addis, 0000, f1100000), \
11084 X(_add_pc,000f, f20f0000), \
11085 X(_add_sp,000d, f10d0000), \
11086 X(_adr, 000f, f20f0000), \
11087 X(_and, 4000, ea000000), \
11088 X(_ands, 4000, ea100000), \
11089 X(_asr, 1000, fa40f000), \
11090 X(_asrs, 1000, fa50f000), \
11091 X(_b, e000, f000b000), \
11092 X(_bcond, d000, f0008000), \
4389b29a 11093 X(_bf, 0000, f040e001), \
f6b2b12d 11094 X(_bfcsel,0000, f000e001), \
f1c7f421 11095 X(_bfx, 0000, f060e001), \
65d1bc05 11096 X(_bfl, 0000, f000c001), \
f1c7f421 11097 X(_bflx, 0000, f070e001), \
21d799b5
NC
11098 X(_bic, 4380, ea200000), \
11099 X(_bics, 4380, ea300000), \
11100 X(_cmn, 42c0, eb100f00), \
11101 X(_cmp, 2800, ebb00f00), \
11102 X(_cpsie, b660, f3af8400), \
11103 X(_cpsid, b670, f3af8600), \
11104 X(_cpy, 4600, ea4f0000), \
11105 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11106 X(_dls, 0000, f040e001), \
21d799b5
NC
11107 X(_eor, 4040, ea800000), \
11108 X(_eors, 4040, ea900000), \
11109 X(_inc_sp,00dd, f10d0d00), \
11110 X(_ldmia, c800, e8900000), \
11111 X(_ldr, 6800, f8500000), \
11112 X(_ldrb, 7800, f8100000), \
11113 X(_ldrh, 8800, f8300000), \
11114 X(_ldrsb, 5600, f9100000), \
11115 X(_ldrsh, 5e00, f9300000), \
11116 X(_ldr_pc,4800, f85f0000), \
11117 X(_ldr_pc2,4800, f85f0000), \
11118 X(_ldr_sp,9800, f85d0000), \
60f993ce 11119 X(_le, 0000, f00fc001), \
21d799b5
NC
11120 X(_lsl, 0000, fa00f000), \
11121 X(_lsls, 0000, fa10f000), \
11122 X(_lsr, 0800, fa20f000), \
11123 X(_lsrs, 0800, fa30f000), \
11124 X(_mov, 2000, ea4f0000), \
11125 X(_movs, 2000, ea5f0000), \
11126 X(_mul, 4340, fb00f000), \
11127 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11128 X(_mvn, 43c0, ea6f0000), \
11129 X(_mvns, 43c0, ea7f0000), \
11130 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11131 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11132 X(_orr, 4300, ea400000), \
11133 X(_orrs, 4300, ea500000), \
11134 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11135 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11136 X(_rev, ba00, fa90f080), \
11137 X(_rev16, ba40, fa90f090), \
11138 X(_revsh, bac0, fa90f0b0), \
11139 X(_ror, 41c0, fa60f000), \
11140 X(_rors, 41c0, fa70f000), \
11141 X(_sbc, 4180, eb600000), \
11142 X(_sbcs, 4180, eb700000), \
11143 X(_stmia, c000, e8800000), \
11144 X(_str, 6000, f8400000), \
11145 X(_strb, 7000, f8000000), \
11146 X(_strh, 8000, f8200000), \
11147 X(_str_sp,9000, f84d0000), \
11148 X(_sub, 1e00, eba00000), \
11149 X(_subs, 1e00, ebb00000), \
11150 X(_subi, 8000, f1a00000), \
11151 X(_subis, 8000, f1b00000), \
11152 X(_sxtb, b240, fa4ff080), \
11153 X(_sxth, b200, fa0ff080), \
11154 X(_tst, 4200, ea100f00), \
11155 X(_uxtb, b2c0, fa5ff080), \
11156 X(_uxth, b280, fa1ff080), \
11157 X(_nop, bf00, f3af8000), \
11158 X(_yield, bf10, f3af8001), \
11159 X(_wfe, bf20, f3af8002), \
11160 X(_wfi, bf30, f3af8003), \
60f993ce 11161 X(_wls, 0000, f040c001), \
53c4b28b 11162 X(_sev, bf40, f3af8004), \
74db7efb
NC
11163 X(_sevl, bf50, f3af8005), \
11164 X(_udf, de00, f7f0a000)
c19d1205
ZW
11165
11166/* To catch errors in encoding functions, the codes are all offset by
11167 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11168 as 16-bit instructions. */
21d799b5 11169#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11170enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11171#undef X
11172
11173#define X(a,b,c) 0x##b
11174static const unsigned short thumb_op16[] = { T16_32_TAB };
11175#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11176#undef X
11177
11178#define X(a,b,c) 0x##c
11179static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11180#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11181#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11182#undef X
11183#undef T16_32_TAB
11184
11185/* Thumb instruction encoders, in alphabetical order. */
11186
92e90b6e 11187/* ADDW or SUBW. */
c921be7d 11188
92e90b6e
PB
11189static void
11190do_t_add_sub_w (void)
11191{
11192 int Rd, Rn;
11193
11194 Rd = inst.operands[0].reg;
11195 Rn = inst.operands[1].reg;
11196
539d4391
NC
11197 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11198 is the SP-{plus,minus}-immediate form of the instruction. */
11199 if (Rn == REG_SP)
11200 constraint (Rd == REG_PC, BAD_PC);
11201 else
11202 reject_bad_reg (Rd);
fdfde340 11203
92e90b6e 11204 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11205 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11206}
11207
c19d1205 11208/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11209 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11210
11211static void
11212do_t_add_sub (void)
11213{
11214 int Rd, Rs, Rn;
11215
11216 Rd = inst.operands[0].reg;
11217 Rs = (inst.operands[1].present
11218 ? inst.operands[1].reg /* Rd, Rs, foo */
11219 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11220
e07e6e58 11221 if (Rd == REG_PC)
5ee91343 11222 set_pred_insn_type_last ();
e07e6e58 11223
c19d1205
ZW
11224 if (unified_syntax)
11225 {
0110f2b8
PB
11226 bfd_boolean flags;
11227 bfd_boolean narrow;
11228 int opcode;
11229
11230 flags = (inst.instruction == T_MNEM_adds
11231 || inst.instruction == T_MNEM_subs);
11232 if (flags)
5ee91343 11233 narrow = !in_pred_block ();
0110f2b8 11234 else
5ee91343 11235 narrow = in_pred_block ();
c19d1205 11236 if (!inst.operands[2].isreg)
b99bd4ef 11237 {
16805f35
PB
11238 int add;
11239
5c8ed6a4
JW
11240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11241 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11242
16805f35
PB
11243 add = (inst.instruction == T_MNEM_add
11244 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11245 opcode = 0;
11246 if (inst.size_req != 4)
11247 {
0110f2b8 11248 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11249 appropriate. */
0110f2b8
PB
11250 if (Rd == REG_SP && Rs == REG_SP && !flags)
11251 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11252 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11253 opcode = T_MNEM_add_sp;
11254 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11255 opcode = T_MNEM_add_pc;
11256 else if (Rd <= 7 && Rs <= 7 && narrow)
11257 {
11258 if (flags)
11259 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11260 else
11261 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11262 }
11263 if (opcode)
11264 {
11265 inst.instruction = THUMB_OP16(opcode);
11266 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11267 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11268 || (inst.relocs[0].type
11269 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11270 {
11271 if (inst.size_req == 2)
e2b0ab59 11272 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11273 else
11274 inst.relax = opcode;
11275 }
0110f2b8
PB
11276 }
11277 else
11278 constraint (inst.size_req == 2, BAD_HIREG);
11279 }
11280 if (inst.size_req == 4
11281 || (inst.size_req != 2 && !opcode))
11282 {
e2b0ab59
AV
11283 constraint ((inst.relocs[0].type
11284 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11285 && (inst.relocs[0].type
11286 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11287 THUMB1_RELOC_ONLY);
efd81785
PB
11288 if (Rd == REG_PC)
11289 {
fdfde340 11290 constraint (add, BAD_PC);
efd81785
PB
11291 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11292 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11293 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11294 _("expression too complex"));
e2b0ab59
AV
11295 constraint (inst.relocs[0].exp.X_add_number < 0
11296 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11297 _("immediate value out of range"));
11298 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11299 | inst.relocs[0].exp.X_add_number;
11300 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11301 return;
11302 }
11303 else if (Rs == REG_PC)
16805f35
PB
11304 {
11305 /* Always use addw/subw. */
11306 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11307 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11308 }
11309 else
11310 {
11311 inst.instruction = THUMB_OP32 (inst.instruction);
11312 inst.instruction = (inst.instruction & 0xe1ffffff)
11313 | 0x10000000;
11314 if (flags)
e2b0ab59 11315 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11316 else
e2b0ab59 11317 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11318 }
dc4503c6
PB
11319 inst.instruction |= Rd << 8;
11320 inst.instruction |= Rs << 16;
0110f2b8 11321 }
b99bd4ef 11322 }
c19d1205
ZW
11323 else
11324 {
e2b0ab59 11325 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11326 unsigned int shift = inst.operands[2].shift_kind;
11327
c19d1205
ZW
11328 Rn = inst.operands[2].reg;
11329 /* See if we can do this with a 16-bit instruction. */
11330 if (!inst.operands[2].shifted && inst.size_req != 4)
11331 {
e27ec89e
PB
11332 if (Rd > 7 || Rs > 7 || Rn > 7)
11333 narrow = FALSE;
11334
11335 if (narrow)
c19d1205 11336 {
e27ec89e
PB
11337 inst.instruction = ((inst.instruction == T_MNEM_adds
11338 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11339 ? T_OPCODE_ADD_R3
11340 : T_OPCODE_SUB_R3);
11341 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11342 return;
11343 }
b99bd4ef 11344
7e806470 11345 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11346 {
7e806470
PB
11347 /* Thumb-1 cores (except v6-M) require at least one high
11348 register in a narrow non flag setting add. */
11349 if (Rd > 7 || Rn > 7
11350 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11351 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11352 {
7e806470
PB
11353 if (Rd == Rn)
11354 {
11355 Rn = Rs;
11356 Rs = Rd;
11357 }
c19d1205
ZW
11358 inst.instruction = T_OPCODE_ADD_HI;
11359 inst.instruction |= (Rd & 8) << 4;
11360 inst.instruction |= (Rd & 7);
11361 inst.instruction |= Rn << 3;
11362 return;
11363 }
c19d1205
ZW
11364 }
11365 }
c921be7d 11366
fdfde340 11367 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11368 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11369 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11370 constraint (Rs == REG_PC, BAD_PC);
11371 reject_bad_reg (Rn);
11372
c19d1205
ZW
11373 /* If we get here, it can't be done in 16 bits. */
11374 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11375 _("shift must be constant"));
11376 inst.instruction = THUMB_OP32 (inst.instruction);
11377 inst.instruction |= Rd << 8;
11378 inst.instruction |= Rs << 16;
5f4cb198
NC
11379 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11380 _("shift value over 3 not allowed in thumb mode"));
11381 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11382 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11383 encode_thumb32_shifted_operand (2);
11384 }
11385 }
11386 else
11387 {
11388 constraint (inst.instruction == T_MNEM_adds
11389 || inst.instruction == T_MNEM_subs,
11390 BAD_THUMB32);
b99bd4ef 11391
c19d1205 11392 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11393 {
c19d1205
ZW
11394 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11395 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11396 BAD_HIREG);
11397
11398 inst.instruction = (inst.instruction == T_MNEM_add
11399 ? 0x0000 : 0x8000);
11400 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11401 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11402 return;
11403 }
11404
c19d1205
ZW
11405 Rn = inst.operands[2].reg;
11406 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11407
c19d1205
ZW
11408 /* We now have Rd, Rs, and Rn set to registers. */
11409 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11410 {
c19d1205
ZW
11411 /* Can't do this for SUB. */
11412 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11413 inst.instruction = T_OPCODE_ADD_HI;
11414 inst.instruction |= (Rd & 8) << 4;
11415 inst.instruction |= (Rd & 7);
11416 if (Rs == Rd)
11417 inst.instruction |= Rn << 3;
11418 else if (Rn == Rd)
11419 inst.instruction |= Rs << 3;
11420 else
11421 constraint (1, _("dest must overlap one source register"));
11422 }
11423 else
11424 {
11425 inst.instruction = (inst.instruction == T_MNEM_add
11426 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11427 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11428 }
b99bd4ef 11429 }
b99bd4ef
NC
11430}
11431
c19d1205
ZW
11432static void
11433do_t_adr (void)
11434{
fdfde340
JM
11435 unsigned Rd;
11436
11437 Rd = inst.operands[0].reg;
11438 reject_bad_reg (Rd);
11439
11440 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11441 {
11442 /* Defer to section relaxation. */
11443 inst.relax = inst.instruction;
11444 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11445 inst.instruction |= Rd << 4;
0110f2b8
PB
11446 }
11447 else if (unified_syntax && inst.size_req != 2)
e9f89963 11448 {
0110f2b8 11449 /* Generate a 32-bit opcode. */
e9f89963 11450 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11451 inst.instruction |= Rd << 8;
e2b0ab59
AV
11452 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11453 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11454 }
11455 else
11456 {
0110f2b8 11457 /* Generate a 16-bit opcode. */
e9f89963 11458 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11460 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11461 inst.relocs[0].pc_rel = 1;
fdfde340 11462 inst.instruction |= Rd << 4;
e9f89963 11463 }
52a86f84 11464
e2b0ab59
AV
11465 if (inst.relocs[0].exp.X_op == O_symbol
11466 && inst.relocs[0].exp.X_add_symbol != NULL
11467 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11468 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11469 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11470}
b99bd4ef 11471
c19d1205
ZW
11472/* Arithmetic instructions for which there is just one 16-bit
11473 instruction encoding, and it allows only two low registers.
11474 For maximal compatibility with ARM syntax, we allow three register
11475 operands even when Thumb-32 instructions are not available, as long
11476 as the first two are identical. For instance, both "sbc r0,r1" and
11477 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11478static void
c19d1205 11479do_t_arit3 (void)
b99bd4ef 11480{
c19d1205 11481 int Rd, Rs, Rn;
b99bd4ef 11482
c19d1205
ZW
11483 Rd = inst.operands[0].reg;
11484 Rs = (inst.operands[1].present
11485 ? inst.operands[1].reg /* Rd, Rs, foo */
11486 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11487 Rn = inst.operands[2].reg;
b99bd4ef 11488
fdfde340
JM
11489 reject_bad_reg (Rd);
11490 reject_bad_reg (Rs);
11491 if (inst.operands[2].isreg)
11492 reject_bad_reg (Rn);
11493
c19d1205 11494 if (unified_syntax)
b99bd4ef 11495 {
c19d1205
ZW
11496 if (!inst.operands[2].isreg)
11497 {
11498 /* For an immediate, we always generate a 32-bit opcode;
11499 section relaxation will shrink it later if possible. */
11500 inst.instruction = THUMB_OP32 (inst.instruction);
11501 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11502 inst.instruction |= Rd << 8;
11503 inst.instruction |= Rs << 16;
e2b0ab59 11504 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11505 }
11506 else
11507 {
e27ec89e
PB
11508 bfd_boolean narrow;
11509
c19d1205 11510 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11511 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11512 narrow = !in_pred_block ();
e27ec89e 11513 else
5ee91343 11514 narrow = in_pred_block ();
e27ec89e
PB
11515
11516 if (Rd > 7 || Rn > 7 || Rs > 7)
11517 narrow = FALSE;
11518 if (inst.operands[2].shifted)
11519 narrow = FALSE;
11520 if (inst.size_req == 4)
11521 narrow = FALSE;
11522
11523 if (narrow
c19d1205
ZW
11524 && Rd == Rs)
11525 {
11526 inst.instruction = THUMB_OP16 (inst.instruction);
11527 inst.instruction |= Rd;
11528 inst.instruction |= Rn << 3;
11529 return;
11530 }
b99bd4ef 11531
c19d1205
ZW
11532 /* If we get here, it can't be done in 16 bits. */
11533 constraint (inst.operands[2].shifted
11534 && inst.operands[2].immisreg,
11535 _("shift must be constant"));
11536 inst.instruction = THUMB_OP32 (inst.instruction);
11537 inst.instruction |= Rd << 8;
11538 inst.instruction |= Rs << 16;
11539 encode_thumb32_shifted_operand (2);
11540 }
a737bd4d 11541 }
c19d1205 11542 else
b99bd4ef 11543 {
c19d1205
ZW
11544 /* On its face this is a lie - the instruction does set the
11545 flags. However, the only supported mnemonic in this mode
11546 says it doesn't. */
11547 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11548
c19d1205
ZW
11549 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11550 _("unshifted register required"));
11551 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11552 constraint (Rd != Rs,
11553 _("dest and source1 must be the same register"));
a737bd4d 11554
c19d1205
ZW
11555 inst.instruction = THUMB_OP16 (inst.instruction);
11556 inst.instruction |= Rd;
11557 inst.instruction |= Rn << 3;
b99bd4ef 11558 }
a737bd4d 11559}
b99bd4ef 11560
c19d1205
ZW
11561/* Similarly, but for instructions where the arithmetic operation is
11562 commutative, so we can allow either of them to be different from
11563 the destination operand in a 16-bit instruction. For instance, all
11564 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11565 accepted. */
11566static void
11567do_t_arit3c (void)
a737bd4d 11568{
c19d1205 11569 int Rd, Rs, Rn;
b99bd4ef 11570
c19d1205
ZW
11571 Rd = inst.operands[0].reg;
11572 Rs = (inst.operands[1].present
11573 ? inst.operands[1].reg /* Rd, Rs, foo */
11574 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11575 Rn = inst.operands[2].reg;
c921be7d 11576
fdfde340
JM
11577 reject_bad_reg (Rd);
11578 reject_bad_reg (Rs);
11579 if (inst.operands[2].isreg)
11580 reject_bad_reg (Rn);
a737bd4d 11581
c19d1205 11582 if (unified_syntax)
a737bd4d 11583 {
c19d1205 11584 if (!inst.operands[2].isreg)
b99bd4ef 11585 {
c19d1205
ZW
11586 /* For an immediate, we always generate a 32-bit opcode;
11587 section relaxation will shrink it later if possible. */
11588 inst.instruction = THUMB_OP32 (inst.instruction);
11589 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rs << 16;
e2b0ab59 11592 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11593 }
c19d1205 11594 else
a737bd4d 11595 {
e27ec89e
PB
11596 bfd_boolean narrow;
11597
c19d1205 11598 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11599 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11600 narrow = !in_pred_block ();
e27ec89e 11601 else
5ee91343 11602 narrow = in_pred_block ();
e27ec89e
PB
11603
11604 if (Rd > 7 || Rn > 7 || Rs > 7)
11605 narrow = FALSE;
11606 if (inst.operands[2].shifted)
11607 narrow = FALSE;
11608 if (inst.size_req == 4)
11609 narrow = FALSE;
11610
11611 if (narrow)
a737bd4d 11612 {
c19d1205 11613 if (Rd == Rs)
a737bd4d 11614 {
c19d1205
ZW
11615 inst.instruction = THUMB_OP16 (inst.instruction);
11616 inst.instruction |= Rd;
11617 inst.instruction |= Rn << 3;
11618 return;
a737bd4d 11619 }
c19d1205 11620 if (Rd == Rn)
a737bd4d 11621 {
c19d1205
ZW
11622 inst.instruction = THUMB_OP16 (inst.instruction);
11623 inst.instruction |= Rd;
11624 inst.instruction |= Rs << 3;
11625 return;
a737bd4d
NC
11626 }
11627 }
c19d1205
ZW
11628
11629 /* If we get here, it can't be done in 16 bits. */
11630 constraint (inst.operands[2].shifted
11631 && inst.operands[2].immisreg,
11632 _("shift must be constant"));
11633 inst.instruction = THUMB_OP32 (inst.instruction);
11634 inst.instruction |= Rd << 8;
11635 inst.instruction |= Rs << 16;
11636 encode_thumb32_shifted_operand (2);
a737bd4d 11637 }
b99bd4ef 11638 }
c19d1205
ZW
11639 else
11640 {
11641 /* On its face this is a lie - the instruction does set the
11642 flags. However, the only supported mnemonic in this mode
11643 says it doesn't. */
11644 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11645
c19d1205
ZW
11646 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11647 _("unshifted register required"));
11648 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11649
11650 inst.instruction = THUMB_OP16 (inst.instruction);
11651 inst.instruction |= Rd;
11652
11653 if (Rd == Rs)
11654 inst.instruction |= Rn << 3;
11655 else if (Rd == Rn)
11656 inst.instruction |= Rs << 3;
11657 else
11658 constraint (1, _("dest must overlap one source register"));
11659 }
a737bd4d
NC
11660}
11661
c19d1205
ZW
11662static void
11663do_t_bfc (void)
a737bd4d 11664{
fdfde340 11665 unsigned Rd;
c19d1205
ZW
11666 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11667 constraint (msb > 32, _("bit-field extends past end of register"));
11668 /* The instruction encoding stores the LSB and MSB,
11669 not the LSB and width. */
fdfde340
JM
11670 Rd = inst.operands[0].reg;
11671 reject_bad_reg (Rd);
11672 inst.instruction |= Rd << 8;
c19d1205
ZW
11673 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11674 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11675 inst.instruction |= msb - 1;
b99bd4ef
NC
11676}
11677
c19d1205
ZW
11678static void
11679do_t_bfi (void)
b99bd4ef 11680{
fdfde340 11681 int Rd, Rn;
c19d1205 11682 unsigned int msb;
b99bd4ef 11683
fdfde340
JM
11684 Rd = inst.operands[0].reg;
11685 reject_bad_reg (Rd);
11686
c19d1205
ZW
11687 /* #0 in second position is alternative syntax for bfc, which is
11688 the same instruction but with REG_PC in the Rm field. */
11689 if (!inst.operands[1].isreg)
fdfde340
JM
11690 Rn = REG_PC;
11691 else
11692 {
11693 Rn = inst.operands[1].reg;
11694 reject_bad_reg (Rn);
11695 }
b99bd4ef 11696
c19d1205
ZW
11697 msb = inst.operands[2].imm + inst.operands[3].imm;
11698 constraint (msb > 32, _("bit-field extends past end of register"));
11699 /* The instruction encoding stores the LSB and MSB,
11700 not the LSB and width. */
fdfde340
JM
11701 inst.instruction |= Rd << 8;
11702 inst.instruction |= Rn << 16;
c19d1205
ZW
11703 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11704 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11705 inst.instruction |= msb - 1;
b99bd4ef
NC
11706}
11707
c19d1205
ZW
11708static void
11709do_t_bfx (void)
b99bd4ef 11710{
fdfde340
JM
11711 unsigned Rd, Rn;
11712
11713 Rd = inst.operands[0].reg;
11714 Rn = inst.operands[1].reg;
11715
11716 reject_bad_reg (Rd);
11717 reject_bad_reg (Rn);
11718
c19d1205
ZW
11719 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11720 _("bit-field extends past end of register"));
fdfde340
JM
11721 inst.instruction |= Rd << 8;
11722 inst.instruction |= Rn << 16;
c19d1205
ZW
11723 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11724 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11725 inst.instruction |= inst.operands[3].imm - 1;
11726}
b99bd4ef 11727
c19d1205
ZW
11728/* ARM V5 Thumb BLX (argument parse)
11729 BLX <target_addr> which is BLX(1)
11730 BLX <Rm> which is BLX(2)
11731 Unfortunately, there are two different opcodes for this mnemonic.
11732 So, the insns[].value is not used, and the code here zaps values
11733 into inst.instruction.
b99bd4ef 11734
c19d1205
ZW
11735 ??? How to take advantage of the additional two bits of displacement
11736 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11737
c19d1205
ZW
11738static void
11739do_t_blx (void)
11740{
5ee91343 11741 set_pred_insn_type_last ();
e07e6e58 11742
c19d1205 11743 if (inst.operands[0].isreg)
fdfde340
JM
11744 {
11745 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11746 /* We have a register, so this is BLX(2). */
11747 inst.instruction |= inst.operands[0].reg << 3;
11748 }
b99bd4ef
NC
11749 else
11750 {
c19d1205 11751 /* No register. This must be BLX(1). */
2fc8bdac 11752 inst.instruction = 0xf000e800;
0855e32b 11753 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11754 }
11755}
11756
c19d1205
ZW
11757static void
11758do_t_branch (void)
b99bd4ef 11759{
0110f2b8 11760 int opcode;
dfa9f0d5 11761 int cond;
2fe88214 11762 bfd_reloc_code_real_type reloc;
dfa9f0d5 11763
e07e6e58 11764 cond = inst.cond;
5ee91343 11765 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11766
5ee91343 11767 if (in_pred_block ())
dfa9f0d5
PB
11768 {
11769 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11770 branches. */
dfa9f0d5 11771 cond = COND_ALWAYS;
dfa9f0d5
PB
11772 }
11773 else
11774 cond = inst.cond;
11775
11776 if (cond != COND_ALWAYS)
0110f2b8
PB
11777 opcode = T_MNEM_bcond;
11778 else
11779 opcode = inst.instruction;
11780
12d6b0b7
RS
11781 if (unified_syntax
11782 && (inst.size_req == 4
10960bfb
PB
11783 || (inst.size_req != 2
11784 && (inst.operands[0].hasreloc
e2b0ab59 11785 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11786 {
0110f2b8 11787 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11788 if (cond == COND_ALWAYS)
9ae92b05 11789 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11790 else
11791 {
ff8646ee
TP
11792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11793 _("selected architecture does not support "
11794 "wide conditional branch instruction"));
11795
9c2799c2 11796 gas_assert (cond != 0xF);
dfa9f0d5 11797 inst.instruction |= cond << 22;
9ae92b05 11798 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11799 }
11800 }
b99bd4ef
NC
11801 else
11802 {
0110f2b8 11803 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11804 if (cond == COND_ALWAYS)
9ae92b05 11805 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11806 else
b99bd4ef 11807 {
dfa9f0d5 11808 inst.instruction |= cond << 8;
9ae92b05 11809 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11810 }
0110f2b8
PB
11811 /* Allow section relaxation. */
11812 if (unified_syntax && inst.size_req != 2)
11813 inst.relax = opcode;
b99bd4ef 11814 }
e2b0ab59
AV
11815 inst.relocs[0].type = reloc;
11816 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11817}
11818
8884b720 11819/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11820 between the two is the maximum immediate allowed - which is passed in
8884b720 11821 RANGE. */
b99bd4ef 11822static void
8884b720 11823do_t_bkpt_hlt1 (int range)
b99bd4ef 11824{
dfa9f0d5
PB
11825 constraint (inst.cond != COND_ALWAYS,
11826 _("instruction is always unconditional"));
c19d1205 11827 if (inst.operands[0].present)
b99bd4ef 11828 {
8884b720 11829 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11830 _("immediate value out of range"));
11831 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11832 }
8884b720 11833
5ee91343 11834 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11835}
11836
11837static void
11838do_t_hlt (void)
11839{
11840 do_t_bkpt_hlt1 (63);
11841}
11842
11843static void
11844do_t_bkpt (void)
11845{
11846 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11847}
11848
11849static void
c19d1205 11850do_t_branch23 (void)
b99bd4ef 11851{
5ee91343 11852 set_pred_insn_type_last ();
0855e32b 11853 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11854
0855e32b
NS
11855 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11856 this file. We used to simply ignore the PLT reloc type here --
11857 the branch encoding is now needed to deal with TLSCALL relocs.
11858 So if we see a PLT reloc now, put it back to how it used to be to
11859 keep the preexisting behaviour. */
e2b0ab59
AV
11860 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11861 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11862
4343666d 11863#if defined(OBJ_COFF)
c19d1205
ZW
11864 /* If the destination of the branch is a defined symbol which does not have
11865 the THUMB_FUNC attribute, then we must be calling a function which has
11866 the (interfacearm) attribute. We look for the Thumb entry point to that
11867 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11868 if ( inst.relocs[0].exp.X_op == O_symbol
11869 && inst.relocs[0].exp.X_add_symbol != NULL
11870 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11871 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11872 inst.relocs[0].exp.X_add_symbol
11873 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11874#endif
90e4755a
RE
11875}
11876
11877static void
c19d1205 11878do_t_bx (void)
90e4755a 11879{
5ee91343 11880 set_pred_insn_type_last ();
c19d1205
ZW
11881 inst.instruction |= inst.operands[0].reg << 3;
11882 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11883 should cause the alignment to be checked once it is known. This is
11884 because BX PC only works if the instruction is word aligned. */
11885}
90e4755a 11886
c19d1205
ZW
11887static void
11888do_t_bxj (void)
11889{
fdfde340 11890 int Rm;
90e4755a 11891
5ee91343 11892 set_pred_insn_type_last ();
fdfde340
JM
11893 Rm = inst.operands[0].reg;
11894 reject_bad_reg (Rm);
11895 inst.instruction |= Rm << 16;
90e4755a
RE
11896}
11897
11898static void
c19d1205 11899do_t_clz (void)
90e4755a 11900{
fdfde340
JM
11901 unsigned Rd;
11902 unsigned Rm;
11903
11904 Rd = inst.operands[0].reg;
11905 Rm = inst.operands[1].reg;
11906
11907 reject_bad_reg (Rd);
11908 reject_bad_reg (Rm);
11909
11910 inst.instruction |= Rd << 8;
11911 inst.instruction |= Rm << 16;
11912 inst.instruction |= Rm;
c19d1205 11913}
90e4755a 11914
91d8b670
JG
11915static void
11916do_t_csdb (void)
11917{
5ee91343 11918 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11919}
11920
dfa9f0d5
PB
11921static void
11922do_t_cps (void)
11923{
5ee91343 11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11925 inst.instruction |= inst.operands[0].imm;
11926}
11927
c19d1205
ZW
11928static void
11929do_t_cpsi (void)
11930{
5ee91343 11931 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11932 if (unified_syntax
62b3e311
PB
11933 && (inst.operands[1].present || inst.size_req == 4)
11934 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11935 {
c19d1205
ZW
11936 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11937 inst.instruction = 0xf3af8000;
11938 inst.instruction |= imod << 9;
11939 inst.instruction |= inst.operands[0].imm << 5;
11940 if (inst.operands[1].present)
11941 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11942 }
c19d1205 11943 else
90e4755a 11944 {
62b3e311
PB
11945 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11946 && (inst.operands[0].imm & 4),
11947 _("selected processor does not support 'A' form "
11948 "of this instruction"));
11949 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11950 _("Thumb does not support the 2-argument "
11951 "form of this instruction"));
11952 inst.instruction |= inst.operands[0].imm;
90e4755a 11953 }
90e4755a
RE
11954}
11955
c19d1205
ZW
11956/* THUMB CPY instruction (argument parse). */
11957
90e4755a 11958static void
c19d1205 11959do_t_cpy (void)
90e4755a 11960{
c19d1205 11961 if (inst.size_req == 4)
90e4755a 11962 {
c19d1205
ZW
11963 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11964 inst.instruction |= inst.operands[0].reg << 8;
11965 inst.instruction |= inst.operands[1].reg;
90e4755a 11966 }
c19d1205 11967 else
90e4755a 11968 {
c19d1205
ZW
11969 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11970 inst.instruction |= (inst.operands[0].reg & 0x7);
11971 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11972 }
90e4755a
RE
11973}
11974
90e4755a 11975static void
25fe350b 11976do_t_cbz (void)
90e4755a 11977{
5ee91343 11978 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11979 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11980 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11981 inst.relocs[0].pc_rel = 1;
11982 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11983}
90e4755a 11984
62b3e311
PB
11985static void
11986do_t_dbg (void)
11987{
11988 inst.instruction |= inst.operands[0].imm;
11989}
11990
11991static void
11992do_t_div (void)
11993{
fdfde340
JM
11994 unsigned Rd, Rn, Rm;
11995
11996 Rd = inst.operands[0].reg;
11997 Rn = (inst.operands[1].present
11998 ? inst.operands[1].reg : Rd);
11999 Rm = inst.operands[2].reg;
12000
12001 reject_bad_reg (Rd);
12002 reject_bad_reg (Rn);
12003 reject_bad_reg (Rm);
12004
12005 inst.instruction |= Rd << 8;
12006 inst.instruction |= Rn << 16;
12007 inst.instruction |= Rm;
62b3e311
PB
12008}
12009
c19d1205
ZW
12010static void
12011do_t_hint (void)
12012{
12013 if (unified_syntax && inst.size_req == 4)
12014 inst.instruction = THUMB_OP32 (inst.instruction);
12015 else
12016 inst.instruction = THUMB_OP16 (inst.instruction);
12017}
90e4755a 12018
c19d1205
ZW
12019static void
12020do_t_it (void)
12021{
12022 unsigned int cond = inst.operands[0].imm;
e27ec89e 12023
5ee91343
AV
12024 set_pred_insn_type (IT_INSN);
12025 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12026 now_pred.cc = cond;
12027 now_pred.warn_deprecated = FALSE;
12028 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12029
12030 /* If the condition is a negative condition, invert the mask. */
c19d1205 12031 if ((cond & 0x1) == 0x0)
90e4755a 12032 {
c19d1205 12033 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12034
c19d1205 12035 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12036 {
12037 /* No conversion needed. */
5ee91343 12038 now_pred.block_length = 1;
5a01bb1d 12039 }
c19d1205 12040 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12041 {
12042 mask ^= 0x8;
5ee91343 12043 now_pred.block_length = 2;
5a01bb1d 12044 }
e27ec89e 12045 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12046 {
12047 mask ^= 0xC;
5ee91343 12048 now_pred.block_length = 3;
5a01bb1d 12049 }
c19d1205 12050 else
5a01bb1d
MGD
12051 {
12052 mask ^= 0xE;
5ee91343 12053 now_pred.block_length = 4;
5a01bb1d 12054 }
90e4755a 12055
e27ec89e
PB
12056 inst.instruction &= 0xfff0;
12057 inst.instruction |= mask;
c19d1205 12058 }
90e4755a 12059
c19d1205
ZW
12060 inst.instruction |= cond << 4;
12061}
90e4755a 12062
3c707909
PB
12063/* Helper function used for both push/pop and ldm/stm. */
12064static void
4b5a202f
AV
12065encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12066 bfd_boolean writeback)
3c707909 12067{
4b5a202f 12068 bfd_boolean load, store;
3c707909 12069
4b5a202f
AV
12070 gas_assert (base != -1 || !do_io);
12071 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12072 store = do_io && !load;
3c707909
PB
12073
12074 if (mask & (1 << 13))
12075 inst.error = _("SP not allowed in register list");
1e5b0379 12076
4b5a202f 12077 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12078 && writeback)
12079 inst.error = _("having the base register in the register list when "
12080 "using write back is UNPREDICTABLE");
12081
3c707909
PB
12082 if (load)
12083 {
e07e6e58 12084 if (mask & (1 << 15))
477330fc
RM
12085 {
12086 if (mask & (1 << 14))
12087 inst.error = _("LR and PC should not both be in register list");
12088 else
5ee91343 12089 set_pred_insn_type_last ();
477330fc 12090 }
3c707909 12091 }
4b5a202f 12092 else if (store)
3c707909
PB
12093 {
12094 if (mask & (1 << 15))
12095 inst.error = _("PC not allowed in register list");
3c707909
PB
12096 }
12097
4b5a202f 12098 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12099 {
12100 /* Single register transfers implemented as str/ldr. */
12101 if (writeback)
12102 {
12103 if (inst.instruction & (1 << 23))
12104 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12105 else
12106 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12107 }
12108 else
12109 {
12110 if (inst.instruction & (1 << 23))
12111 inst.instruction = 0x00800000; /* ia -> [base] */
12112 else
12113 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12114 }
12115
12116 inst.instruction |= 0xf8400000;
12117 if (load)
12118 inst.instruction |= 0x00100000;
12119
5f4273c7 12120 mask = ffs (mask) - 1;
3c707909
PB
12121 mask <<= 12;
12122 }
12123 else if (writeback)
12124 inst.instruction |= WRITE_BACK;
12125
12126 inst.instruction |= mask;
4b5a202f
AV
12127 if (do_io)
12128 inst.instruction |= base << 16;
3c707909
PB
12129}
12130
c19d1205
ZW
12131static void
12132do_t_ldmstm (void)
12133{
12134 /* This really doesn't seem worth it. */
e2b0ab59 12135 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12136 _("expression too complex"));
12137 constraint (inst.operands[1].writeback,
12138 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12139
c19d1205
ZW
12140 if (unified_syntax)
12141 {
3c707909
PB
12142 bfd_boolean narrow;
12143 unsigned mask;
12144
12145 narrow = FALSE;
c19d1205
ZW
12146 /* See if we can use a 16-bit instruction. */
12147 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12148 && inst.size_req != 4
3c707909 12149 && !(inst.operands[1].imm & ~0xff))
90e4755a 12150 {
3c707909 12151 mask = 1 << inst.operands[0].reg;
90e4755a 12152
eab4f823 12153 if (inst.operands[0].reg <= 7)
90e4755a 12154 {
3c707909 12155 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12156 ? inst.operands[0].writeback
12157 : (inst.operands[0].writeback
12158 == !(inst.operands[1].imm & mask)))
477330fc 12159 {
eab4f823
MGD
12160 if (inst.instruction == T_MNEM_stmia
12161 && (inst.operands[1].imm & mask)
12162 && (inst.operands[1].imm & (mask - 1)))
12163 as_warn (_("value stored for r%d is UNKNOWN"),
12164 inst.operands[0].reg);
3c707909 12165
eab4f823
MGD
12166 inst.instruction = THUMB_OP16 (inst.instruction);
12167 inst.instruction |= inst.operands[0].reg << 8;
12168 inst.instruction |= inst.operands[1].imm;
12169 narrow = TRUE;
12170 }
12171 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12172 {
12173 /* This means 1 register in reg list one of 3 situations:
12174 1. Instruction is stmia, but without writeback.
12175 2. lmdia without writeback, but with Rn not in
477330fc 12176 reglist.
eab4f823
MGD
12177 3. ldmia with writeback, but with Rn in reglist.
12178 Case 3 is UNPREDICTABLE behaviour, so we handle
12179 case 1 and 2 which can be converted into a 16-bit
12180 str or ldr. The SP cases are handled below. */
12181 unsigned long opcode;
12182 /* First, record an error for Case 3. */
12183 if (inst.operands[1].imm & mask
12184 && inst.operands[0].writeback)
fa94de6b 12185 inst.error =
eab4f823
MGD
12186 _("having the base register in the register list when "
12187 "using write back is UNPREDICTABLE");
fa94de6b
RM
12188
12189 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12190 : T_MNEM_ldr);
12191 inst.instruction = THUMB_OP16 (opcode);
12192 inst.instruction |= inst.operands[0].reg << 3;
12193 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12194 narrow = TRUE;
12195 }
90e4755a 12196 }
eab4f823 12197 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12198 {
eab4f823
MGD
12199 if (inst.operands[0].writeback)
12200 {
fa94de6b 12201 inst.instruction =
eab4f823 12202 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12203 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12204 inst.instruction |= inst.operands[1].imm;
477330fc 12205 narrow = TRUE;
eab4f823
MGD
12206 }
12207 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12208 {
fa94de6b 12209 inst.instruction =
eab4f823 12210 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12211 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12212 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12213 narrow = TRUE;
eab4f823 12214 }
90e4755a 12215 }
3c707909
PB
12216 }
12217
12218 if (!narrow)
12219 {
c19d1205
ZW
12220 if (inst.instruction < 0xffff)
12221 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12222
4b5a202f
AV
12223 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12224 inst.operands[1].imm,
12225 inst.operands[0].writeback);
90e4755a
RE
12226 }
12227 }
c19d1205 12228 else
90e4755a 12229 {
c19d1205
ZW
12230 constraint (inst.operands[0].reg > 7
12231 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12232 constraint (inst.instruction != T_MNEM_ldmia
12233 && inst.instruction != T_MNEM_stmia,
12234 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12235 if (inst.instruction == T_MNEM_stmia)
f03698e6 12236 {
c19d1205
ZW
12237 if (!inst.operands[0].writeback)
12238 as_warn (_("this instruction will write back the base register"));
12239 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12240 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12241 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12242 inst.operands[0].reg);
f03698e6 12243 }
c19d1205 12244 else
90e4755a 12245 {
c19d1205
ZW
12246 if (!inst.operands[0].writeback
12247 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12248 as_warn (_("this instruction will write back the base register"));
12249 else if (inst.operands[0].writeback
12250 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12251 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12252 }
12253
c19d1205
ZW
12254 inst.instruction = THUMB_OP16 (inst.instruction);
12255 inst.instruction |= inst.operands[0].reg << 8;
12256 inst.instruction |= inst.operands[1].imm;
12257 }
12258}
e28cd48c 12259
c19d1205
ZW
12260static void
12261do_t_ldrex (void)
12262{
12263 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12264 || inst.operands[1].postind || inst.operands[1].writeback
12265 || inst.operands[1].immisreg || inst.operands[1].shifted
12266 || inst.operands[1].negative,
01cfc07f 12267 BAD_ADDR_MODE);
e28cd48c 12268
5be8be5d
DG
12269 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12270
c19d1205
ZW
12271 inst.instruction |= inst.operands[0].reg << 12;
12272 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12273 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12274}
e28cd48c 12275
c19d1205
ZW
12276static void
12277do_t_ldrexd (void)
12278{
12279 if (!inst.operands[1].present)
1cac9012 12280 {
c19d1205
ZW
12281 constraint (inst.operands[0].reg == REG_LR,
12282 _("r14 not allowed as first register "
12283 "when second register is omitted"));
12284 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12285 }
c19d1205
ZW
12286 constraint (inst.operands[0].reg == inst.operands[1].reg,
12287 BAD_OVERLAP);
b99bd4ef 12288
c19d1205
ZW
12289 inst.instruction |= inst.operands[0].reg << 12;
12290 inst.instruction |= inst.operands[1].reg << 8;
12291 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12292}
12293
12294static void
c19d1205 12295do_t_ldst (void)
b99bd4ef 12296{
0110f2b8
PB
12297 unsigned long opcode;
12298 int Rn;
12299
e07e6e58
NC
12300 if (inst.operands[0].isreg
12301 && !inst.operands[0].preind
12302 && inst.operands[0].reg == REG_PC)
5ee91343 12303 set_pred_insn_type_last ();
e07e6e58 12304
0110f2b8 12305 opcode = inst.instruction;
c19d1205 12306 if (unified_syntax)
b99bd4ef 12307 {
53365c0d
PB
12308 if (!inst.operands[1].isreg)
12309 {
12310 if (opcode <= 0xffff)
12311 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12312 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12313 return;
12314 }
0110f2b8
PB
12315 if (inst.operands[1].isreg
12316 && !inst.operands[1].writeback
c19d1205
ZW
12317 && !inst.operands[1].shifted && !inst.operands[1].postind
12318 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12319 && opcode <= 0xffff
12320 && inst.size_req != 4)
c19d1205 12321 {
0110f2b8
PB
12322 /* Insn may have a 16-bit form. */
12323 Rn = inst.operands[1].reg;
12324 if (inst.operands[1].immisreg)
12325 {
12326 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12327 /* [Rn, Rik] */
0110f2b8
PB
12328 if (Rn <= 7 && inst.operands[1].imm <= 7)
12329 goto op16;
5be8be5d
DG
12330 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12331 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12332 }
12333 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12334 && opcode != T_MNEM_ldrsb)
12335 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12336 || (Rn == REG_SP && opcode == T_MNEM_str))
12337 {
12338 /* [Rn, #const] */
12339 if (Rn > 7)
12340 {
12341 if (Rn == REG_PC)
12342 {
e2b0ab59 12343 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12344 opcode = T_MNEM_ldr_pc2;
12345 else
12346 opcode = T_MNEM_ldr_pc;
12347 }
12348 else
12349 {
12350 if (opcode == T_MNEM_ldr)
12351 opcode = T_MNEM_ldr_sp;
12352 else
12353 opcode = T_MNEM_str_sp;
12354 }
12355 inst.instruction = inst.operands[0].reg << 8;
12356 }
12357 else
12358 {
12359 inst.instruction = inst.operands[0].reg;
12360 inst.instruction |= inst.operands[1].reg << 3;
12361 }
12362 inst.instruction |= THUMB_OP16 (opcode);
12363 if (inst.size_req == 2)
e2b0ab59 12364 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12365 else
12366 inst.relax = opcode;
12367 return;
12368 }
c19d1205 12369 }
0110f2b8 12370 /* Definitely a 32-bit variant. */
5be8be5d 12371
8d67f500
NC
12372 /* Warning for Erratum 752419. */
12373 if (opcode == T_MNEM_ldr
12374 && inst.operands[0].reg == REG_SP
12375 && inst.operands[1].writeback == 1
12376 && !inst.operands[1].immisreg)
12377 {
12378 if (no_cpu_selected ()
12379 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12380 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12381 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12382 as_warn (_("This instruction may be unpredictable "
12383 "if executed on M-profile cores "
12384 "with interrupts enabled."));
12385 }
12386
5be8be5d 12387 /* Do some validations regarding addressing modes. */
1be5fd2e 12388 if (inst.operands[1].immisreg)
5be8be5d
DG
12389 reject_bad_reg (inst.operands[1].imm);
12390
1be5fd2e
NC
12391 constraint (inst.operands[1].writeback == 1
12392 && inst.operands[0].reg == inst.operands[1].reg,
12393 BAD_OVERLAP);
12394
0110f2b8 12395 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12396 inst.instruction |= inst.operands[0].reg << 12;
12397 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12398 check_ldr_r15_aligned ();
b99bd4ef
NC
12399 return;
12400 }
12401
c19d1205
ZW
12402 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12403
12404 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12405 {
c19d1205
ZW
12406 /* Only [Rn,Rm] is acceptable. */
12407 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12408 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12409 || inst.operands[1].postind || inst.operands[1].shifted
12410 || inst.operands[1].negative,
12411 _("Thumb does not support this addressing mode"));
12412 inst.instruction = THUMB_OP16 (inst.instruction);
12413 goto op16;
b99bd4ef 12414 }
5f4273c7 12415
c19d1205
ZW
12416 inst.instruction = THUMB_OP16 (inst.instruction);
12417 if (!inst.operands[1].isreg)
8335d6aa 12418 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12419 return;
b99bd4ef 12420
c19d1205
ZW
12421 constraint (!inst.operands[1].preind
12422 || inst.operands[1].shifted
12423 || inst.operands[1].writeback,
12424 _("Thumb does not support this addressing mode"));
12425 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12426 {
c19d1205
ZW
12427 constraint (inst.instruction & 0x0600,
12428 _("byte or halfword not valid for base register"));
12429 constraint (inst.operands[1].reg == REG_PC
12430 && !(inst.instruction & THUMB_LOAD_BIT),
12431 _("r15 based store not allowed"));
12432 constraint (inst.operands[1].immisreg,
12433 _("invalid base register for register offset"));
b99bd4ef 12434
c19d1205
ZW
12435 if (inst.operands[1].reg == REG_PC)
12436 inst.instruction = T_OPCODE_LDR_PC;
12437 else if (inst.instruction & THUMB_LOAD_BIT)
12438 inst.instruction = T_OPCODE_LDR_SP;
12439 else
12440 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12441
c19d1205 12442 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12444 return;
12445 }
90e4755a 12446
c19d1205
ZW
12447 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12448 if (!inst.operands[1].immisreg)
12449 {
12450 /* Immediate offset. */
12451 inst.instruction |= inst.operands[0].reg;
12452 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12453 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12454 return;
12455 }
90e4755a 12456
c19d1205
ZW
12457 /* Register offset. */
12458 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12459 constraint (inst.operands[1].negative,
12460 _("Thumb does not support this addressing mode"));
90e4755a 12461
c19d1205
ZW
12462 op16:
12463 switch (inst.instruction)
12464 {
12465 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12466 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12467 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12468 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12469 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12470 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12471 case 0x5600 /* ldrsb */:
12472 case 0x5e00 /* ldrsh */: break;
12473 default: abort ();
12474 }
90e4755a 12475
c19d1205
ZW
12476 inst.instruction |= inst.operands[0].reg;
12477 inst.instruction |= inst.operands[1].reg << 3;
12478 inst.instruction |= inst.operands[1].imm << 6;
12479}
90e4755a 12480
c19d1205
ZW
12481static void
12482do_t_ldstd (void)
12483{
12484 if (!inst.operands[1].present)
b99bd4ef 12485 {
c19d1205
ZW
12486 inst.operands[1].reg = inst.operands[0].reg + 1;
12487 constraint (inst.operands[0].reg == REG_LR,
12488 _("r14 not allowed here"));
bd340a04 12489 constraint (inst.operands[0].reg == REG_R12,
477330fc 12490 _("r12 not allowed here"));
b99bd4ef 12491 }
bd340a04
MGD
12492
12493 if (inst.operands[2].writeback
12494 && (inst.operands[0].reg == inst.operands[2].reg
12495 || inst.operands[1].reg == inst.operands[2].reg))
12496 as_warn (_("base register written back, and overlaps "
477330fc 12497 "one of transfer registers"));
bd340a04 12498
c19d1205
ZW
12499 inst.instruction |= inst.operands[0].reg << 12;
12500 inst.instruction |= inst.operands[1].reg << 8;
12501 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12502}
12503
c19d1205
ZW
12504static void
12505do_t_ldstt (void)
12506{
12507 inst.instruction |= inst.operands[0].reg << 12;
12508 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12509}
a737bd4d 12510
b99bd4ef 12511static void
c19d1205 12512do_t_mla (void)
b99bd4ef 12513{
fdfde340 12514 unsigned Rd, Rn, Rm, Ra;
c921be7d 12515
fdfde340
JM
12516 Rd = inst.operands[0].reg;
12517 Rn = inst.operands[1].reg;
12518 Rm = inst.operands[2].reg;
12519 Ra = inst.operands[3].reg;
12520
12521 reject_bad_reg (Rd);
12522 reject_bad_reg (Rn);
12523 reject_bad_reg (Rm);
12524 reject_bad_reg (Ra);
12525
12526 inst.instruction |= Rd << 8;
12527 inst.instruction |= Rn << 16;
12528 inst.instruction |= Rm;
12529 inst.instruction |= Ra << 12;
c19d1205 12530}
b99bd4ef 12531
c19d1205
ZW
12532static void
12533do_t_mlal (void)
12534{
fdfde340
JM
12535 unsigned RdLo, RdHi, Rn, Rm;
12536
12537 RdLo = inst.operands[0].reg;
12538 RdHi = inst.operands[1].reg;
12539 Rn = inst.operands[2].reg;
12540 Rm = inst.operands[3].reg;
12541
12542 reject_bad_reg (RdLo);
12543 reject_bad_reg (RdHi);
12544 reject_bad_reg (Rn);
12545 reject_bad_reg (Rm);
12546
12547 inst.instruction |= RdLo << 12;
12548 inst.instruction |= RdHi << 8;
12549 inst.instruction |= Rn << 16;
12550 inst.instruction |= Rm;
c19d1205 12551}
b99bd4ef 12552
c19d1205
ZW
12553static void
12554do_t_mov_cmp (void)
12555{
fdfde340
JM
12556 unsigned Rn, Rm;
12557
12558 Rn = inst.operands[0].reg;
12559 Rm = inst.operands[1].reg;
12560
e07e6e58 12561 if (Rn == REG_PC)
5ee91343 12562 set_pred_insn_type_last ();
e07e6e58 12563
c19d1205 12564 if (unified_syntax)
b99bd4ef 12565 {
c19d1205
ZW
12566 int r0off = (inst.instruction == T_MNEM_mov
12567 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12568 unsigned long opcode;
3d388997
PB
12569 bfd_boolean narrow;
12570 bfd_boolean low_regs;
12571
fdfde340 12572 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12573 opcode = inst.instruction;
5ee91343 12574 if (in_pred_block ())
0110f2b8 12575 narrow = opcode != T_MNEM_movs;
3d388997 12576 else
0110f2b8 12577 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12578 if (inst.size_req == 4
12579 || inst.operands[1].shifted)
12580 narrow = FALSE;
12581
efd81785
PB
12582 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12583 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12584 && !inst.operands[1].shifted
fdfde340
JM
12585 && Rn == REG_PC
12586 && Rm == REG_LR)
efd81785
PB
12587 {
12588 inst.instruction = T2_SUBS_PC_LR;
12589 return;
12590 }
12591
fdfde340
JM
12592 if (opcode == T_MNEM_cmp)
12593 {
12594 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12595 if (narrow)
12596 {
12597 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12598 but valid. */
12599 warn_deprecated_sp (Rm);
12600 /* R15 was documented as a valid choice for Rm in ARMv6,
12601 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12602 tools reject R15, so we do too. */
12603 constraint (Rm == REG_PC, BAD_PC);
12604 }
12605 else
12606 reject_bad_reg (Rm);
fdfde340
JM
12607 }
12608 else if (opcode == T_MNEM_mov
12609 || opcode == T_MNEM_movs)
12610 {
12611 if (inst.operands[1].isreg)
12612 {
12613 if (opcode == T_MNEM_movs)
12614 {
12615 reject_bad_reg (Rn);
12616 reject_bad_reg (Rm);
12617 }
76fa04a4
MGD
12618 else if (narrow)
12619 {
12620 /* This is mov.n. */
12621 if ((Rn == REG_SP || Rn == REG_PC)
12622 && (Rm == REG_SP || Rm == REG_PC))
12623 {
5c3696f8 12624 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12625 "deprecated when r%u is the destination "
12626 "register."), Rm, Rn);
12627 }
12628 }
12629 else
12630 {
12631 /* This is mov.w. */
12632 constraint (Rn == REG_PC, BAD_PC);
12633 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12634 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12635 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12636 }
fdfde340
JM
12637 }
12638 else
12639 reject_bad_reg (Rn);
12640 }
12641
c19d1205
ZW
12642 if (!inst.operands[1].isreg)
12643 {
0110f2b8 12644 /* Immediate operand. */
5ee91343 12645 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12646 narrow = 0;
12647 if (low_regs && narrow)
12648 {
12649 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12650 inst.instruction |= Rn << 8;
e2b0ab59
AV
12651 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12652 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12653 {
a9f02af8 12654 if (inst.size_req == 2)
e2b0ab59 12655 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12656 else
12657 inst.relax = opcode;
72d98d16 12658 }
0110f2b8
PB
12659 }
12660 else
12661 {
e2b0ab59
AV
12662 constraint ((inst.relocs[0].type
12663 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12664 && (inst.relocs[0].type
12665 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12666 THUMB1_RELOC_ONLY);
12667
0110f2b8
PB
12668 inst.instruction = THUMB_OP32 (inst.instruction);
12669 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12670 inst.instruction |= Rn << r0off;
e2b0ab59 12671 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12672 }
c19d1205 12673 }
728ca7c9
PB
12674 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12675 && (inst.instruction == T_MNEM_mov
12676 || inst.instruction == T_MNEM_movs))
12677 {
12678 /* Register shifts are encoded as separate shift instructions. */
12679 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12680
5ee91343 12681 if (in_pred_block ())
728ca7c9
PB
12682 narrow = !flags;
12683 else
12684 narrow = flags;
12685
12686 if (inst.size_req == 4)
12687 narrow = FALSE;
12688
12689 if (!low_regs || inst.operands[1].imm > 7)
12690 narrow = FALSE;
12691
fdfde340 12692 if (Rn != Rm)
728ca7c9
PB
12693 narrow = FALSE;
12694
12695 switch (inst.operands[1].shift_kind)
12696 {
12697 case SHIFT_LSL:
12698 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12699 break;
12700 case SHIFT_ASR:
12701 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12702 break;
12703 case SHIFT_LSR:
12704 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12705 break;
12706 case SHIFT_ROR:
12707 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12708 break;
12709 default:
5f4273c7 12710 abort ();
728ca7c9
PB
12711 }
12712
12713 inst.instruction = opcode;
12714 if (narrow)
12715 {
fdfde340 12716 inst.instruction |= Rn;
728ca7c9
PB
12717 inst.instruction |= inst.operands[1].imm << 3;
12718 }
12719 else
12720 {
12721 if (flags)
12722 inst.instruction |= CONDS_BIT;
12723
fdfde340
JM
12724 inst.instruction |= Rn << 8;
12725 inst.instruction |= Rm << 16;
728ca7c9
PB
12726 inst.instruction |= inst.operands[1].imm;
12727 }
12728 }
3d388997 12729 else if (!narrow)
c19d1205 12730 {
728ca7c9
PB
12731 /* Some mov with immediate shift have narrow variants.
12732 Register shifts are handled above. */
12733 if (low_regs && inst.operands[1].shifted
12734 && (inst.instruction == T_MNEM_mov
12735 || inst.instruction == T_MNEM_movs))
12736 {
5ee91343 12737 if (in_pred_block ())
728ca7c9
PB
12738 narrow = (inst.instruction == T_MNEM_mov);
12739 else
12740 narrow = (inst.instruction == T_MNEM_movs);
12741 }
12742
12743 if (narrow)
12744 {
12745 switch (inst.operands[1].shift_kind)
12746 {
12747 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12748 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12749 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12750 default: narrow = FALSE; break;
12751 }
12752 }
12753
12754 if (narrow)
12755 {
fdfde340
JM
12756 inst.instruction |= Rn;
12757 inst.instruction |= Rm << 3;
e2b0ab59 12758 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12759 }
12760 else
12761 {
12762 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12763 inst.instruction |= Rn << r0off;
728ca7c9
PB
12764 encode_thumb32_shifted_operand (1);
12765 }
c19d1205
ZW
12766 }
12767 else
12768 switch (inst.instruction)
12769 {
12770 case T_MNEM_mov:
837b3435 12771 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12772 results. Don't allow this. */
12773 if (low_regs)
12774 {
12775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12776 "MOV Rd, Rs with two low registers is not "
12777 "permitted on this architecture");
fa94de6b 12778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12779 arm_ext_v6);
12780 }
12781
c19d1205 12782 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12783 inst.instruction |= (Rn & 0x8) << 4;
12784 inst.instruction |= (Rn & 0x7);
12785 inst.instruction |= Rm << 3;
c19d1205 12786 break;
b99bd4ef 12787
c19d1205
ZW
12788 case T_MNEM_movs:
12789 /* We know we have low registers at this point.
941a8a52
MGD
12790 Generate LSLS Rd, Rs, #0. */
12791 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12792 inst.instruction |= Rn;
12793 inst.instruction |= Rm << 3;
c19d1205
ZW
12794 break;
12795
12796 case T_MNEM_cmp:
3d388997 12797 if (low_regs)
c19d1205
ZW
12798 {
12799 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12800 inst.instruction |= Rn;
12801 inst.instruction |= Rm << 3;
c19d1205
ZW
12802 }
12803 else
12804 {
12805 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12806 inst.instruction |= (Rn & 0x8) << 4;
12807 inst.instruction |= (Rn & 0x7);
12808 inst.instruction |= Rm << 3;
c19d1205
ZW
12809 }
12810 break;
12811 }
b99bd4ef
NC
12812 return;
12813 }
12814
c19d1205 12815 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12816
12817 /* PR 10443: Do not silently ignore shifted operands. */
12818 constraint (inst.operands[1].shifted,
12819 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12820
c19d1205 12821 if (inst.operands[1].isreg)
b99bd4ef 12822 {
fdfde340 12823 if (Rn < 8 && Rm < 8)
b99bd4ef 12824 {
c19d1205
ZW
12825 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12826 since a MOV instruction produces unpredictable results. */
12827 if (inst.instruction == T_OPCODE_MOV_I8)
12828 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12829 else
c19d1205 12830 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12831
fdfde340
JM
12832 inst.instruction |= Rn;
12833 inst.instruction |= Rm << 3;
b99bd4ef
NC
12834 }
12835 else
12836 {
c19d1205
ZW
12837 if (inst.instruction == T_OPCODE_MOV_I8)
12838 inst.instruction = T_OPCODE_MOV_HR;
12839 else
12840 inst.instruction = T_OPCODE_CMP_HR;
12841 do_t_cpy ();
b99bd4ef
NC
12842 }
12843 }
c19d1205 12844 else
b99bd4ef 12845 {
fdfde340 12846 constraint (Rn > 7,
c19d1205 12847 _("only lo regs allowed with immediate"));
fdfde340 12848 inst.instruction |= Rn << 8;
e2b0ab59 12849 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12850 }
12851}
b99bd4ef 12852
c19d1205
ZW
12853static void
12854do_t_mov16 (void)
12855{
fdfde340 12856 unsigned Rd;
b6895b4f
PB
12857 bfd_vma imm;
12858 bfd_boolean top;
12859
12860 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12861 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12862 {
33eaf5de 12863 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12865 }
e2b0ab59 12866 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12867 {
33eaf5de 12868 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12869 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12870 }
12871
fdfde340
JM
12872 Rd = inst.operands[0].reg;
12873 reject_bad_reg (Rd);
12874
12875 inst.instruction |= Rd << 8;
e2b0ab59 12876 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12877 {
e2b0ab59 12878 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12879 inst.instruction |= (imm & 0xf000) << 4;
12880 inst.instruction |= (imm & 0x0800) << 15;
12881 inst.instruction |= (imm & 0x0700) << 4;
12882 inst.instruction |= (imm & 0x00ff);
12883 }
c19d1205 12884}
b99bd4ef 12885
c19d1205
ZW
12886static void
12887do_t_mvn_tst (void)
12888{
fdfde340 12889 unsigned Rn, Rm;
c921be7d 12890
fdfde340
JM
12891 Rn = inst.operands[0].reg;
12892 Rm = inst.operands[1].reg;
12893
12894 if (inst.instruction == T_MNEM_cmp
12895 || inst.instruction == T_MNEM_cmn)
12896 constraint (Rn == REG_PC, BAD_PC);
12897 else
12898 reject_bad_reg (Rn);
12899 reject_bad_reg (Rm);
12900
c19d1205
ZW
12901 if (unified_syntax)
12902 {
12903 int r0off = (inst.instruction == T_MNEM_mvn
12904 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12905 bfd_boolean narrow;
12906
12907 if (inst.size_req == 4
12908 || inst.instruction > 0xffff
12909 || inst.operands[1].shifted
fdfde340 12910 || Rn > 7 || Rm > 7)
3d388997 12911 narrow = FALSE;
fe8b4cc3
KT
12912 else if (inst.instruction == T_MNEM_cmn
12913 || inst.instruction == T_MNEM_tst)
3d388997
PB
12914 narrow = TRUE;
12915 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12916 narrow = !in_pred_block ();
3d388997 12917 else
5ee91343 12918 narrow = in_pred_block ();
3d388997 12919
c19d1205 12920 if (!inst.operands[1].isreg)
b99bd4ef 12921 {
c19d1205
ZW
12922 /* For an immediate, we always generate a 32-bit opcode;
12923 section relaxation will shrink it later if possible. */
12924 if (inst.instruction < 0xffff)
12925 inst.instruction = THUMB_OP32 (inst.instruction);
12926 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12927 inst.instruction |= Rn << r0off;
e2b0ab59 12928 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12929 }
c19d1205 12930 else
b99bd4ef 12931 {
c19d1205 12932 /* See if we can do this with a 16-bit instruction. */
3d388997 12933 if (narrow)
b99bd4ef 12934 {
c19d1205 12935 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12936 inst.instruction |= Rn;
12937 inst.instruction |= Rm << 3;
b99bd4ef 12938 }
c19d1205 12939 else
b99bd4ef 12940 {
c19d1205
ZW
12941 constraint (inst.operands[1].shifted
12942 && inst.operands[1].immisreg,
12943 _("shift must be constant"));
12944 if (inst.instruction < 0xffff)
12945 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12946 inst.instruction |= Rn << r0off;
c19d1205 12947 encode_thumb32_shifted_operand (1);
b99bd4ef 12948 }
b99bd4ef
NC
12949 }
12950 }
12951 else
12952 {
c19d1205
ZW
12953 constraint (inst.instruction > 0xffff
12954 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12955 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12956 _("unshifted register required"));
fdfde340 12957 constraint (Rn > 7 || Rm > 7,
c19d1205 12958 BAD_HIREG);
b99bd4ef 12959
c19d1205 12960 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12961 inst.instruction |= Rn;
12962 inst.instruction |= Rm << 3;
b99bd4ef 12963 }
b99bd4ef
NC
12964}
12965
b05fe5cf 12966static void
c19d1205 12967do_t_mrs (void)
b05fe5cf 12968{
fdfde340 12969 unsigned Rd;
037e8744
JB
12970
12971 if (do_vfp_nsyn_mrs () == SUCCESS)
12972 return;
12973
90ec0d68
MGD
12974 Rd = inst.operands[0].reg;
12975 reject_bad_reg (Rd);
12976 inst.instruction |= Rd << 8;
12977
12978 if (inst.operands[1].isreg)
62b3e311 12979 {
90ec0d68
MGD
12980 unsigned br = inst.operands[1].reg;
12981 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12982 as_bad (_("bad register for mrs"));
12983
12984 inst.instruction |= br & (0xf << 16);
12985 inst.instruction |= (br & 0x300) >> 4;
12986 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12987 }
12988 else
12989 {
90ec0d68 12990 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12991
d2cd1205 12992 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12993 {
12994 /* PR gas/12698: The constraint is only applied for m_profile.
12995 If the user has specified -march=all, we want to ignore it as
12996 we are building for any CPU type, including non-m variants. */
823d2571
TG
12997 bfd_boolean m_profile =
12998 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12999 constraint ((flags != 0) && m_profile, _("selected processor does "
13000 "not support requested special purpose register"));
13001 }
90ec0d68 13002 else
d2cd1205
JB
13003 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13004 devices). */
13005 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13006 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13007
90ec0d68
MGD
13008 inst.instruction |= (flags & SPSR_BIT) >> 2;
13009 inst.instruction |= inst.operands[1].imm & 0xff;
13010 inst.instruction |= 0xf0000;
13011 }
c19d1205 13012}
b05fe5cf 13013
c19d1205
ZW
13014static void
13015do_t_msr (void)
13016{
62b3e311 13017 int flags;
fdfde340 13018 unsigned Rn;
62b3e311 13019
037e8744
JB
13020 if (do_vfp_nsyn_msr () == SUCCESS)
13021 return;
13022
c19d1205
ZW
13023 constraint (!inst.operands[1].isreg,
13024 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13025
13026 if (inst.operands[0].isreg)
13027 flags = (int)(inst.operands[0].reg);
13028 else
13029 flags = inst.operands[0].imm;
13030
d2cd1205 13031 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13032 {
d2cd1205
JB
13033 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13034
1a43faaf 13035 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13036 If the user has specified -march=all, we want to ignore it as
13037 we are building for any CPU type, including non-m variants. */
823d2571
TG
13038 bfd_boolean m_profile =
13039 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13040 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13041 && (bits & ~(PSR_s | PSR_f)) != 0)
13042 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13043 && bits != PSR_f)) && m_profile,
13044 _("selected processor does not support requested special "
13045 "purpose register"));
62b3e311
PB
13046 }
13047 else
d2cd1205
JB
13048 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13049 "requested special purpose register"));
c921be7d 13050
fdfde340
JM
13051 Rn = inst.operands[1].reg;
13052 reject_bad_reg (Rn);
13053
62b3e311 13054 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13055 inst.instruction |= (flags & 0xf0000) >> 8;
13056 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13057 inst.instruction |= (flags & 0xff);
fdfde340 13058 inst.instruction |= Rn << 16;
c19d1205 13059}
b05fe5cf 13060
c19d1205
ZW
13061static void
13062do_t_mul (void)
13063{
17828f45 13064 bfd_boolean narrow;
fdfde340 13065 unsigned Rd, Rn, Rm;
17828f45 13066
c19d1205
ZW
13067 if (!inst.operands[2].present)
13068 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13069
fdfde340
JM
13070 Rd = inst.operands[0].reg;
13071 Rn = inst.operands[1].reg;
13072 Rm = inst.operands[2].reg;
13073
17828f45 13074 if (unified_syntax)
b05fe5cf 13075 {
17828f45 13076 if (inst.size_req == 4
fdfde340
JM
13077 || (Rd != Rn
13078 && Rd != Rm)
13079 || Rn > 7
13080 || Rm > 7)
17828f45
JM
13081 narrow = FALSE;
13082 else if (inst.instruction == T_MNEM_muls)
5ee91343 13083 narrow = !in_pred_block ();
17828f45 13084 else
5ee91343 13085 narrow = in_pred_block ();
b05fe5cf 13086 }
c19d1205 13087 else
b05fe5cf 13088 {
17828f45 13089 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13090 constraint (Rn > 7 || Rm > 7,
c19d1205 13091 BAD_HIREG);
17828f45
JM
13092 narrow = TRUE;
13093 }
b05fe5cf 13094
17828f45
JM
13095 if (narrow)
13096 {
13097 /* 16-bit MULS/Conditional MUL. */
c19d1205 13098 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13099 inst.instruction |= Rd;
b05fe5cf 13100
fdfde340
JM
13101 if (Rd == Rn)
13102 inst.instruction |= Rm << 3;
13103 else if (Rd == Rm)
13104 inst.instruction |= Rn << 3;
c19d1205
ZW
13105 else
13106 constraint (1, _("dest must overlap one source register"));
13107 }
17828f45
JM
13108 else
13109 {
e07e6e58
NC
13110 constraint (inst.instruction != T_MNEM_mul,
13111 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13112 /* 32-bit MUL. */
13113 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13114 inst.instruction |= Rd << 8;
13115 inst.instruction |= Rn << 16;
13116 inst.instruction |= Rm << 0;
13117
13118 reject_bad_reg (Rd);
13119 reject_bad_reg (Rn);
13120 reject_bad_reg (Rm);
17828f45 13121 }
c19d1205 13122}
b05fe5cf 13123
c19d1205
ZW
13124static void
13125do_t_mull (void)
13126{
fdfde340 13127 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13128
fdfde340
JM
13129 RdLo = inst.operands[0].reg;
13130 RdHi = inst.operands[1].reg;
13131 Rn = inst.operands[2].reg;
13132 Rm = inst.operands[3].reg;
13133
13134 reject_bad_reg (RdLo);
13135 reject_bad_reg (RdHi);
13136 reject_bad_reg (Rn);
13137 reject_bad_reg (Rm);
13138
13139 inst.instruction |= RdLo << 12;
13140 inst.instruction |= RdHi << 8;
13141 inst.instruction |= Rn << 16;
13142 inst.instruction |= Rm;
13143
13144 if (RdLo == RdHi)
c19d1205
ZW
13145 as_tsktsk (_("rdhi and rdlo must be different"));
13146}
b05fe5cf 13147
c19d1205
ZW
13148static void
13149do_t_nop (void)
13150{
5ee91343 13151 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13152
c19d1205
ZW
13153 if (unified_syntax)
13154 {
13155 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13156 {
c19d1205
ZW
13157 inst.instruction = THUMB_OP32 (inst.instruction);
13158 inst.instruction |= inst.operands[0].imm;
13159 }
13160 else
13161 {
bc2d1808
NC
13162 /* PR9722: Check for Thumb2 availability before
13163 generating a thumb2 nop instruction. */
afa62d5e 13164 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13165 {
13166 inst.instruction = THUMB_OP16 (inst.instruction);
13167 inst.instruction |= inst.operands[0].imm << 4;
13168 }
13169 else
13170 inst.instruction = 0x46c0;
c19d1205
ZW
13171 }
13172 }
13173 else
13174 {
13175 constraint (inst.operands[0].present,
13176 _("Thumb does not support NOP with hints"));
13177 inst.instruction = 0x46c0;
13178 }
13179}
b05fe5cf 13180
c19d1205
ZW
13181static void
13182do_t_neg (void)
13183{
13184 if (unified_syntax)
13185 {
3d388997
PB
13186 bfd_boolean narrow;
13187
13188 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13189 narrow = !in_pred_block ();
3d388997 13190 else
5ee91343 13191 narrow = in_pred_block ();
3d388997
PB
13192 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13193 narrow = FALSE;
13194 if (inst.size_req == 4)
13195 narrow = FALSE;
13196
13197 if (!narrow)
c19d1205
ZW
13198 {
13199 inst.instruction = THUMB_OP32 (inst.instruction);
13200 inst.instruction |= inst.operands[0].reg << 8;
13201 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13202 }
13203 else
13204 {
c19d1205
ZW
13205 inst.instruction = THUMB_OP16 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg;
13207 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13208 }
13209 }
13210 else
13211 {
c19d1205
ZW
13212 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13213 BAD_HIREG);
13214 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13215
13216 inst.instruction = THUMB_OP16 (inst.instruction);
13217 inst.instruction |= inst.operands[0].reg;
13218 inst.instruction |= inst.operands[1].reg << 3;
13219 }
13220}
13221
1c444d06
JM
13222static void
13223do_t_orn (void)
13224{
13225 unsigned Rd, Rn;
13226
13227 Rd = inst.operands[0].reg;
13228 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13229
fdfde340
JM
13230 reject_bad_reg (Rd);
13231 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13232 reject_bad_reg (Rn);
13233
1c444d06
JM
13234 inst.instruction |= Rd << 8;
13235 inst.instruction |= Rn << 16;
13236
13237 if (!inst.operands[2].isreg)
13238 {
13239 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13240 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13241 }
13242 else
13243 {
13244 unsigned Rm;
13245
13246 Rm = inst.operands[2].reg;
fdfde340 13247 reject_bad_reg (Rm);
1c444d06
JM
13248
13249 constraint (inst.operands[2].shifted
13250 && inst.operands[2].immisreg,
13251 _("shift must be constant"));
13252 encode_thumb32_shifted_operand (2);
13253 }
13254}
13255
c19d1205
ZW
13256static void
13257do_t_pkhbt (void)
13258{
fdfde340
JM
13259 unsigned Rd, Rn, Rm;
13260
13261 Rd = inst.operands[0].reg;
13262 Rn = inst.operands[1].reg;
13263 Rm = inst.operands[2].reg;
13264
13265 reject_bad_reg (Rd);
13266 reject_bad_reg (Rn);
13267 reject_bad_reg (Rm);
13268
13269 inst.instruction |= Rd << 8;
13270 inst.instruction |= Rn << 16;
13271 inst.instruction |= Rm;
c19d1205
ZW
13272 if (inst.operands[3].present)
13273 {
e2b0ab59
AV
13274 unsigned int val = inst.relocs[0].exp.X_add_number;
13275 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13276 _("expression too complex"));
13277 inst.instruction |= (val & 0x1c) << 10;
13278 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13279 }
c19d1205 13280}
b05fe5cf 13281
c19d1205
ZW
13282static void
13283do_t_pkhtb (void)
13284{
13285 if (!inst.operands[3].present)
1ef52f49
NC
13286 {
13287 unsigned Rtmp;
13288
13289 inst.instruction &= ~0x00000020;
13290
13291 /* PR 10168. Swap the Rm and Rn registers. */
13292 Rtmp = inst.operands[1].reg;
13293 inst.operands[1].reg = inst.operands[2].reg;
13294 inst.operands[2].reg = Rtmp;
13295 }
c19d1205 13296 do_t_pkhbt ();
b05fe5cf
ZW
13297}
13298
c19d1205
ZW
13299static void
13300do_t_pld (void)
13301{
fdfde340
JM
13302 if (inst.operands[0].immisreg)
13303 reject_bad_reg (inst.operands[0].imm);
13304
c19d1205
ZW
13305 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13306}
b05fe5cf 13307
c19d1205
ZW
13308static void
13309do_t_push_pop (void)
b99bd4ef 13310{
e9f89963 13311 unsigned mask;
5f4273c7 13312
c19d1205
ZW
13313 constraint (inst.operands[0].writeback,
13314 _("push/pop do not support {reglist}^"));
e2b0ab59 13315 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13316 _("expression too complex"));
b99bd4ef 13317
e9f89963 13318 mask = inst.operands[0].imm;
d3bfe16e 13319 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13320 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13321 else if (inst.size_req != 4
c6025a80 13322 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13323 ? REG_LR : REG_PC)))
b99bd4ef 13324 {
c19d1205
ZW
13325 inst.instruction = THUMB_OP16 (inst.instruction);
13326 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13327 inst.instruction |= mask & 0xff;
c19d1205
ZW
13328 }
13329 else if (unified_syntax)
13330 {
3c707909 13331 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13332 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13333 }
13334 else
13335 {
13336 inst.error = _("invalid register list to push/pop instruction");
13337 return;
c19d1205 13338 }
4b5a202f
AV
13339}
13340
13341static void
13342do_t_clrm (void)
13343{
13344 if (unified_syntax)
13345 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13346 else
13347 {
13348 inst.error = _("invalid register list to push/pop instruction");
13349 return;
13350 }
c19d1205 13351}
b99bd4ef 13352
efd6b359
AV
13353static void
13354do_t_vscclrm (void)
13355{
13356 if (inst.operands[0].issingle)
13357 {
13358 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13359 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13360 inst.instruction |= inst.operands[0].imm;
13361 }
13362 else
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13365 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13366 inst.instruction |= 1 << 8;
13367 inst.instruction |= inst.operands[0].imm << 1;
13368 }
13369}
13370
c19d1205
ZW
13371static void
13372do_t_rbit (void)
13373{
fdfde340
JM
13374 unsigned Rd, Rm;
13375
13376 Rd = inst.operands[0].reg;
13377 Rm = inst.operands[1].reg;
13378
13379 reject_bad_reg (Rd);
13380 reject_bad_reg (Rm);
13381
13382 inst.instruction |= Rd << 8;
13383 inst.instruction |= Rm << 16;
13384 inst.instruction |= Rm;
c19d1205 13385}
b99bd4ef 13386
c19d1205
ZW
13387static void
13388do_t_rev (void)
13389{
fdfde340
JM
13390 unsigned Rd, Rm;
13391
13392 Rd = inst.operands[0].reg;
13393 Rm = inst.operands[1].reg;
13394
13395 reject_bad_reg (Rd);
13396 reject_bad_reg (Rm);
13397
13398 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13399 && inst.size_req != 4)
13400 {
13401 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13402 inst.instruction |= Rd;
13403 inst.instruction |= Rm << 3;
c19d1205
ZW
13404 }
13405 else if (unified_syntax)
13406 {
13407 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13408 inst.instruction |= Rd << 8;
13409 inst.instruction |= Rm << 16;
13410 inst.instruction |= Rm;
c19d1205
ZW
13411 }
13412 else
13413 inst.error = BAD_HIREG;
13414}
b99bd4ef 13415
1c444d06
JM
13416static void
13417do_t_rrx (void)
13418{
13419 unsigned Rd, Rm;
13420
13421 Rd = inst.operands[0].reg;
13422 Rm = inst.operands[1].reg;
13423
fdfde340
JM
13424 reject_bad_reg (Rd);
13425 reject_bad_reg (Rm);
c921be7d 13426
1c444d06
JM
13427 inst.instruction |= Rd << 8;
13428 inst.instruction |= Rm;
13429}
13430
c19d1205
ZW
13431static void
13432do_t_rsb (void)
13433{
fdfde340 13434 unsigned Rd, Rs;
b99bd4ef 13435
c19d1205
ZW
13436 Rd = inst.operands[0].reg;
13437 Rs = (inst.operands[1].present
13438 ? inst.operands[1].reg /* Rd, Rs, foo */
13439 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13440
fdfde340
JM
13441 reject_bad_reg (Rd);
13442 reject_bad_reg (Rs);
13443 if (inst.operands[2].isreg)
13444 reject_bad_reg (inst.operands[2].reg);
13445
c19d1205
ZW
13446 inst.instruction |= Rd << 8;
13447 inst.instruction |= Rs << 16;
13448 if (!inst.operands[2].isreg)
13449 {
026d3abb
PB
13450 bfd_boolean narrow;
13451
13452 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13453 narrow = !in_pred_block ();
026d3abb 13454 else
5ee91343 13455 narrow = in_pred_block ();
026d3abb
PB
13456
13457 if (Rd > 7 || Rs > 7)
13458 narrow = FALSE;
13459
13460 if (inst.size_req == 4 || !unified_syntax)
13461 narrow = FALSE;
13462
e2b0ab59
AV
13463 if (inst.relocs[0].exp.X_op != O_constant
13464 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13465 narrow = FALSE;
13466
13467 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13468 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13469 if (narrow)
13470 {
e2b0ab59 13471 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13472 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13473 inst.instruction |= Rs << 3;
13474 inst.instruction |= Rd;
13475 }
13476 else
13477 {
13478 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13479 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13480 }
c19d1205
ZW
13481 }
13482 else
13483 encode_thumb32_shifted_operand (2);
13484}
b99bd4ef 13485
c19d1205
ZW
13486static void
13487do_t_setend (void)
13488{
12e37cbc
MGD
13489 if (warn_on_deprecated
13490 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13491 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13492
5ee91343 13493 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13494 if (inst.operands[0].imm)
13495 inst.instruction |= 0x8;
13496}
b99bd4ef 13497
c19d1205
ZW
13498static void
13499do_t_shift (void)
13500{
13501 if (!inst.operands[1].present)
13502 inst.operands[1].reg = inst.operands[0].reg;
13503
13504 if (unified_syntax)
13505 {
3d388997
PB
13506 bfd_boolean narrow;
13507 int shift_kind;
13508
13509 switch (inst.instruction)
13510 {
13511 case T_MNEM_asr:
13512 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13513 case T_MNEM_lsl:
13514 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13515 case T_MNEM_lsr:
13516 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13517 case T_MNEM_ror:
13518 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13519 default: abort ();
13520 }
13521
13522 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13523 narrow = !in_pred_block ();
3d388997 13524 else
5ee91343 13525 narrow = in_pred_block ();
3d388997
PB
13526 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13527 narrow = FALSE;
13528 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13529 narrow = FALSE;
13530 if (inst.operands[2].isreg
13531 && (inst.operands[1].reg != inst.operands[0].reg
13532 || inst.operands[2].reg > 7))
13533 narrow = FALSE;
13534 if (inst.size_req == 4)
13535 narrow = FALSE;
13536
fdfde340
JM
13537 reject_bad_reg (inst.operands[0].reg);
13538 reject_bad_reg (inst.operands[1].reg);
c921be7d 13539
3d388997 13540 if (!narrow)
c19d1205
ZW
13541 {
13542 if (inst.operands[2].isreg)
b99bd4ef 13543 {
fdfde340 13544 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13545 inst.instruction = THUMB_OP32 (inst.instruction);
13546 inst.instruction |= inst.operands[0].reg << 8;
13547 inst.instruction |= inst.operands[1].reg << 16;
13548 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13549
13550 /* PR 12854: Error on extraneous shifts. */
13551 constraint (inst.operands[2].shifted,
13552 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13553 }
13554 else
13555 {
13556 inst.operands[1].shifted = 1;
3d388997 13557 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13558 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13559 ? T_MNEM_movs : T_MNEM_mov);
13560 inst.instruction |= inst.operands[0].reg << 8;
13561 encode_thumb32_shifted_operand (1);
13562 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13563 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13564 }
13565 }
13566 else
13567 {
c19d1205 13568 if (inst.operands[2].isreg)
b99bd4ef 13569 {
3d388997 13570 switch (shift_kind)
b99bd4ef 13571 {
3d388997
PB
13572 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13573 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13574 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13575 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13576 default: abort ();
b99bd4ef 13577 }
5f4273c7 13578
c19d1205
ZW
13579 inst.instruction |= inst.operands[0].reg;
13580 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13581
13582 /* PR 12854: Error on extraneous shifts. */
13583 constraint (inst.operands[2].shifted,
13584 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13585 }
13586 else
13587 {
3d388997 13588 switch (shift_kind)
b99bd4ef 13589 {
3d388997
PB
13590 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13591 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13592 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13593 default: abort ();
b99bd4ef 13594 }
e2b0ab59 13595 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13596 inst.instruction |= inst.operands[0].reg;
13597 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13598 }
13599 }
c19d1205
ZW
13600 }
13601 else
13602 {
13603 constraint (inst.operands[0].reg > 7
13604 || inst.operands[1].reg > 7, BAD_HIREG);
13605 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13606
c19d1205
ZW
13607 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13608 {
13609 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13610 constraint (inst.operands[0].reg != inst.operands[1].reg,
13611 _("source1 and dest must be same register"));
b99bd4ef 13612
c19d1205
ZW
13613 switch (inst.instruction)
13614 {
13615 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13616 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13617 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13618 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13619 default: abort ();
13620 }
5f4273c7 13621
c19d1205
ZW
13622 inst.instruction |= inst.operands[0].reg;
13623 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13624
13625 /* PR 12854: Error on extraneous shifts. */
13626 constraint (inst.operands[2].shifted,
13627 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13628 }
13629 else
b99bd4ef 13630 {
c19d1205
ZW
13631 switch (inst.instruction)
13632 {
13633 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13634 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13635 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13636 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13637 default: abort ();
13638 }
e2b0ab59 13639 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13640 inst.instruction |= inst.operands[0].reg;
13641 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13642 }
13643 }
b99bd4ef
NC
13644}
13645
13646static void
c19d1205 13647do_t_simd (void)
b99bd4ef 13648{
fdfde340
JM
13649 unsigned Rd, Rn, Rm;
13650
13651 Rd = inst.operands[0].reg;
13652 Rn = inst.operands[1].reg;
13653 Rm = inst.operands[2].reg;
13654
13655 reject_bad_reg (Rd);
13656 reject_bad_reg (Rn);
13657 reject_bad_reg (Rm);
13658
13659 inst.instruction |= Rd << 8;
13660 inst.instruction |= Rn << 16;
13661 inst.instruction |= Rm;
c19d1205 13662}
b99bd4ef 13663
03ee1b7f
NC
13664static void
13665do_t_simd2 (void)
13666{
13667 unsigned Rd, Rn, Rm;
13668
13669 Rd = inst.operands[0].reg;
13670 Rm = inst.operands[1].reg;
13671 Rn = inst.operands[2].reg;
13672
13673 reject_bad_reg (Rd);
13674 reject_bad_reg (Rn);
13675 reject_bad_reg (Rm);
13676
13677 inst.instruction |= Rd << 8;
13678 inst.instruction |= Rn << 16;
13679 inst.instruction |= Rm;
13680}
13681
c19d1205 13682static void
3eb17e6b 13683do_t_smc (void)
c19d1205 13684{
e2b0ab59 13685 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13686 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13687 _("SMC is not permitted on this architecture"));
e2b0ab59 13688 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13689 _("expression too complex"));
e2b0ab59 13690 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13691 inst.instruction |= (value & 0xf000) >> 12;
13692 inst.instruction |= (value & 0x0ff0);
13693 inst.instruction |= (value & 0x000f) << 16;
24382199 13694 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13695 set_pred_insn_type_last ();
c19d1205 13696}
b99bd4ef 13697
90ec0d68
MGD
13698static void
13699do_t_hvc (void)
13700{
e2b0ab59 13701 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13702
e2b0ab59 13703 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13704 inst.instruction |= (value & 0x0fff);
13705 inst.instruction |= (value & 0xf000) << 4;
13706}
13707
c19d1205 13708static void
3a21c15a 13709do_t_ssat_usat (int bias)
c19d1205 13710{
fdfde340
JM
13711 unsigned Rd, Rn;
13712
13713 Rd = inst.operands[0].reg;
13714 Rn = inst.operands[2].reg;
13715
13716 reject_bad_reg (Rd);
13717 reject_bad_reg (Rn);
13718
13719 inst.instruction |= Rd << 8;
3a21c15a 13720 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13721 inst.instruction |= Rn << 16;
b99bd4ef 13722
c19d1205 13723 if (inst.operands[3].present)
b99bd4ef 13724 {
e2b0ab59 13725 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13726
e2b0ab59 13727 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13728
e2b0ab59 13729 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13730 _("expression too complex"));
b99bd4ef 13731
3a21c15a 13732 if (shift_amount != 0)
6189168b 13733 {
3a21c15a
NC
13734 constraint (shift_amount > 31,
13735 _("shift expression is too large"));
13736
c19d1205 13737 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13738 inst.instruction |= 0x00200000; /* sh bit. */
13739
13740 inst.instruction |= (shift_amount & 0x1c) << 10;
13741 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13742 }
13743 }
b99bd4ef 13744}
c921be7d 13745
3a21c15a
NC
13746static void
13747do_t_ssat (void)
13748{
13749 do_t_ssat_usat (1);
13750}
b99bd4ef 13751
0dd132b6 13752static void
c19d1205 13753do_t_ssat16 (void)
0dd132b6 13754{
fdfde340
JM
13755 unsigned Rd, Rn;
13756
13757 Rd = inst.operands[0].reg;
13758 Rn = inst.operands[2].reg;
13759
13760 reject_bad_reg (Rd);
13761 reject_bad_reg (Rn);
13762
13763 inst.instruction |= Rd << 8;
c19d1205 13764 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13765 inst.instruction |= Rn << 16;
c19d1205 13766}
0dd132b6 13767
c19d1205
ZW
13768static void
13769do_t_strex (void)
13770{
13771 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13772 || inst.operands[2].postind || inst.operands[2].writeback
13773 || inst.operands[2].immisreg || inst.operands[2].shifted
13774 || inst.operands[2].negative,
01cfc07f 13775 BAD_ADDR_MODE);
0dd132b6 13776
5be8be5d
DG
13777 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13778
c19d1205
ZW
13779 inst.instruction |= inst.operands[0].reg << 8;
13780 inst.instruction |= inst.operands[1].reg << 12;
13781 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13782 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13783}
13784
b99bd4ef 13785static void
c19d1205 13786do_t_strexd (void)
b99bd4ef 13787{
c19d1205
ZW
13788 if (!inst.operands[2].present)
13789 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13790
c19d1205
ZW
13791 constraint (inst.operands[0].reg == inst.operands[1].reg
13792 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13793 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13794 BAD_OVERLAP);
b99bd4ef 13795
c19d1205
ZW
13796 inst.instruction |= inst.operands[0].reg;
13797 inst.instruction |= inst.operands[1].reg << 12;
13798 inst.instruction |= inst.operands[2].reg << 8;
13799 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13800}
13801
13802static void
c19d1205 13803do_t_sxtah (void)
b99bd4ef 13804{
fdfde340
JM
13805 unsigned Rd, Rn, Rm;
13806
13807 Rd = inst.operands[0].reg;
13808 Rn = inst.operands[1].reg;
13809 Rm = inst.operands[2].reg;
13810
13811 reject_bad_reg (Rd);
13812 reject_bad_reg (Rn);
13813 reject_bad_reg (Rm);
13814
13815 inst.instruction |= Rd << 8;
13816 inst.instruction |= Rn << 16;
13817 inst.instruction |= Rm;
c19d1205
ZW
13818 inst.instruction |= inst.operands[3].imm << 4;
13819}
b99bd4ef 13820
c19d1205
ZW
13821static void
13822do_t_sxth (void)
13823{
fdfde340
JM
13824 unsigned Rd, Rm;
13825
13826 Rd = inst.operands[0].reg;
13827 Rm = inst.operands[1].reg;
13828
13829 reject_bad_reg (Rd);
13830 reject_bad_reg (Rm);
c921be7d
NC
13831
13832 if (inst.instruction <= 0xffff
13833 && inst.size_req != 4
fdfde340 13834 && Rd <= 7 && Rm <= 7
c19d1205 13835 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13836 {
c19d1205 13837 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13838 inst.instruction |= Rd;
13839 inst.instruction |= Rm << 3;
b99bd4ef 13840 }
c19d1205 13841 else if (unified_syntax)
b99bd4ef 13842 {
c19d1205
ZW
13843 if (inst.instruction <= 0xffff)
13844 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13845 inst.instruction |= Rd << 8;
13846 inst.instruction |= Rm;
c19d1205 13847 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13848 }
c19d1205 13849 else
b99bd4ef 13850 {
c19d1205
ZW
13851 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13852 _("Thumb encoding does not support rotation"));
13853 constraint (1, BAD_HIREG);
b99bd4ef 13854 }
c19d1205 13855}
b99bd4ef 13856
c19d1205
ZW
13857static void
13858do_t_swi (void)
13859{
e2b0ab59 13860 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13861}
b99bd4ef 13862
92e90b6e
PB
13863static void
13864do_t_tb (void)
13865{
fdfde340 13866 unsigned Rn, Rm;
92e90b6e
PB
13867 int half;
13868
13869 half = (inst.instruction & 0x10) != 0;
5ee91343 13870 set_pred_insn_type_last ();
dfa9f0d5
PB
13871 constraint (inst.operands[0].immisreg,
13872 _("instruction requires register index"));
fdfde340
JM
13873
13874 Rn = inst.operands[0].reg;
13875 Rm = inst.operands[0].imm;
c921be7d 13876
5c8ed6a4
JW
13877 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13878 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13879 reject_bad_reg (Rm);
13880
92e90b6e
PB
13881 constraint (!half && inst.operands[0].shifted,
13882 _("instruction does not allow shifted index"));
fdfde340 13883 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13884}
13885
74db7efb
NC
13886static void
13887do_t_udf (void)
13888{
13889 if (!inst.operands[0].present)
13890 inst.operands[0].imm = 0;
13891
13892 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13893 {
13894 constraint (inst.size_req == 2,
13895 _("immediate value out of range"));
13896 inst.instruction = THUMB_OP32 (inst.instruction);
13897 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13898 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13899 }
13900 else
13901 {
13902 inst.instruction = THUMB_OP16 (inst.instruction);
13903 inst.instruction |= inst.operands[0].imm;
13904 }
13905
5ee91343 13906 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13907}
13908
13909
c19d1205
ZW
13910static void
13911do_t_usat (void)
13912{
3a21c15a 13913 do_t_ssat_usat (0);
b99bd4ef
NC
13914}
13915
13916static void
c19d1205 13917do_t_usat16 (void)
b99bd4ef 13918{
fdfde340
JM
13919 unsigned Rd, Rn;
13920
13921 Rd = inst.operands[0].reg;
13922 Rn = inst.operands[2].reg;
13923
13924 reject_bad_reg (Rd);
13925 reject_bad_reg (Rn);
13926
13927 inst.instruction |= Rd << 8;
c19d1205 13928 inst.instruction |= inst.operands[1].imm;
fdfde340 13929 inst.instruction |= Rn << 16;
b99bd4ef 13930}
c19d1205 13931
e12437dc
AV
13932/* Checking the range of the branch offset (VAL) with NBITS bits
13933 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13934static int
13935v8_1_branch_value_check (int val, int nbits, int is_signed)
13936{
13937 gas_assert (nbits > 0 && nbits <= 32);
13938 if (is_signed)
13939 {
13940 int cmp = (1 << (nbits - 1));
13941 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13942 return FAIL;
13943 }
13944 else
13945 {
13946 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13947 return FAIL;
13948 }
13949 return SUCCESS;
13950}
13951
4389b29a
AV
13952/* For branches in Armv8.1-M Mainline. */
13953static void
13954do_t_branch_future (void)
13955{
13956 unsigned long insn = inst.instruction;
13957
13958 inst.instruction = THUMB_OP32 (inst.instruction);
13959 if (inst.operands[0].hasreloc == 0)
13960 {
13961 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13962 as_bad (BAD_BRANCH_OFF);
13963
13964 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13965 }
13966 else
13967 {
13968 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13969 inst.relocs[0].pc_rel = 1;
13970 }
13971
13972 switch (insn)
13973 {
13974 case T_MNEM_bf:
13975 if (inst.operands[1].hasreloc == 0)
13976 {
13977 int val = inst.operands[1].imm;
13978 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13979 as_bad (BAD_BRANCH_OFF);
13980
13981 int immA = (val & 0x0001f000) >> 12;
13982 int immB = (val & 0x00000ffc) >> 2;
13983 int immC = (val & 0x00000002) >> 1;
13984 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13985 }
13986 else
13987 {
13988 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13989 inst.relocs[1].pc_rel = 1;
13990 }
13991 break;
13992
65d1bc05
AV
13993 case T_MNEM_bfl:
13994 if (inst.operands[1].hasreloc == 0)
13995 {
13996 int val = inst.operands[1].imm;
13997 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13998 as_bad (BAD_BRANCH_OFF);
13999
14000 int immA = (val & 0x0007f000) >> 12;
14001 int immB = (val & 0x00000ffc) >> 2;
14002 int immC = (val & 0x00000002) >> 1;
14003 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14004 }
14005 else
14006 {
14007 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14008 inst.relocs[1].pc_rel = 1;
14009 }
14010 break;
14011
f6b2b12d
AV
14012 case T_MNEM_bfcsel:
14013 /* Operand 1. */
14014 if (inst.operands[1].hasreloc == 0)
14015 {
14016 int val = inst.operands[1].imm;
14017 int immA = (val & 0x00001000) >> 12;
14018 int immB = (val & 0x00000ffc) >> 2;
14019 int immC = (val & 0x00000002) >> 1;
14020 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14021 }
14022 else
14023 {
14024 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14025 inst.relocs[1].pc_rel = 1;
14026 }
14027
14028 /* Operand 2. */
14029 if (inst.operands[2].hasreloc == 0)
14030 {
14031 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14032 int val2 = inst.operands[2].imm;
14033 int val0 = inst.operands[0].imm & 0x1f;
14034 int diff = val2 - val0;
14035 if (diff == 4)
14036 inst.instruction |= 1 << 17; /* T bit. */
14037 else if (diff != 2)
14038 as_bad (_("out of range label-relative fixup value"));
14039 }
14040 else
14041 {
14042 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14043 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14044 inst.relocs[2].pc_rel = 1;
14045 }
14046
14047 /* Operand 3. */
14048 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14049 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14050 break;
14051
f1c7f421
AV
14052 case T_MNEM_bfx:
14053 case T_MNEM_bflx:
14054 inst.instruction |= inst.operands[1].reg << 16;
14055 break;
14056
4389b29a
AV
14057 default: abort ();
14058 }
14059}
14060
60f993ce
AV
14061/* Helper function for do_t_loloop to handle relocations. */
14062static void
14063v8_1_loop_reloc (int is_le)
14064{
14065 if (inst.relocs[0].exp.X_op == O_constant)
14066 {
14067 int value = inst.relocs[0].exp.X_add_number;
14068 value = (is_le) ? -value : value;
14069
14070 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14071 as_bad (BAD_BRANCH_OFF);
14072
14073 int imml, immh;
14074
14075 immh = (value & 0x00000ffc) >> 2;
14076 imml = (value & 0x00000002) >> 1;
14077
14078 inst.instruction |= (imml << 11) | (immh << 1);
14079 }
14080 else
14081 {
14082 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14083 inst.relocs[0].pc_rel = 1;
14084 }
14085}
14086
14087/* To handle the Scalar Low Overhead Loop instructions
14088 in Armv8.1-M Mainline. */
14089static void
14090do_t_loloop (void)
14091{
14092 unsigned long insn = inst.instruction;
14093
5ee91343 14094 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14095 inst.instruction = THUMB_OP32 (inst.instruction);
14096
14097 switch (insn)
14098 {
14099 case T_MNEM_le:
14100 /* le <label>. */
14101 if (!inst.operands[0].present)
14102 inst.instruction |= 1 << 21;
14103
14104 v8_1_loop_reloc (TRUE);
14105 break;
14106
14107 case T_MNEM_wls:
14108 v8_1_loop_reloc (FALSE);
14109 /* Fall through. */
14110 case T_MNEM_dls:
14111 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14112 inst.instruction |= (inst.operands[1].reg << 16);
14113 break;
14114
14115 default: abort();
14116 }
14117}
14118
a302e574
AV
14119/* MVE instruction encoder helpers. */
14120#define M_MNEM_vabav 0xee800f01
14121#define M_MNEM_vmladav 0xeef00e00
14122#define M_MNEM_vmladava 0xeef00e20
14123#define M_MNEM_vmladavx 0xeef01e00
14124#define M_MNEM_vmladavax 0xeef01e20
14125#define M_MNEM_vmlsdav 0xeef00e01
14126#define M_MNEM_vmlsdava 0xeef00e21
14127#define M_MNEM_vmlsdavx 0xeef01e01
14128#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14129#define M_MNEM_vmullt 0xee011e00
14130#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14131#define M_MNEM_vst20 0xfc801e00
14132#define M_MNEM_vst21 0xfc801e20
14133#define M_MNEM_vst40 0xfc801e01
14134#define M_MNEM_vst41 0xfc801e21
14135#define M_MNEM_vst42 0xfc801e41
14136#define M_MNEM_vst43 0xfc801e61
14137#define M_MNEM_vld20 0xfc901e00
14138#define M_MNEM_vld21 0xfc901e20
14139#define M_MNEM_vld40 0xfc901e01
14140#define M_MNEM_vld41 0xfc901e21
14141#define M_MNEM_vld42 0xfc901e41
14142#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14143#define M_MNEM_vstrb 0xec000e00
14144#define M_MNEM_vstrh 0xec000e10
14145#define M_MNEM_vstrw 0xec000e40
14146#define M_MNEM_vstrd 0xec000e50
14147#define M_MNEM_vldrb 0xec100e00
14148#define M_MNEM_vldrh 0xec100e10
14149#define M_MNEM_vldrw 0xec100e40
14150#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14151#define M_MNEM_vmovlt 0xeea01f40
14152#define M_MNEM_vmovlb 0xeea00f40
14153#define M_MNEM_vmovnt 0xfe311e81
14154#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14155#define M_MNEM_vadc 0xee300f00
14156#define M_MNEM_vadci 0xee301f00
14157#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14158#define M_MNEM_vaddlv 0xee890f00
14159#define M_MNEM_vaddlva 0xee890f20
14160#define M_MNEM_vaddv 0xeef10f00
14161#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14162#define M_MNEM_vddup 0xee011f6e
14163#define M_MNEM_vdwdup 0xee011f60
14164#define M_MNEM_vidup 0xee010f6e
14165#define M_MNEM_viwdup 0xee010f60
a302e574 14166
5287ad62 14167/* Neon instruction encoder helpers. */
5f4273c7 14168
5287ad62 14169/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14170
5287ad62
JB
14171/* An "invalid" code for the following tables. */
14172#define N_INV -1u
14173
14174struct neon_tab_entry
b99bd4ef 14175{
5287ad62
JB
14176 unsigned integer;
14177 unsigned float_or_poly;
14178 unsigned scalar_or_imm;
14179};
5f4273c7 14180
5287ad62
JB
14181/* Map overloaded Neon opcodes to their respective encodings. */
14182#define NEON_ENC_TAB \
14183 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14184 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14185 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14186 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14187 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14188 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14189 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14190 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14191 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14192 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14193 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14194 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14195 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14196 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14197 /* Register variants of the following two instructions are encoded as
e07e6e58 14198 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14199 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14200 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14201 X(vfma, N_INV, 0x0000c10, N_INV), \
14202 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14203 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14204 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14205 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14206 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14207 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14208 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14209 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14210 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14211 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14212 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14213 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14214 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14215 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14216 X(vshl, 0x0000400, N_INV, 0x0800510), \
14217 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14218 X(vand, 0x0000110, N_INV, 0x0800030), \
14219 X(vbic, 0x0100110, N_INV, 0x0800030), \
14220 X(veor, 0x1000110, N_INV, N_INV), \
14221 X(vorn, 0x0300110, N_INV, 0x0800010), \
14222 X(vorr, 0x0200110, N_INV, 0x0800010), \
14223 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14224 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14225 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14226 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14227 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14228 X(vst1, 0x0000000, 0x0800000, N_INV), \
14229 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14230 X(vst2, 0x0000100, 0x0800100, N_INV), \
14231 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14232 X(vst3, 0x0000200, 0x0800200, N_INV), \
14233 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14234 X(vst4, 0x0000300, 0x0800300, N_INV), \
14235 X(vmovn, 0x1b20200, N_INV, N_INV), \
14236 X(vtrn, 0x1b20080, N_INV, N_INV), \
14237 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14238 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14239 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14240 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14241 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14242 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14243 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14244 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14245 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14246 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14247 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14248 X(vseleq, 0xe000a00, N_INV, N_INV), \
14249 X(vselvs, 0xe100a00, N_INV, N_INV), \
14250 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14251 X(vselgt, 0xe300a00, N_INV, N_INV), \
14252 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14253 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14254 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14255 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14256 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14257 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14258 X(sha3op, 0x2000c00, N_INV, N_INV), \
14259 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14260 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14261
14262enum neon_opc
14263{
14264#define X(OPC,I,F,S) N_MNEM_##OPC
14265NEON_ENC_TAB
14266#undef X
14267};
b99bd4ef 14268
5287ad62
JB
14269static const struct neon_tab_entry neon_enc_tab[] =
14270{
14271#define X(OPC,I,F,S) { (I), (F), (S) }
14272NEON_ENC_TAB
14273#undef X
14274};
b99bd4ef 14275
88714cb8
DG
14276/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14277#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14278#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14279#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14280#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14281#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14282#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14283#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14284#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14285#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14286#define NEON_ENC_SINGLE_(X) \
037e8744 14287 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14288#define NEON_ENC_DOUBLE_(X) \
037e8744 14289 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14290#define NEON_ENC_FPV8_(X) \
14291 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14292
88714cb8
DG
14293#define NEON_ENCODE(type, inst) \
14294 do \
14295 { \
14296 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14297 inst.is_neon = 1; \
14298 } \
14299 while (0)
14300
14301#define check_neon_suffixes \
14302 do \
14303 { \
14304 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14305 { \
14306 as_bad (_("invalid neon suffix for non neon instruction")); \
14307 return; \
14308 } \
14309 } \
14310 while (0)
14311
037e8744
JB
14312/* Define shapes for instruction operands. The following mnemonic characters
14313 are used in this table:
5287ad62 14314
037e8744 14315 F - VFP S<n> register
5287ad62
JB
14316 D - Neon D<n> register
14317 Q - Neon Q<n> register
14318 I - Immediate
14319 S - Scalar
14320 R - ARM register
14321 L - D<n> register list
5f4273c7 14322
037e8744
JB
14323 This table is used to generate various data:
14324 - enumerations of the form NS_DDR to be used as arguments to
14325 neon_select_shape.
14326 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14327 - a table used to drive neon_select_shape. */
b99bd4ef 14328
037e8744 14329#define NEON_SHAPE_DEF \
b409bdb6 14330 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14331 X(4, (R, R, S, S), QUAD), \
14332 X(4, (S, S, R, R), QUAD), \
b409bdb6 14333 X(3, (Q, R, I), QUAD), \
1b883319
AV
14334 X(3, (I, Q, Q), QUAD), \
14335 X(3, (I, Q, R), QUAD), \
a302e574 14336 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14337 X(3, (D, D, D), DOUBLE), \
14338 X(3, (Q, Q, Q), QUAD), \
14339 X(3, (D, D, I), DOUBLE), \
14340 X(3, (Q, Q, I), QUAD), \
14341 X(3, (D, D, S), DOUBLE), \
14342 X(3, (Q, Q, S), QUAD), \
5ee91343 14343 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14344 X(3, (R, R, Q), QUAD), \
14345 X(2, (R, Q), QUAD), \
037e8744
JB
14346 X(2, (D, D), DOUBLE), \
14347 X(2, (Q, Q), QUAD), \
14348 X(2, (D, S), DOUBLE), \
14349 X(2, (Q, S), QUAD), \
14350 X(2, (D, R), DOUBLE), \
14351 X(2, (Q, R), QUAD), \
14352 X(2, (D, I), DOUBLE), \
14353 X(2, (Q, I), QUAD), \
14354 X(3, (D, L, D), DOUBLE), \
14355 X(2, (D, Q), MIXED), \
14356 X(2, (Q, D), MIXED), \
14357 X(3, (D, Q, I), MIXED), \
14358 X(3, (Q, D, I), MIXED), \
14359 X(3, (Q, D, D), MIXED), \
14360 X(3, (D, Q, Q), MIXED), \
14361 X(3, (Q, Q, D), MIXED), \
14362 X(3, (Q, D, S), MIXED), \
14363 X(3, (D, Q, S), MIXED), \
14364 X(4, (D, D, D, I), DOUBLE), \
14365 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14366 X(4, (D, D, S, I), DOUBLE), \
14367 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14368 X(2, (F, F), SINGLE), \
14369 X(3, (F, F, F), SINGLE), \
14370 X(2, (F, I), SINGLE), \
14371 X(2, (F, D), MIXED), \
14372 X(2, (D, F), MIXED), \
14373 X(3, (F, F, I), MIXED), \
14374 X(4, (R, R, F, F), SINGLE), \
14375 X(4, (F, F, R, R), SINGLE), \
14376 X(3, (D, R, R), DOUBLE), \
14377 X(3, (R, R, D), DOUBLE), \
14378 X(2, (S, R), SINGLE), \
14379 X(2, (R, S), SINGLE), \
14380 X(2, (F, R), SINGLE), \
d54af2d0
RL
14381 X(2, (R, F), SINGLE), \
14382/* Half float shape supported so far. */\
14383 X (2, (H, D), MIXED), \
14384 X (2, (D, H), MIXED), \
14385 X (2, (H, F), MIXED), \
14386 X (2, (F, H), MIXED), \
14387 X (2, (H, H), HALF), \
14388 X (2, (H, R), HALF), \
14389 X (2, (R, H), HALF), \
14390 X (2, (H, I), HALF), \
14391 X (3, (H, H, H), HALF), \
14392 X (3, (H, F, I), MIXED), \
dec41383
JW
14393 X (3, (F, H, I), MIXED), \
14394 X (3, (D, H, H), MIXED), \
14395 X (3, (D, H, S), MIXED)
037e8744
JB
14396
14397#define S2(A,B) NS_##A##B
14398#define S3(A,B,C) NS_##A##B##C
14399#define S4(A,B,C,D) NS_##A##B##C##D
14400
14401#define X(N, L, C) S##N L
14402
5287ad62
JB
14403enum neon_shape
14404{
037e8744
JB
14405 NEON_SHAPE_DEF,
14406 NS_NULL
5287ad62 14407};
b99bd4ef 14408
037e8744
JB
14409#undef X
14410#undef S2
14411#undef S3
14412#undef S4
14413
14414enum neon_shape_class
14415{
d54af2d0 14416 SC_HALF,
037e8744
JB
14417 SC_SINGLE,
14418 SC_DOUBLE,
14419 SC_QUAD,
14420 SC_MIXED
14421};
14422
14423#define X(N, L, C) SC_##C
14424
14425static enum neon_shape_class neon_shape_class[] =
14426{
14427 NEON_SHAPE_DEF
14428};
14429
14430#undef X
14431
14432enum neon_shape_el
14433{
d54af2d0 14434 SE_H,
037e8744
JB
14435 SE_F,
14436 SE_D,
14437 SE_Q,
14438 SE_I,
14439 SE_S,
14440 SE_R,
14441 SE_L
14442};
14443
14444/* Register widths of above. */
14445static unsigned neon_shape_el_size[] =
14446{
d54af2d0 14447 16,
037e8744
JB
14448 32,
14449 64,
14450 128,
14451 0,
14452 32,
14453 32,
14454 0
14455};
14456
14457struct neon_shape_info
14458{
14459 unsigned els;
14460 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14461};
14462
14463#define S2(A,B) { SE_##A, SE_##B }
14464#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14465#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14466
14467#define X(N, L, C) { N, S##N L }
14468
14469static struct neon_shape_info neon_shape_tab[] =
14470{
14471 NEON_SHAPE_DEF
14472};
14473
14474#undef X
14475#undef S2
14476#undef S3
14477#undef S4
14478
5287ad62
JB
14479/* Bit masks used in type checking given instructions.
14480 'N_EQK' means the type must be the same as (or based on in some way) the key
14481 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14482 set, various other bits can be set as well in order to modify the meaning of
14483 the type constraint. */
14484
14485enum neon_type_mask
14486{
8e79c3df
CM
14487 N_S8 = 0x0000001,
14488 N_S16 = 0x0000002,
14489 N_S32 = 0x0000004,
14490 N_S64 = 0x0000008,
14491 N_U8 = 0x0000010,
14492 N_U16 = 0x0000020,
14493 N_U32 = 0x0000040,
14494 N_U64 = 0x0000080,
14495 N_I8 = 0x0000100,
14496 N_I16 = 0x0000200,
14497 N_I32 = 0x0000400,
14498 N_I64 = 0x0000800,
14499 N_8 = 0x0001000,
14500 N_16 = 0x0002000,
14501 N_32 = 0x0004000,
14502 N_64 = 0x0008000,
14503 N_P8 = 0x0010000,
14504 N_P16 = 0x0020000,
14505 N_F16 = 0x0040000,
14506 N_F32 = 0x0080000,
14507 N_F64 = 0x0100000,
4f51b4bd 14508 N_P64 = 0x0200000,
c921be7d
NC
14509 N_KEY = 0x1000000, /* Key element (main type specifier). */
14510 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14511 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14512 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14513 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14514 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14515 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14516 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14517 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14518 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14519 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14520 N_UTYP = 0,
4f51b4bd 14521 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14522};
14523
dcbf9037
JB
14524#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14525
5287ad62
JB
14526#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14527#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14528#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14529#define N_S_32 (N_S8 | N_S16 | N_S32)
14530#define N_F_16_32 (N_F16 | N_F32)
14531#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14532#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14533#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14534#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14535#define N_I_MVE (N_I8 | N_I16 | N_I32)
14536#define N_F_MVE (N_F16 | N_F32)
14537#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14538
14539/* Pass this as the first type argument to neon_check_type to ignore types
14540 altogether. */
14541#define N_IGNORE_TYPE (N_KEY | N_EQK)
14542
037e8744
JB
14543/* Select a "shape" for the current instruction (describing register types or
14544 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14545 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14546 function of operand parsing, so this function doesn't need to be called.
14547 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14548
14549static enum neon_shape
037e8744 14550neon_select_shape (enum neon_shape shape, ...)
5287ad62 14551{
037e8744
JB
14552 va_list ap;
14553 enum neon_shape first_shape = shape;
5287ad62
JB
14554
14555 /* Fix missing optional operands. FIXME: we don't know at this point how
14556 many arguments we should have, so this makes the assumption that we have
14557 > 1. This is true of all current Neon opcodes, I think, but may not be
14558 true in the future. */
14559 if (!inst.operands[1].present)
14560 inst.operands[1] = inst.operands[0];
14561
037e8744 14562 va_start (ap, shape);
5f4273c7 14563
21d799b5 14564 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14565 {
14566 unsigned j;
14567 int matches = 1;
14568
14569 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14570 {
14571 if (!inst.operands[j].present)
14572 {
14573 matches = 0;
14574 break;
14575 }
14576
14577 switch (neon_shape_tab[shape].el[j])
14578 {
d54af2d0
RL
14579 /* If a .f16, .16, .u16, .s16 type specifier is given over
14580 a VFP single precision register operand, it's essentially
14581 means only half of the register is used.
14582
14583 If the type specifier is given after the mnemonics, the
14584 information is stored in inst.vectype. If the type specifier
14585 is given after register operand, the information is stored
14586 in inst.operands[].vectype.
14587
14588 When there is only one type specifier, and all the register
14589 operands are the same type of hardware register, the type
14590 specifier applies to all register operands.
14591
14592 If no type specifier is given, the shape is inferred from
14593 operand information.
14594
14595 for example:
14596 vadd.f16 s0, s1, s2: NS_HHH
14597 vabs.f16 s0, s1: NS_HH
14598 vmov.f16 s0, r1: NS_HR
14599 vmov.f16 r0, s1: NS_RH
14600 vcvt.f16 r0, s1: NS_RH
14601 vcvt.f16.s32 s2, s2, #29: NS_HFI
14602 vcvt.f16.s32 s2, s2: NS_HF
14603 */
14604 case SE_H:
14605 if (!(inst.operands[j].isreg
14606 && inst.operands[j].isvec
14607 && inst.operands[j].issingle
14608 && !inst.operands[j].isquad
14609 && ((inst.vectype.elems == 1
14610 && inst.vectype.el[0].size == 16)
14611 || (inst.vectype.elems > 1
14612 && inst.vectype.el[j].size == 16)
14613 || (inst.vectype.elems == 0
14614 && inst.operands[j].vectype.type != NT_invtype
14615 && inst.operands[j].vectype.size == 16))))
14616 matches = 0;
14617 break;
14618
477330fc
RM
14619 case SE_F:
14620 if (!(inst.operands[j].isreg
14621 && inst.operands[j].isvec
14622 && inst.operands[j].issingle
d54af2d0
RL
14623 && !inst.operands[j].isquad
14624 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14625 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14626 || (inst.vectype.elems == 0
14627 && (inst.operands[j].vectype.size == 32
14628 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14629 matches = 0;
14630 break;
14631
14632 case SE_D:
14633 if (!(inst.operands[j].isreg
14634 && inst.operands[j].isvec
14635 && !inst.operands[j].isquad
14636 && !inst.operands[j].issingle))
14637 matches = 0;
14638 break;
14639
14640 case SE_R:
14641 if (!(inst.operands[j].isreg
14642 && !inst.operands[j].isvec))
14643 matches = 0;
14644 break;
14645
14646 case SE_Q:
14647 if (!(inst.operands[j].isreg
14648 && inst.operands[j].isvec
14649 && inst.operands[j].isquad
14650 && !inst.operands[j].issingle))
14651 matches = 0;
14652 break;
14653
14654 case SE_I:
14655 if (!(!inst.operands[j].isreg
14656 && !inst.operands[j].isscalar))
14657 matches = 0;
14658 break;
14659
14660 case SE_S:
14661 if (!(!inst.operands[j].isreg
14662 && inst.operands[j].isscalar))
14663 matches = 0;
14664 break;
14665
14666 case SE_L:
14667 break;
14668 }
3fde54a2
JZ
14669 if (!matches)
14670 break;
477330fc 14671 }
ad6cec43
MGD
14672 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14673 /* We've matched all the entries in the shape table, and we don't
14674 have any left over operands which have not been matched. */
477330fc 14675 break;
037e8744 14676 }
5f4273c7 14677
037e8744 14678 va_end (ap);
5287ad62 14679
037e8744
JB
14680 if (shape == NS_NULL && first_shape != NS_NULL)
14681 first_error (_("invalid instruction shape"));
5287ad62 14682
037e8744
JB
14683 return shape;
14684}
5287ad62 14685
037e8744
JB
14686/* True if SHAPE is predominantly a quadword operation (most of the time, this
14687 means the Q bit should be set). */
14688
14689static int
14690neon_quad (enum neon_shape shape)
14691{
14692 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14693}
037e8744 14694
5287ad62
JB
14695static void
14696neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14697 unsigned *g_size)
5287ad62
JB
14698{
14699 /* Allow modification to be made to types which are constrained to be
14700 based on the key element, based on bits set alongside N_EQK. */
14701 if ((typebits & N_EQK) != 0)
14702 {
14703 if ((typebits & N_HLF) != 0)
14704 *g_size /= 2;
14705 else if ((typebits & N_DBL) != 0)
14706 *g_size *= 2;
14707 if ((typebits & N_SGN) != 0)
14708 *g_type = NT_signed;
14709 else if ((typebits & N_UNS) != 0)
477330fc 14710 *g_type = NT_unsigned;
5287ad62 14711 else if ((typebits & N_INT) != 0)
477330fc 14712 *g_type = NT_integer;
5287ad62 14713 else if ((typebits & N_FLT) != 0)
477330fc 14714 *g_type = NT_float;
dcbf9037 14715 else if ((typebits & N_SIZ) != 0)
477330fc 14716 *g_type = NT_untyped;
5287ad62
JB
14717 }
14718}
5f4273c7 14719
5287ad62
JB
14720/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14721 operand type, i.e. the single type specified in a Neon instruction when it
14722 is the only one given. */
14723
14724static struct neon_type_el
14725neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14726{
14727 struct neon_type_el dest = *key;
5f4273c7 14728
9c2799c2 14729 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14730
5287ad62
JB
14731 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14732
14733 return dest;
14734}
14735
14736/* Convert Neon type and size into compact bitmask representation. */
14737
14738static enum neon_type_mask
14739type_chk_of_el_type (enum neon_el_type type, unsigned size)
14740{
14741 switch (type)
14742 {
14743 case NT_untyped:
14744 switch (size)
477330fc
RM
14745 {
14746 case 8: return N_8;
14747 case 16: return N_16;
14748 case 32: return N_32;
14749 case 64: return N_64;
14750 default: ;
14751 }
5287ad62
JB
14752 break;
14753
14754 case NT_integer:
14755 switch (size)
477330fc
RM
14756 {
14757 case 8: return N_I8;
14758 case 16: return N_I16;
14759 case 32: return N_I32;
14760 case 64: return N_I64;
14761 default: ;
14762 }
5287ad62
JB
14763 break;
14764
14765 case NT_float:
037e8744 14766 switch (size)
477330fc 14767 {
8e79c3df 14768 case 16: return N_F16;
477330fc
RM
14769 case 32: return N_F32;
14770 case 64: return N_F64;
14771 default: ;
14772 }
5287ad62
JB
14773 break;
14774
14775 case NT_poly:
14776 switch (size)
477330fc
RM
14777 {
14778 case 8: return N_P8;
14779 case 16: return N_P16;
4f51b4bd 14780 case 64: return N_P64;
477330fc
RM
14781 default: ;
14782 }
5287ad62
JB
14783 break;
14784
14785 case NT_signed:
14786 switch (size)
477330fc
RM
14787 {
14788 case 8: return N_S8;
14789 case 16: return N_S16;
14790 case 32: return N_S32;
14791 case 64: return N_S64;
14792 default: ;
14793 }
5287ad62
JB
14794 break;
14795
14796 case NT_unsigned:
14797 switch (size)
477330fc
RM
14798 {
14799 case 8: return N_U8;
14800 case 16: return N_U16;
14801 case 32: return N_U32;
14802 case 64: return N_U64;
14803 default: ;
14804 }
5287ad62
JB
14805 break;
14806
14807 default: ;
14808 }
5f4273c7 14809
5287ad62
JB
14810 return N_UTYP;
14811}
14812
14813/* Convert compact Neon bitmask type representation to a type and size. Only
14814 handles the case where a single bit is set in the mask. */
14815
dcbf9037 14816static int
5287ad62 14817el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14818 enum neon_type_mask mask)
5287ad62 14819{
dcbf9037
JB
14820 if ((mask & N_EQK) != 0)
14821 return FAIL;
14822
5287ad62
JB
14823 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14824 *size = 8;
c70a8987 14825 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14826 *size = 16;
dcbf9037 14827 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14828 *size = 32;
4f51b4bd 14829 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14830 *size = 64;
dcbf9037
JB
14831 else
14832 return FAIL;
14833
5287ad62
JB
14834 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14835 *type = NT_signed;
dcbf9037 14836 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14837 *type = NT_unsigned;
dcbf9037 14838 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14839 *type = NT_integer;
dcbf9037 14840 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14841 *type = NT_untyped;
4f51b4bd 14842 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14843 *type = NT_poly;
d54af2d0 14844 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14845 *type = NT_float;
dcbf9037
JB
14846 else
14847 return FAIL;
5f4273c7 14848
dcbf9037 14849 return SUCCESS;
5287ad62
JB
14850}
14851
14852/* Modify a bitmask of allowed types. This is only needed for type
14853 relaxation. */
14854
14855static unsigned
14856modify_types_allowed (unsigned allowed, unsigned mods)
14857{
14858 unsigned size;
14859 enum neon_el_type type;
14860 unsigned destmask;
14861 int i;
5f4273c7 14862
5287ad62 14863 destmask = 0;
5f4273c7 14864
5287ad62
JB
14865 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14866 {
21d799b5 14867 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14868 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14869 {
14870 neon_modify_type_size (mods, &type, &size);
14871 destmask |= type_chk_of_el_type (type, size);
14872 }
5287ad62 14873 }
5f4273c7 14874
5287ad62
JB
14875 return destmask;
14876}
14877
14878/* Check type and return type classification.
14879 The manual states (paraphrase): If one datatype is given, it indicates the
14880 type given in:
14881 - the second operand, if there is one
14882 - the operand, if there is no second operand
14883 - the result, if there are no operands.
14884 This isn't quite good enough though, so we use a concept of a "key" datatype
14885 which is set on a per-instruction basis, which is the one which matters when
14886 only one data type is written.
14887 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14888 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14889
14890static struct neon_type_el
14891neon_check_type (unsigned els, enum neon_shape ns, ...)
14892{
14893 va_list ap;
14894 unsigned i, pass, key_el = 0;
14895 unsigned types[NEON_MAX_TYPE_ELS];
14896 enum neon_el_type k_type = NT_invtype;
14897 unsigned k_size = -1u;
14898 struct neon_type_el badtype = {NT_invtype, -1};
14899 unsigned key_allowed = 0;
14900
14901 /* Optional registers in Neon instructions are always (not) in operand 1.
14902 Fill in the missing operand here, if it was omitted. */
14903 if (els > 1 && !inst.operands[1].present)
14904 inst.operands[1] = inst.operands[0];
14905
14906 /* Suck up all the varargs. */
14907 va_start (ap, ns);
14908 for (i = 0; i < els; i++)
14909 {
14910 unsigned thisarg = va_arg (ap, unsigned);
14911 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14912 {
14913 va_end (ap);
14914 return badtype;
14915 }
5287ad62
JB
14916 types[i] = thisarg;
14917 if ((thisarg & N_KEY) != 0)
477330fc 14918 key_el = i;
5287ad62
JB
14919 }
14920 va_end (ap);
14921
dcbf9037
JB
14922 if (inst.vectype.elems > 0)
14923 for (i = 0; i < els; i++)
14924 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14925 {
14926 first_error (_("types specified in both the mnemonic and operands"));
14927 return badtype;
14928 }
dcbf9037 14929
5287ad62
JB
14930 /* Duplicate inst.vectype elements here as necessary.
14931 FIXME: No idea if this is exactly the same as the ARM assembler,
14932 particularly when an insn takes one register and one non-register
14933 operand. */
14934 if (inst.vectype.elems == 1 && els > 1)
14935 {
14936 unsigned j;
14937 inst.vectype.elems = els;
14938 inst.vectype.el[key_el] = inst.vectype.el[0];
14939 for (j = 0; j < els; j++)
477330fc
RM
14940 if (j != key_el)
14941 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14942 types[j]);
dcbf9037
JB
14943 }
14944 else if (inst.vectype.elems == 0 && els > 0)
14945 {
14946 unsigned j;
14947 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14948 after each operand. We allow some flexibility here; as long as the
14949 "key" operand has a type, we can infer the others. */
dcbf9037 14950 for (j = 0; j < els; j++)
477330fc
RM
14951 if (inst.operands[j].vectype.type != NT_invtype)
14952 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14953
14954 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14955 {
14956 for (j = 0; j < els; j++)
14957 if (inst.operands[j].vectype.type == NT_invtype)
14958 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14959 types[j]);
14960 }
dcbf9037 14961 else
477330fc
RM
14962 {
14963 first_error (_("operand types can't be inferred"));
14964 return badtype;
14965 }
5287ad62
JB
14966 }
14967 else if (inst.vectype.elems != els)
14968 {
dcbf9037 14969 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14970 return badtype;
14971 }
14972
14973 for (pass = 0; pass < 2; pass++)
14974 {
14975 for (i = 0; i < els; i++)
477330fc
RM
14976 {
14977 unsigned thisarg = types[i];
14978 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14979 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14980 enum neon_el_type g_type = inst.vectype.el[i].type;
14981 unsigned g_size = inst.vectype.el[i].size;
14982
14983 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14984 integer types if sign-specific variants are unavailable. */
477330fc 14985 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14986 && (types_allowed & N_SU_ALL) == 0)
14987 g_type = NT_integer;
14988
477330fc 14989 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14990 them. Some instructions only care about signs for some element
14991 sizes, so handle that properly. */
477330fc 14992 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14993 && ((g_size == 8 && (types_allowed & N_8) != 0)
14994 || (g_size == 16 && (types_allowed & N_16) != 0)
14995 || (g_size == 32 && (types_allowed & N_32) != 0)
14996 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14997 g_type = NT_untyped;
14998
477330fc
RM
14999 if (pass == 0)
15000 {
15001 if ((thisarg & N_KEY) != 0)
15002 {
15003 k_type = g_type;
15004 k_size = g_size;
15005 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15006
15007 /* Check architecture constraint on FP16 extension. */
15008 if (k_size == 16
15009 && k_type == NT_float
15010 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15011 {
15012 inst.error = _(BAD_FP16);
15013 return badtype;
15014 }
477330fc
RM
15015 }
15016 }
15017 else
15018 {
15019 if ((thisarg & N_VFP) != 0)
15020 {
15021 enum neon_shape_el regshape;
15022 unsigned regwidth, match;
99b253c5
NC
15023
15024 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15025 if (ns == NS_NULL)
15026 {
15027 first_error (_("invalid instruction shape"));
15028 return badtype;
15029 }
477330fc
RM
15030 regshape = neon_shape_tab[ns].el[i];
15031 regwidth = neon_shape_el_size[regshape];
15032
15033 /* In VFP mode, operands must match register widths. If we
15034 have a key operand, use its width, else use the width of
15035 the current operand. */
15036 if (k_size != -1u)
15037 match = k_size;
15038 else
15039 match = g_size;
15040
9db2f6b4
RL
15041 /* FP16 will use a single precision register. */
15042 if (regwidth == 32 && match == 16)
15043 {
15044 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15045 match = regwidth;
15046 else
15047 {
15048 inst.error = _(BAD_FP16);
15049 return badtype;
15050 }
15051 }
15052
477330fc
RM
15053 if (regwidth != match)
15054 {
15055 first_error (_("operand size must match register width"));
15056 return badtype;
15057 }
15058 }
15059
15060 if ((thisarg & N_EQK) == 0)
15061 {
15062 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15063
15064 if ((given_type & types_allowed) == 0)
15065 {
a302e574 15066 first_error (BAD_SIMD_TYPE);
477330fc
RM
15067 return badtype;
15068 }
15069 }
15070 else
15071 {
15072 enum neon_el_type mod_k_type = k_type;
15073 unsigned mod_k_size = k_size;
15074 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15075 if (g_type != mod_k_type || g_size != mod_k_size)
15076 {
15077 first_error (_("inconsistent types in Neon instruction"));
15078 return badtype;
15079 }
15080 }
15081 }
15082 }
5287ad62
JB
15083 }
15084
15085 return inst.vectype.el[key_el];
15086}
15087
037e8744 15088/* Neon-style VFP instruction forwarding. */
5287ad62 15089
037e8744
JB
15090/* Thumb VFP instructions have 0xE in the condition field. */
15091
15092static void
15093do_vfp_cond_or_thumb (void)
5287ad62 15094{
88714cb8
DG
15095 inst.is_neon = 1;
15096
5287ad62 15097 if (thumb_mode)
037e8744 15098 inst.instruction |= 0xe0000000;
5287ad62 15099 else
037e8744 15100 inst.instruction |= inst.cond << 28;
5287ad62
JB
15101}
15102
037e8744
JB
15103/* Look up and encode a simple mnemonic, for use as a helper function for the
15104 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15105 etc. It is assumed that operand parsing has already been done, and that the
15106 operands are in the form expected by the given opcode (this isn't necessarily
15107 the same as the form in which they were parsed, hence some massaging must
15108 take place before this function is called).
15109 Checks current arch version against that in the looked-up opcode. */
5287ad62 15110
037e8744
JB
15111static void
15112do_vfp_nsyn_opcode (const char *opname)
5287ad62 15113{
037e8744 15114 const struct asm_opcode *opcode;
5f4273c7 15115
21d799b5 15116 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15117
037e8744
JB
15118 if (!opcode)
15119 abort ();
5287ad62 15120
037e8744 15121 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15122 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15123 _(BAD_FPU));
5287ad62 15124
88714cb8
DG
15125 inst.is_neon = 1;
15126
037e8744
JB
15127 if (thumb_mode)
15128 {
15129 inst.instruction = opcode->tvalue;
15130 opcode->tencode ();
15131 }
15132 else
15133 {
15134 inst.instruction = (inst.cond << 28) | opcode->avalue;
15135 opcode->aencode ();
15136 }
15137}
5287ad62
JB
15138
15139static void
037e8744 15140do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15141{
037e8744
JB
15142 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15143
9db2f6b4 15144 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15145 {
15146 if (is_add)
477330fc 15147 do_vfp_nsyn_opcode ("fadds");
037e8744 15148 else
477330fc 15149 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15150
15151 /* ARMv8.2 fp16 instruction. */
15152 if (rs == NS_HHH)
15153 do_scalar_fp16_v82_encode ();
037e8744
JB
15154 }
15155 else
15156 {
15157 if (is_add)
477330fc 15158 do_vfp_nsyn_opcode ("faddd");
037e8744 15159 else
477330fc 15160 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15161 }
15162}
15163
15164/* Check operand types to see if this is a VFP instruction, and if so call
15165 PFN (). */
15166
15167static int
15168try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15169{
15170 enum neon_shape rs;
15171 struct neon_type_el et;
15172
15173 switch (args)
15174 {
15175 case 2:
9db2f6b4
RL
15176 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15177 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15178 break;
5f4273c7 15179
037e8744 15180 case 3:
9db2f6b4
RL
15181 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15182 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15183 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15184 break;
15185
15186 default:
15187 abort ();
15188 }
15189
15190 if (et.type != NT_invtype)
15191 {
15192 pfn (rs);
15193 return SUCCESS;
15194 }
037e8744 15195
99b253c5 15196 inst.error = NULL;
037e8744
JB
15197 return FAIL;
15198}
15199
15200static void
15201do_vfp_nsyn_mla_mls (enum neon_shape rs)
15202{
15203 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15204
9db2f6b4 15205 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15206 {
15207 if (is_mla)
477330fc 15208 do_vfp_nsyn_opcode ("fmacs");
037e8744 15209 else
477330fc 15210 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15211
15212 /* ARMv8.2 fp16 instruction. */
15213 if (rs == NS_HHH)
15214 do_scalar_fp16_v82_encode ();
037e8744
JB
15215 }
15216 else
15217 {
15218 if (is_mla)
477330fc 15219 do_vfp_nsyn_opcode ("fmacd");
037e8744 15220 else
477330fc 15221 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15222 }
15223}
15224
62f3b8c8
PB
15225static void
15226do_vfp_nsyn_fma_fms (enum neon_shape rs)
15227{
15228 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15229
9db2f6b4 15230 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15231 {
15232 if (is_fma)
477330fc 15233 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15234 else
477330fc 15235 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15236
15237 /* ARMv8.2 fp16 instruction. */
15238 if (rs == NS_HHH)
15239 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15240 }
15241 else
15242 {
15243 if (is_fma)
477330fc 15244 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15245 else
477330fc 15246 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15247 }
15248}
15249
037e8744
JB
15250static void
15251do_vfp_nsyn_mul (enum neon_shape rs)
15252{
9db2f6b4
RL
15253 if (rs == NS_FFF || rs == NS_HHH)
15254 {
15255 do_vfp_nsyn_opcode ("fmuls");
15256
15257 /* ARMv8.2 fp16 instruction. */
15258 if (rs == NS_HHH)
15259 do_scalar_fp16_v82_encode ();
15260 }
037e8744
JB
15261 else
15262 do_vfp_nsyn_opcode ("fmuld");
15263}
15264
15265static void
15266do_vfp_nsyn_abs_neg (enum neon_shape rs)
15267{
15268 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15269 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15270
9db2f6b4 15271 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15272 {
15273 if (is_neg)
477330fc 15274 do_vfp_nsyn_opcode ("fnegs");
037e8744 15275 else
477330fc 15276 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15277
15278 /* ARMv8.2 fp16 instruction. */
15279 if (rs == NS_HH)
15280 do_scalar_fp16_v82_encode ();
037e8744
JB
15281 }
15282 else
15283 {
15284 if (is_neg)
477330fc 15285 do_vfp_nsyn_opcode ("fnegd");
037e8744 15286 else
477330fc 15287 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15288 }
15289}
15290
15291/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15292 insns belong to Neon, and are handled elsewhere. */
15293
15294static void
15295do_vfp_nsyn_ldm_stm (int is_dbmode)
15296{
15297 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15298 if (is_ldm)
15299 {
15300 if (is_dbmode)
477330fc 15301 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15302 else
477330fc 15303 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15304 }
15305 else
15306 {
15307 if (is_dbmode)
477330fc 15308 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15309 else
477330fc 15310 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15311 }
15312}
15313
037e8744
JB
15314static void
15315do_vfp_nsyn_sqrt (void)
15316{
9db2f6b4
RL
15317 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15318 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15319
9db2f6b4
RL
15320 if (rs == NS_FF || rs == NS_HH)
15321 {
15322 do_vfp_nsyn_opcode ("fsqrts");
15323
15324 /* ARMv8.2 fp16 instruction. */
15325 if (rs == NS_HH)
15326 do_scalar_fp16_v82_encode ();
15327 }
037e8744
JB
15328 else
15329 do_vfp_nsyn_opcode ("fsqrtd");
15330}
15331
15332static void
15333do_vfp_nsyn_div (void)
15334{
9db2f6b4 15335 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15336 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15337 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15338
9db2f6b4
RL
15339 if (rs == NS_FFF || rs == NS_HHH)
15340 {
15341 do_vfp_nsyn_opcode ("fdivs");
15342
15343 /* ARMv8.2 fp16 instruction. */
15344 if (rs == NS_HHH)
15345 do_scalar_fp16_v82_encode ();
15346 }
037e8744
JB
15347 else
15348 do_vfp_nsyn_opcode ("fdivd");
15349}
15350
15351static void
15352do_vfp_nsyn_nmul (void)
15353{
9db2f6b4 15354 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15355 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15356 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15357
9db2f6b4 15358 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15359 {
88714cb8 15360 NEON_ENCODE (SINGLE, inst);
037e8744 15361 do_vfp_sp_dyadic ();
9db2f6b4
RL
15362
15363 /* ARMv8.2 fp16 instruction. */
15364 if (rs == NS_HHH)
15365 do_scalar_fp16_v82_encode ();
037e8744
JB
15366 }
15367 else
15368 {
88714cb8 15369 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15370 do_vfp_dp_rd_rn_rm ();
15371 }
15372 do_vfp_cond_or_thumb ();
9db2f6b4 15373
037e8744
JB
15374}
15375
1b883319
AV
15376/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15377 (0, 1, 2, 3). */
15378
15379static unsigned
15380neon_logbits (unsigned x)
15381{
15382 return ffs (x) - 4;
15383}
15384
15385#define LOW4(R) ((R) & 0xf)
15386#define HI1(R) (((R) >> 4) & 1)
15387
15388static unsigned
15389mve_get_vcmp_vpt_cond (struct neon_type_el et)
15390{
15391 switch (et.type)
15392 {
15393 default:
15394 first_error (BAD_EL_TYPE);
15395 return 0;
15396 case NT_float:
15397 switch (inst.operands[0].imm)
15398 {
15399 default:
15400 first_error (_("invalid condition"));
15401 return 0;
15402 case 0x0:
15403 /* eq. */
15404 return 0;
15405 case 0x1:
15406 /* ne. */
15407 return 1;
15408 case 0xa:
15409 /* ge/ */
15410 return 4;
15411 case 0xb:
15412 /* lt. */
15413 return 5;
15414 case 0xc:
15415 /* gt. */
15416 return 6;
15417 case 0xd:
15418 /* le. */
15419 return 7;
15420 }
15421 case NT_integer:
15422 /* only accept eq and ne. */
15423 if (inst.operands[0].imm > 1)
15424 {
15425 first_error (_("invalid condition"));
15426 return 0;
15427 }
15428 return inst.operands[0].imm;
15429 case NT_unsigned:
15430 if (inst.operands[0].imm == 0x2)
15431 return 2;
15432 else if (inst.operands[0].imm == 0x8)
15433 return 3;
15434 else
15435 {
15436 first_error (_("invalid condition"));
15437 return 0;
15438 }
15439 case NT_signed:
15440 switch (inst.operands[0].imm)
15441 {
15442 default:
15443 first_error (_("invalid condition"));
15444 return 0;
15445 case 0xa:
15446 /* ge. */
15447 return 4;
15448 case 0xb:
15449 /* lt. */
15450 return 5;
15451 case 0xc:
15452 /* gt. */
15453 return 6;
15454 case 0xd:
15455 /* le. */
15456 return 7;
15457 }
15458 }
15459 /* Should be unreachable. */
15460 abort ();
15461}
15462
15463static void
15464do_mve_vpt (void)
15465{
15466 /* We are dealing with a vector predicated block. */
15467 if (inst.operands[0].present)
15468 {
15469 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15470 struct neon_type_el et
15471 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15472 N_EQK);
15473
15474 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15475
15476 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15477
15478 if (et.type == NT_invtype)
15479 return;
15480
15481 if (et.type == NT_float)
15482 {
15483 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15484 BAD_FPU);
15485 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15486 inst.instruction |= (et.size == 16) << 28;
15487 inst.instruction |= 0x3 << 20;
15488 }
15489 else
15490 {
15491 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15492 BAD_EL_TYPE);
15493 inst.instruction |= 1 << 28;
15494 inst.instruction |= neon_logbits (et.size) << 20;
15495 }
15496
15497 if (inst.operands[2].isquad)
15498 {
15499 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15500 inst.instruction |= LOW4 (inst.operands[2].reg);
15501 inst.instruction |= (fcond & 0x2) >> 1;
15502 }
15503 else
15504 {
15505 if (inst.operands[2].reg == REG_SP)
15506 as_tsktsk (MVE_BAD_SP);
15507 inst.instruction |= 1 << 6;
15508 inst.instruction |= (fcond & 0x2) << 4;
15509 inst.instruction |= inst.operands[2].reg;
15510 }
15511 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15512 inst.instruction |= (fcond & 0x4) << 10;
15513 inst.instruction |= (fcond & 0x1) << 7;
15514
15515 }
15516 set_pred_insn_type (VPT_INSN);
15517 now_pred.cc = 0;
15518 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15519 | ((inst.instruction & 0xe000) >> 13);
15520 now_pred.warn_deprecated = FALSE;
15521 now_pred.type = VECTOR_PRED;
15522 inst.is_neon = 1;
15523}
15524
15525static void
15526do_mve_vcmp (void)
15527{
15528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15529 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15530 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15531 if (!inst.operands[2].present)
15532 first_error (_("MVE vector or ARM register expected"));
15533 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15534
15535 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15536 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15537 && inst.operands[1].isquad)
15538 {
15539 inst.instruction = N_MNEM_vcmp;
15540 inst.cond = 0x10;
15541 }
15542
15543 if (inst.cond > COND_ALWAYS)
15544 inst.pred_insn_type = INSIDE_VPT_INSN;
15545 else
15546 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15547
15548 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15549 struct neon_type_el et
15550 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15551 N_EQK);
15552
15553 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15554 && !inst.operands[2].iszr, BAD_PC);
15555
15556 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15557
15558 inst.instruction = 0xee010f00;
15559 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15560 inst.instruction |= (fcond & 0x4) << 10;
15561 inst.instruction |= (fcond & 0x1) << 7;
15562 if (et.type == NT_float)
15563 {
15564 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15565 BAD_FPU);
15566 inst.instruction |= (et.size == 16) << 28;
15567 inst.instruction |= 0x3 << 20;
15568 }
15569 else
15570 {
15571 inst.instruction |= 1 << 28;
15572 inst.instruction |= neon_logbits (et.size) << 20;
15573 }
15574 if (inst.operands[2].isquad)
15575 {
15576 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15577 inst.instruction |= (fcond & 0x2) >> 1;
15578 inst.instruction |= LOW4 (inst.operands[2].reg);
15579 }
15580 else
15581 {
15582 if (inst.operands[2].reg == REG_SP)
15583 as_tsktsk (MVE_BAD_SP);
15584 inst.instruction |= 1 << 6;
15585 inst.instruction |= (fcond & 0x2) << 4;
15586 inst.instruction |= inst.operands[2].reg;
15587 }
15588
15589 inst.is_neon = 1;
15590 return;
15591}
15592
f30ee27c
AV
15593static void
15594do_mve_vfmas (void)
15595{
15596 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15597 struct neon_type_el et
15598 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15599
15600 if (inst.cond > COND_ALWAYS)
15601 inst.pred_insn_type = INSIDE_VPT_INSN;
15602 else
15603 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15604
15605 if (inst.operands[2].reg == REG_SP)
15606 as_tsktsk (MVE_BAD_SP);
15607 else if (inst.operands[2].reg == REG_PC)
15608 as_tsktsk (MVE_BAD_PC);
15609
15610 inst.instruction |= (et.size == 16) << 28;
15611 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15612 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15613 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15614 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15615 inst.instruction |= inst.operands[2].reg;
15616 inst.is_neon = 1;
15617}
15618
b409bdb6
AV
15619static void
15620do_mve_viddup (void)
15621{
15622 if (inst.cond > COND_ALWAYS)
15623 inst.pred_insn_type = INSIDE_VPT_INSN;
15624 else
15625 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15626
15627 unsigned imm = inst.relocs[0].exp.X_add_number;
15628 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15629 _("immediate must be either 1, 2, 4 or 8"));
15630
15631 enum neon_shape rs;
15632 struct neon_type_el et;
15633 unsigned Rm;
15634 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15635 {
15636 rs = neon_select_shape (NS_QRI, NS_NULL);
15637 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15638 Rm = 7;
15639 }
15640 else
15641 {
15642 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15643 if (inst.operands[2].reg == REG_SP)
15644 as_tsktsk (MVE_BAD_SP);
15645 else if (inst.operands[2].reg == REG_PC)
15646 first_error (BAD_PC);
15647
15648 rs = neon_select_shape (NS_QRRI, NS_NULL);
15649 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15650 Rm = inst.operands[2].reg >> 1;
15651 }
15652 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15653 inst.instruction |= neon_logbits (et.size) << 20;
15654 inst.instruction |= inst.operands[1].reg << 16;
15655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15656 inst.instruction |= (imm > 2) << 7;
15657 inst.instruction |= Rm << 1;
15658 inst.instruction |= (imm == 2 || imm == 8);
15659 inst.is_neon = 1;
15660}
15661
5d281bf0
AV
15662static void
15663do_mve_vcmul (void)
15664{
15665 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15666 struct neon_type_el et
15667 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15668
15669 if (inst.cond > COND_ALWAYS)
15670 inst.pred_insn_type = INSIDE_VPT_INSN;
15671 else
15672 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15673
15674 unsigned rot = inst.relocs[0].exp.X_add_number;
15675 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15676 _("immediate out of range"));
15677
15678 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15679 || inst.operands[0].reg == inst.operands[2].reg))
15680 as_tsktsk (BAD_MVE_SRCDEST);
15681
15682 inst.instruction |= (et.size == 32) << 28;
15683 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15684 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15685 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15686 inst.instruction |= (rot > 90) << 12;
15687 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15688 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15689 inst.instruction |= LOW4 (inst.operands[2].reg);
15690 inst.instruction |= (rot == 90 || rot == 270);
15691 inst.is_neon = 1;
15692}
15693
037e8744
JB
15694static void
15695do_vfp_nsyn_cmp (void)
15696{
9db2f6b4 15697 enum neon_shape rs;
1b883319
AV
15698 if (!inst.operands[0].isreg)
15699 {
15700 do_mve_vcmp ();
15701 return;
15702 }
15703 else
15704 {
15705 constraint (inst.operands[2].present, BAD_SYNTAX);
15706 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15707 BAD_FPU);
15708 }
15709
037e8744
JB
15710 if (inst.operands[1].isreg)
15711 {
9db2f6b4
RL
15712 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15713 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15714
9db2f6b4 15715 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15716 {
15717 NEON_ENCODE (SINGLE, inst);
15718 do_vfp_sp_monadic ();
15719 }
037e8744 15720 else
477330fc
RM
15721 {
15722 NEON_ENCODE (DOUBLE, inst);
15723 do_vfp_dp_rd_rm ();
15724 }
037e8744
JB
15725 }
15726 else
15727 {
9db2f6b4
RL
15728 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15729 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15730
15731 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15732 {
15733 case N_MNEM_vcmp:
15734 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15735 break;
15736 case N_MNEM_vcmpe:
15737 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15738 break;
15739 default:
15740 abort ();
15741 }
5f4273c7 15742
9db2f6b4 15743 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15744 {
15745 NEON_ENCODE (SINGLE, inst);
15746 do_vfp_sp_compare_z ();
15747 }
037e8744 15748 else
477330fc
RM
15749 {
15750 NEON_ENCODE (DOUBLE, inst);
15751 do_vfp_dp_rd ();
15752 }
037e8744
JB
15753 }
15754 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15755
15756 /* ARMv8.2 fp16 instruction. */
15757 if (rs == NS_HI || rs == NS_HH)
15758 do_scalar_fp16_v82_encode ();
037e8744
JB
15759}
15760
15761static void
15762nsyn_insert_sp (void)
15763{
15764 inst.operands[1] = inst.operands[0];
15765 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15766 inst.operands[0].reg = REG_SP;
037e8744
JB
15767 inst.operands[0].isreg = 1;
15768 inst.operands[0].writeback = 1;
15769 inst.operands[0].present = 1;
15770}
15771
15772static void
15773do_vfp_nsyn_push (void)
15774{
15775 nsyn_insert_sp ();
b126985e
NC
15776
15777 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15778 _("register list must contain at least 1 and at most 16 "
15779 "registers"));
15780
037e8744
JB
15781 if (inst.operands[1].issingle)
15782 do_vfp_nsyn_opcode ("fstmdbs");
15783 else
15784 do_vfp_nsyn_opcode ("fstmdbd");
15785}
15786
15787static void
15788do_vfp_nsyn_pop (void)
15789{
15790 nsyn_insert_sp ();
b126985e
NC
15791
15792 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15793 _("register list must contain at least 1 and at most 16 "
15794 "registers"));
15795
037e8744 15796 if (inst.operands[1].issingle)
22b5b651 15797 do_vfp_nsyn_opcode ("fldmias");
037e8744 15798 else
22b5b651 15799 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15800}
15801
15802/* Fix up Neon data-processing instructions, ORing in the correct bits for
15803 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15804
88714cb8
DG
15805static void
15806neon_dp_fixup (struct arm_it* insn)
037e8744 15807{
88714cb8
DG
15808 unsigned int i = insn->instruction;
15809 insn->is_neon = 1;
15810
037e8744
JB
15811 if (thumb_mode)
15812 {
15813 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15814 if (i & (1 << 24))
477330fc 15815 i |= 1 << 28;
5f4273c7 15816
037e8744 15817 i &= ~(1 << 24);
5f4273c7 15818
037e8744
JB
15819 i |= 0xef000000;
15820 }
15821 else
15822 i |= 0xf2000000;
5f4273c7 15823
88714cb8 15824 insn->instruction = i;
037e8744
JB
15825}
15826
5ee91343 15827static void
7df54120 15828mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
15829{
15830 if (inst.operands[2].reg == REG_SP)
15831 as_tsktsk (MVE_BAD_SP);
15832 else if (inst.operands[2].reg == REG_PC)
15833 as_tsktsk (MVE_BAD_PC);
15834
15835 if (fp)
15836 {
15837 /* vadd. */
15838 if (((unsigned)inst.instruction) == 0xd00)
15839 inst.instruction = 0xee300f40;
15840 /* vsub. */
15841 else if (((unsigned)inst.instruction) == 0x200d00)
15842 inst.instruction = 0xee301f40;
15843
15844 /* Setting size which is 1 for F16 and 0 for F32. */
15845 inst.instruction |= (size == 16) << 28;
15846 }
15847 else
15848 {
15849 /* vadd. */
15850 if (((unsigned)inst.instruction) == 0x800)
15851 inst.instruction = 0xee010f40;
15852 /* vsub. */
15853 else if (((unsigned)inst.instruction) == 0x1000800)
15854 inst.instruction = 0xee011f40;
7df54120
AV
15855 /* vhadd. */
15856 else if (((unsigned)inst.instruction) == 0)
15857 inst.instruction = 0xee000f40;
15858 /* vhsub. */
15859 else if (((unsigned)inst.instruction) == 0x200)
15860 inst.instruction = 0xee001f40;
15861
15862 /* Set U-bit. */
15863 inst.instruction |= U << 28;
15864
5ee91343
AV
15865 /* Setting bits for size. */
15866 inst.instruction |= neon_logbits (size) << 20;
15867 }
15868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15870 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15871 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15872 inst.instruction |= inst.operands[2].reg;
15873 inst.is_neon = 1;
15874}
15875
a302e574
AV
15876static void
15877mve_encode_rqq (unsigned bit28, unsigned size)
15878{
15879 inst.instruction |= bit28 << 28;
15880 inst.instruction |= neon_logbits (size) << 20;
15881 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15882 inst.instruction |= inst.operands[0].reg << 12;
15883 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15884 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15885 inst.instruction |= LOW4 (inst.operands[2].reg);
15886 inst.is_neon = 1;
15887}
15888
886e1c73
AV
15889static void
15890mve_encode_qqq (int ubit, int size)
15891{
15892
15893 inst.instruction |= (ubit != 0) << 28;
15894 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15895 inst.instruction |= neon_logbits (size) << 20;
15896 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15897 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15898 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15899 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15900 inst.instruction |= LOW4 (inst.operands[2].reg);
15901
15902 inst.is_neon = 1;
15903}
15904
26c1e780
AV
15905static void
15906mve_encode_rq (unsigned bit28, unsigned size)
15907{
15908 inst.instruction |= bit28 << 28;
15909 inst.instruction |= neon_logbits (size) << 18;
15910 inst.instruction |= inst.operands[0].reg << 12;
15911 inst.instruction |= LOW4 (inst.operands[1].reg);
15912 inst.is_neon = 1;
15913}
886e1c73 15914
037e8744
JB
15915/* Encode insns with bit pattern:
15916
15917 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15918 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 15919
037e8744
JB
15920 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15921 different meaning for some instruction. */
15922
15923static void
15924neon_three_same (int isquad, int ubit, int size)
15925{
15926 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15927 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15928 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15929 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15930 inst.instruction |= LOW4 (inst.operands[2].reg);
15931 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15932 inst.instruction |= (isquad != 0) << 6;
15933 inst.instruction |= (ubit != 0) << 24;
15934 if (size != -1)
15935 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15936
88714cb8 15937 neon_dp_fixup (&inst);
037e8744
JB
15938}
15939
15940/* Encode instructions of the form:
15941
15942 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15943 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
15944
15945 Don't write size if SIZE == -1. */
15946
15947static void
15948neon_two_same (int qbit, int ubit, int size)
15949{
15950 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15951 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15952 inst.instruction |= LOW4 (inst.operands[1].reg);
15953 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15954 inst.instruction |= (qbit != 0) << 6;
15955 inst.instruction |= (ubit != 0) << 24;
15956
15957 if (size != -1)
15958 inst.instruction |= neon_logbits (size) << 18;
15959
88714cb8 15960 neon_dp_fixup (&inst);
5287ad62
JB
15961}
15962
7df54120
AV
15963enum vfp_or_neon_is_neon_bits
15964{
15965NEON_CHECK_CC = 1,
15966NEON_CHECK_ARCH = 2,
15967NEON_CHECK_ARCH8 = 4
15968};
15969
15970/* Call this function if an instruction which may have belonged to the VFP or
15971 Neon instruction sets, but turned out to be a Neon instruction (due to the
15972 operand types involved, etc.). We have to check and/or fix-up a couple of
15973 things:
15974
15975 - Make sure the user hasn't attempted to make a Neon instruction
15976 conditional.
15977 - Alter the value in the condition code field if necessary.
15978 - Make sure that the arch supports Neon instructions.
15979
15980 Which of these operations take place depends on bits from enum
15981 vfp_or_neon_is_neon_bits.
15982
15983 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15984 current instruction's condition is COND_ALWAYS, the condition field is
15985 changed to inst.uncond_value. This is necessary because instructions shared
15986 between VFP and Neon may be conditional for the VFP variants only, and the
15987 unconditional Neon version must have, e.g., 0xF in the condition field. */
15988
15989static int
15990vfp_or_neon_is_neon (unsigned check)
15991{
15992/* Conditions are always legal in Thumb mode (IT blocks). */
15993if (!thumb_mode && (check & NEON_CHECK_CC))
15994 {
15995 if (inst.cond != COND_ALWAYS)
15996 {
15997 first_error (_(BAD_COND));
15998 return FAIL;
15999 }
16000 if (inst.uncond_value != -1)
16001 inst.instruction |= inst.uncond_value << 28;
16002 }
16003
16004
16005 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16006 || ((check & NEON_CHECK_ARCH8)
16007 && !mark_feature_used (&fpu_neon_ext_armv8)))
16008 {
16009 first_error (_(BAD_FPU));
16010 return FAIL;
16011 }
16012
16013return SUCCESS;
16014}
16015
16016static int
16017check_simd_pred_availability (int fp, unsigned check)
16018{
16019if (inst.cond > COND_ALWAYS)
16020 {
16021 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16022 {
16023 inst.error = BAD_FPU;
16024 return 1;
16025 }
16026 inst.pred_insn_type = INSIDE_VPT_INSN;
16027 }
16028else if (inst.cond < COND_ALWAYS)
16029 {
16030 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16031 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16032 else if (vfp_or_neon_is_neon (check) == FAIL)
16033 return 2;
16034 }
16035else
16036 {
16037 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16038 && vfp_or_neon_is_neon (check) == FAIL)
16039 return 3;
16040
16041 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16042 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16043 }
16044return 0;
16045}
16046
5287ad62
JB
16047/* Neon instruction encoders, in approximate order of appearance. */
16048
16049static void
16050do_neon_dyadic_i_su (void)
16051{
7df54120
AV
16052 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16053 return;
16054
16055 enum neon_shape rs;
16056 struct neon_type_el et;
16057 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16058 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16059 else
16060 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16061
16062 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16063
16064
16065 if (rs != NS_QQR)
16066 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16067 else
16068 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16069}
16070
16071static void
16072do_neon_dyadic_i64_su (void)
16073{
037e8744 16074 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
16075 struct neon_type_el et = neon_check_type (3, rs,
16076 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 16077 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16078}
16079
16080static void
16081neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16082 unsigned immbits)
5287ad62
JB
16083{
16084 unsigned size = et.size >> 3;
16085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16087 inst.instruction |= LOW4 (inst.operands[1].reg);
16088 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16089 inst.instruction |= (isquad != 0) << 6;
16090 inst.instruction |= immbits << 16;
16091 inst.instruction |= (size >> 3) << 7;
16092 inst.instruction |= (size & 0x7) << 19;
16093 if (write_ubit)
16094 inst.instruction |= (uval != 0) << 24;
16095
88714cb8 16096 neon_dp_fixup (&inst);
5287ad62
JB
16097}
16098
16099static void
16100do_neon_shl_imm (void)
16101{
16102 if (!inst.operands[2].isreg)
16103 {
037e8744 16104 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16105 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
16106 int imm = inst.operands[2].imm;
16107
16108 constraint (imm < 0 || (unsigned)imm >= et.size,
16109 _("immediate out of range for shift"));
88714cb8 16110 NEON_ENCODE (IMMED, inst);
cb3b1e65 16111 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16112 }
16113 else
16114 {
037e8744 16115 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16116 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16117 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16118 unsigned int tmp;
16119
16120 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
16121 vshl.xx Dd, Dm, Dn
16122 whereas other 3-register operations encoded by neon_three_same have
16123 syntax like:
16124 vadd.xx Dd, Dn, Dm
16125 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16126 here. */
627907b7
JB
16127 tmp = inst.operands[2].reg;
16128 inst.operands[2].reg = inst.operands[1].reg;
16129 inst.operands[1].reg = tmp;
88714cb8 16130 NEON_ENCODE (INTEGER, inst);
037e8744 16131 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16132 }
16133}
16134
16135static void
16136do_neon_qshl_imm (void)
16137{
16138 if (!inst.operands[2].isreg)
16139 {
037e8744 16140 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 16141 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 16142 int imm = inst.operands[2].imm;
627907b7 16143
cb3b1e65
JB
16144 constraint (imm < 0 || (unsigned)imm >= et.size,
16145 _("immediate out of range for shift"));
88714cb8 16146 NEON_ENCODE (IMMED, inst);
cb3b1e65 16147 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16148 }
16149 else
16150 {
037e8744 16151 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16152 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16153 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
16154 unsigned int tmp;
16155
16156 /* See note in do_neon_shl_imm. */
16157 tmp = inst.operands[2].reg;
16158 inst.operands[2].reg = inst.operands[1].reg;
16159 inst.operands[1].reg = tmp;
88714cb8 16160 NEON_ENCODE (INTEGER, inst);
037e8744 16161 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16162 }
16163}
16164
627907b7
JB
16165static void
16166do_neon_rshl (void)
16167{
16168 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16169 struct neon_type_el et = neon_check_type (3, rs,
16170 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16171 unsigned int tmp;
16172
16173 tmp = inst.operands[2].reg;
16174 inst.operands[2].reg = inst.operands[1].reg;
16175 inst.operands[1].reg = tmp;
16176 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16177}
16178
5287ad62
JB
16179static int
16180neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16181{
036dc3f7
PB
16182 /* Handle .I8 pseudo-instructions. */
16183 if (size == 8)
5287ad62 16184 {
5287ad62 16185 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16186 FIXME is this the intended semantics? There doesn't seem much point in
16187 accepting .I8 if so. */
5287ad62
JB
16188 immediate |= immediate << 8;
16189 size = 16;
036dc3f7
PB
16190 }
16191
16192 if (size >= 32)
16193 {
16194 if (immediate == (immediate & 0x000000ff))
16195 {
16196 *immbits = immediate;
16197 return 0x1;
16198 }
16199 else if (immediate == (immediate & 0x0000ff00))
16200 {
16201 *immbits = immediate >> 8;
16202 return 0x3;
16203 }
16204 else if (immediate == (immediate & 0x00ff0000))
16205 {
16206 *immbits = immediate >> 16;
16207 return 0x5;
16208 }
16209 else if (immediate == (immediate & 0xff000000))
16210 {
16211 *immbits = immediate >> 24;
16212 return 0x7;
16213 }
16214 if ((immediate & 0xffff) != (immediate >> 16))
16215 goto bad_immediate;
16216 immediate &= 0xffff;
5287ad62
JB
16217 }
16218
16219 if (immediate == (immediate & 0x000000ff))
16220 {
16221 *immbits = immediate;
036dc3f7 16222 return 0x9;
5287ad62
JB
16223 }
16224 else if (immediate == (immediate & 0x0000ff00))
16225 {
16226 *immbits = immediate >> 8;
036dc3f7 16227 return 0xb;
5287ad62
JB
16228 }
16229
16230 bad_immediate:
dcbf9037 16231 first_error (_("immediate value out of range"));
5287ad62
JB
16232 return FAIL;
16233}
16234
5287ad62
JB
16235static void
16236do_neon_logic (void)
16237{
16238 if (inst.operands[2].present && inst.operands[2].isreg)
16239 {
037e8744 16240 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16241 if (rs == NS_QQQ
16242 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16243 == FAIL)
16244 return;
16245 else if (rs != NS_QQQ
16246 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16247 first_error (BAD_FPU);
16248
5287ad62
JB
16249 neon_check_type (3, rs, N_IGNORE_TYPE);
16250 /* U bit and size field were set as part of the bitmask. */
88714cb8 16251 NEON_ENCODE (INTEGER, inst);
037e8744 16252 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16253 }
16254 else
16255 {
4316f0d2
DG
16256 const int three_ops_form = (inst.operands[2].present
16257 && !inst.operands[2].isreg);
16258 const int immoperand = (three_ops_form ? 2 : 1);
16259 enum neon_shape rs = (three_ops_form
16260 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16261 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16262 /* Because neon_select_shape makes the second operand a copy of the first
16263 if the second operand is not present. */
16264 if (rs == NS_QQI
16265 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16266 == FAIL)
16267 return;
16268 else if (rs != NS_QQI
16269 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16270 first_error (BAD_FPU);
16271
16272 struct neon_type_el et;
16273 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16274 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16275 else
16276 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16277 | N_KEY, N_EQK);
16278
16279 if (et.type == NT_invtype)
16280 return;
21d799b5 16281 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16282 unsigned immbits;
16283 int cmode;
5f4273c7 16284
5f4273c7 16285
4316f0d2
DG
16286 if (three_ops_form)
16287 constraint (inst.operands[0].reg != inst.operands[1].reg,
16288 _("first and second operands shall be the same register"));
16289
88714cb8 16290 NEON_ENCODE (IMMED, inst);
5287ad62 16291
4316f0d2 16292 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16293 if (et.size == 64)
16294 {
16295 /* .i64 is a pseudo-op, so the immediate must be a repeating
16296 pattern. */
4316f0d2
DG
16297 if (immbits != (inst.operands[immoperand].regisimm ?
16298 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16299 {
16300 /* Set immbits to an invalid constant. */
16301 immbits = 0xdeadbeef;
16302 }
16303 }
16304
5287ad62 16305 switch (opcode)
477330fc
RM
16306 {
16307 case N_MNEM_vbic:
16308 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16309 break;
16310
16311 case N_MNEM_vorr:
16312 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16313 break;
16314
16315 case N_MNEM_vand:
16316 /* Pseudo-instruction for VBIC. */
16317 neon_invert_size (&immbits, 0, et.size);
16318 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16319 break;
16320
16321 case N_MNEM_vorn:
16322 /* Pseudo-instruction for VORR. */
16323 neon_invert_size (&immbits, 0, et.size);
16324 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16325 break;
16326
16327 default:
16328 abort ();
16329 }
5287ad62
JB
16330
16331 if (cmode == FAIL)
477330fc 16332 return;
5287ad62 16333
037e8744 16334 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16335 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16336 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16337 inst.instruction |= cmode << 8;
16338 neon_write_immbits (immbits);
5f4273c7 16339
88714cb8 16340 neon_dp_fixup (&inst);
5287ad62
JB
16341 }
16342}
16343
16344static void
16345do_neon_bitfield (void)
16346{
037e8744 16347 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16348 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16349 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16350}
16351
16352static void
dcbf9037 16353neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16354 unsigned destbits)
5287ad62 16355{
5ee91343 16356 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16357 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16358 types | N_KEY);
5287ad62
JB
16359 if (et.type == NT_float)
16360 {
88714cb8 16361 NEON_ENCODE (FLOAT, inst);
5ee91343 16362 if (rs == NS_QQR)
7df54120 16363 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16364 else
16365 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16366 }
16367 else
16368 {
88714cb8 16369 NEON_ENCODE (INTEGER, inst);
5ee91343 16370 if (rs == NS_QQR)
7df54120 16371 mve_encode_qqr (et.size, 0, 0);
5ee91343
AV
16372 else
16373 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16374 }
16375}
16376
5287ad62
JB
16377
16378static void
16379do_neon_dyadic_if_su_d (void)
16380{
16381 /* This version only allow D registers, but that constraint is enforced during
16382 operand parsing so we don't need to do anything extra here. */
dcbf9037 16383 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16384}
16385
5287ad62
JB
16386static void
16387do_neon_dyadic_if_i_d (void)
16388{
428e3f1f
PB
16389 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16390 affected if we specify unsigned args. */
16391 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16392}
16393
f5f10c66
AV
16394static void
16395do_mve_vstr_vldr_QI (int size, int elsize, int load)
16396{
16397 constraint (size < 32, BAD_ADDR_MODE);
16398 constraint (size != elsize, BAD_EL_TYPE);
16399 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16400 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16401 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16402 _("destination register and offset register may not be the"
16403 " same"));
16404
16405 int imm = inst.relocs[0].exp.X_add_number;
16406 int add = 1;
16407 if (imm < 0)
16408 {
16409 add = 0;
16410 imm = -imm;
16411 }
16412 constraint ((imm % (size / 8) != 0)
16413 || imm > (0x7f << neon_logbits (size)),
16414 (size == 32) ? _("immediate must be a multiple of 4 in the"
16415 " range of +/-[0,508]")
16416 : _("immediate must be a multiple of 8 in the"
16417 " range of +/-[0,1016]"));
16418 inst.instruction |= 0x11 << 24;
16419 inst.instruction |= add << 23;
16420 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16421 inst.instruction |= inst.operands[1].writeback << 21;
16422 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16424 inst.instruction |= 1 << 12;
16425 inst.instruction |= (size == 64) << 8;
16426 inst.instruction &= 0xffffff00;
16427 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16428 inst.instruction |= imm >> neon_logbits (size);
16429}
16430
16431static void
16432do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16433{
16434 unsigned os = inst.operands[1].imm >> 5;
16435 constraint (os != 0 && size == 8,
16436 _("can not shift offsets when accessing less than half-word"));
16437 constraint (os && os != neon_logbits (size),
16438 _("shift immediate must be 1, 2 or 3 for half-word, word"
16439 " or double-word accesses respectively"));
16440 if (inst.operands[1].reg == REG_PC)
16441 as_tsktsk (MVE_BAD_PC);
16442
16443 switch (size)
16444 {
16445 case 8:
16446 constraint (elsize >= 64, BAD_EL_TYPE);
16447 break;
16448 case 16:
16449 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16450 break;
16451 case 32:
16452 case 64:
16453 constraint (elsize != size, BAD_EL_TYPE);
16454 break;
16455 default:
16456 break;
16457 }
16458 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16459 BAD_ADDR_MODE);
16460 if (load)
16461 {
16462 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16463 _("destination register and offset register may not be"
16464 " the same"));
16465 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16466 BAD_EL_TYPE);
16467 constraint (inst.vectype.el[0].type != NT_unsigned
16468 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16469 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16470 }
16471 else
16472 {
16473 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16474 }
16475
16476 inst.instruction |= 1 << 23;
16477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16478 inst.instruction |= inst.operands[1].reg << 16;
16479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16480 inst.instruction |= neon_logbits (elsize) << 7;
16481 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16482 inst.instruction |= LOW4 (inst.operands[1].imm);
16483 inst.instruction |= !!os;
16484}
16485
16486static void
16487do_mve_vstr_vldr_RI (int size, int elsize, int load)
16488{
16489 enum neon_el_type type = inst.vectype.el[0].type;
16490
16491 constraint (size >= 64, BAD_ADDR_MODE);
16492 switch (size)
16493 {
16494 case 16:
16495 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16496 break;
16497 case 32:
16498 constraint (elsize != size, BAD_EL_TYPE);
16499 break;
16500 default:
16501 break;
16502 }
16503 if (load)
16504 {
16505 constraint (elsize != size && type != NT_unsigned
16506 && type != NT_signed, BAD_EL_TYPE);
16507 }
16508 else
16509 {
16510 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16511 }
16512
16513 int imm = inst.relocs[0].exp.X_add_number;
16514 int add = 1;
16515 if (imm < 0)
16516 {
16517 add = 0;
16518 imm = -imm;
16519 }
16520
16521 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16522 {
16523 switch (size)
16524 {
16525 case 8:
16526 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16527 break;
16528 case 16:
16529 constraint (1, _("immediate must be a multiple of 2 in the"
16530 " range of +/-[0,254]"));
16531 break;
16532 case 32:
16533 constraint (1, _("immediate must be a multiple of 4 in the"
16534 " range of +/-[0,508]"));
16535 break;
16536 }
16537 }
16538
16539 if (size != elsize)
16540 {
16541 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16542 constraint (inst.operands[0].reg > 14,
16543 _("MVE vector register in the range [Q0..Q7] expected"));
16544 inst.instruction |= (load && type == NT_unsigned) << 28;
16545 inst.instruction |= (size == 16) << 19;
16546 inst.instruction |= neon_logbits (elsize) << 7;
16547 }
16548 else
16549 {
16550 if (inst.operands[1].reg == REG_PC)
16551 as_tsktsk (MVE_BAD_PC);
16552 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16553 as_tsktsk (MVE_BAD_SP);
16554 inst.instruction |= 1 << 12;
16555 inst.instruction |= neon_logbits (size) << 7;
16556 }
16557 inst.instruction |= inst.operands[1].preind << 24;
16558 inst.instruction |= add << 23;
16559 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16560 inst.instruction |= inst.operands[1].writeback << 21;
16561 inst.instruction |= inst.operands[1].reg << 16;
16562 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16563 inst.instruction &= 0xffffff80;
16564 inst.instruction |= imm >> neon_logbits (size);
16565
16566}
16567
16568static void
16569do_mve_vstr_vldr (void)
16570{
16571 unsigned size;
16572 int load = 0;
16573
16574 if (inst.cond > COND_ALWAYS)
16575 inst.pred_insn_type = INSIDE_VPT_INSN;
16576 else
16577 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16578
16579 switch (inst.instruction)
16580 {
16581 default:
16582 gas_assert (0);
16583 break;
16584 case M_MNEM_vldrb:
16585 load = 1;
16586 /* fall through. */
16587 case M_MNEM_vstrb:
16588 size = 8;
16589 break;
16590 case M_MNEM_vldrh:
16591 load = 1;
16592 /* fall through. */
16593 case M_MNEM_vstrh:
16594 size = 16;
16595 break;
16596 case M_MNEM_vldrw:
16597 load = 1;
16598 /* fall through. */
16599 case M_MNEM_vstrw:
16600 size = 32;
16601 break;
16602 case M_MNEM_vldrd:
16603 load = 1;
16604 /* fall through. */
16605 case M_MNEM_vstrd:
16606 size = 64;
16607 break;
16608 }
16609 unsigned elsize = inst.vectype.el[0].size;
16610
16611 if (inst.operands[1].isquad)
16612 {
16613 /* We are dealing with [Q, imm]{!} cases. */
16614 do_mve_vstr_vldr_QI (size, elsize, load);
16615 }
16616 else
16617 {
16618 if (inst.operands[1].immisreg == 2)
16619 {
16620 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16621 do_mve_vstr_vldr_RQ (size, elsize, load);
16622 }
16623 else if (!inst.operands[1].immisreg)
16624 {
16625 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16626 do_mve_vstr_vldr_RI (size, elsize, load);
16627 }
16628 else
16629 constraint (1, BAD_ADDR_MODE);
16630 }
16631
16632 inst.is_neon = 1;
16633}
16634
35c228db
AV
16635static void
16636do_mve_vst_vld (void)
16637{
16638 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16639 return;
16640
16641 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16642 || inst.relocs[0].exp.X_add_number != 0
16643 || inst.operands[1].immisreg != 0,
16644 BAD_ADDR_MODE);
16645 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16646 if (inst.operands[1].reg == REG_PC)
16647 as_tsktsk (MVE_BAD_PC);
16648 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16649 as_tsktsk (MVE_BAD_SP);
16650
16651
16652 /* These instructions are one of the "exceptions" mentioned in
16653 handle_pred_state. They are MVE instructions that are not VPT compatible
16654 and do not accept a VPT code, thus appending such a code is a syntax
16655 error. */
16656 if (inst.cond > COND_ALWAYS)
16657 first_error (BAD_SYNTAX);
16658 /* If we append a scalar condition code we can set this to
16659 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16660 else if (inst.cond < COND_ALWAYS)
16661 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16662 else
16663 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16664
16665 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16666 inst.instruction |= inst.operands[1].writeback << 21;
16667 inst.instruction |= inst.operands[1].reg << 16;
16668 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16669 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16670 inst.is_neon = 1;
16671}
16672
26c1e780
AV
16673static void
16674do_mve_vaddlv (void)
16675{
16676 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16677 struct neon_type_el et
16678 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16679
16680 if (et.type == NT_invtype)
16681 first_error (BAD_EL_TYPE);
16682
16683 if (inst.cond > COND_ALWAYS)
16684 inst.pred_insn_type = INSIDE_VPT_INSN;
16685 else
16686 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16687
16688 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16689
16690 inst.instruction |= (et.type == NT_unsigned) << 28;
16691 inst.instruction |= inst.operands[1].reg << 19;
16692 inst.instruction |= inst.operands[0].reg << 12;
16693 inst.instruction |= inst.operands[2].reg;
16694 inst.is_neon = 1;
16695}
16696
5287ad62 16697static void
5ee91343 16698do_neon_dyadic_if_su (void)
5287ad62 16699{
5ee91343
AV
16700 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16701 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16702 N_SUF_32 | N_KEY);
16703
16704 if (check_simd_pred_availability (et.type == NT_float,
16705 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16706 return;
16707
5ee91343
AV
16708 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16709}
16710
16711static void
16712do_neon_addsub_if_i (void)
16713{
16714 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16715 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16716 return;
16717
5ee91343
AV
16718 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16719 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16720 N_EQK, N_IF_32 | N_I64 | N_KEY);
16721
16722 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16723 /* If we are parsing Q registers and the element types match MVE, which NEON
16724 also supports, then we must check whether this is an instruction that can
16725 be used by both MVE/NEON. This distinction can be made based on whether
16726 they are predicated or not. */
16727 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16728 {
16729 if (check_simd_pred_availability (et.type == NT_float,
16730 NEON_CHECK_ARCH | NEON_CHECK_CC))
16731 return;
16732 }
16733 else
16734 {
16735 /* If they are either in a D register or are using an unsupported. */
16736 if (rs != NS_QQR
16737 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16738 return;
16739 }
16740
5287ad62
JB
16741 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16742 affected if we specify unsigned args. */
dcbf9037 16743 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16744}
16745
16746/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16747 result to be:
16748 V<op> A,B (A is operand 0, B is operand 2)
16749 to mean:
16750 V<op> A,B,A
16751 not:
16752 V<op> A,B,B
16753 so handle that case specially. */
16754
16755static void
16756neon_exchange_operands (void)
16757{
5287ad62
JB
16758 if (inst.operands[1].present)
16759 {
e1fa0163
NC
16760 void *scratch = xmalloc (sizeof (inst.operands[0]));
16761
5287ad62
JB
16762 /* Swap operands[1] and operands[2]. */
16763 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16764 inst.operands[1] = inst.operands[2];
16765 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16766 free (scratch);
5287ad62
JB
16767 }
16768 else
16769 {
16770 inst.operands[1] = inst.operands[2];
16771 inst.operands[2] = inst.operands[0];
16772 }
16773}
16774
16775static void
16776neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16777{
16778 if (inst.operands[2].isreg)
16779 {
16780 if (invert)
477330fc 16781 neon_exchange_operands ();
dcbf9037 16782 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16783 }
16784 else
16785 {
037e8744 16786 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16787 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16788 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16789
88714cb8 16790 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16791 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16792 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16793 inst.instruction |= LOW4 (inst.operands[1].reg);
16794 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16795 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16796 inst.instruction |= (et.type == NT_float) << 10;
16797 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16798
88714cb8 16799 neon_dp_fixup (&inst);
5287ad62
JB
16800 }
16801}
16802
16803static void
16804do_neon_cmp (void)
16805{
cc933301 16806 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16807}
16808
16809static void
16810do_neon_cmp_inv (void)
16811{
cc933301 16812 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16813}
16814
16815static void
16816do_neon_ceq (void)
16817{
16818 neon_compare (N_IF_32, N_IF_32, FALSE);
16819}
16820
16821/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16822 scalars, which are encoded in 5 bits, M : Rm.
16823 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16824 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16825 index in M.
16826
16827 Dot Product instructions are similar to multiply instructions except elsize
16828 should always be 32.
16829
16830 This function translates SCALAR, which is GAS's internal encoding of indexed
16831 scalar register, to raw encoding. There is also register and index range
16832 check based on ELSIZE. */
5287ad62
JB
16833
16834static unsigned
16835neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16836{
dcbf9037
JB
16837 unsigned regno = NEON_SCALAR_REG (scalar);
16838 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
16839
16840 switch (elsize)
16841 {
16842 case 16:
16843 if (regno > 7 || elno > 3)
477330fc 16844 goto bad_scalar;
5287ad62 16845 return regno | (elno << 3);
5f4273c7 16846
5287ad62
JB
16847 case 32:
16848 if (regno > 15 || elno > 1)
477330fc 16849 goto bad_scalar;
5287ad62
JB
16850 return regno | (elno << 4);
16851
16852 default:
16853 bad_scalar:
dcbf9037 16854 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
16855 }
16856
16857 return 0;
16858}
16859
16860/* Encode multiply / multiply-accumulate scalar instructions. */
16861
16862static void
16863neon_mul_mac (struct neon_type_el et, int ubit)
16864{
dcbf9037
JB
16865 unsigned scalar;
16866
16867 /* Give a more helpful error message if we have an invalid type. */
16868 if (et.type == NT_invtype)
16869 return;
5f4273c7 16870
dcbf9037 16871 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
16872 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16873 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16874 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16875 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16876 inst.instruction |= LOW4 (scalar);
16877 inst.instruction |= HI1 (scalar) << 5;
16878 inst.instruction |= (et.type == NT_float) << 8;
16879 inst.instruction |= neon_logbits (et.size) << 20;
16880 inst.instruction |= (ubit != 0) << 24;
16881
88714cb8 16882 neon_dp_fixup (&inst);
5287ad62
JB
16883}
16884
16885static void
16886do_neon_mac_maybe_scalar (void)
16887{
037e8744
JB
16888 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16889 return;
16890
16891 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16892 return;
16893
5287ad62
JB
16894 if (inst.operands[2].isscalar)
16895 {
037e8744 16896 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16897 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 16898 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 16899 NEON_ENCODE (SCALAR, inst);
037e8744 16900 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16901 }
16902 else
428e3f1f
PB
16903 {
16904 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16905 affected if we specify unsigned args. */
16906 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16907 }
5287ad62
JB
16908}
16909
62f3b8c8
PB
16910static void
16911do_neon_fmac (void)
16912{
d58196e0
AV
16913 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
16914 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
16915 return;
16916
d58196e0 16917 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
16918 return;
16919
d58196e0
AV
16920 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
16921 {
16922 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16923 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
16924 N_EQK);
16925
16926 if (rs == NS_QQR)
16927 {
16928 if (inst.operands[2].reg == REG_SP)
16929 as_tsktsk (MVE_BAD_SP);
16930 else if (inst.operands[2].reg == REG_PC)
16931 as_tsktsk (MVE_BAD_PC);
16932
16933 inst.instruction = 0xee310e40;
16934 inst.instruction |= (et.size == 16) << 28;
16935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16936 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16938 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
16939 inst.instruction |= inst.operands[2].reg;
16940 inst.is_neon = 1;
16941 return;
16942 }
16943 }
16944 else
16945 {
16946 constraint (!inst.operands[2].isvec, BAD_FPU);
16947 }
16948
62f3b8c8
PB
16949 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16950}
16951
5287ad62
JB
16952static void
16953do_neon_tst (void)
16954{
037e8744 16955 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
16956 struct neon_type_el et = neon_check_type (3, rs,
16957 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 16958 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16959}
16960
16961/* VMUL with 3 registers allows the P8 type. The scalar version supports the
16962 same types as the MAC equivalents. The polynomial type for this instruction
16963 is encoded the same as the integer type. */
16964
16965static void
16966do_neon_mul (void)
16967{
037e8744
JB
16968 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16969 return;
16970
16971 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16972 return;
16973
5287ad62
JB
16974 if (inst.operands[2].isscalar)
16975 do_neon_mac_maybe_scalar ();
16976 else
cc933301 16977 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
16978}
16979
16980static void
16981do_neon_qdmulh (void)
16982{
16983 if (inst.operands[2].isscalar)
16984 {
037e8744 16985 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16986 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16987 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16988 NEON_ENCODE (SCALAR, inst);
037e8744 16989 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16990 }
16991 else
16992 {
037e8744 16993 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16994 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16995 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16996 NEON_ENCODE (INTEGER, inst);
5287ad62 16997 /* The U bit (rounding) comes from bit mask. */
037e8744 16998 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16999 }
17000}
17001
26c1e780
AV
17002static void
17003do_mve_vaddv (void)
17004{
17005 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17006 struct neon_type_el et
17007 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17008
17009 if (et.type == NT_invtype)
17010 first_error (BAD_EL_TYPE);
17011
17012 if (inst.cond > COND_ALWAYS)
17013 inst.pred_insn_type = INSIDE_VPT_INSN;
17014 else
17015 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17016
17017 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17018
17019 mve_encode_rq (et.type == NT_unsigned, et.size);
17020}
17021
7df54120
AV
17022static void
17023do_mve_vhcadd (void)
17024{
17025 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17026 struct neon_type_el et
17027 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17028
17029 if (inst.cond > COND_ALWAYS)
17030 inst.pred_insn_type = INSIDE_VPT_INSN;
17031 else
17032 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17033
17034 unsigned rot = inst.relocs[0].exp.X_add_number;
17035 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17036
17037 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17038 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17039 "operand makes instruction UNPREDICTABLE"));
17040
17041 mve_encode_qqq (0, et.size);
17042 inst.instruction |= (rot == 270) << 12;
17043 inst.is_neon = 1;
17044}
17045
c2dafc2a
AV
17046static void
17047do_mve_vadc (void)
17048{
17049 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17050 struct neon_type_el et
17051 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17052
17053 if (et.type == NT_invtype)
17054 first_error (BAD_EL_TYPE);
17055
17056 if (inst.cond > COND_ALWAYS)
17057 inst.pred_insn_type = INSIDE_VPT_INSN;
17058 else
17059 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17060
17061 mve_encode_qqq (0, 64);
17062}
17063
17064static void
17065do_mve_vbrsr (void)
17066{
17067 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17068 struct neon_type_el et
17069 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17070
17071 if (inst.cond > COND_ALWAYS)
17072 inst.pred_insn_type = INSIDE_VPT_INSN;
17073 else
17074 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17075
7df54120 17076 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17077}
17078
17079static void
17080do_mve_vsbc (void)
17081{
17082 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17083
17084 if (inst.cond > COND_ALWAYS)
17085 inst.pred_insn_type = INSIDE_VPT_INSN;
17086 else
17087 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17088
17089 mve_encode_qqq (1, 64);
17090}
17091
886e1c73
AV
17092static void
17093do_mve_vmull (void)
17094{
17095
17096 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17097 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17098 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17099 && inst.cond == COND_ALWAYS
17100 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17101 {
17102 if (rs == NS_QQQ)
17103 {
17104
17105 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17106 N_SUF_32 | N_F64 | N_P8
17107 | N_P16 | N_I_MVE | N_KEY);
17108 if (((et.type == NT_poly) && et.size == 8
17109 && ARM_CPU_IS_ANY (cpu_variant))
17110 || (et.type == NT_integer) || (et.type == NT_float))
17111 goto neon_vmul;
17112 }
17113 else
17114 goto neon_vmul;
17115 }
17116
17117 constraint (rs != NS_QQQ, BAD_FPU);
17118 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17119 N_SU_32 | N_P8 | N_P16 | N_KEY);
17120
17121 /* We are dealing with MVE's vmullt. */
17122 if (et.size == 32
17123 && (inst.operands[0].reg == inst.operands[1].reg
17124 || inst.operands[0].reg == inst.operands[2].reg))
17125 as_tsktsk (BAD_MVE_SRCDEST);
17126
17127 if (inst.cond > COND_ALWAYS)
17128 inst.pred_insn_type = INSIDE_VPT_INSN;
17129 else
17130 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17131
17132 if (et.type == NT_poly)
17133 mve_encode_qqq (neon_logbits (et.size), 64);
17134 else
17135 mve_encode_qqq (et.type == NT_unsigned, et.size);
17136
17137 return;
17138
17139neon_vmul:
17140 inst.instruction = N_MNEM_vmul;
17141 inst.cond = 0xb;
17142 if (thumb_mode)
17143 inst.pred_insn_type = INSIDE_IT_INSN;
17144 do_neon_mul ();
17145}
17146
a302e574
AV
17147static void
17148do_mve_vabav (void)
17149{
17150 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17151
17152 if (rs == NS_NULL)
17153 return;
17154
17155 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17156 return;
17157
17158 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17159 | N_S16 | N_S32 | N_U8 | N_U16
17160 | N_U32);
17161
17162 if (inst.cond > COND_ALWAYS)
17163 inst.pred_insn_type = INSIDE_VPT_INSN;
17164 else
17165 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17166
17167 mve_encode_rqq (et.type == NT_unsigned, et.size);
17168}
17169
17170static void
17171do_mve_vmladav (void)
17172{
17173 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17174 struct neon_type_el et = neon_check_type (3, rs,
17175 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17176
17177 if (et.type == NT_unsigned
17178 && (inst.instruction == M_MNEM_vmladavx
17179 || inst.instruction == M_MNEM_vmladavax
17180 || inst.instruction == M_MNEM_vmlsdav
17181 || inst.instruction == M_MNEM_vmlsdava
17182 || inst.instruction == M_MNEM_vmlsdavx
17183 || inst.instruction == M_MNEM_vmlsdavax))
17184 first_error (BAD_SIMD_TYPE);
17185
17186 constraint (inst.operands[2].reg > 14,
17187 _("MVE vector register in the range [Q0..Q7] expected"));
17188
17189 if (inst.cond > COND_ALWAYS)
17190 inst.pred_insn_type = INSIDE_VPT_INSN;
17191 else
17192 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17193
17194 if (inst.instruction == M_MNEM_vmlsdav
17195 || inst.instruction == M_MNEM_vmlsdava
17196 || inst.instruction == M_MNEM_vmlsdavx
17197 || inst.instruction == M_MNEM_vmlsdavax)
17198 inst.instruction |= (et.size == 8) << 28;
17199 else
17200 inst.instruction |= (et.size == 8) << 8;
17201
17202 mve_encode_rqq (et.type == NT_unsigned, 64);
17203 inst.instruction |= (et.size == 32) << 16;
17204}
17205
643afb90
MW
17206static void
17207do_neon_qrdmlah (void)
17208{
17209 /* Check we're on the correct architecture. */
17210 if (!mark_feature_used (&fpu_neon_ext_armv8))
17211 inst.error =
17212 _("instruction form not available on this architecture.");
17213 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17214 {
17215 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17216 record_feature_use (&fpu_neon_ext_v8_1);
17217 }
17218
17219 if (inst.operands[2].isscalar)
17220 {
17221 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17222 struct neon_type_el et = neon_check_type (3, rs,
17223 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17224 NEON_ENCODE (SCALAR, inst);
17225 neon_mul_mac (et, neon_quad (rs));
17226 }
17227 else
17228 {
17229 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17230 struct neon_type_el et = neon_check_type (3, rs,
17231 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17232 NEON_ENCODE (INTEGER, inst);
17233 /* The U bit (rounding) comes from bit mask. */
17234 neon_three_same (neon_quad (rs), 0, et.size);
17235 }
17236}
17237
5287ad62
JB
17238static void
17239do_neon_fcmp_absolute (void)
17240{
037e8744 17241 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17242 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17243 N_F_16_32 | N_KEY);
5287ad62 17244 /* Size field comes from bit mask. */
cc933301 17245 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17246}
17247
17248static void
17249do_neon_fcmp_absolute_inv (void)
17250{
17251 neon_exchange_operands ();
17252 do_neon_fcmp_absolute ();
17253}
17254
17255static void
17256do_neon_step (void)
17257{
037e8744 17258 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17259 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17260 N_F_16_32 | N_KEY);
17261 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17262}
17263
17264static void
17265do_neon_abs_neg (void)
17266{
037e8744
JB
17267 enum neon_shape rs;
17268 struct neon_type_el et;
5f4273c7 17269
037e8744
JB
17270 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17271 return;
17272
037e8744 17273 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17274 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17275
485dee97
AV
17276 if (check_simd_pred_availability (et.type == NT_float,
17277 NEON_CHECK_ARCH | NEON_CHECK_CC))
17278 return;
17279
5287ad62
JB
17280 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17281 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17282 inst.instruction |= LOW4 (inst.operands[1].reg);
17283 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17284 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17285 inst.instruction |= (et.type == NT_float) << 10;
17286 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17287
88714cb8 17288 neon_dp_fixup (&inst);
5287ad62
JB
17289}
17290
17291static void
17292do_neon_sli (void)
17293{
037e8744 17294 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17295 struct neon_type_el et = neon_check_type (2, rs,
17296 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17297 int imm = inst.operands[2].imm;
17298 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17299 _("immediate out of range for insert"));
037e8744 17300 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17301}
17302
17303static void
17304do_neon_sri (void)
17305{
037e8744 17306 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17307 struct neon_type_el et = neon_check_type (2, rs,
17308 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17309 int imm = inst.operands[2].imm;
17310 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17311 _("immediate out of range for insert"));
037e8744 17312 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17313}
17314
17315static void
17316do_neon_qshlu_imm (void)
17317{
037e8744 17318 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17319 struct neon_type_el et = neon_check_type (2, rs,
17320 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17321 int imm = inst.operands[2].imm;
17322 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17323 _("immediate out of range for shift"));
5287ad62
JB
17324 /* Only encodes the 'U present' variant of the instruction.
17325 In this case, signed types have OP (bit 8) set to 0.
17326 Unsigned types have OP set to 1. */
17327 inst.instruction |= (et.type == NT_unsigned) << 8;
17328 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17329 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17330}
17331
17332static void
17333do_neon_qmovn (void)
17334{
17335 struct neon_type_el et = neon_check_type (2, NS_DQ,
17336 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17337 /* Saturating move where operands can be signed or unsigned, and the
17338 destination has the same signedness. */
88714cb8 17339 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17340 if (et.type == NT_unsigned)
17341 inst.instruction |= 0xc0;
17342 else
17343 inst.instruction |= 0x80;
17344 neon_two_same (0, 1, et.size / 2);
17345}
17346
17347static void
17348do_neon_qmovun (void)
17349{
17350 struct neon_type_el et = neon_check_type (2, NS_DQ,
17351 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17352 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17353 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17354 neon_two_same (0, 1, et.size / 2);
17355}
17356
17357static void
17358do_neon_rshift_sat_narrow (void)
17359{
17360 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17361 or unsigned. If operands are unsigned, results must also be unsigned. */
17362 struct neon_type_el et = neon_check_type (2, NS_DQI,
17363 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17364 int imm = inst.operands[2].imm;
17365 /* This gets the bounds check, size encoding and immediate bits calculation
17366 right. */
17367 et.size /= 2;
5f4273c7 17368
5287ad62
JB
17369 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17370 VQMOVN.I<size> <Dd>, <Qm>. */
17371 if (imm == 0)
17372 {
17373 inst.operands[2].present = 0;
17374 inst.instruction = N_MNEM_vqmovn;
17375 do_neon_qmovn ();
17376 return;
17377 }
5f4273c7 17378
5287ad62 17379 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17380 _("immediate out of range"));
5287ad62
JB
17381 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17382}
17383
17384static void
17385do_neon_rshift_sat_narrow_u (void)
17386{
17387 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17388 or unsigned. If operands are unsigned, results must also be unsigned. */
17389 struct neon_type_el et = neon_check_type (2, NS_DQI,
17390 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17391 int imm = inst.operands[2].imm;
17392 /* This gets the bounds check, size encoding and immediate bits calculation
17393 right. */
17394 et.size /= 2;
17395
17396 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17397 VQMOVUN.I<size> <Dd>, <Qm>. */
17398 if (imm == 0)
17399 {
17400 inst.operands[2].present = 0;
17401 inst.instruction = N_MNEM_vqmovun;
17402 do_neon_qmovun ();
17403 return;
17404 }
17405
17406 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17407 _("immediate out of range"));
5287ad62
JB
17408 /* FIXME: The manual is kind of unclear about what value U should have in
17409 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17410 must be 1. */
17411 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17412}
17413
17414static void
17415do_neon_movn (void)
17416{
17417 struct neon_type_el et = neon_check_type (2, NS_DQ,
17418 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17419 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17420 neon_two_same (0, 1, et.size / 2);
17421}
17422
17423static void
17424do_neon_rshift_narrow (void)
17425{
17426 struct neon_type_el et = neon_check_type (2, NS_DQI,
17427 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17428 int imm = inst.operands[2].imm;
17429 /* This gets the bounds check, size encoding and immediate bits calculation
17430 right. */
17431 et.size /= 2;
5f4273c7 17432
5287ad62
JB
17433 /* If immediate is zero then we are a pseudo-instruction for
17434 VMOVN.I<size> <Dd>, <Qm> */
17435 if (imm == 0)
17436 {
17437 inst.operands[2].present = 0;
17438 inst.instruction = N_MNEM_vmovn;
17439 do_neon_movn ();
17440 return;
17441 }
5f4273c7 17442
5287ad62 17443 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17444 _("immediate out of range for narrowing operation"));
5287ad62
JB
17445 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17446}
17447
17448static void
17449do_neon_shll (void)
17450{
17451 /* FIXME: Type checking when lengthening. */
17452 struct neon_type_el et = neon_check_type (2, NS_QDI,
17453 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17454 unsigned imm = inst.operands[2].imm;
17455
17456 if (imm == et.size)
17457 {
17458 /* Maximum shift variant. */
88714cb8 17459 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17460 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17461 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17462 inst.instruction |= LOW4 (inst.operands[1].reg);
17463 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17464 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17465
88714cb8 17466 neon_dp_fixup (&inst);
5287ad62
JB
17467 }
17468 else
17469 {
17470 /* A more-specific type check for non-max versions. */
17471 et = neon_check_type (2, NS_QDI,
477330fc 17472 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17473 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17474 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17475 }
17476}
17477
037e8744 17478/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17479 the current instruction is. */
17480
6b9a8b67
MGD
17481#define CVT_FLAVOUR_VAR \
17482 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17483 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17484 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17485 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17486 /* Half-precision conversions. */ \
cc933301
JW
17487 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17488 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17489 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17490 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17491 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17492 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17493 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17494 Compared with single/double precision variants, only the co-processor \
17495 field is different, so the encoding flow is reused here. */ \
17496 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17497 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17498 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17499 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17500 /* VFP instructions. */ \
17501 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17502 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17503 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17504 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17505 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17506 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17507 /* VFP instructions with bitshift. */ \
17508 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17509 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17510 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17511 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17512 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17513 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17514 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17515 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17516
17517#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17518 neon_cvt_flavour_##C,
17519
17520/* The different types of conversions we can do. */
17521enum neon_cvt_flavour
17522{
17523 CVT_FLAVOUR_VAR
17524 neon_cvt_flavour_invalid,
17525 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17526};
17527
17528#undef CVT_VAR
17529
17530static enum neon_cvt_flavour
17531get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17532{
6b9a8b67
MGD
17533#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17534 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17535 if (et.type != NT_invtype) \
17536 { \
17537 inst.error = NULL; \
17538 return (neon_cvt_flavour_##C); \
5287ad62 17539 }
6b9a8b67 17540
5287ad62 17541 struct neon_type_el et;
037e8744 17542 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17543 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17544 /* The instruction versions which take an immediate take one register
17545 argument, which is extended to the width of the full register. Thus the
17546 "source" and "destination" registers must have the same width. Hack that
17547 here by making the size equal to the key (wider, in this case) operand. */
17548 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17549
6b9a8b67
MGD
17550 CVT_FLAVOUR_VAR;
17551
17552 return neon_cvt_flavour_invalid;
5287ad62
JB
17553#undef CVT_VAR
17554}
17555
7e8e6784
MGD
17556enum neon_cvt_mode
17557{
17558 neon_cvt_mode_a,
17559 neon_cvt_mode_n,
17560 neon_cvt_mode_p,
17561 neon_cvt_mode_m,
17562 neon_cvt_mode_z,
30bdf752
MGD
17563 neon_cvt_mode_x,
17564 neon_cvt_mode_r
7e8e6784
MGD
17565};
17566
037e8744
JB
17567/* Neon-syntax VFP conversions. */
17568
5287ad62 17569static void
6b9a8b67 17570do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17571{
037e8744 17572 const char *opname = 0;
5f4273c7 17573
d54af2d0
RL
17574 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17575 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17576 {
037e8744
JB
17577 /* Conversions with immediate bitshift. */
17578 const char *enc[] =
477330fc 17579 {
6b9a8b67
MGD
17580#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17581 CVT_FLAVOUR_VAR
17582 NULL
17583#undef CVT_VAR
477330fc 17584 };
037e8744 17585
6b9a8b67 17586 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17587 {
17588 opname = enc[flavour];
17589 constraint (inst.operands[0].reg != inst.operands[1].reg,
17590 _("operands 0 and 1 must be the same register"));
17591 inst.operands[1] = inst.operands[2];
17592 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17593 }
5287ad62
JB
17594 }
17595 else
17596 {
037e8744
JB
17597 /* Conversions without bitshift. */
17598 const char *enc[] =
477330fc 17599 {
6b9a8b67
MGD
17600#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17601 CVT_FLAVOUR_VAR
17602 NULL
17603#undef CVT_VAR
477330fc 17604 };
037e8744 17605
6b9a8b67 17606 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17607 opname = enc[flavour];
037e8744
JB
17608 }
17609
17610 if (opname)
17611 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17612
17613 /* ARMv8.2 fp16 VCVT instruction. */
17614 if (flavour == neon_cvt_flavour_s32_f16
17615 || flavour == neon_cvt_flavour_u32_f16
17616 || flavour == neon_cvt_flavour_f16_u32
17617 || flavour == neon_cvt_flavour_f16_s32)
17618 do_scalar_fp16_v82_encode ();
037e8744
JB
17619}
17620
17621static void
17622do_vfp_nsyn_cvtz (void)
17623{
d54af2d0 17624 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17625 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17626 const char *enc[] =
17627 {
6b9a8b67
MGD
17628#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17629 CVT_FLAVOUR_VAR
17630 NULL
17631#undef CVT_VAR
037e8744
JB
17632 };
17633
6b9a8b67 17634 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17635 do_vfp_nsyn_opcode (enc[flavour]);
17636}
f31fef98 17637
037e8744 17638static void
bacebabc 17639do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17640 enum neon_cvt_mode mode)
17641{
17642 int sz, op;
17643 int rm;
17644
a715796b
TG
17645 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17646 D register operands. */
17647 if (flavour == neon_cvt_flavour_s32_f64
17648 || flavour == neon_cvt_flavour_u32_f64)
17649 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17650 _(BAD_FPU));
17651
9db2f6b4
RL
17652 if (flavour == neon_cvt_flavour_s32_f16
17653 || flavour == neon_cvt_flavour_u32_f16)
17654 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17655 _(BAD_FP16));
17656
5ee91343 17657 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17658
17659 switch (flavour)
17660 {
17661 case neon_cvt_flavour_s32_f64:
17662 sz = 1;
827f64ff 17663 op = 1;
7e8e6784
MGD
17664 break;
17665 case neon_cvt_flavour_s32_f32:
17666 sz = 0;
17667 op = 1;
17668 break;
9db2f6b4
RL
17669 case neon_cvt_flavour_s32_f16:
17670 sz = 0;
17671 op = 1;
17672 break;
7e8e6784
MGD
17673 case neon_cvt_flavour_u32_f64:
17674 sz = 1;
17675 op = 0;
17676 break;
17677 case neon_cvt_flavour_u32_f32:
17678 sz = 0;
17679 op = 0;
17680 break;
9db2f6b4
RL
17681 case neon_cvt_flavour_u32_f16:
17682 sz = 0;
17683 op = 0;
17684 break;
7e8e6784
MGD
17685 default:
17686 first_error (_("invalid instruction shape"));
17687 return;
17688 }
17689
17690 switch (mode)
17691 {
17692 case neon_cvt_mode_a: rm = 0; break;
17693 case neon_cvt_mode_n: rm = 1; break;
17694 case neon_cvt_mode_p: rm = 2; break;
17695 case neon_cvt_mode_m: rm = 3; break;
17696 default: first_error (_("invalid rounding mode")); return;
17697 }
17698
17699 NEON_ENCODE (FPV8, inst);
17700 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17701 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17702 inst.instruction |= sz << 8;
9db2f6b4
RL
17703
17704 /* ARMv8.2 fp16 VCVT instruction. */
17705 if (flavour == neon_cvt_flavour_s32_f16
17706 ||flavour == neon_cvt_flavour_u32_f16)
17707 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
17708 inst.instruction |= op << 7;
17709 inst.instruction |= rm << 16;
17710 inst.instruction |= 0xf0000000;
17711 inst.is_neon = TRUE;
17712}
17713
17714static void
17715do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
17716{
17717 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
17718 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17719 NS_FH, NS_HF, NS_FHI, NS_HFI,
17720 NS_NULL);
6b9a8b67 17721 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 17722
cc933301
JW
17723 if (flavour == neon_cvt_flavour_invalid)
17724 return;
17725
e3e535bc 17726 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 17727 if (mode == neon_cvt_mode_z
e3e535bc 17728 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
17729 && (flavour == neon_cvt_flavour_s16_f16
17730 || flavour == neon_cvt_flavour_u16_f16
17731 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
17732 || flavour == neon_cvt_flavour_u32_f32
17733 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 17734 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
17735 && (rs == NS_FD || rs == NS_FF))
17736 {
17737 do_vfp_nsyn_cvtz ();
17738 return;
17739 }
17740
9db2f6b4
RL
17741 /* ARMv8.2 fp16 VCVT conversions. */
17742 if (mode == neon_cvt_mode_z
17743 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17744 && (flavour == neon_cvt_flavour_s32_f16
17745 || flavour == neon_cvt_flavour_u32_f16)
17746 && (rs == NS_FH))
17747 {
17748 do_vfp_nsyn_cvtz ();
17749 do_scalar_fp16_v82_encode ();
17750 return;
17751 }
17752
037e8744 17753 /* VFP rather than Neon conversions. */
6b9a8b67 17754 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 17755 {
7e8e6784
MGD
17756 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17757 do_vfp_nsyn_cvt (rs, flavour);
17758 else
17759 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17760
037e8744
JB
17761 return;
17762 }
17763
17764 switch (rs)
17765 {
037e8744 17766 case NS_QQI:
dd9634d9
AV
17767 if (mode == neon_cvt_mode_z
17768 && (flavour == neon_cvt_flavour_f16_s16
17769 || flavour == neon_cvt_flavour_f16_u16
17770 || flavour == neon_cvt_flavour_s16_f16
17771 || flavour == neon_cvt_flavour_u16_f16
17772 || flavour == neon_cvt_flavour_f32_u32
17773 || flavour == neon_cvt_flavour_f32_s32
17774 || flavour == neon_cvt_flavour_s32_f32
17775 || flavour == neon_cvt_flavour_u32_f32))
17776 {
17777 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17778 return;
17779 }
17780 else if (mode == neon_cvt_mode_n)
17781 {
17782 /* We are dealing with vcvt with the 'ne' condition. */
17783 inst.cond = 0x1;
17784 inst.instruction = N_MNEM_vcvt;
17785 do_neon_cvt_1 (neon_cvt_mode_z);
17786 return;
17787 }
17788 /* fall through. */
17789 case NS_DDI:
037e8744 17790 {
477330fc 17791 unsigned immbits;
cc933301
JW
17792 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17793 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 17794
dd9634d9
AV
17795 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17796 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17797 return;
17798
17799 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17800 {
17801 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17802 _("immediate value out of range"));
17803 switch (flavour)
17804 {
17805 case neon_cvt_flavour_f16_s16:
17806 case neon_cvt_flavour_f16_u16:
17807 case neon_cvt_flavour_s16_f16:
17808 case neon_cvt_flavour_u16_f16:
17809 constraint (inst.operands[2].imm > 16,
17810 _("immediate value out of range"));
17811 break;
17812 case neon_cvt_flavour_f32_u32:
17813 case neon_cvt_flavour_f32_s32:
17814 case neon_cvt_flavour_s32_f32:
17815 case neon_cvt_flavour_u32_f32:
17816 constraint (inst.operands[2].imm > 32,
17817 _("immediate value out of range"));
17818 break;
17819 default:
17820 inst.error = BAD_FPU;
17821 return;
17822 }
17823 }
037e8744 17824
477330fc
RM
17825 /* Fixed-point conversion with #0 immediate is encoded as an
17826 integer conversion. */
17827 if (inst.operands[2].present && inst.operands[2].imm == 0)
17828 goto int_encode;
477330fc
RM
17829 NEON_ENCODE (IMMED, inst);
17830 if (flavour != neon_cvt_flavour_invalid)
17831 inst.instruction |= enctab[flavour];
17832 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17833 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17834 inst.instruction |= LOW4 (inst.operands[1].reg);
17835 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17836 inst.instruction |= neon_quad (rs) << 6;
17837 inst.instruction |= 1 << 21;
cc933301
JW
17838 if (flavour < neon_cvt_flavour_s16_f16)
17839 {
17840 inst.instruction |= 1 << 21;
17841 immbits = 32 - inst.operands[2].imm;
17842 inst.instruction |= immbits << 16;
17843 }
17844 else
17845 {
17846 inst.instruction |= 3 << 20;
17847 immbits = 16 - inst.operands[2].imm;
17848 inst.instruction |= immbits << 16;
17849 inst.instruction &= ~(1 << 9);
17850 }
477330fc
RM
17851
17852 neon_dp_fixup (&inst);
037e8744
JB
17853 }
17854 break;
17855
037e8744 17856 case NS_QQ:
dd9634d9
AV
17857 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17858 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17859 && (flavour == neon_cvt_flavour_s16_f16
17860 || flavour == neon_cvt_flavour_u16_f16
17861 || flavour == neon_cvt_flavour_s32_f32
17862 || flavour == neon_cvt_flavour_u32_f32))
17863 {
17864 if (check_simd_pred_availability (1,
17865 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17866 return;
17867 }
17868 else if (mode == neon_cvt_mode_z
17869 && (flavour == neon_cvt_flavour_f16_s16
17870 || flavour == neon_cvt_flavour_f16_u16
17871 || flavour == neon_cvt_flavour_s16_f16
17872 || flavour == neon_cvt_flavour_u16_f16
17873 || flavour == neon_cvt_flavour_f32_u32
17874 || flavour == neon_cvt_flavour_f32_s32
17875 || flavour == neon_cvt_flavour_s32_f32
17876 || flavour == neon_cvt_flavour_u32_f32))
17877 {
17878 if (check_simd_pred_availability (1,
17879 NEON_CHECK_CC | NEON_CHECK_ARCH))
17880 return;
17881 }
17882 /* fall through. */
17883 case NS_DD:
7e8e6784
MGD
17884 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17885 {
7e8e6784 17886
dd9634d9
AV
17887 NEON_ENCODE (FLOAT, inst);
17888 if (check_simd_pred_availability (1,
17889 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
17890 return;
17891
17892 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17893 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17894 inst.instruction |= LOW4 (inst.operands[1].reg);
17895 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17896 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17897 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17898 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 17899 inst.instruction |= mode << 8;
cc933301
JW
17900 if (flavour == neon_cvt_flavour_u16_f16
17901 || flavour == neon_cvt_flavour_s16_f16)
17902 /* Mask off the original size bits and reencode them. */
17903 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17904
7e8e6784
MGD
17905 if (thumb_mode)
17906 inst.instruction |= 0xfc000000;
17907 else
17908 inst.instruction |= 0xf0000000;
17909 }
17910 else
17911 {
037e8744 17912 int_encode:
7e8e6784 17913 {
cc933301
JW
17914 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17915 0x100, 0x180, 0x0, 0x080};
037e8744 17916
7e8e6784 17917 NEON_ENCODE (INTEGER, inst);
037e8744 17918
dd9634d9
AV
17919 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17920 {
17921 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17922 return;
17923 }
037e8744 17924
7e8e6784
MGD
17925 if (flavour != neon_cvt_flavour_invalid)
17926 inst.instruction |= enctab[flavour];
037e8744 17927
7e8e6784
MGD
17928 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17929 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17930 inst.instruction |= LOW4 (inst.operands[1].reg);
17931 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17932 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17933 if (flavour >= neon_cvt_flavour_s16_f16
17934 && flavour <= neon_cvt_flavour_f16_u16)
17935 /* Half precision. */
17936 inst.instruction |= 1 << 18;
17937 else
17938 inst.instruction |= 2 << 18;
037e8744 17939
7e8e6784
MGD
17940 neon_dp_fixup (&inst);
17941 }
17942 }
17943 break;
037e8744 17944
8e79c3df
CM
17945 /* Half-precision conversions for Advanced SIMD -- neon. */
17946 case NS_QD:
17947 case NS_DQ:
bc52d49c
MM
17948 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17949 return;
8e79c3df
CM
17950
17951 if ((rs == NS_DQ)
17952 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17953 {
17954 as_bad (_("operand size must match register width"));
17955 break;
17956 }
17957
17958 if ((rs == NS_QD)
17959 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17960 {
17961 as_bad (_("operand size must match register width"));
17962 break;
17963 }
17964
17965 if (rs == NS_DQ)
477330fc 17966 inst.instruction = 0x3b60600;
8e79c3df
CM
17967 else
17968 inst.instruction = 0x3b60700;
17969
17970 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17971 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17972 inst.instruction |= LOW4 (inst.operands[1].reg);
17973 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 17974 neon_dp_fixup (&inst);
8e79c3df
CM
17975 break;
17976
037e8744
JB
17977 default:
17978 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
17979 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17980 do_vfp_nsyn_cvt (rs, flavour);
17981 else
17982 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 17983 }
5287ad62
JB
17984}
17985
e3e535bc
NC
17986static void
17987do_neon_cvtr (void)
17988{
7e8e6784 17989 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
17990}
17991
17992static void
17993do_neon_cvt (void)
17994{
7e8e6784
MGD
17995 do_neon_cvt_1 (neon_cvt_mode_z);
17996}
17997
17998static void
17999do_neon_cvta (void)
18000{
18001 do_neon_cvt_1 (neon_cvt_mode_a);
18002}
18003
18004static void
18005do_neon_cvtn (void)
18006{
18007 do_neon_cvt_1 (neon_cvt_mode_n);
18008}
18009
18010static void
18011do_neon_cvtp (void)
18012{
18013 do_neon_cvt_1 (neon_cvt_mode_p);
18014}
18015
18016static void
18017do_neon_cvtm (void)
18018{
18019 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18020}
18021
8e79c3df 18022static void
c70a8987 18023do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18024{
c70a8987
MGD
18025 if (is_double)
18026 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18027
c70a8987
MGD
18028 encode_arm_vfp_reg (inst.operands[0].reg,
18029 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18030 encode_arm_vfp_reg (inst.operands[1].reg,
18031 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18032 inst.instruction |= to ? 0x10000 : 0;
18033 inst.instruction |= t ? 0x80 : 0;
18034 inst.instruction |= is_double ? 0x100 : 0;
18035 do_vfp_cond_or_thumb ();
18036}
8e79c3df 18037
c70a8987
MGD
18038static void
18039do_neon_cvttb_1 (bfd_boolean t)
18040{
d54af2d0 18041 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18042 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18043
c70a8987
MGD
18044 if (rs == NS_NULL)
18045 return;
dd9634d9
AV
18046 else if (rs == NS_QQ || rs == NS_QQI)
18047 {
18048 int single_to_half = 0;
18049 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18050 return;
18051
18052 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18053
18054 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18055 && (flavour == neon_cvt_flavour_u16_f16
18056 || flavour == neon_cvt_flavour_s16_f16
18057 || flavour == neon_cvt_flavour_f16_s16
18058 || flavour == neon_cvt_flavour_f16_u16
18059 || flavour == neon_cvt_flavour_u32_f32
18060 || flavour == neon_cvt_flavour_s32_f32
18061 || flavour == neon_cvt_flavour_f32_s32
18062 || flavour == neon_cvt_flavour_f32_u32))
18063 {
18064 inst.cond = 0xf;
18065 inst.instruction = N_MNEM_vcvt;
18066 set_pred_insn_type (INSIDE_VPT_INSN);
18067 do_neon_cvt_1 (neon_cvt_mode_z);
18068 return;
18069 }
18070 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18071 single_to_half = 1;
18072 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18073 {
18074 first_error (BAD_FPU);
18075 return;
18076 }
18077
18078 inst.instruction = 0xee3f0e01;
18079 inst.instruction |= single_to_half << 28;
18080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18081 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18082 inst.instruction |= t << 12;
18083 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18084 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18085 inst.is_neon = 1;
18086 }
c70a8987
MGD
18087 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18088 {
18089 inst.error = NULL;
18090 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18091 }
18092 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18093 {
18094 inst.error = NULL;
18095 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18096 }
18097 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18098 {
a715796b
TG
18099 /* The VCVTB and VCVTT instructions with D-register operands
18100 don't work for SP only targets. */
18101 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18102 _(BAD_FPU));
18103
c70a8987
MGD
18104 inst.error = NULL;
18105 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18106 }
18107 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18108 {
a715796b
TG
18109 /* The VCVTB and VCVTT instructions with D-register operands
18110 don't work for SP only targets. */
18111 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18112 _(BAD_FPU));
18113
c70a8987
MGD
18114 inst.error = NULL;
18115 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18116 }
18117 else
18118 return;
18119}
18120
18121static void
18122do_neon_cvtb (void)
18123{
18124 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18125}
18126
18127
18128static void
18129do_neon_cvtt (void)
18130{
c70a8987 18131 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18132}
18133
5287ad62
JB
18134static void
18135neon_move_immediate (void)
18136{
037e8744
JB
18137 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18138 struct neon_type_el et = neon_check_type (2, rs,
18139 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18140 unsigned immlo, immhi = 0, immbits;
c96612cc 18141 int op, cmode, float_p;
5287ad62 18142
037e8744 18143 constraint (et.type == NT_invtype,
477330fc 18144 _("operand size must be specified for immediate VMOV"));
037e8744 18145
5287ad62
JB
18146 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18147 op = (inst.instruction & (1 << 5)) != 0;
18148
18149 immlo = inst.operands[1].imm;
18150 if (inst.operands[1].regisimm)
18151 immhi = inst.operands[1].reg;
18152
18153 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18154 _("immediate has bits set outside the operand size"));
5287ad62 18155
c96612cc
JB
18156 float_p = inst.operands[1].immisfloat;
18157
18158 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18159 et.size, et.type)) == FAIL)
5287ad62
JB
18160 {
18161 /* Invert relevant bits only. */
18162 neon_invert_size (&immlo, &immhi, et.size);
18163 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18164 with one or the other; those cases are caught by
18165 neon_cmode_for_move_imm. */
5287ad62 18166 op = !op;
c96612cc
JB
18167 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18168 &op, et.size, et.type)) == FAIL)
477330fc
RM
18169 {
18170 first_error (_("immediate out of range"));
18171 return;
18172 }
5287ad62
JB
18173 }
18174
18175 inst.instruction &= ~(1 << 5);
18176 inst.instruction |= op << 5;
18177
18178 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18179 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18180 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18181 inst.instruction |= cmode << 8;
18182
18183 neon_write_immbits (immbits);
18184}
18185
18186static void
18187do_neon_mvn (void)
18188{
18189 if (inst.operands[1].isreg)
18190 {
037e8744 18191 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18192
88714cb8 18193 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18194 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18195 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18196 inst.instruction |= LOW4 (inst.operands[1].reg);
18197 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18198 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18199 }
18200 else
18201 {
88714cb8 18202 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18203 neon_move_immediate ();
18204 }
18205
88714cb8 18206 neon_dp_fixup (&inst);
5287ad62
JB
18207}
18208
18209/* Encode instructions of form:
18210
18211 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18212 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18213
18214static void
18215neon_mixed_length (struct neon_type_el et, unsigned size)
18216{
18217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18219 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18220 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18221 inst.instruction |= LOW4 (inst.operands[2].reg);
18222 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18223 inst.instruction |= (et.type == NT_unsigned) << 24;
18224 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18225
88714cb8 18226 neon_dp_fixup (&inst);
5287ad62
JB
18227}
18228
18229static void
18230do_neon_dyadic_long (void)
18231{
5ee91343
AV
18232 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18233 if (rs == NS_QDD)
18234 {
18235 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18236 return;
18237
18238 NEON_ENCODE (INTEGER, inst);
18239 /* FIXME: Type checking for lengthening op. */
18240 struct neon_type_el et = neon_check_type (3, NS_QDD,
18241 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18242 neon_mixed_length (et, et.size);
18243 }
18244 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18245 && (inst.cond == 0xf || inst.cond == 0x10))
18246 {
18247 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18248 in an IT block with le/lt conditions. */
18249
18250 if (inst.cond == 0xf)
18251 inst.cond = 0xb;
18252 else if (inst.cond == 0x10)
18253 inst.cond = 0xd;
18254
18255 inst.pred_insn_type = INSIDE_IT_INSN;
18256
18257 if (inst.instruction == N_MNEM_vaddl)
18258 {
18259 inst.instruction = N_MNEM_vadd;
18260 do_neon_addsub_if_i ();
18261 }
18262 else if (inst.instruction == N_MNEM_vsubl)
18263 {
18264 inst.instruction = N_MNEM_vsub;
18265 do_neon_addsub_if_i ();
18266 }
18267 else if (inst.instruction == N_MNEM_vabdl)
18268 {
18269 inst.instruction = N_MNEM_vabd;
18270 do_neon_dyadic_if_su ();
18271 }
18272 }
18273 else
18274 first_error (BAD_FPU);
5287ad62
JB
18275}
18276
18277static void
18278do_neon_abal (void)
18279{
18280 struct neon_type_el et = neon_check_type (3, NS_QDD,
18281 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18282 neon_mixed_length (et, et.size);
18283}
18284
18285static void
18286neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18287{
18288 if (inst.operands[2].isscalar)
18289 {
dcbf9037 18290 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18291 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18292 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18293 neon_mul_mac (et, et.type == NT_unsigned);
18294 }
18295 else
18296 {
18297 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18298 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18299 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18300 neon_mixed_length (et, et.size);
18301 }
18302}
18303
18304static void
18305do_neon_mac_maybe_scalar_long (void)
18306{
18307 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18308}
18309
dec41383
JW
18310/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18311 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18312
18313static unsigned
18314neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18315{
18316 unsigned regno = NEON_SCALAR_REG (scalar);
18317 unsigned elno = NEON_SCALAR_INDEX (scalar);
18318
18319 if (quad_p)
18320 {
18321 if (regno > 7 || elno > 3)
18322 goto bad_scalar;
18323
18324 return ((regno & 0x7)
18325 | ((elno & 0x1) << 3)
18326 | (((elno >> 1) & 0x1) << 5));
18327 }
18328 else
18329 {
18330 if (regno > 15 || elno > 1)
18331 goto bad_scalar;
18332
18333 return (((regno & 0x1) << 5)
18334 | ((regno >> 1) & 0x7)
18335 | ((elno & 0x1) << 3));
18336 }
18337
18338bad_scalar:
18339 first_error (_("scalar out of range for multiply instruction"));
18340 return 0;
18341}
18342
18343static void
18344do_neon_fmac_maybe_scalar_long (int subtype)
18345{
18346 enum neon_shape rs;
18347 int high8;
18348 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18349 field (bits[21:20]) has different meaning. For scalar index variant, it's
18350 used to differentiate add and subtract, otherwise it's with fixed value
18351 0x2. */
18352 int size = -1;
18353
18354 if (inst.cond != COND_ALWAYS)
18355 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18356 "behaviour is UNPREDICTABLE"));
18357
01f48020 18358 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18359 _(BAD_FP16));
18360
18361 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18362 _(BAD_FPU));
18363
18364 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18365 be a scalar index register. */
18366 if (inst.operands[2].isscalar)
18367 {
18368 high8 = 0xfe000000;
18369 if (subtype)
18370 size = 16;
18371 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18372 }
18373 else
18374 {
18375 high8 = 0xfc000000;
18376 size = 32;
18377 if (subtype)
18378 inst.instruction |= (0x1 << 23);
18379 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18380 }
18381
18382 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18383
18384 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18385 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18386 so we simply pass -1 as size. */
18387 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18388 neon_three_same (quad_p, 0, size);
18389
18390 /* Undo neon_dp_fixup. Redo the high eight bits. */
18391 inst.instruction &= 0x00ffffff;
18392 inst.instruction |= high8;
18393
18394#define LOW1(R) ((R) & 0x1)
18395#define HI4(R) (((R) >> 1) & 0xf)
18396 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18397 whether the instruction is in Q form and whether Vm is a scalar indexed
18398 operand. */
18399 if (inst.operands[2].isscalar)
18400 {
18401 unsigned rm
18402 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18403 inst.instruction &= 0xffffffd0;
18404 inst.instruction |= rm;
18405
18406 if (!quad_p)
18407 {
18408 /* Redo Rn as well. */
18409 inst.instruction &= 0xfff0ff7f;
18410 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18411 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18412 }
18413 }
18414 else if (!quad_p)
18415 {
18416 /* Redo Rn and Rm. */
18417 inst.instruction &= 0xfff0ff50;
18418 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18419 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18420 inst.instruction |= HI4 (inst.operands[2].reg);
18421 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18422 }
18423}
18424
18425static void
18426do_neon_vfmal (void)
18427{
18428 return do_neon_fmac_maybe_scalar_long (0);
18429}
18430
18431static void
18432do_neon_vfmsl (void)
18433{
18434 return do_neon_fmac_maybe_scalar_long (1);
18435}
18436
5287ad62
JB
18437static void
18438do_neon_dyadic_wide (void)
18439{
18440 struct neon_type_el et = neon_check_type (3, NS_QQD,
18441 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18442 neon_mixed_length (et, et.size);
18443}
18444
18445static void
18446do_neon_dyadic_narrow (void)
18447{
18448 struct neon_type_el et = neon_check_type (3, NS_QDD,
18449 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18450 /* Operand sign is unimportant, and the U bit is part of the opcode,
18451 so force the operand type to integer. */
18452 et.type = NT_integer;
5287ad62
JB
18453 neon_mixed_length (et, et.size / 2);
18454}
18455
18456static void
18457do_neon_mul_sat_scalar_long (void)
18458{
18459 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18460}
18461
18462static void
18463do_neon_vmull (void)
18464{
18465 if (inst.operands[2].isscalar)
18466 do_neon_mac_maybe_scalar_long ();
18467 else
18468 {
18469 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18470 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18471
5287ad62 18472 if (et.type == NT_poly)
477330fc 18473 NEON_ENCODE (POLY, inst);
5287ad62 18474 else
477330fc 18475 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18476
18477 /* For polynomial encoding the U bit must be zero, and the size must
18478 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18479 obviously, as 0b10). */
18480 if (et.size == 64)
18481 {
18482 /* Check we're on the correct architecture. */
18483 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18484 inst.error =
18485 _("Instruction form not available on this architecture.");
18486
18487 et.size = 32;
18488 }
18489
5287ad62
JB
18490 neon_mixed_length (et, et.size);
18491 }
18492}
18493
18494static void
18495do_neon_ext (void)
18496{
037e8744 18497 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18498 struct neon_type_el et = neon_check_type (3, rs,
18499 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18500 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18501
18502 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18503 _("shift out of range"));
5287ad62
JB
18504 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18505 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18506 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18507 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18508 inst.instruction |= LOW4 (inst.operands[2].reg);
18509 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18510 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18511 inst.instruction |= imm << 8;
5f4273c7 18512
88714cb8 18513 neon_dp_fixup (&inst);
5287ad62
JB
18514}
18515
18516static void
18517do_neon_rev (void)
18518{
037e8744 18519 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18520 struct neon_type_el et = neon_check_type (2, rs,
18521 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18522 unsigned op = (inst.instruction >> 7) & 3;
18523 /* N (width of reversed regions) is encoded as part of the bitmask. We
18524 extract it here to check the elements to be reversed are smaller.
18525 Otherwise we'd get a reserved instruction. */
18526 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18527 gas_assert (elsize != 0);
5287ad62 18528 constraint (et.size >= elsize,
477330fc 18529 _("elements must be smaller than reversal region"));
037e8744 18530 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18531}
18532
18533static void
18534do_neon_dup (void)
18535{
18536 if (inst.operands[1].isscalar)
18537 {
b409bdb6
AV
18538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18539 BAD_FPU);
037e8744 18540 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18541 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18542 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18543 unsigned sizebits = et.size >> 3;
dcbf9037 18544 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18545 int logsize = neon_logbits (et.size);
dcbf9037 18546 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18547
18548 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18549 return;
037e8744 18550
88714cb8 18551 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18554 inst.instruction |= LOW4 (dm);
18555 inst.instruction |= HI1 (dm) << 5;
037e8744 18556 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18557 inst.instruction |= x << 17;
18558 inst.instruction |= sizebits << 16;
5f4273c7 18559
88714cb8 18560 neon_dp_fixup (&inst);
5287ad62
JB
18561 }
18562 else
18563 {
037e8744
JB
18564 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18565 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18566 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
18567 if (rs == NS_QR)
18568 {
18569 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18570 return;
18571 }
18572 else
18573 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18574 BAD_FPU);
18575
18576 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18577 {
18578 if (inst.operands[1].reg == REG_SP)
18579 as_tsktsk (MVE_BAD_SP);
18580 else if (inst.operands[1].reg == REG_PC)
18581 as_tsktsk (MVE_BAD_PC);
18582 }
18583
5287ad62 18584 /* Duplicate ARM register to lanes of vector. */
88714cb8 18585 NEON_ENCODE (ARMREG, inst);
5287ad62 18586 switch (et.size)
477330fc
RM
18587 {
18588 case 8: inst.instruction |= 0x400000; break;
18589 case 16: inst.instruction |= 0x000020; break;
18590 case 32: inst.instruction |= 0x000000; break;
18591 default: break;
18592 }
5287ad62
JB
18593 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18594 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18595 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18596 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18597 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18598 variants, except for the condition field. */
037e8744 18599 do_vfp_cond_or_thumb ();
5287ad62
JB
18600 }
18601}
18602
57785aa2
AV
18603static void
18604do_mve_mov (int toQ)
18605{
18606 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18607 return;
18608 if (inst.cond > COND_ALWAYS)
18609 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18610
18611 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18612 if (toQ)
18613 {
18614 Q0 = 0;
18615 Q1 = 1;
18616 Rt = 2;
18617 Rt2 = 3;
18618 }
18619
18620 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18621 _("Index one must be [2,3] and index two must be two less than"
18622 " index one."));
18623 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18624 _("General purpose registers may not be the same"));
18625 constraint (inst.operands[Rt].reg == REG_SP
18626 || inst.operands[Rt2].reg == REG_SP,
18627 BAD_SP);
18628 constraint (inst.operands[Rt].reg == REG_PC
18629 || inst.operands[Rt2].reg == REG_PC,
18630 BAD_PC);
18631
18632 inst.instruction = 0xec000f00;
18633 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18634 inst.instruction |= !!toQ << 20;
18635 inst.instruction |= inst.operands[Rt2].reg << 16;
18636 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18637 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18638 inst.instruction |= inst.operands[Rt].reg;
18639}
18640
18641static void
18642do_mve_movn (void)
18643{
18644 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18645 return;
18646
18647 if (inst.cond > COND_ALWAYS)
18648 inst.pred_insn_type = INSIDE_VPT_INSN;
18649 else
18650 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18651
18652 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18653 | N_KEY);
18654
18655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18656 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18657 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18659 inst.instruction |= LOW4 (inst.operands[1].reg);
18660 inst.is_neon = 1;
18661
18662}
18663
5287ad62
JB
18664/* VMOV has particularly many variations. It can be one of:
18665 0. VMOV<c><q> <Qd>, <Qm>
18666 1. VMOV<c><q> <Dd>, <Dm>
18667 (Register operations, which are VORR with Rm = Rn.)
18668 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18669 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18670 (Immediate loads.)
18671 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18672 (ARM register to scalar.)
18673 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18674 (Two ARM registers to vector.)
18675 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18676 (Scalar to ARM register.)
18677 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18678 (Vector to two ARM registers.)
037e8744
JB
18679 8. VMOV.F32 <Sd>, <Sm>
18680 9. VMOV.F64 <Dd>, <Dm>
18681 (VFP register moves.)
18682 10. VMOV.F32 <Sd>, #imm
18683 11. VMOV.F64 <Dd>, #imm
18684 (VFP float immediate load.)
18685 12. VMOV <Rd>, <Sm>
18686 (VFP single to ARM reg.)
18687 13. VMOV <Sd>, <Rm>
18688 (ARM reg to VFP single.)
18689 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18690 (Two ARM regs to two VFP singles.)
18691 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18692 (Two VFP singles to two ARM regs.)
57785aa2
AV
18693 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18694 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18695 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18696 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 18697
037e8744
JB
18698 These cases can be disambiguated using neon_select_shape, except cases 1/9
18699 and 3/11 which depend on the operand type too.
5f4273c7 18700
5287ad62 18701 All the encoded bits are hardcoded by this function.
5f4273c7 18702
b7fc2769
JB
18703 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18704 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 18705
5287ad62 18706 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 18707 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
18708
18709static void
18710do_neon_mov (void)
18711{
57785aa2
AV
18712 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18713 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18714 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18715 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18716 NS_NULL);
037e8744
JB
18717 struct neon_type_el et;
18718 const char *ldconst = 0;
5287ad62 18719
037e8744 18720 switch (rs)
5287ad62 18721 {
037e8744
JB
18722 case NS_DD: /* case 1/9. */
18723 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18724 /* It is not an error here if no type is given. */
18725 inst.error = NULL;
18726 if (et.type == NT_float && et.size == 64)
477330fc
RM
18727 {
18728 do_vfp_nsyn_opcode ("fcpyd");
18729 break;
18730 }
037e8744 18731 /* fall through. */
5287ad62 18732
037e8744
JB
18733 case NS_QQ: /* case 0/1. */
18734 {
57785aa2 18735 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
18736 return;
18737 /* The architecture manual I have doesn't explicitly state which
18738 value the U bit should have for register->register moves, but
18739 the equivalent VORR instruction has U = 0, so do that. */
18740 inst.instruction = 0x0200110;
18741 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18742 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18743 inst.instruction |= LOW4 (inst.operands[1].reg);
18744 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18745 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18746 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18747 inst.instruction |= neon_quad (rs) << 6;
18748
18749 neon_dp_fixup (&inst);
037e8744
JB
18750 }
18751 break;
5f4273c7 18752
037e8744
JB
18753 case NS_DI: /* case 3/11. */
18754 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18755 inst.error = NULL;
18756 if (et.type == NT_float && et.size == 64)
477330fc
RM
18757 {
18758 /* case 11 (fconstd). */
18759 ldconst = "fconstd";
18760 goto encode_fconstd;
18761 }
037e8744
JB
18762 /* fall through. */
18763
18764 case NS_QI: /* case 2/3. */
57785aa2 18765 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 18766 return;
037e8744
JB
18767 inst.instruction = 0x0800010;
18768 neon_move_immediate ();
88714cb8 18769 neon_dp_fixup (&inst);
5287ad62 18770 break;
5f4273c7 18771
037e8744
JB
18772 case NS_SR: /* case 4. */
18773 {
477330fc
RM
18774 unsigned bcdebits = 0;
18775 int logsize;
18776 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18777 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 18778
05ac0ffb
JB
18779 /* .<size> is optional here, defaulting to .32. */
18780 if (inst.vectype.elems == 0
18781 && inst.operands[0].vectype.type == NT_invtype
18782 && inst.operands[1].vectype.type == NT_invtype)
18783 {
18784 inst.vectype.el[0].type = NT_untyped;
18785 inst.vectype.el[0].size = 32;
18786 inst.vectype.elems = 1;
18787 }
18788
477330fc
RM
18789 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18790 logsize = neon_logbits (et.size);
18791
57785aa2
AV
18792 if (et.size != 32)
18793 {
18794 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18795 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18796 return;
18797 }
18798 else
18799 {
18800 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18801 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18802 _(BAD_FPU));
18803 }
18804
18805 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18806 {
18807 if (inst.operands[1].reg == REG_SP)
18808 as_tsktsk (MVE_BAD_SP);
18809 else if (inst.operands[1].reg == REG_PC)
18810 as_tsktsk (MVE_BAD_PC);
18811 }
18812 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18813
477330fc 18814 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
18815 constraint (x >= size / et.size, _("scalar index out of range"));
18816
477330fc
RM
18817
18818 switch (et.size)
18819 {
18820 case 8: bcdebits = 0x8; break;
18821 case 16: bcdebits = 0x1; break;
18822 case 32: bcdebits = 0x0; break;
18823 default: ;
18824 }
18825
57785aa2 18826 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18827
18828 inst.instruction = 0xe000b10;
18829 do_vfp_cond_or_thumb ();
18830 inst.instruction |= LOW4 (dn) << 16;
18831 inst.instruction |= HI1 (dn) << 7;
18832 inst.instruction |= inst.operands[1].reg << 12;
18833 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
18834 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18835 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18836 }
18837 break;
5f4273c7 18838
037e8744 18839 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
18840 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18841 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18842 _(BAD_FPU));
b7fc2769 18843
037e8744
JB
18844 inst.instruction = 0xc400b10;
18845 do_vfp_cond_or_thumb ();
18846 inst.instruction |= LOW4 (inst.operands[0].reg);
18847 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18848 inst.instruction |= inst.operands[1].reg << 12;
18849 inst.instruction |= inst.operands[2].reg << 16;
18850 break;
5f4273c7 18851
037e8744
JB
18852 case NS_RS: /* case 6. */
18853 {
477330fc
RM
18854 unsigned logsize;
18855 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18856 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18857 unsigned abcdebits = 0;
037e8744 18858
05ac0ffb
JB
18859 /* .<dt> is optional here, defaulting to .32. */
18860 if (inst.vectype.elems == 0
18861 && inst.operands[0].vectype.type == NT_invtype
18862 && inst.operands[1].vectype.type == NT_invtype)
18863 {
18864 inst.vectype.el[0].type = NT_untyped;
18865 inst.vectype.el[0].size = 32;
18866 inst.vectype.elems = 1;
18867 }
18868
91d6fa6a
NC
18869 et = neon_check_type (2, NS_NULL,
18870 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
18871 logsize = neon_logbits (et.size);
18872
57785aa2
AV
18873 if (et.size != 32)
18874 {
18875 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18876 && vfp_or_neon_is_neon (NEON_CHECK_CC
18877 | NEON_CHECK_ARCH) == FAIL)
18878 return;
18879 }
18880 else
18881 {
18882 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18883 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18884 _(BAD_FPU));
18885 }
18886
18887 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18888 {
18889 if (inst.operands[0].reg == REG_SP)
18890 as_tsktsk (MVE_BAD_SP);
18891 else if (inst.operands[0].reg == REG_PC)
18892 as_tsktsk (MVE_BAD_PC);
18893 }
18894
18895 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18896
477330fc 18897 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 18898 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
18899
18900 switch (et.size)
18901 {
18902 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18903 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18904 case 32: abcdebits = 0x00; break;
18905 default: ;
18906 }
18907
57785aa2 18908 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18909 inst.instruction = 0xe100b10;
18910 do_vfp_cond_or_thumb ();
18911 inst.instruction |= LOW4 (dn) << 16;
18912 inst.instruction |= HI1 (dn) << 7;
18913 inst.instruction |= inst.operands[0].reg << 12;
18914 inst.instruction |= (abcdebits & 3) << 5;
18915 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 18916 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18917 }
18918 break;
5f4273c7 18919
037e8744 18920 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
18921 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18922 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18923 _(BAD_FPU));
037e8744
JB
18924
18925 inst.instruction = 0xc500b10;
18926 do_vfp_cond_or_thumb ();
18927 inst.instruction |= inst.operands[0].reg << 12;
18928 inst.instruction |= inst.operands[1].reg << 16;
18929 inst.instruction |= LOW4 (inst.operands[2].reg);
18930 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18931 break;
5f4273c7 18932
037e8744
JB
18933 case NS_FF: /* case 8 (fcpys). */
18934 do_vfp_nsyn_opcode ("fcpys");
18935 break;
5f4273c7 18936
9db2f6b4 18937 case NS_HI:
037e8744
JB
18938 case NS_FI: /* case 10 (fconsts). */
18939 ldconst = "fconsts";
4ef4710f 18940 encode_fconstd:
58ed5c38
TC
18941 if (!inst.operands[1].immisfloat)
18942 {
4ef4710f 18943 unsigned new_imm;
58ed5c38 18944 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
18945 float imm = (float) inst.operands[1].imm;
18946 memcpy (&new_imm, &imm, sizeof (float));
18947 /* But the assembly may have been written to provide an integer
18948 bit pattern that equates to a float, so check that the
18949 conversion has worked. */
18950 if (is_quarter_float (new_imm))
18951 {
18952 if (is_quarter_float (inst.operands[1].imm))
18953 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18954
18955 inst.operands[1].imm = new_imm;
18956 inst.operands[1].immisfloat = 1;
18957 }
58ed5c38
TC
18958 }
18959
037e8744 18960 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
18961 {
18962 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18963 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
18964
18965 /* ARMv8.2 fp16 vmov.f16 instruction. */
18966 if (rs == NS_HI)
18967 do_scalar_fp16_v82_encode ();
477330fc 18968 }
5287ad62 18969 else
477330fc 18970 first_error (_("immediate out of range"));
037e8744 18971 break;
5f4273c7 18972
9db2f6b4 18973 case NS_RH:
037e8744
JB
18974 case NS_RF: /* case 12 (fmrs). */
18975 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
18976 /* ARMv8.2 fp16 vmov.f16 instruction. */
18977 if (rs == NS_RH)
18978 do_scalar_fp16_v82_encode ();
037e8744 18979 break;
5f4273c7 18980
9db2f6b4 18981 case NS_HR:
037e8744
JB
18982 case NS_FR: /* case 13 (fmsr). */
18983 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
18984 /* ARMv8.2 fp16 vmov.f16 instruction. */
18985 if (rs == NS_HR)
18986 do_scalar_fp16_v82_encode ();
037e8744 18987 break;
5f4273c7 18988
57785aa2
AV
18989 case NS_RRSS:
18990 do_mve_mov (0);
18991 break;
18992 case NS_SSRR:
18993 do_mve_mov (1);
18994 break;
18995
037e8744
JB
18996 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18997 (one of which is a list), but we have parsed four. Do some fiddling to
18998 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18999 expect. */
19000 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19001 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19002 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19003 _(BAD_FPU));
037e8744 19004 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19005 _("VFP registers must be adjacent"));
037e8744
JB
19006 inst.operands[2].imm = 2;
19007 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19008 do_vfp_nsyn_opcode ("fmrrs");
19009 break;
5f4273c7 19010
037e8744 19011 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19012 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19013 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19014 _(BAD_FPU));
037e8744 19015 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19016 _("VFP registers must be adjacent"));
037e8744
JB
19017 inst.operands[1] = inst.operands[2];
19018 inst.operands[2] = inst.operands[3];
19019 inst.operands[0].imm = 2;
19020 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19021 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19022 break;
5f4273c7 19023
4c261dff
NC
19024 case NS_NULL:
19025 /* neon_select_shape has determined that the instruction
19026 shape is wrong and has already set the error message. */
19027 break;
19028
5287ad62
JB
19029 default:
19030 abort ();
19031 }
19032}
19033
57785aa2
AV
19034static void
19035do_mve_movl (void)
19036{
19037 if (!(inst.operands[0].present && inst.operands[0].isquad
19038 && inst.operands[1].present && inst.operands[1].isquad
19039 && !inst.operands[2].present))
19040 {
19041 inst.instruction = 0;
19042 inst.cond = 0xb;
19043 if (thumb_mode)
19044 set_pred_insn_type (INSIDE_IT_INSN);
19045 do_neon_mov ();
19046 return;
19047 }
19048
19049 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19050 return;
19051
19052 if (inst.cond != COND_ALWAYS)
19053 inst.pred_insn_type = INSIDE_VPT_INSN;
19054
19055 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19056 | N_S16 | N_U16 | N_KEY);
19057
19058 inst.instruction |= (et.type == NT_unsigned) << 28;
19059 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19060 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19061 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19062 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19063 inst.instruction |= LOW4 (inst.operands[1].reg);
19064 inst.is_neon = 1;
19065}
19066
5287ad62
JB
19067static void
19068do_neon_rshift_round_imm (void)
19069{
037e8744 19070 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
19071 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19072 int imm = inst.operands[2].imm;
19073
19074 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19075 if (imm == 0)
19076 {
19077 inst.operands[2].present = 0;
19078 do_neon_mov ();
19079 return;
19080 }
19081
19082 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19083 _("immediate out of range for shift"));
037e8744 19084 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19085 et.size - imm);
5287ad62
JB
19086}
19087
9db2f6b4
RL
19088static void
19089do_neon_movhf (void)
19090{
19091 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19092 constraint (rs != NS_HH, _("invalid suffix"));
19093
7bdf778b
ASDV
19094 if (inst.cond != COND_ALWAYS)
19095 {
19096 if (thumb_mode)
19097 {
19098 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19099 " the behaviour is UNPREDICTABLE"));
19100 }
19101 else
19102 {
19103 inst.error = BAD_COND;
19104 return;
19105 }
19106 }
19107
9db2f6b4
RL
19108 do_vfp_sp_monadic ();
19109
19110 inst.is_neon = 1;
19111 inst.instruction |= 0xf0000000;
19112}
19113
5287ad62
JB
19114static void
19115do_neon_movl (void)
19116{
19117 struct neon_type_el et = neon_check_type (2, NS_QD,
19118 N_EQK | N_DBL, N_SU_32 | N_KEY);
19119 unsigned sizebits = et.size >> 3;
19120 inst.instruction |= sizebits << 19;
19121 neon_two_same (0, et.type == NT_unsigned, -1);
19122}
19123
19124static void
19125do_neon_trn (void)
19126{
037e8744 19127 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19128 struct neon_type_el et = neon_check_type (2, rs,
19129 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19130 NEON_ENCODE (INTEGER, inst);
037e8744 19131 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19132}
19133
19134static void
19135do_neon_zip_uzp (void)
19136{
037e8744 19137 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19138 struct neon_type_el et = neon_check_type (2, rs,
19139 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19140 if (rs == NS_DD && et.size == 32)
19141 {
19142 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19143 inst.instruction = N_MNEM_vtrn;
19144 do_neon_trn ();
19145 return;
19146 }
037e8744 19147 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19148}
19149
19150static void
19151do_neon_sat_abs_neg (void)
19152{
037e8744 19153 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19154 struct neon_type_el et = neon_check_type (2, rs,
19155 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19156 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19157}
19158
19159static void
19160do_neon_pair_long (void)
19161{
037e8744 19162 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19163 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19164 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19165 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19166 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19167}
19168
19169static void
19170do_neon_recip_est (void)
19171{
037e8744 19172 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19173 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19174 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19175 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19176 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19177}
19178
19179static void
19180do_neon_cls (void)
19181{
f30ee27c
AV
19182 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19183 return;
19184
19185 enum neon_shape rs;
19186 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19187 rs = neon_select_shape (NS_QQ, NS_NULL);
19188 else
19189 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19190
5287ad62
JB
19191 struct neon_type_el et = neon_check_type (2, rs,
19192 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19193 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19194}
19195
19196static void
19197do_neon_clz (void)
19198{
f30ee27c
AV
19199 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19200 return;
19201
19202 enum neon_shape rs;
19203 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19204 rs = neon_select_shape (NS_QQ, NS_NULL);
19205 else
19206 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19207
5287ad62
JB
19208 struct neon_type_el et = neon_check_type (2, rs,
19209 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19210 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19211}
19212
19213static void
19214do_neon_cnt (void)
19215{
037e8744 19216 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19217 struct neon_type_el et = neon_check_type (2, rs,
19218 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19219 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19220}
19221
19222static void
19223do_neon_swp (void)
19224{
037e8744
JB
19225 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19226 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19227}
19228
19229static void
19230do_neon_tbl_tbx (void)
19231{
19232 unsigned listlenbits;
dcbf9037 19233 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 19234
5287ad62
JB
19235 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19236 {
dcbf9037 19237 first_error (_("bad list length for table lookup"));
5287ad62
JB
19238 return;
19239 }
5f4273c7 19240
5287ad62
JB
19241 listlenbits = inst.operands[1].imm - 1;
19242 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19243 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19244 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19245 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19246 inst.instruction |= LOW4 (inst.operands[2].reg);
19247 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19248 inst.instruction |= listlenbits << 8;
5f4273c7 19249
88714cb8 19250 neon_dp_fixup (&inst);
5287ad62
JB
19251}
19252
19253static void
19254do_neon_ldm_stm (void)
19255{
19256 /* P, U and L bits are part of bitmask. */
19257 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19258 unsigned offsetbits = inst.operands[1].imm * 2;
19259
037e8744
JB
19260 if (inst.operands[1].issingle)
19261 {
19262 do_vfp_nsyn_ldm_stm (is_dbmode);
19263 return;
19264 }
19265
5287ad62 19266 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 19267 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
19268
19269 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
19270 _("register list must contain at least 1 and at most 16 "
19271 "registers"));
5287ad62
JB
19272
19273 inst.instruction |= inst.operands[0].reg << 16;
19274 inst.instruction |= inst.operands[0].writeback << 21;
19275 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19276 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19277
19278 inst.instruction |= offsetbits;
5f4273c7 19279
037e8744 19280 do_vfp_cond_or_thumb ();
5287ad62
JB
19281}
19282
19283static void
19284do_neon_ldr_str (void)
19285{
5287ad62 19286 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 19287
6844b2c2
MGD
19288 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19289 And is UNPREDICTABLE in thumb mode. */
fa94de6b 19290 if (!is_ldr
6844b2c2 19291 && inst.operands[1].reg == REG_PC
ba86b375 19292 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 19293 {
94dcf8bf 19294 if (thumb_mode)
6844b2c2 19295 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 19296 else if (warn_on_deprecated)
5c3696f8 19297 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
19298 }
19299
037e8744
JB
19300 if (inst.operands[0].issingle)
19301 {
cd2f129f 19302 if (is_ldr)
477330fc 19303 do_vfp_nsyn_opcode ("flds");
cd2f129f 19304 else
477330fc 19305 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
19306
19307 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19308 if (inst.vectype.el[0].size == 16)
19309 do_scalar_fp16_v82_encode ();
5287ad62
JB
19310 }
19311 else
5287ad62 19312 {
cd2f129f 19313 if (is_ldr)
477330fc 19314 do_vfp_nsyn_opcode ("fldd");
5287ad62 19315 else
477330fc 19316 do_vfp_nsyn_opcode ("fstd");
5287ad62 19317 }
5287ad62
JB
19318}
19319
32c36c3c
AV
19320static void
19321do_t_vldr_vstr_sysreg (void)
19322{
19323 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19324 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19325
19326 /* Use of PC is UNPREDICTABLE. */
19327 if (inst.operands[1].reg == REG_PC)
19328 inst.error = _("Use of PC here is UNPREDICTABLE");
19329
19330 if (inst.operands[1].immisreg)
19331 inst.error = _("instruction does not accept register index");
19332
19333 if (!inst.operands[1].isreg)
19334 inst.error = _("instruction does not accept PC-relative addressing");
19335
19336 if (abs (inst.operands[1].imm) >= (1 << 7))
19337 inst.error = _("immediate value out of range");
19338
19339 inst.instruction = 0xec000f80;
19340 if (is_vldr)
19341 inst.instruction |= 1 << sysreg_vldr_bitno;
19342 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19343 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19344 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19345}
19346
19347static void
19348do_vldr_vstr (void)
19349{
19350 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19351
19352 /* VLDR/VSTR (System Register). */
19353 if (sysreg_op)
19354 {
19355 if (!mark_feature_used (&arm_ext_v8_1m_main))
19356 as_bad (_("Instruction not permitted on this architecture"));
19357
19358 do_t_vldr_vstr_sysreg ();
19359 }
19360 /* VLDR/VSTR. */
19361 else
19362 {
19363 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19364 as_bad (_("Instruction not permitted on this architecture"));
19365 do_neon_ldr_str ();
19366 }
19367}
19368
5287ad62
JB
19369/* "interleave" version also handles non-interleaving register VLD1/VST1
19370 instructions. */
19371
19372static void
19373do_neon_ld_st_interleave (void)
19374{
037e8744 19375 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19376 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19377 unsigned alignbits = 0;
19378 unsigned idx;
19379 /* The bits in this table go:
19380 0: register stride of one (0) or two (1)
19381 1,2: register list length, minus one (1, 2, 3, 4).
19382 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19383 We use -1 for invalid entries. */
19384 const int typetable[] =
19385 {
19386 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19387 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19388 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19389 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19390 };
19391 int typebits;
19392
dcbf9037
JB
19393 if (et.type == NT_invtype)
19394 return;
19395
5287ad62
JB
19396 if (inst.operands[1].immisalign)
19397 switch (inst.operands[1].imm >> 8)
19398 {
19399 case 64: alignbits = 1; break;
19400 case 128:
477330fc 19401 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19402 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19403 goto bad_alignment;
19404 alignbits = 2;
19405 break;
5287ad62 19406 case 256:
477330fc
RM
19407 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19408 goto bad_alignment;
19409 alignbits = 3;
19410 break;
5287ad62
JB
19411 default:
19412 bad_alignment:
477330fc
RM
19413 first_error (_("bad alignment"));
19414 return;
5287ad62
JB
19415 }
19416
19417 inst.instruction |= alignbits << 4;
19418 inst.instruction |= neon_logbits (et.size) << 6;
19419
19420 /* Bits [4:6] of the immediate in a list specifier encode register stride
19421 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19422 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19423 up the right value for "type" in a table based on this value and the given
19424 list style, then stick it back. */
19425 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19426 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19427
19428 typebits = typetable[idx];
5f4273c7 19429
5287ad62 19430 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19431 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19432 BAD_EL_TYPE);
5287ad62
JB
19433
19434 inst.instruction &= ~0xf00;
19435 inst.instruction |= typebits << 8;
19436}
19437
19438/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19439 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19440 otherwise. The variable arguments are a list of pairs of legal (size, align)
19441 values, terminated with -1. */
19442
19443static int
aa8a0863 19444neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19445{
19446 va_list ap;
19447 int result = FAIL, thissize, thisalign;
5f4273c7 19448
5287ad62
JB
19449 if (!inst.operands[1].immisalign)
19450 {
aa8a0863 19451 *do_alignment = 0;
5287ad62
JB
19452 return SUCCESS;
19453 }
5f4273c7 19454
aa8a0863 19455 va_start (ap, do_alignment);
5287ad62
JB
19456
19457 do
19458 {
19459 thissize = va_arg (ap, int);
19460 if (thissize == -1)
477330fc 19461 break;
5287ad62
JB
19462 thisalign = va_arg (ap, int);
19463
19464 if (size == thissize && align == thisalign)
477330fc 19465 result = SUCCESS;
5287ad62
JB
19466 }
19467 while (result != SUCCESS);
19468
19469 va_end (ap);
19470
19471 if (result == SUCCESS)
aa8a0863 19472 *do_alignment = 1;
5287ad62 19473 else
dcbf9037 19474 first_error (_("unsupported alignment for instruction"));
5f4273c7 19475
5287ad62
JB
19476 return result;
19477}
19478
19479static void
19480do_neon_ld_st_lane (void)
19481{
037e8744 19482 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19483 int align_good, do_alignment = 0;
5287ad62
JB
19484 int logsize = neon_logbits (et.size);
19485 int align = inst.operands[1].imm >> 8;
19486 int n = (inst.instruction >> 8) & 3;
19487 int max_el = 64 / et.size;
5f4273c7 19488
dcbf9037
JB
19489 if (et.type == NT_invtype)
19490 return;
5f4273c7 19491
5287ad62 19492 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19493 _("bad list length"));
5287ad62 19494 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19495 _("scalar index out of range"));
5287ad62 19496 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19497 && et.size == 8,
19498 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19499
5287ad62
JB
19500 switch (n)
19501 {
19502 case 0: /* VLD1 / VST1. */
aa8a0863 19503 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19504 32, 32, -1);
5287ad62 19505 if (align_good == FAIL)
477330fc 19506 return;
aa8a0863 19507 if (do_alignment)
477330fc
RM
19508 {
19509 unsigned alignbits = 0;
19510 switch (et.size)
19511 {
19512 case 16: alignbits = 0x1; break;
19513 case 32: alignbits = 0x3; break;
19514 default: ;
19515 }
19516 inst.instruction |= alignbits << 4;
19517 }
5287ad62
JB
19518 break;
19519
19520 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19521 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19522 16, 32, 32, 64, -1);
5287ad62 19523 if (align_good == FAIL)
477330fc 19524 return;
aa8a0863 19525 if (do_alignment)
477330fc 19526 inst.instruction |= 1 << 4;
5287ad62
JB
19527 break;
19528
19529 case 2: /* VLD3 / VST3. */
19530 constraint (inst.operands[1].immisalign,
477330fc 19531 _("can't use alignment with this instruction"));
5287ad62
JB
19532 break;
19533
19534 case 3: /* VLD4 / VST4. */
aa8a0863 19535 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19536 16, 64, 32, 64, 32, 128, -1);
5287ad62 19537 if (align_good == FAIL)
477330fc 19538 return;
aa8a0863 19539 if (do_alignment)
477330fc
RM
19540 {
19541 unsigned alignbits = 0;
19542 switch (et.size)
19543 {
19544 case 8: alignbits = 0x1; break;
19545 case 16: alignbits = 0x1; break;
19546 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19547 default: ;
19548 }
19549 inst.instruction |= alignbits << 4;
19550 }
5287ad62
JB
19551 break;
19552
19553 default: ;
19554 }
19555
19556 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19557 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19558 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19559
5287ad62
JB
19560 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19561 inst.instruction |= logsize << 10;
19562}
19563
19564/* Encode single n-element structure to all lanes VLD<n> instructions. */
19565
19566static void
19567do_neon_ld_dup (void)
19568{
037e8744 19569 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19570 int align_good, do_alignment = 0;
5287ad62 19571
dcbf9037
JB
19572 if (et.type == NT_invtype)
19573 return;
19574
5287ad62
JB
19575 switch ((inst.instruction >> 8) & 3)
19576 {
19577 case 0: /* VLD1. */
9c2799c2 19578 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19579 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19580 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19581 if (align_good == FAIL)
477330fc 19582 return;
5287ad62 19583 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19584 {
19585 case 1: break;
19586 case 2: inst.instruction |= 1 << 5; break;
19587 default: first_error (_("bad list length")); return;
19588 }
5287ad62
JB
19589 inst.instruction |= neon_logbits (et.size) << 6;
19590 break;
19591
19592 case 1: /* VLD2. */
19593 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19594 &do_alignment, 8, 16, 16, 32, 32, 64,
19595 -1);
5287ad62 19596 if (align_good == FAIL)
477330fc 19597 return;
5287ad62 19598 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19599 _("bad list length"));
5287ad62 19600 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19601 inst.instruction |= 1 << 5;
5287ad62
JB
19602 inst.instruction |= neon_logbits (et.size) << 6;
19603 break;
19604
19605 case 2: /* VLD3. */
19606 constraint (inst.operands[1].immisalign,
477330fc 19607 _("can't use alignment with this instruction"));
5287ad62 19608 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19609 _("bad list length"));
5287ad62 19610 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19611 inst.instruction |= 1 << 5;
5287ad62
JB
19612 inst.instruction |= neon_logbits (et.size) << 6;
19613 break;
19614
19615 case 3: /* VLD4. */
19616 {
477330fc 19617 int align = inst.operands[1].imm >> 8;
aa8a0863 19618 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19619 16, 64, 32, 64, 32, 128, -1);
19620 if (align_good == FAIL)
19621 return;
19622 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19623 _("bad list length"));
19624 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19625 inst.instruction |= 1 << 5;
19626 if (et.size == 32 && align == 128)
19627 inst.instruction |= 0x3 << 6;
19628 else
19629 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19630 }
19631 break;
19632
19633 default: ;
19634 }
19635
aa8a0863 19636 inst.instruction |= do_alignment << 4;
5287ad62
JB
19637}
19638
19639/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19640 apart from bits [11:4]. */
19641
19642static void
19643do_neon_ldx_stx (void)
19644{
b1a769ed
DG
19645 if (inst.operands[1].isreg)
19646 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19647
5287ad62
JB
19648 switch (NEON_LANE (inst.operands[0].imm))
19649 {
19650 case NEON_INTERLEAVE_LANES:
88714cb8 19651 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
19652 do_neon_ld_st_interleave ();
19653 break;
5f4273c7 19654
5287ad62 19655 case NEON_ALL_LANES:
88714cb8 19656 NEON_ENCODE (DUP, inst);
2d51fb74
JB
19657 if (inst.instruction == N_INV)
19658 {
19659 first_error ("only loads support such operands");
19660 break;
19661 }
5287ad62
JB
19662 do_neon_ld_dup ();
19663 break;
5f4273c7 19664
5287ad62 19665 default:
88714cb8 19666 NEON_ENCODE (LANE, inst);
5287ad62
JB
19667 do_neon_ld_st_lane ();
19668 }
19669
19670 /* L bit comes from bit mask. */
19671 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19672 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19673 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 19674
5287ad62
JB
19675 if (inst.operands[1].postind)
19676 {
19677 int postreg = inst.operands[1].imm & 0xf;
19678 constraint (!inst.operands[1].immisreg,
477330fc 19679 _("post-index must be a register"));
5287ad62 19680 constraint (postreg == 0xd || postreg == 0xf,
477330fc 19681 _("bad register for post-index"));
5287ad62
JB
19682 inst.instruction |= postreg;
19683 }
4f2374c7 19684 else
5287ad62 19685 {
4f2374c7 19686 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
19687 constraint (inst.relocs[0].exp.X_op != O_constant
19688 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
19689 BAD_ADDR_MODE);
19690
19691 if (inst.operands[1].writeback)
19692 {
19693 inst.instruction |= 0xd;
19694 }
19695 else
19696 inst.instruction |= 0xf;
5287ad62 19697 }
5f4273c7 19698
5287ad62
JB
19699 if (thumb_mode)
19700 inst.instruction |= 0xf9000000;
19701 else
19702 inst.instruction |= 0xf4000000;
19703}
33399f07
MGD
19704
19705/* FP v8. */
19706static void
19707do_vfp_nsyn_fpv8 (enum neon_shape rs)
19708{
a715796b
TG
19709 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19710 D register operands. */
19711 if (neon_shape_class[rs] == SC_DOUBLE)
19712 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19713 _(BAD_FPU));
19714
33399f07
MGD
19715 NEON_ENCODE (FPV8, inst);
19716
9db2f6b4
RL
19717 if (rs == NS_FFF || rs == NS_HHH)
19718 {
19719 do_vfp_sp_dyadic ();
19720
19721 /* ARMv8.2 fp16 instruction. */
19722 if (rs == NS_HHH)
19723 do_scalar_fp16_v82_encode ();
19724 }
33399f07
MGD
19725 else
19726 do_vfp_dp_rd_rn_rm ();
19727
19728 if (rs == NS_DDD)
19729 inst.instruction |= 0x100;
19730
19731 inst.instruction |= 0xf0000000;
19732}
19733
19734static void
19735do_vsel (void)
19736{
5ee91343 19737 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
19738
19739 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19740 first_error (_("invalid instruction shape"));
19741}
19742
73924fbc
MGD
19743static void
19744do_vmaxnm (void)
19745{
5ee91343 19746 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
19747
19748 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19749 return;
19750
19751 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19752 return;
19753
cc933301 19754 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
19755}
19756
30bdf752
MGD
19757static void
19758do_vrint_1 (enum neon_cvt_mode mode)
19759{
9db2f6b4 19760 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
19761 struct neon_type_el et;
19762
19763 if (rs == NS_NULL)
19764 return;
19765
a715796b
TG
19766 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19767 D register operands. */
19768 if (neon_shape_class[rs] == SC_DOUBLE)
19769 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19770 _(BAD_FPU));
19771
9db2f6b4
RL
19772 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19773 | N_VFP);
30bdf752
MGD
19774 if (et.type != NT_invtype)
19775 {
19776 /* VFP encodings. */
19777 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19778 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 19779 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19780
19781 NEON_ENCODE (FPV8, inst);
9db2f6b4 19782 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
19783 do_vfp_sp_monadic ();
19784 else
19785 do_vfp_dp_rd_rm ();
19786
19787 switch (mode)
19788 {
19789 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19790 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19791 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19792 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19793 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19794 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19795 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19796 default: abort ();
19797 }
19798
19799 inst.instruction |= (rs == NS_DD) << 8;
19800 do_vfp_cond_or_thumb ();
9db2f6b4
RL
19801
19802 /* ARMv8.2 fp16 vrint instruction. */
19803 if (rs == NS_HH)
19804 do_scalar_fp16_v82_encode ();
30bdf752
MGD
19805 }
19806 else
19807 {
19808 /* Neon encodings (or something broken...). */
19809 inst.error = NULL;
cc933301 19810 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
19811
19812 if (et.type == NT_invtype)
19813 return;
19814
5ee91343 19815 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19816 NEON_ENCODE (FLOAT, inst);
19817
19818 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19819 return;
19820
19821 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19822 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19823 inst.instruction |= LOW4 (inst.operands[1].reg);
19824 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19825 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19826 /* Mask off the original size bits and reencode them. */
19827 inst.instruction = ((inst.instruction & 0xfff3ffff)
19828 | neon_logbits (et.size) << 18);
19829
30bdf752
MGD
19830 switch (mode)
19831 {
19832 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19833 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19834 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19835 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19836 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19837 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19838 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19839 default: abort ();
19840 }
19841
19842 if (thumb_mode)
19843 inst.instruction |= 0xfc000000;
19844 else
19845 inst.instruction |= 0xf0000000;
19846 }
19847}
19848
19849static void
19850do_vrintx (void)
19851{
19852 do_vrint_1 (neon_cvt_mode_x);
19853}
19854
19855static void
19856do_vrintz (void)
19857{
19858 do_vrint_1 (neon_cvt_mode_z);
19859}
19860
19861static void
19862do_vrintr (void)
19863{
19864 do_vrint_1 (neon_cvt_mode_r);
19865}
19866
19867static void
19868do_vrinta (void)
19869{
19870 do_vrint_1 (neon_cvt_mode_a);
19871}
19872
19873static void
19874do_vrintn (void)
19875{
19876 do_vrint_1 (neon_cvt_mode_n);
19877}
19878
19879static void
19880do_vrintp (void)
19881{
19882 do_vrint_1 (neon_cvt_mode_p);
19883}
19884
19885static void
19886do_vrintm (void)
19887{
19888 do_vrint_1 (neon_cvt_mode_m);
19889}
19890
c28eeff2
SN
19891static unsigned
19892neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19893{
19894 unsigned regno = NEON_SCALAR_REG (opnd);
19895 unsigned elno = NEON_SCALAR_INDEX (opnd);
19896
19897 if (elsize == 16 && elno < 2 && regno < 16)
19898 return regno | (elno << 4);
19899 else if (elsize == 32 && elno == 0)
19900 return regno;
19901
19902 first_error (_("scalar out of range"));
19903 return 0;
19904}
19905
19906static void
19907do_vcmla (void)
19908{
5d281bf0
AV
19909 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19910 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19911 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
19912 constraint (inst.relocs[0].exp.X_op != O_constant,
19913 _("expression too complex"));
19914 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
19915 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19916 _("immediate out of range"));
19917 rot /= 90;
5d281bf0
AV
19918
19919 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19920 return;
19921
c28eeff2
SN
19922 if (inst.operands[2].isscalar)
19923 {
5d281bf0
AV
19924 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19925 first_error (_("invalid instruction shape"));
c28eeff2
SN
19926 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19927 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19928 N_KEY | N_F16 | N_F32).size;
19929 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19930 inst.is_neon = 1;
19931 inst.instruction = 0xfe000800;
19932 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19933 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19934 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19935 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19936 inst.instruction |= LOW4 (m);
19937 inst.instruction |= HI1 (m) << 5;
19938 inst.instruction |= neon_quad (rs) << 6;
19939 inst.instruction |= rot << 20;
19940 inst.instruction |= (size == 32) << 23;
19941 }
19942 else
19943 {
5d281bf0
AV
19944 enum neon_shape rs;
19945 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19946 rs = neon_select_shape (NS_QQQI, NS_NULL);
19947 else
19948 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19949
c28eeff2
SN
19950 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19951 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
19952 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
19953 && (inst.operands[0].reg == inst.operands[1].reg
19954 || inst.operands[0].reg == inst.operands[2].reg))
19955 as_tsktsk (BAD_MVE_SRCDEST);
19956
c28eeff2
SN
19957 neon_three_same (neon_quad (rs), 0, -1);
19958 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19959 inst.instruction |= 0xfc200800;
19960 inst.instruction |= rot << 23;
19961 inst.instruction |= (size == 32) << 20;
19962 }
19963}
19964
19965static void
19966do_vcadd (void)
19967{
5d281bf0
AV
19968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19969 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19970 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
19971 constraint (inst.relocs[0].exp.X_op != O_constant,
19972 _("expression too complex"));
5d281bf0 19973
e2b0ab59 19974 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 19975 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
19976 enum neon_shape rs;
19977 struct neon_type_el et;
19978 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19979 {
19980 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19981 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
19982 }
19983 else
19984 {
19985 rs = neon_select_shape (NS_QQQI, NS_NULL);
19986 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
19987 | N_I16 | N_I32);
19988 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
19989 as_tsktsk (_("Warning: 32-bit element size and same first and third "
19990 "operand makes instruction UNPREDICTABLE"));
19991 }
19992
19993 if (et.type == NT_invtype)
19994 return;
19995
19996 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
19997 | NEON_CHECK_CC))
19998 return;
19999
20000 if (et.type == NT_float)
20001 {
20002 neon_three_same (neon_quad (rs), 0, -1);
20003 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20004 inst.instruction |= 0xfc800800;
20005 inst.instruction |= (rot == 270) << 24;
20006 inst.instruction |= (et.size == 32) << 20;
20007 }
20008 else
20009 {
20010 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20011 inst.instruction = 0xfe000f00;
20012 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20013 inst.instruction |= neon_logbits (et.size) << 20;
20014 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20016 inst.instruction |= (rot == 270) << 12;
20017 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20018 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20019 inst.instruction |= LOW4 (inst.operands[2].reg);
20020 inst.is_neon = 1;
20021 }
c28eeff2
SN
20022}
20023
c604a79a
JW
20024/* Dot Product instructions encoding support. */
20025
20026static void
20027do_neon_dotproduct (int unsigned_p)
20028{
20029 enum neon_shape rs;
20030 unsigned scalar_oprd2 = 0;
20031 int high8;
20032
20033 if (inst.cond != COND_ALWAYS)
20034 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20035 "is UNPREDICTABLE"));
20036
20037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20038 _(BAD_FPU));
20039
20040 /* Dot Product instructions are in three-same D/Q register format or the third
20041 operand can be a scalar index register. */
20042 if (inst.operands[2].isscalar)
20043 {
20044 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20045 high8 = 0xfe000000;
20046 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20047 }
20048 else
20049 {
20050 high8 = 0xfc000000;
20051 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20052 }
20053
20054 if (unsigned_p)
20055 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20056 else
20057 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20058
20059 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20060 Product instruction, so we pass 0 as the "ubit" parameter. And the
20061 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20062 neon_three_same (neon_quad (rs), 0, 32);
20063
20064 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20065 different NEON three-same encoding. */
20066 inst.instruction &= 0x00ffffff;
20067 inst.instruction |= high8;
20068 /* Encode 'U' bit which indicates signedness. */
20069 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20070 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20071 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20072 the instruction encoding. */
20073 if (inst.operands[2].isscalar)
20074 {
20075 inst.instruction &= 0xffffffd0;
20076 inst.instruction |= LOW4 (scalar_oprd2);
20077 inst.instruction |= HI1 (scalar_oprd2) << 5;
20078 }
20079}
20080
20081/* Dot Product instructions for signed integer. */
20082
20083static void
20084do_neon_dotproduct_s (void)
20085{
20086 return do_neon_dotproduct (0);
20087}
20088
20089/* Dot Product instructions for unsigned integer. */
20090
20091static void
20092do_neon_dotproduct_u (void)
20093{
20094 return do_neon_dotproduct (1);
20095}
20096
91ff7894
MGD
20097/* Crypto v1 instructions. */
20098static void
20099do_crypto_2op_1 (unsigned elttype, int op)
20100{
5ee91343 20101 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20102
20103 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20104 == NT_invtype)
20105 return;
20106
20107 inst.error = NULL;
20108
20109 NEON_ENCODE (INTEGER, inst);
20110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20111 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20112 inst.instruction |= LOW4 (inst.operands[1].reg);
20113 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20114 if (op != -1)
20115 inst.instruction |= op << 6;
20116
20117 if (thumb_mode)
20118 inst.instruction |= 0xfc000000;
20119 else
20120 inst.instruction |= 0xf0000000;
20121}
20122
48adcd8e
MGD
20123static void
20124do_crypto_3op_1 (int u, int op)
20125{
5ee91343 20126 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20127
20128 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20129 N_32 | N_UNT | N_KEY).type == NT_invtype)
20130 return;
20131
20132 inst.error = NULL;
20133
20134 NEON_ENCODE (INTEGER, inst);
20135 neon_three_same (1, u, 8 << op);
20136}
20137
91ff7894
MGD
20138static void
20139do_aese (void)
20140{
20141 do_crypto_2op_1 (N_8, 0);
20142}
20143
20144static void
20145do_aesd (void)
20146{
20147 do_crypto_2op_1 (N_8, 1);
20148}
20149
20150static void
20151do_aesmc (void)
20152{
20153 do_crypto_2op_1 (N_8, 2);
20154}
20155
20156static void
20157do_aesimc (void)
20158{
20159 do_crypto_2op_1 (N_8, 3);
20160}
20161
48adcd8e
MGD
20162static void
20163do_sha1c (void)
20164{
20165 do_crypto_3op_1 (0, 0);
20166}
20167
20168static void
20169do_sha1p (void)
20170{
20171 do_crypto_3op_1 (0, 1);
20172}
20173
20174static void
20175do_sha1m (void)
20176{
20177 do_crypto_3op_1 (0, 2);
20178}
20179
20180static void
20181do_sha1su0 (void)
20182{
20183 do_crypto_3op_1 (0, 3);
20184}
91ff7894 20185
48adcd8e
MGD
20186static void
20187do_sha256h (void)
20188{
20189 do_crypto_3op_1 (1, 0);
20190}
20191
20192static void
20193do_sha256h2 (void)
20194{
20195 do_crypto_3op_1 (1, 1);
20196}
20197
20198static void
20199do_sha256su1 (void)
20200{
20201 do_crypto_3op_1 (1, 2);
20202}
3c9017d2
MGD
20203
20204static void
20205do_sha1h (void)
20206{
20207 do_crypto_2op_1 (N_32, -1);
20208}
20209
20210static void
20211do_sha1su1 (void)
20212{
20213 do_crypto_2op_1 (N_32, 0);
20214}
20215
20216static void
20217do_sha256su0 (void)
20218{
20219 do_crypto_2op_1 (N_32, 1);
20220}
dd5181d5
KT
20221
20222static void
20223do_crc32_1 (unsigned int poly, unsigned int sz)
20224{
20225 unsigned int Rd = inst.operands[0].reg;
20226 unsigned int Rn = inst.operands[1].reg;
20227 unsigned int Rm = inst.operands[2].reg;
20228
5ee91343 20229 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
20230 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20231 inst.instruction |= LOW4 (Rn) << 16;
20232 inst.instruction |= LOW4 (Rm);
20233 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20234 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20235
20236 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20237 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
20238}
20239
20240static void
20241do_crc32b (void)
20242{
20243 do_crc32_1 (0, 0);
20244}
20245
20246static void
20247do_crc32h (void)
20248{
20249 do_crc32_1 (0, 1);
20250}
20251
20252static void
20253do_crc32w (void)
20254{
20255 do_crc32_1 (0, 2);
20256}
20257
20258static void
20259do_crc32cb (void)
20260{
20261 do_crc32_1 (1, 0);
20262}
20263
20264static void
20265do_crc32ch (void)
20266{
20267 do_crc32_1 (1, 1);
20268}
20269
20270static void
20271do_crc32cw (void)
20272{
20273 do_crc32_1 (1, 2);
20274}
20275
49e8a725
SN
20276static void
20277do_vjcvt (void)
20278{
20279 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20280 _(BAD_FPU));
20281 neon_check_type (2, NS_FD, N_S32, N_F64);
20282 do_vfp_sp_dp_cvt ();
20283 do_vfp_cond_or_thumb ();
20284}
20285
5287ad62
JB
20286\f
20287/* Overall per-instruction processing. */
20288
20289/* We need to be able to fix up arbitrary expressions in some statements.
20290 This is so that we can handle symbols that are an arbitrary distance from
20291 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20292 which returns part of an address in a form which will be valid for
20293 a data instruction. We do this by pushing the expression into a symbol
20294 in the expr_section, and creating a fix for that. */
20295
20296static void
20297fix_new_arm (fragS * frag,
20298 int where,
20299 short int size,
20300 expressionS * exp,
20301 int pc_rel,
20302 int reloc)
20303{
20304 fixS * new_fix;
20305
20306 switch (exp->X_op)
20307 {
20308 case O_constant:
6e7ce2cd
PB
20309 if (pc_rel)
20310 {
20311 /* Create an absolute valued symbol, so we have something to
477330fc
RM
20312 refer to in the object file. Unfortunately for us, gas's
20313 generic expression parsing will already have folded out
20314 any use of .set foo/.type foo %function that may have
20315 been used to set type information of the target location,
20316 that's being specified symbolically. We have to presume
20317 the user knows what they are doing. */
6e7ce2cd
PB
20318 char name[16 + 8];
20319 symbolS *symbol;
20320
20321 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20322
20323 symbol = symbol_find_or_make (name);
20324 S_SET_SEGMENT (symbol, absolute_section);
20325 symbol_set_frag (symbol, &zero_address_frag);
20326 S_SET_VALUE (symbol, exp->X_add_number);
20327 exp->X_op = O_symbol;
20328 exp->X_add_symbol = symbol;
20329 exp->X_add_number = 0;
20330 }
20331 /* FALLTHROUGH */
5287ad62
JB
20332 case O_symbol:
20333 case O_add:
20334 case O_subtract:
21d799b5 20335 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 20336 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20337 break;
20338
20339 default:
21d799b5 20340 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 20341 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
20342 break;
20343 }
20344
20345 /* Mark whether the fix is to a THUMB instruction, or an ARM
20346 instruction. */
20347 new_fix->tc_fix_data = thumb_mode;
20348}
20349
20350/* Create a frg for an instruction requiring relaxation. */
20351static void
20352output_relax_insn (void)
20353{
20354 char * to;
20355 symbolS *sym;
0110f2b8
PB
20356 int offset;
20357
6e1cb1a6
PB
20358 /* The size of the instruction is unknown, so tie the debug info to the
20359 start of the instruction. */
20360 dwarf2_emit_insn (0);
6e1cb1a6 20361
e2b0ab59 20362 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
20363 {
20364 case O_symbol:
e2b0ab59
AV
20365 sym = inst.relocs[0].exp.X_add_symbol;
20366 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20367 break;
20368 case O_constant:
20369 sym = NULL;
e2b0ab59 20370 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
20371 break;
20372 default:
e2b0ab59 20373 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20374 offset = 0;
20375 break;
20376 }
20377 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20378 inst.relax, sym, offset, NULL/*offset, opcode*/);
20379 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20380}
20381
20382/* Write a 32-bit thumb instruction to buf. */
20383static void
20384put_thumb32_insn (char * buf, unsigned long insn)
20385{
20386 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20387 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20388}
20389
b99bd4ef 20390static void
c19d1205 20391output_inst (const char * str)
b99bd4ef 20392{
c19d1205 20393 char * to = NULL;
b99bd4ef 20394
c19d1205 20395 if (inst.error)
b99bd4ef 20396 {
c19d1205 20397 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20398 return;
20399 }
5f4273c7
NC
20400 if (inst.relax)
20401 {
20402 output_relax_insn ();
0110f2b8 20403 return;
5f4273c7 20404 }
c19d1205
ZW
20405 if (inst.size == 0)
20406 return;
b99bd4ef 20407
c19d1205 20408 to = frag_more (inst.size);
8dc2430f
NC
20409 /* PR 9814: Record the thumb mode into the current frag so that we know
20410 what type of NOP padding to use, if necessary. We override any previous
20411 setting so that if the mode has changed then the NOPS that we use will
20412 match the encoding of the last instruction in the frag. */
cd000bff 20413 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20414
20415 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20416 {
9c2799c2 20417 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20418 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20419 }
c19d1205 20420 else if (inst.size > INSN_SIZE)
b99bd4ef 20421 {
9c2799c2 20422 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20423 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20424 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20425 }
c19d1205
ZW
20426 else
20427 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20428
e2b0ab59
AV
20429 int r;
20430 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20431 {
20432 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20433 fix_new_arm (frag_now, to - frag_now->fr_literal,
20434 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20435 inst.relocs[r].type);
20436 }
b99bd4ef 20437
c19d1205 20438 dwarf2_emit_insn (inst.size);
c19d1205 20439}
b99bd4ef 20440
e07e6e58
NC
20441static char *
20442output_it_inst (int cond, int mask, char * to)
20443{
20444 unsigned long instruction = 0xbf00;
20445
20446 mask &= 0xf;
20447 instruction |= mask;
20448 instruction |= cond << 4;
20449
20450 if (to == NULL)
20451 {
20452 to = frag_more (2);
20453#ifdef OBJ_ELF
20454 dwarf2_emit_insn (2);
20455#endif
20456 }
20457
20458 md_number_to_chars (to, instruction, 2);
20459
20460 return to;
20461}
20462
c19d1205
ZW
20463/* Tag values used in struct asm_opcode's tag field. */
20464enum opcode_tag
20465{
20466 OT_unconditional, /* Instruction cannot be conditionalized.
20467 The ARM condition field is still 0xE. */
20468 OT_unconditionalF, /* Instruction cannot be conditionalized
20469 and carries 0xF in its ARM condition field. */
20470 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20471 OT_csuffixF, /* Some forms of the instruction take a scalar
20472 conditional suffix, others place 0xF where the
20473 condition field would be, others take a vector
20474 conditional suffix. */
c19d1205
ZW
20475 OT_cinfix3, /* Instruction takes a conditional infix,
20476 beginning at character index 3. (In
20477 unified mode, it becomes a suffix.) */
088fa78e
KH
20478 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20479 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20480 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20481 character index 3, even in unified mode. Used for
20482 legacy instructions where suffix and infix forms
20483 may be ambiguous. */
c19d1205 20484 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20485 suffix or an infix at character index 3. */
c19d1205
ZW
20486 OT_odd_infix_unc, /* This is the unconditional variant of an
20487 instruction that takes a conditional infix
20488 at an unusual position. In unified mode,
20489 this variant will accept a suffix. */
20490 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20491 are the conditional variants of instructions that
20492 take conditional infixes in unusual positions.
20493 The infix appears at character index
20494 (tag - OT_odd_infix_0). These are not accepted
20495 in unified mode. */
20496};
b99bd4ef 20497
c19d1205
ZW
20498/* Subroutine of md_assemble, responsible for looking up the primary
20499 opcode from the mnemonic the user wrote. STR points to the
20500 beginning of the mnemonic.
20501
20502 This is not simply a hash table lookup, because of conditional
20503 variants. Most instructions have conditional variants, which are
20504 expressed with a _conditional affix_ to the mnemonic. If we were
20505 to encode each conditional variant as a literal string in the opcode
20506 table, it would have approximately 20,000 entries.
20507
20508 Most mnemonics take this affix as a suffix, and in unified syntax,
20509 'most' is upgraded to 'all'. However, in the divided syntax, some
20510 instructions take the affix as an infix, notably the s-variants of
20511 the arithmetic instructions. Of those instructions, all but six
20512 have the infix appear after the third character of the mnemonic.
20513
20514 Accordingly, the algorithm for looking up primary opcodes given
20515 an identifier is:
20516
20517 1. Look up the identifier in the opcode table.
20518 If we find a match, go to step U.
20519
20520 2. Look up the last two characters of the identifier in the
20521 conditions table. If we find a match, look up the first N-2
20522 characters of the identifier in the opcode table. If we
20523 find a match, go to step CE.
20524
20525 3. Look up the fourth and fifth characters of the identifier in
20526 the conditions table. If we find a match, extract those
20527 characters from the identifier, and look up the remaining
20528 characters in the opcode table. If we find a match, go
20529 to step CM.
20530
20531 4. Fail.
20532
20533 U. Examine the tag field of the opcode structure, in case this is
20534 one of the six instructions with its conditional infix in an
20535 unusual place. If it is, the tag tells us where to find the
20536 infix; look it up in the conditions table and set inst.cond
20537 accordingly. Otherwise, this is an unconditional instruction.
20538 Again set inst.cond accordingly. Return the opcode structure.
20539
20540 CE. Examine the tag field to make sure this is an instruction that
20541 should receive a conditional suffix. If it is not, fail.
20542 Otherwise, set inst.cond from the suffix we already looked up,
20543 and return the opcode structure.
20544
20545 CM. Examine the tag field to make sure this is an instruction that
20546 should receive a conditional infix after the third character.
20547 If it is not, fail. Otherwise, undo the edits to the current
20548 line of input and proceed as for case CE. */
20549
20550static const struct asm_opcode *
20551opcode_lookup (char **str)
20552{
20553 char *end, *base;
20554 char *affix;
20555 const struct asm_opcode *opcode;
20556 const struct asm_cond *cond;
e3cb604e 20557 char save[2];
c19d1205
ZW
20558
20559 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20560 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20561 for (base = end = *str; *end != '\0'; end++)
721a8186 20562 if (*end == ' ' || *end == '.')
c19d1205 20563 break;
b99bd4ef 20564
c19d1205 20565 if (end == base)
c921be7d 20566 return NULL;
b99bd4ef 20567
5287ad62 20568 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20569 if (end[0] == '.')
b99bd4ef 20570 {
5287ad62 20571 int offset = 2;
5f4273c7 20572
267d2029 20573 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20574 use. */
267d2029 20575 if (unified_syntax && end[1] == 'w')
c19d1205 20576 inst.size_req = 4;
267d2029 20577 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20578 inst.size_req = 2;
20579 else
477330fc 20580 offset = 0;
5287ad62
JB
20581
20582 inst.vectype.elems = 0;
20583
20584 *str = end + offset;
b99bd4ef 20585
5f4273c7 20586 if (end[offset] == '.')
5287ad62 20587 {
267d2029 20588 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20589 non-unified ARM syntax mode). */
20590 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20591 return NULL;
477330fc 20592 }
5287ad62 20593 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20594 return NULL;
b99bd4ef 20595 }
c19d1205
ZW
20596 else
20597 *str = end;
b99bd4ef 20598
c19d1205 20599 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20600 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20601 end - base);
c19d1205 20602 if (opcode)
b99bd4ef 20603 {
c19d1205
ZW
20604 /* step U */
20605 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20606 {
c19d1205
ZW
20607 inst.cond = COND_ALWAYS;
20608 return opcode;
b99bd4ef 20609 }
b99bd4ef 20610
278df34e 20611 if (warn_on_deprecated && unified_syntax)
5c3696f8 20612 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20613 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20614 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20615 gas_assert (cond);
b99bd4ef 20616
c19d1205
ZW
20617 inst.cond = cond->value;
20618 return opcode;
20619 }
5ee91343
AV
20620 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20621 {
20622 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20623 */
20624 if (end - base < 2)
20625 return NULL;
20626 affix = end - 1;
20627 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20628 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20629 affix - base);
20630 /* If this opcode can not be vector predicated then don't accept it with a
20631 vector predication code. */
20632 if (opcode && !opcode->mayBeVecPred)
20633 opcode = NULL;
20634 }
20635 if (!opcode || !cond)
20636 {
20637 /* Cannot have a conditional suffix on a mnemonic of less than two
20638 characters. */
20639 if (end - base < 3)
20640 return NULL;
b99bd4ef 20641
5ee91343
AV
20642 /* Look for suffixed mnemonic. */
20643 affix = end - 2;
20644 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20645 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20646 affix - base);
20647 }
b99bd4ef 20648
c19d1205
ZW
20649 if (opcode && cond)
20650 {
20651 /* step CE */
20652 switch (opcode->tag)
20653 {
e3cb604e
PB
20654 case OT_cinfix3_legacy:
20655 /* Ignore conditional suffixes matched on infix only mnemonics. */
20656 break;
20657
c19d1205 20658 case OT_cinfix3:
088fa78e 20659 case OT_cinfix3_deprecated:
c19d1205
ZW
20660 case OT_odd_infix_unc:
20661 if (!unified_syntax)
0198d5e6 20662 return NULL;
1a0670f3 20663 /* Fall through. */
c19d1205
ZW
20664
20665 case OT_csuffix:
477330fc 20666 case OT_csuffixF:
c19d1205
ZW
20667 case OT_csuf_or_in3:
20668 inst.cond = cond->value;
20669 return opcode;
20670
20671 case OT_unconditional:
20672 case OT_unconditionalF:
dfa9f0d5 20673 if (thumb_mode)
c921be7d 20674 inst.cond = cond->value;
dfa9f0d5
PB
20675 else
20676 {
c921be7d 20677 /* Delayed diagnostic. */
dfa9f0d5
PB
20678 inst.error = BAD_COND;
20679 inst.cond = COND_ALWAYS;
20680 }
c19d1205 20681 return opcode;
b99bd4ef 20682
c19d1205 20683 default:
c921be7d 20684 return NULL;
c19d1205
ZW
20685 }
20686 }
b99bd4ef 20687
c19d1205
ZW
20688 /* Cannot have a usual-position infix on a mnemonic of less than
20689 six characters (five would be a suffix). */
20690 if (end - base < 6)
c921be7d 20691 return NULL;
b99bd4ef 20692
c19d1205
ZW
20693 /* Look for infixed mnemonic in the usual position. */
20694 affix = base + 3;
21d799b5 20695 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 20696 if (!cond)
c921be7d 20697 return NULL;
e3cb604e
PB
20698
20699 memcpy (save, affix, 2);
20700 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 20701 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20702 (end - base) - 2);
e3cb604e
PB
20703 memmove (affix + 2, affix, (end - affix) - 2);
20704 memcpy (affix, save, 2);
20705
088fa78e
KH
20706 if (opcode
20707 && (opcode->tag == OT_cinfix3
20708 || opcode->tag == OT_cinfix3_deprecated
20709 || opcode->tag == OT_csuf_or_in3
20710 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 20711 {
c921be7d 20712 /* Step CM. */
278df34e 20713 if (warn_on_deprecated && unified_syntax
088fa78e
KH
20714 && (opcode->tag == OT_cinfix3
20715 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 20716 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
20717
20718 inst.cond = cond->value;
20719 return opcode;
b99bd4ef
NC
20720 }
20721
c921be7d 20722 return NULL;
b99bd4ef
NC
20723}
20724
e07e6e58
NC
20725/* This function generates an initial IT instruction, leaving its block
20726 virtually open for the new instructions. Eventually,
5ee91343 20727 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
20728 a new instruction needs to be included in the IT block.
20729 Finally, the block is closed with close_automatic_it_block ().
20730 The block closure can be requested either from md_assemble (),
20731 a tencode (), or due to a label hook. */
20732
20733static void
20734new_automatic_it_block (int cond)
20735{
5ee91343
AV
20736 now_pred.state = AUTOMATIC_PRED_BLOCK;
20737 now_pred.mask = 0x18;
20738 now_pred.cc = cond;
20739 now_pred.block_length = 1;
cd000bff 20740 mapping_state (MAP_THUMB);
5ee91343
AV
20741 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20742 now_pred.warn_deprecated = FALSE;
20743 now_pred.insn_cond = TRUE;
e07e6e58
NC
20744}
20745
20746/* Close an automatic IT block.
20747 See comments in new_automatic_it_block (). */
20748
20749static void
20750close_automatic_it_block (void)
20751{
5ee91343
AV
20752 now_pred.mask = 0x10;
20753 now_pred.block_length = 0;
e07e6e58
NC
20754}
20755
20756/* Update the mask of the current automatically-generated IT
20757 instruction. See comments in new_automatic_it_block (). */
20758
20759static void
5ee91343 20760now_pred_add_mask (int cond)
e07e6e58
NC
20761{
20762#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20763#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 20764 | ((bitvalue) << (nbit)))
e07e6e58 20765 const int resulting_bit = (cond & 1);
c921be7d 20766
5ee91343
AV
20767 now_pred.mask &= 0xf;
20768 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20769 resulting_bit,
5ee91343
AV
20770 (5 - now_pred.block_length));
20771 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20772 1,
5ee91343
AV
20773 ((5 - now_pred.block_length) - 1));
20774 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
20775
20776#undef CLEAR_BIT
20777#undef SET_BIT_VALUE
e07e6e58
NC
20778}
20779
20780/* The IT blocks handling machinery is accessed through the these functions:
20781 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
20782 set_pred_insn_type () optional, from the tencode functions
20783 set_pred_insn_type_last () ditto
20784 in_pred_block () ditto
e07e6e58 20785 it_fsm_post_encode () from md_assemble ()
33eaf5de 20786 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
20787
20788 Rationale:
20789 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
20790 initializing the IT insn type with a generic initial value depending
20791 on the inst.condition.
e07e6e58 20792 2) During the tencode function, two things may happen:
477330fc 20793 a) The tencode function overrides the IT insn type by
5ee91343
AV
20794 calling either set_pred_insn_type (type) or
20795 set_pred_insn_type_last ().
477330fc 20796 b) The tencode function queries the IT block state by
5ee91343 20797 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 20798
5ee91343
AV
20799 Both set_pred_insn_type and in_pred_block run the internal FSM state
20800 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
20801 type may incur in an invalid state (exiting the function),
20802 and b) querying the state requires the FSM to be updated.
20803 Specifically we want to avoid creating an IT block for conditional
20804 branches, so it_fsm_pre_encode is actually a guess and we can't
20805 determine whether an IT block is required until the tencode () routine
20806 has decided what type of instruction this actually it.
5ee91343
AV
20807 Because of this, if set_pred_insn_type and in_pred_block have to be
20808 used, set_pred_insn_type has to be called first.
477330fc 20809
5ee91343
AV
20810 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20811 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
20812 When a tencode () routine encodes an instruction that can be
20813 either outside an IT block, or, in the case of being inside, has to be
5ee91343 20814 the last one, set_pred_insn_type_last () will determine the proper
477330fc 20815 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 20816 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
20817 for covering other cases.
20818
5ee91343
AV
20819 Calling handle_pred_state () may not transition the IT block state to
20820 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 20821 still queried. Instead, if the FSM determines that the state should
5ee91343 20822 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
20823 after the tencode () function: that's what it_fsm_post_encode () does.
20824
5ee91343 20825 Since in_pred_block () calls the state handling function to get an
477330fc
RM
20826 updated state, an error may occur (due to invalid insns combination).
20827 In that case, inst.error is set.
20828 Therefore, inst.error has to be checked after the execution of
20829 the tencode () routine.
e07e6e58
NC
20830
20831 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 20832 any pending state change (if any) that didn't take place in
5ee91343 20833 handle_pred_state () as explained above. */
e07e6e58
NC
20834
20835static void
20836it_fsm_pre_encode (void)
20837{
20838 if (inst.cond != COND_ALWAYS)
5ee91343 20839 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 20840 else
5ee91343 20841 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 20842
5ee91343 20843 now_pred.state_handled = 0;
e07e6e58
NC
20844}
20845
20846/* IT state FSM handling function. */
5ee91343
AV
20847/* MVE instructions and non-MVE instructions are handled differently because of
20848 the introduction of VPT blocks.
20849 Specifications say that any non-MVE instruction inside a VPT block is
20850 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20851 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 20852 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
20853 The error messages provided depending on the different combinations possible
20854 are described in the cases below:
20855 For 'most' MVE instructions:
20856 1) In an IT block, with an IT code: syntax error
20857 2) In an IT block, with a VPT code: error: must be in a VPT block
20858 3) In an IT block, with no code: warning: UNPREDICTABLE
20859 4) In a VPT block, with an IT code: syntax error
20860 5) In a VPT block, with a VPT code: OK!
20861 6) In a VPT block, with no code: error: missing code
20862 7) Outside a pred block, with an IT code: error: syntax error
20863 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20864 9) Outside a pred block, with no code: OK!
20865 For non-MVE instructions:
20866 10) In an IT block, with an IT code: OK!
20867 11) In an IT block, with a VPT code: syntax error
20868 12) In an IT block, with no code: error: missing code
20869 13) In a VPT block, with an IT code: error: should be in an IT block
20870 14) In a VPT block, with a VPT code: syntax error
20871 15) In a VPT block, with no code: UNPREDICTABLE
20872 16) Outside a pred block, with an IT code: error: should be in an IT block
20873 17) Outside a pred block, with a VPT code: syntax error
20874 18) Outside a pred block, with no code: OK!
20875 */
20876
e07e6e58
NC
20877
20878static int
5ee91343 20879handle_pred_state (void)
e07e6e58 20880{
5ee91343
AV
20881 now_pred.state_handled = 1;
20882 now_pred.insn_cond = FALSE;
e07e6e58 20883
5ee91343 20884 switch (now_pred.state)
e07e6e58 20885 {
5ee91343
AV
20886 case OUTSIDE_PRED_BLOCK:
20887 switch (inst.pred_insn_type)
e07e6e58 20888 {
35c228db 20889 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20890 case MVE_OUTSIDE_PRED_INSN:
20891 if (inst.cond < COND_ALWAYS)
20892 {
20893 /* Case 7: Outside a pred block, with an IT code: error: syntax
20894 error. */
20895 inst.error = BAD_SYNTAX;
20896 return FAIL;
20897 }
20898 /* Case 9: Outside a pred block, with no code: OK! */
20899 break;
20900 case OUTSIDE_PRED_INSN:
20901 if (inst.cond > COND_ALWAYS)
20902 {
20903 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20904 */
20905 inst.error = BAD_SYNTAX;
20906 return FAIL;
20907 }
20908 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
20909 break;
20910
5ee91343
AV
20911 case INSIDE_VPT_INSN:
20912 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20913 a VPT block. */
20914 inst.error = BAD_OUT_VPT;
20915 return FAIL;
20916
e07e6e58
NC
20917 case INSIDE_IT_INSN:
20918 case INSIDE_IT_LAST_INSN:
5ee91343 20919 if (inst.cond < COND_ALWAYS)
e07e6e58 20920 {
5ee91343
AV
20921 /* Case 16: Outside a pred block, with an IT code: error: should
20922 be in an IT block. */
20923 if (thumb_mode == 0)
e07e6e58 20924 {
5ee91343
AV
20925 if (unified_syntax
20926 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20927 as_tsktsk (_("Warning: conditional outside an IT block"\
20928 " for Thumb."));
e07e6e58
NC
20929 }
20930 else
20931 {
5ee91343
AV
20932 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20933 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20934 {
20935 /* Automatically generate the IT instruction. */
20936 new_automatic_it_block (inst.cond);
20937 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20938 close_automatic_it_block ();
20939 }
20940 else
20941 {
20942 inst.error = BAD_OUT_IT;
20943 return FAIL;
20944 }
e07e6e58 20945 }
5ee91343 20946 break;
e07e6e58 20947 }
5ee91343
AV
20948 else if (inst.cond > COND_ALWAYS)
20949 {
20950 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20951 */
20952 inst.error = BAD_SYNTAX;
20953 return FAIL;
20954 }
20955 else
20956 gas_assert (0);
e07e6e58
NC
20957 case IF_INSIDE_IT_LAST_INSN:
20958 case NEUTRAL_IT_INSN:
20959 break;
20960
5ee91343
AV
20961 case VPT_INSN:
20962 if (inst.cond != COND_ALWAYS)
20963 first_error (BAD_SYNTAX);
20964 now_pred.state = MANUAL_PRED_BLOCK;
20965 now_pred.block_length = 0;
20966 now_pred.type = VECTOR_PRED;
20967 now_pred.cc = 0;
20968 break;
e07e6e58 20969 case IT_INSN:
5ee91343
AV
20970 now_pred.state = MANUAL_PRED_BLOCK;
20971 now_pred.block_length = 0;
20972 now_pred.type = SCALAR_PRED;
e07e6e58
NC
20973 break;
20974 }
20975 break;
20976
5ee91343 20977 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
20978 /* Three things may happen now:
20979 a) We should increment current it block size;
20980 b) We should close current it block (closing insn or 4 insns);
20981 c) We should close current it block and start a new one (due
20982 to incompatible conditions or
20983 4 insns-length block reached). */
20984
5ee91343 20985 switch (inst.pred_insn_type)
e07e6e58 20986 {
5ee91343
AV
20987 case INSIDE_VPT_INSN:
20988 case VPT_INSN:
35c228db 20989 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20990 case MVE_OUTSIDE_PRED_INSN:
20991 gas_assert (0);
20992 case OUTSIDE_PRED_INSN:
2b0f3761 20993 /* The closure of the block shall happen immediately,
5ee91343 20994 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
20995 force_automatic_it_block_close ();
20996 break;
20997
20998 case INSIDE_IT_INSN:
20999 case INSIDE_IT_LAST_INSN:
21000 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21001 now_pred.block_length++;
e07e6e58 21002
5ee91343
AV
21003 if (now_pred.block_length > 4
21004 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21005 {
21006 force_automatic_it_block_close ();
5ee91343 21007 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21008 new_automatic_it_block (inst.cond);
21009 }
21010 else
21011 {
5ee91343
AV
21012 now_pred.insn_cond = TRUE;
21013 now_pred_add_mask (inst.cond);
e07e6e58
NC
21014 }
21015
5ee91343
AV
21016 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21017 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21018 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21019 close_automatic_it_block ();
21020 break;
21021
21022 case NEUTRAL_IT_INSN:
5ee91343
AV
21023 now_pred.block_length++;
21024 now_pred.insn_cond = TRUE;
e07e6e58 21025
5ee91343 21026 if (now_pred.block_length > 4)
e07e6e58
NC
21027 force_automatic_it_block_close ();
21028 else
5ee91343 21029 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21030 break;
21031
21032 case IT_INSN:
21033 close_automatic_it_block ();
5ee91343 21034 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21035 break;
21036 }
21037 break;
21038
5ee91343 21039 case MANUAL_PRED_BLOCK:
e07e6e58 21040 {
5ee91343
AV
21041 int cond, is_last;
21042 if (now_pred.type == SCALAR_PRED)
e07e6e58 21043 {
5ee91343
AV
21044 /* Check conditional suffixes. */
21045 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21046 now_pred.mask <<= 1;
21047 now_pred.mask &= 0x1f;
21048 is_last = (now_pred.mask == 0x10);
21049 }
21050 else
21051 {
21052 now_pred.cc ^= (now_pred.mask >> 4);
21053 cond = now_pred.cc + 0xf;
21054 now_pred.mask <<= 1;
21055 now_pred.mask &= 0x1f;
21056 is_last = now_pred.mask == 0x10;
21057 }
21058 now_pred.insn_cond = TRUE;
e07e6e58 21059
5ee91343
AV
21060 switch (inst.pred_insn_type)
21061 {
21062 case OUTSIDE_PRED_INSN:
21063 if (now_pred.type == SCALAR_PRED)
21064 {
21065 if (inst.cond == COND_ALWAYS)
21066 {
21067 /* Case 12: In an IT block, with no code: error: missing
21068 code. */
21069 inst.error = BAD_NOT_IT;
21070 return FAIL;
21071 }
21072 else if (inst.cond > COND_ALWAYS)
21073 {
21074 /* Case 11: In an IT block, with a VPT code: syntax error.
21075 */
21076 inst.error = BAD_SYNTAX;
21077 return FAIL;
21078 }
21079 else if (thumb_mode)
21080 {
21081 /* This is for some special cases where a non-MVE
21082 instruction is not allowed in an IT block, such as cbz,
21083 but are put into one with a condition code.
21084 You could argue this should be a syntax error, but we
21085 gave the 'not allowed in IT block' diagnostic in the
21086 past so we will keep doing so. */
21087 inst.error = BAD_NOT_IT;
21088 return FAIL;
21089 }
21090 break;
21091 }
21092 else
21093 {
21094 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21095 as_tsktsk (MVE_NOT_VPT);
21096 return SUCCESS;
21097 }
21098 case MVE_OUTSIDE_PRED_INSN:
21099 if (now_pred.type == SCALAR_PRED)
21100 {
21101 if (inst.cond == COND_ALWAYS)
21102 {
21103 /* Case 3: In an IT block, with no code: warning:
21104 UNPREDICTABLE. */
21105 as_tsktsk (MVE_NOT_IT);
21106 return SUCCESS;
21107 }
21108 else if (inst.cond < COND_ALWAYS)
21109 {
21110 /* Case 1: In an IT block, with an IT code: syntax error.
21111 */
21112 inst.error = BAD_SYNTAX;
21113 return FAIL;
21114 }
21115 else
21116 gas_assert (0);
21117 }
21118 else
21119 {
21120 if (inst.cond < COND_ALWAYS)
21121 {
21122 /* Case 4: In a VPT block, with an IT code: syntax error.
21123 */
21124 inst.error = BAD_SYNTAX;
21125 return FAIL;
21126 }
21127 else if (inst.cond == COND_ALWAYS)
21128 {
21129 /* Case 6: In a VPT block, with no code: error: missing
21130 code. */
21131 inst.error = BAD_NOT_VPT;
21132 return FAIL;
21133 }
21134 else
21135 {
21136 gas_assert (0);
21137 }
21138 }
35c228db
AV
21139 case MVE_UNPREDICABLE_INSN:
21140 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21141 return SUCCESS;
e07e6e58 21142 case INSIDE_IT_INSN:
5ee91343 21143 if (inst.cond > COND_ALWAYS)
e07e6e58 21144 {
5ee91343
AV
21145 /* Case 11: In an IT block, with a VPT code: syntax error. */
21146 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21147 inst.error = BAD_SYNTAX;
21148 return FAIL;
21149 }
21150 else if (now_pred.type == SCALAR_PRED)
21151 {
21152 /* Case 10: In an IT block, with an IT code: OK! */
21153 if (cond != inst.cond)
21154 {
21155 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21156 BAD_VPT_COND;
21157 return FAIL;
21158 }
21159 }
21160 else
21161 {
21162 /* Case 13: In a VPT block, with an IT code: error: should be
21163 in an IT block. */
21164 inst.error = BAD_OUT_IT;
e07e6e58
NC
21165 return FAIL;
21166 }
21167 break;
21168
5ee91343
AV
21169 case INSIDE_VPT_INSN:
21170 if (now_pred.type == SCALAR_PRED)
21171 {
21172 /* Case 2: In an IT block, with a VPT code: error: must be in a
21173 VPT block. */
21174 inst.error = BAD_OUT_VPT;
21175 return FAIL;
21176 }
21177 /* Case 5: In a VPT block, with a VPT code: OK! */
21178 else if (cond != inst.cond)
21179 {
21180 inst.error = BAD_VPT_COND;
21181 return FAIL;
21182 }
21183 break;
e07e6e58
NC
21184 case INSIDE_IT_LAST_INSN:
21185 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21186 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21187 {
21188 /* Case 4: In a VPT block, with an IT code: syntax error. */
21189 /* Case 11: In an IT block, with a VPT code: syntax error. */
21190 inst.error = BAD_SYNTAX;
21191 return FAIL;
21192 }
21193 else if (cond != inst.cond)
e07e6e58
NC
21194 {
21195 inst.error = BAD_IT_COND;
21196 return FAIL;
21197 }
21198 if (!is_last)
21199 {
21200 inst.error = BAD_BRANCH;
21201 return FAIL;
21202 }
21203 break;
21204
21205 case NEUTRAL_IT_INSN:
5ee91343
AV
21206 /* The BKPT instruction is unconditional even in a IT or VPT
21207 block. */
e07e6e58
NC
21208 break;
21209
21210 case IT_INSN:
5ee91343
AV
21211 if (now_pred.type == SCALAR_PRED)
21212 {
21213 inst.error = BAD_IT_IT;
21214 return FAIL;
21215 }
21216 /* fall through. */
21217 case VPT_INSN:
21218 if (inst.cond == COND_ALWAYS)
21219 {
21220 /* Executing a VPT/VPST instruction inside an IT block or a
21221 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21222 */
21223 if (now_pred.type == SCALAR_PRED)
21224 as_tsktsk (MVE_NOT_IT);
21225 else
21226 as_tsktsk (MVE_NOT_VPT);
21227 return SUCCESS;
21228 }
21229 else
21230 {
21231 /* VPT/VPST do not accept condition codes. */
21232 inst.error = BAD_SYNTAX;
21233 return FAIL;
21234 }
e07e6e58 21235 }
5ee91343 21236 }
e07e6e58
NC
21237 break;
21238 }
21239
21240 return SUCCESS;
21241}
21242
5a01bb1d
MGD
21243struct depr_insn_mask
21244{
21245 unsigned long pattern;
21246 unsigned long mask;
21247 const char* description;
21248};
21249
21250/* List of 16-bit instruction patterns deprecated in an IT block in
21251 ARMv8. */
21252static const struct depr_insn_mask depr_it_insns[] = {
21253 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21254 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21255 { 0xa000, 0xb800, N_("ADR") },
21256 { 0x4800, 0xf800, N_("Literal loads") },
21257 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21258 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
21259 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21260 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21261 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
21262 { 0, 0, NULL }
21263};
21264
e07e6e58
NC
21265static void
21266it_fsm_post_encode (void)
21267{
21268 int is_last;
21269
5ee91343
AV
21270 if (!now_pred.state_handled)
21271 handle_pred_state ();
e07e6e58 21272
5ee91343
AV
21273 if (now_pred.insn_cond
21274 && !now_pred.warn_deprecated
5a01bb1d 21275 && warn_on_deprecated
df9909b8
TP
21276 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
21278 {
21279 if (inst.instruction >= 0x10000)
21280 {
5c3696f8 21281 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 21282 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 21283 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21284 }
21285 else
21286 {
21287 const struct depr_insn_mask *p = depr_it_insns;
21288
21289 while (p->mask != 0)
21290 {
21291 if ((inst.instruction & p->mask) == p->pattern)
21292 {
df9909b8
TP
21293 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21294 "instructions of the following class are "
21295 "performance deprecated in ARMv8-A and "
21296 "ARMv8-R: %s"), p->description);
5ee91343 21297 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21298 break;
21299 }
21300
21301 ++p;
21302 }
21303 }
21304
5ee91343 21305 if (now_pred.block_length > 1)
5a01bb1d 21306 {
5c3696f8 21307 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
21308 "instruction are performance deprecated in ARMv8-A and "
21309 "ARMv8-R"));
5ee91343 21310 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
21311 }
21312 }
21313
5ee91343
AV
21314 is_last = (now_pred.mask == 0x10);
21315 if (is_last)
21316 {
21317 now_pred.state = OUTSIDE_PRED_BLOCK;
21318 now_pred.mask = 0;
21319 }
e07e6e58
NC
21320}
21321
21322static void
21323force_automatic_it_block_close (void)
21324{
5ee91343 21325 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
21326 {
21327 close_automatic_it_block ();
5ee91343
AV
21328 now_pred.state = OUTSIDE_PRED_BLOCK;
21329 now_pred.mask = 0;
e07e6e58
NC
21330 }
21331}
21332
21333static int
5ee91343 21334in_pred_block (void)
e07e6e58 21335{
5ee91343
AV
21336 if (!now_pred.state_handled)
21337 handle_pred_state ();
e07e6e58 21338
5ee91343 21339 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
21340}
21341
ff8646ee
TP
21342/* Whether OPCODE only has T32 encoding. Since this function is only used by
21343 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21344 here, hence the "known" in the function name. */
fc289b0a
TP
21345
21346static bfd_boolean
ff8646ee 21347known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
21348{
21349 /* Original Thumb-1 wide instruction. */
21350 if (opcode->tencode == do_t_blx
21351 || opcode->tencode == do_t_branch23
21352 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21353 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21354 return TRUE;
21355
16a1fa25
TP
21356 /* Wide-only instruction added to ARMv8-M Baseline. */
21357 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
21358 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21359 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21360 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21361 return TRUE;
21362
21363 return FALSE;
21364}
21365
21366/* Whether wide instruction variant can be used if available for a valid OPCODE
21367 in ARCH. */
21368
21369static bfd_boolean
21370t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21371{
21372 if (known_t32_only_insn (opcode))
21373 return TRUE;
21374
21375 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21376 of variant T3 of B.W is checked in do_t_branch. */
21377 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21378 && opcode->tencode == do_t_branch)
21379 return TRUE;
21380
bada4342
JW
21381 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21382 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21383 && opcode->tencode == do_t_mov_cmp
21384 /* Make sure CMP instruction is not affected. */
21385 && opcode->aencode == do_mov)
21386 return TRUE;
21387
ff8646ee
TP
21388 /* Wide instruction variants of all instructions with narrow *and* wide
21389 variants become available with ARMv6t2. Other opcodes are either
21390 narrow-only or wide-only and are thus available if OPCODE is valid. */
21391 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21392 return TRUE;
21393
21394 /* OPCODE with narrow only instruction variant or wide variant not
21395 available. */
fc289b0a
TP
21396 return FALSE;
21397}
21398
c19d1205
ZW
21399void
21400md_assemble (char *str)
b99bd4ef 21401{
c19d1205
ZW
21402 char *p = str;
21403 const struct asm_opcode * opcode;
b99bd4ef 21404
c19d1205
ZW
21405 /* Align the previous label if needed. */
21406 if (last_label_seen != NULL)
b99bd4ef 21407 {
c19d1205
ZW
21408 symbol_set_frag (last_label_seen, frag_now);
21409 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21410 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21411 }
21412
c19d1205 21413 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21414 int r;
21415 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21416 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21417
c19d1205
ZW
21418 opcode = opcode_lookup (&p);
21419 if (!opcode)
b99bd4ef 21420 {
c19d1205 21421 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21422 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21423 if (! create_register_alias (str, p)
477330fc 21424 && ! create_neon_reg_alias (str, p))
c19d1205 21425 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21426
b99bd4ef
NC
21427 return;
21428 }
21429
278df34e 21430 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21431 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21432
037e8744
JB
21433 /* The value which unconditional instructions should have in place of the
21434 condition field. */
21435 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21436
c19d1205 21437 if (thumb_mode)
b99bd4ef 21438 {
e74cfd16 21439 arm_feature_set variant;
8f06b2d8
PB
21440
21441 variant = cpu_variant;
21442 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21443 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21444 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21445 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21446 if (!opcode->tvariant
21447 || (thumb_mode == 1
21448 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21449 {
173205ca
TP
21450 if (opcode->tencode == do_t_swi)
21451 as_bad (_("SVC is not permitted on this architecture"));
21452 else
21453 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21454 return;
21455 }
c19d1205
ZW
21456 if (inst.cond != COND_ALWAYS && !unified_syntax
21457 && opcode->tencode != do_t_branch)
b99bd4ef 21458 {
c19d1205 21459 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21460 return;
21461 }
21462
fc289b0a
TP
21463 /* Two things are addressed here:
21464 1) Implicit require narrow instructions on Thumb-1.
21465 This avoids relaxation accidentally introducing Thumb-2
21466 instructions.
21467 2) Reject wide instructions in non Thumb-2 cores.
21468
21469 Only instructions with narrow and wide variants need to be handled
21470 but selecting all non wide-only instructions is easier. */
21471 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21472 && !t32_insn_ok (variant, opcode))
076d447c 21473 {
fc289b0a
TP
21474 if (inst.size_req == 0)
21475 inst.size_req = 2;
21476 else if (inst.size_req == 4)
752d5da4 21477 {
ff8646ee
TP
21478 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21479 as_bad (_("selected processor does not support 32bit wide "
21480 "variant of instruction `%s'"), str);
21481 else
21482 as_bad (_("selected processor does not support `%s' in "
21483 "Thumb-2 mode"), str);
fc289b0a 21484 return;
752d5da4 21485 }
076d447c
PB
21486 }
21487
c19d1205
ZW
21488 inst.instruction = opcode->tvalue;
21489
5be8be5d 21490 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21491 {
5ee91343 21492 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21493 it. */
21494 it_fsm_pre_encode ();
c19d1205 21495
477330fc 21496 opcode->tencode ();
e07e6e58 21497
477330fc
RM
21498 it_fsm_post_encode ();
21499 }
e27ec89e 21500
0110f2b8 21501 if (!(inst.error || inst.relax))
b99bd4ef 21502 {
9c2799c2 21503 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21504 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21505 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21506 {
c19d1205 21507 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21508 return;
21509 }
21510 }
076d447c
PB
21511
21512 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21513 instruction. */
9c2799c2 21514 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21515
e74cfd16
PB
21516 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21517 *opcode->tvariant);
ee065d83 21518 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21519 set those bits when Thumb-2 32-bit instructions are seen. The impact
21520 of relaxable instructions will be considered later after we finish all
21521 relaxation. */
ff8646ee
TP
21522 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21523 variant = arm_arch_none;
21524 else
21525 variant = cpu_variant;
21526 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21527 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21528 arm_ext_v6t2);
cd000bff 21529
88714cb8
DG
21530 check_neon_suffixes;
21531
cd000bff 21532 if (!inst.error)
c877a2f2
NC
21533 {
21534 mapping_state (MAP_THUMB);
21535 }
c19d1205 21536 }
3e9e4fcf 21537 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21538 {
845b51d6
PB
21539 bfd_boolean is_bx;
21540
21541 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21542 is_bx = (opcode->aencode == do_bx);
21543
c19d1205 21544 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21545 if (!(is_bx && fix_v4bx)
21546 && !(opcode->avariant &&
21547 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21548 {
84b52b66 21549 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21550 return;
b99bd4ef 21551 }
c19d1205 21552 if (inst.size_req)
b99bd4ef 21553 {
c19d1205
ZW
21554 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21555 return;
b99bd4ef
NC
21556 }
21557
c19d1205
ZW
21558 inst.instruction = opcode->avalue;
21559 if (opcode->tag == OT_unconditionalF)
eff0bc54 21560 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21561 else
21562 inst.instruction |= inst.cond << 28;
21563 inst.size = INSN_SIZE;
5be8be5d 21564 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21565 {
21566 it_fsm_pre_encode ();
21567 opcode->aencode ();
21568 it_fsm_post_encode ();
21569 }
ee065d83 21570 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21571 on a hypothetical non-thumb v5 core. */
845b51d6 21572 if (is_bx)
e74cfd16 21573 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21574 else
e74cfd16
PB
21575 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21576 *opcode->avariant);
88714cb8
DG
21577
21578 check_neon_suffixes;
21579
cd000bff 21580 if (!inst.error)
c877a2f2
NC
21581 {
21582 mapping_state (MAP_ARM);
21583 }
b99bd4ef 21584 }
3e9e4fcf
JB
21585 else
21586 {
21587 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21588 "-- `%s'"), str);
21589 return;
21590 }
c19d1205
ZW
21591 output_inst (str);
21592}
b99bd4ef 21593
e07e6e58 21594static void
5ee91343 21595check_pred_blocks_finished (void)
e07e6e58
NC
21596{
21597#ifdef OBJ_ELF
21598 asection *sect;
21599
21600 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21601 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21602 == MANUAL_PRED_BLOCK)
e07e6e58 21603 {
5ee91343
AV
21604 if (now_pred.type == SCALAR_PRED)
21605 as_warn (_("section '%s' finished with an open IT block."),
21606 sect->name);
21607 else
21608 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21609 sect->name);
e07e6e58
NC
21610 }
21611#else
5ee91343
AV
21612 if (now_pred.state == MANUAL_PRED_BLOCK)
21613 {
21614 if (now_pred.type == SCALAR_PRED)
21615 as_warn (_("file finished with an open IT block."));
21616 else
21617 as_warn (_("file finished with an open VPT/VPST block."));
21618 }
e07e6e58
NC
21619#endif
21620}
21621
c19d1205
ZW
21622/* Various frobbings of labels and their addresses. */
21623
21624void
21625arm_start_line_hook (void)
21626{
21627 last_label_seen = NULL;
b99bd4ef
NC
21628}
21629
c19d1205
ZW
21630void
21631arm_frob_label (symbolS * sym)
b99bd4ef 21632{
c19d1205 21633 last_label_seen = sym;
b99bd4ef 21634
c19d1205 21635 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21636
c19d1205
ZW
21637#if defined OBJ_COFF || defined OBJ_ELF
21638 ARM_SET_INTERWORK (sym, support_interwork);
21639#endif
b99bd4ef 21640
e07e6e58
NC
21641 force_automatic_it_block_close ();
21642
5f4273c7 21643 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21644 as Thumb functions. This is because these labels, whilst
21645 they exist inside Thumb code, are not the entry points for
21646 possible ARM->Thumb calls. Also, these labels can be used
21647 as part of a computed goto or switch statement. eg gcc
21648 can generate code that looks like this:
b99bd4ef 21649
c19d1205
ZW
21650 ldr r2, [pc, .Laaa]
21651 lsl r3, r3, #2
21652 ldr r2, [r3, r2]
21653 mov pc, r2
b99bd4ef 21654
c19d1205
ZW
21655 .Lbbb: .word .Lxxx
21656 .Lccc: .word .Lyyy
21657 ..etc...
21658 .Laaa: .word Lbbb
b99bd4ef 21659
c19d1205
ZW
21660 The first instruction loads the address of the jump table.
21661 The second instruction converts a table index into a byte offset.
21662 The third instruction gets the jump address out of the table.
21663 The fourth instruction performs the jump.
b99bd4ef 21664
c19d1205
ZW
21665 If the address stored at .Laaa is that of a symbol which has the
21666 Thumb_Func bit set, then the linker will arrange for this address
21667 to have the bottom bit set, which in turn would mean that the
21668 address computation performed by the third instruction would end
21669 up with the bottom bit set. Since the ARM is capable of unaligned
21670 word loads, the instruction would then load the incorrect address
21671 out of the jump table, and chaos would ensue. */
21672 if (label_is_thumb_function_name
21673 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21674 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 21675 {
c19d1205
ZW
21676 /* When the address of a Thumb function is taken the bottom
21677 bit of that address should be set. This will allow
21678 interworking between Arm and Thumb functions to work
21679 correctly. */
b99bd4ef 21680
c19d1205 21681 THUMB_SET_FUNC (sym, 1);
b99bd4ef 21682
c19d1205 21683 label_is_thumb_function_name = FALSE;
b99bd4ef 21684 }
07a53e5c 21685
07a53e5c 21686 dwarf2_emit_label (sym);
b99bd4ef
NC
21687}
21688
c921be7d 21689bfd_boolean
c19d1205 21690arm_data_in_code (void)
b99bd4ef 21691{
c19d1205 21692 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 21693 {
c19d1205
ZW
21694 *input_line_pointer = '/';
21695 input_line_pointer += 5;
21696 *input_line_pointer = 0;
c921be7d 21697 return TRUE;
b99bd4ef
NC
21698 }
21699
c921be7d 21700 return FALSE;
b99bd4ef
NC
21701}
21702
c19d1205
ZW
21703char *
21704arm_canonicalize_symbol_name (char * name)
b99bd4ef 21705{
c19d1205 21706 int len;
b99bd4ef 21707
c19d1205
ZW
21708 if (thumb_mode && (len = strlen (name)) > 5
21709 && streq (name + len - 5, "/data"))
21710 *(name + len - 5) = 0;
b99bd4ef 21711
c19d1205 21712 return name;
b99bd4ef 21713}
c19d1205
ZW
21714\f
21715/* Table of all register names defined by default. The user can
21716 define additional names with .req. Note that all register names
21717 should appear in both upper and lowercase variants. Some registers
21718 also have mixed-case names. */
b99bd4ef 21719
dcbf9037 21720#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 21721#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 21722#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
21723#define REGSET(p,t) \
21724 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21725 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21726 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21727 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
21728#define REGSETH(p,t) \
21729 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21730 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21731 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21732 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21733#define REGSET2(p,t) \
21734 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21735 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21736 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21737 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
21738#define SPLRBANK(base,bank,t) \
21739 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21740 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21741 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21742 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21743 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21744 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 21745
c19d1205 21746static const struct reg_entry reg_names[] =
7ed4c4c5 21747{
c19d1205
ZW
21748 /* ARM integer registers. */
21749 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 21750
c19d1205
ZW
21751 /* ATPCS synonyms. */
21752 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21753 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21754 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 21755
c19d1205
ZW
21756 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21757 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21758 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 21759
c19d1205
ZW
21760 /* Well-known aliases. */
21761 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21762 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21763
21764 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21765 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21766
1b883319
AV
21767 /* Defining the new Zero register from ARMv8.1-M. */
21768 REGDEF(zr,15,ZR),
21769 REGDEF(ZR,15,ZR),
21770
c19d1205
ZW
21771 /* Coprocessor numbers. */
21772 REGSET(p, CP), REGSET(P, CP),
21773
21774 /* Coprocessor register numbers. The "cr" variants are for backward
21775 compatibility. */
21776 REGSET(c, CN), REGSET(C, CN),
21777 REGSET(cr, CN), REGSET(CR, CN),
21778
90ec0d68
MGD
21779 /* ARM banked registers. */
21780 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21781 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21782 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21783 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21784 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21785 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21786 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21787
21788 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21789 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21790 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21791 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21792 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 21793 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
21794 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21795 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21796
21797 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21798 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21799 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21800 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21801 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21802 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21803 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 21804 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
21805 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21806
c19d1205
ZW
21807 /* FPA registers. */
21808 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21809 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21810
21811 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21812 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21813
21814 /* VFP SP registers. */
5287ad62
JB
21815 REGSET(s,VFS), REGSET(S,VFS),
21816 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
21817
21818 /* VFP DP Registers. */
5287ad62
JB
21819 REGSET(d,VFD), REGSET(D,VFD),
21820 /* Extra Neon DP registers. */
21821 REGSETH(d,VFD), REGSETH(D,VFD),
21822
21823 /* Neon QP registers. */
21824 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
21825
21826 /* VFP control registers. */
21827 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21828 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
21829 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21830 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21831 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21832 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 21833 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
21834
21835 /* Maverick DSP coprocessor registers. */
21836 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21837 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21838
21839 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21840 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21841 REGDEF(dspsc,0,DSPSC),
21842
21843 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21844 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21845 REGDEF(DSPSC,0,DSPSC),
21846
21847 /* iWMMXt data registers - p0, c0-15. */
21848 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21849
21850 /* iWMMXt control registers - p1, c0-3. */
21851 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21852 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21853 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21854 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21855
21856 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21857 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21858 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21859 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21860 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21861
21862 /* XScale accumulator registers. */
21863 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21864};
21865#undef REGDEF
21866#undef REGNUM
21867#undef REGSET
7ed4c4c5 21868
c19d1205
ZW
21869/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21870 within psr_required_here. */
21871static const struct asm_psr psrs[] =
21872{
21873 /* Backward compatibility notation. Note that "all" is no longer
21874 truly all possible PSR bits. */
21875 {"all", PSR_c | PSR_f},
21876 {"flg", PSR_f},
21877 {"ctl", PSR_c},
21878
21879 /* Individual flags. */
21880 {"f", PSR_f},
21881 {"c", PSR_c},
21882 {"x", PSR_x},
21883 {"s", PSR_s},
59b42a0d 21884
c19d1205
ZW
21885 /* Combinations of flags. */
21886 {"fs", PSR_f | PSR_s},
21887 {"fx", PSR_f | PSR_x},
21888 {"fc", PSR_f | PSR_c},
21889 {"sf", PSR_s | PSR_f},
21890 {"sx", PSR_s | PSR_x},
21891 {"sc", PSR_s | PSR_c},
21892 {"xf", PSR_x | PSR_f},
21893 {"xs", PSR_x | PSR_s},
21894 {"xc", PSR_x | PSR_c},
21895 {"cf", PSR_c | PSR_f},
21896 {"cs", PSR_c | PSR_s},
21897 {"cx", PSR_c | PSR_x},
21898 {"fsx", PSR_f | PSR_s | PSR_x},
21899 {"fsc", PSR_f | PSR_s | PSR_c},
21900 {"fxs", PSR_f | PSR_x | PSR_s},
21901 {"fxc", PSR_f | PSR_x | PSR_c},
21902 {"fcs", PSR_f | PSR_c | PSR_s},
21903 {"fcx", PSR_f | PSR_c | PSR_x},
21904 {"sfx", PSR_s | PSR_f | PSR_x},
21905 {"sfc", PSR_s | PSR_f | PSR_c},
21906 {"sxf", PSR_s | PSR_x | PSR_f},
21907 {"sxc", PSR_s | PSR_x | PSR_c},
21908 {"scf", PSR_s | PSR_c | PSR_f},
21909 {"scx", PSR_s | PSR_c | PSR_x},
21910 {"xfs", PSR_x | PSR_f | PSR_s},
21911 {"xfc", PSR_x | PSR_f | PSR_c},
21912 {"xsf", PSR_x | PSR_s | PSR_f},
21913 {"xsc", PSR_x | PSR_s | PSR_c},
21914 {"xcf", PSR_x | PSR_c | PSR_f},
21915 {"xcs", PSR_x | PSR_c | PSR_s},
21916 {"cfs", PSR_c | PSR_f | PSR_s},
21917 {"cfx", PSR_c | PSR_f | PSR_x},
21918 {"csf", PSR_c | PSR_s | PSR_f},
21919 {"csx", PSR_c | PSR_s | PSR_x},
21920 {"cxf", PSR_c | PSR_x | PSR_f},
21921 {"cxs", PSR_c | PSR_x | PSR_s},
21922 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21923 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21924 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21925 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21926 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21927 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21928 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21929 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21930 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21931 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21932 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21933 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21934 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21935 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21936 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21937 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21938 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21939 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21940 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21941 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21942 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21943 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21944 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21945 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21946};
21947
62b3e311
PB
21948/* Table of V7M psr names. */
21949static const struct asm_psr v7m_psrs[] =
21950{
1a336194
TP
21951 {"apsr", 0x0 }, {"APSR", 0x0 },
21952 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21953 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21954 {"psr", 0x3 }, {"PSR", 0x3 },
21955 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21956 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21957 {"epsr", 0x6 }, {"EPSR", 0x6 },
21958 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21959 {"msp", 0x8 }, {"MSP", 0x8 },
21960 {"psp", 0x9 }, {"PSP", 0x9 },
21961 {"msplim", 0xa }, {"MSPLIM", 0xa },
21962 {"psplim", 0xb }, {"PSPLIM", 0xb },
21963 {"primask", 0x10}, {"PRIMASK", 0x10},
21964 {"basepri", 0x11}, {"BASEPRI", 0x11},
21965 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
21966 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21967 {"control", 0x14}, {"CONTROL", 0x14},
21968 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21969 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21970 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21971 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21972 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21973 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21974 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21975 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21976 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
21977};
21978
c19d1205
ZW
21979/* Table of all shift-in-operand names. */
21980static const struct asm_shift_name shift_names [] =
b99bd4ef 21981{
c19d1205
ZW
21982 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21983 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21984 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21985 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21986 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
21987 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21988 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 21989};
b99bd4ef 21990
c19d1205
ZW
21991/* Table of all explicit relocation names. */
21992#ifdef OBJ_ELF
21993static struct reloc_entry reloc_names[] =
21994{
21995 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21996 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21997 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21998 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21999 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22000 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22001 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22002 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22003 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22004 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22005 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22006 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22007 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22008 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22009 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22010 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22011 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22012 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22013 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22014 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22015 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22016 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22017 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22018 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22019 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22020 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22021 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22022};
22023#endif
b99bd4ef 22024
5ee91343 22025/* Table of all conditional affixes. */
c19d1205
ZW
22026static const struct asm_cond conds[] =
22027{
22028 {"eq", 0x0},
22029 {"ne", 0x1},
22030 {"cs", 0x2}, {"hs", 0x2},
22031 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22032 {"mi", 0x4},
22033 {"pl", 0x5},
22034 {"vs", 0x6},
22035 {"vc", 0x7},
22036 {"hi", 0x8},
22037 {"ls", 0x9},
22038 {"ge", 0xa},
22039 {"lt", 0xb},
22040 {"gt", 0xc},
22041 {"le", 0xd},
22042 {"al", 0xe}
22043};
5ee91343
AV
22044static const struct asm_cond vconds[] =
22045{
22046 {"t", 0xf},
22047 {"e", 0x10}
22048};
bfae80f2 22049
e797f7e0 22050#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22051 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22052 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22053
62b3e311
PB
22054static struct asm_barrier_opt barrier_opt_names[] =
22055{
e797f7e0
MGD
22056 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22057 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22058 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22059 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22060 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22061 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22062 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22063 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22064 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22065 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22066 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22067 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22068 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22069 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22070 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22071 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22072};
22073
e797f7e0
MGD
22074#undef UL_BARRIER
22075
c19d1205
ZW
22076/* Table of ARM-format instructions. */
22077
22078/* Macros for gluing together operand strings. N.B. In all cases
22079 other than OPS0, the trailing OP_stop comes from default
22080 zero-initialization of the unspecified elements of the array. */
22081#define OPS0() { OP_stop, }
22082#define OPS1(a) { OP_##a, }
22083#define OPS2(a,b) { OP_##a,OP_##b, }
22084#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22085#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22086#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22087#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22088
5be8be5d
DG
22089/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22090 This is useful when mixing operands for ARM and THUMB, i.e. using the
22091 MIX_ARM_THUMB_OPERANDS macro.
22092 In order to use these macros, prefix the number of operands with _
22093 e.g. _3. */
22094#define OPS_1(a) { a, }
22095#define OPS_2(a,b) { a,b, }
22096#define OPS_3(a,b,c) { a,b,c, }
22097#define OPS_4(a,b,c,d) { a,b,c,d, }
22098#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22099#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22100
c19d1205
ZW
22101/* These macros abstract out the exact format of the mnemonic table and
22102 save some repeated characters. */
22103
22104/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22105#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22106 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22107 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22108
22109/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22110 a T_MNEM_xyz enumerator. */
22111#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22112 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22113#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22114 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22115
22116/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22117 infix after the third character. */
22118#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22119 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22120 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22121#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22122 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22123 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22124#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22125 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22126#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22127 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22128#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22129 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22130#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22131 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22132
c19d1205 22133/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22134 field is still 0xE. Many of the Thumb variants can be executed
22135 conditionally, so this is checked separately. */
c19d1205 22136#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22137 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22138 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22139
dd5181d5
KT
22140/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22141 Used by mnemonics that have very minimal differences in the encoding for
22142 ARM and Thumb variants and can be handled in a common function. */
22143#define TUEc(mnem, op, top, nops, ops, en) \
22144 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22145 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22146
c19d1205
ZW
22147/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22148 condition code field. */
22149#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22150 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22151 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22152
22153/* ARM-only variants of all the above. */
6a86118a 22154#define CE(mnem, op, nops, ops, ae) \
5ee91343 22155 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22156
22157#define C3(mnem, op, nops, ops, ae) \
5ee91343 22158 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22159
cf3cf39d
TP
22160/* Thumb-only variants of TCE and TUE. */
22161#define ToC(mnem, top, nops, ops, te) \
22162 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22163 do_##te, 0 }
cf3cf39d
TP
22164
22165#define ToU(mnem, top, nops, ops, te) \
22166 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22167 NULL, do_##te, 0 }
cf3cf39d 22168
4389b29a
AV
22169/* T_MNEM_xyz enumerator variants of ToC. */
22170#define toC(mnem, top, nops, ops, te) \
22171 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22172 do_##te, 0 }
4389b29a 22173
f6b2b12d
AV
22174/* T_MNEM_xyz enumerator variants of ToU. */
22175#define toU(mnem, top, nops, ops, te) \
22176 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22177 NULL, do_##te, 0 }
f6b2b12d 22178
e3cb604e
PB
22179/* Legacy mnemonics that always have conditional infix after the third
22180 character. */
22181#define CL(mnem, op, nops, ops, ae) \
21d799b5 22182 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22183 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22184
8f06b2d8
PB
22185/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22186#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22187 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22188
57785aa2
AV
22189/* mov instructions that are shared between coprocessor and MVE. */
22190#define mcCE(mnem, op, nops, ops, ae) \
22191 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22192
e3cb604e
PB
22193/* Legacy coprocessor instructions where conditional infix and conditional
22194 suffix are ambiguous. For consistency this includes all FPA instructions,
22195 not just the potentially ambiguous ones. */
22196#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22197 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22198 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22199
22200/* Coprocessor, takes either a suffix or a position-3 infix
22201 (for an FPA corner case). */
22202#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22203 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22204 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22205
6a86118a 22206#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22207 { m1 #m2 m3, OPS##nops ops, \
22208 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22209 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22210
22211#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22212 xCM_ (m1, , m2, op, nops, ops, ae), \
22213 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22214 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22215 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22216 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22217 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22218 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22219 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22220 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22221 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22222 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22223 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22224 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22225 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22226 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22227 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22228 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22229 xCM_ (m1, le, m2, op, nops, ops, ae), \
22230 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
22231
22232#define UE(mnem, op, nops, ops, ae) \
5ee91343 22233 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22234
22235#define UF(mnem, op, nops, ops, ae) \
5ee91343 22236 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22237
5287ad62
JB
22238/* Neon data-processing. ARM versions are unconditional with cond=0xf.
22239 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22240 use the same encoding function for each. */
22241#define NUF(mnem, op, nops, ops, enc) \
22242 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 22243 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22244
22245/* Neon data processing, version which indirects through neon_enc_tab for
22246 the various overloaded versions of opcodes. */
22247#define nUF(mnem, op, nops, ops, enc) \
21d799b5 22248 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 22249 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
22250
22251/* Neon insn with conditional suffix for the ARM version, non-overloaded
22252 version. */
5ee91343 22253#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 22254 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 22255 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22256
037e8744 22257#define NCE(mnem, op, nops, ops, enc) \
5ee91343 22258 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22259
22260#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 22261 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 22262
5287ad62 22263/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 22264#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 22265 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 22266 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 22267
037e8744 22268#define nCE(mnem, op, nops, ops, enc) \
5ee91343 22269 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
22270
22271#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
22272 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22273
22274/* */
22275#define mCEF(mnem, op, nops, ops, enc) \
a302e574 22276 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
22277 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22278
22279
22280/* nCEF but for MVE predicated instructions. */
22281#define mnCEF(mnem, op, nops, ops, enc) \
22282 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22283
22284/* nCE but for MVE predicated instructions. */
22285#define mnCE(mnem, op, nops, ops, enc) \
22286 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 22287
5ee91343
AV
22288/* NUF but for potentially MVE predicated instructions. */
22289#define MNUF(mnem, op, nops, ops, enc) \
22290 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22291 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22292
22293/* nUF but for potentially MVE predicated instructions. */
22294#define mnUF(mnem, op, nops, ops, enc) \
22295 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22296 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22297
22298/* ToC but for potentially MVE predicated instructions. */
22299#define mToC(mnem, top, nops, ops, te) \
22300 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22301 do_##te, 1 }
22302
22303/* NCE but for MVE predicated instructions. */
22304#define MNCE(mnem, op, nops, ops, enc) \
22305 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22306
22307/* NCEF but for MVE predicated instructions. */
22308#define MNCEF(mnem, op, nops, ops, enc) \
22309 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
22310#define do_0 0
22311
c19d1205 22312static const struct asm_opcode insns[] =
bfae80f2 22313{
74db7efb
NC
22314#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22315#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
22316 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22317 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22318 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22319 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22320 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22321 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22322 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22323 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22324 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22325 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22326 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22327 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22328 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22329 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22330 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22331 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
22332
22333 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22334 for setting PSR flag bits. They are obsolete in V6 and do not
22335 have Thumb equivalents. */
21d799b5
NC
22336 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22337 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22338 CL("tstp", 110f000, 2, (RR, SH), cmp),
22339 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22340 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22341 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22342 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22343 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22344 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22345
22346 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 22347 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
22348 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22349 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22350
22351 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
22352 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22353 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22354 OP_RRnpc),
22355 OP_ADDRGLDR),ldst, t_ldst),
22356 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
22357
22358 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22359 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22360 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22361 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22362 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22363 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22364
21d799b5
NC
22365 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22366 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 22367
c19d1205 22368 /* Pseudo ops. */
21d799b5 22369 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 22370 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 22371 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 22372 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
22373
22374 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22375 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22376 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22377 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22378 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22379 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22380 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22381 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22382 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22383 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22384 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22385 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22386 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22387
16a4cf17 22388 /* These may simplify to neg. */
21d799b5
NC
22389 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22390 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22391
173205ca
TP
22392#undef THUMB_VARIANT
22393#define THUMB_VARIANT & arm_ext_os
22394
22395 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22396 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22397
c921be7d
NC
22398#undef THUMB_VARIANT
22399#define THUMB_VARIANT & arm_ext_v6
22400
21d799b5 22401 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22402
22403 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22404#undef THUMB_VARIANT
22405#define THUMB_VARIANT & arm_ext_v6t2
22406
21d799b5
NC
22407 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22408 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22409 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22410
5be8be5d
DG
22411 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22412 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22413 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22414 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22415
21d799b5
NC
22416 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22417 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22418
21d799b5
NC
22419 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22420 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22421
22422 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22423 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22424 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22425
22426 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22427 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22428 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22429 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22430 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22431 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22432 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22433 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22434
c921be7d
NC
22435#undef ARM_VARIANT
22436#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22437#undef THUMB_VARIANT
22438#define THUMB_VARIANT & arm_ext_v4t
22439
21d799b5
NC
22440 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22441 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22442
c921be7d
NC
22443#undef THUMB_VARIANT
22444#define THUMB_VARIANT & arm_ext_v6t2
22445
21d799b5 22446 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22447 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22448
22449 /* Generic coprocessor instructions. */
21d799b5
NC
22450 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22451 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22452 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22453 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22454 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22455 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22456 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22457
c921be7d
NC
22458#undef ARM_VARIANT
22459#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22460
21d799b5 22461 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22462 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22463
c921be7d
NC
22464#undef ARM_VARIANT
22465#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22466#undef THUMB_VARIANT
22467#define THUMB_VARIANT & arm_ext_msr
22468
d2cd1205
JB
22469 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22470 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22471
c921be7d
NC
22472#undef ARM_VARIANT
22473#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22474#undef THUMB_VARIANT
22475#define THUMB_VARIANT & arm_ext_v6t2
22476
21d799b5
NC
22477 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22478 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22479 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22480 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22481 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22482 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22483 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22484 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22485
c921be7d
NC
22486#undef ARM_VARIANT
22487#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22488#undef THUMB_VARIANT
22489#define THUMB_VARIANT & arm_ext_v4t
22490
5be8be5d
DG
22491 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22492 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22493 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22494 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22495 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22496 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22497
c921be7d
NC
22498#undef ARM_VARIANT
22499#define ARM_VARIANT & arm_ext_v4t_5
22500
c19d1205
ZW
22501 /* ARM Architecture 4T. */
22502 /* Note: bx (and blx) are required on V5, even if the processor does
22503 not support Thumb. */
21d799b5 22504 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22505
c921be7d
NC
22506#undef ARM_VARIANT
22507#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22508#undef THUMB_VARIANT
22509#define THUMB_VARIANT & arm_ext_v5t
22510
c19d1205
ZW
22511 /* Note: blx has 2 variants; the .value coded here is for
22512 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22513 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22514 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22515
c921be7d
NC
22516#undef THUMB_VARIANT
22517#define THUMB_VARIANT & arm_ext_v6t2
22518
21d799b5
NC
22519 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22520 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22521 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22522 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22523 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22524 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22525 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22526 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22527
c921be7d 22528#undef ARM_VARIANT
74db7efb
NC
22529#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22530#undef THUMB_VARIANT
22531#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22532
21d799b5
NC
22533 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22534 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22535 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22536 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22537
21d799b5
NC
22538 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22539 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22540
21d799b5
NC
22541 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22542 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22543 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22544 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22545
21d799b5
NC
22546 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22547 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22548 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22549 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22550
21d799b5
NC
22551 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22552 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22553
03ee1b7f
NC
22554 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22555 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22556 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22557 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22558
c921be7d 22559#undef ARM_VARIANT
74db7efb
NC
22560#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22561#undef THUMB_VARIANT
22562#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22563
21d799b5 22564 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22565 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22566 ldrd, t_ldstd),
22567 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22568 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22569
21d799b5
NC
22570 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22571 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22572
c921be7d
NC
22573#undef ARM_VARIANT
22574#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22575
21d799b5 22576 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22577
c921be7d
NC
22578#undef ARM_VARIANT
22579#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22580#undef THUMB_VARIANT
22581#define THUMB_VARIANT & arm_ext_v6
22582
21d799b5
NC
22583 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22584 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22585 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22586 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22587 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22588 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22589 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22590 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22591 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22592 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22593
c921be7d 22594#undef THUMB_VARIANT
ff8646ee 22595#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22596
5be8be5d
DG
22597 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22598 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22599 strex, t_strex),
ff8646ee
TP
22600#undef THUMB_VARIANT
22601#define THUMB_VARIANT & arm_ext_v6t2
22602
21d799b5
NC
22603 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22604 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22605
21d799b5
NC
22606 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22607 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22608
9e3c6df6 22609/* ARM V6 not included in V7M. */
c921be7d
NC
22610#undef THUMB_VARIANT
22611#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22612 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22613 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22614 UF(rfeib, 9900a00, 1, (RRw), rfe),
22615 UF(rfeda, 8100a00, 1, (RRw), rfe),
22616 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22617 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22618 UF(rfefa, 8100a00, 1, (RRw), rfe),
22619 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22620 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22621 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22622 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22623 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22624 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22625 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22626 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22627 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22628 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22629 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22630 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22631
9e3c6df6
PB
22632/* ARM V6 not included in V7M (eg. integer SIMD). */
22633#undef THUMB_VARIANT
22634#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22635 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22636 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22637 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22638 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22639 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22640 /* Old name for QASX. */
74db7efb 22641 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22642 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22643 /* Old name for QSAX. */
74db7efb 22644 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22645 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22646 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22647 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22648 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22649 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22650 /* Old name for SASX. */
74db7efb 22651 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22652 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22653 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22654 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22655 /* Old name for SHASX. */
21d799b5 22656 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22657 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22658 /* Old name for SHSAX. */
21d799b5
NC
22659 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22660 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22661 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22662 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22663 /* Old name for SSAX. */
74db7efb 22664 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22665 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22666 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22667 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22668 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22669 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22670 /* Old name for UASX. */
74db7efb 22671 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22672 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22673 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22674 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22675 /* Old name for UHASX. */
21d799b5
NC
22676 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22677 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22678 /* Old name for UHSAX. */
21d799b5
NC
22679 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22680 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22681 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22682 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22683 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22684 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22685 /* Old name for UQASX. */
21d799b5
NC
22686 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22687 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22688 /* Old name for UQSAX. */
21d799b5
NC
22689 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22690 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22691 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22692 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22693 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22694 /* Old name for USAX. */
74db7efb 22695 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22696 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22697 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22698 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22699 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22700 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22701 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22702 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22703 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22704 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22705 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22706 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22707 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22708 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22709 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22710 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22711 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22712 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22713 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22714 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22715 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22716 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22717 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22718 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22719 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22720 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22721 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22722 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22723 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
22724 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22725 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22726 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22727 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22728 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 22729
c921be7d 22730#undef ARM_VARIANT
55e8aae7 22731#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 22732#undef THUMB_VARIANT
55e8aae7 22733#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 22734
21d799b5
NC
22735 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22736 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22737 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22738 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 22739
c921be7d
NC
22740#undef THUMB_VARIANT
22741#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
22742 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22743 ldrexd, t_ldrexd),
22744 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22745 RRnpcb), strexd, t_strexd),
ebdca51a 22746
c921be7d 22747#undef THUMB_VARIANT
ff8646ee 22748#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
22749 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22750 rd_rn, rd_rn),
22751 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22752 rd_rn, rd_rn),
22753 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22754 strex, t_strexbh),
5be8be5d 22755 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22756 strex, t_strexbh),
21d799b5 22757 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 22758
c921be7d 22759#undef ARM_VARIANT
f4c65163 22760#define ARM_VARIANT & arm_ext_sec
74db7efb 22761#undef THUMB_VARIANT
f4c65163 22762#define THUMB_VARIANT & arm_ext_sec
c921be7d 22763
21d799b5 22764 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 22765
90ec0d68
MGD
22766#undef ARM_VARIANT
22767#define ARM_VARIANT & arm_ext_virt
22768#undef THUMB_VARIANT
22769#define THUMB_VARIANT & arm_ext_virt
22770
22771 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22772 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22773
ddfded2f
MW
22774#undef ARM_VARIANT
22775#define ARM_VARIANT & arm_ext_pan
22776#undef THUMB_VARIANT
22777#define THUMB_VARIANT & arm_ext_pan
22778
22779 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22780
c921be7d 22781#undef ARM_VARIANT
74db7efb 22782#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
22783#undef THUMB_VARIANT
22784#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22785
21d799b5
NC
22786 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22787 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22788 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22789 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 22790
21d799b5 22791 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 22792 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 22793
5be8be5d
DG
22794 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22795 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22796 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22797 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 22798
91d8b670
JG
22799#undef ARM_VARIANT
22800#define ARM_VARIANT & arm_ext_v3
22801#undef THUMB_VARIANT
22802#define THUMB_VARIANT & arm_ext_v6t2
22803
22804 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
22805 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22806 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
22807
22808#undef ARM_VARIANT
22809#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
22810#undef THUMB_VARIANT
22811#define THUMB_VARIANT & arm_ext_v6t2_v8m
22812 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22813 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22814
bf3eeda7 22815 /* Thumb-only instructions. */
74db7efb 22816#undef ARM_VARIANT
bf3eeda7
NS
22817#define ARM_VARIANT NULL
22818 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22819 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
22820
22821 /* ARM does not really have an IT instruction, so always allow it.
22822 The opcode is copied from Thumb in order to allow warnings in
22823 -mimplicit-it=[never | arm] modes. */
22824#undef ARM_VARIANT
22825#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
22826#undef THUMB_VARIANT
22827#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22828
21d799b5
NC
22829 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22830 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22831 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22832 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22833 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22834 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22835 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22836 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22837 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22838 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22839 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22840 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22841 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22842 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22843 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 22844 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
22845 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22846 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 22847
92e90b6e 22848 /* Thumb2 only instructions. */
c921be7d
NC
22849#undef ARM_VARIANT
22850#define ARM_VARIANT NULL
92e90b6e 22851
21d799b5
NC
22852 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22853 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22854 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22855 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22856 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22857 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 22858
eea54501
MGD
22859 /* Hardware division instructions. */
22860#undef ARM_VARIANT
22861#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
22862#undef THUMB_VARIANT
22863#define THUMB_VARIANT & arm_ext_div
22864
eea54501
MGD
22865 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22866 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 22867
7e806470 22868 /* ARM V6M/V7 instructions. */
c921be7d
NC
22869#undef ARM_VARIANT
22870#define ARM_VARIANT & arm_ext_barrier
22871#undef THUMB_VARIANT
22872#define THUMB_VARIANT & arm_ext_barrier
22873
ccb84d65
JB
22874 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22875 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22876 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 22877
62b3e311 22878 /* ARM V7 instructions. */
c921be7d
NC
22879#undef ARM_VARIANT
22880#define ARM_VARIANT & arm_ext_v7
22881#undef THUMB_VARIANT
22882#define THUMB_VARIANT & arm_ext_v7
22883
21d799b5
NC
22884 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22885 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 22886
74db7efb 22887#undef ARM_VARIANT
60e5ef9f 22888#define ARM_VARIANT & arm_ext_mp
74db7efb 22889#undef THUMB_VARIANT
60e5ef9f
MGD
22890#define THUMB_VARIANT & arm_ext_mp
22891
22892 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22893
53c4b28b
MGD
22894 /* AArchv8 instructions. */
22895#undef ARM_VARIANT
22896#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
22897
22898/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 22899#undef THUMB_VARIANT
4ed7ed8d 22900#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 22901
4ed7ed8d
TP
22902 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22903 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22904 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22905 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22906 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22907 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 22908 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
22909 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22910 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22911 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22912 stlex, t_stlex),
4b8c8c02
RE
22913 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22914 stlex, t_stlex),
22915 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22916 stlex, t_stlex),
4ed7ed8d
TP
22917#undef THUMB_VARIANT
22918#define THUMB_VARIANT & arm_ext_v8
53c4b28b 22919
4ed7ed8d 22920 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
22921 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22922 ldrexd, t_ldrexd),
22923 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22924 strexd, t_strexd),
f7dd2fb2
TC
22925
22926/* Defined in V8 but is in undefined encoding space for earlier
22927 architectures. However earlier architectures are required to treat
22928 this instuction as a semihosting trap as well. Hence while not explicitly
22929 defined as such, it is in fact correct to define the instruction for all
22930 architectures. */
22931#undef THUMB_VARIANT
22932#define THUMB_VARIANT & arm_ext_v1
22933#undef ARM_VARIANT
22934#define ARM_VARIANT & arm_ext_v1
22935 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22936
8884b720 22937 /* ARMv8 T32 only. */
74db7efb 22938#undef ARM_VARIANT
b79f7053
MGD
22939#define ARM_VARIANT NULL
22940 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22941 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22942 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22943
33399f07
MGD
22944 /* FP for ARMv8. */
22945#undef ARM_VARIANT
a715796b 22946#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 22947#undef THUMB_VARIANT
a715796b 22948#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
22949
22950 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22951 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22952 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22953 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
22954 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22955 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
30bdf752
MGD
22956 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22957 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22958 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22959 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22960 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22961 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22962 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 22963
91ff7894
MGD
22964 /* Crypto v1 extensions. */
22965#undef ARM_VARIANT
22966#define ARM_VARIANT & fpu_crypto_ext_armv8
22967#undef THUMB_VARIANT
22968#define THUMB_VARIANT & fpu_crypto_ext_armv8
22969
22970 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22971 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22972 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22973 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
22974 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22975 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22976 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22977 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22978 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22979 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22980 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
22981 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22982 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22983 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 22984
dd5181d5 22985#undef ARM_VARIANT
74db7efb 22986#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
22987#undef THUMB_VARIANT
22988#define THUMB_VARIANT & crc_ext_armv8
22989 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22990 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22991 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22992 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22993 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22994 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22995
105bde57
MW
22996 /* ARMv8.2 RAS extension. */
22997#undef ARM_VARIANT
4d1464f2 22998#define ARM_VARIANT & arm_ext_ras
105bde57 22999#undef THUMB_VARIANT
4d1464f2 23000#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23001 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23002
49e8a725
SN
23003#undef ARM_VARIANT
23004#define ARM_VARIANT & arm_ext_v8_3
23005#undef THUMB_VARIANT
23006#define THUMB_VARIANT & arm_ext_v8_3
23007 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23008
c604a79a
JW
23009#undef ARM_VARIANT
23010#define ARM_VARIANT & fpu_neon_ext_dotprod
23011#undef THUMB_VARIANT
23012#define THUMB_VARIANT & fpu_neon_ext_dotprod
23013 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23014 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23015
c921be7d
NC
23016#undef ARM_VARIANT
23017#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23018#undef THUMB_VARIANT
23019#define THUMB_VARIANT NULL
c921be7d 23020
21d799b5
NC
23021 cCE("wfs", e200110, 1, (RR), rd),
23022 cCE("rfs", e300110, 1, (RR), rd),
23023 cCE("wfc", e400110, 1, (RR), rd),
23024 cCE("rfc", e500110, 1, (RR), rd),
23025
23026 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23027 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23028 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23029 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23030
23031 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23032 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23033 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23034 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23035
23036 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23037 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23038 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23039 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23040 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23041 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23042 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23043 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23044 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23045 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23046 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23047 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23048
23049 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23050 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23051 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23052 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23053 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23054 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23055 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23056 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23057 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23058 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23059 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23060 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23061
23062 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23063 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23064 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23065 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23066 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23067 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23068 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23069 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23070 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23071 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23072 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23073 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23074
23075 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23076 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23077 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23078 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23079 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23080 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23081 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23082 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23083 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23084 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23085 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23086 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23087
23088 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23089 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23090 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23091 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23092 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23093 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23094 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23095 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23096 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23097 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23098 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23099 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23100
23101 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23102 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23103 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23104 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23105 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23106 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23107 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23108 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23109 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23110 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23111 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23112 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23113
23114 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23115 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23116 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23117 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23118 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23119 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23120 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23121 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23122 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23123 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23124 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23125 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23126
23127 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23128 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23129 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23130 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23131 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23132 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23133 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23134 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23135 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23136 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23137 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23138 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23139
23140 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23141 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23142 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23143 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23144 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23145 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23146 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23147 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23148 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23149 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23150 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23151 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23152
23153 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23154 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23155 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23156 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23157 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23158 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23159 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23160 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23161 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23162 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23163 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23164 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23165
23166 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23167 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23168 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23169 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23170 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23171 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23172 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23173 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23174 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23175 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23176 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23177 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23178
23179 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23180 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23181 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23182 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23183 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23184 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23185 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23186 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23187 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23188 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23189 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23190 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23191
23192 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23193 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23194 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23195 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23196 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23197 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23198 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23199 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23200 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23201 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23202 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23203 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23204
23205 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23206 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23207 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23208 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23209 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23210 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23211 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23212 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23213 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23214 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23215 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23216 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23217
23218 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23219 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23220 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23221 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23222 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23223 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23224 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23225 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23226 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23227 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23228 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23229 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23230
23231 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23232 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23233 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23234 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23235 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23236 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23237 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23238 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23239 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23240 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23241 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23242 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23243
23244 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23245 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23246 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23247 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23248 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23249 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23250 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23251 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23252 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23253 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23254 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23255 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23256
23257 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23258 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23259 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23260 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23261 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23262 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23263 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23264 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23265 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23266 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23267 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23268 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23269
23270 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23271 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23272 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23273 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23274 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23275 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23276 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23277 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23278 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23279 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23280 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23281 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23282
23283 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23284 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23285 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23286 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23287 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23288 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23289 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23290 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23291 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23292 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23293 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23294 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23295
23296 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23297 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23298 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23299 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23300 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23301 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23302 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23303 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23304 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23305 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23306 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23307 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23308
23309 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23310 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23311 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23312 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23313 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23314 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23315 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23316 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23317 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23318 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23319 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23320 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23321
23322 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23323 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23324 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23325 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23326 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23327 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23328 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23329 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23330 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23331 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23332 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23333 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23334
23335 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23336 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23337 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23338 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23339 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23340 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23341 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23342 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23343 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23344 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23345 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23346 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23347
23348 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23349 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23350 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23351 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23352 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23353 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23354 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23355 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23356 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23357 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23358 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23359 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23360
23361 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23362 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23363 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23364 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23365 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23366 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23367 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23368 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23369 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23370 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23371 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23372 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23373
23374 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23375 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23376 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23377 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23378 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23379 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23380 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23381 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23382 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23383 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23384 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23385 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23386
23387 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23388 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23389 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23390 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23391 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23392 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23393 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23394 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23395 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23396 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23397 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23398 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23399
23400 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23401 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23402 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23403 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23404 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23405 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23406 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23407 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23408 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23409 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23410 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23411 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23412
23413 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23414 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23415 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23416 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23417
23418 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23419 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23420 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23421 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23422 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23423 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23424 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23425 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23426 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23427 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23428 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23429 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23430
c19d1205
ZW
23431 /* The implementation of the FIX instruction is broken on some
23432 assemblers, in that it accepts a precision specifier as well as a
23433 rounding specifier, despite the fact that this is meaningless.
23434 To be more compatible, we accept it as well, though of course it
23435 does not set any bits. */
21d799b5
NC
23436 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23437 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23438 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23439 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23440 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23441 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23442 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23443 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23444 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23445 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23446 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23447 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23448 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23449
c19d1205 23450 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23451#undef ARM_VARIANT
23452#define ARM_VARIANT & fpu_fpa_ext_v2
23453
21d799b5
NC
23454 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23455 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23456 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23457 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23458 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23459 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23460
c921be7d
NC
23461#undef ARM_VARIANT
23462#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23463
c19d1205 23464 /* Moves and type conversions. */
21d799b5 23465 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23466 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23467 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23468 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23469 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23470 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23471 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23472 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23473 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23474 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23475 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23476
23477 /* Memory operations. */
21d799b5
NC
23478 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23479 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23480 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23481 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23482 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23483 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23484 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23485 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23486 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23487 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23488 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23489 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23490 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23491 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23492 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23493 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23494 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23495 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23496
c19d1205 23497 /* Monadic operations. */
21d799b5
NC
23498 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23499 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23500 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23501
23502 /* Dyadic operations. */
21d799b5
NC
23503 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23504 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23505 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23506 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23507 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23508 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23509 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23510 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23511 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23512
c19d1205 23513 /* Comparisons. */
21d799b5
NC
23514 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23515 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23516 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23517 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23518
62f3b8c8
PB
23519 /* Double precision load/store are still present on single precision
23520 implementations. */
23521 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23522 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23523 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23524 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23525 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23526 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23527 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23528 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23529 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23530 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23531
c921be7d
NC
23532#undef ARM_VARIANT
23533#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23534
c19d1205 23535 /* Moves and type conversions. */
21d799b5
NC
23536 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23537 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23538 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23539 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23540 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23541 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23542 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23543 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23544 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23545 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23546 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23547 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23548
c19d1205 23549 /* Monadic operations. */
21d799b5
NC
23550 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23551 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23552 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23553
23554 /* Dyadic operations. */
21d799b5
NC
23555 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23556 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23557 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23558 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23559 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23560 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23561 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23562 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23563 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23564
c19d1205 23565 /* Comparisons. */
21d799b5
NC
23566 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23567 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23568 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23569 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23570
037e8744
JB
23571/* Instructions which may belong to either the Neon or VFP instruction sets.
23572 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23573#undef ARM_VARIANT
23574#define ARM_VARIANT & fpu_vfp_ext_v1xd
23575#undef THUMB_VARIANT
23576#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23577
037e8744
JB
23578 /* These mnemonics are unique to VFP. */
23579 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23580 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23581 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23582 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23583 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23584 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23585 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23586 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23587
23588 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
23589 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23590 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23591 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23592
55881a11
MGD
23593 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23594 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23595 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23596 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23597 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23598 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23599
dd9634d9 23600 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23601 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23602 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23603 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23604
037e8744
JB
23605
23606 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23607 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23608
32c36c3c
AV
23609#undef THUMB_VARIANT
23610/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23611 by different feature bits. Since we are setting the Thumb guard, we can
23612 require Thumb-1 which makes it a nop guard and set the right feature bit in
23613 do_vldr_vstr (). */
23614#define THUMB_VARIANT & arm_ext_v4t
23615 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23616 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23617
9db2f6b4
RL
23618#undef ARM_VARIANT
23619#define ARM_VARIANT & arm_ext_fp16
23620#undef THUMB_VARIANT
23621#define THUMB_VARIANT & arm_ext_fp16
23622 /* New instructions added from v8.2, allowing the extraction and insertion of
23623 the upper 16 bits of a 32-bit vector register. */
23624 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23625 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23626
dec41383
JW
23627 /* New backported fma/fms instructions optional in v8.2. */
23628 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23629 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23630
c921be7d
NC
23631#undef THUMB_VARIANT
23632#define THUMB_VARIANT & fpu_neon_ext_v1
23633#undef ARM_VARIANT
23634#define ARM_VARIANT & fpu_neon_ext_v1
23635
5287ad62
JB
23636 /* Data processing with three registers of the same length. */
23637 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23638 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23639 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 23640 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 23641 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
23642 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23643 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23644 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23645 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23646 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23647 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23648 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23649 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23650 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23651 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23652 /* If not immediate, fall back to neon_dyadic_i64_su.
23653 shl_imm should accept I8 I16 I32 I64,
23654 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23655 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23656 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23657 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23658 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 23659 /* Logic ops, types optional & ignored. */
4316f0d2 23660 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23661 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23662 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23663 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 23664 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
23665 /* Bitfield ops, untyped. */
23666 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23667 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23668 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23669 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23670 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23671 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 23672 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
23673 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23674 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23675 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23676 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23677 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
23678 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23679 back to neon_dyadic_if_su. */
21d799b5
NC
23680 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23681 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23682 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23683 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23684 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23685 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23686 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23687 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 23688 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
23689 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23690 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 23691 /* As above, D registers only. */
21d799b5
NC
23692 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23693 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 23694 /* Int and float variants, signedness unimportant. */
21d799b5
NC
23695 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23696 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23697 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 23698 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
23699 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23700 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
23701 /* vtst takes sizes 8, 16, 32. */
23702 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23703 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23704 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 23705 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 23706 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
23707 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23708 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23709 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23710 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
23711 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23712 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23713 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23714 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
23715 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23716 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23717 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23718 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
23719 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23720 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23721 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23722 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 23723 /* ARM v8.1 extension. */
643afb90
MW
23724 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23725 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23726 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23727 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
23728
23729 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 23730 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
23731 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23732
23733 /* Data processing with two registers and a shift amount. */
23734 /* Right shifts, and variants with rounding.
23735 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23736 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23737 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23738 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23739 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23740 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23741 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23742 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23743 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23744 /* Shift and insert. Sizes accepted 8 16 32 64. */
23745 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23746 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23747 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23748 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23749 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23750 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23751 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23752 /* Right shift immediate, saturating & narrowing, with rounding variants.
23753 Types accepted S16 S32 S64 U16 U32 U64. */
23754 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23755 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23756 /* As above, unsigned. Types accepted S16 S32 S64. */
23757 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23758 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23759 /* Right shift narrowing. Types accepted I16 I32 I64. */
23760 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23761 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23762 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 23763 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 23764 /* CVT with optional immediate for fixed-point variant. */
21d799b5 23765 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 23766
4316f0d2
DG
23767 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23768 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
23769
23770 /* Data processing, three registers of different lengths. */
23771 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23772 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
23773 /* If not scalar, fall back to neon_dyadic_long.
23774 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
23775 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23776 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
23777 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23778 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23779 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23780 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23781 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23782 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23783 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23784 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23785 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
23786 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23787 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23788 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
23789 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23790 S16 S32 U16 U32. */
21d799b5 23791 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
23792
23793 /* Extract. Size 8. */
3b8d421e
PB
23794 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23795 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
23796
23797 /* Two registers, miscellaneous. */
23798 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23799 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23800 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23801 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23802 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23803 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23804 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23805 /* Vector replicate. Sizes 8 16 32. */
21d799b5 23806 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
23807 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23808 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23809 /* VMOVN. Types I16 I32 I64. */
21d799b5 23810 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 23811 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 23812 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 23813 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 23814 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
23815 /* VZIP / VUZP. Sizes 8 16 32. */
23816 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23817 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23818 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23819 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23820 /* VQABS / VQNEG. Types S8 S16 S32. */
23821 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23822 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23823 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23824 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23825 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23826 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23827 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23828 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23829 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 23830 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
23831 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23832 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23833 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23834 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23835 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
23836 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23837 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
23838 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23839 /* VCNT. Size 8. */
23840 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23841 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23842 /* Two address, untyped. */
23843 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23844 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23845 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
23846 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23847 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
23848
23849 /* Table lookup. Size 8. */
23850 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23851 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23852
c921be7d
NC
23853#undef THUMB_VARIANT
23854#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23855#undef ARM_VARIANT
23856#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23857
5287ad62 23858 /* Neon element/structure load/store. */
21d799b5
NC
23859 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23860 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23861 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23862 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23863 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23864 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23865 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23866 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 23867
c921be7d 23868#undef THUMB_VARIANT
74db7efb
NC
23869#define THUMB_VARIANT & fpu_vfp_ext_v3xd
23870#undef ARM_VARIANT
23871#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
23872 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23873 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23874 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23875 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23876 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23877 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23878 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23879 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23880 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23881
74db7efb 23882#undef THUMB_VARIANT
c921be7d
NC
23883#define THUMB_VARIANT & fpu_vfp_ext_v3
23884#undef ARM_VARIANT
23885#define ARM_VARIANT & fpu_vfp_ext_v3
23886
21d799b5 23887 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 23888 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23889 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23890 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23891 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23892 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23893 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23894 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23895 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 23896
74db7efb
NC
23897#undef ARM_VARIANT
23898#define ARM_VARIANT & fpu_vfp_ext_fma
23899#undef THUMB_VARIANT
23900#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 23901 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
23902 VFP FMA variant; NEON and VFP FMA always includes the NEON
23903 FMA instructions. */
d58196e0
AV
23904 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
23905 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
23906
62f3b8c8
PB
23907 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23908 the v form should always be used. */
23909 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23910 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23911 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23912 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23913 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23914 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23915
5287ad62 23916#undef THUMB_VARIANT
c921be7d
NC
23917#undef ARM_VARIANT
23918#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23919
21d799b5
NC
23920 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23921 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23922 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23923 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23924 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23925 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23926 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23927 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 23928
c921be7d
NC
23929#undef ARM_VARIANT
23930#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23931
21d799b5
NC
23932 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23933 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23934 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23935 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23936 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23937 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23938 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23939 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23940 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
23941 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23942 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23943 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23944 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23945 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23946 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
23947 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23948 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23949 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23950 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23951 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23952 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23953 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23954 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23955 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23956 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23957 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
23958 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23959 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23960 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
23961 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23962 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23963 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23964 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23965 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23966 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23967 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23968 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23969 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23970 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23971 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23972 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23973 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23974 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23975 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23976 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23977 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23978 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
23979 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23980 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23981 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23982 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23983 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23984 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23985 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23986 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23987 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23988 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23989 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23990 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23991 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23992 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23993 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23994 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23995 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23996 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23997 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23998 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23999 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24000 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24001 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24002 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24003 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24004 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24005 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24006 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24007 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24008 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24009 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24010 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24011 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24012 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24013 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24014 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24015 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24016 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24017 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24018 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24019 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24020 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24021 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24022 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24023 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24024 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24025 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24026 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24027 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24028 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24029 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24030 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24031 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24032 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24033 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24034 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24035 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24036 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24037 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24038 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24039 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24040 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24041 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24042 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24043 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24044 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24045 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24046 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24047 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24048 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24049 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24050 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24051 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24052 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24053 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24054 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24055 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24056 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24057 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24058 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24059 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24060 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24061 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24062 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24063 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24064 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24065 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24066 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24067 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24068 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24069 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24070 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24071 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24072 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24073 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24074 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24075 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24076 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24077 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24078 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24079 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24080 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24081 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24082 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24083 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24084 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24085 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24086 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24087 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24088 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24089 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24090 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24091 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24092 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24093 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24094
c921be7d
NC
24095#undef ARM_VARIANT
24096#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24097
21d799b5
NC
24098 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24099 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24100 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24101 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24102 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24103 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24104 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24105 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24106 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24107 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24108 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24109 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24110 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24111 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24112 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24113 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24114 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24115 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24116 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24117 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24118 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24119 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24120 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24121 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24122 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24123 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24124 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24125 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24126 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24127 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24128 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24129 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24130 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24131 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24132 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24133 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24134 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24135 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24136 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24137 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24138 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24139 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24140 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24141 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24142 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24143 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24144 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24145 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24146 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24147 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24148 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24149 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24150 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24151 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24152 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24153 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24154 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24155
c921be7d
NC
24156#undef ARM_VARIANT
24157#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24158
21d799b5
NC
24159 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24160 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24161 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24162 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24163 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24164 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24165 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24166 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24167 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24168 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24169 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24170 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24171 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24172 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24173 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24174 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24175 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24176 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24177 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24178 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24179 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24180 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24181 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24182 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24183 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24184 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24185 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24186 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24187 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24188 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24189 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24190 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24191 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24192 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24193 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24194 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24195 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24196 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24197 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24198 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24199 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24200 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24201 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24202 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24203 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24204 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24205 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24206 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24207 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24208 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24209 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24210 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24211 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24212 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24213 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24214 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24215 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24216 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24217 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24218 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24219 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24220 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24221 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24222 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24223 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24224 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24225 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24226 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24227 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24228 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24229 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24230 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24231 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24232 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24233 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24234 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24235
7fadb25d
SD
24236 /* ARMv8.5-A instructions. */
24237#undef ARM_VARIANT
24238#define ARM_VARIANT & arm_ext_sb
24239#undef THUMB_VARIANT
24240#define THUMB_VARIANT & arm_ext_sb
24241 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24242
dad0c3bf
SD
24243#undef ARM_VARIANT
24244#define ARM_VARIANT & arm_ext_predres
24245#undef THUMB_VARIANT
24246#define THUMB_VARIANT & arm_ext_predres
24247 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24248 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24249 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24250
16a1fa25 24251 /* ARMv8-M instructions. */
4ed7ed8d
TP
24252#undef ARM_VARIANT
24253#define ARM_VARIANT NULL
24254#undef THUMB_VARIANT
24255#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
24256 ToU("sg", e97fe97f, 0, (), noargs),
24257 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24258 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24259 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24260 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24261 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24262 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
24263
24264 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24265 instructions behave as nop if no VFP is present. */
24266#undef THUMB_VARIANT
24267#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
24268 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24269 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
24270
24271 /* Armv8.1-M Mainline instructions. */
24272#undef THUMB_VARIANT
24273#define THUMB_VARIANT & arm_ext_v8_1m_main
24274 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 24275 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 24276 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 24277 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 24278 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
24279
24280 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24281 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24282 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 24283
efd6b359 24284 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
24285 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24286
24287#undef THUMB_VARIANT
24288#define THUMB_VARIANT & mve_ext
1b883319
AV
24289
24290 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24291 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24292 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24293 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24294 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24295 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24296 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24297 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24298 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24299 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24300 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24301 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24302 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24303 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24304 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24305
5ee91343
AV
24306 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24307 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24308 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24309 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24310 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24311 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24312 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24313 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24314 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24315 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24316 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24317 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24318 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24319 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24320 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24321
a302e574 24322 /* MVE and MVE FP only. */
7df54120 24323 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
24324 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24325 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24326 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24327 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 24328 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
24329 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24330 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24331 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24332 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24333 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24334 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24335 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24336 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24337 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24338 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24339 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24340
35c228db
AV
24341 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24342 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24343 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24344 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24345 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24346 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24347 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24348 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24349 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24350 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24351 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24352 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
24353 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24354 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24355 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24356 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24357 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24358 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24359 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24360 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 24361
57785aa2
AV
24362 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24363 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24364 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
24365 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24366 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24367 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24368 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
24369 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24370 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24371 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24372 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
57785aa2 24373
5d281bf0
AV
24374#undef THUMB_VARIANT
24375#define THUMB_VARIANT & mve_fp_ext
24376 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 24377 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
5d281bf0 24378
5ee91343 24379#undef ARM_VARIANT
57785aa2 24380#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24381#undef THUMB_VARIANT
24382#define THUMB_VARIANT & arm_ext_v6t2
24383
57785aa2
AV
24384 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24385
24386#undef ARM_VARIANT
24387#define ARM_VARIANT & fpu_vfp_ext_v1xd
24388
24389 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24390 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24391 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24392 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24393
886e1c73
AV
24394 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24395 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24396 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24397
485dee97
AV
24398 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24399 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24400
57785aa2
AV
24401 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24402 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24403
1b883319
AV
24404 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24405 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24406
57785aa2
AV
24407#undef ARM_VARIANT
24408#define ARM_VARIANT & fpu_vfp_ext_v2
24409
24410 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24411 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24412 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24413 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24414
dd9634d9
AV
24415#undef ARM_VARIANT
24416#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24417 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24418 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24419 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24420 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24421
24422#undef ARM_VARIANT
5ee91343 24423#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 24424 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
24425 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24426 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24427 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
24428 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24429 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24430 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24431 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24432 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
24433 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24434 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 24435 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
24436 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24437 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24438 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
5d281bf0
AV
24439
24440#undef ARM_VARIANT
24441#define ARM_VARIANT & arm_ext_v8_3
24442#undef THUMB_VARIANT
24443#define THUMB_VARIANT & arm_ext_v6t2_v8m
24444 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24445 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
24446};
24447#undef ARM_VARIANT
24448#undef THUMB_VARIANT
24449#undef TCE
c19d1205
ZW
24450#undef TUE
24451#undef TUF
24452#undef TCC
8f06b2d8 24453#undef cCE
e3cb604e
PB
24454#undef cCL
24455#undef C3E
4389b29a 24456#undef C3
c19d1205
ZW
24457#undef CE
24458#undef CM
4389b29a 24459#undef CL
c19d1205
ZW
24460#undef UE
24461#undef UF
24462#undef UT
5287ad62
JB
24463#undef NUF
24464#undef nUF
24465#undef NCE
24466#undef nCE
c19d1205
ZW
24467#undef OPS0
24468#undef OPS1
24469#undef OPS2
24470#undef OPS3
24471#undef OPS4
24472#undef OPS5
24473#undef OPS6
24474#undef do_0
4389b29a
AV
24475#undef ToC
24476#undef toC
24477#undef ToU
f6b2b12d 24478#undef toU
c19d1205
ZW
24479\f
24480/* MD interface: bits in the object file. */
bfae80f2 24481
c19d1205
ZW
24482/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24483 for use in the a.out file, and stores them in the array pointed to by buf.
24484 This knows about the endian-ness of the target machine and does
24485 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24486 2 (short) and 4 (long) Floating numbers are put out as a series of
24487 LITTLENUMS (shorts, here at least). */
b99bd4ef 24488
c19d1205
ZW
24489void
24490md_number_to_chars (char * buf, valueT val, int n)
24491{
24492 if (target_big_endian)
24493 number_to_chars_bigendian (buf, val, n);
24494 else
24495 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24496}
24497
c19d1205
ZW
24498static valueT
24499md_chars_to_number (char * buf, int n)
bfae80f2 24500{
c19d1205
ZW
24501 valueT result = 0;
24502 unsigned char * where = (unsigned char *) buf;
bfae80f2 24503
c19d1205 24504 if (target_big_endian)
b99bd4ef 24505 {
c19d1205
ZW
24506 while (n--)
24507 {
24508 result <<= 8;
24509 result |= (*where++ & 255);
24510 }
b99bd4ef 24511 }
c19d1205 24512 else
b99bd4ef 24513 {
c19d1205
ZW
24514 while (n--)
24515 {
24516 result <<= 8;
24517 result |= (where[n] & 255);
24518 }
bfae80f2 24519 }
b99bd4ef 24520
c19d1205 24521 return result;
bfae80f2 24522}
b99bd4ef 24523
c19d1205 24524/* MD interface: Sections. */
b99bd4ef 24525
fa94de6b
RM
24526/* Calculate the maximum variable size (i.e., excluding fr_fix)
24527 that an rs_machine_dependent frag may reach. */
24528
24529unsigned int
24530arm_frag_max_var (fragS *fragp)
24531{
24532 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24533 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24534
24535 Note that we generate relaxable instructions even for cases that don't
24536 really need it, like an immediate that's a trivial constant. So we're
24537 overestimating the instruction size for some of those cases. Rather
24538 than putting more intelligence here, it would probably be better to
24539 avoid generating a relaxation frag in the first place when it can be
24540 determined up front that a short instruction will suffice. */
24541
24542 gas_assert (fragp->fr_type == rs_machine_dependent);
24543 return INSN_SIZE;
24544}
24545
0110f2b8
PB
24546/* Estimate the size of a frag before relaxing. Assume everything fits in
24547 2 bytes. */
24548
c19d1205 24549int
0110f2b8 24550md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24551 segT segtype ATTRIBUTE_UNUSED)
24552{
0110f2b8
PB
24553 fragp->fr_var = 2;
24554 return 2;
24555}
24556
24557/* Convert a machine dependent frag. */
24558
24559void
24560md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24561{
24562 unsigned long insn;
24563 unsigned long old_op;
24564 char *buf;
24565 expressionS exp;
24566 fixS *fixp;
24567 int reloc_type;
24568 int pc_rel;
24569 int opcode;
24570
24571 buf = fragp->fr_literal + fragp->fr_fix;
24572
24573 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24574 if (fragp->fr_symbol)
24575 {
0110f2b8
PB
24576 exp.X_op = O_symbol;
24577 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24578 }
24579 else
24580 {
0110f2b8 24581 exp.X_op = O_constant;
5f4273c7 24582 }
0110f2b8
PB
24583 exp.X_add_number = fragp->fr_offset;
24584 opcode = fragp->fr_subtype;
24585 switch (opcode)
24586 {
24587 case T_MNEM_ldr_pc:
24588 case T_MNEM_ldr_pc2:
24589 case T_MNEM_ldr_sp:
24590 case T_MNEM_str_sp:
24591 case T_MNEM_ldr:
24592 case T_MNEM_ldrb:
24593 case T_MNEM_ldrh:
24594 case T_MNEM_str:
24595 case T_MNEM_strb:
24596 case T_MNEM_strh:
24597 if (fragp->fr_var == 4)
24598 {
5f4273c7 24599 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24600 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24601 {
24602 insn |= (old_op & 0x700) << 4;
24603 }
24604 else
24605 {
24606 insn |= (old_op & 7) << 12;
24607 insn |= (old_op & 0x38) << 13;
24608 }
24609 insn |= 0x00000c00;
24610 put_thumb32_insn (buf, insn);
24611 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24612 }
24613 else
24614 {
24615 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24616 }
24617 pc_rel = (opcode == T_MNEM_ldr_pc2);
24618 break;
24619 case T_MNEM_adr:
24620 if (fragp->fr_var == 4)
24621 {
24622 insn = THUMB_OP32 (opcode);
24623 insn |= (old_op & 0xf0) << 4;
24624 put_thumb32_insn (buf, insn);
24625 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24626 }
24627 else
24628 {
24629 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24630 exp.X_add_number -= 4;
24631 }
24632 pc_rel = 1;
24633 break;
24634 case T_MNEM_mov:
24635 case T_MNEM_movs:
24636 case T_MNEM_cmp:
24637 case T_MNEM_cmn:
24638 if (fragp->fr_var == 4)
24639 {
24640 int r0off = (opcode == T_MNEM_mov
24641 || opcode == T_MNEM_movs) ? 0 : 8;
24642 insn = THUMB_OP32 (opcode);
24643 insn = (insn & 0xe1ffffff) | 0x10000000;
24644 insn |= (old_op & 0x700) << r0off;
24645 put_thumb32_insn (buf, insn);
24646 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24647 }
24648 else
24649 {
24650 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24651 }
24652 pc_rel = 0;
24653 break;
24654 case T_MNEM_b:
24655 if (fragp->fr_var == 4)
24656 {
24657 insn = THUMB_OP32(opcode);
24658 put_thumb32_insn (buf, insn);
24659 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24660 }
24661 else
24662 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24663 pc_rel = 1;
24664 break;
24665 case T_MNEM_bcond:
24666 if (fragp->fr_var == 4)
24667 {
24668 insn = THUMB_OP32(opcode);
24669 insn |= (old_op & 0xf00) << 14;
24670 put_thumb32_insn (buf, insn);
24671 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24672 }
24673 else
24674 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24675 pc_rel = 1;
24676 break;
24677 case T_MNEM_add_sp:
24678 case T_MNEM_add_pc:
24679 case T_MNEM_inc_sp:
24680 case T_MNEM_dec_sp:
24681 if (fragp->fr_var == 4)
24682 {
24683 /* ??? Choose between add and addw. */
24684 insn = THUMB_OP32 (opcode);
24685 insn |= (old_op & 0xf0) << 4;
24686 put_thumb32_insn (buf, insn);
16805f35
PB
24687 if (opcode == T_MNEM_add_pc)
24688 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24689 else
24690 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
24691 }
24692 else
24693 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24694 pc_rel = 0;
24695 break;
24696
24697 case T_MNEM_addi:
24698 case T_MNEM_addis:
24699 case T_MNEM_subi:
24700 case T_MNEM_subis:
24701 if (fragp->fr_var == 4)
24702 {
24703 insn = THUMB_OP32 (opcode);
24704 insn |= (old_op & 0xf0) << 4;
24705 insn |= (old_op & 0xf) << 16;
24706 put_thumb32_insn (buf, insn);
16805f35
PB
24707 if (insn & (1 << 20))
24708 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24709 else
24710 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
24711 }
24712 else
24713 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24714 pc_rel = 0;
24715 break;
24716 default:
5f4273c7 24717 abort ();
0110f2b8
PB
24718 }
24719 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 24720 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
24721 fixp->fx_file = fragp->fr_file;
24722 fixp->fx_line = fragp->fr_line;
24723 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
24724
24725 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24726 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24727 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24728 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
24729}
24730
24731/* Return the size of a relaxable immediate operand instruction.
24732 SHIFT and SIZE specify the form of the allowable immediate. */
24733static int
24734relax_immediate (fragS *fragp, int size, int shift)
24735{
24736 offsetT offset;
24737 offsetT mask;
24738 offsetT low;
24739
24740 /* ??? Should be able to do better than this. */
24741 if (fragp->fr_symbol)
24742 return 4;
24743
24744 low = (1 << shift) - 1;
24745 mask = (1 << (shift + size)) - (1 << shift);
24746 offset = fragp->fr_offset;
24747 /* Force misaligned offsets to 32-bit variant. */
24748 if (offset & low)
5e77afaa 24749 return 4;
0110f2b8
PB
24750 if (offset & ~mask)
24751 return 4;
24752 return 2;
24753}
24754
5e77afaa
PB
24755/* Get the address of a symbol during relaxation. */
24756static addressT
5f4273c7 24757relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
24758{
24759 fragS *sym_frag;
24760 addressT addr;
24761 symbolS *sym;
24762
24763 sym = fragp->fr_symbol;
24764 sym_frag = symbol_get_frag (sym);
24765 know (S_GET_SEGMENT (sym) != absolute_section
24766 || sym_frag == &zero_address_frag);
24767 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24768
24769 /* If frag has yet to be reached on this pass, assume it will
24770 move by STRETCH just as we did. If this is not so, it will
24771 be because some frag between grows, and that will force
24772 another pass. */
24773
24774 if (stretch != 0
24775 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
24776 {
24777 fragS *f;
24778
24779 /* Adjust stretch for any alignment frag. Note that if have
24780 been expanding the earlier code, the symbol may be
24781 defined in what appears to be an earlier frag. FIXME:
24782 This doesn't handle the fr_subtype field, which specifies
24783 a maximum number of bytes to skip when doing an
24784 alignment. */
24785 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24786 {
24787 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24788 {
24789 if (stretch < 0)
24790 stretch = - ((- stretch)
24791 & ~ ((1 << (int) f->fr_offset) - 1));
24792 else
24793 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24794 if (stretch == 0)
24795 break;
24796 }
24797 }
24798 if (f != NULL)
24799 addr += stretch;
24800 }
5e77afaa
PB
24801
24802 return addr;
24803}
24804
0110f2b8
PB
24805/* Return the size of a relaxable adr pseudo-instruction or PC-relative
24806 load. */
24807static int
5e77afaa 24808relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
24809{
24810 addressT addr;
24811 offsetT val;
24812
24813 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
24814 if (fragp->fr_symbol == NULL
24815 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24816 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24817 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24818 return 4;
24819
5f4273c7 24820 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24821 addr = fragp->fr_address + fragp->fr_fix;
24822 addr = (addr + 4) & ~3;
5e77afaa 24823 /* Force misaligned targets to 32-bit variant. */
0110f2b8 24824 if (val & 3)
5e77afaa 24825 return 4;
0110f2b8
PB
24826 val -= addr;
24827 if (val < 0 || val > 1020)
24828 return 4;
24829 return 2;
24830}
24831
24832/* Return the size of a relaxable add/sub immediate instruction. */
24833static int
24834relax_addsub (fragS *fragp, asection *sec)
24835{
24836 char *buf;
24837 int op;
24838
24839 buf = fragp->fr_literal + fragp->fr_fix;
24840 op = bfd_get_16(sec->owner, buf);
24841 if ((op & 0xf) == ((op >> 4) & 0xf))
24842 return relax_immediate (fragp, 8, 0);
24843 else
24844 return relax_immediate (fragp, 3, 0);
24845}
24846
e83a675f
RE
24847/* Return TRUE iff the definition of symbol S could be pre-empted
24848 (overridden) at link or load time. */
24849static bfd_boolean
24850symbol_preemptible (symbolS *s)
24851{
24852 /* Weak symbols can always be pre-empted. */
24853 if (S_IS_WEAK (s))
24854 return TRUE;
24855
24856 /* Non-global symbols cannot be pre-empted. */
24857 if (! S_IS_EXTERNAL (s))
24858 return FALSE;
24859
24860#ifdef OBJ_ELF
24861 /* In ELF, a global symbol can be marked protected, or private. In that
24862 case it can't be pre-empted (other definitions in the same link unit
24863 would violate the ODR). */
24864 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24865 return FALSE;
24866#endif
24867
24868 /* Other global symbols might be pre-empted. */
24869 return TRUE;
24870}
0110f2b8
PB
24871
24872/* Return the size of a relaxable branch instruction. BITS is the
24873 size of the offset field in the narrow instruction. */
24874
24875static int
5e77afaa 24876relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
24877{
24878 addressT addr;
24879 offsetT val;
24880 offsetT limit;
24881
24882 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 24883 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24884 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24885 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24886 return 4;
24887
267bf995 24888#ifdef OBJ_ELF
e83a675f 24889 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
24890 if (S_IS_DEFINED (fragp->fr_symbol)
24891 && ARM_IS_FUNC (fragp->fr_symbol))
24892 return 4;
e83a675f 24893#endif
0d9b4b55 24894
e83a675f 24895 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 24896 return 4;
267bf995 24897
5f4273c7 24898 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24899 addr = fragp->fr_address + fragp->fr_fix + 4;
24900 val -= addr;
24901
24902 /* Offset is a signed value *2 */
24903 limit = 1 << bits;
24904 if (val >= limit || val < -limit)
24905 return 4;
24906 return 2;
24907}
24908
24909
24910/* Relax a machine dependent frag. This returns the amount by which
24911 the current size of the frag should change. */
24912
24913int
5e77afaa 24914arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
24915{
24916 int oldsize;
24917 int newsize;
24918
24919 oldsize = fragp->fr_var;
24920 switch (fragp->fr_subtype)
24921 {
24922 case T_MNEM_ldr_pc2:
5f4273c7 24923 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24924 break;
24925 case T_MNEM_ldr_pc:
24926 case T_MNEM_ldr_sp:
24927 case T_MNEM_str_sp:
5f4273c7 24928 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
24929 break;
24930 case T_MNEM_ldr:
24931 case T_MNEM_str:
5f4273c7 24932 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
24933 break;
24934 case T_MNEM_ldrh:
24935 case T_MNEM_strh:
5f4273c7 24936 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
24937 break;
24938 case T_MNEM_ldrb:
24939 case T_MNEM_strb:
5f4273c7 24940 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
24941 break;
24942 case T_MNEM_adr:
5f4273c7 24943 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24944 break;
24945 case T_MNEM_mov:
24946 case T_MNEM_movs:
24947 case T_MNEM_cmp:
24948 case T_MNEM_cmn:
5f4273c7 24949 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
24950 break;
24951 case T_MNEM_b:
5f4273c7 24952 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
24953 break;
24954 case T_MNEM_bcond:
5f4273c7 24955 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
24956 break;
24957 case T_MNEM_add_sp:
24958 case T_MNEM_add_pc:
24959 newsize = relax_immediate (fragp, 8, 2);
24960 break;
24961 case T_MNEM_inc_sp:
24962 case T_MNEM_dec_sp:
24963 newsize = relax_immediate (fragp, 7, 2);
24964 break;
24965 case T_MNEM_addi:
24966 case T_MNEM_addis:
24967 case T_MNEM_subi:
24968 case T_MNEM_subis:
24969 newsize = relax_addsub (fragp, sec);
24970 break;
24971 default:
5f4273c7 24972 abort ();
0110f2b8 24973 }
5e77afaa
PB
24974
24975 fragp->fr_var = newsize;
24976 /* Freeze wide instructions that are at or before the same location as
24977 in the previous pass. This avoids infinite loops.
5f4273c7
NC
24978 Don't freeze them unconditionally because targets may be artificially
24979 misaligned by the expansion of preceding frags. */
5e77afaa 24980 if (stretch <= 0 && newsize > 2)
0110f2b8 24981 {
0110f2b8 24982 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 24983 frag_wane (fragp);
0110f2b8 24984 }
5e77afaa 24985
0110f2b8 24986 return newsize - oldsize;
c19d1205 24987}
b99bd4ef 24988
c19d1205 24989/* Round up a section size to the appropriate boundary. */
b99bd4ef 24990
c19d1205
ZW
24991valueT
24992md_section_align (segT segment ATTRIBUTE_UNUSED,
24993 valueT size)
24994{
6844c0cc 24995 return size;
bfae80f2 24996}
b99bd4ef 24997
c19d1205
ZW
24998/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24999 of an rs_align_code fragment. */
25000
25001void
25002arm_handle_align (fragS * fragP)
bfae80f2 25003{
d9235011 25004 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25005 {
25006 { /* ARMv1 */
25007 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25008 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25009 },
25010 { /* ARMv6k */
25011 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25012 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25013 },
25014 };
d9235011 25015 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25016 {
25017 { /* Thumb-1 */
25018 {0xc0, 0x46}, /* LE */
25019 {0x46, 0xc0}, /* BE */
25020 },
25021 { /* Thumb-2 */
25022 {0x00, 0xbf}, /* LE */
25023 {0xbf, 0x00} /* BE */
25024 }
25025 };
d9235011 25026 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25027 { /* Wide Thumb-2 */
25028 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25029 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25030 };
c921be7d 25031
e7495e45 25032 unsigned bytes, fix, noop_size;
c19d1205 25033 char * p;
d9235011
TS
25034 const unsigned char * noop;
25035 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25036#ifdef OBJ_ELF
25037 enum mstate state;
25038#endif
bfae80f2 25039
c19d1205 25040 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25041 return;
25042
c19d1205
ZW
25043 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25044 p = fragP->fr_literal + fragP->fr_fix;
25045 fix = 0;
bfae80f2 25046
c19d1205
ZW
25047 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25048 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25049
cd000bff 25050 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25051
cd000bff 25052 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25053 {
7f78eb34
JW
25054 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25055 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25056 {
25057 narrow_noop = thumb_noop[1][target_big_endian];
25058 noop = wide_thumb_noop[target_big_endian];
25059 }
c19d1205 25060 else
e7495e45
NS
25061 noop = thumb_noop[0][target_big_endian];
25062 noop_size = 2;
cd000bff
DJ
25063#ifdef OBJ_ELF
25064 state = MAP_THUMB;
25065#endif
7ed4c4c5
NC
25066 }
25067 else
25068 {
7f78eb34
JW
25069 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25070 ? selected_cpu : arm_arch_none,
25071 arm_ext_v6k) != 0]
e7495e45
NS
25072 [target_big_endian];
25073 noop_size = 4;
cd000bff
DJ
25074#ifdef OBJ_ELF
25075 state = MAP_ARM;
25076#endif
7ed4c4c5 25077 }
c921be7d 25078
e7495e45 25079 fragP->fr_var = noop_size;
c921be7d 25080
c19d1205 25081 if (bytes & (noop_size - 1))
7ed4c4c5 25082 {
c19d1205 25083 fix = bytes & (noop_size - 1);
cd000bff
DJ
25084#ifdef OBJ_ELF
25085 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25086#endif
c19d1205
ZW
25087 memset (p, 0, fix);
25088 p += fix;
25089 bytes -= fix;
a737bd4d 25090 }
a737bd4d 25091
e7495e45
NS
25092 if (narrow_noop)
25093 {
25094 if (bytes & noop_size)
25095 {
25096 /* Insert a narrow noop. */
25097 memcpy (p, narrow_noop, noop_size);
25098 p += noop_size;
25099 bytes -= noop_size;
25100 fix += noop_size;
25101 }
25102
25103 /* Use wide noops for the remainder */
25104 noop_size = 4;
25105 }
25106
c19d1205 25107 while (bytes >= noop_size)
a737bd4d 25108 {
c19d1205
ZW
25109 memcpy (p, noop, noop_size);
25110 p += noop_size;
25111 bytes -= noop_size;
25112 fix += noop_size;
a737bd4d
NC
25113 }
25114
c19d1205 25115 fragP->fr_fix += fix;
a737bd4d
NC
25116}
25117
c19d1205
ZW
25118/* Called from md_do_align. Used to create an alignment
25119 frag in a code section. */
25120
25121void
25122arm_frag_align_code (int n, int max)
bfae80f2 25123{
c19d1205 25124 char * p;
7ed4c4c5 25125
c19d1205 25126 /* We assume that there will never be a requirement
6ec8e702 25127 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25128 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25129 {
25130 char err_msg[128];
25131
fa94de6b 25132 sprintf (err_msg,
477330fc
RM
25133 _("alignments greater than %d bytes not supported in .text sections."),
25134 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25135 as_fatal ("%s", err_msg);
6ec8e702 25136 }
bfae80f2 25137
c19d1205
ZW
25138 p = frag_var (rs_align_code,
25139 MAX_MEM_FOR_RS_ALIGN_CODE,
25140 1,
25141 (relax_substateT) max,
25142 (symbolS *) NULL,
25143 (offsetT) n,
25144 (char *) NULL);
25145 *p = 0;
25146}
bfae80f2 25147
8dc2430f
NC
25148/* Perform target specific initialisation of a frag.
25149 Note - despite the name this initialisation is not done when the frag
25150 is created, but only when its type is assigned. A frag can be created
25151 and used a long time before its type is set, so beware of assuming that
33eaf5de 25152 this initialisation is performed first. */
bfae80f2 25153
cd000bff
DJ
25154#ifndef OBJ_ELF
25155void
25156arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25157{
25158 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25159 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
25160}
25161
25162#else /* OBJ_ELF is defined. */
c19d1205 25163void
cd000bff 25164arm_init_frag (fragS * fragP, int max_chars)
c19d1205 25165{
e8d84ca1 25166 bfd_boolean frag_thumb_mode;
b968d18a 25167
8dc2430f
NC
25168 /* If the current ARM vs THUMB mode has not already
25169 been recorded into this frag then do so now. */
cd000bff 25170 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
25171 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25172
e8d84ca1
NC
25173 /* PR 21809: Do not set a mapping state for debug sections
25174 - it just confuses other tools. */
25175 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25176 return;
25177
b968d18a 25178 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 25179
f9c1b181
RL
25180 /* Record a mapping symbol for alignment frags. We will delete this
25181 later if the alignment ends up empty. */
25182 switch (fragP->fr_type)
25183 {
25184 case rs_align:
25185 case rs_align_test:
25186 case rs_fill:
25187 mapping_state_2 (MAP_DATA, max_chars);
25188 break;
25189 case rs_align_code:
b968d18a 25190 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
25191 break;
25192 default:
25193 break;
cd000bff 25194 }
bfae80f2
RE
25195}
25196
c19d1205
ZW
25197/* When we change sections we need to issue a new mapping symbol. */
25198
25199void
25200arm_elf_change_section (void)
bfae80f2 25201{
c19d1205
ZW
25202 /* Link an unlinked unwind index table section to the .text section. */
25203 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25204 && elf_linked_to_section (now_seg) == NULL)
25205 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
25206}
25207
c19d1205
ZW
25208int
25209arm_elf_section_type (const char * str, size_t len)
e45d0630 25210{
c19d1205
ZW
25211 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25212 return SHT_ARM_EXIDX;
e45d0630 25213
c19d1205
ZW
25214 return -1;
25215}
25216\f
25217/* Code to deal with unwinding tables. */
e45d0630 25218
c19d1205 25219static void add_unwind_adjustsp (offsetT);
e45d0630 25220
5f4273c7 25221/* Generate any deferred unwind frame offset. */
e45d0630 25222
bfae80f2 25223static void
c19d1205 25224flush_pending_unwind (void)
bfae80f2 25225{
c19d1205 25226 offsetT offset;
bfae80f2 25227
c19d1205
ZW
25228 offset = unwind.pending_offset;
25229 unwind.pending_offset = 0;
25230 if (offset != 0)
25231 add_unwind_adjustsp (offset);
bfae80f2
RE
25232}
25233
c19d1205
ZW
25234/* Add an opcode to this list for this function. Two-byte opcodes should
25235 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25236 order. */
25237
bfae80f2 25238static void
c19d1205 25239add_unwind_opcode (valueT op, int length)
bfae80f2 25240{
c19d1205
ZW
25241 /* Add any deferred stack adjustment. */
25242 if (unwind.pending_offset)
25243 flush_pending_unwind ();
bfae80f2 25244
c19d1205 25245 unwind.sp_restored = 0;
bfae80f2 25246
c19d1205 25247 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 25248 {
c19d1205
ZW
25249 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25250 if (unwind.opcodes)
325801bd
TS
25251 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25252 unwind.opcode_alloc);
c19d1205 25253 else
325801bd 25254 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 25255 }
c19d1205 25256 while (length > 0)
bfae80f2 25257 {
c19d1205
ZW
25258 length--;
25259 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25260 op >>= 8;
25261 unwind.opcode_count++;
bfae80f2 25262 }
bfae80f2
RE
25263}
25264
c19d1205
ZW
25265/* Add unwind opcodes to adjust the stack pointer. */
25266
bfae80f2 25267static void
c19d1205 25268add_unwind_adjustsp (offsetT offset)
bfae80f2 25269{
c19d1205 25270 valueT op;
bfae80f2 25271
c19d1205 25272 if (offset > 0x200)
bfae80f2 25273 {
c19d1205
ZW
25274 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25275 char bytes[5];
25276 int n;
25277 valueT o;
bfae80f2 25278
c19d1205
ZW
25279 /* Long form: 0xb2, uleb128. */
25280 /* This might not fit in a word so add the individual bytes,
25281 remembering the list is built in reverse order. */
25282 o = (valueT) ((offset - 0x204) >> 2);
25283 if (o == 0)
25284 add_unwind_opcode (0, 1);
bfae80f2 25285
c19d1205
ZW
25286 /* Calculate the uleb128 encoding of the offset. */
25287 n = 0;
25288 while (o)
25289 {
25290 bytes[n] = o & 0x7f;
25291 o >>= 7;
25292 if (o)
25293 bytes[n] |= 0x80;
25294 n++;
25295 }
25296 /* Add the insn. */
25297 for (; n; n--)
25298 add_unwind_opcode (bytes[n - 1], 1);
25299 add_unwind_opcode (0xb2, 1);
25300 }
25301 else if (offset > 0x100)
bfae80f2 25302 {
c19d1205
ZW
25303 /* Two short opcodes. */
25304 add_unwind_opcode (0x3f, 1);
25305 op = (offset - 0x104) >> 2;
25306 add_unwind_opcode (op, 1);
bfae80f2 25307 }
c19d1205
ZW
25308 else if (offset > 0)
25309 {
25310 /* Short opcode. */
25311 op = (offset - 4) >> 2;
25312 add_unwind_opcode (op, 1);
25313 }
25314 else if (offset < 0)
bfae80f2 25315 {
c19d1205
ZW
25316 offset = -offset;
25317 while (offset > 0x100)
bfae80f2 25318 {
c19d1205
ZW
25319 add_unwind_opcode (0x7f, 1);
25320 offset -= 0x100;
bfae80f2 25321 }
c19d1205
ZW
25322 op = ((offset - 4) >> 2) | 0x40;
25323 add_unwind_opcode (op, 1);
bfae80f2 25324 }
bfae80f2
RE
25325}
25326
c19d1205 25327/* Finish the list of unwind opcodes for this function. */
0198d5e6 25328
c19d1205
ZW
25329static void
25330finish_unwind_opcodes (void)
bfae80f2 25331{
c19d1205 25332 valueT op;
bfae80f2 25333
c19d1205 25334 if (unwind.fp_used)
bfae80f2 25335 {
708587a4 25336 /* Adjust sp as necessary. */
c19d1205
ZW
25337 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25338 flush_pending_unwind ();
bfae80f2 25339
c19d1205
ZW
25340 /* After restoring sp from the frame pointer. */
25341 op = 0x90 | unwind.fp_reg;
25342 add_unwind_opcode (op, 1);
25343 }
25344 else
25345 flush_pending_unwind ();
bfae80f2
RE
25346}
25347
bfae80f2 25348
c19d1205
ZW
25349/* Start an exception table entry. If idx is nonzero this is an index table
25350 entry. */
bfae80f2
RE
25351
25352static void
c19d1205 25353start_unwind_section (const segT text_seg, int idx)
bfae80f2 25354{
c19d1205
ZW
25355 const char * text_name;
25356 const char * prefix;
25357 const char * prefix_once;
25358 const char * group_name;
c19d1205 25359 char * sec_name;
c19d1205
ZW
25360 int type;
25361 int flags;
25362 int linkonce;
bfae80f2 25363
c19d1205 25364 if (idx)
bfae80f2 25365 {
c19d1205
ZW
25366 prefix = ELF_STRING_ARM_unwind;
25367 prefix_once = ELF_STRING_ARM_unwind_once;
25368 type = SHT_ARM_EXIDX;
bfae80f2 25369 }
c19d1205 25370 else
bfae80f2 25371 {
c19d1205
ZW
25372 prefix = ELF_STRING_ARM_unwind_info;
25373 prefix_once = ELF_STRING_ARM_unwind_info_once;
25374 type = SHT_PROGBITS;
bfae80f2
RE
25375 }
25376
c19d1205
ZW
25377 text_name = segment_name (text_seg);
25378 if (streq (text_name, ".text"))
25379 text_name = "";
25380
25381 if (strncmp (text_name, ".gnu.linkonce.t.",
25382 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 25383 {
c19d1205
ZW
25384 prefix = prefix_once;
25385 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
25386 }
25387
29a2809e 25388 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 25389
c19d1205
ZW
25390 flags = SHF_ALLOC;
25391 linkonce = 0;
25392 group_name = 0;
bfae80f2 25393
c19d1205
ZW
25394 /* Handle COMDAT group. */
25395 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25396 {
c19d1205
ZW
25397 group_name = elf_group_name (text_seg);
25398 if (group_name == NULL)
25399 {
bd3ba5d1 25400 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25401 segment_name (text_seg));
25402 ignore_rest_of_line ();
25403 return;
25404 }
25405 flags |= SHF_GROUP;
25406 linkonce = 1;
bfae80f2
RE
25407 }
25408
a91e1603
L
25409 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25410 linkonce, 0);
bfae80f2 25411
5f4273c7 25412 /* Set the section link for index tables. */
c19d1205
ZW
25413 if (idx)
25414 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25415}
25416
bfae80f2 25417
c19d1205
ZW
25418/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25419 personality routine data. Returns zero, or the index table value for
cad0da33 25420 an inline entry. */
c19d1205
ZW
25421
25422static valueT
25423create_unwind_entry (int have_data)
bfae80f2 25424{
c19d1205
ZW
25425 int size;
25426 addressT where;
25427 char *ptr;
25428 /* The current word of data. */
25429 valueT data;
25430 /* The number of bytes left in this word. */
25431 int n;
bfae80f2 25432
c19d1205 25433 finish_unwind_opcodes ();
bfae80f2 25434
c19d1205
ZW
25435 /* Remember the current text section. */
25436 unwind.saved_seg = now_seg;
25437 unwind.saved_subseg = now_subseg;
bfae80f2 25438
c19d1205 25439 start_unwind_section (now_seg, 0);
bfae80f2 25440
c19d1205 25441 if (unwind.personality_routine == NULL)
bfae80f2 25442 {
c19d1205
ZW
25443 if (unwind.personality_index == -2)
25444 {
25445 if (have_data)
5f4273c7 25446 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25447 return 1; /* EXIDX_CANTUNWIND. */
25448 }
bfae80f2 25449
c19d1205
ZW
25450 /* Use a default personality routine if none is specified. */
25451 if (unwind.personality_index == -1)
25452 {
25453 if (unwind.opcode_count > 3)
25454 unwind.personality_index = 1;
25455 else
25456 unwind.personality_index = 0;
25457 }
bfae80f2 25458
c19d1205
ZW
25459 /* Space for the personality routine entry. */
25460 if (unwind.personality_index == 0)
25461 {
25462 if (unwind.opcode_count > 3)
25463 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25464
c19d1205
ZW
25465 if (!have_data)
25466 {
25467 /* All the data is inline in the index table. */
25468 data = 0x80;
25469 n = 3;
25470 while (unwind.opcode_count > 0)
25471 {
25472 unwind.opcode_count--;
25473 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25474 n--;
25475 }
bfae80f2 25476
c19d1205
ZW
25477 /* Pad with "finish" opcodes. */
25478 while (n--)
25479 data = (data << 8) | 0xb0;
bfae80f2 25480
c19d1205
ZW
25481 return data;
25482 }
25483 size = 0;
25484 }
25485 else
25486 /* We get two opcodes "free" in the first word. */
25487 size = unwind.opcode_count - 2;
25488 }
25489 else
5011093d 25490 {
cad0da33
NC
25491 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25492 if (unwind.personality_index != -1)
25493 {
25494 as_bad (_("attempt to recreate an unwind entry"));
25495 return 1;
25496 }
5011093d
NC
25497
25498 /* An extra byte is required for the opcode count. */
25499 size = unwind.opcode_count + 1;
25500 }
bfae80f2 25501
c19d1205
ZW
25502 size = (size + 3) >> 2;
25503 if (size > 0xff)
25504 as_bad (_("too many unwind opcodes"));
bfae80f2 25505
c19d1205
ZW
25506 frag_align (2, 0, 0);
25507 record_alignment (now_seg, 2);
25508 unwind.table_entry = expr_build_dot ();
25509
25510 /* Allocate the table entry. */
25511 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25512 /* PR 13449: Zero the table entries in case some of them are not used. */
25513 memset (ptr, 0, (size << 2) + 4);
c19d1205 25514 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25515
c19d1205 25516 switch (unwind.personality_index)
bfae80f2 25517 {
c19d1205
ZW
25518 case -1:
25519 /* ??? Should this be a PLT generating relocation? */
25520 /* Custom personality routine. */
25521 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25522 BFD_RELOC_ARM_PREL31);
bfae80f2 25523
c19d1205
ZW
25524 where += 4;
25525 ptr += 4;
bfae80f2 25526
c19d1205 25527 /* Set the first byte to the number of additional words. */
5011093d 25528 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25529 n = 3;
25530 break;
bfae80f2 25531
c19d1205
ZW
25532 /* ABI defined personality routines. */
25533 case 0:
25534 /* Three opcodes bytes are packed into the first word. */
25535 data = 0x80;
25536 n = 3;
25537 break;
bfae80f2 25538
c19d1205
ZW
25539 case 1:
25540 case 2:
25541 /* The size and first two opcode bytes go in the first word. */
25542 data = ((0x80 + unwind.personality_index) << 8) | size;
25543 n = 2;
25544 break;
bfae80f2 25545
c19d1205
ZW
25546 default:
25547 /* Should never happen. */
25548 abort ();
25549 }
bfae80f2 25550
c19d1205
ZW
25551 /* Pack the opcodes into words (MSB first), reversing the list at the same
25552 time. */
25553 while (unwind.opcode_count > 0)
25554 {
25555 if (n == 0)
25556 {
25557 md_number_to_chars (ptr, data, 4);
25558 ptr += 4;
25559 n = 4;
25560 data = 0;
25561 }
25562 unwind.opcode_count--;
25563 n--;
25564 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25565 }
25566
25567 /* Finish off the last word. */
25568 if (n < 4)
25569 {
25570 /* Pad with "finish" opcodes. */
25571 while (n--)
25572 data = (data << 8) | 0xb0;
25573
25574 md_number_to_chars (ptr, data, 4);
25575 }
25576
25577 if (!have_data)
25578 {
25579 /* Add an empty descriptor if there is no user-specified data. */
25580 ptr = frag_more (4);
25581 md_number_to_chars (ptr, 0, 4);
25582 }
25583
25584 return 0;
bfae80f2
RE
25585}
25586
f0927246
NC
25587
25588/* Initialize the DWARF-2 unwind information for this procedure. */
25589
25590void
25591tc_arm_frame_initial_instructions (void)
25592{
25593 cfi_add_CFA_def_cfa (REG_SP, 0);
25594}
25595#endif /* OBJ_ELF */
25596
c19d1205
ZW
25597/* Convert REGNAME to a DWARF-2 register number. */
25598
25599int
1df69f4f 25600tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25601{
1df69f4f 25602 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25603 if (reg != FAIL)
25604 return reg;
c19d1205 25605
1f5afe1c
NC
25606 /* PR 16694: Allow VFP registers as well. */
25607 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25608 if (reg != FAIL)
25609 return 64 + reg;
c19d1205 25610
1f5afe1c
NC
25611 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25612 if (reg != FAIL)
25613 return reg + 256;
25614
0198d5e6 25615 return FAIL;
bfae80f2
RE
25616}
25617
f0927246 25618#ifdef TE_PE
c19d1205 25619void
f0927246 25620tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 25621{
91d6fa6a 25622 expressionS exp;
bfae80f2 25623
91d6fa6a
NC
25624 exp.X_op = O_secrel;
25625 exp.X_add_symbol = symbol;
25626 exp.X_add_number = 0;
25627 emit_expr (&exp, size);
f0927246
NC
25628}
25629#endif
bfae80f2 25630
c19d1205 25631/* MD interface: Symbol and relocation handling. */
bfae80f2 25632
2fc8bdac
ZW
25633/* Return the address within the segment that a PC-relative fixup is
25634 relative to. For ARM, PC-relative fixups applied to instructions
25635 are generally relative to the location of the fixup plus 8 bytes.
25636 Thumb branches are offset by 4, and Thumb loads relative to PC
25637 require special handling. */
bfae80f2 25638
c19d1205 25639long
2fc8bdac 25640md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 25641{
2fc8bdac
ZW
25642 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25643
25644 /* If this is pc-relative and we are going to emit a relocation
25645 then we just want to put out any pipeline compensation that the linker
53baae48
NC
25646 will need. Otherwise we want to use the calculated base.
25647 For WinCE we skip the bias for externals as well, since this
25648 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 25649 if (fixP->fx_pcrel
2fc8bdac 25650 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
25651 || (arm_force_relocation (fixP)
25652#ifdef TE_WINCE
25653 && !S_IS_EXTERNAL (fixP->fx_addsy)
25654#endif
25655 )))
2fc8bdac 25656 base = 0;
bfae80f2 25657
267bf995 25658
c19d1205 25659 switch (fixP->fx_r_type)
bfae80f2 25660 {
2fc8bdac
ZW
25661 /* PC relative addressing on the Thumb is slightly odd as the
25662 bottom two bits of the PC are forced to zero for the
25663 calculation. This happens *after* application of the
25664 pipeline offset. However, Thumb adrl already adjusts for
25665 this, so we need not do it again. */
c19d1205 25666 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 25667 return base & ~3;
c19d1205
ZW
25668
25669 case BFD_RELOC_ARM_THUMB_OFFSET:
25670 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 25671 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 25672 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 25673 return (base + 4) & ~3;
c19d1205 25674
2fc8bdac 25675 /* Thumb branches are simply offset by +4. */
e12437dc 25676 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
25677 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25678 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25679 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25680 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 25681 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 25682 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 25683 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25684 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25685 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 25686 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 25687 return base + 4;
bfae80f2 25688
267bf995 25689 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
25690 if (fixP->fx_addsy
25691 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25692 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 25693 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
25694 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25695 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
25696 return base + 4;
25697
00adf2d4
JB
25698 /* BLX is like branches above, but forces the low two bits of PC to
25699 zero. */
486499d0
CL
25700 case BFD_RELOC_THUMB_PCREL_BLX:
25701 if (fixP->fx_addsy
25702 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25703 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25704 && THUMB_IS_FUNC (fixP->fx_addsy)
25705 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25706 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
25707 return (base + 4) & ~3;
25708
2fc8bdac
ZW
25709 /* ARM mode branches are offset by +8. However, the Windows CE
25710 loader expects the relocation not to take this into account. */
267bf995 25711 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
25712 if (fixP->fx_addsy
25713 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25714 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25715 && ARM_IS_FUNC (fixP->fx_addsy)
25716 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25717 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25718 return base + 8;
267bf995 25719
486499d0
CL
25720 case BFD_RELOC_ARM_PCREL_CALL:
25721 if (fixP->fx_addsy
25722 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25723 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25724 && THUMB_IS_FUNC (fixP->fx_addsy)
25725 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25726 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25727 return base + 8;
267bf995 25728
2fc8bdac 25729 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 25730 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 25731 case BFD_RELOC_ARM_PLT32:
c19d1205 25732#ifdef TE_WINCE
5f4273c7 25733 /* When handling fixups immediately, because we have already
477330fc 25734 discovered the value of a symbol, or the address of the frag involved
53baae48 25735 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
25736 see fixup_segment() in write.c
25737 The S_IS_EXTERNAL test handles the case of global symbols.
25738 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
25739 if (fixP->fx_pcrel
25740 && fixP->fx_addsy != NULL
25741 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25742 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25743 return base + 8;
2fc8bdac 25744 return base;
c19d1205 25745#else
2fc8bdac 25746 return base + 8;
c19d1205 25747#endif
2fc8bdac 25748
267bf995 25749
2fc8bdac
ZW
25750 /* ARM mode loads relative to PC are also offset by +8. Unlike
25751 branches, the Windows CE loader *does* expect the relocation
25752 to take this into account. */
25753 case BFD_RELOC_ARM_OFFSET_IMM:
25754 case BFD_RELOC_ARM_OFFSET_IMM8:
25755 case BFD_RELOC_ARM_HWLITERAL:
25756 case BFD_RELOC_ARM_LITERAL:
25757 case BFD_RELOC_ARM_CP_OFF_IMM:
25758 return base + 8;
25759
25760
25761 /* Other PC-relative relocations are un-offset. */
25762 default:
25763 return base;
25764 }
bfae80f2
RE
25765}
25766
8b2d793c
NC
25767static bfd_boolean flag_warn_syms = TRUE;
25768
ae8714c2
NC
25769bfd_boolean
25770arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 25771{
8b2d793c
NC
25772 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25773 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25774 does mean that the resulting code might be very confusing to the reader.
25775 Also this warning can be triggered if the user omits an operand before
25776 an immediate address, eg:
25777
25778 LDR =foo
25779
25780 GAS treats this as an assignment of the value of the symbol foo to a
25781 symbol LDR, and so (without this code) it will not issue any kind of
25782 warning or error message.
25783
25784 Note - ARM instructions are case-insensitive but the strings in the hash
25785 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
25786 lower case too. */
25787 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
25788 {
25789 char * nbuf = strdup (name);
25790 char * p;
25791
25792 for (p = nbuf; *p; p++)
25793 *p = TOLOWER (*p);
25794 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25795 {
25796 static struct hash_control * already_warned = NULL;
25797
25798 if (already_warned == NULL)
25799 already_warned = hash_new ();
25800 /* Only warn about the symbol once. To keep the code
25801 simple we let hash_insert do the lookup for us. */
3076e594 25802 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 25803 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
25804 }
25805 else
25806 free (nbuf);
25807 }
3739860c 25808
ae8714c2
NC
25809 return FALSE;
25810}
25811
25812/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25813 Otherwise we have no need to default values of symbols. */
25814
25815symbolS *
25816md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25817{
25818#ifdef OBJ_ELF
25819 if (name[0] == '_' && name[1] == 'G'
25820 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25821 {
25822 if (!GOT_symbol)
25823 {
25824 if (symbol_find (name))
25825 as_bad (_("GOT already in the symbol table"));
25826
25827 GOT_symbol = symbol_new (name, undefined_section,
25828 (valueT) 0, & zero_address_frag);
25829 }
25830
25831 return GOT_symbol;
25832 }
25833#endif
25834
c921be7d 25835 return NULL;
bfae80f2
RE
25836}
25837
55cf6793 25838/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
25839 computed as two separate immediate values, added together. We
25840 already know that this value cannot be computed by just one ARM
25841 instruction. */
25842
25843static unsigned int
25844validate_immediate_twopart (unsigned int val,
25845 unsigned int * highpart)
bfae80f2 25846{
c19d1205
ZW
25847 unsigned int a;
25848 unsigned int i;
bfae80f2 25849
c19d1205
ZW
25850 for (i = 0; i < 32; i += 2)
25851 if (((a = rotate_left (val, i)) & 0xff) != 0)
25852 {
25853 if (a & 0xff00)
25854 {
25855 if (a & ~ 0xffff)
25856 continue;
25857 * highpart = (a >> 8) | ((i + 24) << 7);
25858 }
25859 else if (a & 0xff0000)
25860 {
25861 if (a & 0xff000000)
25862 continue;
25863 * highpart = (a >> 16) | ((i + 16) << 7);
25864 }
25865 else
25866 {
9c2799c2 25867 gas_assert (a & 0xff000000);
c19d1205
ZW
25868 * highpart = (a >> 24) | ((i + 8) << 7);
25869 }
bfae80f2 25870
c19d1205
ZW
25871 return (a & 0xff) | (i << 7);
25872 }
bfae80f2 25873
c19d1205 25874 return FAIL;
bfae80f2
RE
25875}
25876
c19d1205
ZW
25877static int
25878validate_offset_imm (unsigned int val, int hwse)
25879{
25880 if ((hwse && val > 255) || val > 4095)
25881 return FAIL;
25882 return val;
25883}
bfae80f2 25884
55cf6793 25885/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
25886 negative immediate constant by altering the instruction. A bit of
25887 a hack really.
25888 MOV <-> MVN
25889 AND <-> BIC
25890 ADC <-> SBC
25891 by inverting the second operand, and
25892 ADD <-> SUB
25893 CMP <-> CMN
25894 by negating the second operand. */
bfae80f2 25895
c19d1205
ZW
25896static int
25897negate_data_op (unsigned long * instruction,
25898 unsigned long value)
bfae80f2 25899{
c19d1205
ZW
25900 int op, new_inst;
25901 unsigned long negated, inverted;
bfae80f2 25902
c19d1205
ZW
25903 negated = encode_arm_immediate (-value);
25904 inverted = encode_arm_immediate (~value);
bfae80f2 25905
c19d1205
ZW
25906 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25907 switch (op)
bfae80f2 25908 {
c19d1205
ZW
25909 /* First negates. */
25910 case OPCODE_SUB: /* ADD <-> SUB */
25911 new_inst = OPCODE_ADD;
25912 value = negated;
25913 break;
bfae80f2 25914
c19d1205
ZW
25915 case OPCODE_ADD:
25916 new_inst = OPCODE_SUB;
25917 value = negated;
25918 break;
bfae80f2 25919
c19d1205
ZW
25920 case OPCODE_CMP: /* CMP <-> CMN */
25921 new_inst = OPCODE_CMN;
25922 value = negated;
25923 break;
bfae80f2 25924
c19d1205
ZW
25925 case OPCODE_CMN:
25926 new_inst = OPCODE_CMP;
25927 value = negated;
25928 break;
bfae80f2 25929
c19d1205
ZW
25930 /* Now Inverted ops. */
25931 case OPCODE_MOV: /* MOV <-> MVN */
25932 new_inst = OPCODE_MVN;
25933 value = inverted;
25934 break;
bfae80f2 25935
c19d1205
ZW
25936 case OPCODE_MVN:
25937 new_inst = OPCODE_MOV;
25938 value = inverted;
25939 break;
bfae80f2 25940
c19d1205
ZW
25941 case OPCODE_AND: /* AND <-> BIC */
25942 new_inst = OPCODE_BIC;
25943 value = inverted;
25944 break;
bfae80f2 25945
c19d1205
ZW
25946 case OPCODE_BIC:
25947 new_inst = OPCODE_AND;
25948 value = inverted;
25949 break;
bfae80f2 25950
c19d1205
ZW
25951 case OPCODE_ADC: /* ADC <-> SBC */
25952 new_inst = OPCODE_SBC;
25953 value = inverted;
25954 break;
bfae80f2 25955
c19d1205
ZW
25956 case OPCODE_SBC:
25957 new_inst = OPCODE_ADC;
25958 value = inverted;
25959 break;
bfae80f2 25960
c19d1205
ZW
25961 /* We cannot do anything. */
25962 default:
25963 return FAIL;
b99bd4ef
NC
25964 }
25965
c19d1205
ZW
25966 if (value == (unsigned) FAIL)
25967 return FAIL;
25968
25969 *instruction &= OPCODE_MASK;
25970 *instruction |= new_inst << DATA_OP_SHIFT;
25971 return value;
b99bd4ef
NC
25972}
25973
ef8d22e6
PB
25974/* Like negate_data_op, but for Thumb-2. */
25975
25976static unsigned int
16dd5e42 25977thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
25978{
25979 int op, new_inst;
25980 int rd;
16dd5e42 25981 unsigned int negated, inverted;
ef8d22e6
PB
25982
25983 negated = encode_thumb32_immediate (-value);
25984 inverted = encode_thumb32_immediate (~value);
25985
25986 rd = (*instruction >> 8) & 0xf;
25987 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25988 switch (op)
25989 {
25990 /* ADD <-> SUB. Includes CMP <-> CMN. */
25991 case T2_OPCODE_SUB:
25992 new_inst = T2_OPCODE_ADD;
25993 value = negated;
25994 break;
25995
25996 case T2_OPCODE_ADD:
25997 new_inst = T2_OPCODE_SUB;
25998 value = negated;
25999 break;
26000
26001 /* ORR <-> ORN. Includes MOV <-> MVN. */
26002 case T2_OPCODE_ORR:
26003 new_inst = T2_OPCODE_ORN;
26004 value = inverted;
26005 break;
26006
26007 case T2_OPCODE_ORN:
26008 new_inst = T2_OPCODE_ORR;
26009 value = inverted;
26010 break;
26011
26012 /* AND <-> BIC. TST has no inverted equivalent. */
26013 case T2_OPCODE_AND:
26014 new_inst = T2_OPCODE_BIC;
26015 if (rd == 15)
26016 value = FAIL;
26017 else
26018 value = inverted;
26019 break;
26020
26021 case T2_OPCODE_BIC:
26022 new_inst = T2_OPCODE_AND;
26023 value = inverted;
26024 break;
26025
26026 /* ADC <-> SBC */
26027 case T2_OPCODE_ADC:
26028 new_inst = T2_OPCODE_SBC;
26029 value = inverted;
26030 break;
26031
26032 case T2_OPCODE_SBC:
26033 new_inst = T2_OPCODE_ADC;
26034 value = inverted;
26035 break;
26036
26037 /* We cannot do anything. */
26038 default:
26039 return FAIL;
26040 }
26041
16dd5e42 26042 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26043 return FAIL;
26044
26045 *instruction &= T2_OPCODE_MASK;
26046 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26047 return value;
26048}
26049
8f06b2d8 26050/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26051
8f06b2d8
PB
26052static unsigned long
26053get_thumb32_insn (char * buf)
26054{
26055 unsigned long insn;
26056 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26057 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26058
26059 return insn;
26060}
26061
a8bc6c78
PB
26062/* We usually want to set the low bit on the address of thumb function
26063 symbols. In particular .word foo - . should have the low bit set.
26064 Generic code tries to fold the difference of two symbols to
26065 a constant. Prevent this and force a relocation when the first symbols
26066 is a thumb function. */
c921be7d
NC
26067
26068bfd_boolean
a8bc6c78
PB
26069arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26070{
26071 if (op == O_subtract
26072 && l->X_op == O_symbol
26073 && r->X_op == O_symbol
26074 && THUMB_IS_FUNC (l->X_add_symbol))
26075 {
26076 l->X_op = O_subtract;
26077 l->X_op_symbol = r->X_add_symbol;
26078 l->X_add_number -= r->X_add_number;
c921be7d 26079 return TRUE;
a8bc6c78 26080 }
c921be7d 26081
a8bc6c78 26082 /* Process as normal. */
c921be7d 26083 return FALSE;
a8bc6c78
PB
26084}
26085
4a42ebbc
RR
26086/* Encode Thumb2 unconditional branches and calls. The encoding
26087 for the 2 are identical for the immediate values. */
26088
26089static void
26090encode_thumb2_b_bl_offset (char * buf, offsetT value)
26091{
26092#define T2I1I2MASK ((1 << 13) | (1 << 11))
26093 offsetT newval;
26094 offsetT newval2;
26095 addressT S, I1, I2, lo, hi;
26096
26097 S = (value >> 24) & 0x01;
26098 I1 = (value >> 23) & 0x01;
26099 I2 = (value >> 22) & 0x01;
26100 hi = (value >> 12) & 0x3ff;
fa94de6b 26101 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26102 newval = md_chars_to_number (buf, THUMB_SIZE);
26103 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26104 newval |= (S << 10) | hi;
26105 newval2 &= ~T2I1I2MASK;
26106 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26107 md_number_to_chars (buf, newval, THUMB_SIZE);
26108 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26109}
26110
c19d1205 26111void
55cf6793 26112md_apply_fix (fixS * fixP,
c19d1205
ZW
26113 valueT * valP,
26114 segT seg)
26115{
26116 offsetT value = * valP;
26117 offsetT newval;
26118 unsigned int newimm;
26119 unsigned long temp;
26120 int sign;
26121 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26122
9c2799c2 26123 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26124
c19d1205 26125 /* Note whether this will delete the relocation. */
4962c51a 26126
c19d1205
ZW
26127 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26128 fixP->fx_done = 1;
b99bd4ef 26129
adbaf948 26130 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26131 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26132 for emit_reloc. */
26133 value &= 0xffffffff;
26134 value ^= 0x80000000;
5f4273c7 26135 value -= 0x80000000;
adbaf948
ZW
26136
26137 *valP = value;
c19d1205 26138 fixP->fx_addnumber = value;
b99bd4ef 26139
adbaf948
ZW
26140 /* Same treatment for fixP->fx_offset. */
26141 fixP->fx_offset &= 0xffffffff;
26142 fixP->fx_offset ^= 0x80000000;
26143 fixP->fx_offset -= 0x80000000;
26144
c19d1205 26145 switch (fixP->fx_r_type)
b99bd4ef 26146 {
c19d1205
ZW
26147 case BFD_RELOC_NONE:
26148 /* This will need to go in the object file. */
26149 fixP->fx_done = 0;
26150 break;
b99bd4ef 26151
c19d1205
ZW
26152 case BFD_RELOC_ARM_IMMEDIATE:
26153 /* We claim that this fixup has been processed here,
26154 even if in fact we generate an error because we do
26155 not have a reloc for it, so tc_gen_reloc will reject it. */
26156 fixP->fx_done = 1;
b99bd4ef 26157
77db8e2e 26158 if (fixP->fx_addsy)
b99bd4ef 26159 {
77db8e2e 26160 const char *msg = 0;
b99bd4ef 26161
77db8e2e
NC
26162 if (! S_IS_DEFINED (fixP->fx_addsy))
26163 msg = _("undefined symbol %s used as an immediate value");
26164 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26165 msg = _("symbol %s is in a different section");
26166 else if (S_IS_WEAK (fixP->fx_addsy))
26167 msg = _("symbol %s is weak and may be overridden later");
26168
26169 if (msg)
26170 {
26171 as_bad_where (fixP->fx_file, fixP->fx_line,
26172 msg, S_GET_NAME (fixP->fx_addsy));
26173 break;
26174 }
42e5fcbf
AS
26175 }
26176
c19d1205
ZW
26177 temp = md_chars_to_number (buf, INSN_SIZE);
26178
5e73442d
SL
26179 /* If the offset is negative, we should use encoding A2 for ADR. */
26180 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26181 newimm = negate_data_op (&temp, value);
26182 else
26183 {
26184 newimm = encode_arm_immediate (value);
26185
26186 /* If the instruction will fail, see if we can fix things up by
26187 changing the opcode. */
26188 if (newimm == (unsigned int) FAIL)
26189 newimm = negate_data_op (&temp, value);
bada4342
JW
26190 /* MOV accepts both ARM modified immediate (A1 encoding) and
26191 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26192 When disassembling, MOV is preferred when there is no encoding
26193 overlap. */
26194 if (newimm == (unsigned int) FAIL
26195 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26196 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26197 && !((temp >> SBIT_SHIFT) & 0x1)
26198 && value >= 0 && value <= 0xffff)
26199 {
26200 /* Clear bits[23:20] to change encoding from A1 to A2. */
26201 temp &= 0xff0fffff;
26202 /* Encoding high 4bits imm. Code below will encode the remaining
26203 low 12bits. */
26204 temp |= (value & 0x0000f000) << 4;
26205 newimm = value & 0x00000fff;
26206 }
5e73442d
SL
26207 }
26208
26209 if (newimm == (unsigned int) FAIL)
b99bd4ef 26210 {
c19d1205
ZW
26211 as_bad_where (fixP->fx_file, fixP->fx_line,
26212 _("invalid constant (%lx) after fixup"),
26213 (unsigned long) value);
26214 break;
b99bd4ef 26215 }
b99bd4ef 26216
c19d1205
ZW
26217 newimm |= (temp & 0xfffff000);
26218 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26219 break;
b99bd4ef 26220
c19d1205
ZW
26221 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26222 {
26223 unsigned int highpart = 0;
26224 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 26225
77db8e2e 26226 if (fixP->fx_addsy)
42e5fcbf 26227 {
77db8e2e 26228 const char *msg = 0;
42e5fcbf 26229
77db8e2e
NC
26230 if (! S_IS_DEFINED (fixP->fx_addsy))
26231 msg = _("undefined symbol %s used as an immediate value");
26232 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26233 msg = _("symbol %s is in a different section");
26234 else if (S_IS_WEAK (fixP->fx_addsy))
26235 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 26236
77db8e2e
NC
26237 if (msg)
26238 {
26239 as_bad_where (fixP->fx_file, fixP->fx_line,
26240 msg, S_GET_NAME (fixP->fx_addsy));
26241 break;
26242 }
26243 }
fa94de6b 26244
c19d1205
ZW
26245 newimm = encode_arm_immediate (value);
26246 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 26247
c19d1205
ZW
26248 /* If the instruction will fail, see if we can fix things up by
26249 changing the opcode. */
26250 if (newimm == (unsigned int) FAIL
26251 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26252 {
26253 /* No ? OK - try using two ADD instructions to generate
26254 the value. */
26255 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 26256
c19d1205
ZW
26257 /* Yes - then make sure that the second instruction is
26258 also an add. */
26259 if (newimm != (unsigned int) FAIL)
26260 newinsn = temp;
26261 /* Still No ? Try using a negated value. */
26262 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26263 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26264 /* Otherwise - give up. */
26265 else
26266 {
26267 as_bad_where (fixP->fx_file, fixP->fx_line,
26268 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26269 (long) value);
26270 break;
26271 }
b99bd4ef 26272
c19d1205
ZW
26273 /* Replace the first operand in the 2nd instruction (which
26274 is the PC) with the destination register. We have
26275 already added in the PC in the first instruction and we
26276 do not want to do it again. */
26277 newinsn &= ~ 0xf0000;
26278 newinsn |= ((newinsn & 0x0f000) << 4);
26279 }
b99bd4ef 26280
c19d1205
ZW
26281 newimm |= (temp & 0xfffff000);
26282 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 26283
c19d1205
ZW
26284 highpart |= (newinsn & 0xfffff000);
26285 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26286 }
26287 break;
b99bd4ef 26288
c19d1205 26289 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
26290 if (!fixP->fx_done && seg->use_rela_p)
26291 value = 0;
1a0670f3 26292 /* Fall through. */
00a97672 26293
c19d1205 26294 case BFD_RELOC_ARM_LITERAL:
26d97720 26295 sign = value > 0;
b99bd4ef 26296
c19d1205
ZW
26297 if (value < 0)
26298 value = - value;
b99bd4ef 26299
c19d1205 26300 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 26301 {
c19d1205
ZW
26302 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26303 as_bad_where (fixP->fx_file, fixP->fx_line,
26304 _("invalid literal constant: pool needs to be closer"));
26305 else
26306 as_bad_where (fixP->fx_file, fixP->fx_line,
26307 _("bad immediate value for offset (%ld)"),
26308 (long) value);
26309 break;
f03698e6
RE
26310 }
26311
c19d1205 26312 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26313 if (value == 0)
26314 newval &= 0xfffff000;
26315 else
26316 {
26317 newval &= 0xff7ff000;
26318 newval |= value | (sign ? INDEX_UP : 0);
26319 }
c19d1205
ZW
26320 md_number_to_chars (buf, newval, INSN_SIZE);
26321 break;
b99bd4ef 26322
c19d1205
ZW
26323 case BFD_RELOC_ARM_OFFSET_IMM8:
26324 case BFD_RELOC_ARM_HWLITERAL:
26d97720 26325 sign = value > 0;
b99bd4ef 26326
c19d1205
ZW
26327 if (value < 0)
26328 value = - value;
b99bd4ef 26329
c19d1205 26330 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 26331 {
c19d1205
ZW
26332 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26333 as_bad_where (fixP->fx_file, fixP->fx_line,
26334 _("invalid literal constant: pool needs to be closer"));
26335 else
427d0db6
RM
26336 as_bad_where (fixP->fx_file, fixP->fx_line,
26337 _("bad immediate value for 8-bit offset (%ld)"),
26338 (long) value);
c19d1205 26339 break;
b99bd4ef
NC
26340 }
26341
c19d1205 26342 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
26343 if (value == 0)
26344 newval &= 0xfffff0f0;
26345 else
26346 {
26347 newval &= 0xff7ff0f0;
26348 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26349 }
c19d1205
ZW
26350 md_number_to_chars (buf, newval, INSN_SIZE);
26351 break;
b99bd4ef 26352
c19d1205
ZW
26353 case BFD_RELOC_ARM_T32_OFFSET_U8:
26354 if (value < 0 || value > 1020 || value % 4 != 0)
26355 as_bad_where (fixP->fx_file, fixP->fx_line,
26356 _("bad immediate value for offset (%ld)"), (long) value);
26357 value /= 4;
b99bd4ef 26358
c19d1205 26359 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
26360 newval |= value;
26361 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26362 break;
b99bd4ef 26363
c19d1205
ZW
26364 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26365 /* This is a complicated relocation used for all varieties of Thumb32
26366 load/store instruction with immediate offset:
26367
26368 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 26369 *4, optional writeback(W)
c19d1205
ZW
26370 (doubleword load/store)
26371
26372 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26373 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26374 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26375 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26376 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26377
26378 Uppercase letters indicate bits that are already encoded at
26379 this point. Lowercase letters are our problem. For the
26380 second block of instructions, the secondary opcode nybble
26381 (bits 8..11) is present, and bit 23 is zero, even if this is
26382 a PC-relative operation. */
26383 newval = md_chars_to_number (buf, THUMB_SIZE);
26384 newval <<= 16;
26385 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 26386
c19d1205 26387 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 26388 {
c19d1205
ZW
26389 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26390 if (value >= 0)
26391 newval |= (1 << 23);
26392 else
26393 value = -value;
26394 if (value % 4 != 0)
26395 {
26396 as_bad_where (fixP->fx_file, fixP->fx_line,
26397 _("offset not a multiple of 4"));
26398 break;
26399 }
26400 value /= 4;
216d22bc 26401 if (value > 0xff)
c19d1205
ZW
26402 {
26403 as_bad_where (fixP->fx_file, fixP->fx_line,
26404 _("offset out of range"));
26405 break;
26406 }
26407 newval &= ~0xff;
b99bd4ef 26408 }
c19d1205 26409 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26410 {
c19d1205
ZW
26411 /* PC-relative, 12-bit offset. */
26412 if (value >= 0)
26413 newval |= (1 << 23);
26414 else
26415 value = -value;
216d22bc 26416 if (value > 0xfff)
c19d1205
ZW
26417 {
26418 as_bad_where (fixP->fx_file, fixP->fx_line,
26419 _("offset out of range"));
26420 break;
26421 }
26422 newval &= ~0xfff;
b99bd4ef 26423 }
c19d1205 26424 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26425 {
c19d1205
ZW
26426 /* Writeback: 8-bit, +/- offset. */
26427 if (value >= 0)
26428 newval |= (1 << 9);
26429 else
26430 value = -value;
216d22bc 26431 if (value > 0xff)
c19d1205
ZW
26432 {
26433 as_bad_where (fixP->fx_file, fixP->fx_line,
26434 _("offset out of range"));
26435 break;
26436 }
26437 newval &= ~0xff;
b99bd4ef 26438 }
c19d1205 26439 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26440 {
c19d1205 26441 /* T-instruction: positive 8-bit offset. */
216d22bc 26442 if (value < 0 || value > 0xff)
b99bd4ef 26443 {
c19d1205
ZW
26444 as_bad_where (fixP->fx_file, fixP->fx_line,
26445 _("offset out of range"));
26446 break;
b99bd4ef 26447 }
c19d1205
ZW
26448 newval &= ~0xff;
26449 newval |= value;
b99bd4ef
NC
26450 }
26451 else
b99bd4ef 26452 {
c19d1205
ZW
26453 /* Positive 12-bit or negative 8-bit offset. */
26454 int limit;
26455 if (value >= 0)
b99bd4ef 26456 {
c19d1205
ZW
26457 newval |= (1 << 23);
26458 limit = 0xfff;
26459 }
26460 else
26461 {
26462 value = -value;
26463 limit = 0xff;
26464 }
26465 if (value > limit)
26466 {
26467 as_bad_where (fixP->fx_file, fixP->fx_line,
26468 _("offset out of range"));
26469 break;
b99bd4ef 26470 }
c19d1205 26471 newval &= ~limit;
b99bd4ef 26472 }
b99bd4ef 26473
c19d1205
ZW
26474 newval |= value;
26475 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26476 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26477 break;
404ff6b5 26478
c19d1205
ZW
26479 case BFD_RELOC_ARM_SHIFT_IMM:
26480 newval = md_chars_to_number (buf, INSN_SIZE);
26481 if (((unsigned long) value) > 32
26482 || (value == 32
26483 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26484 {
26485 as_bad_where (fixP->fx_file, fixP->fx_line,
26486 _("shift expression is too large"));
26487 break;
26488 }
404ff6b5 26489
c19d1205
ZW
26490 if (value == 0)
26491 /* Shifts of zero must be done as lsl. */
26492 newval &= ~0x60;
26493 else if (value == 32)
26494 value = 0;
26495 newval &= 0xfffff07f;
26496 newval |= (value & 0x1f) << 7;
26497 md_number_to_chars (buf, newval, INSN_SIZE);
26498 break;
404ff6b5 26499
c19d1205 26500 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26501 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26502 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26503 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26504 /* We claim that this fixup has been processed here,
26505 even if in fact we generate an error because we do
26506 not have a reloc for it, so tc_gen_reloc will reject it. */
26507 fixP->fx_done = 1;
404ff6b5 26508
c19d1205
ZW
26509 if (fixP->fx_addsy
26510 && ! S_IS_DEFINED (fixP->fx_addsy))
26511 {
26512 as_bad_where (fixP->fx_file, fixP->fx_line,
26513 _("undefined symbol %s used as an immediate value"),
26514 S_GET_NAME (fixP->fx_addsy));
26515 break;
26516 }
404ff6b5 26517
c19d1205
ZW
26518 newval = md_chars_to_number (buf, THUMB_SIZE);
26519 newval <<= 16;
26520 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26521
16805f35 26522 newimm = FAIL;
bada4342
JW
26523 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26524 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26525 Thumb2 modified immediate encoding (T2). */
26526 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26527 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26528 {
26529 newimm = encode_thumb32_immediate (value);
26530 if (newimm == (unsigned int) FAIL)
26531 newimm = thumb32_negate_data_op (&newval, value);
26532 }
bada4342 26533 if (newimm == (unsigned int) FAIL)
92e90b6e 26534 {
bada4342 26535 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26536 {
bada4342
JW
26537 /* Turn add/sum into addw/subw. */
26538 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26539 newval = (newval & 0xfeffffff) | 0x02000000;
26540 /* No flat 12-bit imm encoding for addsw/subsw. */
26541 if ((newval & 0x00100000) == 0)
40f246e3 26542 {
bada4342
JW
26543 /* 12 bit immediate for addw/subw. */
26544 if (value < 0)
26545 {
26546 value = -value;
26547 newval ^= 0x00a00000;
26548 }
26549 if (value > 0xfff)
26550 newimm = (unsigned int) FAIL;
26551 else
26552 newimm = value;
26553 }
26554 }
26555 else
26556 {
26557 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26558 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26559 disassembling, MOV is preferred when there is no encoding
db7bf105 26560 overlap. */
bada4342 26561 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26562 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26563 but with the Rn field [19:16] set to 1111. */
26564 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26565 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26566 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26567 && value >= 0 && value <= 0xffff)
bada4342
JW
26568 {
26569 /* Toggle bit[25] to change encoding from T2 to T3. */
26570 newval ^= 1 << 25;
26571 /* Clear bits[19:16]. */
26572 newval &= 0xfff0ffff;
26573 /* Encoding high 4bits imm. Code below will encode the
26574 remaining low 12bits. */
26575 newval |= (value & 0x0000f000) << 4;
26576 newimm = value & 0x00000fff;
40f246e3 26577 }
e9f89963 26578 }
92e90b6e 26579 }
cc8a6dd0 26580
c19d1205 26581 if (newimm == (unsigned int)FAIL)
3631a3c8 26582 {
c19d1205
ZW
26583 as_bad_where (fixP->fx_file, fixP->fx_line,
26584 _("invalid constant (%lx) after fixup"),
26585 (unsigned long) value);
26586 break;
3631a3c8
NC
26587 }
26588
c19d1205
ZW
26589 newval |= (newimm & 0x800) << 15;
26590 newval |= (newimm & 0x700) << 4;
26591 newval |= (newimm & 0x0ff);
cc8a6dd0 26592
c19d1205
ZW
26593 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26594 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26595 break;
a737bd4d 26596
3eb17e6b 26597 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26598 if (((unsigned long) value) > 0xffff)
26599 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26600 _("invalid smc expression"));
2fc8bdac 26601 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26602 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26603 md_number_to_chars (buf, newval, INSN_SIZE);
26604 break;
a737bd4d 26605
90ec0d68
MGD
26606 case BFD_RELOC_ARM_HVC:
26607 if (((unsigned long) value) > 0xffff)
26608 as_bad_where (fixP->fx_file, fixP->fx_line,
26609 _("invalid hvc expression"));
26610 newval = md_chars_to_number (buf, INSN_SIZE);
26611 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26612 md_number_to_chars (buf, newval, INSN_SIZE);
26613 break;
26614
c19d1205 26615 case BFD_RELOC_ARM_SWI:
adbaf948 26616 if (fixP->tc_fix_data != 0)
c19d1205
ZW
26617 {
26618 if (((unsigned long) value) > 0xff)
26619 as_bad_where (fixP->fx_file, fixP->fx_line,
26620 _("invalid swi expression"));
2fc8bdac 26621 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
26622 newval |= value;
26623 md_number_to_chars (buf, newval, THUMB_SIZE);
26624 }
26625 else
26626 {
26627 if (((unsigned long) value) > 0x00ffffff)
26628 as_bad_where (fixP->fx_file, fixP->fx_line,
26629 _("invalid swi expression"));
2fc8bdac 26630 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26631 newval |= value;
26632 md_number_to_chars (buf, newval, INSN_SIZE);
26633 }
26634 break;
a737bd4d 26635
c19d1205
ZW
26636 case BFD_RELOC_ARM_MULTI:
26637 if (((unsigned long) value) > 0xffff)
26638 as_bad_where (fixP->fx_file, fixP->fx_line,
26639 _("invalid expression in load/store multiple"));
26640 newval = value | md_chars_to_number (buf, INSN_SIZE);
26641 md_number_to_chars (buf, newval, INSN_SIZE);
26642 break;
a737bd4d 26643
c19d1205 26644#ifdef OBJ_ELF
39b41c9c 26645 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
26646
26647 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26648 && fixP->fx_addsy
34e77a92 26649 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26650 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26651 && THUMB_IS_FUNC (fixP->fx_addsy))
26652 /* Flip the bl to blx. This is a simple flip
26653 bit here because we generate PCREL_CALL for
26654 unconditional bls. */
26655 {
26656 newval = md_chars_to_number (buf, INSN_SIZE);
26657 newval = newval | 0x10000000;
26658 md_number_to_chars (buf, newval, INSN_SIZE);
26659 temp = 1;
26660 fixP->fx_done = 1;
26661 }
39b41c9c
PB
26662 else
26663 temp = 3;
26664 goto arm_branch_common;
26665
26666 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
26667 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26668 && fixP->fx_addsy
34e77a92 26669 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26670 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26671 && THUMB_IS_FUNC (fixP->fx_addsy))
26672 {
26673 /* This would map to a bl<cond>, b<cond>,
26674 b<always> to a Thumb function. We
26675 need to force a relocation for this particular
26676 case. */
26677 newval = md_chars_to_number (buf, INSN_SIZE);
26678 fixP->fx_done = 0;
26679 }
1a0670f3 26680 /* Fall through. */
267bf995 26681
2fc8bdac 26682 case BFD_RELOC_ARM_PLT32:
c19d1205 26683#endif
39b41c9c
PB
26684 case BFD_RELOC_ARM_PCREL_BRANCH:
26685 temp = 3;
26686 goto arm_branch_common;
a737bd4d 26687
39b41c9c 26688 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 26689
39b41c9c 26690 temp = 1;
267bf995
RR
26691 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26692 && fixP->fx_addsy
34e77a92 26693 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26694 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26695 && ARM_IS_FUNC (fixP->fx_addsy))
26696 {
26697 /* Flip the blx to a bl and warn. */
26698 const char *name = S_GET_NAME (fixP->fx_addsy);
26699 newval = 0xeb000000;
26700 as_warn_where (fixP->fx_file, fixP->fx_line,
26701 _("blx to '%s' an ARM ISA state function changed to bl"),
26702 name);
26703 md_number_to_chars (buf, newval, INSN_SIZE);
26704 temp = 3;
26705 fixP->fx_done = 1;
26706 }
26707
26708#ifdef OBJ_ELF
26709 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 26710 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
26711#endif
26712
39b41c9c 26713 arm_branch_common:
c19d1205 26714 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
26715 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26716 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 26717 also be clear. */
39b41c9c 26718 if (value & temp)
c19d1205 26719 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
26720 _("misaligned branch destination"));
26721 if ((value & (offsetT)0xfe000000) != (offsetT)0
26722 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 26723 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26724
2fc8bdac 26725 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26726 {
2fc8bdac
ZW
26727 newval = md_chars_to_number (buf, INSN_SIZE);
26728 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
26729 /* Set the H bit on BLX instructions. */
26730 if (temp == 1)
26731 {
26732 if (value & 2)
26733 newval |= 0x01000000;
26734 else
26735 newval &= ~0x01000000;
26736 }
2fc8bdac 26737 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 26738 }
c19d1205 26739 break;
a737bd4d 26740
25fe350b
MS
26741 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26742 /* CBZ can only branch forward. */
a737bd4d 26743
738755b0 26744 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
26745 (which, strictly speaking, are prohibited) will be turned into
26746 no-ops.
738755b0
MS
26747
26748 FIXME: It may be better to remove the instruction completely and
26749 perform relaxation. */
26750 if (value == -2)
2fc8bdac
ZW
26751 {
26752 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 26753 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
26754 md_number_to_chars (buf, newval, THUMB_SIZE);
26755 }
738755b0
MS
26756 else
26757 {
26758 if (value & ~0x7e)
08f10d51 26759 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 26760
477330fc 26761 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
26762 {
26763 newval = md_chars_to_number (buf, THUMB_SIZE);
26764 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26765 md_number_to_chars (buf, newval, THUMB_SIZE);
26766 }
26767 }
c19d1205 26768 break;
a737bd4d 26769
c19d1205 26770 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 26771 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 26772 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26773
2fc8bdac
ZW
26774 if (fixP->fx_done || !seg->use_rela_p)
26775 {
26776 newval = md_chars_to_number (buf, THUMB_SIZE);
26777 newval |= (value & 0x1ff) >> 1;
26778 md_number_to_chars (buf, newval, THUMB_SIZE);
26779 }
c19d1205 26780 break;
a737bd4d 26781
c19d1205 26782 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 26783 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 26784 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26785
2fc8bdac
ZW
26786 if (fixP->fx_done || !seg->use_rela_p)
26787 {
26788 newval = md_chars_to_number (buf, THUMB_SIZE);
26789 newval |= (value & 0xfff) >> 1;
26790 md_number_to_chars (buf, newval, THUMB_SIZE);
26791 }
c19d1205 26792 break;
a737bd4d 26793
c19d1205 26794 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
26795 if (fixP->fx_addsy
26796 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26797 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26798 && ARM_IS_FUNC (fixP->fx_addsy)
26799 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26800 {
26801 /* Force a relocation for a branch 20 bits wide. */
26802 fixP->fx_done = 0;
26803 }
08f10d51 26804 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
26805 as_bad_where (fixP->fx_file, fixP->fx_line,
26806 _("conditional branch out of range"));
404ff6b5 26807
2fc8bdac
ZW
26808 if (fixP->fx_done || !seg->use_rela_p)
26809 {
26810 offsetT newval2;
26811 addressT S, J1, J2, lo, hi;
404ff6b5 26812
2fc8bdac
ZW
26813 S = (value & 0x00100000) >> 20;
26814 J2 = (value & 0x00080000) >> 19;
26815 J1 = (value & 0x00040000) >> 18;
26816 hi = (value & 0x0003f000) >> 12;
26817 lo = (value & 0x00000ffe) >> 1;
6c43fab6 26818
2fc8bdac
ZW
26819 newval = md_chars_to_number (buf, THUMB_SIZE);
26820 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26821 newval |= (S << 10) | hi;
26822 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26823 md_number_to_chars (buf, newval, THUMB_SIZE);
26824 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26825 }
c19d1205 26826 break;
6c43fab6 26827
c19d1205 26828 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
26829 /* If there is a blx from a thumb state function to
26830 another thumb function flip this to a bl and warn
26831 about it. */
26832
26833 if (fixP->fx_addsy
34e77a92 26834 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26835 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26836 && THUMB_IS_FUNC (fixP->fx_addsy))
26837 {
26838 const char *name = S_GET_NAME (fixP->fx_addsy);
26839 as_warn_where (fixP->fx_file, fixP->fx_line,
26840 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26841 name);
26842 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26843 newval = newval | 0x1000;
26844 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26845 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26846 fixP->fx_done = 1;
26847 }
26848
26849
26850 goto thumb_bl_common;
26851
c19d1205 26852 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
26853 /* A bl from Thumb state ISA to an internal ARM state function
26854 is converted to a blx. */
26855 if (fixP->fx_addsy
26856 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26857 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26858 && ARM_IS_FUNC (fixP->fx_addsy)
26859 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26860 {
26861 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26862 newval = newval & ~0x1000;
26863 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26864 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26865 fixP->fx_done = 1;
26866 }
26867
26868 thumb_bl_common:
26869
2fc8bdac
ZW
26870 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26871 /* For a BLX instruction, make sure that the relocation is rounded up
26872 to a word boundary. This follows the semantics of the instruction
26873 which specifies that bit 1 of the target address will come from bit
26874 1 of the base address. */
d406f3e4
JB
26875 value = (value + 3) & ~ 3;
26876
26877#ifdef OBJ_ELF
26878 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26879 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26880 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26881#endif
404ff6b5 26882
2b2f5df9
NC
26883 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26884 {
fc289b0a 26885 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
26886 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26887 else if ((value & ~0x1ffffff)
26888 && ((value & ~0x1ffffff) != ~0x1ffffff))
26889 as_bad_where (fixP->fx_file, fixP->fx_line,
26890 _("Thumb2 branch out of range"));
26891 }
4a42ebbc
RR
26892
26893 if (fixP->fx_done || !seg->use_rela_p)
26894 encode_thumb2_b_bl_offset (buf, value);
26895
c19d1205 26896 break;
404ff6b5 26897
c19d1205 26898 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
26899 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26900 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 26901
2fc8bdac 26902 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 26903 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 26904
2fc8bdac 26905 break;
a737bd4d 26906
2fc8bdac
ZW
26907 case BFD_RELOC_8:
26908 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 26909 *buf = value;
c19d1205 26910 break;
a737bd4d 26911
c19d1205 26912 case BFD_RELOC_16:
2fc8bdac 26913 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26914 md_number_to_chars (buf, value, 2);
c19d1205 26915 break;
a737bd4d 26916
c19d1205 26917#ifdef OBJ_ELF
0855e32b
NS
26918 case BFD_RELOC_ARM_TLS_CALL:
26919 case BFD_RELOC_ARM_THM_TLS_CALL:
26920 case BFD_RELOC_ARM_TLS_DESCSEQ:
26921 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 26922 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
26923 case BFD_RELOC_ARM_TLS_GD32:
26924 case BFD_RELOC_ARM_TLS_LE32:
26925 case BFD_RELOC_ARM_TLS_IE32:
26926 case BFD_RELOC_ARM_TLS_LDM32:
26927 case BFD_RELOC_ARM_TLS_LDO32:
26928 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 26929 break;
6c43fab6 26930
5c5a4843
CL
26931 /* Same handling as above, but with the arm_fdpic guard. */
26932 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26933 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26934 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26935 if (arm_fdpic)
26936 {
26937 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26938 }
26939 else
26940 {
26941 as_bad_where (fixP->fx_file, fixP->fx_line,
26942 _("Relocation supported only in FDPIC mode"));
26943 }
26944 break;
26945
c19d1205
ZW
26946 case BFD_RELOC_ARM_GOT32:
26947 case BFD_RELOC_ARM_GOTOFF:
c19d1205 26948 break;
b43420e6
NC
26949
26950 case BFD_RELOC_ARM_GOT_PREL:
26951 if (fixP->fx_done || !seg->use_rela_p)
477330fc 26952 md_number_to_chars (buf, value, 4);
b43420e6
NC
26953 break;
26954
9a6f4e97
NS
26955 case BFD_RELOC_ARM_TARGET2:
26956 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
26957 addend here for REL targets, because it won't be written out
26958 during reloc processing later. */
9a6f4e97
NS
26959 if (fixP->fx_done || !seg->use_rela_p)
26960 md_number_to_chars (buf, fixP->fx_offset, 4);
26961 break;
188fd7ae
CL
26962
26963 /* Relocations for FDPIC. */
26964 case BFD_RELOC_ARM_GOTFUNCDESC:
26965 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26966 case BFD_RELOC_ARM_FUNCDESC:
26967 if (arm_fdpic)
26968 {
26969 if (fixP->fx_done || !seg->use_rela_p)
26970 md_number_to_chars (buf, 0, 4);
26971 }
26972 else
26973 {
26974 as_bad_where (fixP->fx_file, fixP->fx_line,
26975 _("Relocation supported only in FDPIC mode"));
26976 }
26977 break;
c19d1205 26978#endif
6c43fab6 26979
c19d1205
ZW
26980 case BFD_RELOC_RVA:
26981 case BFD_RELOC_32:
26982 case BFD_RELOC_ARM_TARGET1:
26983 case BFD_RELOC_ARM_ROSEGREL32:
26984 case BFD_RELOC_ARM_SBREL32:
26985 case BFD_RELOC_32_PCREL:
f0927246
NC
26986#ifdef TE_PE
26987 case BFD_RELOC_32_SECREL:
26988#endif
2fc8bdac 26989 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
26990#ifdef TE_WINCE
26991 /* For WinCE we only do this for pcrel fixups. */
26992 if (fixP->fx_done || fixP->fx_pcrel)
26993#endif
26994 md_number_to_chars (buf, value, 4);
c19d1205 26995 break;
6c43fab6 26996
c19d1205
ZW
26997#ifdef OBJ_ELF
26998 case BFD_RELOC_ARM_PREL31:
2fc8bdac 26999 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27000 {
27001 newval = md_chars_to_number (buf, 4) & 0x80000000;
27002 if ((value ^ (value >> 1)) & 0x40000000)
27003 {
27004 as_bad_where (fixP->fx_file, fixP->fx_line,
27005 _("rel31 relocation overflow"));
27006 }
27007 newval |= value & 0x7fffffff;
27008 md_number_to_chars (buf, newval, 4);
27009 }
27010 break;
c19d1205 27011#endif
a737bd4d 27012
c19d1205 27013 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27014 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27015 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27016 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27017 newval = md_chars_to_number (buf, INSN_SIZE);
27018 else
27019 newval = get_thumb32_insn (buf);
27020 if ((newval & 0x0f200f00) == 0x0d000900)
27021 {
27022 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27023 has permitted values that are multiples of 2, in the range 0
27024 to 510. */
27025 if (value < -510 || value > 510 || (value & 1))
27026 as_bad_where (fixP->fx_file, fixP->fx_line,
27027 _("co-processor offset out of range"));
27028 }
32c36c3c
AV
27029 else if ((newval & 0xfe001f80) == 0xec000f80)
27030 {
27031 if (value < -511 || value > 512 || (value & 3))
27032 as_bad_where (fixP->fx_file, fixP->fx_line,
27033 _("co-processor offset out of range"));
27034 }
9db2f6b4 27035 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27036 as_bad_where (fixP->fx_file, fixP->fx_line,
27037 _("co-processor offset out of range"));
27038 cp_off_common:
26d97720 27039 sign = value > 0;
c19d1205
ZW
27040 if (value < 0)
27041 value = -value;
8f06b2d8
PB
27042 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27043 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27044 newval = md_chars_to_number (buf, INSN_SIZE);
27045 else
27046 newval = get_thumb32_insn (buf);
26d97720 27047 if (value == 0)
32c36c3c
AV
27048 {
27049 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27050 newval &= 0xffffff80;
27051 else
27052 newval &= 0xffffff00;
27053 }
26d97720
NS
27054 else
27055 {
32c36c3c
AV
27056 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27057 newval &= 0xff7fff80;
27058 else
27059 newval &= 0xff7fff00;
9db2f6b4
RL
27060 if ((newval & 0x0f200f00) == 0x0d000900)
27061 {
27062 /* This is a fp16 vstr/vldr.
27063
27064 It requires the immediate offset in the instruction is shifted
27065 left by 1 to be a half-word offset.
27066
27067 Here, left shift by 1 first, and later right shift by 2
27068 should get the right offset. */
27069 value <<= 1;
27070 }
26d97720
NS
27071 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27072 }
8f06b2d8
PB
27073 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27074 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27075 md_number_to_chars (buf, newval, INSN_SIZE);
27076 else
27077 put_thumb32_insn (buf, newval);
c19d1205 27078 break;
a737bd4d 27079
c19d1205 27080 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27081 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27082 if (value < -255 || value > 255)
27083 as_bad_where (fixP->fx_file, fixP->fx_line,
27084 _("co-processor offset out of range"));
df7849c5 27085 value *= 4;
c19d1205 27086 goto cp_off_common;
6c43fab6 27087
c19d1205
ZW
27088 case BFD_RELOC_ARM_THUMB_OFFSET:
27089 newval = md_chars_to_number (buf, THUMB_SIZE);
27090 /* Exactly what ranges, and where the offset is inserted depends
27091 on the type of instruction, we can establish this from the
27092 top 4 bits. */
27093 switch (newval >> 12)
27094 {
27095 case 4: /* PC load. */
27096 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27097 forced to zero for these loads; md_pcrel_from has already
27098 compensated for this. */
27099 if (value & 3)
27100 as_bad_where (fixP->fx_file, fixP->fx_line,
27101 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27102 (((unsigned long) fixP->fx_frag->fr_address
27103 + (unsigned long) fixP->fx_where) & ~3)
27104 + (unsigned long) value);
a737bd4d 27105
c19d1205
ZW
27106 if (value & ~0x3fc)
27107 as_bad_where (fixP->fx_file, fixP->fx_line,
27108 _("invalid offset, value too big (0x%08lX)"),
27109 (long) value);
a737bd4d 27110
c19d1205
ZW
27111 newval |= value >> 2;
27112 break;
a737bd4d 27113
c19d1205
ZW
27114 case 9: /* SP load/store. */
27115 if (value & ~0x3fc)
27116 as_bad_where (fixP->fx_file, fixP->fx_line,
27117 _("invalid offset, value too big (0x%08lX)"),
27118 (long) value);
27119 newval |= value >> 2;
27120 break;
6c43fab6 27121
c19d1205
ZW
27122 case 6: /* Word load/store. */
27123 if (value & ~0x7c)
27124 as_bad_where (fixP->fx_file, fixP->fx_line,
27125 _("invalid offset, value too big (0x%08lX)"),
27126 (long) value);
27127 newval |= value << 4; /* 6 - 2. */
27128 break;
a737bd4d 27129
c19d1205
ZW
27130 case 7: /* Byte load/store. */
27131 if (value & ~0x1f)
27132 as_bad_where (fixP->fx_file, fixP->fx_line,
27133 _("invalid offset, value too big (0x%08lX)"),
27134 (long) value);
27135 newval |= value << 6;
27136 break;
a737bd4d 27137
c19d1205
ZW
27138 case 8: /* Halfword load/store. */
27139 if (value & ~0x3e)
27140 as_bad_where (fixP->fx_file, fixP->fx_line,
27141 _("invalid offset, value too big (0x%08lX)"),
27142 (long) value);
27143 newval |= value << 5; /* 6 - 1. */
27144 break;
a737bd4d 27145
c19d1205
ZW
27146 default:
27147 as_bad_where (fixP->fx_file, fixP->fx_line,
27148 "Unable to process relocation for thumb opcode: %lx",
27149 (unsigned long) newval);
27150 break;
27151 }
27152 md_number_to_chars (buf, newval, THUMB_SIZE);
27153 break;
a737bd4d 27154
c19d1205
ZW
27155 case BFD_RELOC_ARM_THUMB_ADD:
27156 /* This is a complicated relocation, since we use it for all of
27157 the following immediate relocations:
a737bd4d 27158
c19d1205
ZW
27159 3bit ADD/SUB
27160 8bit ADD/SUB
27161 9bit ADD/SUB SP word-aligned
27162 10bit ADD PC/SP word-aligned
a737bd4d 27163
c19d1205
ZW
27164 The type of instruction being processed is encoded in the
27165 instruction field:
a737bd4d 27166
c19d1205
ZW
27167 0x8000 SUB
27168 0x00F0 Rd
27169 0x000F Rs
27170 */
27171 newval = md_chars_to_number (buf, THUMB_SIZE);
27172 {
27173 int rd = (newval >> 4) & 0xf;
27174 int rs = newval & 0xf;
27175 int subtract = !!(newval & 0x8000);
a737bd4d 27176
c19d1205
ZW
27177 /* Check for HI regs, only very restricted cases allowed:
27178 Adjusting SP, and using PC or SP to get an address. */
27179 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27180 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27181 as_bad_where (fixP->fx_file, fixP->fx_line,
27182 _("invalid Hi register with immediate"));
a737bd4d 27183
c19d1205
ZW
27184 /* If value is negative, choose the opposite instruction. */
27185 if (value < 0)
27186 {
27187 value = -value;
27188 subtract = !subtract;
27189 if (value < 0)
27190 as_bad_where (fixP->fx_file, fixP->fx_line,
27191 _("immediate value out of range"));
27192 }
a737bd4d 27193
c19d1205
ZW
27194 if (rd == REG_SP)
27195 {
75c11999 27196 if (value & ~0x1fc)
c19d1205
ZW
27197 as_bad_where (fixP->fx_file, fixP->fx_line,
27198 _("invalid immediate for stack address calculation"));
27199 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27200 newval |= value >> 2;
27201 }
27202 else if (rs == REG_PC || rs == REG_SP)
27203 {
c12d2c9d
NC
27204 /* PR gas/18541. If the addition is for a defined symbol
27205 within range of an ADR instruction then accept it. */
27206 if (subtract
27207 && value == 4
27208 && fixP->fx_addsy != NULL)
27209 {
27210 subtract = 0;
27211
27212 if (! S_IS_DEFINED (fixP->fx_addsy)
27213 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27214 || S_IS_WEAK (fixP->fx_addsy))
27215 {
27216 as_bad_where (fixP->fx_file, fixP->fx_line,
27217 _("address calculation needs a strongly defined nearby symbol"));
27218 }
27219 else
27220 {
27221 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27222
27223 /* Round up to the next 4-byte boundary. */
27224 if (v & 3)
27225 v = (v + 3) & ~ 3;
27226 else
27227 v += 4;
27228 v = S_GET_VALUE (fixP->fx_addsy) - v;
27229
27230 if (v & ~0x3fc)
27231 {
27232 as_bad_where (fixP->fx_file, fixP->fx_line,
27233 _("symbol too far away"));
27234 }
27235 else
27236 {
27237 fixP->fx_done = 1;
27238 value = v;
27239 }
27240 }
27241 }
27242
c19d1205
ZW
27243 if (subtract || value & ~0x3fc)
27244 as_bad_where (fixP->fx_file, fixP->fx_line,
27245 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 27246 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
27247 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27248 newval |= rd << 8;
27249 newval |= value >> 2;
27250 }
27251 else if (rs == rd)
27252 {
27253 if (value & ~0xff)
27254 as_bad_where (fixP->fx_file, fixP->fx_line,
27255 _("immediate value out of range"));
27256 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27257 newval |= (rd << 8) | value;
27258 }
27259 else
27260 {
27261 if (value & ~0x7)
27262 as_bad_where (fixP->fx_file, fixP->fx_line,
27263 _("immediate value out of range"));
27264 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27265 newval |= rd | (rs << 3) | (value << 6);
27266 }
27267 }
27268 md_number_to_chars (buf, newval, THUMB_SIZE);
27269 break;
a737bd4d 27270
c19d1205
ZW
27271 case BFD_RELOC_ARM_THUMB_IMM:
27272 newval = md_chars_to_number (buf, THUMB_SIZE);
27273 if (value < 0 || value > 255)
27274 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 27275 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
27276 (long) value);
27277 newval |= value;
27278 md_number_to_chars (buf, newval, THUMB_SIZE);
27279 break;
a737bd4d 27280
c19d1205
ZW
27281 case BFD_RELOC_ARM_THUMB_SHIFT:
27282 /* 5bit shift value (0..32). LSL cannot take 32. */
27283 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27284 temp = newval & 0xf800;
27285 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27286 as_bad_where (fixP->fx_file, fixP->fx_line,
27287 _("invalid shift value: %ld"), (long) value);
27288 /* Shifts of zero must be encoded as LSL. */
27289 if (value == 0)
27290 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27291 /* Shifts of 32 are encoded as zero. */
27292 else if (value == 32)
27293 value = 0;
27294 newval |= value << 6;
27295 md_number_to_chars (buf, newval, THUMB_SIZE);
27296 break;
a737bd4d 27297
c19d1205
ZW
27298 case BFD_RELOC_VTABLE_INHERIT:
27299 case BFD_RELOC_VTABLE_ENTRY:
27300 fixP->fx_done = 0;
27301 return;
6c43fab6 27302
b6895b4f
PB
27303 case BFD_RELOC_ARM_MOVW:
27304 case BFD_RELOC_ARM_MOVT:
27305 case BFD_RELOC_ARM_THUMB_MOVW:
27306 case BFD_RELOC_ARM_THUMB_MOVT:
27307 if (fixP->fx_done || !seg->use_rela_p)
27308 {
27309 /* REL format relocations are limited to a 16-bit addend. */
27310 if (!fixP->fx_done)
27311 {
39623e12 27312 if (value < -0x8000 || value > 0x7fff)
b6895b4f 27313 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 27314 _("offset out of range"));
b6895b4f
PB
27315 }
27316 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27317 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27318 {
27319 value >>= 16;
27320 }
27321
27322 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27323 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27324 {
27325 newval = get_thumb32_insn (buf);
27326 newval &= 0xfbf08f00;
27327 newval |= (value & 0xf000) << 4;
27328 newval |= (value & 0x0800) << 15;
27329 newval |= (value & 0x0700) << 4;
27330 newval |= (value & 0x00ff);
27331 put_thumb32_insn (buf, newval);
27332 }
27333 else
27334 {
27335 newval = md_chars_to_number (buf, 4);
27336 newval &= 0xfff0f000;
27337 newval |= value & 0x0fff;
27338 newval |= (value & 0xf000) << 4;
27339 md_number_to_chars (buf, newval, 4);
27340 }
27341 }
27342 return;
27343
72d98d16
MG
27344 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27345 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27346 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27347 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27348 gas_assert (!fixP->fx_done);
27349 {
27350 bfd_vma insn;
27351 bfd_boolean is_mov;
27352 bfd_vma encoded_addend = value;
27353
27354 /* Check that addend can be encoded in instruction. */
27355 if (!seg->use_rela_p && (value < 0 || value > 255))
27356 as_bad_where (fixP->fx_file, fixP->fx_line,
27357 _("the offset 0x%08lX is not representable"),
27358 (unsigned long) encoded_addend);
27359
27360 /* Extract the instruction. */
27361 insn = md_chars_to_number (buf, THUMB_SIZE);
27362 is_mov = (insn & 0xf800) == 0x2000;
27363
27364 /* Encode insn. */
27365 if (is_mov)
27366 {
27367 if (!seg->use_rela_p)
27368 insn |= encoded_addend;
27369 }
27370 else
27371 {
27372 int rd, rs;
27373
27374 /* Extract the instruction. */
27375 /* Encoding is the following
27376 0x8000 SUB
27377 0x00F0 Rd
27378 0x000F Rs
27379 */
27380 /* The following conditions must be true :
27381 - ADD
27382 - Rd == Rs
27383 - Rd <= 7
27384 */
27385 rd = (insn >> 4) & 0xf;
27386 rs = insn & 0xf;
27387 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27388 as_bad_where (fixP->fx_file, fixP->fx_line,
27389 _("Unable to process relocation for thumb opcode: %lx"),
27390 (unsigned long) insn);
27391
27392 /* Encode as ADD immediate8 thumb 1 code. */
27393 insn = 0x3000 | (rd << 8);
27394
27395 /* Place the encoded addend into the first 8 bits of the
27396 instruction. */
27397 if (!seg->use_rela_p)
27398 insn |= encoded_addend;
27399 }
27400
27401 /* Update the instruction. */
27402 md_number_to_chars (buf, insn, THUMB_SIZE);
27403 }
27404 break;
27405
4962c51a
MS
27406 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27407 case BFD_RELOC_ARM_ALU_PC_G0:
27408 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27409 case BFD_RELOC_ARM_ALU_PC_G1:
27410 case BFD_RELOC_ARM_ALU_PC_G2:
27411 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27412 case BFD_RELOC_ARM_ALU_SB_G0:
27413 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27414 case BFD_RELOC_ARM_ALU_SB_G1:
27415 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27416 gas_assert (!fixP->fx_done);
4962c51a
MS
27417 if (!seg->use_rela_p)
27418 {
477330fc
RM
27419 bfd_vma insn;
27420 bfd_vma encoded_addend;
3ca4a8ec 27421 bfd_vma addend_abs = llabs (value);
477330fc
RM
27422
27423 /* Check that the absolute value of the addend can be
27424 expressed as an 8-bit constant plus a rotation. */
27425 encoded_addend = encode_arm_immediate (addend_abs);
27426 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27427 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27428 _("the offset 0x%08lX is not representable"),
27429 (unsigned long) addend_abs);
27430
27431 /* Extract the instruction. */
27432 insn = md_chars_to_number (buf, INSN_SIZE);
27433
27434 /* If the addend is positive, use an ADD instruction.
27435 Otherwise use a SUB. Take care not to destroy the S bit. */
27436 insn &= 0xff1fffff;
27437 if (value < 0)
27438 insn |= 1 << 22;
27439 else
27440 insn |= 1 << 23;
27441
27442 /* Place the encoded addend into the first 12 bits of the
27443 instruction. */
27444 insn &= 0xfffff000;
27445 insn |= encoded_addend;
27446
27447 /* Update the instruction. */
27448 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27449 }
27450 break;
27451
27452 case BFD_RELOC_ARM_LDR_PC_G0:
27453 case BFD_RELOC_ARM_LDR_PC_G1:
27454 case BFD_RELOC_ARM_LDR_PC_G2:
27455 case BFD_RELOC_ARM_LDR_SB_G0:
27456 case BFD_RELOC_ARM_LDR_SB_G1:
27457 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27458 gas_assert (!fixP->fx_done);
4962c51a 27459 if (!seg->use_rela_p)
477330fc
RM
27460 {
27461 bfd_vma insn;
3ca4a8ec 27462 bfd_vma addend_abs = llabs (value);
4962c51a 27463
477330fc
RM
27464 /* Check that the absolute value of the addend can be
27465 encoded in 12 bits. */
27466 if (addend_abs >= 0x1000)
4962c51a 27467 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27468 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27469 (unsigned long) addend_abs);
27470
27471 /* Extract the instruction. */
27472 insn = md_chars_to_number (buf, INSN_SIZE);
27473
27474 /* If the addend is negative, clear bit 23 of the instruction.
27475 Otherwise set it. */
27476 if (value < 0)
27477 insn &= ~(1 << 23);
27478 else
27479 insn |= 1 << 23;
27480
27481 /* Place the absolute value of the addend into the first 12 bits
27482 of the instruction. */
27483 insn &= 0xfffff000;
27484 insn |= addend_abs;
27485
27486 /* Update the instruction. */
27487 md_number_to_chars (buf, insn, INSN_SIZE);
27488 }
4962c51a
MS
27489 break;
27490
27491 case BFD_RELOC_ARM_LDRS_PC_G0:
27492 case BFD_RELOC_ARM_LDRS_PC_G1:
27493 case BFD_RELOC_ARM_LDRS_PC_G2:
27494 case BFD_RELOC_ARM_LDRS_SB_G0:
27495 case BFD_RELOC_ARM_LDRS_SB_G1:
27496 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27497 gas_assert (!fixP->fx_done);
4962c51a 27498 if (!seg->use_rela_p)
477330fc
RM
27499 {
27500 bfd_vma insn;
3ca4a8ec 27501 bfd_vma addend_abs = llabs (value);
4962c51a 27502
477330fc
RM
27503 /* Check that the absolute value of the addend can be
27504 encoded in 8 bits. */
27505 if (addend_abs >= 0x100)
4962c51a 27506 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27507 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27508 (unsigned long) addend_abs);
27509
27510 /* Extract the instruction. */
27511 insn = md_chars_to_number (buf, INSN_SIZE);
27512
27513 /* If the addend is negative, clear bit 23 of the instruction.
27514 Otherwise set it. */
27515 if (value < 0)
27516 insn &= ~(1 << 23);
27517 else
27518 insn |= 1 << 23;
27519
27520 /* Place the first four bits of the absolute value of the addend
27521 into the first 4 bits of the instruction, and the remaining
27522 four into bits 8 .. 11. */
27523 insn &= 0xfffff0f0;
27524 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27525
27526 /* Update the instruction. */
27527 md_number_to_chars (buf, insn, INSN_SIZE);
27528 }
4962c51a
MS
27529 break;
27530
27531 case BFD_RELOC_ARM_LDC_PC_G0:
27532 case BFD_RELOC_ARM_LDC_PC_G1:
27533 case BFD_RELOC_ARM_LDC_PC_G2:
27534 case BFD_RELOC_ARM_LDC_SB_G0:
27535 case BFD_RELOC_ARM_LDC_SB_G1:
27536 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27537 gas_assert (!fixP->fx_done);
4962c51a 27538 if (!seg->use_rela_p)
477330fc
RM
27539 {
27540 bfd_vma insn;
3ca4a8ec 27541 bfd_vma addend_abs = llabs (value);
4962c51a 27542
477330fc
RM
27543 /* Check that the absolute value of the addend is a multiple of
27544 four and, when divided by four, fits in 8 bits. */
27545 if (addend_abs & 0x3)
4962c51a 27546 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27547 _("bad offset 0x%08lX (must be word-aligned)"),
27548 (unsigned long) addend_abs);
4962c51a 27549
477330fc 27550 if ((addend_abs >> 2) > 0xff)
4962c51a 27551 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27552 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27553 (unsigned long) addend_abs);
27554
27555 /* Extract the instruction. */
27556 insn = md_chars_to_number (buf, INSN_SIZE);
27557
27558 /* If the addend is negative, clear bit 23 of the instruction.
27559 Otherwise set it. */
27560 if (value < 0)
27561 insn &= ~(1 << 23);
27562 else
27563 insn |= 1 << 23;
27564
27565 /* Place the addend (divided by four) into the first eight
27566 bits of the instruction. */
27567 insn &= 0xfffffff0;
27568 insn |= addend_abs >> 2;
27569
27570 /* Update the instruction. */
27571 md_number_to_chars (buf, insn, INSN_SIZE);
27572 }
4962c51a
MS
27573 break;
27574
e12437dc
AV
27575 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27576 if (fixP->fx_addsy
27577 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27578 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27579 && ARM_IS_FUNC (fixP->fx_addsy)
27580 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27581 {
27582 /* Force a relocation for a branch 5 bits wide. */
27583 fixP->fx_done = 0;
27584 }
27585 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27586 as_bad_where (fixP->fx_file, fixP->fx_line,
27587 BAD_BRANCH_OFF);
27588
27589 if (fixP->fx_done || !seg->use_rela_p)
27590 {
27591 addressT boff = value >> 1;
27592
27593 newval = md_chars_to_number (buf, THUMB_SIZE);
27594 newval |= (boff << 7);
27595 md_number_to_chars (buf, newval, THUMB_SIZE);
27596 }
27597 break;
27598
f6b2b12d
AV
27599 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27600 if (fixP->fx_addsy
27601 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27602 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27603 && ARM_IS_FUNC (fixP->fx_addsy)
27604 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27605 {
27606 fixP->fx_done = 0;
27607 }
27608 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27609 as_bad_where (fixP->fx_file, fixP->fx_line,
27610 _("branch out of range"));
27611
27612 if (fixP->fx_done || !seg->use_rela_p)
27613 {
27614 newval = md_chars_to_number (buf, THUMB_SIZE);
27615
27616 addressT boff = ((newval & 0x0780) >> 7) << 1;
27617 addressT diff = value - boff;
27618
27619 if (diff == 4)
27620 {
27621 newval |= 1 << 1; /* T bit. */
27622 }
27623 else if (diff != 2)
27624 {
27625 as_bad_where (fixP->fx_file, fixP->fx_line,
27626 _("out of range label-relative fixup value"));
27627 }
27628 md_number_to_chars (buf, newval, THUMB_SIZE);
27629 }
27630 break;
27631
e5d6e09e
AV
27632 case BFD_RELOC_ARM_THUMB_BF17:
27633 if (fixP->fx_addsy
27634 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27635 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27636 && ARM_IS_FUNC (fixP->fx_addsy)
27637 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27638 {
27639 /* Force a relocation for a branch 17 bits wide. */
27640 fixP->fx_done = 0;
27641 }
27642
27643 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27644 as_bad_where (fixP->fx_file, fixP->fx_line,
27645 BAD_BRANCH_OFF);
27646
27647 if (fixP->fx_done || !seg->use_rela_p)
27648 {
27649 offsetT newval2;
27650 addressT immA, immB, immC;
27651
27652 immA = (value & 0x0001f000) >> 12;
27653 immB = (value & 0x00000ffc) >> 2;
27654 immC = (value & 0x00000002) >> 1;
27655
27656 newval = md_chars_to_number (buf, THUMB_SIZE);
27657 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27658 newval |= immA;
27659 newval2 |= (immC << 11) | (immB << 1);
27660 md_number_to_chars (buf, newval, THUMB_SIZE);
27661 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27662 }
27663 break;
27664
1caf72a5
AV
27665 case BFD_RELOC_ARM_THUMB_BF19:
27666 if (fixP->fx_addsy
27667 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27668 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27669 && ARM_IS_FUNC (fixP->fx_addsy)
27670 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27671 {
27672 /* Force a relocation for a branch 19 bits wide. */
27673 fixP->fx_done = 0;
27674 }
27675
27676 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27677 as_bad_where (fixP->fx_file, fixP->fx_line,
27678 BAD_BRANCH_OFF);
27679
27680 if (fixP->fx_done || !seg->use_rela_p)
27681 {
27682 offsetT newval2;
27683 addressT immA, immB, immC;
27684
27685 immA = (value & 0x0007f000) >> 12;
27686 immB = (value & 0x00000ffc) >> 2;
27687 immC = (value & 0x00000002) >> 1;
27688
27689 newval = md_chars_to_number (buf, THUMB_SIZE);
27690 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27691 newval |= immA;
27692 newval2 |= (immC << 11) | (immB << 1);
27693 md_number_to_chars (buf, newval, THUMB_SIZE);
27694 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27695 }
27696 break;
27697
1889da70
AV
27698 case BFD_RELOC_ARM_THUMB_BF13:
27699 if (fixP->fx_addsy
27700 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27701 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27702 && ARM_IS_FUNC (fixP->fx_addsy)
27703 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27704 {
27705 /* Force a relocation for a branch 13 bits wide. */
27706 fixP->fx_done = 0;
27707 }
27708
27709 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27710 as_bad_where (fixP->fx_file, fixP->fx_line,
27711 BAD_BRANCH_OFF);
27712
27713 if (fixP->fx_done || !seg->use_rela_p)
27714 {
27715 offsetT newval2;
27716 addressT immA, immB, immC;
27717
27718 immA = (value & 0x00001000) >> 12;
27719 immB = (value & 0x00000ffc) >> 2;
27720 immC = (value & 0x00000002) >> 1;
27721
27722 newval = md_chars_to_number (buf, THUMB_SIZE);
27723 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27724 newval |= immA;
27725 newval2 |= (immC << 11) | (immB << 1);
27726 md_number_to_chars (buf, newval, THUMB_SIZE);
27727 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27728 }
27729 break;
27730
60f993ce
AV
27731 case BFD_RELOC_ARM_THUMB_LOOP12:
27732 if (fixP->fx_addsy
27733 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27734 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27735 && ARM_IS_FUNC (fixP->fx_addsy)
27736 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27737 {
27738 /* Force a relocation for a branch 12 bits wide. */
27739 fixP->fx_done = 0;
27740 }
27741
27742 bfd_vma insn = get_thumb32_insn (buf);
27743 /* le lr, <label> or le <label> */
27744 if (((insn & 0xffffffff) == 0xf00fc001)
27745 || ((insn & 0xffffffff) == 0xf02fc001))
27746 value = -value;
27747
27748 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27749 as_bad_where (fixP->fx_file, fixP->fx_line,
27750 BAD_BRANCH_OFF);
27751 if (fixP->fx_done || !seg->use_rela_p)
27752 {
27753 addressT imml, immh;
27754
27755 immh = (value & 0x00000ffc) >> 2;
27756 imml = (value & 0x00000002) >> 1;
27757
27758 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27759 newval |= (imml << 11) | (immh << 1);
27760 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27761 }
27762 break;
27763
845b51d6
PB
27764 case BFD_RELOC_ARM_V4BX:
27765 /* This will need to go in the object file. */
27766 fixP->fx_done = 0;
27767 break;
27768
c19d1205
ZW
27769 case BFD_RELOC_UNUSED:
27770 default:
27771 as_bad_where (fixP->fx_file, fixP->fx_line,
27772 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27773 }
6c43fab6
RE
27774}
27775
c19d1205
ZW
27776/* Translate internal representation of relocation info to BFD target
27777 format. */
a737bd4d 27778
c19d1205 27779arelent *
00a97672 27780tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 27781{
c19d1205
ZW
27782 arelent * reloc;
27783 bfd_reloc_code_real_type code;
a737bd4d 27784
325801bd 27785 reloc = XNEW (arelent);
a737bd4d 27786
325801bd 27787 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
27788 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27789 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 27790
2fc8bdac 27791 if (fixp->fx_pcrel)
00a97672
RS
27792 {
27793 if (section->use_rela_p)
27794 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27795 else
27796 fixp->fx_offset = reloc->address;
27797 }
c19d1205 27798 reloc->addend = fixp->fx_offset;
a737bd4d 27799
c19d1205 27800 switch (fixp->fx_r_type)
a737bd4d 27801 {
c19d1205
ZW
27802 case BFD_RELOC_8:
27803 if (fixp->fx_pcrel)
27804 {
27805 code = BFD_RELOC_8_PCREL;
27806 break;
27807 }
1a0670f3 27808 /* Fall through. */
a737bd4d 27809
c19d1205
ZW
27810 case BFD_RELOC_16:
27811 if (fixp->fx_pcrel)
27812 {
27813 code = BFD_RELOC_16_PCREL;
27814 break;
27815 }
1a0670f3 27816 /* Fall through. */
6c43fab6 27817
c19d1205
ZW
27818 case BFD_RELOC_32:
27819 if (fixp->fx_pcrel)
27820 {
27821 code = BFD_RELOC_32_PCREL;
27822 break;
27823 }
1a0670f3 27824 /* Fall through. */
a737bd4d 27825
b6895b4f
PB
27826 case BFD_RELOC_ARM_MOVW:
27827 if (fixp->fx_pcrel)
27828 {
27829 code = BFD_RELOC_ARM_MOVW_PCREL;
27830 break;
27831 }
1a0670f3 27832 /* Fall through. */
b6895b4f
PB
27833
27834 case BFD_RELOC_ARM_MOVT:
27835 if (fixp->fx_pcrel)
27836 {
27837 code = BFD_RELOC_ARM_MOVT_PCREL;
27838 break;
27839 }
1a0670f3 27840 /* Fall through. */
b6895b4f
PB
27841
27842 case BFD_RELOC_ARM_THUMB_MOVW:
27843 if (fixp->fx_pcrel)
27844 {
27845 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27846 break;
27847 }
1a0670f3 27848 /* Fall through. */
b6895b4f
PB
27849
27850 case BFD_RELOC_ARM_THUMB_MOVT:
27851 if (fixp->fx_pcrel)
27852 {
27853 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27854 break;
27855 }
1a0670f3 27856 /* Fall through. */
b6895b4f 27857
c19d1205
ZW
27858 case BFD_RELOC_NONE:
27859 case BFD_RELOC_ARM_PCREL_BRANCH:
27860 case BFD_RELOC_ARM_PCREL_BLX:
27861 case BFD_RELOC_RVA:
27862 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27863 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27864 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27865 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27866 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27867 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
27868 case BFD_RELOC_VTABLE_ENTRY:
27869 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
27870#ifdef TE_PE
27871 case BFD_RELOC_32_SECREL:
27872#endif
c19d1205
ZW
27873 code = fixp->fx_r_type;
27874 break;
a737bd4d 27875
00adf2d4
JB
27876 case BFD_RELOC_THUMB_PCREL_BLX:
27877#ifdef OBJ_ELF
27878 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27879 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27880 else
27881#endif
27882 code = BFD_RELOC_THUMB_PCREL_BLX;
27883 break;
27884
c19d1205
ZW
27885 case BFD_RELOC_ARM_LITERAL:
27886 case BFD_RELOC_ARM_HWLITERAL:
27887 /* If this is called then the a literal has
27888 been referenced across a section boundary. */
27889 as_bad_where (fixp->fx_file, fixp->fx_line,
27890 _("literal referenced across section boundary"));
27891 return NULL;
a737bd4d 27892
c19d1205 27893#ifdef OBJ_ELF
0855e32b
NS
27894 case BFD_RELOC_ARM_TLS_CALL:
27895 case BFD_RELOC_ARM_THM_TLS_CALL:
27896 case BFD_RELOC_ARM_TLS_DESCSEQ:
27897 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
27898 case BFD_RELOC_ARM_GOT32:
27899 case BFD_RELOC_ARM_GOTOFF:
b43420e6 27900 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
27901 case BFD_RELOC_ARM_PLT32:
27902 case BFD_RELOC_ARM_TARGET1:
27903 case BFD_RELOC_ARM_ROSEGREL32:
27904 case BFD_RELOC_ARM_SBREL32:
27905 case BFD_RELOC_ARM_PREL31:
27906 case BFD_RELOC_ARM_TARGET2:
c19d1205 27907 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
27908 case BFD_RELOC_ARM_PCREL_CALL:
27909 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
27910 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27911 case BFD_RELOC_ARM_ALU_PC_G0:
27912 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27913 case BFD_RELOC_ARM_ALU_PC_G1:
27914 case BFD_RELOC_ARM_ALU_PC_G2:
27915 case BFD_RELOC_ARM_LDR_PC_G0:
27916 case BFD_RELOC_ARM_LDR_PC_G1:
27917 case BFD_RELOC_ARM_LDR_PC_G2:
27918 case BFD_RELOC_ARM_LDRS_PC_G0:
27919 case BFD_RELOC_ARM_LDRS_PC_G1:
27920 case BFD_RELOC_ARM_LDRS_PC_G2:
27921 case BFD_RELOC_ARM_LDC_PC_G0:
27922 case BFD_RELOC_ARM_LDC_PC_G1:
27923 case BFD_RELOC_ARM_LDC_PC_G2:
27924 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27925 case BFD_RELOC_ARM_ALU_SB_G0:
27926 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27927 case BFD_RELOC_ARM_ALU_SB_G1:
27928 case BFD_RELOC_ARM_ALU_SB_G2:
27929 case BFD_RELOC_ARM_LDR_SB_G0:
27930 case BFD_RELOC_ARM_LDR_SB_G1:
27931 case BFD_RELOC_ARM_LDR_SB_G2:
27932 case BFD_RELOC_ARM_LDRS_SB_G0:
27933 case BFD_RELOC_ARM_LDRS_SB_G1:
27934 case BFD_RELOC_ARM_LDRS_SB_G2:
27935 case BFD_RELOC_ARM_LDC_SB_G0:
27936 case BFD_RELOC_ARM_LDC_SB_G1:
27937 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 27938 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
27939 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27940 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27941 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27942 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
27943 case BFD_RELOC_ARM_GOTFUNCDESC:
27944 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27945 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 27946 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 27947 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 27948 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
27949 code = fixp->fx_r_type;
27950 break;
a737bd4d 27951
0855e32b 27952 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 27953 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 27954 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 27955 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 27956 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 27957 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 27958 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 27959 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
27960 /* BFD will include the symbol's address in the addend.
27961 But we don't want that, so subtract it out again here. */
27962 if (!S_IS_COMMON (fixp->fx_addsy))
27963 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27964 code = fixp->fx_r_type;
27965 break;
27966#endif
a737bd4d 27967
c19d1205
ZW
27968 case BFD_RELOC_ARM_IMMEDIATE:
27969 as_bad_where (fixp->fx_file, fixp->fx_line,
27970 _("internal relocation (type: IMMEDIATE) not fixed up"));
27971 return NULL;
a737bd4d 27972
c19d1205
ZW
27973 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27974 as_bad_where (fixp->fx_file, fixp->fx_line,
27975 _("ADRL used for a symbol not defined in the same file"));
27976 return NULL;
a737bd4d 27977
e12437dc 27978 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 27979 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 27980 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
27981 as_bad_where (fixp->fx_file, fixp->fx_line,
27982 _("%s used for a symbol not defined in the same file"),
27983 bfd_get_reloc_code_name (fixp->fx_r_type));
27984 return NULL;
27985
c19d1205 27986 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27987 if (section->use_rela_p)
27988 {
27989 code = fixp->fx_r_type;
27990 break;
27991 }
27992
c19d1205
ZW
27993 if (fixp->fx_addsy != NULL
27994 && !S_IS_DEFINED (fixp->fx_addsy)
27995 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 27996 {
c19d1205
ZW
27997 as_bad_where (fixp->fx_file, fixp->fx_line,
27998 _("undefined local label `%s'"),
27999 S_GET_NAME (fixp->fx_addsy));
28000 return NULL;
a737bd4d
NC
28001 }
28002
c19d1205
ZW
28003 as_bad_where (fixp->fx_file, fixp->fx_line,
28004 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28005 return NULL;
a737bd4d 28006
c19d1205
ZW
28007 default:
28008 {
e0471c16 28009 const char * type;
6c43fab6 28010
c19d1205
ZW
28011 switch (fixp->fx_r_type)
28012 {
28013 case BFD_RELOC_NONE: type = "NONE"; break;
28014 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28015 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28016 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28017 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28018 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28019 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28020 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28021 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28022 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28023 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28024 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28025 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28026 default: type = _("<unknown>"); break;
28027 }
28028 as_bad_where (fixp->fx_file, fixp->fx_line,
28029 _("cannot represent %s relocation in this object file format"),
28030 type);
28031 return NULL;
28032 }
a737bd4d 28033 }
6c43fab6 28034
c19d1205
ZW
28035#ifdef OBJ_ELF
28036 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28037 && GOT_symbol
28038 && fixp->fx_addsy == GOT_symbol)
28039 {
28040 code = BFD_RELOC_ARM_GOTPC;
28041 reloc->addend = fixp->fx_offset = reloc->address;
28042 }
28043#endif
6c43fab6 28044
c19d1205 28045 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28046
c19d1205
ZW
28047 if (reloc->howto == NULL)
28048 {
28049 as_bad_where (fixp->fx_file, fixp->fx_line,
28050 _("cannot represent %s relocation in this object file format"),
28051 bfd_get_reloc_code_name (code));
28052 return NULL;
28053 }
6c43fab6 28054
c19d1205
ZW
28055 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28056 vtable entry to be used in the relocation's section offset. */
28057 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28058 reloc->address = fixp->fx_offset;
6c43fab6 28059
c19d1205 28060 return reloc;
6c43fab6
RE
28061}
28062
c19d1205 28063/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28064
c19d1205
ZW
28065void
28066cons_fix_new_arm (fragS * frag,
28067 int where,
28068 int size,
62ebcb5c
AM
28069 expressionS * exp,
28070 bfd_reloc_code_real_type reloc)
6c43fab6 28071{
c19d1205 28072 int pcrel = 0;
6c43fab6 28073
c19d1205
ZW
28074 /* Pick a reloc.
28075 FIXME: @@ Should look at CPU word size. */
28076 switch (size)
28077 {
28078 case 1:
62ebcb5c 28079 reloc = BFD_RELOC_8;
c19d1205
ZW
28080 break;
28081 case 2:
62ebcb5c 28082 reloc = BFD_RELOC_16;
c19d1205
ZW
28083 break;
28084 case 4:
28085 default:
62ebcb5c 28086 reloc = BFD_RELOC_32;
c19d1205
ZW
28087 break;
28088 case 8:
62ebcb5c 28089 reloc = BFD_RELOC_64;
c19d1205
ZW
28090 break;
28091 }
6c43fab6 28092
f0927246
NC
28093#ifdef TE_PE
28094 if (exp->X_op == O_secrel)
28095 {
28096 exp->X_op = O_symbol;
62ebcb5c 28097 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28098 }
28099#endif
28100
62ebcb5c 28101 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28102}
6c43fab6 28103
4343666d 28104#if defined (OBJ_COFF)
c19d1205
ZW
28105void
28106arm_validate_fix (fixS * fixP)
6c43fab6 28107{
c19d1205
ZW
28108 /* If the destination of the branch is a defined symbol which does not have
28109 the THUMB_FUNC attribute, then we must be calling a function which has
28110 the (interfacearm) attribute. We look for the Thumb entry point to that
28111 function and change the branch to refer to that function instead. */
28112 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28113 && fixP->fx_addsy != NULL
28114 && S_IS_DEFINED (fixP->fx_addsy)
28115 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28116 {
c19d1205 28117 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28118 }
c19d1205
ZW
28119}
28120#endif
6c43fab6 28121
267bf995 28122
c19d1205
ZW
28123int
28124arm_force_relocation (struct fix * fixp)
28125{
28126#if defined (OBJ_COFF) && defined (TE_PE)
28127 if (fixp->fx_r_type == BFD_RELOC_RVA)
28128 return 1;
28129#endif
6c43fab6 28130
267bf995
RR
28131 /* In case we have a call or a branch to a function in ARM ISA mode from
28132 a thumb function or vice-versa force the relocation. These relocations
28133 are cleared off for some cores that might have blx and simple transformations
28134 are possible. */
28135
28136#ifdef OBJ_ELF
28137 switch (fixp->fx_r_type)
28138 {
28139 case BFD_RELOC_ARM_PCREL_JUMP:
28140 case BFD_RELOC_ARM_PCREL_CALL:
28141 case BFD_RELOC_THUMB_PCREL_BLX:
28142 if (THUMB_IS_FUNC (fixp->fx_addsy))
28143 return 1;
28144 break;
28145
28146 case BFD_RELOC_ARM_PCREL_BLX:
28147 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28148 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28149 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28150 if (ARM_IS_FUNC (fixp->fx_addsy))
28151 return 1;
28152 break;
28153
28154 default:
28155 break;
28156 }
28157#endif
28158
b5884301
PB
28159 /* Resolve these relocations even if the symbol is extern or weak.
28160 Technically this is probably wrong due to symbol preemption.
28161 In practice these relocations do not have enough range to be useful
28162 at dynamic link time, and some code (e.g. in the Linux kernel)
28163 expects these references to be resolved. */
c19d1205
ZW
28164 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28165 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 28166 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 28167 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
28168 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28169 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28170 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 28171 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
28172 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28173 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
28174 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28175 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28176 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28177 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 28178 return 0;
a737bd4d 28179
4962c51a
MS
28180 /* Always leave these relocations for the linker. */
28181 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28182 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28183 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28184 return 1;
28185
f0291e4c
PB
28186 /* Always generate relocations against function symbols. */
28187 if (fixp->fx_r_type == BFD_RELOC_32
28188 && fixp->fx_addsy
28189 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28190 return 1;
28191
c19d1205 28192 return generic_force_reloc (fixp);
404ff6b5
AH
28193}
28194
0ffdc86c 28195#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
28196/* Relocations against function names must be left unadjusted,
28197 so that the linker can use this information to generate interworking
28198 stubs. The MIPS version of this function
c19d1205
ZW
28199 also prevents relocations that are mips-16 specific, but I do not
28200 know why it does this.
404ff6b5 28201
c19d1205
ZW
28202 FIXME:
28203 There is one other problem that ought to be addressed here, but
28204 which currently is not: Taking the address of a label (rather
28205 than a function) and then later jumping to that address. Such
28206 addresses also ought to have their bottom bit set (assuming that
28207 they reside in Thumb code), but at the moment they will not. */
404ff6b5 28208
c19d1205
ZW
28209bfd_boolean
28210arm_fix_adjustable (fixS * fixP)
404ff6b5 28211{
c19d1205
ZW
28212 if (fixP->fx_addsy == NULL)
28213 return 1;
404ff6b5 28214
e28387c3
PB
28215 /* Preserve relocations against symbols with function type. */
28216 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 28217 return FALSE;
e28387c3 28218
c19d1205
ZW
28219 if (THUMB_IS_FUNC (fixP->fx_addsy)
28220 && fixP->fx_subsy == NULL)
c921be7d 28221 return FALSE;
a737bd4d 28222
c19d1205
ZW
28223 /* We need the symbol name for the VTABLE entries. */
28224 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28225 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 28226 return FALSE;
404ff6b5 28227
c19d1205
ZW
28228 /* Don't allow symbols to be discarded on GOT related relocs. */
28229 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28230 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28231 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28232 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 28233 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
28234 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28235 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 28236 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 28237 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 28238 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 28239 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
28240 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28241 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28242 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28243 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28244 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 28245 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 28246 return FALSE;
a737bd4d 28247
4962c51a
MS
28248 /* Similarly for group relocations. */
28249 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28250 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28251 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 28252 return FALSE;
4962c51a 28253
79947c54
CD
28254 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28255 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28256 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28257 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28258 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28259 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28260 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28261 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28262 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 28263 return FALSE;
79947c54 28264
72d98d16
MG
28265 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28266 offsets, so keep these symbols. */
28267 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28268 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28269 return FALSE;
28270
c921be7d 28271 return TRUE;
a737bd4d 28272}
0ffdc86c
NC
28273#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28274
28275#ifdef OBJ_ELF
c19d1205
ZW
28276const char *
28277elf32_arm_target_format (void)
404ff6b5 28278{
c19d1205
ZW
28279#ifdef TE_SYMBIAN
28280 return (target_big_endian
28281 ? "elf32-bigarm-symbian"
28282 : "elf32-littlearm-symbian");
28283#elif defined (TE_VXWORKS)
28284 return (target_big_endian
28285 ? "elf32-bigarm-vxworks"
28286 : "elf32-littlearm-vxworks");
b38cadfb
NC
28287#elif defined (TE_NACL)
28288 return (target_big_endian
28289 ? "elf32-bigarm-nacl"
28290 : "elf32-littlearm-nacl");
c19d1205 28291#else
18a20338
CL
28292 if (arm_fdpic)
28293 {
28294 if (target_big_endian)
28295 return "elf32-bigarm-fdpic";
28296 else
28297 return "elf32-littlearm-fdpic";
28298 }
c19d1205 28299 else
18a20338
CL
28300 {
28301 if (target_big_endian)
28302 return "elf32-bigarm";
28303 else
28304 return "elf32-littlearm";
28305 }
c19d1205 28306#endif
404ff6b5
AH
28307}
28308
c19d1205
ZW
28309void
28310armelf_frob_symbol (symbolS * symp,
28311 int * puntp)
404ff6b5 28312{
c19d1205
ZW
28313 elf_frob_symbol (symp, puntp);
28314}
28315#endif
404ff6b5 28316
c19d1205 28317/* MD interface: Finalization. */
a737bd4d 28318
c19d1205
ZW
28319void
28320arm_cleanup (void)
28321{
28322 literal_pool * pool;
a737bd4d 28323
5ee91343
AV
28324 /* Ensure that all the predication blocks are properly closed. */
28325 check_pred_blocks_finished ();
e07e6e58 28326
c19d1205
ZW
28327 for (pool = list_of_pools; pool; pool = pool->next)
28328 {
5f4273c7 28329 /* Put it at the end of the relevant section. */
c19d1205
ZW
28330 subseg_set (pool->section, pool->sub_section);
28331#ifdef OBJ_ELF
28332 arm_elf_change_section ();
28333#endif
28334 s_ltorg (0);
28335 }
404ff6b5
AH
28336}
28337
cd000bff
DJ
28338#ifdef OBJ_ELF
28339/* Remove any excess mapping symbols generated for alignment frags in
28340 SEC. We may have created a mapping symbol before a zero byte
28341 alignment; remove it if there's a mapping symbol after the
28342 alignment. */
28343static void
28344check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28345 void *dummy ATTRIBUTE_UNUSED)
28346{
28347 segment_info_type *seginfo = seg_info (sec);
28348 fragS *fragp;
28349
28350 if (seginfo == NULL || seginfo->frchainP == NULL)
28351 return;
28352
28353 for (fragp = seginfo->frchainP->frch_root;
28354 fragp != NULL;
28355 fragp = fragp->fr_next)
28356 {
28357 symbolS *sym = fragp->tc_frag_data.last_map;
28358 fragS *next = fragp->fr_next;
28359
28360 /* Variable-sized frags have been converted to fixed size by
28361 this point. But if this was variable-sized to start with,
28362 there will be a fixed-size frag after it. So don't handle
28363 next == NULL. */
28364 if (sym == NULL || next == NULL)
28365 continue;
28366
28367 if (S_GET_VALUE (sym) < next->fr_address)
28368 /* Not at the end of this frag. */
28369 continue;
28370 know (S_GET_VALUE (sym) == next->fr_address);
28371
28372 do
28373 {
28374 if (next->tc_frag_data.first_map != NULL)
28375 {
28376 /* Next frag starts with a mapping symbol. Discard this
28377 one. */
28378 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28379 break;
28380 }
28381
28382 if (next->fr_next == NULL)
28383 {
28384 /* This mapping symbol is at the end of the section. Discard
28385 it. */
28386 know (next->fr_fix == 0 && next->fr_var == 0);
28387 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28388 break;
28389 }
28390
28391 /* As long as we have empty frags without any mapping symbols,
28392 keep looking. */
28393 /* If the next frag is non-empty and does not start with a
28394 mapping symbol, then this mapping symbol is required. */
28395 if (next->fr_address != next->fr_next->fr_address)
28396 break;
28397
28398 next = next->fr_next;
28399 }
28400 while (next != NULL);
28401 }
28402}
28403#endif
28404
c19d1205
ZW
28405/* Adjust the symbol table. This marks Thumb symbols as distinct from
28406 ARM ones. */
404ff6b5 28407
c19d1205
ZW
28408void
28409arm_adjust_symtab (void)
404ff6b5 28410{
c19d1205
ZW
28411#ifdef OBJ_COFF
28412 symbolS * sym;
404ff6b5 28413
c19d1205
ZW
28414 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28415 {
28416 if (ARM_IS_THUMB (sym))
28417 {
28418 if (THUMB_IS_FUNC (sym))
28419 {
28420 /* Mark the symbol as a Thumb function. */
28421 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28422 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28423 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28424
c19d1205
ZW
28425 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28426 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28427 else
28428 as_bad (_("%s: unexpected function type: %d"),
28429 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28430 }
28431 else switch (S_GET_STORAGE_CLASS (sym))
28432 {
28433 case C_EXT:
28434 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28435 break;
28436 case C_STAT:
28437 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28438 break;
28439 case C_LABEL:
28440 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28441 break;
28442 default:
28443 /* Do nothing. */
28444 break;
28445 }
28446 }
a737bd4d 28447
c19d1205
ZW
28448 if (ARM_IS_INTERWORK (sym))
28449 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28450 }
c19d1205
ZW
28451#endif
28452#ifdef OBJ_ELF
28453 symbolS * sym;
28454 char bind;
404ff6b5 28455
c19d1205 28456 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28457 {
c19d1205
ZW
28458 if (ARM_IS_THUMB (sym))
28459 {
28460 elf_symbol_type * elf_sym;
404ff6b5 28461
c19d1205
ZW
28462 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28463 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28464
b0796911
PB
28465 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28466 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28467 {
28468 /* If it's a .thumb_func, declare it as so,
28469 otherwise tag label as .code 16. */
28470 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28471 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28472 ST_BRANCH_TO_THUMB);
3ba67470 28473 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28474 elf_sym->internal_elf_sym.st_info =
28475 ELF_ST_INFO (bind, STT_ARM_16BIT);
28476 }
28477 }
28478 }
cd000bff
DJ
28479
28480 /* Remove any overlapping mapping symbols generated by alignment frags. */
28481 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28482 /* Now do generic ELF adjustments. */
28483 elf_adjust_symtab ();
c19d1205 28484#endif
404ff6b5
AH
28485}
28486
c19d1205 28487/* MD interface: Initialization. */
404ff6b5 28488
a737bd4d 28489static void
c19d1205 28490set_constant_flonums (void)
a737bd4d 28491{
c19d1205 28492 int i;
404ff6b5 28493
c19d1205
ZW
28494 for (i = 0; i < NUM_FLOAT_VALS; i++)
28495 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28496 abort ();
a737bd4d 28497}
404ff6b5 28498
3e9e4fcf
JB
28499/* Auto-select Thumb mode if it's the only available instruction set for the
28500 given architecture. */
28501
28502static void
28503autoselect_thumb_from_cpu_variant (void)
28504{
28505 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28506 opcode_select (16);
28507}
28508
c19d1205
ZW
28509void
28510md_begin (void)
a737bd4d 28511{
c19d1205
ZW
28512 unsigned mach;
28513 unsigned int i;
404ff6b5 28514
c19d1205
ZW
28515 if ( (arm_ops_hsh = hash_new ()) == NULL
28516 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28517 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28518 || (arm_shift_hsh = hash_new ()) == NULL
28519 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28520 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28521 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28522 || (arm_reloc_hsh = hash_new ()) == NULL
28523 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28524 as_fatal (_("virtual memory exhausted"));
28525
28526 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28527 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28528 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28529 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28530 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28531 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28532 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28533 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28534 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28535 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28536 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28537 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28538 (void *) (v7m_psrs + i));
c19d1205 28539 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28540 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28541 for (i = 0;
28542 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28543 i++)
d3ce72d0 28544 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28545 (void *) (barrier_opt_names + i));
c19d1205 28546#ifdef OBJ_ELF
3da1d841
NC
28547 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28548 {
28549 struct reloc_entry * entry = reloc_names + i;
28550
28551 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28552 /* This makes encode_branch() use the EABI versions of this relocation. */
28553 entry->reloc = BFD_RELOC_UNUSED;
28554
28555 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28556 }
c19d1205
ZW
28557#endif
28558
28559 set_constant_flonums ();
404ff6b5 28560
c19d1205
ZW
28561 /* Set the cpu variant based on the command-line options. We prefer
28562 -mcpu= over -march= if both are set (as for GCC); and we prefer
28563 -mfpu= over any other way of setting the floating point unit.
28564 Use of legacy options with new options are faulted. */
e74cfd16 28565 if (legacy_cpu)
404ff6b5 28566 {
e74cfd16 28567 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28568 as_bad (_("use of old and new-style options to set CPU type"));
28569
4d354d8b 28570 selected_arch = *legacy_cpu;
404ff6b5 28571 }
4d354d8b
TP
28572 else if (mcpu_cpu_opt)
28573 {
28574 selected_arch = *mcpu_cpu_opt;
28575 selected_ext = *mcpu_ext_opt;
28576 }
28577 else if (march_cpu_opt)
c168ce07 28578 {
4d354d8b
TP
28579 selected_arch = *march_cpu_opt;
28580 selected_ext = *march_ext_opt;
c168ce07 28581 }
4d354d8b 28582 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28583
e74cfd16 28584 if (legacy_fpu)
c19d1205 28585 {
e74cfd16 28586 if (mfpu_opt)
c19d1205 28587 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28588
4d354d8b 28589 selected_fpu = *legacy_fpu;
03b1477f 28590 }
4d354d8b
TP
28591 else if (mfpu_opt)
28592 selected_fpu = *mfpu_opt;
28593 else
03b1477f 28594 {
45eb4c1b
NS
28595#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28596 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28597 /* Some environments specify a default FPU. If they don't, infer it
28598 from the processor. */
e74cfd16 28599 if (mcpu_fpu_opt)
4d354d8b 28600 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28601 else if (march_fpu_opt)
4d354d8b 28602 selected_fpu = *march_fpu_opt;
39c2da32 28603#else
4d354d8b 28604 selected_fpu = fpu_default;
39c2da32 28605#endif
03b1477f
RE
28606 }
28607
4d354d8b 28608 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28609 {
4d354d8b
TP
28610 if (!no_cpu_selected ())
28611 selected_fpu = fpu_default;
03b1477f 28612 else
4d354d8b 28613 selected_fpu = fpu_arch_fpa;
03b1477f
RE
28614 }
28615
ee065d83 28616#ifdef CPU_DEFAULT
4d354d8b 28617 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 28618 {
4d354d8b
TP
28619 selected_arch = cpu_default;
28620 selected_cpu = selected_arch;
ee065d83 28621 }
4d354d8b 28622 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 28623#else
4d354d8b
TP
28624 /* Autodection of feature mode: allow all features in cpu_variant but leave
28625 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28626 after all instruction have been processed and we can decide what CPU
28627 should be selected. */
28628 if (ARM_FEATURE_ZERO (selected_arch))
28629 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 28630 else
4d354d8b 28631 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 28632#endif
03b1477f 28633
3e9e4fcf
JB
28634 autoselect_thumb_from_cpu_variant ();
28635
e74cfd16 28636 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 28637
f17c130b 28638#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 28639 {
7cc69913
NC
28640 unsigned int flags = 0;
28641
28642#if defined OBJ_ELF
28643 flags = meabi_flags;
d507cf36
PB
28644
28645 switch (meabi_flags)
33a392fb 28646 {
d507cf36 28647 case EF_ARM_EABI_UNKNOWN:
7cc69913 28648#endif
d507cf36
PB
28649 /* Set the flags in the private structure. */
28650 if (uses_apcs_26) flags |= F_APCS26;
28651 if (support_interwork) flags |= F_INTERWORK;
28652 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 28653 if (pic_code) flags |= F_PIC;
e74cfd16 28654 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
28655 flags |= F_SOFT_FLOAT;
28656
d507cf36
PB
28657 switch (mfloat_abi_opt)
28658 {
28659 case ARM_FLOAT_ABI_SOFT:
28660 case ARM_FLOAT_ABI_SOFTFP:
28661 flags |= F_SOFT_FLOAT;
28662 break;
33a392fb 28663
d507cf36
PB
28664 case ARM_FLOAT_ABI_HARD:
28665 if (flags & F_SOFT_FLOAT)
28666 as_bad (_("hard-float conflicts with specified fpu"));
28667 break;
28668 }
03b1477f 28669
e74cfd16
PB
28670 /* Using pure-endian doubles (even if soft-float). */
28671 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 28672 flags |= F_VFP_FLOAT;
f17c130b 28673
fde78edd 28674#if defined OBJ_ELF
e74cfd16 28675 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 28676 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
28677 break;
28678
8cb51566 28679 case EF_ARM_EABI_VER4:
3a4a14e9 28680 case EF_ARM_EABI_VER5:
c19d1205 28681 /* No additional flags to set. */
d507cf36
PB
28682 break;
28683
28684 default:
28685 abort ();
28686 }
7cc69913 28687#endif
b99bd4ef
NC
28688 bfd_set_private_flags (stdoutput, flags);
28689
28690 /* We have run out flags in the COFF header to encode the
28691 status of ATPCS support, so instead we create a dummy,
c19d1205 28692 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
28693 if (atpcs)
28694 {
28695 asection * sec;
28696
28697 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28698
28699 if (sec != NULL)
28700 {
28701 bfd_set_section_flags
28702 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28703 bfd_set_section_size (stdoutput, sec, 0);
28704 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28705 }
28706 }
7cc69913 28707 }
f17c130b 28708#endif
b99bd4ef
NC
28709
28710 /* Record the CPU type as well. */
2d447fca
JM
28711 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28712 mach = bfd_mach_arm_iWMMXt2;
28713 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 28714 mach = bfd_mach_arm_iWMMXt;
e74cfd16 28715 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 28716 mach = bfd_mach_arm_XScale;
e74cfd16 28717 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 28718 mach = bfd_mach_arm_ep9312;
e74cfd16 28719 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 28720 mach = bfd_mach_arm_5TE;
e74cfd16 28721 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 28722 {
e74cfd16 28723 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28724 mach = bfd_mach_arm_5T;
28725 else
28726 mach = bfd_mach_arm_5;
28727 }
e74cfd16 28728 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 28729 {
e74cfd16 28730 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28731 mach = bfd_mach_arm_4T;
28732 else
28733 mach = bfd_mach_arm_4;
28734 }
e74cfd16 28735 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 28736 mach = bfd_mach_arm_3M;
e74cfd16
PB
28737 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28738 mach = bfd_mach_arm_3;
28739 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28740 mach = bfd_mach_arm_2a;
28741 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28742 mach = bfd_mach_arm_2;
28743 else
28744 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
28745
28746 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28747}
28748
c19d1205 28749/* Command line processing. */
b99bd4ef 28750
c19d1205
ZW
28751/* md_parse_option
28752 Invocation line includes a switch not recognized by the base assembler.
28753 See if it's a processor-specific option.
b99bd4ef 28754
c19d1205
ZW
28755 This routine is somewhat complicated by the need for backwards
28756 compatibility (since older releases of gcc can't be changed).
28757 The new options try to make the interface as compatible as
28758 possible with GCC.
b99bd4ef 28759
c19d1205 28760 New options (supported) are:
b99bd4ef 28761
c19d1205
ZW
28762 -mcpu=<cpu name> Assemble for selected processor
28763 -march=<architecture name> Assemble for selected architecture
28764 -mfpu=<fpu architecture> Assemble for selected FPU.
28765 -EB/-mbig-endian Big-endian
28766 -EL/-mlittle-endian Little-endian
28767 -k Generate PIC code
28768 -mthumb Start in Thumb mode
28769 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 28770
278df34e 28771 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 28772 -m[no-]warn-syms Warn when symbols match instructions
267bf995 28773
c19d1205 28774 For now we will also provide support for:
b99bd4ef 28775
c19d1205
ZW
28776 -mapcs-32 32-bit Program counter
28777 -mapcs-26 26-bit Program counter
28778 -macps-float Floats passed in FP registers
28779 -mapcs-reentrant Reentrant code
28780 -matpcs
28781 (sometime these will probably be replaced with -mapcs=<list of options>
28782 and -matpcs=<list of options>)
b99bd4ef 28783
c19d1205
ZW
28784 The remaining options are only supported for back-wards compatibility.
28785 Cpu variants, the arm part is optional:
28786 -m[arm]1 Currently not supported.
28787 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28788 -m[arm]3 Arm 3 processor
28789 -m[arm]6[xx], Arm 6 processors
28790 -m[arm]7[xx][t][[d]m] Arm 7 processors
28791 -m[arm]8[10] Arm 8 processors
28792 -m[arm]9[20][tdmi] Arm 9 processors
28793 -mstrongarm[110[0]] StrongARM processors
28794 -mxscale XScale processors
28795 -m[arm]v[2345[t[e]]] Arm architectures
28796 -mall All (except the ARM1)
28797 FP variants:
28798 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28799 -mfpe-old (No float load/store multiples)
28800 -mvfpxd VFP Single precision
28801 -mvfp All VFP
28802 -mno-fpu Disable all floating point instructions
b99bd4ef 28803
c19d1205
ZW
28804 The following CPU names are recognized:
28805 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28806 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28807 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28808 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28809 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28810 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28811 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 28812
c19d1205 28813 */
b99bd4ef 28814
c19d1205 28815const char * md_shortopts = "m:k";
b99bd4ef 28816
c19d1205
ZW
28817#ifdef ARM_BI_ENDIAN
28818#define OPTION_EB (OPTION_MD_BASE + 0)
28819#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 28820#else
c19d1205
ZW
28821#if TARGET_BYTES_BIG_ENDIAN
28822#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 28823#else
c19d1205
ZW
28824#define OPTION_EL (OPTION_MD_BASE + 1)
28825#endif
b99bd4ef 28826#endif
845b51d6 28827#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 28828#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 28829
c19d1205 28830struct option md_longopts[] =
b99bd4ef 28831{
c19d1205
ZW
28832#ifdef OPTION_EB
28833 {"EB", no_argument, NULL, OPTION_EB},
28834#endif
28835#ifdef OPTION_EL
28836 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 28837#endif
845b51d6 28838 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
28839#ifdef OBJ_ELF
28840 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28841#endif
c19d1205
ZW
28842 {NULL, no_argument, NULL, 0}
28843};
b99bd4ef 28844
c19d1205 28845size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 28846
c19d1205 28847struct arm_option_table
b99bd4ef 28848{
0198d5e6
TC
28849 const char * option; /* Option name to match. */
28850 const char * help; /* Help information. */
28851 int * var; /* Variable to change. */
28852 int value; /* What to change it to. */
28853 const char * deprecated; /* If non-null, print this message. */
c19d1205 28854};
b99bd4ef 28855
c19d1205
ZW
28856struct arm_option_table arm_opts[] =
28857{
28858 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28859 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28860 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28861 &support_interwork, 1, NULL},
28862 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28863 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28864 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28865 1, NULL},
28866 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28867 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28868 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28869 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28870 NULL},
b99bd4ef 28871
c19d1205
ZW
28872 /* These are recognized by the assembler, but have no affect on code. */
28873 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28874 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
28875
28876 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28877 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28878 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
28879 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28880 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
28881 {NULL, NULL, NULL, 0, NULL}
28882};
28883
28884struct arm_legacy_option_table
28885{
0198d5e6
TC
28886 const char * option; /* Option name to match. */
28887 const arm_feature_set ** var; /* Variable to change. */
28888 const arm_feature_set value; /* What to change it to. */
28889 const char * deprecated; /* If non-null, print this message. */
e74cfd16 28890};
b99bd4ef 28891
e74cfd16
PB
28892const struct arm_legacy_option_table arm_legacy_opts[] =
28893{
c19d1205
ZW
28894 /* DON'T add any new processors to this list -- we want the whole list
28895 to go away... Add them to the processors table instead. */
e74cfd16
PB
28896 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28897 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28898 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28899 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28900 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28901 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28902 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28903 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28904 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28905 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28906 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28907 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28908 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28909 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28910 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28911 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28912 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28913 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28914 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28915 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28916 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28917 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28918 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28919 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28920 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28921 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28922 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28923 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28924 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28925 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28926 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28927 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28928 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28929 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28930 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28931 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28932 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28933 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28934 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28935 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28936 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28937 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28938 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28939 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28940 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28941 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28942 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28943 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28944 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28945 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28946 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28947 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28948 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28949 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28950 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28951 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28952 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28953 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28954 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28955 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28956 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28957 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28958 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28959 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28960 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28961 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28962 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28963 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28964 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28965 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28966 N_("use -mcpu=strongarm110")},
e74cfd16 28967 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28968 N_("use -mcpu=strongarm1100")},
e74cfd16 28969 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28970 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
28971 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28972 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28973 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 28974
c19d1205 28975 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
28976 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28977 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28978 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28979 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28980 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28981 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28982 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28983 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28984 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28985 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28986 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28987 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28988 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28989 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28990 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28991 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28992 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28993 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 28994
c19d1205 28995 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
28996 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28997 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28998 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28999 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29000 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29001
e74cfd16 29002 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29003};
7ed4c4c5 29004
c19d1205 29005struct arm_cpu_option_table
7ed4c4c5 29006{
0198d5e6
TC
29007 const char * name;
29008 size_t name_len;
29009 const arm_feature_set value;
29010 const arm_feature_set ext;
c19d1205
ZW
29011 /* For some CPUs we assume an FPU unless the user explicitly sets
29012 -mfpu=... */
0198d5e6 29013 const arm_feature_set default_fpu;
ee065d83
PB
29014 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29015 case. */
0198d5e6 29016 const char * canonical_name;
c19d1205 29017};
7ed4c4c5 29018
c19d1205
ZW
29019/* This list should, at a minimum, contain all the cpu names
29020 recognized by GCC. */
996b5569 29021#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29022
e74cfd16 29023static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29024{
996b5569
TP
29025 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29026 ARM_ARCH_NONE,
29027 FPU_ARCH_FPA),
29028 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29029 ARM_ARCH_NONE,
29030 FPU_ARCH_FPA),
29031 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29032 ARM_ARCH_NONE,
29033 FPU_ARCH_FPA),
29034 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29035 ARM_ARCH_NONE,
29036 FPU_ARCH_FPA),
29037 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29038 ARM_ARCH_NONE,
29039 FPU_ARCH_FPA),
29040 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29041 ARM_ARCH_NONE,
29042 FPU_ARCH_FPA),
29043 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29044 ARM_ARCH_NONE,
29045 FPU_ARCH_FPA),
29046 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29047 ARM_ARCH_NONE,
29048 FPU_ARCH_FPA),
29049 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29050 ARM_ARCH_NONE,
29051 FPU_ARCH_FPA),
29052 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29053 ARM_ARCH_NONE,
29054 FPU_ARCH_FPA),
29055 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29056 ARM_ARCH_NONE,
29057 FPU_ARCH_FPA),
29058 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29059 ARM_ARCH_NONE,
29060 FPU_ARCH_FPA),
29061 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29062 ARM_ARCH_NONE,
29063 FPU_ARCH_FPA),
29064 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29065 ARM_ARCH_NONE,
29066 FPU_ARCH_FPA),
29067 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29068 ARM_ARCH_NONE,
29069 FPU_ARCH_FPA),
29070 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29071 ARM_ARCH_NONE,
29072 FPU_ARCH_FPA),
29073 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29074 ARM_ARCH_NONE,
29075 FPU_ARCH_FPA),
29076 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29077 ARM_ARCH_NONE,
29078 FPU_ARCH_FPA),
29079 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29080 ARM_ARCH_NONE,
29081 FPU_ARCH_FPA),
29082 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29083 ARM_ARCH_NONE,
29084 FPU_ARCH_FPA),
29085 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29086 ARM_ARCH_NONE,
29087 FPU_ARCH_FPA),
29088 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29089 ARM_ARCH_NONE,
29090 FPU_ARCH_FPA),
29091 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29092 ARM_ARCH_NONE,
29093 FPU_ARCH_FPA),
29094 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29095 ARM_ARCH_NONE,
29096 FPU_ARCH_FPA),
29097 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29098 ARM_ARCH_NONE,
29099 FPU_ARCH_FPA),
29100 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29101 ARM_ARCH_NONE,
29102 FPU_ARCH_FPA),
29103 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29104 ARM_ARCH_NONE,
29105 FPU_ARCH_FPA),
29106 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29107 ARM_ARCH_NONE,
29108 FPU_ARCH_FPA),
29109 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29110 ARM_ARCH_NONE,
29111 FPU_ARCH_FPA),
29112 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29113 ARM_ARCH_NONE,
29114 FPU_ARCH_FPA),
29115 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29116 ARM_ARCH_NONE,
29117 FPU_ARCH_FPA),
29118 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29119 ARM_ARCH_NONE,
29120 FPU_ARCH_FPA),
29121 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29122 ARM_ARCH_NONE,
29123 FPU_ARCH_FPA),
29124 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29125 ARM_ARCH_NONE,
29126 FPU_ARCH_FPA),
29127 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29128 ARM_ARCH_NONE,
29129 FPU_ARCH_FPA),
29130 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29131 ARM_ARCH_NONE,
29132 FPU_ARCH_FPA),
29133 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29134 ARM_ARCH_NONE,
29135 FPU_ARCH_FPA),
29136 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29137 ARM_ARCH_NONE,
29138 FPU_ARCH_FPA),
29139 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29140 ARM_ARCH_NONE,
29141 FPU_ARCH_FPA),
29142 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29143 ARM_ARCH_NONE,
29144 FPU_ARCH_FPA),
29145 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29146 ARM_ARCH_NONE,
29147 FPU_ARCH_FPA),
29148 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29149 ARM_ARCH_NONE,
29150 FPU_ARCH_FPA),
29151 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29152 ARM_ARCH_NONE,
29153 FPU_ARCH_FPA),
29154 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29155 ARM_ARCH_NONE,
29156 FPU_ARCH_FPA),
29157 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29158 ARM_ARCH_NONE,
29159 FPU_ARCH_FPA),
29160 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29161 ARM_ARCH_NONE,
29162 FPU_ARCH_FPA),
29163
c19d1205
ZW
29164 /* For V5 or later processors we default to using VFP; but the user
29165 should really set the FPU type explicitly. */
996b5569
TP
29166 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29167 ARM_ARCH_NONE,
29168 FPU_ARCH_VFP_V2),
29169 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29170 ARM_ARCH_NONE,
29171 FPU_ARCH_VFP_V2),
29172 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29173 ARM_ARCH_NONE,
29174 FPU_ARCH_VFP_V2),
29175 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29176 ARM_ARCH_NONE,
29177 FPU_ARCH_VFP_V2),
29178 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29179 ARM_ARCH_NONE,
29180 FPU_ARCH_VFP_V2),
29181 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29182 ARM_ARCH_NONE,
29183 FPU_ARCH_VFP_V2),
29184 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29185 ARM_ARCH_NONE,
29186 FPU_ARCH_VFP_V2),
29187 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29188 ARM_ARCH_NONE,
29189 FPU_ARCH_VFP_V2),
29190 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29191 ARM_ARCH_NONE,
29192 FPU_ARCH_VFP_V2),
29193 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29194 ARM_ARCH_NONE,
29195 FPU_ARCH_VFP_V2),
29196 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29197 ARM_ARCH_NONE,
29198 FPU_ARCH_VFP_V2),
29199 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29200 ARM_ARCH_NONE,
29201 FPU_ARCH_VFP_V2),
29202 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29203 ARM_ARCH_NONE,
29204 FPU_ARCH_VFP_V1),
29205 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29206 ARM_ARCH_NONE,
29207 FPU_ARCH_VFP_V1),
29208 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29209 ARM_ARCH_NONE,
29210 FPU_ARCH_VFP_V2),
29211 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29212 ARM_ARCH_NONE,
29213 FPU_ARCH_VFP_V2),
29214 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29215 ARM_ARCH_NONE,
29216 FPU_ARCH_VFP_V1),
29217 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29218 ARM_ARCH_NONE,
29219 FPU_ARCH_VFP_V2),
29220 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29221 ARM_ARCH_NONE,
29222 FPU_ARCH_VFP_V2),
29223 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29224 ARM_ARCH_NONE,
29225 FPU_ARCH_VFP_V2),
29226 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29227 ARM_ARCH_NONE,
29228 FPU_ARCH_VFP_V2),
29229 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29230 ARM_ARCH_NONE,
29231 FPU_ARCH_VFP_V2),
29232 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29233 ARM_ARCH_NONE,
29234 FPU_ARCH_VFP_V2),
29235 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29236 ARM_ARCH_NONE,
29237 FPU_ARCH_VFP_V2),
29238 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29239 ARM_ARCH_NONE,
29240 FPU_ARCH_VFP_V2),
29241 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29242 ARM_ARCH_NONE,
29243 FPU_ARCH_VFP_V2),
29244 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29245 ARM_ARCH_NONE,
29246 FPU_NONE),
29247 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29248 ARM_ARCH_NONE,
29249 FPU_NONE),
29250 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29251 ARM_ARCH_NONE,
29252 FPU_ARCH_VFP_V2),
29253 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29254 ARM_ARCH_NONE,
29255 FPU_ARCH_VFP_V2),
29256 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29257 ARM_ARCH_NONE,
29258 FPU_ARCH_VFP_V2),
29259 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29260 ARM_ARCH_NONE,
29261 FPU_NONE),
29262 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29263 ARM_ARCH_NONE,
29264 FPU_NONE),
29265 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29266 ARM_ARCH_NONE,
29267 FPU_ARCH_VFP_V2),
29268 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29269 ARM_ARCH_NONE,
29270 FPU_NONE),
29271 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29272 ARM_ARCH_NONE,
29273 FPU_ARCH_VFP_V2),
29274 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29275 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29276 FPU_NONE),
29277 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29278 ARM_ARCH_NONE,
29279 FPU_ARCH_NEON_VFP_V4),
29280 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29281 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29282 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29283 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29284 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29285 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29286 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29287 ARM_ARCH_NONE,
29288 FPU_ARCH_NEON_VFP_V4),
29289 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29290 ARM_ARCH_NONE,
29291 FPU_ARCH_NEON_VFP_V4),
29292 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29293 ARM_ARCH_NONE,
29294 FPU_ARCH_NEON_VFP_V4),
29295 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29296 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29297 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29298 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29299 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29300 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29301 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29302 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29303 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29304 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29305 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29306 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29307 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29308 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29309 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29310 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29311 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29312 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29313 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29314 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29315 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
29316 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29317 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 29318 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 29319 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29320 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29321 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
29322 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29323 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29324 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
29325 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29326 ARM_ARCH_NONE,
29327 FPU_NONE),
29328 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29329 ARM_ARCH_NONE,
29330 FPU_ARCH_VFP_V3D16),
29331 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29332 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29333 FPU_NONE),
29334 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29335 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29336 FPU_ARCH_VFP_V3D16),
29337 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29338 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29339 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
29340 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29341 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29342 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
29343 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29344 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29345 FPU_NONE),
29346 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29347 ARM_ARCH_NONE,
29348 FPU_NONE),
29349 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29350 ARM_ARCH_NONE,
29351 FPU_NONE),
29352 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29353 ARM_ARCH_NONE,
29354 FPU_NONE),
29355 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29356 ARM_ARCH_NONE,
29357 FPU_NONE),
29358 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29359 ARM_ARCH_NONE,
29360 FPU_NONE),
29361 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29362 ARM_ARCH_NONE,
29363 FPU_NONE),
29364 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29365 ARM_ARCH_NONE,
29366 FPU_NONE),
29367 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29368 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29369 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
29370 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29371 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29372 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 29373 /* ??? XSCALE is really an architecture. */
996b5569
TP
29374 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29375 ARM_ARCH_NONE,
29376 FPU_ARCH_VFP_V2),
29377
c19d1205 29378 /* ??? iwmmxt is not a processor. */
996b5569
TP
29379 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29380 ARM_ARCH_NONE,
29381 FPU_ARCH_VFP_V2),
29382 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29383 ARM_ARCH_NONE,
29384 FPU_ARCH_VFP_V2),
29385 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29386 ARM_ARCH_NONE,
29387 FPU_ARCH_VFP_V2),
29388
0198d5e6 29389 /* Maverick. */
996b5569
TP
29390 ARM_CPU_OPT ("ep9312", "ARM920T",
29391 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29392 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29393
da4339ed 29394 /* Marvell processors. */
996b5569
TP
29395 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29396 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29397 FPU_ARCH_VFP_V3D16),
29398 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29399 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29400 FPU_ARCH_NEON_VFP_V4),
da4339ed 29401
996b5569
TP
29402 /* APM X-Gene family. */
29403 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29404 ARM_ARCH_NONE,
29405 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29406 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29407 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29408 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29409
29410 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29411};
f3bad469 29412#undef ARM_CPU_OPT
7ed4c4c5 29413
34ef62f4
AV
29414struct arm_ext_table
29415{
29416 const char * name;
29417 size_t name_len;
29418 const arm_feature_set merge;
29419 const arm_feature_set clear;
29420};
29421
c19d1205 29422struct arm_arch_option_table
7ed4c4c5 29423{
34ef62f4
AV
29424 const char * name;
29425 size_t name_len;
29426 const arm_feature_set value;
29427 const arm_feature_set default_fpu;
29428 const struct arm_ext_table * ext_table;
29429};
29430
29431/* Used to add support for +E and +noE extension. */
29432#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29433/* Used to add support for a +E extension. */
29434#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29435/* Used to add support for a +noE extension. */
29436#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29437
29438#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29439 ~0 & ~FPU_ENDIAN_PURE)
29440
29441static const struct arm_ext_table armv5te_ext_table[] =
29442{
29443 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29444 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29445};
29446
29447static const struct arm_ext_table armv7_ext_table[] =
29448{
29449 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29450 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29451};
29452
29453static const struct arm_ext_table armv7ve_ext_table[] =
29454{
29455 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29456 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29457 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29458 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29459 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29460 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29461 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29462
29463 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29464 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29465
29466 /* Aliases for +simd. */
29467 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29468
29469 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29470 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29471 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29472
29473 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29474};
29475
29476static const struct arm_ext_table armv7a_ext_table[] =
29477{
29478 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29479 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29480 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29481 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29482 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29483 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29484 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29485
29486 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29487 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29488
29489 /* Aliases for +simd. */
29490 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29491 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29492
29493 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29494 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29495
29496 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29497 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29498 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29499};
29500
29501static const struct arm_ext_table armv7r_ext_table[] =
29502{
29503 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29504 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29505 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29506 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29507 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29508 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29509 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29510 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29511 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29512};
29513
29514static const struct arm_ext_table armv7em_ext_table[] =
29515{
29516 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29517 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29518 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29519 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29520 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29521 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29522 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29523};
29524
29525static const struct arm_ext_table armv8a_ext_table[] =
29526{
29527 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29528 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29529 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29530 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29531
29532 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29533 should use the +simd option to turn on FP. */
29534 ARM_REMOVE ("fp", ALL_FP),
29535 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29536 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29537 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29538};
29539
29540
29541static const struct arm_ext_table armv81a_ext_table[] =
29542{
29543 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29544 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29545 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29546
29547 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29548 should use the +simd option to turn on FP. */
29549 ARM_REMOVE ("fp", ALL_FP),
29550 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29551 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29552 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29553};
29554
29555static const struct arm_ext_table armv82a_ext_table[] =
29556{
29557 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29558 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29559 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29560 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29561 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29562 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29563
29564 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29565 should use the +simd option to turn on FP. */
29566 ARM_REMOVE ("fp", ALL_FP),
29567 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29568 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29569 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29570};
29571
29572static const struct arm_ext_table armv84a_ext_table[] =
29573{
29574 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29575 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29576 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29577 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29578
29579 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29580 should use the +simd option to turn on FP. */
29581 ARM_REMOVE ("fp", ALL_FP),
29582 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29583 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29584 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29585};
29586
29587static const struct arm_ext_table armv85a_ext_table[] =
29588{
29589 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29590 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29591 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29592 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29593
29594 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29595 should use the +simd option to turn on FP. */
29596 ARM_REMOVE ("fp", ALL_FP),
29597 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29598};
29599
29600static const struct arm_ext_table armv8m_main_ext_table[] =
29601{
29602 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29603 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29604 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29605 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29606 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29607};
29608
e0991585
AV
29609static const struct arm_ext_table armv8_1m_main_ext_table[] =
29610{
29611 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29612 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29613 ARM_EXT ("fp",
29614 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29615 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29616 ALL_FP),
29617 ARM_ADD ("fp.dp",
29618 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29619 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
29620 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29621 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29622 ARM_ADD ("mve.fp",
29623 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29624 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29625 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
29626 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29627};
29628
34ef62f4
AV
29629static const struct arm_ext_table armv8r_ext_table[] =
29630{
29631 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29632 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29633 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29634 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29635 ARM_REMOVE ("fp", ALL_FP),
29636 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29637 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 29638};
7ed4c4c5 29639
c19d1205
ZW
29640/* This list should, at a minimum, contain all the architecture names
29641 recognized by GCC. */
34ef62f4
AV
29642#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29643#define ARM_ARCH_OPT2(N, V, DF, ext) \
29644 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 29645
e74cfd16 29646static const struct arm_arch_option_table arm_archs[] =
c19d1205 29647{
497d849d
TP
29648 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29649 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29650 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29651 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29652 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29653 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29654 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29655 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29656 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29657 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29658 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29659 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29660 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29661 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
29662 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29663 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29664 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29665 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29666 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29667 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29668 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29669 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29670 kept to preserve existing behaviour. */
34ef62f4
AV
29671 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29672 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29673 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29674 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29675 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29676 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29677 kept to preserve existing behaviour. */
34ef62f4
AV
29678 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29679 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
29680 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29681 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 29682 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
29683 /* The official spelling of the ARMv7 profile variants is the dashed form.
29684 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
29685 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29686 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29687 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29688 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
29689 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29690 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29691 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 29692 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 29693 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
29694 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29695 armv8m_main),
e0991585
AV
29696 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29697 armv8_1m_main),
34ef62f4
AV
29698 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29699 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29700 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29701 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29702 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29703 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29704 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
29705 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29706 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29707 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 29708 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29709};
f3bad469 29710#undef ARM_ARCH_OPT
7ed4c4c5 29711
69133863 29712/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 29713
69133863 29714struct arm_option_extension_value_table
c19d1205 29715{
0198d5e6
TC
29716 const char * name;
29717 size_t name_len;
29718 const arm_feature_set merge_value;
29719 const arm_feature_set clear_value;
d942732e
TP
29720 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29721 indicates that an extension is available for all architectures while
29722 ARM_ANY marks an empty entry. */
0198d5e6 29723 const arm_feature_set allowed_archs[2];
c19d1205 29724};
7ed4c4c5 29725
0198d5e6
TC
29726/* The following table must be in alphabetical order with a NULL last entry. */
29727
d942732e
TP
29728#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29729#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 29730
34ef62f4
AV
29731/* DEPRECATED: Refrain from using this table to add any new extensions, instead
29732 use the context sensitive approach using arm_ext_table's. */
69133863 29733static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 29734{
823d2571
TG
29735 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29736 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 29737 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
29738 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29739 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
29740 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29741 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29742 ARM_ARCH_V8_2A),
15afaa63
TP
29743 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29744 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29745 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
29746 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29747 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
29748 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29749 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29750 ARM_ARCH_V8_2A),
01f48020
TC
29751 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29752 | ARM_EXT2_FP16_FML),
29753 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29754 | ARM_EXT2_FP16_FML),
29755 ARM_ARCH_V8_2A),
d942732e 29756 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 29757 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
29758 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29759 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
29760 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29761 Thumb divide instruction. Due to this having the same name as the
29762 previous entry, this will be ignored when doing command-line parsing and
29763 only considered by build attribute selection code. */
29764 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29765 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29766 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 29767 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 29768 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 29769 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 29770 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 29771 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
29772 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29773 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 29774 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
29775 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29776 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
29777 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29778 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29779 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
29780 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29781 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 29782 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
29783 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29784 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29785 ARM_ARCH_V8A),
4d1464f2
MW
29786 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29787 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 29788 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
29789 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29790 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 29791 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
29792 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29793 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29794 ARM_ARCH_V8A),
d942732e 29795 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 29796 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
29797 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29798 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
29799 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29800 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29801 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
29802 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29803 | ARM_EXT_DIV),
29804 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29805 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29806 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
29807 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29808 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 29809};
f3bad469 29810#undef ARM_EXT_OPT
69133863
MGD
29811
29812/* ISA floating-point and Advanced SIMD extensions. */
29813struct arm_option_fpu_value_table
29814{
0198d5e6
TC
29815 const char * name;
29816 const arm_feature_set value;
c19d1205 29817};
7ed4c4c5 29818
c19d1205
ZW
29819/* This list should, at a minimum, contain all the fpu names
29820 recognized by GCC. */
69133863 29821static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
29822{
29823 {"softfpa", FPU_NONE},
29824 {"fpe", FPU_ARCH_FPE},
29825 {"fpe2", FPU_ARCH_FPE},
29826 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29827 {"fpa", FPU_ARCH_FPA},
29828 {"fpa10", FPU_ARCH_FPA},
29829 {"fpa11", FPU_ARCH_FPA},
29830 {"arm7500fe", FPU_ARCH_FPA},
29831 {"softvfp", FPU_ARCH_VFP},
29832 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29833 {"vfp", FPU_ARCH_VFP_V2},
29834 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 29835 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
29836 {"vfp10", FPU_ARCH_VFP_V2},
29837 {"vfp10-r0", FPU_ARCH_VFP_V1},
29838 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
29839 {"vfpv2", FPU_ARCH_VFP_V2},
29840 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 29841 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 29842 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
29843 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29844 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29845 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
29846 {"arm1020t", FPU_ARCH_VFP_V1},
29847 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 29848 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
29849 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29850 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 29851 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 29852 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 29853 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
29854 {"vfpv4", FPU_ARCH_VFP_V4},
29855 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 29856 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
29857 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29858 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 29859 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
29860 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29861 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29862 {"crypto-neon-fp-armv8",
29863 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 29864 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
29865 {"crypto-neon-fp-armv8.1",
29866 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
29867 {NULL, ARM_ARCH_NONE}
29868};
29869
29870struct arm_option_value_table
29871{
e0471c16 29872 const char *name;
e74cfd16 29873 long value;
c19d1205 29874};
7ed4c4c5 29875
e74cfd16 29876static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
29877{
29878 {"hard", ARM_FLOAT_ABI_HARD},
29879 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29880 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 29881 {NULL, 0}
c19d1205 29882};
7ed4c4c5 29883
c19d1205 29884#ifdef OBJ_ELF
3a4a14e9 29885/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 29886static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
29887{
29888 {"gnu", EF_ARM_EABI_UNKNOWN},
29889 {"4", EF_ARM_EABI_VER4},
3a4a14e9 29890 {"5", EF_ARM_EABI_VER5},
e74cfd16 29891 {NULL, 0}
c19d1205
ZW
29892};
29893#endif
7ed4c4c5 29894
c19d1205
ZW
29895struct arm_long_option_table
29896{
0198d5e6 29897 const char * option; /* Substring to match. */
e0471c16 29898 const char * help; /* Help information. */
17b9d67d 29899 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 29900 const char * deprecated; /* If non-null, print this message. */
c19d1205 29901};
7ed4c4c5 29902
c921be7d 29903static bfd_boolean
c168ce07 29904arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
29905 arm_feature_set *ext_set,
29906 const struct arm_ext_table *ext_table)
7ed4c4c5 29907{
69133863 29908 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
29909 extensions being added before being removed. We achieve this by having
29910 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 29911 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 29912 or removing it (0) and only allowing it to change in the order
69133863
MGD
29913 -1 -> 1 -> 0. */
29914 const struct arm_option_extension_value_table * opt = NULL;
d942732e 29915 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
29916 int adding_value = -1;
29917
c19d1205 29918 while (str != NULL && *str != 0)
7ed4c4c5 29919 {
82b8a785 29920 const char *ext;
f3bad469 29921 size_t len;
7ed4c4c5 29922
c19d1205
ZW
29923 if (*str != '+')
29924 {
29925 as_bad (_("invalid architectural extension"));
c921be7d 29926 return FALSE;
c19d1205 29927 }
7ed4c4c5 29928
c19d1205
ZW
29929 str++;
29930 ext = strchr (str, '+');
7ed4c4c5 29931
c19d1205 29932 if (ext != NULL)
f3bad469 29933 len = ext - str;
c19d1205 29934 else
f3bad469 29935 len = strlen (str);
7ed4c4c5 29936
f3bad469 29937 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
29938 {
29939 if (adding_value != 0)
29940 {
29941 adding_value = 0;
29942 opt = arm_extensions;
29943 }
29944
f3bad469 29945 len -= 2;
69133863
MGD
29946 str += 2;
29947 }
f3bad469 29948 else if (len > 0)
69133863
MGD
29949 {
29950 if (adding_value == -1)
29951 {
29952 adding_value = 1;
29953 opt = arm_extensions;
29954 }
29955 else if (adding_value != 1)
29956 {
29957 as_bad (_("must specify extensions to add before specifying "
29958 "those to remove"));
29959 return FALSE;
29960 }
29961 }
29962
f3bad469 29963 if (len == 0)
c19d1205
ZW
29964 {
29965 as_bad (_("missing architectural extension"));
c921be7d 29966 return FALSE;
c19d1205 29967 }
7ed4c4c5 29968
69133863
MGD
29969 gas_assert (adding_value != -1);
29970 gas_assert (opt != NULL);
29971
34ef62f4
AV
29972 if (ext_table != NULL)
29973 {
29974 const struct arm_ext_table * ext_opt = ext_table;
29975 bfd_boolean found = FALSE;
29976 for (; ext_opt->name != NULL; ext_opt++)
29977 if (ext_opt->name_len == len
29978 && strncmp (ext_opt->name, str, len) == 0)
29979 {
29980 if (adding_value)
29981 {
29982 if (ARM_FEATURE_ZERO (ext_opt->merge))
29983 /* TODO: Option not supported. When we remove the
29984 legacy table this case should error out. */
29985 continue;
29986
29987 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29988 }
29989 else
29990 {
29991 if (ARM_FEATURE_ZERO (ext_opt->clear))
29992 /* TODO: Option not supported. When we remove the
29993 legacy table this case should error out. */
29994 continue;
29995 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29996 }
29997 found = TRUE;
29998 break;
29999 }
30000 if (found)
30001 {
30002 str = ext;
30003 continue;
30004 }
30005 }
30006
69133863
MGD
30007 /* Scan over the options table trying to find an exact match. */
30008 for (; opt->name != NULL; opt++)
f3bad469 30009 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30010 {
d942732e
TP
30011 int i, nb_allowed_archs =
30012 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30013 /* Check we can apply the extension to this architecture. */
d942732e
TP
30014 for (i = 0; i < nb_allowed_archs; i++)
30015 {
30016 /* Empty entry. */
30017 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30018 continue;
c168ce07 30019 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30020 break;
30021 }
30022 if (i == nb_allowed_archs)
69133863
MGD
30023 {
30024 as_bad (_("extension does not apply to the base architecture"));
30025 return FALSE;
30026 }
30027
30028 /* Add or remove the extension. */
30029 if (adding_value)
4d354d8b 30030 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30031 else
4d354d8b 30032 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30033
3d030cdb
TP
30034 /* Allowing Thumb division instructions for ARMv7 in autodetection
30035 rely on this break so that duplicate extensions (extensions
30036 with the same name as a previous extension in the list) are not
30037 considered for command-line parsing. */
c19d1205
ZW
30038 break;
30039 }
7ed4c4c5 30040
c19d1205
ZW
30041 if (opt->name == NULL)
30042 {
69133863
MGD
30043 /* Did we fail to find an extension because it wasn't specified in
30044 alphabetical order, or because it does not exist? */
30045
30046 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30047 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30048 break;
30049
30050 if (opt->name == NULL)
30051 as_bad (_("unknown architectural extension `%s'"), str);
30052 else
30053 as_bad (_("architectural extensions must be specified in "
30054 "alphabetical order"));
30055
c921be7d 30056 return FALSE;
c19d1205 30057 }
69133863
MGD
30058 else
30059 {
30060 /* We should skip the extension we've just matched the next time
30061 round. */
30062 opt++;
30063 }
7ed4c4c5 30064
c19d1205
ZW
30065 str = ext;
30066 };
7ed4c4c5 30067
c921be7d 30068 return TRUE;
c19d1205 30069}
7ed4c4c5 30070
c921be7d 30071static bfd_boolean
17b9d67d 30072arm_parse_cpu (const char *str)
7ed4c4c5 30073{
f3bad469 30074 const struct arm_cpu_option_table *opt;
82b8a785 30075 const char *ext = strchr (str, '+');
f3bad469 30076 size_t len;
7ed4c4c5 30077
c19d1205 30078 if (ext != NULL)
f3bad469 30079 len = ext - str;
7ed4c4c5 30080 else
f3bad469 30081 len = strlen (str);
7ed4c4c5 30082
f3bad469 30083 if (len == 0)
7ed4c4c5 30084 {
c19d1205 30085 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30086 return FALSE;
7ed4c4c5
NC
30087 }
30088
c19d1205 30089 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30090 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30091 {
c168ce07 30092 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30093 if (mcpu_ext_opt == NULL)
30094 mcpu_ext_opt = XNEW (arm_feature_set);
30095 *mcpu_ext_opt = opt->ext;
e74cfd16 30096 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30097 if (opt->canonical_name)
ef8e6722
JW
30098 {
30099 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30100 strcpy (selected_cpu_name, opt->canonical_name);
30101 }
ee065d83
PB
30102 else
30103 {
f3bad469 30104 size_t i;
c921be7d 30105
ef8e6722
JW
30106 if (len >= sizeof selected_cpu_name)
30107 len = (sizeof selected_cpu_name) - 1;
30108
f3bad469 30109 for (i = 0; i < len; i++)
ee065d83
PB
30110 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30111 selected_cpu_name[i] = 0;
30112 }
7ed4c4c5 30113
c19d1205 30114 if (ext != NULL)
34ef62f4 30115 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30116
c921be7d 30117 return TRUE;
c19d1205 30118 }
7ed4c4c5 30119
c19d1205 30120 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30121 return FALSE;
7ed4c4c5
NC
30122}
30123
c921be7d 30124static bfd_boolean
17b9d67d 30125arm_parse_arch (const char *str)
7ed4c4c5 30126{
e74cfd16 30127 const struct arm_arch_option_table *opt;
82b8a785 30128 const char *ext = strchr (str, '+');
f3bad469 30129 size_t len;
7ed4c4c5 30130
c19d1205 30131 if (ext != NULL)
f3bad469 30132 len = ext - str;
7ed4c4c5 30133 else
f3bad469 30134 len = strlen (str);
7ed4c4c5 30135
f3bad469 30136 if (len == 0)
7ed4c4c5 30137 {
c19d1205 30138 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30139 return FALSE;
7ed4c4c5
NC
30140 }
30141
c19d1205 30142 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30143 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30144 {
e74cfd16 30145 march_cpu_opt = &opt->value;
4d354d8b
TP
30146 if (march_ext_opt == NULL)
30147 march_ext_opt = XNEW (arm_feature_set);
30148 *march_ext_opt = arm_arch_none;
e74cfd16 30149 march_fpu_opt = &opt->default_fpu;
5f4273c7 30150 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30151
c19d1205 30152 if (ext != NULL)
34ef62f4
AV
30153 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30154 opt->ext_table);
7ed4c4c5 30155
c921be7d 30156 return TRUE;
c19d1205
ZW
30157 }
30158
30159 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 30160 return FALSE;
7ed4c4c5 30161}
eb043451 30162
c921be7d 30163static bfd_boolean
17b9d67d 30164arm_parse_fpu (const char * str)
c19d1205 30165{
69133863 30166 const struct arm_option_fpu_value_table * opt;
b99bd4ef 30167
c19d1205
ZW
30168 for (opt = arm_fpus; opt->name != NULL; opt++)
30169 if (streq (opt->name, str))
30170 {
e74cfd16 30171 mfpu_opt = &opt->value;
c921be7d 30172 return TRUE;
c19d1205 30173 }
b99bd4ef 30174
c19d1205 30175 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 30176 return FALSE;
c19d1205
ZW
30177}
30178
c921be7d 30179static bfd_boolean
17b9d67d 30180arm_parse_float_abi (const char * str)
b99bd4ef 30181{
e74cfd16 30182 const struct arm_option_value_table * opt;
b99bd4ef 30183
c19d1205
ZW
30184 for (opt = arm_float_abis; opt->name != NULL; opt++)
30185 if (streq (opt->name, str))
30186 {
30187 mfloat_abi_opt = opt->value;
c921be7d 30188 return TRUE;
c19d1205 30189 }
cc8a6dd0 30190
c19d1205 30191 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 30192 return FALSE;
c19d1205 30193}
b99bd4ef 30194
c19d1205 30195#ifdef OBJ_ELF
c921be7d 30196static bfd_boolean
17b9d67d 30197arm_parse_eabi (const char * str)
c19d1205 30198{
e74cfd16 30199 const struct arm_option_value_table *opt;
cc8a6dd0 30200
c19d1205
ZW
30201 for (opt = arm_eabis; opt->name != NULL; opt++)
30202 if (streq (opt->name, str))
30203 {
30204 meabi_flags = opt->value;
c921be7d 30205 return TRUE;
c19d1205
ZW
30206 }
30207 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 30208 return FALSE;
c19d1205
ZW
30209}
30210#endif
cc8a6dd0 30211
c921be7d 30212static bfd_boolean
17b9d67d 30213arm_parse_it_mode (const char * str)
e07e6e58 30214{
c921be7d 30215 bfd_boolean ret = TRUE;
e07e6e58
NC
30216
30217 if (streq ("arm", str))
30218 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30219 else if (streq ("thumb", str))
30220 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30221 else if (streq ("always", str))
30222 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30223 else if (streq ("never", str))
30224 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30225 else
30226 {
30227 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 30228 "arm, thumb, always, or never."), str);
c921be7d 30229 ret = FALSE;
e07e6e58
NC
30230 }
30231
30232 return ret;
30233}
30234
2e6976a8 30235static bfd_boolean
17b9d67d 30236arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
30237{
30238 codecomposer_syntax = TRUE;
30239 arm_comment_chars[0] = ';';
30240 arm_line_separator_chars[0] = 0;
30241 return TRUE;
30242}
30243
c19d1205
ZW
30244struct arm_long_option_table arm_long_opts[] =
30245{
30246 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30247 arm_parse_cpu, NULL},
30248 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30249 arm_parse_arch, NULL},
30250 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30251 arm_parse_fpu, NULL},
30252 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30253 arm_parse_float_abi, NULL},
30254#ifdef OBJ_ELF
7fac0536 30255 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
30256 arm_parse_eabi, NULL},
30257#endif
e07e6e58
NC
30258 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30259 arm_parse_it_mode, NULL},
2e6976a8
DG
30260 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30261 arm_ccs_mode, NULL},
c19d1205
ZW
30262 {NULL, NULL, 0, NULL}
30263};
cc8a6dd0 30264
c19d1205 30265int
17b9d67d 30266md_parse_option (int c, const char * arg)
c19d1205
ZW
30267{
30268 struct arm_option_table *opt;
e74cfd16 30269 const struct arm_legacy_option_table *fopt;
c19d1205 30270 struct arm_long_option_table *lopt;
b99bd4ef 30271
c19d1205 30272 switch (c)
b99bd4ef 30273 {
c19d1205
ZW
30274#ifdef OPTION_EB
30275 case OPTION_EB:
30276 target_big_endian = 1;
30277 break;
30278#endif
cc8a6dd0 30279
c19d1205
ZW
30280#ifdef OPTION_EL
30281 case OPTION_EL:
30282 target_big_endian = 0;
30283 break;
30284#endif
b99bd4ef 30285
845b51d6
PB
30286 case OPTION_FIX_V4BX:
30287 fix_v4bx = TRUE;
30288 break;
30289
18a20338
CL
30290#ifdef OBJ_ELF
30291 case OPTION_FDPIC:
30292 arm_fdpic = TRUE;
30293 break;
30294#endif /* OBJ_ELF */
30295
c19d1205
ZW
30296 case 'a':
30297 /* Listing option. Just ignore these, we don't support additional
30298 ones. */
30299 return 0;
b99bd4ef 30300
c19d1205
ZW
30301 default:
30302 for (opt = arm_opts; opt->option != NULL; opt++)
30303 {
30304 if (c == opt->option[0]
30305 && ((arg == NULL && opt->option[1] == 0)
30306 || streq (arg, opt->option + 1)))
30307 {
c19d1205 30308 /* If the option is deprecated, tell the user. */
278df34e 30309 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
30310 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30311 arg ? arg : "", _(opt->deprecated));
b99bd4ef 30312
c19d1205
ZW
30313 if (opt->var != NULL)
30314 *opt->var = opt->value;
cc8a6dd0 30315
c19d1205
ZW
30316 return 1;
30317 }
30318 }
b99bd4ef 30319
e74cfd16
PB
30320 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30321 {
30322 if (c == fopt->option[0]
30323 && ((arg == NULL && fopt->option[1] == 0)
30324 || streq (arg, fopt->option + 1)))
30325 {
e74cfd16 30326 /* If the option is deprecated, tell the user. */
278df34e 30327 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
30328 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30329 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
30330
30331 if (fopt->var != NULL)
30332 *fopt->var = &fopt->value;
30333
30334 return 1;
30335 }
30336 }
30337
c19d1205
ZW
30338 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30339 {
30340 /* These options are expected to have an argument. */
30341 if (c == lopt->option[0]
30342 && arg != NULL
30343 && strncmp (arg, lopt->option + 1,
30344 strlen (lopt->option + 1)) == 0)
30345 {
c19d1205 30346 /* If the option is deprecated, tell the user. */
278df34e 30347 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
30348 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30349 _(lopt->deprecated));
b99bd4ef 30350
c19d1205
ZW
30351 /* Call the sup-option parser. */
30352 return lopt->func (arg + strlen (lopt->option) - 1);
30353 }
30354 }
a737bd4d 30355
c19d1205
ZW
30356 return 0;
30357 }
a394c00f 30358
c19d1205
ZW
30359 return 1;
30360}
a394c00f 30361
c19d1205
ZW
30362void
30363md_show_usage (FILE * fp)
a394c00f 30364{
c19d1205
ZW
30365 struct arm_option_table *opt;
30366 struct arm_long_option_table *lopt;
a394c00f 30367
c19d1205 30368 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 30369
c19d1205
ZW
30370 for (opt = arm_opts; opt->option != NULL; opt++)
30371 if (opt->help != NULL)
30372 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 30373
c19d1205
ZW
30374 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30375 if (lopt->help != NULL)
30376 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 30377
c19d1205
ZW
30378#ifdef OPTION_EB
30379 fprintf (fp, _("\
30380 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
30381#endif
30382
c19d1205
ZW
30383#ifdef OPTION_EL
30384 fprintf (fp, _("\
30385 -EL assemble code for a little-endian cpu\n"));
a737bd4d 30386#endif
845b51d6
PB
30387
30388 fprintf (fp, _("\
30389 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
30390
30391#ifdef OBJ_ELF
30392 fprintf (fp, _("\
30393 --fdpic generate an FDPIC object file\n"));
30394#endif /* OBJ_ELF */
c19d1205 30395}
ee065d83 30396
ee065d83 30397#ifdef OBJ_ELF
0198d5e6 30398
62b3e311
PB
30399typedef struct
30400{
30401 int val;
30402 arm_feature_set flags;
30403} cpu_arch_ver_table;
30404
2c6b98ea
TP
30405/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30406 chronologically for architectures, with an exception for ARMv6-M and
30407 ARMv6S-M due to legacy reasons. No new architecture should have a
30408 special case. This allows for build attribute selection results to be
30409 stable when new architectures are added. */
62b3e311
PB
30410static const cpu_arch_ver_table cpu_arch_ver[] =
30411{
031254f2
AV
30412 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30413 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30414 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30415 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30416 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30417 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30418 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30419 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30420 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30421 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30422 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30423 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30424 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30425 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30426 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30427 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30428 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30429 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30430 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30431 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30432 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30433 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30434 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30435 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30436
30437 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30438 always selected build attributes to match those of ARMv6-M
30439 (resp. ARMv6S-M). However, due to these architectures being a strict
30440 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30441 would be selected when fully respecting chronology of architectures.
30442 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30443 move them before ARMv7 architectures. */
031254f2
AV
30444 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30445 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30446
30447 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30448 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30449 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30450 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30451 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30452 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30453 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30454 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30455 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30456 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30457 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30458 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30459 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30460 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30461 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30462 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30463 {-1, ARM_ARCH_NONE}
62b3e311
PB
30464};
30465
ee3c0378 30466/* Set an attribute if it has not already been set by the user. */
0198d5e6 30467
ee3c0378
AS
30468static void
30469aeabi_set_attribute_int (int tag, int value)
30470{
30471 if (tag < 1
30472 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30473 || !attributes_set_explicitly[tag])
30474 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30475}
30476
30477static void
30478aeabi_set_attribute_string (int tag, const char *value)
30479{
30480 if (tag < 1
30481 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30482 || !attributes_set_explicitly[tag])
30483 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30484}
30485
2c6b98ea
TP
30486/* Return whether features in the *NEEDED feature set are available via
30487 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30488
2c6b98ea
TP
30489static bfd_boolean
30490have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30491 const arm_feature_set *needed)
30492{
30493 int i, nb_allowed_archs;
30494 arm_feature_set ext_fset;
30495 const struct arm_option_extension_value_table *opt;
30496
30497 ext_fset = arm_arch_none;
30498 for (opt = arm_extensions; opt->name != NULL; opt++)
30499 {
30500 /* Extension does not provide any feature we need. */
30501 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30502 continue;
30503
30504 nb_allowed_archs =
30505 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30506 for (i = 0; i < nb_allowed_archs; i++)
30507 {
30508 /* Empty entry. */
30509 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30510 break;
30511
30512 /* Extension is available, add it. */
30513 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30514 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30515 }
30516 }
30517
30518 /* Can we enable all features in *needed? */
30519 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30520}
30521
30522/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30523 a given architecture feature set *ARCH_EXT_FSET including extension feature
30524 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30525 - if true, check for an exact match of the architecture modulo extensions;
30526 - otherwise, select build attribute value of the first superset
30527 architecture released so that results remains stable when new architectures
30528 are added.
30529 For -march/-mcpu=all the build attribute value of the most featureful
30530 architecture is returned. Tag_CPU_arch_profile result is returned in
30531 PROFILE. */
0198d5e6 30532
2c6b98ea
TP
30533static int
30534get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30535 const arm_feature_set *ext_fset,
30536 char *profile, int exact_match)
30537{
30538 arm_feature_set arch_fset;
30539 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30540
30541 /* Select most featureful architecture with all its extensions if building
30542 for -march=all as the feature sets used to set build attributes. */
30543 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30544 {
30545 /* Force revisiting of decision for each new architecture. */
031254f2 30546 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30547 *profile = 'A';
30548 return TAG_CPU_ARCH_V8;
30549 }
30550
30551 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30552
30553 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30554 {
30555 arm_feature_set known_arch_fset;
30556
30557 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30558 if (exact_match)
30559 {
30560 /* Base architecture match user-specified architecture and
30561 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30562 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30563 {
30564 p_ver_ret = p_ver;
30565 goto found;
30566 }
30567 /* Base architecture match user-specified architecture only
30568 (eg. ARMv6-M in the same case as above). Record it in case we
30569 find a match with above condition. */
30570 else if (p_ver_ret == NULL
30571 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30572 p_ver_ret = p_ver;
30573 }
30574 else
30575 {
30576
30577 /* Architecture has all features wanted. */
30578 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30579 {
30580 arm_feature_set added_fset;
30581
30582 /* Compute features added by this architecture over the one
30583 recorded in p_ver_ret. */
30584 if (p_ver_ret != NULL)
30585 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30586 p_ver_ret->flags);
30587 /* First architecture that match incl. with extensions, or the
30588 only difference in features over the recorded match is
30589 features that were optional and are now mandatory. */
30590 if (p_ver_ret == NULL
30591 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30592 {
30593 p_ver_ret = p_ver;
30594 goto found;
30595 }
30596 }
30597 else if (p_ver_ret == NULL)
30598 {
30599 arm_feature_set needed_ext_fset;
30600
30601 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30602
30603 /* Architecture has all features needed when using some
30604 extensions. Record it and continue searching in case there
30605 exist an architecture providing all needed features without
30606 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30607 OS extension). */
30608 if (have_ext_for_needed_feat_p (&known_arch_fset,
30609 &needed_ext_fset))
30610 p_ver_ret = p_ver;
30611 }
30612 }
30613 }
30614
30615 if (p_ver_ret == NULL)
30616 return -1;
30617
30618found:
30619 /* Tag_CPU_arch_profile. */
30620 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30621 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30622 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30623 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30624 *profile = 'A';
30625 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30626 *profile = 'R';
30627 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30628 *profile = 'M';
30629 else
30630 *profile = '\0';
30631 return p_ver_ret->val;
30632}
30633
ee065d83 30634/* Set the public EABI object attributes. */
0198d5e6 30635
c168ce07 30636static void
ee065d83
PB
30637aeabi_set_public_attributes (void)
30638{
b90d5ba0 30639 char profile = '\0';
2c6b98ea 30640 int arch = -1;
90ec0d68 30641 int virt_sec = 0;
bca38921 30642 int fp16_optional = 0;
2c6b98ea
TP
30643 int skip_exact_match = 0;
30644 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 30645
54bab281
TP
30646 /* Autodetection mode, choose the architecture based the instructions
30647 actually used. */
30648 if (no_cpu_selected ())
30649 {
30650 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 30651
54bab281
TP
30652 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30653 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 30654
54bab281
TP
30655 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30656 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 30657
54bab281 30658 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
30659 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30660 flags_ext = arm_arch_none;
30661 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30662 selected_ext = flags_ext;
54bab281
TP
30663 selected_cpu = flags;
30664 }
30665 /* Otherwise, choose the architecture based on the capabilities of the
30666 requested cpu. */
30667 else
4d354d8b
TP
30668 {
30669 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30670 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30671 flags_ext = selected_ext;
30672 flags = selected_cpu;
30673 }
30674 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 30675
ddd7f988 30676 /* Allow the user to override the reported architecture. */
4d354d8b 30677 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 30678 {
4d354d8b 30679 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 30680 flags_ext = arm_arch_none;
7a1d4c38 30681 }
2c6b98ea 30682 else
4d354d8b 30683 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
30684
30685 /* When this function is run again after relaxation has happened there is no
30686 way to determine whether an architecture or CPU was specified by the user:
30687 - selected_cpu is set above for relaxation to work;
30688 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30689 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30690 Therefore, if not in -march=all case we first try an exact match and fall
30691 back to autodetection. */
30692 if (!skip_exact_match)
30693 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30694 if (arch == -1)
30695 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30696 if (arch == -1)
30697 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 30698
ee065d83
PB
30699 /* Tag_CPU_name. */
30700 if (selected_cpu_name[0])
30701 {
91d6fa6a 30702 char *q;
ee065d83 30703
91d6fa6a
NC
30704 q = selected_cpu_name;
30705 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
30706 {
30707 int i;
5f4273c7 30708
91d6fa6a
NC
30709 q += 4;
30710 for (i = 0; q[i]; i++)
30711 q[i] = TOUPPER (q[i]);
ee065d83 30712 }
91d6fa6a 30713 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 30714 }
62f3b8c8 30715
ee065d83 30716 /* Tag_CPU_arch. */
ee3c0378 30717 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 30718
62b3e311 30719 /* Tag_CPU_arch_profile. */
69239280
MGD
30720 if (profile != '\0')
30721 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 30722
15afaa63 30723 /* Tag_DSP_extension. */
4d354d8b 30724 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 30725 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 30726
2c6b98ea 30727 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 30728 /* Tag_ARM_ISA_use. */
ee3c0378 30729 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 30730 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 30731 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 30732
ee065d83 30733 /* Tag_THUMB_ISA_use. */
ee3c0378 30734 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 30735 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
30736 {
30737 int thumb_isa_use;
30738
30739 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 30740 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
30741 thumb_isa_use = 3;
30742 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30743 thumb_isa_use = 2;
30744 else
30745 thumb_isa_use = 1;
30746 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30747 }
62f3b8c8 30748
ee065d83 30749 /* Tag_VFP_arch. */
a715796b
TG
30750 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30751 aeabi_set_attribute_int (Tag_VFP_arch,
30752 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30753 ? 7 : 8);
bca38921 30754 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
30755 aeabi_set_attribute_int (Tag_VFP_arch,
30756 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30757 ? 5 : 6);
30758 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
30759 {
30760 fp16_optional = 1;
30761 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30762 }
ada65aa3 30763 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
30764 {
30765 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30766 fp16_optional = 1;
30767 }
ee3c0378
AS
30768 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30769 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30770 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 30771 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 30772 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 30773
4547cb56
NC
30774 /* Tag_ABI_HardFP_use. */
30775 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30776 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30777 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30778
ee065d83 30779 /* Tag_WMMX_arch. */
ee3c0378
AS
30780 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30781 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30782 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30783 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 30784
ee3c0378 30785 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
30786 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30787 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30788 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
30789 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30790 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30791 {
30792 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30793 {
30794 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30795 }
30796 else
30797 {
30798 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30799 fp16_optional = 1;
30800 }
30801 }
fa94de6b 30802
a7ad558c
AV
30803 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30804 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30805 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30806 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30807
ee3c0378 30808 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 30809 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 30810 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 30811
69239280
MGD
30812 /* Tag_DIV_use.
30813
30814 We set Tag_DIV_use to two when integer divide instructions have been used
30815 in ARM state, or when Thumb integer divide instructions have been used,
30816 but we have no architecture profile set, nor have we any ARM instructions.
30817
4ed7ed8d
TP
30818 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30819 by the base architecture.
bca38921 30820
69239280 30821 For new architectures we will have to check these tests. */
031254f2 30822 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
30823 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30824 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
30825 aeabi_set_attribute_int (Tag_DIV_use, 0);
30826 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30827 || (profile == '\0'
30828 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30829 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 30830 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
30831
30832 /* Tag_MP_extension_use. */
30833 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30834 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
30835
30836 /* Tag Virtualization_use. */
30837 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
30838 virt_sec |= 1;
30839 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30840 virt_sec |= 2;
30841 if (virt_sec != 0)
30842 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
30843}
30844
c168ce07
TP
30845/* Post relaxation hook. Recompute ARM attributes now that relaxation is
30846 finished and free extension feature bits which will not be used anymore. */
0198d5e6 30847
c168ce07
TP
30848void
30849arm_md_post_relax (void)
30850{
30851 aeabi_set_public_attributes ();
4d354d8b
TP
30852 XDELETE (mcpu_ext_opt);
30853 mcpu_ext_opt = NULL;
30854 XDELETE (march_ext_opt);
30855 march_ext_opt = NULL;
c168ce07
TP
30856}
30857
104d59d1 30858/* Add the default contents for the .ARM.attributes section. */
0198d5e6 30859
ee065d83
PB
30860void
30861arm_md_end (void)
30862{
ee065d83
PB
30863 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30864 return;
30865
30866 aeabi_set_public_attributes ();
ee065d83 30867}
8463be01 30868#endif /* OBJ_ELF */
ee065d83 30869
ee065d83
PB
30870/* Parse a .cpu directive. */
30871
30872static void
30873s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30874{
e74cfd16 30875 const struct arm_cpu_option_table *opt;
ee065d83
PB
30876 char *name;
30877 char saved_char;
30878
30879 name = input_line_pointer;
5f4273c7 30880 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30881 input_line_pointer++;
30882 saved_char = *input_line_pointer;
30883 *input_line_pointer = 0;
30884
30885 /* Skip the first "all" entry. */
30886 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30887 if (streq (opt->name, name))
30888 {
4d354d8b
TP
30889 selected_arch = opt->value;
30890 selected_ext = opt->ext;
30891 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 30892 if (opt->canonical_name)
5f4273c7 30893 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
30894 else
30895 {
30896 int i;
30897 for (i = 0; opt->name[i]; i++)
30898 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 30899
ee065d83
PB
30900 selected_cpu_name[i] = 0;
30901 }
4d354d8b
TP
30902 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30903
ee065d83
PB
30904 *input_line_pointer = saved_char;
30905 demand_empty_rest_of_line ();
30906 return;
30907 }
30908 as_bad (_("unknown cpu `%s'"), name);
30909 *input_line_pointer = saved_char;
30910 ignore_rest_of_line ();
30911}
30912
ee065d83
PB
30913/* Parse a .arch directive. */
30914
30915static void
30916s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30917{
e74cfd16 30918 const struct arm_arch_option_table *opt;
ee065d83
PB
30919 char saved_char;
30920 char *name;
30921
30922 name = input_line_pointer;
5f4273c7 30923 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30924 input_line_pointer++;
30925 saved_char = *input_line_pointer;
30926 *input_line_pointer = 0;
30927
30928 /* Skip the first "all" entry. */
30929 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30930 if (streq (opt->name, name))
30931 {
4d354d8b
TP
30932 selected_arch = opt->value;
30933 selected_ext = arm_arch_none;
30934 selected_cpu = selected_arch;
5f4273c7 30935 strcpy (selected_cpu_name, opt->name);
4d354d8b 30936 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30937 *input_line_pointer = saved_char;
30938 demand_empty_rest_of_line ();
30939 return;
30940 }
30941
30942 as_bad (_("unknown architecture `%s'\n"), name);
30943 *input_line_pointer = saved_char;
30944 ignore_rest_of_line ();
30945}
30946
7a1d4c38
PB
30947/* Parse a .object_arch directive. */
30948
30949static void
30950s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30951{
30952 const struct arm_arch_option_table *opt;
30953 char saved_char;
30954 char *name;
30955
30956 name = input_line_pointer;
5f4273c7 30957 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
30958 input_line_pointer++;
30959 saved_char = *input_line_pointer;
30960 *input_line_pointer = 0;
30961
30962 /* Skip the first "all" entry. */
30963 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30964 if (streq (opt->name, name))
30965 {
4d354d8b 30966 selected_object_arch = opt->value;
7a1d4c38
PB
30967 *input_line_pointer = saved_char;
30968 demand_empty_rest_of_line ();
30969 return;
30970 }
30971
30972 as_bad (_("unknown architecture `%s'\n"), name);
30973 *input_line_pointer = saved_char;
30974 ignore_rest_of_line ();
30975}
30976
69133863
MGD
30977/* Parse a .arch_extension directive. */
30978
30979static void
30980s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30981{
30982 const struct arm_option_extension_value_table *opt;
30983 char saved_char;
30984 char *name;
30985 int adding_value = 1;
30986
30987 name = input_line_pointer;
30988 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30989 input_line_pointer++;
30990 saved_char = *input_line_pointer;
30991 *input_line_pointer = 0;
30992
30993 if (strlen (name) >= 2
30994 && strncmp (name, "no", 2) == 0)
30995 {
30996 adding_value = 0;
30997 name += 2;
30998 }
30999
31000 for (opt = arm_extensions; opt->name != NULL; opt++)
31001 if (streq (opt->name, name))
31002 {
d942732e
TP
31003 int i, nb_allowed_archs =
31004 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31005 for (i = 0; i < nb_allowed_archs; i++)
31006 {
31007 /* Empty entry. */
4d354d8b 31008 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31009 continue;
4d354d8b 31010 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31011 break;
31012 }
31013
31014 if (i == nb_allowed_archs)
69133863
MGD
31015 {
31016 as_bad (_("architectural extension `%s' is not allowed for the "
31017 "current base architecture"), name);
31018 break;
31019 }
31020
31021 if (adding_value)
4d354d8b 31022 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31023 opt->merge_value);
69133863 31024 else
4d354d8b 31025 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31026
4d354d8b
TP
31027 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31028 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31029 *input_line_pointer = saved_char;
31030 demand_empty_rest_of_line ();
3d030cdb
TP
31031 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31032 on this return so that duplicate extensions (extensions with the
31033 same name as a previous extension in the list) are not considered
31034 for command-line parsing. */
69133863
MGD
31035 return;
31036 }
31037
31038 if (opt->name == NULL)
e673710a 31039 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31040
31041 *input_line_pointer = saved_char;
31042 ignore_rest_of_line ();
31043}
31044
ee065d83
PB
31045/* Parse a .fpu directive. */
31046
31047static void
31048s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31049{
69133863 31050 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31051 char saved_char;
31052 char *name;
31053
31054 name = input_line_pointer;
5f4273c7 31055 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31056 input_line_pointer++;
31057 saved_char = *input_line_pointer;
31058 *input_line_pointer = 0;
5f4273c7 31059
ee065d83
PB
31060 for (opt = arm_fpus; opt->name != NULL; opt++)
31061 if (streq (opt->name, name))
31062 {
4d354d8b
TP
31063 selected_fpu = opt->value;
31064#ifndef CPU_DEFAULT
31065 if (no_cpu_selected ())
31066 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31067 else
31068#endif
31069 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31070 *input_line_pointer = saved_char;
31071 demand_empty_rest_of_line ();
31072 return;
31073 }
31074
31075 as_bad (_("unknown floating point format `%s'\n"), name);
31076 *input_line_pointer = saved_char;
31077 ignore_rest_of_line ();
31078}
ee065d83 31079
794ba86a 31080/* Copy symbol information. */
f31fef98 31081
794ba86a
DJ
31082void
31083arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31084{
31085 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31086}
e04befd0 31087
f31fef98 31088#ifdef OBJ_ELF
e04befd0
AS
31089/* Given a symbolic attribute NAME, return the proper integer value.
31090 Returns -1 if the attribute is not known. */
f31fef98 31091
e04befd0
AS
31092int
31093arm_convert_symbolic_attribute (const char *name)
31094{
f31fef98
NC
31095 static const struct
31096 {
31097 const char * name;
31098 const int tag;
31099 }
31100 attribute_table[] =
31101 {
31102 /* When you modify this table you should
31103 also modify the list in doc/c-arm.texi. */
e04befd0 31104#define T(tag) {#tag, tag}
f31fef98
NC
31105 T (Tag_CPU_raw_name),
31106 T (Tag_CPU_name),
31107 T (Tag_CPU_arch),
31108 T (Tag_CPU_arch_profile),
31109 T (Tag_ARM_ISA_use),
31110 T (Tag_THUMB_ISA_use),
75375b3e 31111 T (Tag_FP_arch),
f31fef98
NC
31112 T (Tag_VFP_arch),
31113 T (Tag_WMMX_arch),
31114 T (Tag_Advanced_SIMD_arch),
31115 T (Tag_PCS_config),
31116 T (Tag_ABI_PCS_R9_use),
31117 T (Tag_ABI_PCS_RW_data),
31118 T (Tag_ABI_PCS_RO_data),
31119 T (Tag_ABI_PCS_GOT_use),
31120 T (Tag_ABI_PCS_wchar_t),
31121 T (Tag_ABI_FP_rounding),
31122 T (Tag_ABI_FP_denormal),
31123 T (Tag_ABI_FP_exceptions),
31124 T (Tag_ABI_FP_user_exceptions),
31125 T (Tag_ABI_FP_number_model),
75375b3e 31126 T (Tag_ABI_align_needed),
f31fef98 31127 T (Tag_ABI_align8_needed),
75375b3e 31128 T (Tag_ABI_align_preserved),
f31fef98
NC
31129 T (Tag_ABI_align8_preserved),
31130 T (Tag_ABI_enum_size),
31131 T (Tag_ABI_HardFP_use),
31132 T (Tag_ABI_VFP_args),
31133 T (Tag_ABI_WMMX_args),
31134 T (Tag_ABI_optimization_goals),
31135 T (Tag_ABI_FP_optimization_goals),
31136 T (Tag_compatibility),
31137 T (Tag_CPU_unaligned_access),
75375b3e 31138 T (Tag_FP_HP_extension),
f31fef98
NC
31139 T (Tag_VFP_HP_extension),
31140 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31141 T (Tag_MPextension_use),
31142 T (Tag_DIV_use),
f31fef98
NC
31143 T (Tag_nodefaults),
31144 T (Tag_also_compatible_with),
31145 T (Tag_conformance),
31146 T (Tag_T2EE_use),
31147 T (Tag_Virtualization_use),
15afaa63 31148 T (Tag_DSP_extension),
a7ad558c 31149 T (Tag_MVE_arch),
cd21e546 31150 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31151#undef T
f31fef98 31152 };
e04befd0
AS
31153 unsigned int i;
31154
31155 if (name == NULL)
31156 return -1;
31157
f31fef98 31158 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31159 if (streq (name, attribute_table[i].name))
e04befd0
AS
31160 return attribute_table[i].tag;
31161
31162 return -1;
31163}
267bf995 31164
93ef582d
NC
31165/* Apply sym value for relocations only in the case that they are for
31166 local symbols in the same segment as the fixup and you have the
31167 respective architectural feature for blx and simple switches. */
0198d5e6 31168
267bf995 31169int
93ef582d 31170arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
31171{
31172 if (fixP->fx_addsy
31173 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
31174 /* PR 17444: If the local symbol is in a different section then a reloc
31175 will always be generated for it, so applying the symbol value now
31176 will result in a double offset being stored in the relocation. */
31177 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 31178 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
31179 {
31180 switch (fixP->fx_r_type)
31181 {
31182 case BFD_RELOC_ARM_PCREL_BLX:
31183 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31184 if (ARM_IS_FUNC (fixP->fx_addsy))
31185 return 1;
31186 break;
31187
31188 case BFD_RELOC_ARM_PCREL_CALL:
31189 case BFD_RELOC_THUMB_PCREL_BLX:
31190 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 31191 return 1;
267bf995
RR
31192 break;
31193
31194 default:
31195 break;
31196 }
31197
31198 }
31199 return 0;
31200}
f31fef98 31201#endif /* OBJ_ELF */
This page took 5.685494 seconds and 4 git commands to generate.