fix my name
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
ebd1c875 3 2004, 2005, 2006
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
40#include "dwarf2dbg.h"
a394c00f 41#include "dw2gencfi.h"
b99bd4ef
NC
42#endif
43
7ed4c4c5 44/* XXX Set this to 1 after the next binutils release. */
03b1477f
RE
45#define WARN_DEPRECATED 0
46
7ed4c4c5
NC
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two). */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state. */
52
53static struct
54{
c19d1205
ZW
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
7ed4c4c5 59 /* The segment containing the function. */
c19d1205
ZW
60 segT saved_seg;
61 subsegT saved_subseg;
7ed4c4c5
NC
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
c19d1205
ZW
64 int opcode_count;
65 int opcode_alloc;
7ed4c4c5 66 /* The number of bytes pushed to the stack. */
c19d1205 67 offsetT frame_size;
7ed4c4c5
NC
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
c19d1205 71 offsetT pending_offset;
7ed4c4c5 72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
7ed4c4c5 76 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 77 unsigned fp_used:1;
7ed4c4c5 78 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 79 unsigned sp_restored:1;
7ed4c4c5
NC
80} unwind;
81
8b1ad454
NC
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
4962c51a
MS
89/* Results from operand parsing worker functions. */
90
91typedef enum
92{
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
33a392fb
PB
98enum arm_float_abi
99{
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103};
104
c19d1205 105/* Types of processor to assemble for. */
b99bd4ef
NC
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
e74cfd16 108#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
109#else
110#if defined __thumb__
e74cfd16 111#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
c820d418
MM
117# ifdef TE_LINUX
118# define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120# ifdef OBJ_ELF
121# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122# else
123 /* Legacy a.out format. */
124# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125# endif
4e7fd91e
PB
126# elif defined (TE_VXWORKS)
127# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
128# else
129 /* For backwards compatibility, default to FPA. */
130# define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
b99bd4ef 133
c19d1205 134#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 135
e74cfd16
PB
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
b99bd4ef 139
b99bd4ef 140/* Flags stored in private area of BFD structure. */
c19d1205
ZW
141static int uses_apcs_26 = FALSE;
142static int atpcs = FALSE;
b34976b6
AM
143static int support_interwork = FALSE;
144static int uses_apcs_float = FALSE;
c19d1205 145static int pic_code = FALSE;
03b1477f
RE
146
147/* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
e74cfd16
PB
150static const arm_feature_set *legacy_cpu = NULL;
151static const arm_feature_set *legacy_fpu = NULL;
152
153static const arm_feature_set *mcpu_cpu_opt = NULL;
154static const arm_feature_set *mcpu_fpu_opt = NULL;
155static const arm_feature_set *march_cpu_opt = NULL;
156static const arm_feature_set *march_fpu_opt = NULL;
157static const arm_feature_set *mfpu_opt = NULL;
158
159/* Constants for known architecture features. */
160static const arm_feature_set fpu_default = FPU_DEFAULT;
161static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
162static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
163static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
164static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
165static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
166static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
167static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
169
170#ifdef CPU_DEFAULT
171static const arm_feature_set cpu_default = CPU_DEFAULT;
172#endif
173
174static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
175static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
176static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
177static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
178static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
179static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
180static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
181static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
182static const arm_feature_set arm_ext_v4t_5 =
183 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
184static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
185static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
186static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
187static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
188static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
189static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
190static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
191static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311
PB
192static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
e74cfd16
PB
198
199static const arm_feature_set arm_arch_any = ARM_ANY;
200static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
201static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
202static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
203
204static const arm_feature_set arm_cext_iwmmxt =
205 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
206static const arm_feature_set arm_cext_xscale =
207 ARM_FEATURE (0, ARM_CEXT_XSCALE);
208static const arm_feature_set arm_cext_maverick =
209 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
210static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
211static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
212static const arm_feature_set fpu_vfp_ext_v1xd =
213 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
214static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
215static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62
JB
216static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
217static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
218static const arm_feature_set fpu_vfp_v3_or_neon_ext =
219 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 220
33a392fb 221static int mfloat_abi_opt = -1;
e74cfd16
PB
222/* Record user cpu selection for object attributes. */
223static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
224/* Must be long enough to hold any of the names in arm_cpus. */
225static char selected_cpu_name[16];
7cc69913 226#ifdef OBJ_ELF
deeaaff8
DJ
227# ifdef EABI_DEFAULT
228static int meabi_flags = EABI_DEFAULT;
229# else
d507cf36 230static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 231# endif
7cc69913 232#endif
b99bd4ef 233
b99bd4ef 234#ifdef OBJ_ELF
c19d1205 235/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
236symbolS * GOT_symbol;
237#endif
238
b99bd4ef
NC
239/* 0: assemble for ARM,
240 1: assemble for Thumb,
241 2: assemble for Thumb even though target CPU does not support thumb
242 instructions. */
243static int thumb_mode = 0;
244
c19d1205
ZW
245/* If unified_syntax is true, we are processing the new unified
246 ARM/Thumb syntax. Important differences from the old ARM mode:
247
248 - Immediate operands do not require a # prefix.
249 - Conditional affixes always appear at the end of the
250 instruction. (For backward compatibility, those instructions
251 that formerly had them in the middle, continue to accept them
252 there.)
253 - The IT instruction may appear, and if it does is validated
254 against subsequent conditional affixes. It does not generate
255 machine code.
256
257 Important differences from the old Thumb mode:
258
259 - Immediate operands do not require a # prefix.
260 - Most of the V6T2 instructions are only available in unified mode.
261 - The .N and .W suffixes are recognized and honored (it is an error
262 if they cannot be honored).
263 - All instructions set the flags if and only if they have an 's' affix.
264 - Conditional affixes may be used. They are validated against
265 preceding IT instructions. Unlike ARM mode, you cannot use a
266 conditional affix except in the scope of an IT instruction. */
267
268static bfd_boolean unified_syntax = FALSE;
b99bd4ef 269
5287ad62
JB
270enum neon_el_type
271{
dcbf9037 272 NT_invtype,
5287ad62
JB
273 NT_untyped,
274 NT_integer,
275 NT_float,
276 NT_poly,
277 NT_signed,
dcbf9037 278 NT_unsigned
5287ad62
JB
279};
280
281struct neon_type_el
282{
283 enum neon_el_type type;
284 unsigned size;
285};
286
287#define NEON_MAX_TYPE_ELS 4
288
289struct neon_type
290{
291 struct neon_type_el el[NEON_MAX_TYPE_ELS];
292 unsigned elems;
293};
294
b99bd4ef
NC
295struct arm_it
296{
c19d1205 297 const char * error;
b99bd4ef 298 unsigned long instruction;
c19d1205
ZW
299 int size;
300 int size_req;
301 int cond;
037e8744
JB
302 /* "uncond_value" is set to the value in place of the conditional field in
303 unconditional versions of the instruction, or -1 if nothing is
304 appropriate. */
305 int uncond_value;
5287ad62 306 struct neon_type vectype;
0110f2b8
PB
307 /* Set to the opcode if the instruction needs relaxation.
308 Zero if the instruction is not relaxed. */
309 unsigned long relax;
b99bd4ef
NC
310 struct
311 {
312 bfd_reloc_code_real_type type;
c19d1205
ZW
313 expressionS exp;
314 int pc_rel;
b99bd4ef 315 } reloc;
b99bd4ef 316
c19d1205
ZW
317 struct
318 {
319 unsigned reg;
ca3f61f7 320 signed int imm;
dcbf9037 321 struct neon_type_el vectype;
ca3f61f7
NC
322 unsigned present : 1; /* Operand present. */
323 unsigned isreg : 1; /* Operand was a register. */
324 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
325 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
326 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
327 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
328 instructions. This allows us to disambiguate ARM <-> vector insns. */
329 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 330 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 331 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 332 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
333 unsigned hasreloc : 1; /* Operand has relocation suffix. */
334 unsigned writeback : 1; /* Operand has trailing ! */
335 unsigned preind : 1; /* Preindexed address. */
336 unsigned postind : 1; /* Postindexed address. */
337 unsigned negative : 1; /* Index register was negated. */
338 unsigned shifted : 1; /* Shift applied to operation. */
339 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 340 } operands[6];
b99bd4ef
NC
341};
342
c19d1205 343static struct arm_it inst;
b99bd4ef
NC
344
345#define NUM_FLOAT_VALS 8
346
05d2d07e 347const char * fp_const[] =
b99bd4ef
NC
348{
349 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
350};
351
c19d1205 352/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
353#define MAX_LITTLENUMS 6
354
355LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
356
357#define FAIL (-1)
358#define SUCCESS (0)
359
360#define SUFF_S 1
361#define SUFF_D 2
362#define SUFF_E 3
363#define SUFF_P 4
364
c19d1205
ZW
365#define CP_T_X 0x00008000
366#define CP_T_Y 0x00400000
b99bd4ef 367
c19d1205
ZW
368#define CONDS_BIT 0x00100000
369#define LOAD_BIT 0x00100000
b99bd4ef
NC
370
371#define DOUBLE_LOAD_FLAG 0x00000001
372
373struct asm_cond
374{
c19d1205 375 const char * template;
b99bd4ef
NC
376 unsigned long value;
377};
378
c19d1205 379#define COND_ALWAYS 0xE
b99bd4ef 380
b99bd4ef
NC
381struct asm_psr
382{
b34976b6 383 const char *template;
b99bd4ef
NC
384 unsigned long field;
385};
386
62b3e311
PB
387struct asm_barrier_opt
388{
389 const char *template;
390 unsigned long value;
391};
392
2d2255b5 393/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
394#define SPSR_BIT (1 << 22)
395
c19d1205
ZW
396/* The individual PSR flag bits. */
397#define PSR_c (1 << 16)
398#define PSR_x (1 << 17)
399#define PSR_s (1 << 18)
400#define PSR_f (1 << 19)
b99bd4ef 401
c19d1205 402struct reloc_entry
bfae80f2 403{
c19d1205
ZW
404 char *name;
405 bfd_reloc_code_real_type reloc;
bfae80f2
RE
406};
407
5287ad62 408enum vfp_reg_pos
bfae80f2 409{
5287ad62
JB
410 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
411 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
412};
413
414enum vfp_ldstm_type
415{
416 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
417};
418
dcbf9037
JB
419/* Bits for DEFINED field in neon_typed_alias. */
420#define NTA_HASTYPE 1
421#define NTA_HASINDEX 2
422
423struct neon_typed_alias
424{
425 unsigned char defined;
426 unsigned char index;
427 struct neon_type_el eltype;
428};
429
c19d1205
ZW
430/* ARM register categories. This includes coprocessor numbers and various
431 architecture extensions' registers. */
432enum arm_reg_type
bfae80f2 433{
c19d1205
ZW
434 REG_TYPE_RN,
435 REG_TYPE_CP,
436 REG_TYPE_CN,
437 REG_TYPE_FN,
438 REG_TYPE_VFS,
439 REG_TYPE_VFD,
5287ad62 440 REG_TYPE_NQ,
037e8744 441 REG_TYPE_VFSD,
5287ad62 442 REG_TYPE_NDQ,
037e8744 443 REG_TYPE_NSDQ,
c19d1205
ZW
444 REG_TYPE_VFC,
445 REG_TYPE_MVF,
446 REG_TYPE_MVD,
447 REG_TYPE_MVFX,
448 REG_TYPE_MVDX,
449 REG_TYPE_MVAX,
450 REG_TYPE_DSPSC,
451 REG_TYPE_MMXWR,
452 REG_TYPE_MMXWC,
453 REG_TYPE_MMXWCG,
454 REG_TYPE_XSCALE,
bfae80f2
RE
455};
456
dcbf9037
JB
457/* Structure for a hash table entry for a register.
458 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
459 information which states whether a vector type or index is specified (for a
460 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
461struct reg_entry
462{
dcbf9037
JB
463 const char *name;
464 unsigned char number;
465 unsigned char type;
466 unsigned char builtin;
467 struct neon_typed_alias *neon;
6c43fab6
RE
468};
469
c19d1205
ZW
470/* Diagnostics used when we don't get a register of the expected type. */
471const char *const reg_expected_msgs[] =
472{
473 N_("ARM register expected"),
474 N_("bad or missing co-processor number"),
475 N_("co-processor register expected"),
476 N_("FPA register expected"),
477 N_("VFP single precision register expected"),
5287ad62
JB
478 N_("VFP/Neon double precision register expected"),
479 N_("Neon quad precision register expected"),
037e8744 480 N_("VFP single or double precision register expected"),
5287ad62 481 N_("Neon double or quad precision register expected"),
037e8744 482 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
483 N_("VFP system register expected"),
484 N_("Maverick MVF register expected"),
485 N_("Maverick MVD register expected"),
486 N_("Maverick MVFX register expected"),
487 N_("Maverick MVDX register expected"),
488 N_("Maverick MVAX register expected"),
489 N_("Maverick DSPSC register expected"),
490 N_("iWMMXt data register expected"),
491 N_("iWMMXt control register expected"),
492 N_("iWMMXt scalar register expected"),
493 N_("XScale accumulator register expected"),
6c43fab6
RE
494};
495
c19d1205
ZW
496/* Some well known registers that we refer to directly elsewhere. */
497#define REG_SP 13
498#define REG_LR 14
499#define REG_PC 15
404ff6b5 500
b99bd4ef
NC
501/* ARM instructions take 4bytes in the object file, Thumb instructions
502 take 2: */
c19d1205 503#define INSN_SIZE 4
b99bd4ef
NC
504
505struct asm_opcode
506{
507 /* Basic string to match. */
c19d1205
ZW
508 const char *template;
509
510 /* Parameters to instruction. */
511 unsigned char operands[8];
512
513 /* Conditional tag - see opcode_lookup. */
514 unsigned int tag : 4;
b99bd4ef
NC
515
516 /* Basic instruction code. */
c19d1205 517 unsigned int avalue : 28;
b99bd4ef 518
c19d1205
ZW
519 /* Thumb-format instruction code. */
520 unsigned int tvalue;
b99bd4ef 521
90e4755a 522 /* Which architecture variant provides this instruction. */
e74cfd16
PB
523 const arm_feature_set *avariant;
524 const arm_feature_set *tvariant;
c19d1205
ZW
525
526 /* Function to call to encode instruction in ARM format. */
527 void (* aencode) (void);
b99bd4ef 528
c19d1205
ZW
529 /* Function to call to encode instruction in Thumb format. */
530 void (* tencode) (void);
b99bd4ef
NC
531};
532
a737bd4d
NC
533/* Defines for various bits that we will want to toggle. */
534#define INST_IMMEDIATE 0x02000000
535#define OFFSET_REG 0x02000000
c19d1205 536#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
537#define SHIFT_BY_REG 0x00000010
538#define PRE_INDEX 0x01000000
539#define INDEX_UP 0x00800000
540#define WRITE_BACK 0x00200000
541#define LDM_TYPE_2_OR_3 0x00400000
90e4755a 542
a737bd4d
NC
543#define LITERAL_MASK 0xf000f000
544#define OPCODE_MASK 0xfe1fffff
545#define V4_STR_BIT 0x00000020
90e4755a 546
a737bd4d 547#define DATA_OP_SHIFT 21
90e4755a 548
ef8d22e6
PB
549#define T2_OPCODE_MASK 0xfe1fffff
550#define T2_DATA_OP_SHIFT 21
551
a737bd4d
NC
552/* Codes to distinguish the arithmetic instructions. */
553#define OPCODE_AND 0
554#define OPCODE_EOR 1
555#define OPCODE_SUB 2
556#define OPCODE_RSB 3
557#define OPCODE_ADD 4
558#define OPCODE_ADC 5
559#define OPCODE_SBC 6
560#define OPCODE_RSC 7
561#define OPCODE_TST 8
562#define OPCODE_TEQ 9
563#define OPCODE_CMP 10
564#define OPCODE_CMN 11
565#define OPCODE_ORR 12
566#define OPCODE_MOV 13
567#define OPCODE_BIC 14
568#define OPCODE_MVN 15
90e4755a 569
ef8d22e6
PB
570#define T2_OPCODE_AND 0
571#define T2_OPCODE_BIC 1
572#define T2_OPCODE_ORR 2
573#define T2_OPCODE_ORN 3
574#define T2_OPCODE_EOR 4
575#define T2_OPCODE_ADD 8
576#define T2_OPCODE_ADC 10
577#define T2_OPCODE_SBC 11
578#define T2_OPCODE_SUB 13
579#define T2_OPCODE_RSB 14
580
a737bd4d
NC
581#define T_OPCODE_MUL 0x4340
582#define T_OPCODE_TST 0x4200
583#define T_OPCODE_CMN 0x42c0
584#define T_OPCODE_NEG 0x4240
585#define T_OPCODE_MVN 0x43c0
90e4755a 586
a737bd4d
NC
587#define T_OPCODE_ADD_R3 0x1800
588#define T_OPCODE_SUB_R3 0x1a00
589#define T_OPCODE_ADD_HI 0x4400
590#define T_OPCODE_ADD_ST 0xb000
591#define T_OPCODE_SUB_ST 0xb080
592#define T_OPCODE_ADD_SP 0xa800
593#define T_OPCODE_ADD_PC 0xa000
594#define T_OPCODE_ADD_I8 0x3000
595#define T_OPCODE_SUB_I8 0x3800
596#define T_OPCODE_ADD_I3 0x1c00
597#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 598
a737bd4d
NC
599#define T_OPCODE_ASR_R 0x4100
600#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
601#define T_OPCODE_LSR_R 0x40c0
602#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
603#define T_OPCODE_ASR_I 0x1000
604#define T_OPCODE_LSL_I 0x0000
605#define T_OPCODE_LSR_I 0x0800
b99bd4ef 606
a737bd4d
NC
607#define T_OPCODE_MOV_I8 0x2000
608#define T_OPCODE_CMP_I8 0x2800
609#define T_OPCODE_CMP_LR 0x4280
610#define T_OPCODE_MOV_HR 0x4600
611#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 612
a737bd4d
NC
613#define T_OPCODE_LDR_PC 0x4800
614#define T_OPCODE_LDR_SP 0x9800
615#define T_OPCODE_STR_SP 0x9000
616#define T_OPCODE_LDR_IW 0x6800
617#define T_OPCODE_STR_IW 0x6000
618#define T_OPCODE_LDR_IH 0x8800
619#define T_OPCODE_STR_IH 0x8000
620#define T_OPCODE_LDR_IB 0x7800
621#define T_OPCODE_STR_IB 0x7000
622#define T_OPCODE_LDR_RW 0x5800
623#define T_OPCODE_STR_RW 0x5000
624#define T_OPCODE_LDR_RH 0x5a00
625#define T_OPCODE_STR_RH 0x5200
626#define T_OPCODE_LDR_RB 0x5c00
627#define T_OPCODE_STR_RB 0x5400
c9b604bd 628
a737bd4d
NC
629#define T_OPCODE_PUSH 0xb400
630#define T_OPCODE_POP 0xbc00
b99bd4ef 631
2fc8bdac 632#define T_OPCODE_BRANCH 0xe000
b99bd4ef 633
a737bd4d 634#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 635#define THUMB_PP_PC_LR 0x0100
c19d1205 636#define THUMB_LOAD_BIT 0x0800
53365c0d 637#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
638
639#define BAD_ARGS _("bad arguments to instruction")
640#define BAD_PC _("r15 not allowed here")
641#define BAD_COND _("instruction cannot be conditional")
642#define BAD_OVERLAP _("registers may not be the same")
643#define BAD_HIREG _("lo register required")
644#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 645#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
646#define BAD_BRANCH _("branch must be last instruction in IT block")
647#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 648#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
649
650static struct hash_control *arm_ops_hsh;
651static struct hash_control *arm_cond_hsh;
652static struct hash_control *arm_shift_hsh;
653static struct hash_control *arm_psr_hsh;
62b3e311 654static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
655static struct hash_control *arm_reg_hsh;
656static struct hash_control *arm_reloc_hsh;
62b3e311 657static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 658
b99bd4ef
NC
659/* Stuff needed to resolve the label ambiguity
660 As:
661 ...
662 label: <insn>
663 may differ from:
664 ...
665 label:
c19d1205 666 <insn>
b99bd4ef
NC
667*/
668
669symbolS * last_label_seen;
b34976b6 670static int label_is_thumb_function_name = FALSE;
a737bd4d 671\f
3d0c9500
NC
672/* Literal pool structure. Held on a per-section
673 and per-sub-section basis. */
a737bd4d 674
c19d1205 675#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 676typedef struct literal_pool
b99bd4ef 677{
c19d1205
ZW
678 expressionS literals [MAX_LITERAL_POOL_SIZE];
679 unsigned int next_free_entry;
680 unsigned int id;
681 symbolS * symbol;
682 segT section;
683 subsegT sub_section;
61b5f74b 684 struct literal_pool * next;
3d0c9500 685} literal_pool;
b99bd4ef 686
3d0c9500
NC
687/* Pointer to a linked list of literal pools. */
688literal_pool * list_of_pools = NULL;
e27ec89e
PB
689
690/* State variables for IT block handling. */
691static bfd_boolean current_it_mask = 0;
692static int current_cc;
693
c19d1205
ZW
694\f
695/* Pure syntax. */
b99bd4ef 696
c19d1205
ZW
697/* This array holds the chars that always start a comment. If the
698 pre-processor is disabled, these aren't very useful. */
699const char comment_chars[] = "@";
3d0c9500 700
c19d1205
ZW
701/* This array holds the chars that only start a comment at the beginning of
702 a line. If the line seems to have the form '# 123 filename'
703 .line and .file directives will appear in the pre-processed output. */
704/* Note that input_file.c hand checks for '#' at the beginning of the
705 first line of the input file. This is because the compiler outputs
706 #NO_APP at the beginning of its output. */
707/* Also note that comments like this one will always work. */
708const char line_comment_chars[] = "#";
3d0c9500 709
c19d1205 710const char line_separator_chars[] = ";";
b99bd4ef 711
c19d1205
ZW
712/* Chars that can be used to separate mant
713 from exp in floating point numbers. */
714const char EXP_CHARS[] = "eE";
3d0c9500 715
c19d1205
ZW
716/* Chars that mean this number is a floating point constant. */
717/* As in 0f12.456 */
718/* or 0d1.2345e12 */
b99bd4ef 719
c19d1205 720const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 721
c19d1205
ZW
722/* Prefix characters that indicate the start of an immediate
723 value. */
724#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 725
c19d1205
ZW
726/* Separator character handling. */
727
728#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
729
730static inline int
731skip_past_char (char ** str, char c)
732{
733 if (**str == c)
734 {
735 (*str)++;
736 return SUCCESS;
3d0c9500 737 }
c19d1205
ZW
738 else
739 return FAIL;
740}
741#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 742
c19d1205
ZW
743/* Arithmetic expressions (possibly involving symbols). */
744
745/* Return TRUE if anything in the expression is a bignum. */
746
747static int
748walk_no_bignums (symbolS * sp)
749{
750 if (symbol_get_value_expression (sp)->X_op == O_big)
751 return 1;
752
753 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 754 {
c19d1205
ZW
755 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
756 || (symbol_get_value_expression (sp)->X_op_symbol
757 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
758 }
759
c19d1205 760 return 0;
3d0c9500
NC
761}
762
c19d1205
ZW
763static int in_my_get_expression = 0;
764
765/* Third argument to my_get_expression. */
766#define GE_NO_PREFIX 0
767#define GE_IMM_PREFIX 1
768#define GE_OPT_PREFIX 2
5287ad62
JB
769/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
770 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
771#define GE_OPT_PREFIX_BIG 3
a737bd4d 772
b99bd4ef 773static int
c19d1205 774my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 775{
c19d1205
ZW
776 char * save_in;
777 segT seg;
b99bd4ef 778
c19d1205
ZW
779 /* In unified syntax, all prefixes are optional. */
780 if (unified_syntax)
5287ad62
JB
781 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
782 : GE_OPT_PREFIX;
b99bd4ef 783
c19d1205 784 switch (prefix_mode)
b99bd4ef 785 {
c19d1205
ZW
786 case GE_NO_PREFIX: break;
787 case GE_IMM_PREFIX:
788 if (!is_immediate_prefix (**str))
789 {
790 inst.error = _("immediate expression requires a # prefix");
791 return FAIL;
792 }
793 (*str)++;
794 break;
795 case GE_OPT_PREFIX:
5287ad62 796 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
797 if (is_immediate_prefix (**str))
798 (*str)++;
799 break;
800 default: abort ();
801 }
b99bd4ef 802
c19d1205 803 memset (ep, 0, sizeof (expressionS));
b99bd4ef 804
c19d1205
ZW
805 save_in = input_line_pointer;
806 input_line_pointer = *str;
807 in_my_get_expression = 1;
808 seg = expression (ep);
809 in_my_get_expression = 0;
810
811 if (ep->X_op == O_illegal)
b99bd4ef 812 {
c19d1205
ZW
813 /* We found a bad expression in md_operand(). */
814 *str = input_line_pointer;
815 input_line_pointer = save_in;
816 if (inst.error == NULL)
817 inst.error = _("bad expression");
818 return 1;
819 }
b99bd4ef 820
c19d1205
ZW
821#ifdef OBJ_AOUT
822 if (seg != absolute_section
823 && seg != text_section
824 && seg != data_section
825 && seg != bss_section
826 && seg != undefined_section)
827 {
828 inst.error = _("bad segment");
829 *str = input_line_pointer;
830 input_line_pointer = save_in;
831 return 1;
b99bd4ef 832 }
c19d1205 833#endif
b99bd4ef 834
c19d1205
ZW
835 /* Get rid of any bignums now, so that we don't generate an error for which
836 we can't establish a line number later on. Big numbers are never valid
837 in instructions, which is where this routine is always called. */
5287ad62
JB
838 if (prefix_mode != GE_OPT_PREFIX_BIG
839 && (ep->X_op == O_big
840 || (ep->X_add_symbol
841 && (walk_no_bignums (ep->X_add_symbol)
842 || (ep->X_op_symbol
843 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
844 {
845 inst.error = _("invalid constant");
846 *str = input_line_pointer;
847 input_line_pointer = save_in;
848 return 1;
849 }
b99bd4ef 850
c19d1205
ZW
851 *str = input_line_pointer;
852 input_line_pointer = save_in;
853 return 0;
b99bd4ef
NC
854}
855
c19d1205
ZW
856/* Turn a string in input_line_pointer into a floating point constant
857 of type TYPE, and store the appropriate bytes in *LITP. The number
858 of LITTLENUMS emitted is stored in *SIZEP. An error message is
859 returned, or NULL on OK.
b99bd4ef 860
c19d1205
ZW
861 Note that fp constants aren't represent in the normal way on the ARM.
862 In big endian mode, things are as expected. However, in little endian
863 mode fp constants are big-endian word-wise, and little-endian byte-wise
864 within the words. For example, (double) 1.1 in big endian mode is
865 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
866 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 867
c19d1205 868 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 869
c19d1205
ZW
870char *
871md_atof (int type, char * litP, int * sizeP)
872{
873 int prec;
874 LITTLENUM_TYPE words[MAX_LITTLENUMS];
875 char *t;
876 int i;
b99bd4ef 877
c19d1205
ZW
878 switch (type)
879 {
880 case 'f':
881 case 'F':
882 case 's':
883 case 'S':
884 prec = 2;
885 break;
b99bd4ef 886
c19d1205
ZW
887 case 'd':
888 case 'D':
889 case 'r':
890 case 'R':
891 prec = 4;
892 break;
b99bd4ef 893
c19d1205
ZW
894 case 'x':
895 case 'X':
896 prec = 6;
897 break;
b99bd4ef 898
c19d1205
ZW
899 case 'p':
900 case 'P':
901 prec = 6;
902 break;
a737bd4d 903
c19d1205
ZW
904 default:
905 *sizeP = 0;
906 return _("bad call to MD_ATOF()");
907 }
b99bd4ef 908
c19d1205
ZW
909 t = atof_ieee (input_line_pointer, type, words);
910 if (t)
911 input_line_pointer = t;
912 *sizeP = prec * 2;
b99bd4ef 913
c19d1205
ZW
914 if (target_big_endian)
915 {
916 for (i = 0; i < prec; i++)
917 {
918 md_number_to_chars (litP, (valueT) words[i], 2);
919 litP += 2;
920 }
921 }
922 else
923 {
e74cfd16 924 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
925 for (i = prec - 1; i >= 0; i--)
926 {
927 md_number_to_chars (litP, (valueT) words[i], 2);
928 litP += 2;
929 }
930 else
931 /* For a 4 byte float the order of elements in `words' is 1 0.
932 For an 8 byte float the order is 1 0 3 2. */
933 for (i = 0; i < prec; i += 2)
934 {
935 md_number_to_chars (litP, (valueT) words[i + 1], 2);
936 md_number_to_chars (litP + 2, (valueT) words[i], 2);
937 litP += 4;
938 }
939 }
b99bd4ef 940
c19d1205
ZW
941 return 0;
942}
b99bd4ef 943
c19d1205
ZW
944/* We handle all bad expressions here, so that we can report the faulty
945 instruction in the error message. */
946void
947md_operand (expressionS * expr)
948{
949 if (in_my_get_expression)
950 expr->X_op = O_illegal;
b99bd4ef
NC
951}
952
c19d1205 953/* Immediate values. */
b99bd4ef 954
c19d1205
ZW
955/* Generic immediate-value read function for use in directives.
956 Accepts anything that 'expression' can fold to a constant.
957 *val receives the number. */
958#ifdef OBJ_ELF
959static int
960immediate_for_directive (int *val)
b99bd4ef 961{
c19d1205
ZW
962 expressionS exp;
963 exp.X_op = O_illegal;
b99bd4ef 964
c19d1205
ZW
965 if (is_immediate_prefix (*input_line_pointer))
966 {
967 input_line_pointer++;
968 expression (&exp);
969 }
b99bd4ef 970
c19d1205
ZW
971 if (exp.X_op != O_constant)
972 {
973 as_bad (_("expected #constant"));
974 ignore_rest_of_line ();
975 return FAIL;
976 }
977 *val = exp.X_add_number;
978 return SUCCESS;
b99bd4ef 979}
c19d1205 980#endif
b99bd4ef 981
c19d1205 982/* Register parsing. */
b99bd4ef 983
c19d1205
ZW
984/* Generic register parser. CCP points to what should be the
985 beginning of a register name. If it is indeed a valid register
986 name, advance CCP over it and return the reg_entry structure;
987 otherwise return NULL. Does not issue diagnostics. */
988
989static struct reg_entry *
990arm_reg_parse_multi (char **ccp)
b99bd4ef 991{
c19d1205
ZW
992 char *start = *ccp;
993 char *p;
994 struct reg_entry *reg;
b99bd4ef 995
c19d1205
ZW
996#ifdef REGISTER_PREFIX
997 if (*start != REGISTER_PREFIX)
01cfc07f 998 return NULL;
c19d1205
ZW
999 start++;
1000#endif
1001#ifdef OPTIONAL_REGISTER_PREFIX
1002 if (*start == OPTIONAL_REGISTER_PREFIX)
1003 start++;
1004#endif
b99bd4ef 1005
c19d1205
ZW
1006 p = start;
1007 if (!ISALPHA (*p) || !is_name_beginner (*p))
1008 return NULL;
b99bd4ef 1009
c19d1205
ZW
1010 do
1011 p++;
1012 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1013
1014 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1015
1016 if (!reg)
1017 return NULL;
1018
1019 *ccp = p;
1020 return reg;
b99bd4ef
NC
1021}
1022
1023static int
dcbf9037
JB
1024arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1025 enum arm_reg_type type)
b99bd4ef 1026{
c19d1205
ZW
1027 /* Alternative syntaxes are accepted for a few register classes. */
1028 switch (type)
1029 {
1030 case REG_TYPE_MVF:
1031 case REG_TYPE_MVD:
1032 case REG_TYPE_MVFX:
1033 case REG_TYPE_MVDX:
1034 /* Generic coprocessor register names are allowed for these. */
79134647 1035 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1036 return reg->number;
1037 break;
69b97547 1038
c19d1205
ZW
1039 case REG_TYPE_CP:
1040 /* For backward compatibility, a bare number is valid here. */
1041 {
1042 unsigned long processor = strtoul (start, ccp, 10);
1043 if (*ccp != start && processor <= 15)
1044 return processor;
1045 }
6057a28f 1046
c19d1205
ZW
1047 case REG_TYPE_MMXWC:
1048 /* WC includes WCG. ??? I'm not sure this is true for all
1049 instructions that take WC registers. */
79134647 1050 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1051 return reg->number;
6057a28f 1052 break;
c19d1205 1053
6057a28f 1054 default:
c19d1205 1055 break;
6057a28f
NC
1056 }
1057
dcbf9037
JB
1058 return FAIL;
1059}
1060
1061/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1062 return value is the register number or FAIL. */
1063
1064static int
1065arm_reg_parse (char **ccp, enum arm_reg_type type)
1066{
1067 char *start = *ccp;
1068 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1069 int ret;
1070
1071 /* Do not allow a scalar (reg+index) to parse as a register. */
1072 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1073 return FAIL;
1074
1075 if (reg && reg->type == type)
1076 return reg->number;
1077
1078 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1079 return ret;
1080
c19d1205
ZW
1081 *ccp = start;
1082 return FAIL;
1083}
69b97547 1084
dcbf9037
JB
1085/* Parse a Neon type specifier. *STR should point at the leading '.'
1086 character. Does no verification at this stage that the type fits the opcode
1087 properly. E.g.,
1088
1089 .i32.i32.s16
1090 .s32.f32
1091 .u16
1092
1093 Can all be legally parsed by this function.
1094
1095 Fills in neon_type struct pointer with parsed information, and updates STR
1096 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1097 type, FAIL if not. */
1098
1099static int
1100parse_neon_type (struct neon_type *type, char **str)
1101{
1102 char *ptr = *str;
1103
1104 if (type)
1105 type->elems = 0;
1106
1107 while (type->elems < NEON_MAX_TYPE_ELS)
1108 {
1109 enum neon_el_type thistype = NT_untyped;
1110 unsigned thissize = -1u;
1111
1112 if (*ptr != '.')
1113 break;
1114
1115 ptr++;
1116
1117 /* Just a size without an explicit type. */
1118 if (ISDIGIT (*ptr))
1119 goto parsesize;
1120
1121 switch (TOLOWER (*ptr))
1122 {
1123 case 'i': thistype = NT_integer; break;
1124 case 'f': thistype = NT_float; break;
1125 case 'p': thistype = NT_poly; break;
1126 case 's': thistype = NT_signed; break;
1127 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1128 case 'd':
1129 thistype = NT_float;
1130 thissize = 64;
1131 ptr++;
1132 goto done;
dcbf9037
JB
1133 default:
1134 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1135 return FAIL;
1136 }
1137
1138 ptr++;
1139
1140 /* .f is an abbreviation for .f32. */
1141 if (thistype == NT_float && !ISDIGIT (*ptr))
1142 thissize = 32;
1143 else
1144 {
1145 parsesize:
1146 thissize = strtoul (ptr, &ptr, 10);
1147
1148 if (thissize != 8 && thissize != 16 && thissize != 32
1149 && thissize != 64)
1150 {
1151 as_bad (_("bad size %d in type specifier"), thissize);
1152 return FAIL;
1153 }
1154 }
1155
037e8744 1156 done:
dcbf9037
JB
1157 if (type)
1158 {
1159 type->el[type->elems].type = thistype;
1160 type->el[type->elems].size = thissize;
1161 type->elems++;
1162 }
1163 }
1164
1165 /* Empty/missing type is not a successful parse. */
1166 if (type->elems == 0)
1167 return FAIL;
1168
1169 *str = ptr;
1170
1171 return SUCCESS;
1172}
1173
1174/* Errors may be set multiple times during parsing or bit encoding
1175 (particularly in the Neon bits), but usually the earliest error which is set
1176 will be the most meaningful. Avoid overwriting it with later (cascading)
1177 errors by calling this function. */
1178
1179static void
1180first_error (const char *err)
1181{
1182 if (!inst.error)
1183 inst.error = err;
1184}
1185
1186/* Parse a single type, e.g. ".s32", leading period included. */
1187static int
1188parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1189{
1190 char *str = *ccp;
1191 struct neon_type optype;
1192
1193 if (*str == '.')
1194 {
1195 if (parse_neon_type (&optype, &str) == SUCCESS)
1196 {
1197 if (optype.elems == 1)
1198 *vectype = optype.el[0];
1199 else
1200 {
1201 first_error (_("only one type should be specified for operand"));
1202 return FAIL;
1203 }
1204 }
1205 else
1206 {
1207 first_error (_("vector type expected"));
1208 return FAIL;
1209 }
1210 }
1211 else
1212 return FAIL;
1213
1214 *ccp = str;
1215
1216 return SUCCESS;
1217}
1218
1219/* Special meanings for indices (which have a range of 0-7), which will fit into
1220 a 4-bit integer. */
1221
1222#define NEON_ALL_LANES 15
1223#define NEON_INTERLEAVE_LANES 14
1224
1225/* Parse either a register or a scalar, with an optional type. Return the
1226 register number, and optionally fill in the actual type of the register
1227 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1228 type/index information in *TYPEINFO. */
1229
1230static int
1231parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1232 enum arm_reg_type *rtype,
1233 struct neon_typed_alias *typeinfo)
1234{
1235 char *str = *ccp;
1236 struct reg_entry *reg = arm_reg_parse_multi (&str);
1237 struct neon_typed_alias atype;
1238 struct neon_type_el parsetype;
1239
1240 atype.defined = 0;
1241 atype.index = -1;
1242 atype.eltype.type = NT_invtype;
1243 atype.eltype.size = -1;
1244
1245 /* Try alternate syntax for some types of register. Note these are mutually
1246 exclusive with the Neon syntax extensions. */
1247 if (reg == NULL)
1248 {
1249 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1250 if (altreg != FAIL)
1251 *ccp = str;
1252 if (typeinfo)
1253 *typeinfo = atype;
1254 return altreg;
1255 }
1256
037e8744
JB
1257 /* Undo polymorphism when a set of register types may be accepted. */
1258 if ((type == REG_TYPE_NDQ
1259 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1260 || (type == REG_TYPE_VFSD
1261 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1262 || (type == REG_TYPE_NSDQ
1263 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1264 || reg->type == REG_TYPE_NQ)))
dcbf9037
JB
1265 type = reg->type;
1266
1267 if (type != reg->type)
1268 return FAIL;
1269
1270 if (reg->neon)
1271 atype = *reg->neon;
1272
1273 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1274 {
1275 if ((atype.defined & NTA_HASTYPE) != 0)
1276 {
1277 first_error (_("can't redefine type for operand"));
1278 return FAIL;
1279 }
1280 atype.defined |= NTA_HASTYPE;
1281 atype.eltype = parsetype;
1282 }
1283
1284 if (skip_past_char (&str, '[') == SUCCESS)
1285 {
1286 if (type != REG_TYPE_VFD)
1287 {
1288 first_error (_("only D registers may be indexed"));
1289 return FAIL;
1290 }
1291
1292 if ((atype.defined & NTA_HASINDEX) != 0)
1293 {
1294 first_error (_("can't change index for operand"));
1295 return FAIL;
1296 }
1297
1298 atype.defined |= NTA_HASINDEX;
1299
1300 if (skip_past_char (&str, ']') == SUCCESS)
1301 atype.index = NEON_ALL_LANES;
1302 else
1303 {
1304 expressionS exp;
1305
1306 my_get_expression (&exp, &str, GE_NO_PREFIX);
1307
1308 if (exp.X_op != O_constant)
1309 {
1310 first_error (_("constant expression required"));
1311 return FAIL;
1312 }
1313
1314 if (skip_past_char (&str, ']') == FAIL)
1315 return FAIL;
1316
1317 atype.index = exp.X_add_number;
1318 }
1319 }
1320
1321 if (typeinfo)
1322 *typeinfo = atype;
1323
1324 if (rtype)
1325 *rtype = type;
1326
1327 *ccp = str;
1328
1329 return reg->number;
1330}
1331
1332/* Like arm_reg_parse, but allow allow the following extra features:
1333 - If RTYPE is non-zero, return the (possibly restricted) type of the
1334 register (e.g. Neon double or quad reg when either has been requested).
1335 - If this is a Neon vector type with additional type information, fill
1336 in the struct pointed to by VECTYPE (if non-NULL).
1337 This function will fault on encountering a scalar.
1338*/
1339
1340static int
1341arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1342 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1343{
1344 struct neon_typed_alias atype;
1345 char *str = *ccp;
1346 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1347
1348 if (reg == FAIL)
1349 return FAIL;
1350
1351 /* Do not allow a scalar (reg+index) to parse as a register. */
1352 if ((atype.defined & NTA_HASINDEX) != 0)
1353 {
1354 first_error (_("register operand expected, but got scalar"));
1355 return FAIL;
1356 }
1357
1358 if (vectype)
1359 *vectype = atype.eltype;
1360
1361 *ccp = str;
1362
1363 return reg;
1364}
1365
1366#define NEON_SCALAR_REG(X) ((X) >> 4)
1367#define NEON_SCALAR_INDEX(X) ((X) & 15)
1368
5287ad62
JB
1369/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1370 have enough information to be able to do a good job bounds-checking. So, we
1371 just do easy checks here, and do further checks later. */
1372
1373static int
dcbf9037 1374parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1375{
dcbf9037 1376 int reg;
5287ad62 1377 char *str = *ccp;
dcbf9037 1378 struct neon_typed_alias atype;
5287ad62 1379
dcbf9037 1380 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5287ad62 1381
dcbf9037 1382 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62
JB
1383 return FAIL;
1384
dcbf9037 1385 if (atype.index == NEON_ALL_LANES)
5287ad62 1386 {
dcbf9037 1387 first_error (_("scalar must have an index"));
5287ad62
JB
1388 return FAIL;
1389 }
dcbf9037 1390 else if (atype.index >= 64 / elsize)
5287ad62 1391 {
dcbf9037 1392 first_error (_("scalar index out of range"));
5287ad62
JB
1393 return FAIL;
1394 }
1395
dcbf9037
JB
1396 if (type)
1397 *type = atype.eltype;
5287ad62 1398
5287ad62
JB
1399 *ccp = str;
1400
dcbf9037 1401 return reg * 16 + atype.index;
5287ad62
JB
1402}
1403
c19d1205
ZW
1404/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1405static long
1406parse_reg_list (char ** strp)
1407{
1408 char * str = * strp;
1409 long range = 0;
1410 int another_range;
a737bd4d 1411
c19d1205
ZW
1412 /* We come back here if we get ranges concatenated by '+' or '|'. */
1413 do
6057a28f 1414 {
c19d1205 1415 another_range = 0;
a737bd4d 1416
c19d1205
ZW
1417 if (*str == '{')
1418 {
1419 int in_range = 0;
1420 int cur_reg = -1;
a737bd4d 1421
c19d1205
ZW
1422 str++;
1423 do
1424 {
1425 int reg;
6057a28f 1426
dcbf9037 1427 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1428 {
dcbf9037 1429 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1430 return FAIL;
1431 }
a737bd4d 1432
c19d1205
ZW
1433 if (in_range)
1434 {
1435 int i;
a737bd4d 1436
c19d1205
ZW
1437 if (reg <= cur_reg)
1438 {
dcbf9037 1439 first_error (_("bad range in register list"));
c19d1205
ZW
1440 return FAIL;
1441 }
40a18ebd 1442
c19d1205
ZW
1443 for (i = cur_reg + 1; i < reg; i++)
1444 {
1445 if (range & (1 << i))
1446 as_tsktsk
1447 (_("Warning: duplicated register (r%d) in register list"),
1448 i);
1449 else
1450 range |= 1 << i;
1451 }
1452 in_range = 0;
1453 }
a737bd4d 1454
c19d1205
ZW
1455 if (range & (1 << reg))
1456 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1457 reg);
1458 else if (reg <= cur_reg)
1459 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1460
c19d1205
ZW
1461 range |= 1 << reg;
1462 cur_reg = reg;
1463 }
1464 while (skip_past_comma (&str) != FAIL
1465 || (in_range = 1, *str++ == '-'));
1466 str--;
a737bd4d 1467
c19d1205
ZW
1468 if (*str++ != '}')
1469 {
dcbf9037 1470 first_error (_("missing `}'"));
c19d1205
ZW
1471 return FAIL;
1472 }
1473 }
1474 else
1475 {
1476 expressionS expr;
40a18ebd 1477
c19d1205
ZW
1478 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1479 return FAIL;
40a18ebd 1480
c19d1205
ZW
1481 if (expr.X_op == O_constant)
1482 {
1483 if (expr.X_add_number
1484 != (expr.X_add_number & 0x0000ffff))
1485 {
1486 inst.error = _("invalid register mask");
1487 return FAIL;
1488 }
a737bd4d 1489
c19d1205
ZW
1490 if ((range & expr.X_add_number) != 0)
1491 {
1492 int regno = range & expr.X_add_number;
a737bd4d 1493
c19d1205
ZW
1494 regno &= -regno;
1495 regno = (1 << regno) - 1;
1496 as_tsktsk
1497 (_("Warning: duplicated register (r%d) in register list"),
1498 regno);
1499 }
a737bd4d 1500
c19d1205
ZW
1501 range |= expr.X_add_number;
1502 }
1503 else
1504 {
1505 if (inst.reloc.type != 0)
1506 {
1507 inst.error = _("expression too complex");
1508 return FAIL;
1509 }
a737bd4d 1510
c19d1205
ZW
1511 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1512 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1513 inst.reloc.pc_rel = 0;
1514 }
1515 }
a737bd4d 1516
c19d1205
ZW
1517 if (*str == '|' || *str == '+')
1518 {
1519 str++;
1520 another_range = 1;
1521 }
a737bd4d 1522 }
c19d1205 1523 while (another_range);
a737bd4d 1524
c19d1205
ZW
1525 *strp = str;
1526 return range;
a737bd4d
NC
1527}
1528
5287ad62
JB
1529/* Types of registers in a list. */
1530
1531enum reg_list_els
1532{
1533 REGLIST_VFP_S,
1534 REGLIST_VFP_D,
1535 REGLIST_NEON_D
1536};
1537
c19d1205
ZW
1538/* Parse a VFP register list. If the string is invalid return FAIL.
1539 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1540 register. Parses registers of type ETYPE.
1541 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1542 - Q registers can be used to specify pairs of D registers
1543 - { } can be omitted from around a singleton register list
1544 FIXME: This is not implemented, as it would require backtracking in
1545 some cases, e.g.:
1546 vtbl.8 d3,d4,d5
1547 This could be done (the meaning isn't really ambiguous), but doesn't
1548 fit in well with the current parsing framework.
dcbf9037
JB
1549 - 32 D registers may be used (also true for VFPv3).
1550 FIXME: Types are ignored in these register lists, which is probably a
1551 bug. */
6057a28f 1552
c19d1205 1553static int
037e8744 1554parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1555{
037e8744 1556 char *str = *ccp;
c19d1205
ZW
1557 int base_reg;
1558 int new_base;
5287ad62
JB
1559 enum arm_reg_type regtype = 0;
1560 int max_regs = 0;
c19d1205
ZW
1561 int count = 0;
1562 int warned = 0;
1563 unsigned long mask = 0;
a737bd4d 1564 int i;
6057a28f 1565
037e8744 1566 if (*str != '{')
5287ad62
JB
1567 {
1568 inst.error = _("expecting {");
1569 return FAIL;
1570 }
6057a28f 1571
037e8744 1572 str++;
6057a28f 1573
5287ad62 1574 switch (etype)
c19d1205 1575 {
5287ad62 1576 case REGLIST_VFP_S:
c19d1205
ZW
1577 regtype = REG_TYPE_VFS;
1578 max_regs = 32;
5287ad62
JB
1579 break;
1580
1581 case REGLIST_VFP_D:
1582 regtype = REG_TYPE_VFD;
b7fc2769
JB
1583 break;
1584
1585 case REGLIST_NEON_D:
1586 regtype = REG_TYPE_NDQ;
1587 break;
1588 }
1589
1590 if (etype != REGLIST_VFP_S)
1591 {
5287ad62
JB
1592 /* VFPv3 allows 32 D registers. */
1593 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1594 {
1595 max_regs = 32;
1596 if (thumb_mode)
1597 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1598 fpu_vfp_ext_v3);
1599 else
1600 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1601 fpu_vfp_ext_v3);
1602 }
1603 else
1604 max_regs = 16;
c19d1205 1605 }
6057a28f 1606
c19d1205 1607 base_reg = max_regs;
a737bd4d 1608
c19d1205
ZW
1609 do
1610 {
5287ad62 1611 int setmask = 1, addregs = 1;
dcbf9037 1612
037e8744 1613 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1614
c19d1205 1615 if (new_base == FAIL)
a737bd4d 1616 {
dcbf9037 1617 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1618 return FAIL;
1619 }
dcbf9037 1620
b7fc2769
JB
1621 if (new_base >= max_regs)
1622 {
1623 first_error (_("register out of range in list"));
1624 return FAIL;
1625 }
1626
5287ad62
JB
1627 /* Note: a value of 2 * n is returned for the register Q<n>. */
1628 if (regtype == REG_TYPE_NQ)
1629 {
1630 setmask = 3;
1631 addregs = 2;
1632 }
1633
c19d1205
ZW
1634 if (new_base < base_reg)
1635 base_reg = new_base;
a737bd4d 1636
5287ad62 1637 if (mask & (setmask << new_base))
c19d1205 1638 {
dcbf9037 1639 first_error (_("invalid register list"));
c19d1205 1640 return FAIL;
a737bd4d 1641 }
a737bd4d 1642
c19d1205
ZW
1643 if ((mask >> new_base) != 0 && ! warned)
1644 {
1645 as_tsktsk (_("register list not in ascending order"));
1646 warned = 1;
1647 }
0bbf2aa4 1648
5287ad62
JB
1649 mask |= setmask << new_base;
1650 count += addregs;
0bbf2aa4 1651
037e8744 1652 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1653 {
1654 int high_range;
0bbf2aa4 1655
037e8744 1656 str++;
0bbf2aa4 1657
037e8744 1658 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1659 == FAIL)
c19d1205
ZW
1660 {
1661 inst.error = gettext (reg_expected_msgs[regtype]);
1662 return FAIL;
1663 }
0bbf2aa4 1664
b7fc2769
JB
1665 if (high_range >= max_regs)
1666 {
1667 first_error (_("register out of range in list"));
1668 return FAIL;
1669 }
1670
5287ad62
JB
1671 if (regtype == REG_TYPE_NQ)
1672 high_range = high_range + 1;
1673
c19d1205
ZW
1674 if (high_range <= new_base)
1675 {
1676 inst.error = _("register range not in ascending order");
1677 return FAIL;
1678 }
0bbf2aa4 1679
5287ad62 1680 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1681 {
5287ad62 1682 if (mask & (setmask << new_base))
0bbf2aa4 1683 {
c19d1205
ZW
1684 inst.error = _("invalid register list");
1685 return FAIL;
0bbf2aa4 1686 }
c19d1205 1687
5287ad62
JB
1688 mask |= setmask << new_base;
1689 count += addregs;
0bbf2aa4 1690 }
0bbf2aa4 1691 }
0bbf2aa4 1692 }
037e8744 1693 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1694
037e8744 1695 str++;
0bbf2aa4 1696
c19d1205
ZW
1697 /* Sanity check -- should have raised a parse error above. */
1698 if (count == 0 || count > max_regs)
1699 abort ();
1700
1701 *pbase = base_reg;
1702
1703 /* Final test -- the registers must be consecutive. */
1704 mask >>= base_reg;
1705 for (i = 0; i < count; i++)
1706 {
1707 if ((mask & (1u << i)) == 0)
1708 {
1709 inst.error = _("non-contiguous register range");
1710 return FAIL;
1711 }
1712 }
1713
037e8744
JB
1714 *ccp = str;
1715
c19d1205 1716 return count;
b99bd4ef
NC
1717}
1718
dcbf9037
JB
1719/* True if two alias types are the same. */
1720
1721static int
1722neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1723{
1724 if (!a && !b)
1725 return 1;
1726
1727 if (!a || !b)
1728 return 0;
1729
1730 if (a->defined != b->defined)
1731 return 0;
1732
1733 if ((a->defined & NTA_HASTYPE) != 0
1734 && (a->eltype.type != b->eltype.type
1735 || a->eltype.size != b->eltype.size))
1736 return 0;
1737
1738 if ((a->defined & NTA_HASINDEX) != 0
1739 && (a->index != b->index))
1740 return 0;
1741
1742 return 1;
1743}
1744
5287ad62
JB
1745/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1746 The base register is put in *PBASE.
dcbf9037 1747 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1748 the return value.
1749 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1750 Bits [6:5] encode the list length (minus one).
1751 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1752
5287ad62 1753#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1754#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1755#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1756
1757static int
dcbf9037
JB
1758parse_neon_el_struct_list (char **str, unsigned *pbase,
1759 struct neon_type_el *eltype)
5287ad62
JB
1760{
1761 char *ptr = *str;
1762 int base_reg = -1;
1763 int reg_incr = -1;
1764 int count = 0;
1765 int lane = -1;
1766 int leading_brace = 0;
1767 enum arm_reg_type rtype = REG_TYPE_NDQ;
1768 int addregs = 1;
1769 const char *const incr_error = "register stride must be 1 or 2";
1770 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1771 struct neon_typed_alias firsttype;
5287ad62
JB
1772
1773 if (skip_past_char (&ptr, '{') == SUCCESS)
1774 leading_brace = 1;
1775
1776 do
1777 {
dcbf9037
JB
1778 struct neon_typed_alias atype;
1779 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1780
5287ad62
JB
1781 if (getreg == FAIL)
1782 {
dcbf9037 1783 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1784 return FAIL;
1785 }
1786
1787 if (base_reg == -1)
1788 {
1789 base_reg = getreg;
1790 if (rtype == REG_TYPE_NQ)
1791 {
1792 reg_incr = 1;
1793 addregs = 2;
1794 }
dcbf9037 1795 firsttype = atype;
5287ad62
JB
1796 }
1797 else if (reg_incr == -1)
1798 {
1799 reg_incr = getreg - base_reg;
1800 if (reg_incr < 1 || reg_incr > 2)
1801 {
dcbf9037 1802 first_error (_(incr_error));
5287ad62
JB
1803 return FAIL;
1804 }
1805 }
1806 else if (getreg != base_reg + reg_incr * count)
1807 {
dcbf9037
JB
1808 first_error (_(incr_error));
1809 return FAIL;
1810 }
1811
1812 if (!neon_alias_types_same (&atype, &firsttype))
1813 {
1814 first_error (_(type_error));
5287ad62
JB
1815 return FAIL;
1816 }
1817
1818 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1819 modes. */
1820 if (ptr[0] == '-')
1821 {
dcbf9037 1822 struct neon_typed_alias htype;
5287ad62
JB
1823 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1824 if (lane == -1)
1825 lane = NEON_INTERLEAVE_LANES;
1826 else if (lane != NEON_INTERLEAVE_LANES)
1827 {
dcbf9037 1828 first_error (_(type_error));
5287ad62
JB
1829 return FAIL;
1830 }
1831 if (reg_incr == -1)
1832 reg_incr = 1;
1833 else if (reg_incr != 1)
1834 {
dcbf9037 1835 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1836 return FAIL;
1837 }
1838 ptr++;
dcbf9037 1839 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1840 if (hireg == FAIL)
1841 {
dcbf9037
JB
1842 first_error (_(reg_expected_msgs[rtype]));
1843 return FAIL;
1844 }
1845 if (!neon_alias_types_same (&htype, &firsttype))
1846 {
1847 first_error (_(type_error));
5287ad62
JB
1848 return FAIL;
1849 }
1850 count += hireg + dregs - getreg;
1851 continue;
1852 }
1853
1854 /* If we're using Q registers, we can't use [] or [n] syntax. */
1855 if (rtype == REG_TYPE_NQ)
1856 {
1857 count += 2;
1858 continue;
1859 }
1860
dcbf9037 1861 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1862 {
dcbf9037
JB
1863 if (lane == -1)
1864 lane = atype.index;
1865 else if (lane != atype.index)
5287ad62 1866 {
dcbf9037
JB
1867 first_error (_(type_error));
1868 return FAIL;
5287ad62
JB
1869 }
1870 }
1871 else if (lane == -1)
1872 lane = NEON_INTERLEAVE_LANES;
1873 else if (lane != NEON_INTERLEAVE_LANES)
1874 {
dcbf9037 1875 first_error (_(type_error));
5287ad62
JB
1876 return FAIL;
1877 }
1878 count++;
1879 }
1880 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1881
1882 /* No lane set by [x]. We must be interleaving structures. */
1883 if (lane == -1)
1884 lane = NEON_INTERLEAVE_LANES;
1885
1886 /* Sanity check. */
1887 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1888 || (count > 1 && reg_incr == -1))
1889 {
dcbf9037 1890 first_error (_("error parsing element/structure list"));
5287ad62
JB
1891 return FAIL;
1892 }
1893
1894 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1895 {
dcbf9037 1896 first_error (_("expected }"));
5287ad62
JB
1897 return FAIL;
1898 }
1899
1900 if (reg_incr == -1)
1901 reg_incr = 1;
1902
dcbf9037
JB
1903 if (eltype)
1904 *eltype = firsttype.eltype;
1905
5287ad62
JB
1906 *pbase = base_reg;
1907 *str = ptr;
1908
1909 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1910}
1911
c19d1205
ZW
1912/* Parse an explicit relocation suffix on an expression. This is
1913 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1914 arm_reloc_hsh contains no entries, so this function can only
1915 succeed if there is no () after the word. Returns -1 on error,
1916 BFD_RELOC_UNUSED if there wasn't any suffix. */
1917static int
1918parse_reloc (char **str)
b99bd4ef 1919{
c19d1205
ZW
1920 struct reloc_entry *r;
1921 char *p, *q;
b99bd4ef 1922
c19d1205
ZW
1923 if (**str != '(')
1924 return BFD_RELOC_UNUSED;
b99bd4ef 1925
c19d1205
ZW
1926 p = *str + 1;
1927 q = p;
1928
1929 while (*q && *q != ')' && *q != ',')
1930 q++;
1931 if (*q != ')')
1932 return -1;
1933
1934 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1935 return -1;
1936
1937 *str = q + 1;
1938 return r->reloc;
b99bd4ef
NC
1939}
1940
c19d1205
ZW
1941/* Directives: register aliases. */
1942
dcbf9037 1943static struct reg_entry *
c19d1205 1944insert_reg_alias (char *str, int number, int type)
b99bd4ef 1945{
c19d1205
ZW
1946 struct reg_entry *new;
1947 const char *name;
b99bd4ef 1948
c19d1205
ZW
1949 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1950 {
1951 if (new->builtin)
1952 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1953
c19d1205
ZW
1954 /* Only warn about a redefinition if it's not defined as the
1955 same register. */
1956 else if (new->number != number || new->type != type)
1957 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1958
dcbf9037 1959 return 0;
c19d1205 1960 }
b99bd4ef 1961
c19d1205
ZW
1962 name = xstrdup (str);
1963 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1964
c19d1205
ZW
1965 new->name = name;
1966 new->number = number;
1967 new->type = type;
1968 new->builtin = FALSE;
dcbf9037 1969 new->neon = NULL;
b99bd4ef 1970
c19d1205
ZW
1971 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1972 abort ();
dcbf9037
JB
1973
1974 return new;
1975}
1976
1977static void
1978insert_neon_reg_alias (char *str, int number, int type,
1979 struct neon_typed_alias *atype)
1980{
1981 struct reg_entry *reg = insert_reg_alias (str, number, type);
1982
1983 if (!reg)
1984 {
1985 first_error (_("attempt to redefine typed alias"));
1986 return;
1987 }
1988
1989 if (atype)
1990 {
1991 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
1992 *reg->neon = *atype;
1993 }
c19d1205 1994}
b99bd4ef 1995
c19d1205 1996/* Look for the .req directive. This is of the form:
b99bd4ef 1997
c19d1205 1998 new_register_name .req existing_register_name
b99bd4ef 1999
c19d1205
ZW
2000 If we find one, or if it looks sufficiently like one that we want to
2001 handle any error here, return non-zero. Otherwise return zero. */
b99bd4ef 2002
c19d1205
ZW
2003static int
2004create_register_alias (char * newname, char *p)
2005{
2006 struct reg_entry *old;
2007 char *oldname, *nbuf;
2008 size_t nlen;
b99bd4ef 2009
c19d1205
ZW
2010 /* The input scrubber ensures that whitespace after the mnemonic is
2011 collapsed to single spaces. */
2012 oldname = p;
2013 if (strncmp (oldname, " .req ", 6) != 0)
2014 return 0;
b99bd4ef 2015
c19d1205
ZW
2016 oldname += 6;
2017 if (*oldname == '\0')
2018 return 0;
b99bd4ef 2019
c19d1205
ZW
2020 old = hash_find (arm_reg_hsh, oldname);
2021 if (!old)
b99bd4ef 2022 {
c19d1205
ZW
2023 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2024 return 1;
b99bd4ef
NC
2025 }
2026
c19d1205
ZW
2027 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2028 the desired alias name, and p points to its end. If not, then
2029 the desired alias name is in the global original_case_string. */
2030#ifdef TC_CASE_SENSITIVE
2031 nlen = p - newname;
2032#else
2033 newname = original_case_string;
2034 nlen = strlen (newname);
2035#endif
b99bd4ef 2036
c19d1205
ZW
2037 nbuf = alloca (nlen + 1);
2038 memcpy (nbuf, newname, nlen);
2039 nbuf[nlen] = '\0';
b99bd4ef 2040
c19d1205
ZW
2041 /* Create aliases under the new name as stated; an all-lowercase
2042 version of the new name; and an all-uppercase version of the new
2043 name. */
2044 insert_reg_alias (nbuf, old->number, old->type);
b99bd4ef 2045
c19d1205
ZW
2046 for (p = nbuf; *p; p++)
2047 *p = TOUPPER (*p);
2048
2049 if (strncmp (nbuf, newname, nlen))
2050 insert_reg_alias (nbuf, old->number, old->type);
2051
2052 for (p = nbuf; *p; p++)
2053 *p = TOLOWER (*p);
2054
2055 if (strncmp (nbuf, newname, nlen))
2056 insert_reg_alias (nbuf, old->number, old->type);
2057
2058 return 1;
b99bd4ef
NC
2059}
2060
dcbf9037
JB
2061/* Create a Neon typed/indexed register alias using directives, e.g.:
2062 X .dn d5.s32[1]
2063 Y .qn 6.s16
2064 Z .dn d7
2065 T .dn Z[0]
2066 These typed registers can be used instead of the types specified after the
2067 Neon mnemonic, so long as all operands given have types. Types can also be
2068 specified directly, e.g.:
2069 vadd d0.s32, d1.s32, d2.s32
2070*/
2071
2072static int
2073create_neon_reg_alias (char *newname, char *p)
2074{
2075 enum arm_reg_type basetype;
2076 struct reg_entry *basereg;
2077 struct reg_entry mybasereg;
2078 struct neon_type ntype;
2079 struct neon_typed_alias typeinfo;
2080 char *namebuf, *nameend;
2081 int namelen;
2082
2083 typeinfo.defined = 0;
2084 typeinfo.eltype.type = NT_invtype;
2085 typeinfo.eltype.size = -1;
2086 typeinfo.index = -1;
2087
2088 nameend = p;
2089
2090 if (strncmp (p, " .dn ", 5) == 0)
2091 basetype = REG_TYPE_VFD;
2092 else if (strncmp (p, " .qn ", 5) == 0)
2093 basetype = REG_TYPE_NQ;
2094 else
2095 return 0;
2096
2097 p += 5;
2098
2099 if (*p == '\0')
2100 return 0;
2101
2102 basereg = arm_reg_parse_multi (&p);
2103
2104 if (basereg && basereg->type != basetype)
2105 {
2106 as_bad (_("bad type for register"));
2107 return 0;
2108 }
2109
2110 if (basereg == NULL)
2111 {
2112 expressionS exp;
2113 /* Try parsing as an integer. */
2114 my_get_expression (&exp, &p, GE_NO_PREFIX);
2115 if (exp.X_op != O_constant)
2116 {
2117 as_bad (_("expression must be constant"));
2118 return 0;
2119 }
2120 basereg = &mybasereg;
2121 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2122 : exp.X_add_number;
2123 basereg->neon = 0;
2124 }
2125
2126 if (basereg->neon)
2127 typeinfo = *basereg->neon;
2128
2129 if (parse_neon_type (&ntype, &p) == SUCCESS)
2130 {
2131 /* We got a type. */
2132 if (typeinfo.defined & NTA_HASTYPE)
2133 {
2134 as_bad (_("can't redefine the type of a register alias"));
2135 return 0;
2136 }
2137
2138 typeinfo.defined |= NTA_HASTYPE;
2139 if (ntype.elems != 1)
2140 {
2141 as_bad (_("you must specify a single type only"));
2142 return 0;
2143 }
2144 typeinfo.eltype = ntype.el[0];
2145 }
2146
2147 if (skip_past_char (&p, '[') == SUCCESS)
2148 {
2149 expressionS exp;
2150 /* We got a scalar index. */
2151
2152 if (typeinfo.defined & NTA_HASINDEX)
2153 {
2154 as_bad (_("can't redefine the index of a scalar alias"));
2155 return 0;
2156 }
2157
2158 my_get_expression (&exp, &p, GE_NO_PREFIX);
2159
2160 if (exp.X_op != O_constant)
2161 {
2162 as_bad (_("scalar index must be constant"));
2163 return 0;
2164 }
2165
2166 typeinfo.defined |= NTA_HASINDEX;
2167 typeinfo.index = exp.X_add_number;
2168
2169 if (skip_past_char (&p, ']') == FAIL)
2170 {
2171 as_bad (_("expecting ]"));
2172 return 0;
2173 }
2174 }
2175
2176 namelen = nameend - newname;
2177 namebuf = alloca (namelen + 1);
2178 strncpy (namebuf, newname, namelen);
2179 namebuf[namelen] = '\0';
2180
2181 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2182 typeinfo.defined != 0 ? &typeinfo : NULL);
2183
2184 /* Insert name in all uppercase. */
2185 for (p = namebuf; *p; p++)
2186 *p = TOUPPER (*p);
2187
2188 if (strncmp (namebuf, newname, namelen))
2189 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2190 typeinfo.defined != 0 ? &typeinfo : NULL);
2191
2192 /* Insert name in all lowercase. */
2193 for (p = namebuf; *p; p++)
2194 *p = TOLOWER (*p);
2195
2196 if (strncmp (namebuf, newname, namelen))
2197 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2198 typeinfo.defined != 0 ? &typeinfo : NULL);
2199
2200 return 1;
2201}
2202
c19d1205
ZW
2203/* Should never be called, as .req goes between the alias and the
2204 register name, not at the beginning of the line. */
b99bd4ef 2205static void
c19d1205 2206s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2207{
c19d1205
ZW
2208 as_bad (_("invalid syntax for .req directive"));
2209}
b99bd4ef 2210
dcbf9037
JB
2211static void
2212s_dn (int a ATTRIBUTE_UNUSED)
2213{
2214 as_bad (_("invalid syntax for .dn directive"));
2215}
2216
2217static void
2218s_qn (int a ATTRIBUTE_UNUSED)
2219{
2220 as_bad (_("invalid syntax for .qn directive"));
2221}
2222
c19d1205
ZW
2223/* The .unreq directive deletes an alias which was previously defined
2224 by .req. For example:
b99bd4ef 2225
c19d1205
ZW
2226 my_alias .req r11
2227 .unreq my_alias */
b99bd4ef
NC
2228
2229static void
c19d1205 2230s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2231{
c19d1205
ZW
2232 char * name;
2233 char saved_char;
b99bd4ef 2234
c19d1205
ZW
2235 name = input_line_pointer;
2236
2237 while (*input_line_pointer != 0
2238 && *input_line_pointer != ' '
2239 && *input_line_pointer != '\n')
2240 ++input_line_pointer;
2241
2242 saved_char = *input_line_pointer;
2243 *input_line_pointer = 0;
2244
2245 if (!*name)
2246 as_bad (_("invalid syntax for .unreq directive"));
2247 else
2248 {
2249 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2250
2251 if (!reg)
2252 as_bad (_("unknown register alias '%s'"), name);
2253 else if (reg->builtin)
2254 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2255 name);
2256 else
2257 {
2258 hash_delete (arm_reg_hsh, name);
2259 free ((char *) reg->name);
dcbf9037
JB
2260 if (reg->neon)
2261 free (reg->neon);
c19d1205
ZW
2262 free (reg);
2263 }
2264 }
b99bd4ef 2265
c19d1205 2266 *input_line_pointer = saved_char;
b99bd4ef
NC
2267 demand_empty_rest_of_line ();
2268}
2269
c19d1205
ZW
2270/* Directives: Instruction set selection. */
2271
2272#ifdef OBJ_ELF
2273/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2274 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2275 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2276 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2277
2278static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef
NC
2279
2280static void
c19d1205 2281mapping_state (enum mstate state)
b99bd4ef 2282{
a737bd4d 2283 symbolS * symbolP;
c19d1205
ZW
2284 const char * symname;
2285 int type;
b99bd4ef 2286
c19d1205
ZW
2287 if (mapstate == state)
2288 /* The mapping symbol has already been emitted.
2289 There is nothing else to do. */
2290 return;
b99bd4ef 2291
c19d1205 2292 mapstate = state;
b99bd4ef 2293
c19d1205 2294 switch (state)
b99bd4ef 2295 {
c19d1205
ZW
2296 case MAP_DATA:
2297 symname = "$d";
2298 type = BSF_NO_FLAGS;
2299 break;
2300 case MAP_ARM:
2301 symname = "$a";
2302 type = BSF_NO_FLAGS;
2303 break;
2304 case MAP_THUMB:
2305 symname = "$t";
2306 type = BSF_NO_FLAGS;
2307 break;
2308 case MAP_UNDEFINED:
2309 return;
2310 default:
2311 abort ();
2312 }
2313
2314 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2315
2316 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2317 symbol_table_insert (symbolP);
2318 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2319
2320 switch (state)
2321 {
2322 case MAP_ARM:
2323 THUMB_SET_FUNC (symbolP, 0);
2324 ARM_SET_THUMB (symbolP, 0);
2325 ARM_SET_INTERWORK (symbolP, support_interwork);
2326 break;
2327
2328 case MAP_THUMB:
2329 THUMB_SET_FUNC (symbolP, 1);
2330 ARM_SET_THUMB (symbolP, 1);
2331 ARM_SET_INTERWORK (symbolP, support_interwork);
2332 break;
2333
2334 case MAP_DATA:
2335 default:
2336 return;
2337 }
2338}
2339#else
2340#define mapping_state(x) /* nothing */
2341#endif
2342
2343/* Find the real, Thumb encoded start of a Thumb function. */
2344
2345static symbolS *
2346find_real_start (symbolS * symbolP)
2347{
2348 char * real_start;
2349 const char * name = S_GET_NAME (symbolP);
2350 symbolS * new_target;
2351
2352 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2353#define STUB_NAME ".real_start_of"
2354
2355 if (name == NULL)
2356 abort ();
2357
37f6032b
ZW
2358 /* The compiler may generate BL instructions to local labels because
2359 it needs to perform a branch to a far away location. These labels
2360 do not have a corresponding ".real_start_of" label. We check
2361 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2362 the ".real_start_of" convention for nonlocal branches. */
2363 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2364 return symbolP;
2365
37f6032b 2366 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2367 new_target = symbol_find (real_start);
2368
2369 if (new_target == NULL)
2370 {
2371 as_warn ("Failed to find real start of function: %s\n", name);
2372 new_target = symbolP;
2373 }
2374
c19d1205
ZW
2375 return new_target;
2376}
2377
2378static void
2379opcode_select (int width)
2380{
2381 switch (width)
2382 {
2383 case 16:
2384 if (! thumb_mode)
2385 {
e74cfd16 2386 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2387 as_bad (_("selected processor does not support THUMB opcodes"));
2388
2389 thumb_mode = 1;
2390 /* No need to force the alignment, since we will have been
2391 coming from ARM mode, which is word-aligned. */
2392 record_alignment (now_seg, 1);
2393 }
2394 mapping_state (MAP_THUMB);
2395 break;
2396
2397 case 32:
2398 if (thumb_mode)
2399 {
e74cfd16 2400 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2401 as_bad (_("selected processor does not support ARM opcodes"));
2402
2403 thumb_mode = 0;
2404
2405 if (!need_pass_2)
2406 frag_align (2, 0, 0);
2407
2408 record_alignment (now_seg, 1);
2409 }
2410 mapping_state (MAP_ARM);
2411 break;
2412
2413 default:
2414 as_bad (_("invalid instruction size selected (%d)"), width);
2415 }
2416}
2417
2418static void
2419s_arm (int ignore ATTRIBUTE_UNUSED)
2420{
2421 opcode_select (32);
2422 demand_empty_rest_of_line ();
2423}
2424
2425static void
2426s_thumb (int ignore ATTRIBUTE_UNUSED)
2427{
2428 opcode_select (16);
2429 demand_empty_rest_of_line ();
2430}
2431
2432static void
2433s_code (int unused ATTRIBUTE_UNUSED)
2434{
2435 int temp;
2436
2437 temp = get_absolute_expression ();
2438 switch (temp)
2439 {
2440 case 16:
2441 case 32:
2442 opcode_select (temp);
2443 break;
2444
2445 default:
2446 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2447 }
2448}
2449
2450static void
2451s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2452{
2453 /* If we are not already in thumb mode go into it, EVEN if
2454 the target processor does not support thumb instructions.
2455 This is used by gcc/config/arm/lib1funcs.asm for example
2456 to compile interworking support functions even if the
2457 target processor should not support interworking. */
2458 if (! thumb_mode)
2459 {
2460 thumb_mode = 2;
2461 record_alignment (now_seg, 1);
2462 }
2463
2464 demand_empty_rest_of_line ();
2465}
2466
2467static void
2468s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2469{
2470 s_thumb (0);
2471
2472 /* The following label is the name/address of the start of a Thumb function.
2473 We need to know this for the interworking support. */
2474 label_is_thumb_function_name = TRUE;
2475}
2476
2477/* Perform a .set directive, but also mark the alias as
2478 being a thumb function. */
2479
2480static void
2481s_thumb_set (int equiv)
2482{
2483 /* XXX the following is a duplicate of the code for s_set() in read.c
2484 We cannot just call that code as we need to get at the symbol that
2485 is created. */
2486 char * name;
2487 char delim;
2488 char * end_name;
2489 symbolS * symbolP;
2490
2491 /* Especial apologies for the random logic:
2492 This just grew, and could be parsed much more simply!
2493 Dean - in haste. */
2494 name = input_line_pointer;
2495 delim = get_symbol_end ();
2496 end_name = input_line_pointer;
2497 *end_name = delim;
2498
2499 if (*input_line_pointer != ',')
2500 {
2501 *end_name = 0;
2502 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2503 *end_name = delim;
2504 ignore_rest_of_line ();
2505 return;
2506 }
2507
2508 input_line_pointer++;
2509 *end_name = 0;
2510
2511 if (name[0] == '.' && name[1] == '\0')
2512 {
2513 /* XXX - this should not happen to .thumb_set. */
2514 abort ();
2515 }
2516
2517 if ((symbolP = symbol_find (name)) == NULL
2518 && (symbolP = md_undefined_symbol (name)) == NULL)
2519 {
2520#ifndef NO_LISTING
2521 /* When doing symbol listings, play games with dummy fragments living
2522 outside the normal fragment chain to record the file and line info
c19d1205 2523 for this symbol. */
b99bd4ef
NC
2524 if (listing & LISTING_SYMBOLS)
2525 {
2526 extern struct list_info_struct * listing_tail;
a737bd4d 2527 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2528
2529 memset (dummy_frag, 0, sizeof (fragS));
2530 dummy_frag->fr_type = rs_fill;
2531 dummy_frag->line = listing_tail;
2532 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2533 dummy_frag->fr_symbol = symbolP;
2534 }
2535 else
2536#endif
2537 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2538
2539#ifdef OBJ_COFF
2540 /* "set" symbols are local unless otherwise specified. */
2541 SF_SET_LOCAL (symbolP);
2542#endif /* OBJ_COFF */
2543 } /* Make a new symbol. */
2544
2545 symbol_table_insert (symbolP);
2546
2547 * end_name = delim;
2548
2549 if (equiv
2550 && S_IS_DEFINED (symbolP)
2551 && S_GET_SEGMENT (symbolP) != reg_section)
2552 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2553
2554 pseudo_set (symbolP);
2555
2556 demand_empty_rest_of_line ();
2557
c19d1205 2558 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2559
2560 THUMB_SET_FUNC (symbolP, 1);
2561 ARM_SET_THUMB (symbolP, 1);
2562#if defined OBJ_ELF || defined OBJ_COFF
2563 ARM_SET_INTERWORK (symbolP, support_interwork);
2564#endif
2565}
2566
c19d1205 2567/* Directives: Mode selection. */
b99bd4ef 2568
c19d1205
ZW
2569/* .syntax [unified|divided] - choose the new unified syntax
2570 (same for Arm and Thumb encoding, modulo slight differences in what
2571 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2572static void
c19d1205 2573s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2574{
c19d1205
ZW
2575 char *name, delim;
2576
2577 name = input_line_pointer;
2578 delim = get_symbol_end ();
2579
2580 if (!strcasecmp (name, "unified"))
2581 unified_syntax = TRUE;
2582 else if (!strcasecmp (name, "divided"))
2583 unified_syntax = FALSE;
2584 else
2585 {
2586 as_bad (_("unrecognized syntax mode \"%s\""), name);
2587 return;
2588 }
2589 *input_line_pointer = delim;
b99bd4ef
NC
2590 demand_empty_rest_of_line ();
2591}
2592
c19d1205
ZW
2593/* Directives: sectioning and alignment. */
2594
2595/* Same as s_align_ptwo but align 0 => align 2. */
2596
b99bd4ef 2597static void
c19d1205 2598s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2599{
a737bd4d 2600 int temp;
c19d1205
ZW
2601 long temp_fill;
2602 long max_alignment = 15;
b99bd4ef
NC
2603
2604 temp = get_absolute_expression ();
c19d1205
ZW
2605 if (temp > max_alignment)
2606 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2607 else if (temp < 0)
b99bd4ef 2608 {
c19d1205
ZW
2609 as_bad (_("alignment negative. 0 assumed."));
2610 temp = 0;
2611 }
b99bd4ef 2612
c19d1205
ZW
2613 if (*input_line_pointer == ',')
2614 {
2615 input_line_pointer++;
2616 temp_fill = get_absolute_expression ();
b99bd4ef 2617 }
c19d1205
ZW
2618 else
2619 temp_fill = 0;
b99bd4ef 2620
c19d1205
ZW
2621 if (!temp)
2622 temp = 2;
b99bd4ef 2623
c19d1205
ZW
2624 /* Only make a frag if we HAVE to. */
2625 if (temp && !need_pass_2)
2626 frag_align (temp, (int) temp_fill, 0);
2627 demand_empty_rest_of_line ();
2628
2629 record_alignment (now_seg, temp);
b99bd4ef
NC
2630}
2631
c19d1205
ZW
2632static void
2633s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2634{
c19d1205
ZW
2635 /* We don't support putting frags in the BSS segment, we fake it by
2636 marking in_bss, then looking at s_skip for clues. */
2637 subseg_set (bss_section, 0);
2638 demand_empty_rest_of_line ();
2639 mapping_state (MAP_DATA);
2640}
b99bd4ef 2641
c19d1205
ZW
2642static void
2643s_even (int ignore ATTRIBUTE_UNUSED)
2644{
2645 /* Never make frag if expect extra pass. */
2646 if (!need_pass_2)
2647 frag_align (1, 0, 0);
b99bd4ef 2648
c19d1205 2649 record_alignment (now_seg, 1);
b99bd4ef 2650
c19d1205 2651 demand_empty_rest_of_line ();
b99bd4ef
NC
2652}
2653
c19d1205 2654/* Directives: Literal pools. */
a737bd4d 2655
c19d1205
ZW
2656static literal_pool *
2657find_literal_pool (void)
a737bd4d 2658{
c19d1205 2659 literal_pool * pool;
a737bd4d 2660
c19d1205 2661 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2662 {
c19d1205
ZW
2663 if (pool->section == now_seg
2664 && pool->sub_section == now_subseg)
2665 break;
a737bd4d
NC
2666 }
2667
c19d1205 2668 return pool;
a737bd4d
NC
2669}
2670
c19d1205
ZW
2671static literal_pool *
2672find_or_make_literal_pool (void)
a737bd4d 2673{
c19d1205
ZW
2674 /* Next literal pool ID number. */
2675 static unsigned int latest_pool_num = 1;
2676 literal_pool * pool;
a737bd4d 2677
c19d1205 2678 pool = find_literal_pool ();
a737bd4d 2679
c19d1205 2680 if (pool == NULL)
a737bd4d 2681 {
c19d1205
ZW
2682 /* Create a new pool. */
2683 pool = xmalloc (sizeof (* pool));
2684 if (! pool)
2685 return NULL;
a737bd4d 2686
c19d1205
ZW
2687 pool->next_free_entry = 0;
2688 pool->section = now_seg;
2689 pool->sub_section = now_subseg;
2690 pool->next = list_of_pools;
2691 pool->symbol = NULL;
2692
2693 /* Add it to the list. */
2694 list_of_pools = pool;
a737bd4d 2695 }
a737bd4d 2696
c19d1205
ZW
2697 /* New pools, and emptied pools, will have a NULL symbol. */
2698 if (pool->symbol == NULL)
a737bd4d 2699 {
c19d1205
ZW
2700 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2701 (valueT) 0, &zero_address_frag);
2702 pool->id = latest_pool_num ++;
a737bd4d
NC
2703 }
2704
c19d1205
ZW
2705 /* Done. */
2706 return pool;
a737bd4d
NC
2707}
2708
c19d1205
ZW
2709/* Add the literal in the global 'inst'
2710 structure to the relevent literal pool. */
b99bd4ef
NC
2711
2712static int
c19d1205 2713add_to_lit_pool (void)
b99bd4ef 2714{
c19d1205
ZW
2715 literal_pool * pool;
2716 unsigned int entry;
b99bd4ef 2717
c19d1205
ZW
2718 pool = find_or_make_literal_pool ();
2719
2720 /* Check if this literal value is already in the pool. */
2721 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2722 {
c19d1205
ZW
2723 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2724 && (inst.reloc.exp.X_op == O_constant)
2725 && (pool->literals[entry].X_add_number
2726 == inst.reloc.exp.X_add_number)
2727 && (pool->literals[entry].X_unsigned
2728 == inst.reloc.exp.X_unsigned))
2729 break;
2730
2731 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2732 && (inst.reloc.exp.X_op == O_symbol)
2733 && (pool->literals[entry].X_add_number
2734 == inst.reloc.exp.X_add_number)
2735 && (pool->literals[entry].X_add_symbol
2736 == inst.reloc.exp.X_add_symbol)
2737 && (pool->literals[entry].X_op_symbol
2738 == inst.reloc.exp.X_op_symbol))
2739 break;
b99bd4ef
NC
2740 }
2741
c19d1205
ZW
2742 /* Do we need to create a new entry? */
2743 if (entry == pool->next_free_entry)
2744 {
2745 if (entry >= MAX_LITERAL_POOL_SIZE)
2746 {
2747 inst.error = _("literal pool overflow");
2748 return FAIL;
2749 }
2750
2751 pool->literals[entry] = inst.reloc.exp;
2752 pool->next_free_entry += 1;
2753 }
b99bd4ef 2754
c19d1205
ZW
2755 inst.reloc.exp.X_op = O_symbol;
2756 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2757 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2758
c19d1205 2759 return SUCCESS;
b99bd4ef
NC
2760}
2761
c19d1205
ZW
2762/* Can't use symbol_new here, so have to create a symbol and then at
2763 a later date assign it a value. Thats what these functions do. */
e16bb312 2764
c19d1205
ZW
2765static void
2766symbol_locate (symbolS * symbolP,
2767 const char * name, /* It is copied, the caller can modify. */
2768 segT segment, /* Segment identifier (SEG_<something>). */
2769 valueT valu, /* Symbol value. */
2770 fragS * frag) /* Associated fragment. */
2771{
2772 unsigned int name_length;
2773 char * preserved_copy_of_name;
e16bb312 2774
c19d1205
ZW
2775 name_length = strlen (name) + 1; /* +1 for \0. */
2776 obstack_grow (&notes, name, name_length);
2777 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2778
c19d1205
ZW
2779#ifdef tc_canonicalize_symbol_name
2780 preserved_copy_of_name =
2781 tc_canonicalize_symbol_name (preserved_copy_of_name);
2782#endif
b99bd4ef 2783
c19d1205 2784 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2785
c19d1205
ZW
2786 S_SET_SEGMENT (symbolP, segment);
2787 S_SET_VALUE (symbolP, valu);
2788 symbol_clear_list_pointers (symbolP);
b99bd4ef 2789
c19d1205 2790 symbol_set_frag (symbolP, frag);
b99bd4ef 2791
c19d1205
ZW
2792 /* Link to end of symbol chain. */
2793 {
2794 extern int symbol_table_frozen;
b99bd4ef 2795
c19d1205
ZW
2796 if (symbol_table_frozen)
2797 abort ();
2798 }
b99bd4ef 2799
c19d1205 2800 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2801
c19d1205 2802 obj_symbol_new_hook (symbolP);
b99bd4ef 2803
c19d1205
ZW
2804#ifdef tc_symbol_new_hook
2805 tc_symbol_new_hook (symbolP);
2806#endif
2807
2808#ifdef DEBUG_SYMS
2809 verify_symbol_chain (symbol_rootP, symbol_lastP);
2810#endif /* DEBUG_SYMS */
b99bd4ef
NC
2811}
2812
b99bd4ef 2813
c19d1205
ZW
2814static void
2815s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2816{
c19d1205
ZW
2817 unsigned int entry;
2818 literal_pool * pool;
2819 char sym_name[20];
b99bd4ef 2820
c19d1205
ZW
2821 pool = find_literal_pool ();
2822 if (pool == NULL
2823 || pool->symbol == NULL
2824 || pool->next_free_entry == 0)
2825 return;
b99bd4ef 2826
c19d1205 2827 mapping_state (MAP_DATA);
b99bd4ef 2828
c19d1205
ZW
2829 /* Align pool as you have word accesses.
2830 Only make a frag if we have to. */
2831 if (!need_pass_2)
2832 frag_align (2, 0, 0);
b99bd4ef 2833
c19d1205 2834 record_alignment (now_seg, 2);
b99bd4ef 2835
c19d1205 2836 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2837
c19d1205
ZW
2838 symbol_locate (pool->symbol, sym_name, now_seg,
2839 (valueT) frag_now_fix (), frag_now);
2840 symbol_table_insert (pool->symbol);
b99bd4ef 2841
c19d1205 2842 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2843
c19d1205
ZW
2844#if defined OBJ_COFF || defined OBJ_ELF
2845 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2846#endif
6c43fab6 2847
c19d1205
ZW
2848 for (entry = 0; entry < pool->next_free_entry; entry ++)
2849 /* First output the expression in the instruction to the pool. */
2850 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2851
c19d1205
ZW
2852 /* Mark the pool as empty. */
2853 pool->next_free_entry = 0;
2854 pool->symbol = NULL;
b99bd4ef
NC
2855}
2856
c19d1205
ZW
2857#ifdef OBJ_ELF
2858/* Forward declarations for functions below, in the MD interface
2859 section. */
2860static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2861static valueT create_unwind_entry (int);
2862static void start_unwind_section (const segT, int);
2863static void add_unwind_opcode (valueT, int);
2864static void flush_pending_unwind (void);
b99bd4ef 2865
c19d1205 2866/* Directives: Data. */
b99bd4ef 2867
c19d1205
ZW
2868static void
2869s_arm_elf_cons (int nbytes)
2870{
2871 expressionS exp;
b99bd4ef 2872
c19d1205
ZW
2873#ifdef md_flush_pending_output
2874 md_flush_pending_output ();
2875#endif
b99bd4ef 2876
c19d1205 2877 if (is_it_end_of_statement ())
b99bd4ef 2878 {
c19d1205
ZW
2879 demand_empty_rest_of_line ();
2880 return;
b99bd4ef
NC
2881 }
2882
c19d1205
ZW
2883#ifdef md_cons_align
2884 md_cons_align (nbytes);
2885#endif
b99bd4ef 2886
c19d1205
ZW
2887 mapping_state (MAP_DATA);
2888 do
b99bd4ef 2889 {
c19d1205
ZW
2890 int reloc;
2891 char *base = input_line_pointer;
b99bd4ef 2892
c19d1205 2893 expression (& exp);
b99bd4ef 2894
c19d1205
ZW
2895 if (exp.X_op != O_symbol)
2896 emit_expr (&exp, (unsigned int) nbytes);
2897 else
2898 {
2899 char *before_reloc = input_line_pointer;
2900 reloc = parse_reloc (&input_line_pointer);
2901 if (reloc == -1)
2902 {
2903 as_bad (_("unrecognized relocation suffix"));
2904 ignore_rest_of_line ();
2905 return;
2906 }
2907 else if (reloc == BFD_RELOC_UNUSED)
2908 emit_expr (&exp, (unsigned int) nbytes);
2909 else
2910 {
2911 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2912 int size = bfd_get_reloc_size (howto);
b99bd4ef 2913
2fc8bdac
ZW
2914 if (reloc == BFD_RELOC_ARM_PLT32)
2915 {
2916 as_bad (_("(plt) is only valid on branch targets"));
2917 reloc = BFD_RELOC_UNUSED;
2918 size = 0;
2919 }
2920
c19d1205 2921 if (size > nbytes)
2fc8bdac 2922 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2923 howto->name, nbytes);
2924 else
2925 {
2926 /* We've parsed an expression stopping at O_symbol.
2927 But there may be more expression left now that we
2928 have parsed the relocation marker. Parse it again.
2929 XXX Surely there is a cleaner way to do this. */
2930 char *p = input_line_pointer;
2931 int offset;
2932 char *save_buf = alloca (input_line_pointer - base);
2933 memcpy (save_buf, base, input_line_pointer - base);
2934 memmove (base + (input_line_pointer - before_reloc),
2935 base, before_reloc - base);
2936
2937 input_line_pointer = base + (input_line_pointer-before_reloc);
2938 expression (&exp);
2939 memcpy (base, save_buf, p - base);
2940
2941 offset = nbytes - size;
2942 p = frag_more ((int) nbytes);
2943 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2944 size, &exp, 0, reloc);
2945 }
2946 }
2947 }
b99bd4ef 2948 }
c19d1205 2949 while (*input_line_pointer++ == ',');
b99bd4ef 2950
c19d1205
ZW
2951 /* Put terminator back into stream. */
2952 input_line_pointer --;
2953 demand_empty_rest_of_line ();
b99bd4ef
NC
2954}
2955
b99bd4ef 2956
c19d1205 2957/* Parse a .rel31 directive. */
b99bd4ef 2958
c19d1205
ZW
2959static void
2960s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2961{
2962 expressionS exp;
2963 char *p;
2964 valueT highbit;
b99bd4ef 2965
c19d1205
ZW
2966 highbit = 0;
2967 if (*input_line_pointer == '1')
2968 highbit = 0x80000000;
2969 else if (*input_line_pointer != '0')
2970 as_bad (_("expected 0 or 1"));
b99bd4ef 2971
c19d1205
ZW
2972 input_line_pointer++;
2973 if (*input_line_pointer != ',')
2974 as_bad (_("missing comma"));
2975 input_line_pointer++;
b99bd4ef 2976
c19d1205
ZW
2977#ifdef md_flush_pending_output
2978 md_flush_pending_output ();
2979#endif
b99bd4ef 2980
c19d1205
ZW
2981#ifdef md_cons_align
2982 md_cons_align (4);
2983#endif
b99bd4ef 2984
c19d1205 2985 mapping_state (MAP_DATA);
b99bd4ef 2986
c19d1205 2987 expression (&exp);
b99bd4ef 2988
c19d1205
ZW
2989 p = frag_more (4);
2990 md_number_to_chars (p, highbit, 4);
2991 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2992 BFD_RELOC_ARM_PREL31);
b99bd4ef 2993
c19d1205 2994 demand_empty_rest_of_line ();
b99bd4ef
NC
2995}
2996
c19d1205 2997/* Directives: AEABI stack-unwind tables. */
b99bd4ef 2998
c19d1205 2999/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3000
c19d1205
ZW
3001static void
3002s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3003{
3004 demand_empty_rest_of_line ();
3005 /* Mark the start of the function. */
3006 unwind.proc_start = expr_build_dot ();
b99bd4ef 3007
c19d1205
ZW
3008 /* Reset the rest of the unwind info. */
3009 unwind.opcode_count = 0;
3010 unwind.table_entry = NULL;
3011 unwind.personality_routine = NULL;
3012 unwind.personality_index = -1;
3013 unwind.frame_size = 0;
3014 unwind.fp_offset = 0;
3015 unwind.fp_reg = 13;
3016 unwind.fp_used = 0;
3017 unwind.sp_restored = 0;
3018}
b99bd4ef 3019
b99bd4ef 3020
c19d1205
ZW
3021/* Parse a handlerdata directive. Creates the exception handling table entry
3022 for the function. */
b99bd4ef 3023
c19d1205
ZW
3024static void
3025s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3026{
3027 demand_empty_rest_of_line ();
3028 if (unwind.table_entry)
3029 as_bad (_("dupicate .handlerdata directive"));
f02232aa 3030
c19d1205
ZW
3031 create_unwind_entry (1);
3032}
a737bd4d 3033
c19d1205 3034/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3035
c19d1205
ZW
3036static void
3037s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3038{
3039 long where;
3040 char *ptr;
3041 valueT val;
f02232aa 3042
c19d1205 3043 demand_empty_rest_of_line ();
f02232aa 3044
c19d1205
ZW
3045 /* Add eh table entry. */
3046 if (unwind.table_entry == NULL)
3047 val = create_unwind_entry (0);
3048 else
3049 val = 0;
f02232aa 3050
c19d1205
ZW
3051 /* Add index table entry. This is two words. */
3052 start_unwind_section (unwind.saved_seg, 1);
3053 frag_align (2, 0, 0);
3054 record_alignment (now_seg, 2);
b99bd4ef 3055
c19d1205
ZW
3056 ptr = frag_more (8);
3057 where = frag_now_fix () - 8;
f02232aa 3058
c19d1205
ZW
3059 /* Self relative offset of the function start. */
3060 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3061 BFD_RELOC_ARM_PREL31);
f02232aa 3062
c19d1205
ZW
3063 /* Indicate dependency on EHABI-defined personality routines to the
3064 linker, if it hasn't been done already. */
3065 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3066 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3067 {
3068 static const char *const name[] = {
3069 "__aeabi_unwind_cpp_pr0",
3070 "__aeabi_unwind_cpp_pr1",
3071 "__aeabi_unwind_cpp_pr2"
3072 };
3073 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3074 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3075 marked_pr_dependency |= 1 << unwind.personality_index;
3076 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3077 = marked_pr_dependency;
3078 }
f02232aa 3079
c19d1205
ZW
3080 if (val)
3081 /* Inline exception table entry. */
3082 md_number_to_chars (ptr + 4, val, 4);
3083 else
3084 /* Self relative offset of the table entry. */
3085 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3086 BFD_RELOC_ARM_PREL31);
f02232aa 3087
c19d1205
ZW
3088 /* Restore the original section. */
3089 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3090}
f02232aa 3091
f02232aa 3092
c19d1205 3093/* Parse an unwind_cantunwind directive. */
b99bd4ef 3094
c19d1205
ZW
3095static void
3096s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3097{
3098 demand_empty_rest_of_line ();
3099 if (unwind.personality_routine || unwind.personality_index != -1)
3100 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3101
c19d1205
ZW
3102 unwind.personality_index = -2;
3103}
b99bd4ef 3104
b99bd4ef 3105
c19d1205 3106/* Parse a personalityindex directive. */
b99bd4ef 3107
c19d1205
ZW
3108static void
3109s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3110{
3111 expressionS exp;
b99bd4ef 3112
c19d1205
ZW
3113 if (unwind.personality_routine || unwind.personality_index != -1)
3114 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3115
c19d1205 3116 expression (&exp);
b99bd4ef 3117
c19d1205
ZW
3118 if (exp.X_op != O_constant
3119 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3120 {
c19d1205
ZW
3121 as_bad (_("bad personality routine number"));
3122 ignore_rest_of_line ();
3123 return;
b99bd4ef
NC
3124 }
3125
c19d1205 3126 unwind.personality_index = exp.X_add_number;
b99bd4ef 3127
c19d1205
ZW
3128 demand_empty_rest_of_line ();
3129}
e16bb312 3130
e16bb312 3131
c19d1205 3132/* Parse a personality directive. */
e16bb312 3133
c19d1205
ZW
3134static void
3135s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3136{
3137 char *name, *p, c;
a737bd4d 3138
c19d1205
ZW
3139 if (unwind.personality_routine || unwind.personality_index != -1)
3140 as_bad (_("duplicate .personality directive"));
a737bd4d 3141
c19d1205
ZW
3142 name = input_line_pointer;
3143 c = get_symbol_end ();
3144 p = input_line_pointer;
3145 unwind.personality_routine = symbol_find_or_make (name);
3146 *p = c;
3147 demand_empty_rest_of_line ();
3148}
e16bb312 3149
e16bb312 3150
c19d1205 3151/* Parse a directive saving core registers. */
e16bb312 3152
c19d1205
ZW
3153static void
3154s_arm_unwind_save_core (void)
e16bb312 3155{
c19d1205
ZW
3156 valueT op;
3157 long range;
3158 int n;
e16bb312 3159
c19d1205
ZW
3160 range = parse_reg_list (&input_line_pointer);
3161 if (range == FAIL)
e16bb312 3162 {
c19d1205
ZW
3163 as_bad (_("expected register list"));
3164 ignore_rest_of_line ();
3165 return;
3166 }
e16bb312 3167
c19d1205 3168 demand_empty_rest_of_line ();
e16bb312 3169
c19d1205
ZW
3170 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3171 into .unwind_save {..., sp...}. We aren't bothered about the value of
3172 ip because it is clobbered by calls. */
3173 if (unwind.sp_restored && unwind.fp_reg == 12
3174 && (range & 0x3000) == 0x1000)
3175 {
3176 unwind.opcode_count--;
3177 unwind.sp_restored = 0;
3178 range = (range | 0x2000) & ~0x1000;
3179 unwind.pending_offset = 0;
3180 }
e16bb312 3181
01ae4198
DJ
3182 /* Pop r4-r15. */
3183 if (range & 0xfff0)
c19d1205 3184 {
01ae4198
DJ
3185 /* See if we can use the short opcodes. These pop a block of up to 8
3186 registers starting with r4, plus maybe r14. */
3187 for (n = 0; n < 8; n++)
3188 {
3189 /* Break at the first non-saved register. */
3190 if ((range & (1 << (n + 4))) == 0)
3191 break;
3192 }
3193 /* See if there are any other bits set. */
3194 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3195 {
3196 /* Use the long form. */
3197 op = 0x8000 | ((range >> 4) & 0xfff);
3198 add_unwind_opcode (op, 2);
3199 }
0dd132b6 3200 else
01ae4198
DJ
3201 {
3202 /* Use the short form. */
3203 if (range & 0x4000)
3204 op = 0xa8; /* Pop r14. */
3205 else
3206 op = 0xa0; /* Do not pop r14. */
3207 op |= (n - 1);
3208 add_unwind_opcode (op, 1);
3209 }
c19d1205 3210 }
0dd132b6 3211
c19d1205
ZW
3212 /* Pop r0-r3. */
3213 if (range & 0xf)
3214 {
3215 op = 0xb100 | (range & 0xf);
3216 add_unwind_opcode (op, 2);
0dd132b6
NC
3217 }
3218
c19d1205
ZW
3219 /* Record the number of bytes pushed. */
3220 for (n = 0; n < 16; n++)
3221 {
3222 if (range & (1 << n))
3223 unwind.frame_size += 4;
3224 }
0dd132b6
NC
3225}
3226
c19d1205
ZW
3227
3228/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3229
3230static void
c19d1205 3231s_arm_unwind_save_fpa (int reg)
b99bd4ef 3232{
c19d1205
ZW
3233 expressionS exp;
3234 int num_regs;
3235 valueT op;
b99bd4ef 3236
c19d1205
ZW
3237 /* Get Number of registers to transfer. */
3238 if (skip_past_comma (&input_line_pointer) != FAIL)
3239 expression (&exp);
3240 else
3241 exp.X_op = O_illegal;
b99bd4ef 3242
c19d1205 3243 if (exp.X_op != O_constant)
b99bd4ef 3244 {
c19d1205
ZW
3245 as_bad (_("expected , <constant>"));
3246 ignore_rest_of_line ();
b99bd4ef
NC
3247 return;
3248 }
3249
c19d1205
ZW
3250 num_regs = exp.X_add_number;
3251
3252 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3253 {
c19d1205
ZW
3254 as_bad (_("number of registers must be in the range [1:4]"));
3255 ignore_rest_of_line ();
b99bd4ef
NC
3256 return;
3257 }
3258
c19d1205 3259 demand_empty_rest_of_line ();
b99bd4ef 3260
c19d1205
ZW
3261 if (reg == 4)
3262 {
3263 /* Short form. */
3264 op = 0xb4 | (num_regs - 1);
3265 add_unwind_opcode (op, 1);
3266 }
b99bd4ef
NC
3267 else
3268 {
c19d1205
ZW
3269 /* Long form. */
3270 op = 0xc800 | (reg << 4) | (num_regs - 1);
3271 add_unwind_opcode (op, 2);
b99bd4ef 3272 }
c19d1205 3273 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3274}
3275
c19d1205 3276
fa073d69
MS
3277/* Parse a directive saving VFP registers for ARMv6 and above. */
3278
3279static void
3280s_arm_unwind_save_vfp_armv6 (void)
3281{
3282 int count;
3283 unsigned int start;
3284 valueT op;
3285 int num_vfpv3_regs = 0;
3286 int num_regs_below_16;
3287
3288 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3289 if (count == FAIL)
3290 {
3291 as_bad (_("expected register list"));
3292 ignore_rest_of_line ();
3293 return;
3294 }
3295
3296 demand_empty_rest_of_line ();
3297
3298 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3299 than FSTMX/FLDMX-style ones). */
3300
3301 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3302 if (start >= 16)
3303 num_vfpv3_regs = count;
3304 else if (start + count > 16)
3305 num_vfpv3_regs = start + count - 16;
3306
3307 if (num_vfpv3_regs > 0)
3308 {
3309 int start_offset = start > 16 ? start - 16 : 0;
3310 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3311 add_unwind_opcode (op, 2);
3312 }
3313
3314 /* Generate opcode for registers numbered in the range 0 .. 15. */
3315 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3316 assert (num_regs_below_16 + num_vfpv3_regs == count);
3317 if (num_regs_below_16 > 0)
3318 {
3319 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3320 add_unwind_opcode (op, 2);
3321 }
3322
3323 unwind.frame_size += count * 8;
3324}
3325
3326
3327/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3328
3329static void
c19d1205 3330s_arm_unwind_save_vfp (void)
b99bd4ef 3331{
c19d1205 3332 int count;
ca3f61f7 3333 unsigned int reg;
c19d1205 3334 valueT op;
b99bd4ef 3335
5287ad62 3336 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3337 if (count == FAIL)
b99bd4ef 3338 {
c19d1205
ZW
3339 as_bad (_("expected register list"));
3340 ignore_rest_of_line ();
b99bd4ef
NC
3341 return;
3342 }
3343
c19d1205 3344 demand_empty_rest_of_line ();
b99bd4ef 3345
c19d1205 3346 if (reg == 8)
b99bd4ef 3347 {
c19d1205
ZW
3348 /* Short form. */
3349 op = 0xb8 | (count - 1);
3350 add_unwind_opcode (op, 1);
b99bd4ef 3351 }
c19d1205 3352 else
b99bd4ef 3353 {
c19d1205
ZW
3354 /* Long form. */
3355 op = 0xb300 | (reg << 4) | (count - 1);
3356 add_unwind_opcode (op, 2);
b99bd4ef 3357 }
c19d1205
ZW
3358 unwind.frame_size += count * 8 + 4;
3359}
b99bd4ef 3360
b99bd4ef 3361
c19d1205
ZW
3362/* Parse a directive saving iWMMXt data registers. */
3363
3364static void
3365s_arm_unwind_save_mmxwr (void)
3366{
3367 int reg;
3368 int hi_reg;
3369 int i;
3370 unsigned mask = 0;
3371 valueT op;
b99bd4ef 3372
c19d1205
ZW
3373 if (*input_line_pointer == '{')
3374 input_line_pointer++;
b99bd4ef 3375
c19d1205 3376 do
b99bd4ef 3377 {
dcbf9037 3378 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3379
c19d1205 3380 if (reg == FAIL)
b99bd4ef 3381 {
c19d1205
ZW
3382 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3383 goto error;
b99bd4ef
NC
3384 }
3385
c19d1205
ZW
3386 if (mask >> reg)
3387 as_tsktsk (_("register list not in ascending order"));
3388 mask |= 1 << reg;
b99bd4ef 3389
c19d1205
ZW
3390 if (*input_line_pointer == '-')
3391 {
3392 input_line_pointer++;
dcbf9037 3393 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3394 if (hi_reg == FAIL)
3395 {
3396 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3397 goto error;
3398 }
3399 else if (reg >= hi_reg)
3400 {
3401 as_bad (_("bad register range"));
3402 goto error;
3403 }
3404 for (; reg < hi_reg; reg++)
3405 mask |= 1 << reg;
3406 }
3407 }
3408 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3409
c19d1205
ZW
3410 if (*input_line_pointer == '}')
3411 input_line_pointer++;
b99bd4ef 3412
c19d1205 3413 demand_empty_rest_of_line ();
b99bd4ef 3414
708587a4 3415 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3416 the list. */
3417 flush_pending_unwind ();
b99bd4ef 3418
c19d1205 3419 for (i = 0; i < 16; i++)
b99bd4ef 3420 {
c19d1205
ZW
3421 if (mask & (1 << i))
3422 unwind.frame_size += 8;
b99bd4ef
NC
3423 }
3424
c19d1205
ZW
3425 /* Attempt to combine with a previous opcode. We do this because gcc
3426 likes to output separate unwind directives for a single block of
3427 registers. */
3428 if (unwind.opcode_count > 0)
b99bd4ef 3429 {
c19d1205
ZW
3430 i = unwind.opcodes[unwind.opcode_count - 1];
3431 if ((i & 0xf8) == 0xc0)
3432 {
3433 i &= 7;
3434 /* Only merge if the blocks are contiguous. */
3435 if (i < 6)
3436 {
3437 if ((mask & 0xfe00) == (1 << 9))
3438 {
3439 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3440 unwind.opcode_count--;
3441 }
3442 }
3443 else if (i == 6 && unwind.opcode_count >= 2)
3444 {
3445 i = unwind.opcodes[unwind.opcode_count - 2];
3446 reg = i >> 4;
3447 i &= 0xf;
b99bd4ef 3448
c19d1205
ZW
3449 op = 0xffff << (reg - 1);
3450 if (reg > 0
3451 || ((mask & op) == (1u << (reg - 1))))
3452 {
3453 op = (1 << (reg + i + 1)) - 1;
3454 op &= ~((1 << reg) - 1);
3455 mask |= op;
3456 unwind.opcode_count -= 2;
3457 }
3458 }
3459 }
b99bd4ef
NC
3460 }
3461
c19d1205
ZW
3462 hi_reg = 15;
3463 /* We want to generate opcodes in the order the registers have been
3464 saved, ie. descending order. */
3465 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3466 {
c19d1205
ZW
3467 /* Save registers in blocks. */
3468 if (reg < 0
3469 || !(mask & (1 << reg)))
3470 {
3471 /* We found an unsaved reg. Generate opcodes to save the
3472 preceeding block. */
3473 if (reg != hi_reg)
3474 {
3475 if (reg == 9)
3476 {
3477 /* Short form. */
3478 op = 0xc0 | (hi_reg - 10);
3479 add_unwind_opcode (op, 1);
3480 }
3481 else
3482 {
3483 /* Long form. */
3484 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3485 add_unwind_opcode (op, 2);
3486 }
3487 }
3488 hi_reg = reg - 1;
3489 }
b99bd4ef
NC
3490 }
3491
c19d1205
ZW
3492 return;
3493error:
3494 ignore_rest_of_line ();
b99bd4ef
NC
3495}
3496
3497static void
c19d1205 3498s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3499{
c19d1205
ZW
3500 int reg;
3501 int hi_reg;
3502 unsigned mask = 0;
3503 valueT op;
b99bd4ef 3504
c19d1205
ZW
3505 if (*input_line_pointer == '{')
3506 input_line_pointer++;
b99bd4ef 3507
c19d1205 3508 do
b99bd4ef 3509 {
dcbf9037 3510 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3511
c19d1205
ZW
3512 if (reg == FAIL)
3513 {
3514 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3515 goto error;
3516 }
b99bd4ef 3517
c19d1205
ZW
3518 reg -= 8;
3519 if (mask >> reg)
3520 as_tsktsk (_("register list not in ascending order"));
3521 mask |= 1 << reg;
b99bd4ef 3522
c19d1205
ZW
3523 if (*input_line_pointer == '-')
3524 {
3525 input_line_pointer++;
dcbf9037 3526 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3527 if (hi_reg == FAIL)
3528 {
3529 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3530 goto error;
3531 }
3532 else if (reg >= hi_reg)
3533 {
3534 as_bad (_("bad register range"));
3535 goto error;
3536 }
3537 for (; reg < hi_reg; reg++)
3538 mask |= 1 << reg;
3539 }
b99bd4ef 3540 }
c19d1205 3541 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3542
c19d1205
ZW
3543 if (*input_line_pointer == '}')
3544 input_line_pointer++;
b99bd4ef 3545
c19d1205
ZW
3546 demand_empty_rest_of_line ();
3547
708587a4 3548 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3549 the list. */
3550 flush_pending_unwind ();
b99bd4ef 3551
c19d1205 3552 for (reg = 0; reg < 16; reg++)
b99bd4ef 3553 {
c19d1205
ZW
3554 if (mask & (1 << reg))
3555 unwind.frame_size += 4;
b99bd4ef 3556 }
c19d1205
ZW
3557 op = 0xc700 | mask;
3558 add_unwind_opcode (op, 2);
3559 return;
3560error:
3561 ignore_rest_of_line ();
b99bd4ef
NC
3562}
3563
c19d1205 3564
fa073d69
MS
3565/* Parse an unwind_save directive.
3566 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3567
b99bd4ef 3568static void
fa073d69 3569s_arm_unwind_save (int arch_v6)
b99bd4ef 3570{
c19d1205
ZW
3571 char *peek;
3572 struct reg_entry *reg;
3573 bfd_boolean had_brace = FALSE;
b99bd4ef 3574
c19d1205
ZW
3575 /* Figure out what sort of save we have. */
3576 peek = input_line_pointer;
b99bd4ef 3577
c19d1205 3578 if (*peek == '{')
b99bd4ef 3579 {
c19d1205
ZW
3580 had_brace = TRUE;
3581 peek++;
b99bd4ef
NC
3582 }
3583
c19d1205 3584 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3585
c19d1205 3586 if (!reg)
b99bd4ef 3587 {
c19d1205
ZW
3588 as_bad (_("register expected"));
3589 ignore_rest_of_line ();
b99bd4ef
NC
3590 return;
3591 }
3592
c19d1205 3593 switch (reg->type)
b99bd4ef 3594 {
c19d1205
ZW
3595 case REG_TYPE_FN:
3596 if (had_brace)
3597 {
3598 as_bad (_("FPA .unwind_save does not take a register list"));
3599 ignore_rest_of_line ();
3600 return;
3601 }
3602 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3603 return;
c19d1205
ZW
3604
3605 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3606 case REG_TYPE_VFD:
3607 if (arch_v6)
3608 s_arm_unwind_save_vfp_armv6 ();
3609 else
3610 s_arm_unwind_save_vfp ();
3611 return;
c19d1205
ZW
3612 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3613 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3614
3615 default:
3616 as_bad (_(".unwind_save does not support this kind of register"));
3617 ignore_rest_of_line ();
b99bd4ef 3618 }
c19d1205 3619}
b99bd4ef 3620
b99bd4ef 3621
c19d1205
ZW
3622/* Parse an unwind_movsp directive. */
3623
3624static void
3625s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3626{
3627 int reg;
3628 valueT op;
3629
dcbf9037 3630 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3631 if (reg == FAIL)
b99bd4ef 3632 {
c19d1205
ZW
3633 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3634 ignore_rest_of_line ();
b99bd4ef
NC
3635 return;
3636 }
c19d1205 3637 demand_empty_rest_of_line ();
b99bd4ef 3638
c19d1205 3639 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3640 {
c19d1205 3641 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3642 return;
3643 }
3644
c19d1205
ZW
3645 if (unwind.fp_reg != REG_SP)
3646 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3647
c19d1205
ZW
3648 /* Generate opcode to restore the value. */
3649 op = 0x90 | reg;
3650 add_unwind_opcode (op, 1);
3651
3652 /* Record the information for later. */
3653 unwind.fp_reg = reg;
3654 unwind.fp_offset = unwind.frame_size;
3655 unwind.sp_restored = 1;
b05fe5cf
ZW
3656}
3657
c19d1205
ZW
3658/* Parse an unwind_pad directive. */
3659
b05fe5cf 3660static void
c19d1205 3661s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3662{
c19d1205 3663 int offset;
b05fe5cf 3664
c19d1205
ZW
3665 if (immediate_for_directive (&offset) == FAIL)
3666 return;
b99bd4ef 3667
c19d1205
ZW
3668 if (offset & 3)
3669 {
3670 as_bad (_("stack increment must be multiple of 4"));
3671 ignore_rest_of_line ();
3672 return;
3673 }
b99bd4ef 3674
c19d1205
ZW
3675 /* Don't generate any opcodes, just record the details for later. */
3676 unwind.frame_size += offset;
3677 unwind.pending_offset += offset;
3678
3679 demand_empty_rest_of_line ();
3680}
3681
3682/* Parse an unwind_setfp directive. */
3683
3684static void
3685s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3686{
c19d1205
ZW
3687 int sp_reg;
3688 int fp_reg;
3689 int offset;
3690
dcbf9037 3691 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3692 if (skip_past_comma (&input_line_pointer) == FAIL)
3693 sp_reg = FAIL;
3694 else
dcbf9037 3695 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3696
c19d1205
ZW
3697 if (fp_reg == FAIL || sp_reg == FAIL)
3698 {
3699 as_bad (_("expected <reg>, <reg>"));
3700 ignore_rest_of_line ();
3701 return;
3702 }
b99bd4ef 3703
c19d1205
ZW
3704 /* Optional constant. */
3705 if (skip_past_comma (&input_line_pointer) != FAIL)
3706 {
3707 if (immediate_for_directive (&offset) == FAIL)
3708 return;
3709 }
3710 else
3711 offset = 0;
a737bd4d 3712
c19d1205 3713 demand_empty_rest_of_line ();
a737bd4d 3714
c19d1205 3715 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3716 {
c19d1205
ZW
3717 as_bad (_("register must be either sp or set by a previous"
3718 "unwind_movsp directive"));
3719 return;
a737bd4d
NC
3720 }
3721
c19d1205
ZW
3722 /* Don't generate any opcodes, just record the information for later. */
3723 unwind.fp_reg = fp_reg;
3724 unwind.fp_used = 1;
3725 if (sp_reg == 13)
3726 unwind.fp_offset = unwind.frame_size - offset;
3727 else
3728 unwind.fp_offset -= offset;
a737bd4d
NC
3729}
3730
c19d1205
ZW
3731/* Parse an unwind_raw directive. */
3732
3733static void
3734s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3735{
c19d1205 3736 expressionS exp;
708587a4 3737 /* This is an arbitrary limit. */
c19d1205
ZW
3738 unsigned char op[16];
3739 int count;
a737bd4d 3740
c19d1205
ZW
3741 expression (&exp);
3742 if (exp.X_op == O_constant
3743 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3744 {
c19d1205
ZW
3745 unwind.frame_size += exp.X_add_number;
3746 expression (&exp);
3747 }
3748 else
3749 exp.X_op = O_illegal;
a737bd4d 3750
c19d1205
ZW
3751 if (exp.X_op != O_constant)
3752 {
3753 as_bad (_("expected <offset>, <opcode>"));
3754 ignore_rest_of_line ();
3755 return;
3756 }
a737bd4d 3757
c19d1205 3758 count = 0;
a737bd4d 3759
c19d1205
ZW
3760 /* Parse the opcode. */
3761 for (;;)
3762 {
3763 if (count >= 16)
3764 {
3765 as_bad (_("unwind opcode too long"));
3766 ignore_rest_of_line ();
a737bd4d 3767 }
c19d1205 3768 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3769 {
c19d1205
ZW
3770 as_bad (_("invalid unwind opcode"));
3771 ignore_rest_of_line ();
3772 return;
a737bd4d 3773 }
c19d1205 3774 op[count++] = exp.X_add_number;
a737bd4d 3775
c19d1205
ZW
3776 /* Parse the next byte. */
3777 if (skip_past_comma (&input_line_pointer) == FAIL)
3778 break;
a737bd4d 3779
c19d1205
ZW
3780 expression (&exp);
3781 }
b99bd4ef 3782
c19d1205
ZW
3783 /* Add the opcode bytes in reverse order. */
3784 while (count--)
3785 add_unwind_opcode (op[count], 1);
b99bd4ef 3786
c19d1205 3787 demand_empty_rest_of_line ();
b99bd4ef 3788}
ee065d83
PB
3789
3790
3791/* Parse a .eabi_attribute directive. */
3792
3793static void
3794s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3795{
3796 expressionS exp;
3797 bfd_boolean is_string;
3798 int tag;
3799 unsigned int i = 0;
3800 char *s = NULL;
3801 char saved_char;
3802
3803 expression (& exp);
3804 if (exp.X_op != O_constant)
3805 goto bad;
3806
3807 tag = exp.X_add_number;
3808 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3809 is_string = 1;
3810 else
3811 is_string = 0;
3812
3813 if (skip_past_comma (&input_line_pointer) == FAIL)
3814 goto bad;
3815 if (tag == 32 || !is_string)
3816 {
3817 expression (& exp);
3818 if (exp.X_op != O_constant)
3819 {
3820 as_bad (_("expected numeric constant"));
3821 ignore_rest_of_line ();
3822 return;
3823 }
3824 i = exp.X_add_number;
3825 }
3826 if (tag == Tag_compatibility
3827 && skip_past_comma (&input_line_pointer) == FAIL)
3828 {
3829 as_bad (_("expected comma"));
3830 ignore_rest_of_line ();
3831 return;
3832 }
3833 if (is_string)
3834 {
3835 skip_whitespace(input_line_pointer);
3836 if (*input_line_pointer != '"')
3837 goto bad_string;
3838 input_line_pointer++;
3839 s = input_line_pointer;
3840 while (*input_line_pointer && *input_line_pointer != '"')
3841 input_line_pointer++;
3842 if (*input_line_pointer != '"')
3843 goto bad_string;
3844 saved_char = *input_line_pointer;
3845 *input_line_pointer = 0;
3846 }
3847 else
3848 {
3849 s = NULL;
3850 saved_char = 0;
3851 }
3852
3853 if (tag == Tag_compatibility)
3854 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3855 else if (is_string)
3856 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3857 else
3858 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3859
3860 if (s)
3861 {
3862 *input_line_pointer = saved_char;
3863 input_line_pointer++;
3864 }
3865 demand_empty_rest_of_line ();
3866 return;
3867bad_string:
3868 as_bad (_("bad string constant"));
3869 ignore_rest_of_line ();
3870 return;
3871bad:
3872 as_bad (_("expected <tag> , <value>"));
3873 ignore_rest_of_line ();
3874}
8463be01 3875#endif /* OBJ_ELF */
ee065d83
PB
3876
3877static void s_arm_arch (int);
3878static void s_arm_cpu (int);
3879static void s_arm_fpu (int);
b99bd4ef 3880
c19d1205
ZW
3881/* This table describes all the machine specific pseudo-ops the assembler
3882 has to support. The fields are:
3883 pseudo-op name without dot
3884 function to call to execute this pseudo-op
3885 Integer arg to pass to the function. */
b99bd4ef 3886
c19d1205 3887const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3888{
c19d1205
ZW
3889 /* Never called because '.req' does not start a line. */
3890 { "req", s_req, 0 },
dcbf9037
JB
3891 /* Following two are likewise never called. */
3892 { "dn", s_dn, 0 },
3893 { "qn", s_qn, 0 },
c19d1205
ZW
3894 { "unreq", s_unreq, 0 },
3895 { "bss", s_bss, 0 },
3896 { "align", s_align, 0 },
3897 { "arm", s_arm, 0 },
3898 { "thumb", s_thumb, 0 },
3899 { "code", s_code, 0 },
3900 { "force_thumb", s_force_thumb, 0 },
3901 { "thumb_func", s_thumb_func, 0 },
3902 { "thumb_set", s_thumb_set, 0 },
3903 { "even", s_even, 0 },
3904 { "ltorg", s_ltorg, 0 },
3905 { "pool", s_ltorg, 0 },
3906 { "syntax", s_syntax, 0 },
8463be01
PB
3907 { "cpu", s_arm_cpu, 0 },
3908 { "arch", s_arm_arch, 0 },
3909 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3910#ifdef OBJ_ELF
3911 { "word", s_arm_elf_cons, 4 },
3912 { "long", s_arm_elf_cons, 4 },
3913 { "rel31", s_arm_rel31, 0 },
3914 { "fnstart", s_arm_unwind_fnstart, 0 },
3915 { "fnend", s_arm_unwind_fnend, 0 },
3916 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3917 { "personality", s_arm_unwind_personality, 0 },
3918 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3919 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3920 { "save", s_arm_unwind_save, 0 },
fa073d69 3921 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3922 { "movsp", s_arm_unwind_movsp, 0 },
3923 { "pad", s_arm_unwind_pad, 0 },
3924 { "setfp", s_arm_unwind_setfp, 0 },
3925 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3926 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3927#else
3928 { "word", cons, 4},
3929#endif
3930 { "extend", float_cons, 'x' },
3931 { "ldouble", float_cons, 'x' },
3932 { "packed", float_cons, 'p' },
3933 { 0, 0, 0 }
3934};
3935\f
3936/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3937
c19d1205
ZW
3938/* Generic immediate-value read function for use in insn parsing.
3939 STR points to the beginning of the immediate (the leading #);
3940 VAL receives the value; if the value is outside [MIN, MAX]
3941 issue an error. PREFIX_OPT is true if the immediate prefix is
3942 optional. */
b99bd4ef 3943
c19d1205
ZW
3944static int
3945parse_immediate (char **str, int *val, int min, int max,
3946 bfd_boolean prefix_opt)
3947{
3948 expressionS exp;
3949 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3950 if (exp.X_op != O_constant)
b99bd4ef 3951 {
c19d1205
ZW
3952 inst.error = _("constant expression required");
3953 return FAIL;
3954 }
b99bd4ef 3955
c19d1205
ZW
3956 if (exp.X_add_number < min || exp.X_add_number > max)
3957 {
3958 inst.error = _("immediate value out of range");
3959 return FAIL;
3960 }
b99bd4ef 3961
c19d1205
ZW
3962 *val = exp.X_add_number;
3963 return SUCCESS;
3964}
b99bd4ef 3965
5287ad62
JB
3966/* Less-generic immediate-value read function with the possibility of loading a
3967 big (64-bit) immediate, as required by Neon VMOV and VMVN immediate
3968 instructions. Puts the result directly in inst.operands[i]. */
3969
3970static int
3971parse_big_immediate (char **str, int i)
3972{
3973 expressionS exp;
3974 char *ptr = *str;
3975
3976 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
3977
3978 if (exp.X_op == O_constant)
3979 inst.operands[i].imm = exp.X_add_number;
3980 else if (exp.X_op == O_big
3981 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
3982 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
3983 {
3984 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
3985 /* Bignums have their least significant bits in
3986 generic_bignum[0]. Make sure we put 32 bits in imm and
3987 32 bits in reg, in a (hopefully) portable way. */
3988 assert (parts != 0);
3989 inst.operands[i].imm = 0;
3990 for (j = 0; j < parts; j++, idx++)
3991 inst.operands[i].imm |= generic_bignum[idx]
3992 << (LITTLENUM_NUMBER_OF_BITS * j);
3993 inst.operands[i].reg = 0;
3994 for (j = 0; j < parts; j++, idx++)
3995 inst.operands[i].reg |= generic_bignum[idx]
3996 << (LITTLENUM_NUMBER_OF_BITS * j);
3997 inst.operands[i].regisimm = 1;
3998 }
3999 else
4000 return FAIL;
4001
4002 *str = ptr;
4003
4004 return SUCCESS;
4005}
4006
c19d1205
ZW
4007/* Returns the pseudo-register number of an FPA immediate constant,
4008 or FAIL if there isn't a valid constant here. */
b99bd4ef 4009
c19d1205
ZW
4010static int
4011parse_fpa_immediate (char ** str)
4012{
4013 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4014 char * save_in;
4015 expressionS exp;
4016 int i;
4017 int j;
b99bd4ef 4018
c19d1205
ZW
4019 /* First try and match exact strings, this is to guarantee
4020 that some formats will work even for cross assembly. */
b99bd4ef 4021
c19d1205
ZW
4022 for (i = 0; fp_const[i]; i++)
4023 {
4024 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4025 {
c19d1205 4026 char *start = *str;
b99bd4ef 4027
c19d1205
ZW
4028 *str += strlen (fp_const[i]);
4029 if (is_end_of_line[(unsigned char) **str])
4030 return i + 8;
4031 *str = start;
4032 }
4033 }
b99bd4ef 4034
c19d1205
ZW
4035 /* Just because we didn't get a match doesn't mean that the constant
4036 isn't valid, just that it is in a format that we don't
4037 automatically recognize. Try parsing it with the standard
4038 expression routines. */
b99bd4ef 4039
c19d1205 4040 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4041
c19d1205
ZW
4042 /* Look for a raw floating point number. */
4043 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4044 && is_end_of_line[(unsigned char) *save_in])
4045 {
4046 for (i = 0; i < NUM_FLOAT_VALS; i++)
4047 {
4048 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4049 {
c19d1205
ZW
4050 if (words[j] != fp_values[i][j])
4051 break;
b99bd4ef
NC
4052 }
4053
c19d1205 4054 if (j == MAX_LITTLENUMS)
b99bd4ef 4055 {
c19d1205
ZW
4056 *str = save_in;
4057 return i + 8;
b99bd4ef
NC
4058 }
4059 }
4060 }
b99bd4ef 4061
c19d1205
ZW
4062 /* Try and parse a more complex expression, this will probably fail
4063 unless the code uses a floating point prefix (eg "0f"). */
4064 save_in = input_line_pointer;
4065 input_line_pointer = *str;
4066 if (expression (&exp) == absolute_section
4067 && exp.X_op == O_big
4068 && exp.X_add_number < 0)
4069 {
4070 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4071 Ditto for 15. */
4072 if (gen_to_words (words, 5, (long) 15) == 0)
4073 {
4074 for (i = 0; i < NUM_FLOAT_VALS; i++)
4075 {
4076 for (j = 0; j < MAX_LITTLENUMS; j++)
4077 {
4078 if (words[j] != fp_values[i][j])
4079 break;
4080 }
b99bd4ef 4081
c19d1205
ZW
4082 if (j == MAX_LITTLENUMS)
4083 {
4084 *str = input_line_pointer;
4085 input_line_pointer = save_in;
4086 return i + 8;
4087 }
4088 }
4089 }
b99bd4ef
NC
4090 }
4091
c19d1205
ZW
4092 *str = input_line_pointer;
4093 input_line_pointer = save_in;
4094 inst.error = _("invalid FPA immediate expression");
4095 return FAIL;
b99bd4ef
NC
4096}
4097
136da414
JB
4098/* Returns 1 if a number has "quarter-precision" float format
4099 0baBbbbbbc defgh000 00000000 00000000. */
4100
4101static int
4102is_quarter_float (unsigned imm)
4103{
4104 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4105 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4106}
4107
4108/* Parse an 8-bit "quarter-precision" floating point number of the form:
4109 0baBbbbbbc defgh000 00000000 00000000.
4110 The minus-zero case needs special handling, since it can't be encoded in the
4111 "quarter-precision" float format, but can nonetheless be loaded as an integer
4112 constant. */
4113
4114static unsigned
4115parse_qfloat_immediate (char **ccp, int *immed)
4116{
4117 char *str = *ccp;
4118 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4119
4120 skip_past_char (&str, '#');
4121
4122 if ((str = atof_ieee (str, 's', words)) != NULL)
4123 {
4124 unsigned fpword = 0;
4125 int i;
4126
4127 /* Our FP word must be 32 bits (single-precision FP). */
4128 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4129 {
4130 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4131 fpword |= words[i];
4132 }
4133
4134 if (is_quarter_float (fpword) || fpword == 0x80000000)
4135 *immed = fpword;
4136 else
4137 return FAIL;
4138
4139 *ccp = str;
4140
4141 return SUCCESS;
4142 }
4143
4144 return FAIL;
4145}
4146
c19d1205
ZW
4147/* Shift operands. */
4148enum shift_kind
b99bd4ef 4149{
c19d1205
ZW
4150 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4151};
b99bd4ef 4152
c19d1205
ZW
4153struct asm_shift_name
4154{
4155 const char *name;
4156 enum shift_kind kind;
4157};
b99bd4ef 4158
c19d1205
ZW
4159/* Third argument to parse_shift. */
4160enum parse_shift_mode
4161{
4162 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4163 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4164 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4165 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4166 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4167};
b99bd4ef 4168
c19d1205
ZW
4169/* Parse a <shift> specifier on an ARM data processing instruction.
4170 This has three forms:
b99bd4ef 4171
c19d1205
ZW
4172 (LSL|LSR|ASL|ASR|ROR) Rs
4173 (LSL|LSR|ASL|ASR|ROR) #imm
4174 RRX
b99bd4ef 4175
c19d1205
ZW
4176 Note that ASL is assimilated to LSL in the instruction encoding, and
4177 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4178
c19d1205
ZW
4179static int
4180parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4181{
c19d1205
ZW
4182 const struct asm_shift_name *shift_name;
4183 enum shift_kind shift;
4184 char *s = *str;
4185 char *p = s;
4186 int reg;
b99bd4ef 4187
c19d1205
ZW
4188 for (p = *str; ISALPHA (*p); p++)
4189 ;
b99bd4ef 4190
c19d1205 4191 if (p == *str)
b99bd4ef 4192 {
c19d1205
ZW
4193 inst.error = _("shift expression expected");
4194 return FAIL;
b99bd4ef
NC
4195 }
4196
c19d1205
ZW
4197 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4198
4199 if (shift_name == NULL)
b99bd4ef 4200 {
c19d1205
ZW
4201 inst.error = _("shift expression expected");
4202 return FAIL;
b99bd4ef
NC
4203 }
4204
c19d1205 4205 shift = shift_name->kind;
b99bd4ef 4206
c19d1205
ZW
4207 switch (mode)
4208 {
4209 case NO_SHIFT_RESTRICT:
4210 case SHIFT_IMMEDIATE: break;
b99bd4ef 4211
c19d1205
ZW
4212 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4213 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4214 {
4215 inst.error = _("'LSL' or 'ASR' required");
4216 return FAIL;
4217 }
4218 break;
b99bd4ef 4219
c19d1205
ZW
4220 case SHIFT_LSL_IMMEDIATE:
4221 if (shift != SHIFT_LSL)
4222 {
4223 inst.error = _("'LSL' required");
4224 return FAIL;
4225 }
4226 break;
b99bd4ef 4227
c19d1205
ZW
4228 case SHIFT_ASR_IMMEDIATE:
4229 if (shift != SHIFT_ASR)
4230 {
4231 inst.error = _("'ASR' required");
4232 return FAIL;
4233 }
4234 break;
b99bd4ef 4235
c19d1205
ZW
4236 default: abort ();
4237 }
b99bd4ef 4238
c19d1205
ZW
4239 if (shift != SHIFT_RRX)
4240 {
4241 /* Whitespace can appear here if the next thing is a bare digit. */
4242 skip_whitespace (p);
b99bd4ef 4243
c19d1205 4244 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4245 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4246 {
4247 inst.operands[i].imm = reg;
4248 inst.operands[i].immisreg = 1;
4249 }
4250 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4251 return FAIL;
4252 }
4253 inst.operands[i].shift_kind = shift;
4254 inst.operands[i].shifted = 1;
4255 *str = p;
4256 return SUCCESS;
b99bd4ef
NC
4257}
4258
c19d1205 4259/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4260
c19d1205
ZW
4261 #<immediate>
4262 #<immediate>, <rotate>
4263 <Rm>
4264 <Rm>, <shift>
b99bd4ef 4265
c19d1205
ZW
4266 where <shift> is defined by parse_shift above, and <rotate> is a
4267 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4268 is deferred to md_apply_fix. */
b99bd4ef 4269
c19d1205
ZW
4270static int
4271parse_shifter_operand (char **str, int i)
4272{
4273 int value;
4274 expressionS expr;
b99bd4ef 4275
dcbf9037 4276 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4277 {
4278 inst.operands[i].reg = value;
4279 inst.operands[i].isreg = 1;
b99bd4ef 4280
c19d1205
ZW
4281 /* parse_shift will override this if appropriate */
4282 inst.reloc.exp.X_op = O_constant;
4283 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4284
c19d1205
ZW
4285 if (skip_past_comma (str) == FAIL)
4286 return SUCCESS;
b99bd4ef 4287
c19d1205
ZW
4288 /* Shift operation on register. */
4289 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4290 }
4291
c19d1205
ZW
4292 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4293 return FAIL;
b99bd4ef 4294
c19d1205 4295 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4296 {
c19d1205
ZW
4297 /* #x, y -- ie explicit rotation by Y. */
4298 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4299 return FAIL;
b99bd4ef 4300
c19d1205
ZW
4301 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4302 {
4303 inst.error = _("constant expression expected");
4304 return FAIL;
4305 }
b99bd4ef 4306
c19d1205
ZW
4307 value = expr.X_add_number;
4308 if (value < 0 || value > 30 || value % 2 != 0)
4309 {
4310 inst.error = _("invalid rotation");
4311 return FAIL;
4312 }
4313 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4314 {
4315 inst.error = _("invalid constant");
4316 return FAIL;
4317 }
09d92015 4318
55cf6793 4319 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4320 inst.reloc.exp.X_add_number
4321 = (((inst.reloc.exp.X_add_number << (32 - value))
4322 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4323 }
4324
c19d1205
ZW
4325 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4326 inst.reloc.pc_rel = 0;
4327 return SUCCESS;
09d92015
MM
4328}
4329
4962c51a
MS
4330/* Group relocation information. Each entry in the table contains the
4331 textual name of the relocation as may appear in assembler source
4332 and must end with a colon.
4333 Along with this textual name are the relocation codes to be used if
4334 the corresponding instruction is an ALU instruction (ADD or SUB only),
4335 an LDR, an LDRS, or an LDC. */
4336
4337struct group_reloc_table_entry
4338{
4339 const char *name;
4340 int alu_code;
4341 int ldr_code;
4342 int ldrs_code;
4343 int ldc_code;
4344};
4345
4346typedef enum
4347{
4348 /* Varieties of non-ALU group relocation. */
4349
4350 GROUP_LDR,
4351 GROUP_LDRS,
4352 GROUP_LDC
4353} group_reloc_type;
4354
4355static struct group_reloc_table_entry group_reloc_table[] =
4356 { /* Program counter relative: */
4357 { "pc_g0_nc",
4358 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4359 0, /* LDR */
4360 0, /* LDRS */
4361 0 }, /* LDC */
4362 { "pc_g0",
4363 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4364 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4365 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4366 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4367 { "pc_g1_nc",
4368 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4369 0, /* LDR */
4370 0, /* LDRS */
4371 0 }, /* LDC */
4372 { "pc_g1",
4373 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4374 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4375 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4376 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4377 { "pc_g2",
4378 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4379 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4380 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4381 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4382 /* Section base relative */
4383 { "sb_g0_nc",
4384 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4385 0, /* LDR */
4386 0, /* LDRS */
4387 0 }, /* LDC */
4388 { "sb_g0",
4389 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4390 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4391 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4392 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4393 { "sb_g1_nc",
4394 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4395 0, /* LDR */
4396 0, /* LDRS */
4397 0 }, /* LDC */
4398 { "sb_g1",
4399 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4400 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4401 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4402 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4403 { "sb_g2",
4404 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4405 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4406 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4407 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4408
4409/* Given the address of a pointer pointing to the textual name of a group
4410 relocation as may appear in assembler source, attempt to find its details
4411 in group_reloc_table. The pointer will be updated to the character after
4412 the trailing colon. On failure, FAIL will be returned; SUCCESS
4413 otherwise. On success, *entry will be updated to point at the relevant
4414 group_reloc_table entry. */
4415
4416static int
4417find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4418{
4419 unsigned int i;
4420 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4421 {
4422 int length = strlen (group_reloc_table[i].name);
4423
4424 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4425 (*str)[length] == ':')
4426 {
4427 *out = &group_reloc_table[i];
4428 *str += (length + 1);
4429 return SUCCESS;
4430 }
4431 }
4432
4433 return FAIL;
4434}
4435
4436/* Parse a <shifter_operand> for an ARM data processing instruction
4437 (as for parse_shifter_operand) where group relocations are allowed:
4438
4439 #<immediate>
4440 #<immediate>, <rotate>
4441 #:<group_reloc>:<expression>
4442 <Rm>
4443 <Rm>, <shift>
4444
4445 where <group_reloc> is one of the strings defined in group_reloc_table.
4446 The hashes are optional.
4447
4448 Everything else is as for parse_shifter_operand. */
4449
4450static parse_operand_result
4451parse_shifter_operand_group_reloc (char **str, int i)
4452{
4453 /* Determine if we have the sequence of characters #: or just :
4454 coming next. If we do, then we check for a group relocation.
4455 If we don't, punt the whole lot to parse_shifter_operand. */
4456
4457 if (((*str)[0] == '#' && (*str)[1] == ':')
4458 || (*str)[0] == ':')
4459 {
4460 struct group_reloc_table_entry *entry;
4461
4462 if ((*str)[0] == '#')
4463 (*str) += 2;
4464 else
4465 (*str)++;
4466
4467 /* Try to parse a group relocation. Anything else is an error. */
4468 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4469 {
4470 inst.error = _("unknown group relocation");
4471 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4472 }
4473
4474 /* We now have the group relocation table entry corresponding to
4475 the name in the assembler source. Next, we parse the expression. */
4476 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4477 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4478
4479 /* Record the relocation type (always the ALU variant here). */
4480 inst.reloc.type = entry->alu_code;
4481 assert (inst.reloc.type != 0);
4482
4483 return PARSE_OPERAND_SUCCESS;
4484 }
4485 else
4486 return parse_shifter_operand (str, i) == SUCCESS
4487 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4488
4489 /* Never reached. */
4490}
4491
c19d1205
ZW
4492/* Parse all forms of an ARM address expression. Information is written
4493 to inst.operands[i] and/or inst.reloc.
09d92015 4494
c19d1205 4495 Preindexed addressing (.preind=1):
09d92015 4496
c19d1205
ZW
4497 [Rn, #offset] .reg=Rn .reloc.exp=offset
4498 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4499 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4500 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4501
c19d1205 4502 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4503
c19d1205 4504 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4505
c19d1205
ZW
4506 [Rn], #offset .reg=Rn .reloc.exp=offset
4507 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4508 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4509 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4510
c19d1205 4511 Unindexed addressing (.preind=0, .postind=0):
09d92015 4512
c19d1205 4513 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4514
c19d1205 4515 Other:
09d92015 4516
c19d1205
ZW
4517 [Rn]{!} shorthand for [Rn,#0]{!}
4518 =immediate .isreg=0 .reloc.exp=immediate
4519 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4520
c19d1205
ZW
4521 It is the caller's responsibility to check for addressing modes not
4522 supported by the instruction, and to set inst.reloc.type. */
4523
4962c51a
MS
4524static parse_operand_result
4525parse_address_main (char **str, int i, int group_relocations,
4526 group_reloc_type group_type)
09d92015 4527{
c19d1205
ZW
4528 char *p = *str;
4529 int reg;
09d92015 4530
c19d1205 4531 if (skip_past_char (&p, '[') == FAIL)
09d92015 4532 {
c19d1205
ZW
4533 if (skip_past_char (&p, '=') == FAIL)
4534 {
4535 /* bare address - translate to PC-relative offset */
4536 inst.reloc.pc_rel = 1;
4537 inst.operands[i].reg = REG_PC;
4538 inst.operands[i].isreg = 1;
4539 inst.operands[i].preind = 1;
4540 }
4541 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4542
c19d1205 4543 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4544 return PARSE_OPERAND_FAIL;
09d92015 4545
c19d1205 4546 *str = p;
4962c51a 4547 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4548 }
4549
dcbf9037 4550 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4551 {
c19d1205 4552 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4553 return PARSE_OPERAND_FAIL;
09d92015 4554 }
c19d1205
ZW
4555 inst.operands[i].reg = reg;
4556 inst.operands[i].isreg = 1;
09d92015 4557
c19d1205 4558 if (skip_past_comma (&p) == SUCCESS)
09d92015 4559 {
c19d1205 4560 inst.operands[i].preind = 1;
09d92015 4561
c19d1205
ZW
4562 if (*p == '+') p++;
4563 else if (*p == '-') p++, inst.operands[i].negative = 1;
4564
dcbf9037 4565 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4566 {
c19d1205
ZW
4567 inst.operands[i].imm = reg;
4568 inst.operands[i].immisreg = 1;
4569
4570 if (skip_past_comma (&p) == SUCCESS)
4571 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4572 return PARSE_OPERAND_FAIL;
c19d1205 4573 }
5287ad62
JB
4574 else if (skip_past_char (&p, ':') == SUCCESS)
4575 {
4576 /* FIXME: '@' should be used here, but it's filtered out by generic
4577 code before we get to see it here. This may be subject to
4578 change. */
4579 expressionS exp;
4580 my_get_expression (&exp, &p, GE_NO_PREFIX);
4581 if (exp.X_op != O_constant)
4582 {
4583 inst.error = _("alignment must be constant");
4962c51a 4584 return PARSE_OPERAND_FAIL;
5287ad62
JB
4585 }
4586 inst.operands[i].imm = exp.X_add_number << 8;
4587 inst.operands[i].immisalign = 1;
4588 /* Alignments are not pre-indexes. */
4589 inst.operands[i].preind = 0;
4590 }
c19d1205
ZW
4591 else
4592 {
4593 if (inst.operands[i].negative)
4594 {
4595 inst.operands[i].negative = 0;
4596 p--;
4597 }
4962c51a
MS
4598
4599 if (group_relocations &&
4600 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4601
4602 {
4603 struct group_reloc_table_entry *entry;
4604
4605 /* Skip over the #: or : sequence. */
4606 if (*p == '#')
4607 p += 2;
4608 else
4609 p++;
4610
4611 /* Try to parse a group relocation. Anything else is an
4612 error. */
4613 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4614 {
4615 inst.error = _("unknown group relocation");
4616 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4617 }
4618
4619 /* We now have the group relocation table entry corresponding to
4620 the name in the assembler source. Next, we parse the
4621 expression. */
4622 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4623 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4624
4625 /* Record the relocation type. */
4626 switch (group_type)
4627 {
4628 case GROUP_LDR:
4629 inst.reloc.type = entry->ldr_code;
4630 break;
4631
4632 case GROUP_LDRS:
4633 inst.reloc.type = entry->ldrs_code;
4634 break;
4635
4636 case GROUP_LDC:
4637 inst.reloc.type = entry->ldc_code;
4638 break;
4639
4640 default:
4641 assert (0);
4642 }
4643
4644 if (inst.reloc.type == 0)
4645 {
4646 inst.error = _("this group relocation is not allowed on this instruction");
4647 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4648 }
4649 }
4650 else
4651 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4652 return PARSE_OPERAND_FAIL;
09d92015
MM
4653 }
4654 }
4655
c19d1205 4656 if (skip_past_char (&p, ']') == FAIL)
09d92015 4657 {
c19d1205 4658 inst.error = _("']' expected");
4962c51a 4659 return PARSE_OPERAND_FAIL;
09d92015
MM
4660 }
4661
c19d1205
ZW
4662 if (skip_past_char (&p, '!') == SUCCESS)
4663 inst.operands[i].writeback = 1;
09d92015 4664
c19d1205 4665 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4666 {
c19d1205
ZW
4667 if (skip_past_char (&p, '{') == SUCCESS)
4668 {
4669 /* [Rn], {expr} - unindexed, with option */
4670 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4671 0, 255, TRUE) == FAIL)
4962c51a 4672 return PARSE_OPERAND_FAIL;
09d92015 4673
c19d1205
ZW
4674 if (skip_past_char (&p, '}') == FAIL)
4675 {
4676 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4677 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4678 }
4679 if (inst.operands[i].preind)
4680 {
4681 inst.error = _("cannot combine index with option");
4962c51a 4682 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4683 }
4684 *str = p;
4962c51a 4685 return PARSE_OPERAND_SUCCESS;
09d92015 4686 }
c19d1205
ZW
4687 else
4688 {
4689 inst.operands[i].postind = 1;
4690 inst.operands[i].writeback = 1;
09d92015 4691
c19d1205
ZW
4692 if (inst.operands[i].preind)
4693 {
4694 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4695 return PARSE_OPERAND_FAIL;
c19d1205 4696 }
09d92015 4697
c19d1205
ZW
4698 if (*p == '+') p++;
4699 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4700
dcbf9037 4701 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4702 {
5287ad62
JB
4703 /* We might be using the immediate for alignment already. If we
4704 are, OR the register number into the low-order bits. */
4705 if (inst.operands[i].immisalign)
4706 inst.operands[i].imm |= reg;
4707 else
4708 inst.operands[i].imm = reg;
c19d1205 4709 inst.operands[i].immisreg = 1;
a737bd4d 4710
c19d1205
ZW
4711 if (skip_past_comma (&p) == SUCCESS)
4712 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4713 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4714 }
4715 else
4716 {
4717 if (inst.operands[i].negative)
4718 {
4719 inst.operands[i].negative = 0;
4720 p--;
4721 }
4722 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4723 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4724 }
4725 }
a737bd4d
NC
4726 }
4727
c19d1205
ZW
4728 /* If at this point neither .preind nor .postind is set, we have a
4729 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4730 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4731 {
4732 inst.operands[i].preind = 1;
4733 inst.reloc.exp.X_op = O_constant;
4734 inst.reloc.exp.X_add_number = 0;
4735 }
4736 *str = p;
4962c51a
MS
4737 return PARSE_OPERAND_SUCCESS;
4738}
4739
4740static int
4741parse_address (char **str, int i)
4742{
4743 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4744 ? SUCCESS : FAIL;
4745}
4746
4747static parse_operand_result
4748parse_address_group_reloc (char **str, int i, group_reloc_type type)
4749{
4750 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4751}
4752
b6895b4f
PB
4753/* Parse an operand for a MOVW or MOVT instruction. */
4754static int
4755parse_half (char **str)
4756{
4757 char * p;
4758
4759 p = *str;
4760 skip_past_char (&p, '#');
4761 if (strncasecmp (p, ":lower16:", 9) == 0)
4762 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4763 else if (strncasecmp (p, ":upper16:", 9) == 0)
4764 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4765
4766 if (inst.reloc.type != BFD_RELOC_UNUSED)
4767 {
4768 p += 9;
4769 skip_whitespace(p);
4770 }
4771
4772 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4773 return FAIL;
4774
4775 if (inst.reloc.type == BFD_RELOC_UNUSED)
4776 {
4777 if (inst.reloc.exp.X_op != O_constant)
4778 {
4779 inst.error = _("constant expression expected");
4780 return FAIL;
4781 }
4782 if (inst.reloc.exp.X_add_number < 0
4783 || inst.reloc.exp.X_add_number > 0xffff)
4784 {
4785 inst.error = _("immediate value out of range");
4786 return FAIL;
4787 }
4788 }
4789 *str = p;
4790 return SUCCESS;
4791}
4792
c19d1205 4793/* Miscellaneous. */
a737bd4d 4794
c19d1205
ZW
4795/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4796 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4797static int
4798parse_psr (char **str)
09d92015 4799{
c19d1205
ZW
4800 char *p;
4801 unsigned long psr_field;
62b3e311
PB
4802 const struct asm_psr *psr;
4803 char *start;
09d92015 4804
c19d1205
ZW
4805 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4806 feature for ease of use and backwards compatibility. */
4807 p = *str;
62b3e311 4808 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4809 psr_field = SPSR_BIT;
62b3e311 4810 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4811 psr_field = 0;
4812 else
62b3e311
PB
4813 {
4814 start = p;
4815 do
4816 p++;
4817 while (ISALNUM (*p) || *p == '_');
4818
4819 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4820 if (!psr)
4821 return FAIL;
09d92015 4822
62b3e311
PB
4823 *str = p;
4824 return psr->field;
4825 }
09d92015 4826
62b3e311 4827 p += 4;
c19d1205
ZW
4828 if (*p == '_')
4829 {
4830 /* A suffix follows. */
c19d1205
ZW
4831 p++;
4832 start = p;
a737bd4d 4833
c19d1205
ZW
4834 do
4835 p++;
4836 while (ISALNUM (*p) || *p == '_');
a737bd4d 4837
c19d1205
ZW
4838 psr = hash_find_n (arm_psr_hsh, start, p - start);
4839 if (!psr)
4840 goto error;
a737bd4d 4841
c19d1205 4842 psr_field |= psr->field;
a737bd4d 4843 }
c19d1205 4844 else
a737bd4d 4845 {
c19d1205
ZW
4846 if (ISALNUM (*p))
4847 goto error; /* Garbage after "[CS]PSR". */
4848
4849 psr_field |= (PSR_c | PSR_f);
a737bd4d 4850 }
c19d1205
ZW
4851 *str = p;
4852 return psr_field;
a737bd4d 4853
c19d1205
ZW
4854 error:
4855 inst.error = _("flag for {c}psr instruction expected");
4856 return FAIL;
a737bd4d
NC
4857}
4858
c19d1205
ZW
4859/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4860 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4861
c19d1205
ZW
4862static int
4863parse_cps_flags (char **str)
a737bd4d 4864{
c19d1205
ZW
4865 int val = 0;
4866 int saw_a_flag = 0;
4867 char *s = *str;
a737bd4d 4868
c19d1205
ZW
4869 for (;;)
4870 switch (*s++)
4871 {
4872 case '\0': case ',':
4873 goto done;
a737bd4d 4874
c19d1205
ZW
4875 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4876 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4877 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4878
c19d1205
ZW
4879 default:
4880 inst.error = _("unrecognized CPS flag");
4881 return FAIL;
4882 }
a737bd4d 4883
c19d1205
ZW
4884 done:
4885 if (saw_a_flag == 0)
a737bd4d 4886 {
c19d1205
ZW
4887 inst.error = _("missing CPS flags");
4888 return FAIL;
a737bd4d 4889 }
a737bd4d 4890
c19d1205
ZW
4891 *str = s - 1;
4892 return val;
a737bd4d
NC
4893}
4894
c19d1205
ZW
4895/* Parse an endian specifier ("BE" or "LE", case insensitive);
4896 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4897
4898static int
c19d1205 4899parse_endian_specifier (char **str)
a737bd4d 4900{
c19d1205
ZW
4901 int little_endian;
4902 char *s = *str;
a737bd4d 4903
c19d1205
ZW
4904 if (strncasecmp (s, "BE", 2))
4905 little_endian = 0;
4906 else if (strncasecmp (s, "LE", 2))
4907 little_endian = 1;
4908 else
a737bd4d 4909 {
c19d1205 4910 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4911 return FAIL;
4912 }
4913
c19d1205 4914 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 4915 {
c19d1205 4916 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4917 return FAIL;
4918 }
4919
c19d1205
ZW
4920 *str = s + 2;
4921 return little_endian;
4922}
a737bd4d 4923
c19d1205
ZW
4924/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
4925 value suitable for poking into the rotate field of an sxt or sxta
4926 instruction, or FAIL on error. */
4927
4928static int
4929parse_ror (char **str)
4930{
4931 int rot;
4932 char *s = *str;
4933
4934 if (strncasecmp (s, "ROR", 3) == 0)
4935 s += 3;
4936 else
a737bd4d 4937 {
c19d1205 4938 inst.error = _("missing rotation field after comma");
a737bd4d
NC
4939 return FAIL;
4940 }
c19d1205
ZW
4941
4942 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
4943 return FAIL;
4944
4945 switch (rot)
a737bd4d 4946 {
c19d1205
ZW
4947 case 0: *str = s; return 0x0;
4948 case 8: *str = s; return 0x1;
4949 case 16: *str = s; return 0x2;
4950 case 24: *str = s; return 0x3;
4951
4952 default:
4953 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
4954 return FAIL;
4955 }
c19d1205 4956}
a737bd4d 4957
c19d1205
ZW
4958/* Parse a conditional code (from conds[] below). The value returned is in the
4959 range 0 .. 14, or FAIL. */
4960static int
4961parse_cond (char **str)
4962{
4963 char *p, *q;
4964 const struct asm_cond *c;
a737bd4d 4965
c19d1205
ZW
4966 p = q = *str;
4967 while (ISALPHA (*q))
4968 q++;
a737bd4d 4969
c19d1205
ZW
4970 c = hash_find_n (arm_cond_hsh, p, q - p);
4971 if (!c)
a737bd4d 4972 {
c19d1205 4973 inst.error = _("condition required");
a737bd4d
NC
4974 return FAIL;
4975 }
4976
c19d1205
ZW
4977 *str = q;
4978 return c->value;
4979}
4980
62b3e311
PB
4981/* Parse an option for a barrier instruction. Returns the encoding for the
4982 option, or FAIL. */
4983static int
4984parse_barrier (char **str)
4985{
4986 char *p, *q;
4987 const struct asm_barrier_opt *o;
4988
4989 p = q = *str;
4990 while (ISALPHA (*q))
4991 q++;
4992
4993 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
4994 if (!o)
4995 return FAIL;
4996
4997 *str = q;
4998 return o->value;
4999}
5000
92e90b6e
PB
5001/* Parse the operands of a table branch instruction. Similar to a memory
5002 operand. */
5003static int
5004parse_tb (char **str)
5005{
5006 char * p = *str;
5007 int reg;
5008
5009 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5010 {
5011 inst.error = _("'[' expected");
5012 return FAIL;
5013 }
92e90b6e 5014
dcbf9037 5015 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5016 {
5017 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5018 return FAIL;
5019 }
5020 inst.operands[0].reg = reg;
5021
5022 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5023 {
5024 inst.error = _("',' expected");
5025 return FAIL;
5026 }
92e90b6e 5027
dcbf9037 5028 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5029 {
5030 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5031 return FAIL;
5032 }
5033 inst.operands[0].imm = reg;
5034
5035 if (skip_past_comma (&p) == SUCCESS)
5036 {
5037 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5038 return FAIL;
5039 if (inst.reloc.exp.X_add_number != 1)
5040 {
5041 inst.error = _("invalid shift");
5042 return FAIL;
5043 }
5044 inst.operands[0].shifted = 1;
5045 }
5046
5047 if (skip_past_char (&p, ']') == FAIL)
5048 {
5049 inst.error = _("']' expected");
5050 return FAIL;
5051 }
5052 *str = p;
5053 return SUCCESS;
5054}
5055
5287ad62
JB
5056/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5057 information on the types the operands can take and how they are encoded.
037e8744
JB
5058 Up to four operands may be read; this function handles setting the
5059 ".present" field for each read operand itself.
5287ad62
JB
5060 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5061 else returns FAIL. */
5062
5063static int
5064parse_neon_mov (char **str, int *which_operand)
5065{
5066 int i = *which_operand, val;
5067 enum arm_reg_type rtype;
5068 char *ptr = *str;
dcbf9037 5069 struct neon_type_el optype;
5287ad62 5070
dcbf9037 5071 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5072 {
5073 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5074 inst.operands[i].reg = val;
5075 inst.operands[i].isscalar = 1;
dcbf9037 5076 inst.operands[i].vectype = optype;
5287ad62
JB
5077 inst.operands[i++].present = 1;
5078
5079 if (skip_past_comma (&ptr) == FAIL)
5080 goto wanted_comma;
5081
dcbf9037 5082 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62
JB
5083 goto wanted_arm;
5084
5085 inst.operands[i].reg = val;
5086 inst.operands[i].isreg = 1;
5087 inst.operands[i].present = 1;
5088 }
037e8744 5089 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5090 != FAIL)
5287ad62
JB
5091 {
5092 /* Cases 0, 1, 2, 3, 5 (D only). */
5093 if (skip_past_comma (&ptr) == FAIL)
5094 goto wanted_comma;
5095
5096 inst.operands[i].reg = val;
5097 inst.operands[i].isreg = 1;
5098 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5099 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5100 inst.operands[i].isvec = 1;
dcbf9037 5101 inst.operands[i].vectype = optype;
5287ad62
JB
5102 inst.operands[i++].present = 1;
5103
dcbf9037 5104 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5105 {
037e8744
JB
5106 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5107 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5108 inst.operands[i].reg = val;
5109 inst.operands[i].isreg = 1;
037e8744 5110 inst.operands[i].present = 1;
5287ad62
JB
5111
5112 if (rtype == REG_TYPE_NQ)
5113 {
dcbf9037 5114 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5115 return FAIL;
5116 }
037e8744
JB
5117 else if (rtype != REG_TYPE_VFS)
5118 {
5119 i++;
5120 if (skip_past_comma (&ptr) == FAIL)
5121 goto wanted_comma;
5122 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5123 goto wanted_arm;
5124 inst.operands[i].reg = val;
5125 inst.operands[i].isreg = 1;
5126 inst.operands[i].present = 1;
5127 }
5287ad62 5128 }
136da414 5129 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
136da414 5130 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
037e8744
JB
5131 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5132 Case 10: VMOV.F32 <Sd>, #<imm>
5133 Case 11: VMOV.F64 <Dd>, #<imm> */
5134 ;
5287ad62 5135 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5287ad62
JB
5136 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5137 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
037e8744
JB
5138 ;
5139 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5140 &optype)) != FAIL)
5287ad62
JB
5141 {
5142 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5143 Case 1: VMOV<c><q> <Dd>, <Dm>
5144 Case 8: VMOV.F32 <Sd>, <Sm>
5145 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5146
5147 inst.operands[i].reg = val;
5148 inst.operands[i].isreg = 1;
5149 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5150 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5151 inst.operands[i].isvec = 1;
dcbf9037 5152 inst.operands[i].vectype = optype;
5287ad62 5153 inst.operands[i].present = 1;
037e8744
JB
5154
5155 if (skip_past_comma (&ptr) == SUCCESS)
5156 {
5157 /* Case 15. */
5158 i++;
5159
5160 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5161 goto wanted_arm;
5162
5163 inst.operands[i].reg = val;
5164 inst.operands[i].isreg = 1;
5165 inst.operands[i++].present = 1;
5166
5167 if (skip_past_comma (&ptr) == FAIL)
5168 goto wanted_comma;
5169
5170 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5171 goto wanted_arm;
5172
5173 inst.operands[i].reg = val;
5174 inst.operands[i].isreg = 1;
5175 inst.operands[i++].present = 1;
5176 }
5287ad62
JB
5177 }
5178 else
5179 {
dcbf9037 5180 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5181 return FAIL;
5182 }
5183 }
dcbf9037 5184 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5185 {
5186 /* Cases 6, 7. */
5187 inst.operands[i].reg = val;
5188 inst.operands[i].isreg = 1;
5189 inst.operands[i++].present = 1;
5190
5191 if (skip_past_comma (&ptr) == FAIL)
5192 goto wanted_comma;
5193
dcbf9037 5194 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5195 {
5196 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5197 inst.operands[i].reg = val;
5198 inst.operands[i].isscalar = 1;
5199 inst.operands[i].present = 1;
dcbf9037 5200 inst.operands[i].vectype = optype;
5287ad62 5201 }
dcbf9037 5202 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5203 {
5204 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5205 inst.operands[i].reg = val;
5206 inst.operands[i].isreg = 1;
5207 inst.operands[i++].present = 1;
5208
5209 if (skip_past_comma (&ptr) == FAIL)
5210 goto wanted_comma;
5211
037e8744 5212 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5213 == FAIL)
5287ad62 5214 {
037e8744 5215 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5216 return FAIL;
5217 }
5218
5219 inst.operands[i].reg = val;
5220 inst.operands[i].isreg = 1;
037e8744
JB
5221 inst.operands[i].isvec = 1;
5222 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5223 inst.operands[i].vectype = optype;
5287ad62 5224 inst.operands[i].present = 1;
037e8744
JB
5225
5226 if (rtype == REG_TYPE_VFS)
5227 {
5228 /* Case 14. */
5229 i++;
5230 if (skip_past_comma (&ptr) == FAIL)
5231 goto wanted_comma;
5232 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5233 &optype)) == FAIL)
5234 {
5235 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5236 return FAIL;
5237 }
5238 inst.operands[i].reg = val;
5239 inst.operands[i].isreg = 1;
5240 inst.operands[i].isvec = 1;
5241 inst.operands[i].issingle = 1;
5242 inst.operands[i].vectype = optype;
5243 inst.operands[i].present = 1;
5244 }
5245 }
5246 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5247 != FAIL)
5248 {
5249 /* Case 13. */
5250 inst.operands[i].reg = val;
5251 inst.operands[i].isreg = 1;
5252 inst.operands[i].isvec = 1;
5253 inst.operands[i].issingle = 1;
5254 inst.operands[i].vectype = optype;
5255 inst.operands[i++].present = 1;
5287ad62
JB
5256 }
5257 }
5258 else
5259 {
dcbf9037 5260 first_error (_("parse error"));
5287ad62
JB
5261 return FAIL;
5262 }
5263
5264 /* Successfully parsed the operands. Update args. */
5265 *which_operand = i;
5266 *str = ptr;
5267 return SUCCESS;
5268
5269 wanted_comma:
dcbf9037 5270 first_error (_("expected comma"));
5287ad62
JB
5271 return FAIL;
5272
5273 wanted_arm:
dcbf9037 5274 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5275 return FAIL;
5287ad62
JB
5276}
5277
c19d1205
ZW
5278/* Matcher codes for parse_operands. */
5279enum operand_parse_code
5280{
5281 OP_stop, /* end of line */
5282
5283 OP_RR, /* ARM register */
5284 OP_RRnpc, /* ARM register, not r15 */
5285 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5286 OP_RRw, /* ARM register, not r15, optional trailing ! */
5287 OP_RCP, /* Coprocessor number */
5288 OP_RCN, /* Coprocessor register */
5289 OP_RF, /* FPA register */
5290 OP_RVS, /* VFP single precision register */
5287ad62
JB
5291 OP_RVD, /* VFP double precision register (0..15) */
5292 OP_RND, /* Neon double precision register (0..31) */
5293 OP_RNQ, /* Neon quad precision register */
037e8744 5294 OP_RVSD, /* VFP single or double precision register */
5287ad62 5295 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5296 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5297 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5298 OP_RVC, /* VFP control register */
5299 OP_RMF, /* Maverick F register */
5300 OP_RMD, /* Maverick D register */
5301 OP_RMFX, /* Maverick FX register */
5302 OP_RMDX, /* Maverick DX register */
5303 OP_RMAX, /* Maverick AX register */
5304 OP_RMDS, /* Maverick DSPSC register */
5305 OP_RIWR, /* iWMMXt wR register */
5306 OP_RIWC, /* iWMMXt wC register */
5307 OP_RIWG, /* iWMMXt wCG register */
5308 OP_RXA, /* XScale accumulator register */
5309
5310 OP_REGLST, /* ARM register list */
5311 OP_VRSLST, /* VFP single-precision register list */
5312 OP_VRDLST, /* VFP double-precision register list */
037e8744 5313 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5314 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5315 OP_NSTRLST, /* Neon element/structure list */
5316
5317 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5318 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5319 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5320 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5321 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5322 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5323 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5324 OP_VMOV, /* Neon VMOV operands. */
5325 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5326 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5327
5328 OP_I0, /* immediate zero */
c19d1205
ZW
5329 OP_I7, /* immediate value 0 .. 7 */
5330 OP_I15, /* 0 .. 15 */
5331 OP_I16, /* 1 .. 16 */
5287ad62 5332 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5333 OP_I31, /* 0 .. 31 */
5334 OP_I31w, /* 0 .. 31, optional trailing ! */
5335 OP_I32, /* 1 .. 32 */
5287ad62
JB
5336 OP_I32z, /* 0 .. 32 */
5337 OP_I63, /* 0 .. 63 */
c19d1205 5338 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5339 OP_I64, /* 1 .. 64 */
5340 OP_I64z, /* 0 .. 64 */
c19d1205 5341 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5342
5343 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5344 OP_I7b, /* 0 .. 7 */
5345 OP_I15b, /* 0 .. 15 */
5346 OP_I31b, /* 0 .. 31 */
5347
5348 OP_SH, /* shifter operand */
4962c51a 5349 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5350 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5351 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5352 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5353 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5354 OP_EXP, /* arbitrary expression */
5355 OP_EXPi, /* same, with optional immediate prefix */
5356 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5357 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5358
5359 OP_CPSF, /* CPS flags */
5360 OP_ENDI, /* Endianness specifier */
5361 OP_PSR, /* CPSR/SPSR mask for msr */
5362 OP_COND, /* conditional code */
92e90b6e 5363 OP_TB, /* Table branch. */
c19d1205 5364
037e8744
JB
5365 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5366 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5367
c19d1205
ZW
5368 OP_RRnpc_I0, /* ARM register or literal 0 */
5369 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5370 OP_RR_EXi, /* ARM register or expression with imm prefix */
5371 OP_RF_IF, /* FPA register or immediate */
5372 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5373 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5374
5375 /* Optional operands. */
5376 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5377 OP_oI31b, /* 0 .. 31 */
5287ad62 5378 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5379 OP_oIffffb, /* 0 .. 65535 */
5380 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5381
5382 OP_oRR, /* ARM register */
5383 OP_oRRnpc, /* ARM register, not the PC */
5287ad62
JB
5384 OP_oRND, /* Optional Neon double precision register */
5385 OP_oRNQ, /* Optional Neon quad precision register */
5386 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5387 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5388 OP_oSHll, /* LSL immediate */
5389 OP_oSHar, /* ASR immediate */
5390 OP_oSHllar, /* LSL or ASR immediate */
5391 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5392 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5393
5394 OP_FIRST_OPTIONAL = OP_oI7b
5395};
a737bd4d 5396
c19d1205
ZW
5397/* Generic instruction operand parser. This does no encoding and no
5398 semantic validation; it merely squirrels values away in the inst
5399 structure. Returns SUCCESS or FAIL depending on whether the
5400 specified grammar matched. */
5401static int
ca3f61f7 5402parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5403{
5404 unsigned const char *upat = pattern;
5405 char *backtrack_pos = 0;
5406 const char *backtrack_error = 0;
5407 int i, val, backtrack_index = 0;
5287ad62 5408 enum arm_reg_type rtype;
4962c51a 5409 parse_operand_result result;
c19d1205
ZW
5410
5411#define po_char_or_fail(chr) do { \
5412 if (skip_past_char (&str, chr) == FAIL) \
5413 goto bad_args; \
5414} while (0)
5415
dcbf9037
JB
5416#define po_reg_or_fail(regtype) do { \
5417 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5418 &inst.operands[i].vectype); \
5419 if (val == FAIL) \
5420 { \
5421 first_error (_(reg_expected_msgs[regtype])); \
5422 goto failure; \
5423 } \
5424 inst.operands[i].reg = val; \
5425 inst.operands[i].isreg = 1; \
5426 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5427 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5428 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5429 || rtype == REG_TYPE_VFD \
5430 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5431} while (0)
5432
dcbf9037
JB
5433#define po_reg_or_goto(regtype, label) do { \
5434 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5435 &inst.operands[i].vectype); \
5436 if (val == FAIL) \
5437 goto label; \
5438 \
5439 inst.operands[i].reg = val; \
5440 inst.operands[i].isreg = 1; \
5441 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5442 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5443 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5444 || rtype == REG_TYPE_VFD \
5445 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5446} while (0)
5447
5448#define po_imm_or_fail(min, max, popt) do { \
5449 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5450 goto failure; \
5451 inst.operands[i].imm = val; \
5452} while (0)
5453
dcbf9037
JB
5454#define po_scalar_or_goto(elsz, label) do { \
5455 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5456 if (val == FAIL) \
5457 goto label; \
5458 inst.operands[i].reg = val; \
5459 inst.operands[i].isscalar = 1; \
5287ad62
JB
5460} while (0)
5461
c19d1205
ZW
5462#define po_misc_or_fail(expr) do { \
5463 if (expr) \
5464 goto failure; \
5465} while (0)
5466
4962c51a
MS
5467#define po_misc_or_fail_no_backtrack(expr) do { \
5468 result = expr; \
5469 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5470 backtrack_pos = 0; \
5471 if (result != PARSE_OPERAND_SUCCESS) \
5472 goto failure; \
5473} while (0)
5474
c19d1205
ZW
5475 skip_whitespace (str);
5476
5477 for (i = 0; upat[i] != OP_stop; i++)
5478 {
5479 if (upat[i] >= OP_FIRST_OPTIONAL)
5480 {
5481 /* Remember where we are in case we need to backtrack. */
5482 assert (!backtrack_pos);
5483 backtrack_pos = str;
5484 backtrack_error = inst.error;
5485 backtrack_index = i;
5486 }
5487
5488 if (i > 0)
5489 po_char_or_fail (',');
5490
5491 switch (upat[i])
5492 {
5493 /* Registers */
5494 case OP_oRRnpc:
5495 case OP_RRnpc:
5496 case OP_oRR:
5497 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5498 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5499 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5500 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5501 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5502 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5503 case OP_oRND:
5504 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
c19d1205
ZW
5505 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5506 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5507 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5508 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5509 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5510 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5511 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5512 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5513 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5514 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5515 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5516 case OP_oRNQ:
5517 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5518 case OP_oRNDQ:
5519 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5520 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5521 case OP_oRNSDQ:
5522 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5523
5524 /* Neon scalar. Using an element size of 8 means that some invalid
5525 scalars are accepted here, so deal with those in later code. */
5526 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5527
5528 /* WARNING: We can expand to two operands here. This has the potential
5529 to totally confuse the backtracking mechanism! It will be OK at
5530 least as long as we don't try to use optional args as well,
5531 though. */
5532 case OP_NILO:
5533 {
5534 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5535 i++;
5536 skip_past_comma (&str);
5537 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5538 break;
5539 one_reg_only:
5540 /* Optional register operand was omitted. Unfortunately, it's in
5541 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5542 here (this is a bit grotty). */
5543 inst.operands[i] = inst.operands[i-1];
5544 inst.operands[i-1].present = 0;
5545 break;
5546 try_imm:
5547 /* Immediate gets verified properly later, so accept any now. */
5548 po_imm_or_fail (INT_MIN, INT_MAX, TRUE);
5549 }
5550 break;
5551
5552 case OP_RNDQ_I0:
5553 {
5554 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5555 break;
5556 try_imm0:
5557 po_imm_or_fail (0, 0, TRUE);
5558 }
5559 break;
5560
037e8744
JB
5561 case OP_RVSD_I0:
5562 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5563 break;
5564
5287ad62
JB
5565 case OP_RR_RNSC:
5566 {
5567 po_scalar_or_goto (8, try_rr);
5568 break;
5569 try_rr:
5570 po_reg_or_fail (REG_TYPE_RN);
5571 }
5572 break;
5573
037e8744
JB
5574 case OP_RNSDQ_RNSC:
5575 {
5576 po_scalar_or_goto (8, try_nsdq);
5577 break;
5578 try_nsdq:
5579 po_reg_or_fail (REG_TYPE_NSDQ);
5580 }
5581 break;
5582
5287ad62
JB
5583 case OP_RNDQ_RNSC:
5584 {
5585 po_scalar_or_goto (8, try_ndq);
5586 break;
5587 try_ndq:
5588 po_reg_or_fail (REG_TYPE_NDQ);
5589 }
5590 break;
5591
5592 case OP_RND_RNSC:
5593 {
5594 po_scalar_or_goto (8, try_vfd);
5595 break;
5596 try_vfd:
5597 po_reg_or_fail (REG_TYPE_VFD);
5598 }
5599 break;
5600
5601 case OP_VMOV:
5602 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5603 not careful then bad things might happen. */
5604 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5605 break;
5606
5607 case OP_RNDQ_IMVNb:
5608 {
5609 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5610 break;
5611 try_mvnimm:
5612 /* There's a possibility of getting a 64-bit immediate here, so
5613 we need special handling. */
5614 if (parse_big_immediate (&str, i) == FAIL)
5615 {
5616 inst.error = _("immediate value is out of range");
5617 goto failure;
5618 }
5619 }
5620 break;
5621
5622 case OP_RNDQ_I63b:
5623 {
5624 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5625 break;
5626 try_shimm:
5627 po_imm_or_fail (0, 63, TRUE);
5628 }
5629 break;
c19d1205
ZW
5630
5631 case OP_RRnpcb:
5632 po_char_or_fail ('[');
5633 po_reg_or_fail (REG_TYPE_RN);
5634 po_char_or_fail (']');
5635 break;
a737bd4d 5636
c19d1205
ZW
5637 case OP_RRw:
5638 po_reg_or_fail (REG_TYPE_RN);
5639 if (skip_past_char (&str, '!') == SUCCESS)
5640 inst.operands[i].writeback = 1;
5641 break;
5642
5643 /* Immediates */
5644 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5645 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5646 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5647 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5648 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5649 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5650 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5651 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5652 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5653 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5654 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5655 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5656
5657 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5658 case OP_oI7b:
5659 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5660 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5661 case OP_oI31b:
5662 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5663 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5664 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5665
5666 /* Immediate variants */
5667 case OP_oI255c:
5668 po_char_or_fail ('{');
5669 po_imm_or_fail (0, 255, TRUE);
5670 po_char_or_fail ('}');
5671 break;
5672
5673 case OP_I31w:
5674 /* The expression parser chokes on a trailing !, so we have
5675 to find it first and zap it. */
5676 {
5677 char *s = str;
5678 while (*s && *s != ',')
5679 s++;
5680 if (s[-1] == '!')
5681 {
5682 s[-1] = '\0';
5683 inst.operands[i].writeback = 1;
5684 }
5685 po_imm_or_fail (0, 31, TRUE);
5686 if (str == s - 1)
5687 str = s;
5688 }
5689 break;
5690
5691 /* Expressions */
5692 case OP_EXPi: EXPi:
5693 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5694 GE_OPT_PREFIX));
5695 break;
5696
5697 case OP_EXP:
5698 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5699 GE_NO_PREFIX));
5700 break;
5701
5702 case OP_EXPr: EXPr:
5703 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5704 GE_NO_PREFIX));
5705 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5706 {
c19d1205
ZW
5707 val = parse_reloc (&str);
5708 if (val == -1)
5709 {
5710 inst.error = _("unrecognized relocation suffix");
5711 goto failure;
5712 }
5713 else if (val != BFD_RELOC_UNUSED)
5714 {
5715 inst.operands[i].imm = val;
5716 inst.operands[i].hasreloc = 1;
5717 }
a737bd4d 5718 }
c19d1205 5719 break;
a737bd4d 5720
b6895b4f
PB
5721 /* Operand for MOVW or MOVT. */
5722 case OP_HALF:
5723 po_misc_or_fail (parse_half (&str));
5724 break;
5725
c19d1205
ZW
5726 /* Register or expression */
5727 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5728 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5729
c19d1205
ZW
5730 /* Register or immediate */
5731 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5732 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5733
c19d1205
ZW
5734 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5735 IF:
5736 if (!is_immediate_prefix (*str))
5737 goto bad_args;
5738 str++;
5739 val = parse_fpa_immediate (&str);
5740 if (val == FAIL)
5741 goto failure;
5742 /* FPA immediates are encoded as registers 8-15.
5743 parse_fpa_immediate has already applied the offset. */
5744 inst.operands[i].reg = val;
5745 inst.operands[i].isreg = 1;
5746 break;
09d92015 5747
c19d1205
ZW
5748 /* Two kinds of register */
5749 case OP_RIWR_RIWC:
5750 {
5751 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5752 if (!rege
5753 || (rege->type != REG_TYPE_MMXWR
5754 && rege->type != REG_TYPE_MMXWC
5755 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5756 {
5757 inst.error = _("iWMMXt data or control register expected");
5758 goto failure;
5759 }
5760 inst.operands[i].reg = rege->number;
5761 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5762 }
5763 break;
09d92015 5764
41adaa5c
JM
5765 case OP_RIWC_RIWG:
5766 {
5767 struct reg_entry *rege = arm_reg_parse_multi (&str);
5768 if (!rege
5769 || (rege->type != REG_TYPE_MMXWC
5770 && rege->type != REG_TYPE_MMXWCG))
5771 {
5772 inst.error = _("iWMMXt control register expected");
5773 goto failure;
5774 }
5775 inst.operands[i].reg = rege->number;
5776 inst.operands[i].isreg = 1;
5777 }
5778 break;
5779
c19d1205
ZW
5780 /* Misc */
5781 case OP_CPSF: val = parse_cps_flags (&str); break;
5782 case OP_ENDI: val = parse_endian_specifier (&str); break;
5783 case OP_oROR: val = parse_ror (&str); break;
5784 case OP_PSR: val = parse_psr (&str); break;
5785 case OP_COND: val = parse_cond (&str); break;
62b3e311 5786 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5787
037e8744
JB
5788 case OP_RVC_PSR:
5789 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5790 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5791 break;
5792 try_psr:
5793 val = parse_psr (&str);
5794 break;
5795
5796 case OP_APSR_RR:
5797 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5798 break;
5799 try_apsr:
5800 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5801 instruction). */
5802 if (strncasecmp (str, "APSR_", 5) == 0)
5803 {
5804 unsigned found = 0;
5805 str += 5;
5806 while (found < 15)
5807 switch (*str++)
5808 {
5809 case 'c': found = (found & 1) ? 16 : found | 1; break;
5810 case 'n': found = (found & 2) ? 16 : found | 2; break;
5811 case 'z': found = (found & 4) ? 16 : found | 4; break;
5812 case 'v': found = (found & 8) ? 16 : found | 8; break;
5813 default: found = 16;
5814 }
5815 if (found != 15)
5816 goto failure;
5817 inst.operands[i].isvec = 1;
5818 }
5819 else
5820 goto failure;
5821 break;
5822
92e90b6e
PB
5823 case OP_TB:
5824 po_misc_or_fail (parse_tb (&str));
5825 break;
5826
c19d1205
ZW
5827 /* Register lists */
5828 case OP_REGLST:
5829 val = parse_reg_list (&str);
5830 if (*str == '^')
5831 {
5832 inst.operands[1].writeback = 1;
5833 str++;
5834 }
5835 break;
09d92015 5836
c19d1205 5837 case OP_VRSLST:
5287ad62 5838 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5839 break;
09d92015 5840
c19d1205 5841 case OP_VRDLST:
5287ad62 5842 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5843 break;
a737bd4d 5844
037e8744
JB
5845 case OP_VRSDLST:
5846 /* Allow Q registers too. */
5847 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5848 REGLIST_NEON_D);
5849 if (val == FAIL)
5850 {
5851 inst.error = NULL;
5852 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5853 REGLIST_VFP_S);
5854 inst.operands[i].issingle = 1;
5855 }
5856 break;
5857
5287ad62
JB
5858 case OP_NRDLST:
5859 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5860 REGLIST_NEON_D);
5861 break;
5862
5863 case OP_NSTRLST:
dcbf9037
JB
5864 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5865 &inst.operands[i].vectype);
5287ad62
JB
5866 break;
5867
c19d1205
ZW
5868 /* Addressing modes */
5869 case OP_ADDR:
5870 po_misc_or_fail (parse_address (&str, i));
5871 break;
09d92015 5872
4962c51a
MS
5873 case OP_ADDRGLDR:
5874 po_misc_or_fail_no_backtrack (
5875 parse_address_group_reloc (&str, i, GROUP_LDR));
5876 break;
5877
5878 case OP_ADDRGLDRS:
5879 po_misc_or_fail_no_backtrack (
5880 parse_address_group_reloc (&str, i, GROUP_LDRS));
5881 break;
5882
5883 case OP_ADDRGLDC:
5884 po_misc_or_fail_no_backtrack (
5885 parse_address_group_reloc (&str, i, GROUP_LDC));
5886 break;
5887
c19d1205
ZW
5888 case OP_SH:
5889 po_misc_or_fail (parse_shifter_operand (&str, i));
5890 break;
09d92015 5891
4962c51a
MS
5892 case OP_SHG:
5893 po_misc_or_fail_no_backtrack (
5894 parse_shifter_operand_group_reloc (&str, i));
5895 break;
5896
c19d1205
ZW
5897 case OP_oSHll:
5898 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5899 break;
09d92015 5900
c19d1205
ZW
5901 case OP_oSHar:
5902 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5903 break;
09d92015 5904
c19d1205
ZW
5905 case OP_oSHllar:
5906 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
5907 break;
09d92015 5908
c19d1205
ZW
5909 default:
5910 as_fatal ("unhandled operand code %d", upat[i]);
5911 }
09d92015 5912
c19d1205
ZW
5913 /* Various value-based sanity checks and shared operations. We
5914 do not signal immediate failures for the register constraints;
5915 this allows a syntax error to take precedence. */
5916 switch (upat[i])
5917 {
5918 case OP_oRRnpc:
5919 case OP_RRnpc:
5920 case OP_RRnpcb:
5921 case OP_RRw:
5922 case OP_RRnpc_I0:
5923 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
5924 inst.error = BAD_PC;
5925 break;
09d92015 5926
c19d1205
ZW
5927 case OP_CPSF:
5928 case OP_ENDI:
5929 case OP_oROR:
5930 case OP_PSR:
037e8744 5931 case OP_RVC_PSR:
c19d1205 5932 case OP_COND:
62b3e311 5933 case OP_oBARRIER:
c19d1205
ZW
5934 case OP_REGLST:
5935 case OP_VRSLST:
5936 case OP_VRDLST:
037e8744 5937 case OP_VRSDLST:
5287ad62
JB
5938 case OP_NRDLST:
5939 case OP_NSTRLST:
c19d1205
ZW
5940 if (val == FAIL)
5941 goto failure;
5942 inst.operands[i].imm = val;
5943 break;
a737bd4d 5944
c19d1205
ZW
5945 default:
5946 break;
5947 }
09d92015 5948
c19d1205
ZW
5949 /* If we get here, this operand was successfully parsed. */
5950 inst.operands[i].present = 1;
5951 continue;
09d92015 5952
c19d1205 5953 bad_args:
09d92015 5954 inst.error = BAD_ARGS;
c19d1205
ZW
5955
5956 failure:
5957 if (!backtrack_pos)
d252fdde
PB
5958 {
5959 /* The parse routine should already have set inst.error, but set a
5960 defaut here just in case. */
5961 if (!inst.error)
5962 inst.error = _("syntax error");
5963 return FAIL;
5964 }
c19d1205
ZW
5965
5966 /* Do not backtrack over a trailing optional argument that
5967 absorbed some text. We will only fail again, with the
5968 'garbage following instruction' error message, which is
5969 probably less helpful than the current one. */
5970 if (backtrack_index == i && backtrack_pos != str
5971 && upat[i+1] == OP_stop)
d252fdde
PB
5972 {
5973 if (!inst.error)
5974 inst.error = _("syntax error");
5975 return FAIL;
5976 }
c19d1205
ZW
5977
5978 /* Try again, skipping the optional argument at backtrack_pos. */
5979 str = backtrack_pos;
5980 inst.error = backtrack_error;
5981 inst.operands[backtrack_index].present = 0;
5982 i = backtrack_index;
5983 backtrack_pos = 0;
09d92015 5984 }
09d92015 5985
c19d1205
ZW
5986 /* Check that we have parsed all the arguments. */
5987 if (*str != '\0' && !inst.error)
5988 inst.error = _("garbage following instruction");
09d92015 5989
c19d1205 5990 return inst.error ? FAIL : SUCCESS;
09d92015
MM
5991}
5992
c19d1205
ZW
5993#undef po_char_or_fail
5994#undef po_reg_or_fail
5995#undef po_reg_or_goto
5996#undef po_imm_or_fail
5287ad62 5997#undef po_scalar_or_fail
c19d1205
ZW
5998\f
5999/* Shorthand macro for instruction encoding functions issuing errors. */
6000#define constraint(expr, err) do { \
6001 if (expr) \
6002 { \
6003 inst.error = err; \
6004 return; \
6005 } \
6006} while (0)
6007
6008/* Functions for operand encoding. ARM, then Thumb. */
6009
6010#define rotate_left(v, n) (v << n | v >> (32 - n))
6011
6012/* If VAL can be encoded in the immediate field of an ARM instruction,
6013 return the encoded form. Otherwise, return FAIL. */
6014
6015static unsigned int
6016encode_arm_immediate (unsigned int val)
09d92015 6017{
c19d1205
ZW
6018 unsigned int a, i;
6019
6020 for (i = 0; i < 32; i += 2)
6021 if ((a = rotate_left (val, i)) <= 0xff)
6022 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6023
6024 return FAIL;
09d92015
MM
6025}
6026
c19d1205
ZW
6027/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6028 return the encoded form. Otherwise, return FAIL. */
6029static unsigned int
6030encode_thumb32_immediate (unsigned int val)
09d92015 6031{
c19d1205 6032 unsigned int a, i;
09d92015 6033
9c3c69f2 6034 if (val <= 0xff)
c19d1205 6035 return val;
a737bd4d 6036
9c3c69f2 6037 for (i = 1; i <= 24; i++)
09d92015 6038 {
9c3c69f2
PB
6039 a = val >> i;
6040 if ((val & ~(0xff << i)) == 0)
6041 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6042 }
a737bd4d 6043
c19d1205
ZW
6044 a = val & 0xff;
6045 if (val == ((a << 16) | a))
6046 return 0x100 | a;
6047 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6048 return 0x300 | a;
09d92015 6049
c19d1205
ZW
6050 a = val & 0xff00;
6051 if (val == ((a << 16) | a))
6052 return 0x200 | (a >> 8);
a737bd4d 6053
c19d1205 6054 return FAIL;
09d92015 6055}
5287ad62 6056/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6057
6058static void
5287ad62
JB
6059encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6060{
6061 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6062 && reg > 15)
6063 {
6064 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6065 {
6066 if (thumb_mode)
6067 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6068 fpu_vfp_ext_v3);
6069 else
6070 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6071 fpu_vfp_ext_v3);
6072 }
6073 else
6074 {
dcbf9037 6075 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6076 return;
6077 }
6078 }
6079
c19d1205 6080 switch (pos)
09d92015 6081 {
c19d1205
ZW
6082 case VFP_REG_Sd:
6083 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6084 break;
6085
6086 case VFP_REG_Sn:
6087 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6088 break;
6089
6090 case VFP_REG_Sm:
6091 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6092 break;
6093
5287ad62
JB
6094 case VFP_REG_Dd:
6095 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6096 break;
6097
6098 case VFP_REG_Dn:
6099 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6100 break;
6101
6102 case VFP_REG_Dm:
6103 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6104 break;
6105
c19d1205
ZW
6106 default:
6107 abort ();
09d92015 6108 }
09d92015
MM
6109}
6110
c19d1205 6111/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6112 if any, is handled by md_apply_fix. */
09d92015 6113static void
c19d1205 6114encode_arm_shift (int i)
09d92015 6115{
c19d1205
ZW
6116 if (inst.operands[i].shift_kind == SHIFT_RRX)
6117 inst.instruction |= SHIFT_ROR << 5;
6118 else
09d92015 6119 {
c19d1205
ZW
6120 inst.instruction |= inst.operands[i].shift_kind << 5;
6121 if (inst.operands[i].immisreg)
6122 {
6123 inst.instruction |= SHIFT_BY_REG;
6124 inst.instruction |= inst.operands[i].imm << 8;
6125 }
6126 else
6127 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6128 }
c19d1205 6129}
09d92015 6130
c19d1205
ZW
6131static void
6132encode_arm_shifter_operand (int i)
6133{
6134 if (inst.operands[i].isreg)
09d92015 6135 {
c19d1205
ZW
6136 inst.instruction |= inst.operands[i].reg;
6137 encode_arm_shift (i);
09d92015 6138 }
c19d1205
ZW
6139 else
6140 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6141}
6142
c19d1205 6143/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6144static void
c19d1205 6145encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6146{
c19d1205
ZW
6147 assert (inst.operands[i].isreg);
6148 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6149
c19d1205 6150 if (inst.operands[i].preind)
09d92015 6151 {
c19d1205
ZW
6152 if (is_t)
6153 {
6154 inst.error = _("instruction does not accept preindexed addressing");
6155 return;
6156 }
6157 inst.instruction |= PRE_INDEX;
6158 if (inst.operands[i].writeback)
6159 inst.instruction |= WRITE_BACK;
09d92015 6160
c19d1205
ZW
6161 }
6162 else if (inst.operands[i].postind)
6163 {
6164 assert (inst.operands[i].writeback);
6165 if (is_t)
6166 inst.instruction |= WRITE_BACK;
6167 }
6168 else /* unindexed - only for coprocessor */
09d92015 6169 {
c19d1205 6170 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6171 return;
6172 }
6173
c19d1205
ZW
6174 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6175 && (((inst.instruction & 0x000f0000) >> 16)
6176 == ((inst.instruction & 0x0000f000) >> 12)))
6177 as_warn ((inst.instruction & LOAD_BIT)
6178 ? _("destination register same as write-back base")
6179 : _("source register same as write-back base"));
09d92015
MM
6180}
6181
c19d1205
ZW
6182/* inst.operands[i] was set up by parse_address. Encode it into an
6183 ARM-format mode 2 load or store instruction. If is_t is true,
6184 reject forms that cannot be used with a T instruction (i.e. not
6185 post-indexed). */
a737bd4d 6186static void
c19d1205 6187encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6188{
c19d1205 6189 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6190
c19d1205 6191 if (inst.operands[i].immisreg)
09d92015 6192 {
c19d1205
ZW
6193 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6194 inst.instruction |= inst.operands[i].imm;
6195 if (!inst.operands[i].negative)
6196 inst.instruction |= INDEX_UP;
6197 if (inst.operands[i].shifted)
6198 {
6199 if (inst.operands[i].shift_kind == SHIFT_RRX)
6200 inst.instruction |= SHIFT_ROR << 5;
6201 else
6202 {
6203 inst.instruction |= inst.operands[i].shift_kind << 5;
6204 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6205 }
6206 }
09d92015 6207 }
c19d1205 6208 else /* immediate offset in inst.reloc */
09d92015 6209 {
c19d1205
ZW
6210 if (inst.reloc.type == BFD_RELOC_UNUSED)
6211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6212 }
09d92015
MM
6213}
6214
c19d1205
ZW
6215/* inst.operands[i] was set up by parse_address. Encode it into an
6216 ARM-format mode 3 load or store instruction. Reject forms that
6217 cannot be used with such instructions. If is_t is true, reject
6218 forms that cannot be used with a T instruction (i.e. not
6219 post-indexed). */
6220static void
6221encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6222{
c19d1205 6223 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6224 {
c19d1205
ZW
6225 inst.error = _("instruction does not accept scaled register index");
6226 return;
09d92015 6227 }
a737bd4d 6228
c19d1205 6229 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6230
c19d1205
ZW
6231 if (inst.operands[i].immisreg)
6232 {
6233 inst.instruction |= inst.operands[i].imm;
6234 if (!inst.operands[i].negative)
6235 inst.instruction |= INDEX_UP;
6236 }
6237 else /* immediate offset in inst.reloc */
6238 {
6239 inst.instruction |= HWOFFSET_IMM;
6240 if (inst.reloc.type == BFD_RELOC_UNUSED)
6241 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6242 }
a737bd4d
NC
6243}
6244
c19d1205
ZW
6245/* inst.operands[i] was set up by parse_address. Encode it into an
6246 ARM-format instruction. Reject all forms which cannot be encoded
6247 into a coprocessor load/store instruction. If wb_ok is false,
6248 reject use of writeback; if unind_ok is false, reject use of
6249 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6250 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6251 (in which case it is preserved). */
09d92015 6252
c19d1205
ZW
6253static int
6254encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6255{
c19d1205 6256 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6257
c19d1205 6258 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6259
c19d1205 6260 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6261 {
c19d1205
ZW
6262 assert (!inst.operands[i].writeback);
6263 if (!unind_ok)
6264 {
6265 inst.error = _("instruction does not support unindexed addressing");
6266 return FAIL;
6267 }
6268 inst.instruction |= inst.operands[i].imm;
6269 inst.instruction |= INDEX_UP;
6270 return SUCCESS;
09d92015 6271 }
a737bd4d 6272
c19d1205
ZW
6273 if (inst.operands[i].preind)
6274 inst.instruction |= PRE_INDEX;
a737bd4d 6275
c19d1205 6276 if (inst.operands[i].writeback)
09d92015 6277 {
c19d1205
ZW
6278 if (inst.operands[i].reg == REG_PC)
6279 {
6280 inst.error = _("pc may not be used with write-back");
6281 return FAIL;
6282 }
6283 if (!wb_ok)
6284 {
6285 inst.error = _("instruction does not support writeback");
6286 return FAIL;
6287 }
6288 inst.instruction |= WRITE_BACK;
09d92015 6289 }
a737bd4d 6290
c19d1205
ZW
6291 if (reloc_override)
6292 inst.reloc.type = reloc_override;
4962c51a
MS
6293 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6294 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6295 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6296 {
6297 if (thumb_mode)
6298 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6299 else
6300 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6301 }
6302
c19d1205
ZW
6303 return SUCCESS;
6304}
a737bd4d 6305
c19d1205
ZW
6306/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6307 Determine whether it can be performed with a move instruction; if
6308 it can, convert inst.instruction to that move instruction and
6309 return 1; if it can't, convert inst.instruction to a literal-pool
6310 load and return 0. If this is not a valid thing to do in the
6311 current context, set inst.error and return 1.
a737bd4d 6312
c19d1205
ZW
6313 inst.operands[i] describes the destination register. */
6314
6315static int
6316move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6317{
53365c0d
PB
6318 unsigned long tbit;
6319
6320 if (thumb_p)
6321 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6322 else
6323 tbit = LOAD_BIT;
6324
6325 if ((inst.instruction & tbit) == 0)
09d92015 6326 {
c19d1205
ZW
6327 inst.error = _("invalid pseudo operation");
6328 return 1;
09d92015 6329 }
c19d1205 6330 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6331 {
6332 inst.error = _("constant expression expected");
c19d1205 6333 return 1;
09d92015 6334 }
c19d1205 6335 if (inst.reloc.exp.X_op == O_constant)
09d92015 6336 {
c19d1205
ZW
6337 if (thumb_p)
6338 {
53365c0d 6339 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6340 {
6341 /* This can be done with a mov(1) instruction. */
6342 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6343 inst.instruction |= inst.reloc.exp.X_add_number;
6344 return 1;
6345 }
6346 }
6347 else
6348 {
6349 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6350 if (value != FAIL)
6351 {
6352 /* This can be done with a mov instruction. */
6353 inst.instruction &= LITERAL_MASK;
6354 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6355 inst.instruction |= value & 0xfff;
6356 return 1;
6357 }
09d92015 6358
c19d1205
ZW
6359 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6360 if (value != FAIL)
6361 {
6362 /* This can be done with a mvn instruction. */
6363 inst.instruction &= LITERAL_MASK;
6364 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6365 inst.instruction |= value & 0xfff;
6366 return 1;
6367 }
6368 }
09d92015
MM
6369 }
6370
c19d1205
ZW
6371 if (add_to_lit_pool () == FAIL)
6372 {
6373 inst.error = _("literal pool insertion failed");
6374 return 1;
6375 }
6376 inst.operands[1].reg = REG_PC;
6377 inst.operands[1].isreg = 1;
6378 inst.operands[1].preind = 1;
6379 inst.reloc.pc_rel = 1;
6380 inst.reloc.type = (thumb_p
6381 ? BFD_RELOC_ARM_THUMB_OFFSET
6382 : (mode_3
6383 ? BFD_RELOC_ARM_HWLITERAL
6384 : BFD_RELOC_ARM_LITERAL));
6385 return 0;
09d92015
MM
6386}
6387
c19d1205
ZW
6388/* Functions for instruction encoding, sorted by subarchitecture.
6389 First some generics; their names are taken from the conventional
6390 bit positions for register arguments in ARM format instructions. */
09d92015 6391
a737bd4d 6392static void
c19d1205 6393do_noargs (void)
09d92015 6394{
c19d1205 6395}
a737bd4d 6396
c19d1205
ZW
6397static void
6398do_rd (void)
6399{
6400 inst.instruction |= inst.operands[0].reg << 12;
6401}
a737bd4d 6402
c19d1205
ZW
6403static void
6404do_rd_rm (void)
6405{
6406 inst.instruction |= inst.operands[0].reg << 12;
6407 inst.instruction |= inst.operands[1].reg;
6408}
09d92015 6409
c19d1205
ZW
6410static void
6411do_rd_rn (void)
6412{
6413 inst.instruction |= inst.operands[0].reg << 12;
6414 inst.instruction |= inst.operands[1].reg << 16;
6415}
a737bd4d 6416
c19d1205
ZW
6417static void
6418do_rn_rd (void)
6419{
6420 inst.instruction |= inst.operands[0].reg << 16;
6421 inst.instruction |= inst.operands[1].reg << 12;
6422}
09d92015 6423
c19d1205
ZW
6424static void
6425do_rd_rm_rn (void)
6426{
9a64e435 6427 unsigned Rn = inst.operands[2].reg;
708587a4 6428 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6429 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6431 _("Rn must not overlap other operands"));
c19d1205
ZW
6432 inst.instruction |= inst.operands[0].reg << 12;
6433 inst.instruction |= inst.operands[1].reg;
9a64e435 6434 inst.instruction |= Rn << 16;
c19d1205 6435}
09d92015 6436
c19d1205
ZW
6437static void
6438do_rd_rn_rm (void)
6439{
6440 inst.instruction |= inst.operands[0].reg << 12;
6441 inst.instruction |= inst.operands[1].reg << 16;
6442 inst.instruction |= inst.operands[2].reg;
6443}
a737bd4d 6444
c19d1205
ZW
6445static void
6446do_rm_rd_rn (void)
6447{
6448 inst.instruction |= inst.operands[0].reg;
6449 inst.instruction |= inst.operands[1].reg << 12;
6450 inst.instruction |= inst.operands[2].reg << 16;
6451}
09d92015 6452
c19d1205
ZW
6453static void
6454do_imm0 (void)
6455{
6456 inst.instruction |= inst.operands[0].imm;
6457}
09d92015 6458
c19d1205
ZW
6459static void
6460do_rd_cpaddr (void)
6461{
6462 inst.instruction |= inst.operands[0].reg << 12;
6463 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6464}
a737bd4d 6465
c19d1205
ZW
6466/* ARM instructions, in alphabetical order by function name (except
6467 that wrapper functions appear immediately after the function they
6468 wrap). */
09d92015 6469
c19d1205
ZW
6470/* This is a pseudo-op of the form "adr rd, label" to be converted
6471 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6472
6473static void
c19d1205 6474do_adr (void)
09d92015 6475{
c19d1205 6476 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6477
c19d1205
ZW
6478 /* Frag hacking will turn this into a sub instruction if the offset turns
6479 out to be negative. */
6480 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6481 inst.reloc.pc_rel = 1;
2fc8bdac 6482 inst.reloc.exp.X_add_number -= 8;
c19d1205 6483}
b99bd4ef 6484
c19d1205
ZW
6485/* This is a pseudo-op of the form "adrl rd, label" to be converted
6486 into a relative address of the form:
6487 add rd, pc, #low(label-.-8)"
6488 add rd, rd, #high(label-.-8)" */
b99bd4ef 6489
c19d1205
ZW
6490static void
6491do_adrl (void)
6492{
6493 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6494
c19d1205
ZW
6495 /* Frag hacking will turn this into a sub instruction if the offset turns
6496 out to be negative. */
6497 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6498 inst.reloc.pc_rel = 1;
6499 inst.size = INSN_SIZE * 2;
2fc8bdac 6500 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6501}
6502
b99bd4ef 6503static void
c19d1205 6504do_arit (void)
b99bd4ef 6505{
c19d1205
ZW
6506 if (!inst.operands[1].present)
6507 inst.operands[1].reg = inst.operands[0].reg;
6508 inst.instruction |= inst.operands[0].reg << 12;
6509 inst.instruction |= inst.operands[1].reg << 16;
6510 encode_arm_shifter_operand (2);
6511}
b99bd4ef 6512
62b3e311
PB
6513static void
6514do_barrier (void)
6515{
6516 if (inst.operands[0].present)
6517 {
6518 constraint ((inst.instruction & 0xf0) != 0x40
6519 && inst.operands[0].imm != 0xf,
6520 "bad barrier type");
6521 inst.instruction |= inst.operands[0].imm;
6522 }
6523 else
6524 inst.instruction |= 0xf;
6525}
6526
c19d1205
ZW
6527static void
6528do_bfc (void)
6529{
6530 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6531 constraint (msb > 32, _("bit-field extends past end of register"));
6532 /* The instruction encoding stores the LSB and MSB,
6533 not the LSB and width. */
6534 inst.instruction |= inst.operands[0].reg << 12;
6535 inst.instruction |= inst.operands[1].imm << 7;
6536 inst.instruction |= (msb - 1) << 16;
6537}
b99bd4ef 6538
c19d1205
ZW
6539static void
6540do_bfi (void)
6541{
6542 unsigned int msb;
b99bd4ef 6543
c19d1205
ZW
6544 /* #0 in second position is alternative syntax for bfc, which is
6545 the same instruction but with REG_PC in the Rm field. */
6546 if (!inst.operands[1].isreg)
6547 inst.operands[1].reg = REG_PC;
b99bd4ef 6548
c19d1205
ZW
6549 msb = inst.operands[2].imm + inst.operands[3].imm;
6550 constraint (msb > 32, _("bit-field extends past end of register"));
6551 /* The instruction encoding stores the LSB and MSB,
6552 not the LSB and width. */
6553 inst.instruction |= inst.operands[0].reg << 12;
6554 inst.instruction |= inst.operands[1].reg;
6555 inst.instruction |= inst.operands[2].imm << 7;
6556 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6557}
6558
b99bd4ef 6559static void
c19d1205 6560do_bfx (void)
b99bd4ef 6561{
c19d1205
ZW
6562 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6563 _("bit-field extends past end of register"));
6564 inst.instruction |= inst.operands[0].reg << 12;
6565 inst.instruction |= inst.operands[1].reg;
6566 inst.instruction |= inst.operands[2].imm << 7;
6567 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6568}
09d92015 6569
c19d1205
ZW
6570/* ARM V5 breakpoint instruction (argument parse)
6571 BKPT <16 bit unsigned immediate>
6572 Instruction is not conditional.
6573 The bit pattern given in insns[] has the COND_ALWAYS condition,
6574 and it is an error if the caller tried to override that. */
b99bd4ef 6575
c19d1205
ZW
6576static void
6577do_bkpt (void)
6578{
6579 /* Top 12 of 16 bits to bits 19:8. */
6580 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6581
c19d1205
ZW
6582 /* Bottom 4 of 16 bits to bits 3:0. */
6583 inst.instruction |= inst.operands[0].imm & 0xf;
6584}
09d92015 6585
c19d1205
ZW
6586static void
6587encode_branch (int default_reloc)
6588{
6589 if (inst.operands[0].hasreloc)
6590 {
6591 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6592 _("the only suffix valid here is '(plt)'"));
6593 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6594 }
b99bd4ef 6595 else
c19d1205
ZW
6596 {
6597 inst.reloc.type = default_reloc;
c19d1205 6598 }
2fc8bdac 6599 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6600}
6601
b99bd4ef 6602static void
c19d1205 6603do_branch (void)
b99bd4ef 6604{
39b41c9c
PB
6605#ifdef OBJ_ELF
6606 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6607 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6608 else
6609#endif
6610 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6611}
6612
6613static void
6614do_bl (void)
6615{
6616#ifdef OBJ_ELF
6617 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6618 {
6619 if (inst.cond == COND_ALWAYS)
6620 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6621 else
6622 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6623 }
6624 else
6625#endif
6626 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6627}
b99bd4ef 6628
c19d1205
ZW
6629/* ARM V5 branch-link-exchange instruction (argument parse)
6630 BLX <target_addr> ie BLX(1)
6631 BLX{<condition>} <Rm> ie BLX(2)
6632 Unfortunately, there are two different opcodes for this mnemonic.
6633 So, the insns[].value is not used, and the code here zaps values
6634 into inst.instruction.
6635 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6636
c19d1205
ZW
6637static void
6638do_blx (void)
6639{
6640 if (inst.operands[0].isreg)
b99bd4ef 6641 {
c19d1205
ZW
6642 /* Arg is a register; the opcode provided by insns[] is correct.
6643 It is not illegal to do "blx pc", just useless. */
6644 if (inst.operands[0].reg == REG_PC)
6645 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6646
c19d1205
ZW
6647 inst.instruction |= inst.operands[0].reg;
6648 }
6649 else
b99bd4ef 6650 {
c19d1205
ZW
6651 /* Arg is an address; this instruction cannot be executed
6652 conditionally, and the opcode must be adjusted. */
6653 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6654 inst.instruction = 0xfa000000;
39b41c9c
PB
6655#ifdef OBJ_ELF
6656 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6657 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6658 else
6659#endif
6660 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6661 }
c19d1205
ZW
6662}
6663
6664static void
6665do_bx (void)
6666{
6667 if (inst.operands[0].reg == REG_PC)
6668 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6669
c19d1205 6670 inst.instruction |= inst.operands[0].reg;
09d92015
MM
6671}
6672
c19d1205
ZW
6673
6674/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6675
6676static void
c19d1205 6677do_bxj (void)
a737bd4d 6678{
c19d1205
ZW
6679 if (inst.operands[0].reg == REG_PC)
6680 as_tsktsk (_("use of r15 in bxj is not really useful"));
6681
6682 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6683}
6684
c19d1205
ZW
6685/* Co-processor data operation:
6686 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6687 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6688static void
6689do_cdp (void)
6690{
6691 inst.instruction |= inst.operands[0].reg << 8;
6692 inst.instruction |= inst.operands[1].imm << 20;
6693 inst.instruction |= inst.operands[2].reg << 12;
6694 inst.instruction |= inst.operands[3].reg << 16;
6695 inst.instruction |= inst.operands[4].reg;
6696 inst.instruction |= inst.operands[5].imm << 5;
6697}
a737bd4d
NC
6698
6699static void
c19d1205 6700do_cmp (void)
a737bd4d 6701{
c19d1205
ZW
6702 inst.instruction |= inst.operands[0].reg << 16;
6703 encode_arm_shifter_operand (1);
a737bd4d
NC
6704}
6705
c19d1205
ZW
6706/* Transfer between coprocessor and ARM registers.
6707 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6708 MRC2
6709 MCR{cond}
6710 MCR2
6711
6712 No special properties. */
09d92015
MM
6713
6714static void
c19d1205 6715do_co_reg (void)
09d92015 6716{
c19d1205
ZW
6717 inst.instruction |= inst.operands[0].reg << 8;
6718 inst.instruction |= inst.operands[1].imm << 21;
6719 inst.instruction |= inst.operands[2].reg << 12;
6720 inst.instruction |= inst.operands[3].reg << 16;
6721 inst.instruction |= inst.operands[4].reg;
6722 inst.instruction |= inst.operands[5].imm << 5;
6723}
09d92015 6724
c19d1205
ZW
6725/* Transfer between coprocessor register and pair of ARM registers.
6726 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6727 MCRR2
6728 MRRC{cond}
6729 MRRC2
b99bd4ef 6730
c19d1205 6731 Two XScale instructions are special cases of these:
09d92015 6732
c19d1205
ZW
6733 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6734 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6735
c19d1205 6736 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 6737
c19d1205
ZW
6738static void
6739do_co_reg2c (void)
6740{
6741 inst.instruction |= inst.operands[0].reg << 8;
6742 inst.instruction |= inst.operands[1].imm << 4;
6743 inst.instruction |= inst.operands[2].reg << 12;
6744 inst.instruction |= inst.operands[3].reg << 16;
6745 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6746}
6747
c19d1205
ZW
6748static void
6749do_cpsi (void)
6750{
6751 inst.instruction |= inst.operands[0].imm << 6;
6752 inst.instruction |= inst.operands[1].imm;
6753}
b99bd4ef 6754
62b3e311
PB
6755static void
6756do_dbg (void)
6757{
6758 inst.instruction |= inst.operands[0].imm;
6759}
6760
b99bd4ef 6761static void
c19d1205 6762do_it (void)
b99bd4ef 6763{
c19d1205
ZW
6764 /* There is no IT instruction in ARM mode. We
6765 process it but do not generate code for it. */
6766 inst.size = 0;
09d92015 6767}
b99bd4ef 6768
09d92015 6769static void
c19d1205 6770do_ldmstm (void)
ea6ef066 6771{
c19d1205
ZW
6772 int base_reg = inst.operands[0].reg;
6773 int range = inst.operands[1].imm;
ea6ef066 6774
c19d1205
ZW
6775 inst.instruction |= base_reg << 16;
6776 inst.instruction |= range;
ea6ef066 6777
c19d1205
ZW
6778 if (inst.operands[1].writeback)
6779 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6780
c19d1205 6781 if (inst.operands[0].writeback)
ea6ef066 6782 {
c19d1205
ZW
6783 inst.instruction |= WRITE_BACK;
6784 /* Check for unpredictable uses of writeback. */
6785 if (inst.instruction & LOAD_BIT)
09d92015 6786 {
c19d1205
ZW
6787 /* Not allowed in LDM type 2. */
6788 if ((inst.instruction & LDM_TYPE_2_OR_3)
6789 && ((range & (1 << REG_PC)) == 0))
6790 as_warn (_("writeback of base register is UNPREDICTABLE"));
6791 /* Only allowed if base reg not in list for other types. */
6792 else if (range & (1 << base_reg))
6793 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6794 }
6795 else /* STM. */
6796 {
6797 /* Not allowed for type 2. */
6798 if (inst.instruction & LDM_TYPE_2_OR_3)
6799 as_warn (_("writeback of base register is UNPREDICTABLE"));
6800 /* Only allowed if base reg not in list, or first in list. */
6801 else if ((range & (1 << base_reg))
6802 && (range & ((1 << base_reg) - 1)))
6803 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6804 }
ea6ef066 6805 }
a737bd4d
NC
6806}
6807
c19d1205
ZW
6808/* ARMv5TE load-consecutive (argument parse)
6809 Mode is like LDRH.
6810
6811 LDRccD R, mode
6812 STRccD R, mode. */
6813
a737bd4d 6814static void
c19d1205 6815do_ldrd (void)
a737bd4d 6816{
c19d1205
ZW
6817 constraint (inst.operands[0].reg % 2 != 0,
6818 _("first destination register must be even"));
6819 constraint (inst.operands[1].present
6820 && inst.operands[1].reg != inst.operands[0].reg + 1,
6821 _("can only load two consecutive registers"));
6822 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6823 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6824
c19d1205
ZW
6825 if (!inst.operands[1].present)
6826 inst.operands[1].reg = inst.operands[0].reg + 1;
6827
6828 if (inst.instruction & LOAD_BIT)
a737bd4d 6829 {
c19d1205
ZW
6830 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6831 register and the first register written; we have to diagnose
6832 overlap between the base and the second register written here. */
ea6ef066 6833
c19d1205
ZW
6834 if (inst.operands[2].reg == inst.operands[1].reg
6835 && (inst.operands[2].writeback || inst.operands[2].postind))
6836 as_warn (_("base register written back, and overlaps "
6837 "second destination register"));
b05fe5cf 6838
c19d1205
ZW
6839 /* For an index-register load, the index register must not overlap the
6840 destination (even if not write-back). */
6841 else if (inst.operands[2].immisreg
ca3f61f7
NC
6842 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6843 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6844 as_warn (_("index register overlaps destination register"));
b05fe5cf 6845 }
c19d1205
ZW
6846
6847 inst.instruction |= inst.operands[0].reg << 12;
6848 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6849}
6850
6851static void
c19d1205 6852do_ldrex (void)
b05fe5cf 6853{
c19d1205
ZW
6854 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6855 || inst.operands[1].postind || inst.operands[1].writeback
6856 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6857 || inst.operands[1].negative
6858 /* This can arise if the programmer has written
6859 strex rN, rM, foo
6860 or if they have mistakenly used a register name as the last
6861 operand, eg:
6862 strex rN, rM, rX
6863 It is very difficult to distinguish between these two cases
6864 because "rX" might actually be a label. ie the register
6865 name has been occluded by a symbol of the same name. So we
6866 just generate a general 'bad addressing mode' type error
6867 message and leave it up to the programmer to discover the
6868 true cause and fix their mistake. */
6869 || (inst.operands[1].reg == REG_PC),
6870 BAD_ADDR_MODE);
b05fe5cf 6871
c19d1205
ZW
6872 constraint (inst.reloc.exp.X_op != O_constant
6873 || inst.reloc.exp.X_add_number != 0,
6874 _("offset must be zero in ARM encoding"));
b05fe5cf 6875
c19d1205
ZW
6876 inst.instruction |= inst.operands[0].reg << 12;
6877 inst.instruction |= inst.operands[1].reg << 16;
6878 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
6879}
6880
6881static void
c19d1205 6882do_ldrexd (void)
b05fe5cf 6883{
c19d1205
ZW
6884 constraint (inst.operands[0].reg % 2 != 0,
6885 _("even register required"));
6886 constraint (inst.operands[1].present
6887 && inst.operands[1].reg != inst.operands[0].reg + 1,
6888 _("can only load two consecutive registers"));
6889 /* If op 1 were present and equal to PC, this function wouldn't
6890 have been called in the first place. */
6891 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 6892
c19d1205
ZW
6893 inst.instruction |= inst.operands[0].reg << 12;
6894 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
6895}
6896
6897static void
c19d1205 6898do_ldst (void)
b05fe5cf 6899{
c19d1205
ZW
6900 inst.instruction |= inst.operands[0].reg << 12;
6901 if (!inst.operands[1].isreg)
6902 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 6903 return;
c19d1205 6904 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
6905}
6906
6907static void
c19d1205 6908do_ldstt (void)
b05fe5cf 6909{
c19d1205
ZW
6910 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6911 reject [Rn,...]. */
6912 if (inst.operands[1].preind)
b05fe5cf 6913 {
c19d1205
ZW
6914 constraint (inst.reloc.exp.X_op != O_constant ||
6915 inst.reloc.exp.X_add_number != 0,
6916 _("this instruction requires a post-indexed address"));
b05fe5cf 6917
c19d1205
ZW
6918 inst.operands[1].preind = 0;
6919 inst.operands[1].postind = 1;
6920 inst.operands[1].writeback = 1;
b05fe5cf 6921 }
c19d1205
ZW
6922 inst.instruction |= inst.operands[0].reg << 12;
6923 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
6924}
b05fe5cf 6925
c19d1205 6926/* Halfword and signed-byte load/store operations. */
b05fe5cf 6927
c19d1205
ZW
6928static void
6929do_ldstv4 (void)
6930{
6931 inst.instruction |= inst.operands[0].reg << 12;
6932 if (!inst.operands[1].isreg)
6933 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 6934 return;
c19d1205 6935 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
6936}
6937
6938static void
c19d1205 6939do_ldsttv4 (void)
b05fe5cf 6940{
c19d1205
ZW
6941 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6942 reject [Rn,...]. */
6943 if (inst.operands[1].preind)
b05fe5cf 6944 {
c19d1205
ZW
6945 constraint (inst.reloc.exp.X_op != O_constant ||
6946 inst.reloc.exp.X_add_number != 0,
6947 _("this instruction requires a post-indexed address"));
b05fe5cf 6948
c19d1205
ZW
6949 inst.operands[1].preind = 0;
6950 inst.operands[1].postind = 1;
6951 inst.operands[1].writeback = 1;
b05fe5cf 6952 }
c19d1205
ZW
6953 inst.instruction |= inst.operands[0].reg << 12;
6954 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
6955}
b05fe5cf 6956
c19d1205
ZW
6957/* Co-processor register load/store.
6958 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
6959static void
6960do_lstc (void)
6961{
6962 inst.instruction |= inst.operands[0].reg << 8;
6963 inst.instruction |= inst.operands[1].reg << 12;
6964 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
6965}
6966
b05fe5cf 6967static void
c19d1205 6968do_mlas (void)
b05fe5cf 6969{
c19d1205
ZW
6970 /* This restriction does not apply to mls (nor to mla in v6, but
6971 that's hard to detect at present). */
6972 if (inst.operands[0].reg == inst.operands[1].reg
6973 && !(inst.instruction & 0x00400000))
6974 as_tsktsk (_("rd and rm should be different in mla"));
b05fe5cf 6975
c19d1205
ZW
6976 inst.instruction |= inst.operands[0].reg << 16;
6977 inst.instruction |= inst.operands[1].reg;
6978 inst.instruction |= inst.operands[2].reg << 8;
6979 inst.instruction |= inst.operands[3].reg << 12;
b05fe5cf 6980
c19d1205 6981}
b05fe5cf 6982
c19d1205
ZW
6983static void
6984do_mov (void)
6985{
6986 inst.instruction |= inst.operands[0].reg << 12;
6987 encode_arm_shifter_operand (1);
6988}
b05fe5cf 6989
c19d1205
ZW
6990/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
6991static void
6992do_mov16 (void)
6993{
b6895b4f
PB
6994 bfd_vma imm;
6995 bfd_boolean top;
6996
6997 top = (inst.instruction & 0x00400000) != 0;
6998 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
6999 _(":lower16: not allowed this instruction"));
7000 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7001 _(":upper16: not allowed instruction"));
c19d1205 7002 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7003 if (inst.reloc.type == BFD_RELOC_UNUSED)
7004 {
7005 imm = inst.reloc.exp.X_add_number;
7006 /* The value is in two pieces: 0:11, 16:19. */
7007 inst.instruction |= (imm & 0x00000fff);
7008 inst.instruction |= (imm & 0x0000f000) << 4;
7009 }
b05fe5cf 7010}
b99bd4ef 7011
037e8744
JB
7012static void do_vfp_nsyn_opcode (const char *);
7013
7014static int
7015do_vfp_nsyn_mrs (void)
7016{
7017 if (inst.operands[0].isvec)
7018 {
7019 if (inst.operands[1].reg != 1)
7020 first_error (_("operand 1 must be FPSCR"));
7021 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7022 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7023 do_vfp_nsyn_opcode ("fmstat");
7024 }
7025 else if (inst.operands[1].isvec)
7026 do_vfp_nsyn_opcode ("fmrx");
7027 else
7028 return FAIL;
7029
7030 return SUCCESS;
7031}
7032
7033static int
7034do_vfp_nsyn_msr (void)
7035{
7036 if (inst.operands[0].isvec)
7037 do_vfp_nsyn_opcode ("fmxr");
7038 else
7039 return FAIL;
7040
7041 return SUCCESS;
7042}
7043
b99bd4ef 7044static void
c19d1205 7045do_mrs (void)
b99bd4ef 7046{
037e8744
JB
7047 if (do_vfp_nsyn_mrs () == SUCCESS)
7048 return;
7049
c19d1205
ZW
7050 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7051 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7052 != (PSR_c|PSR_f),
7053 _("'CPSR' or 'SPSR' expected"));
7054 inst.instruction |= inst.operands[0].reg << 12;
7055 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7056}
b99bd4ef 7057
c19d1205
ZW
7058/* Two possible forms:
7059 "{C|S}PSR_<field>, Rm",
7060 "{C|S}PSR_f, #expression". */
b99bd4ef 7061
c19d1205
ZW
7062static void
7063do_msr (void)
7064{
037e8744
JB
7065 if (do_vfp_nsyn_msr () == SUCCESS)
7066 return;
7067
c19d1205
ZW
7068 inst.instruction |= inst.operands[0].imm;
7069 if (inst.operands[1].isreg)
7070 inst.instruction |= inst.operands[1].reg;
7071 else
b99bd4ef 7072 {
c19d1205
ZW
7073 inst.instruction |= INST_IMMEDIATE;
7074 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7075 inst.reloc.pc_rel = 0;
b99bd4ef 7076 }
b99bd4ef
NC
7077}
7078
c19d1205
ZW
7079static void
7080do_mul (void)
a737bd4d 7081{
c19d1205
ZW
7082 if (!inst.operands[2].present)
7083 inst.operands[2].reg = inst.operands[0].reg;
7084 inst.instruction |= inst.operands[0].reg << 16;
7085 inst.instruction |= inst.operands[1].reg;
7086 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7087
c19d1205
ZW
7088 if (inst.operands[0].reg == inst.operands[1].reg)
7089 as_tsktsk (_("rd and rm should be different in mul"));
a737bd4d
NC
7090}
7091
c19d1205
ZW
7092/* Long Multiply Parser
7093 UMULL RdLo, RdHi, Rm, Rs
7094 SMULL RdLo, RdHi, Rm, Rs
7095 UMLAL RdLo, RdHi, Rm, Rs
7096 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7097
7098static void
c19d1205 7099do_mull (void)
b99bd4ef 7100{
c19d1205
ZW
7101 inst.instruction |= inst.operands[0].reg << 12;
7102 inst.instruction |= inst.operands[1].reg << 16;
7103 inst.instruction |= inst.operands[2].reg;
7104 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7105
c19d1205
ZW
7106 /* rdhi, rdlo and rm must all be different. */
7107 if (inst.operands[0].reg == inst.operands[1].reg
7108 || inst.operands[0].reg == inst.operands[2].reg
7109 || inst.operands[1].reg == inst.operands[2].reg)
7110 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7111}
b99bd4ef 7112
c19d1205
ZW
7113static void
7114do_nop (void)
7115{
7116 if (inst.operands[0].present)
7117 {
7118 /* Architectural NOP hints are CPSR sets with no bits selected. */
7119 inst.instruction &= 0xf0000000;
7120 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7121 }
b99bd4ef
NC
7122}
7123
c19d1205
ZW
7124/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7125 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7126 Condition defaults to COND_ALWAYS.
7127 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7128
7129static void
c19d1205 7130do_pkhbt (void)
b99bd4ef 7131{
c19d1205
ZW
7132 inst.instruction |= inst.operands[0].reg << 12;
7133 inst.instruction |= inst.operands[1].reg << 16;
7134 inst.instruction |= inst.operands[2].reg;
7135 if (inst.operands[3].present)
7136 encode_arm_shift (3);
7137}
b99bd4ef 7138
c19d1205 7139/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7140
c19d1205
ZW
7141static void
7142do_pkhtb (void)
7143{
7144 if (!inst.operands[3].present)
b99bd4ef 7145 {
c19d1205
ZW
7146 /* If the shift specifier is omitted, turn the instruction
7147 into pkhbt rd, rm, rn. */
7148 inst.instruction &= 0xfff00010;
7149 inst.instruction |= inst.operands[0].reg << 12;
7150 inst.instruction |= inst.operands[1].reg;
7151 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7152 }
7153 else
7154 {
c19d1205
ZW
7155 inst.instruction |= inst.operands[0].reg << 12;
7156 inst.instruction |= inst.operands[1].reg << 16;
7157 inst.instruction |= inst.operands[2].reg;
7158 encode_arm_shift (3);
b99bd4ef
NC
7159 }
7160}
7161
c19d1205
ZW
7162/* ARMv5TE: Preload-Cache
7163
7164 PLD <addr_mode>
7165
7166 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7167
7168static void
c19d1205 7169do_pld (void)
b99bd4ef 7170{
c19d1205
ZW
7171 constraint (!inst.operands[0].isreg,
7172 _("'[' expected after PLD mnemonic"));
7173 constraint (inst.operands[0].postind,
7174 _("post-indexed expression used in preload instruction"));
7175 constraint (inst.operands[0].writeback,
7176 _("writeback used in preload instruction"));
7177 constraint (!inst.operands[0].preind,
7178 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7179 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7180}
b99bd4ef 7181
62b3e311
PB
7182/* ARMv7: PLI <addr_mode> */
7183static void
7184do_pli (void)
7185{
7186 constraint (!inst.operands[0].isreg,
7187 _("'[' expected after PLI mnemonic"));
7188 constraint (inst.operands[0].postind,
7189 _("post-indexed expression used in preload instruction"));
7190 constraint (inst.operands[0].writeback,
7191 _("writeback used in preload instruction"));
7192 constraint (!inst.operands[0].preind,
7193 _("unindexed addressing used in preload instruction"));
7194 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7195 inst.instruction &= ~PRE_INDEX;
7196}
7197
c19d1205
ZW
7198static void
7199do_push_pop (void)
7200{
7201 inst.operands[1] = inst.operands[0];
7202 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7203 inst.operands[0].isreg = 1;
7204 inst.operands[0].writeback = 1;
7205 inst.operands[0].reg = REG_SP;
7206 do_ldmstm ();
7207}
b99bd4ef 7208
c19d1205
ZW
7209/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7210 word at the specified address and the following word
7211 respectively.
7212 Unconditionally executed.
7213 Error if Rn is R15. */
b99bd4ef 7214
c19d1205
ZW
7215static void
7216do_rfe (void)
7217{
7218 inst.instruction |= inst.operands[0].reg << 16;
7219 if (inst.operands[0].writeback)
7220 inst.instruction |= WRITE_BACK;
7221}
b99bd4ef 7222
c19d1205 7223/* ARM V6 ssat (argument parse). */
b99bd4ef 7224
c19d1205
ZW
7225static void
7226do_ssat (void)
7227{
7228 inst.instruction |= inst.operands[0].reg << 12;
7229 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7230 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7231
c19d1205
ZW
7232 if (inst.operands[3].present)
7233 encode_arm_shift (3);
b99bd4ef
NC
7234}
7235
c19d1205 7236/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7237
7238static void
c19d1205 7239do_usat (void)
b99bd4ef 7240{
c19d1205
ZW
7241 inst.instruction |= inst.operands[0].reg << 12;
7242 inst.instruction |= inst.operands[1].imm << 16;
7243 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7244
c19d1205
ZW
7245 if (inst.operands[3].present)
7246 encode_arm_shift (3);
b99bd4ef
NC
7247}
7248
c19d1205 7249/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7250
7251static void
c19d1205 7252do_ssat16 (void)
09d92015 7253{
c19d1205
ZW
7254 inst.instruction |= inst.operands[0].reg << 12;
7255 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7256 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7257}
7258
c19d1205
ZW
7259static void
7260do_usat16 (void)
a737bd4d 7261{
c19d1205
ZW
7262 inst.instruction |= inst.operands[0].reg << 12;
7263 inst.instruction |= inst.operands[1].imm << 16;
7264 inst.instruction |= inst.operands[2].reg;
7265}
a737bd4d 7266
c19d1205
ZW
7267/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7268 preserving the other bits.
a737bd4d 7269
c19d1205
ZW
7270 setend <endian_specifier>, where <endian_specifier> is either
7271 BE or LE. */
a737bd4d 7272
c19d1205
ZW
7273static void
7274do_setend (void)
7275{
7276 if (inst.operands[0].imm)
7277 inst.instruction |= 0x200;
a737bd4d
NC
7278}
7279
7280static void
c19d1205 7281do_shift (void)
a737bd4d 7282{
c19d1205
ZW
7283 unsigned int Rm = (inst.operands[1].present
7284 ? inst.operands[1].reg
7285 : inst.operands[0].reg);
a737bd4d 7286
c19d1205
ZW
7287 inst.instruction |= inst.operands[0].reg << 12;
7288 inst.instruction |= Rm;
7289 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7290 {
c19d1205
ZW
7291 inst.instruction |= inst.operands[2].reg << 8;
7292 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7293 }
7294 else
c19d1205 7295 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7296}
7297
09d92015 7298static void
3eb17e6b 7299do_smc (void)
09d92015 7300{
3eb17e6b 7301 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7302 inst.reloc.pc_rel = 0;
09d92015
MM
7303}
7304
09d92015 7305static void
c19d1205 7306do_swi (void)
09d92015 7307{
c19d1205
ZW
7308 inst.reloc.type = BFD_RELOC_ARM_SWI;
7309 inst.reloc.pc_rel = 0;
09d92015
MM
7310}
7311
c19d1205
ZW
7312/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7313 SMLAxy{cond} Rd,Rm,Rs,Rn
7314 SMLAWy{cond} Rd,Rm,Rs,Rn
7315 Error if any register is R15. */
e16bb312 7316
c19d1205
ZW
7317static void
7318do_smla (void)
e16bb312 7319{
c19d1205
ZW
7320 inst.instruction |= inst.operands[0].reg << 16;
7321 inst.instruction |= inst.operands[1].reg;
7322 inst.instruction |= inst.operands[2].reg << 8;
7323 inst.instruction |= inst.operands[3].reg << 12;
7324}
a737bd4d 7325
c19d1205
ZW
7326/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7327 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7328 Error if any register is R15.
7329 Warning if Rdlo == Rdhi. */
a737bd4d 7330
c19d1205
ZW
7331static void
7332do_smlal (void)
7333{
7334 inst.instruction |= inst.operands[0].reg << 12;
7335 inst.instruction |= inst.operands[1].reg << 16;
7336 inst.instruction |= inst.operands[2].reg;
7337 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7338
c19d1205
ZW
7339 if (inst.operands[0].reg == inst.operands[1].reg)
7340 as_tsktsk (_("rdhi and rdlo must be different"));
7341}
a737bd4d 7342
c19d1205
ZW
7343/* ARM V5E (El Segundo) signed-multiply (argument parse)
7344 SMULxy{cond} Rd,Rm,Rs
7345 Error if any register is R15. */
a737bd4d 7346
c19d1205
ZW
7347static void
7348do_smul (void)
7349{
7350 inst.instruction |= inst.operands[0].reg << 16;
7351 inst.instruction |= inst.operands[1].reg;
7352 inst.instruction |= inst.operands[2].reg << 8;
7353}
a737bd4d 7354
c19d1205 7355/* ARM V6 srs (argument parse). */
a737bd4d 7356
c19d1205
ZW
7357static void
7358do_srs (void)
7359{
7360 inst.instruction |= inst.operands[0].imm;
7361 if (inst.operands[0].writeback)
7362 inst.instruction |= WRITE_BACK;
7363}
a737bd4d 7364
c19d1205 7365/* ARM V6 strex (argument parse). */
a737bd4d 7366
c19d1205
ZW
7367static void
7368do_strex (void)
7369{
7370 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7371 || inst.operands[2].postind || inst.operands[2].writeback
7372 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7373 || inst.operands[2].negative
7374 /* See comment in do_ldrex(). */
7375 || (inst.operands[2].reg == REG_PC),
7376 BAD_ADDR_MODE);
a737bd4d 7377
c19d1205
ZW
7378 constraint (inst.operands[0].reg == inst.operands[1].reg
7379 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7380
c19d1205
ZW
7381 constraint (inst.reloc.exp.X_op != O_constant
7382 || inst.reloc.exp.X_add_number != 0,
7383 _("offset must be zero in ARM encoding"));
a737bd4d 7384
c19d1205
ZW
7385 inst.instruction |= inst.operands[0].reg << 12;
7386 inst.instruction |= inst.operands[1].reg;
7387 inst.instruction |= inst.operands[2].reg << 16;
7388 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7389}
7390
7391static void
c19d1205 7392do_strexd (void)
e16bb312 7393{
c19d1205
ZW
7394 constraint (inst.operands[1].reg % 2 != 0,
7395 _("even register required"));
7396 constraint (inst.operands[2].present
7397 && inst.operands[2].reg != inst.operands[1].reg + 1,
7398 _("can only store two consecutive registers"));
7399 /* If op 2 were present and equal to PC, this function wouldn't
7400 have been called in the first place. */
7401 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7402
c19d1205
ZW
7403 constraint (inst.operands[0].reg == inst.operands[1].reg
7404 || inst.operands[0].reg == inst.operands[1].reg + 1
7405 || inst.operands[0].reg == inst.operands[3].reg,
7406 BAD_OVERLAP);
e16bb312 7407
c19d1205
ZW
7408 inst.instruction |= inst.operands[0].reg << 12;
7409 inst.instruction |= inst.operands[1].reg;
7410 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7411}
7412
c19d1205
ZW
7413/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7414 extends it to 32-bits, and adds the result to a value in another
7415 register. You can specify a rotation by 0, 8, 16, or 24 bits
7416 before extracting the 16-bit value.
7417 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7418 Condition defaults to COND_ALWAYS.
7419 Error if any register uses R15. */
7420
e16bb312 7421static void
c19d1205 7422do_sxtah (void)
e16bb312 7423{
c19d1205
ZW
7424 inst.instruction |= inst.operands[0].reg << 12;
7425 inst.instruction |= inst.operands[1].reg << 16;
7426 inst.instruction |= inst.operands[2].reg;
7427 inst.instruction |= inst.operands[3].imm << 10;
7428}
e16bb312 7429
c19d1205 7430/* ARM V6 SXTH.
e16bb312 7431
c19d1205
ZW
7432 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7433 Condition defaults to COND_ALWAYS.
7434 Error if any register uses R15. */
e16bb312
NC
7435
7436static void
c19d1205 7437do_sxth (void)
e16bb312 7438{
c19d1205
ZW
7439 inst.instruction |= inst.operands[0].reg << 12;
7440 inst.instruction |= inst.operands[1].reg;
7441 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7442}
c19d1205
ZW
7443\f
7444/* VFP instructions. In a logical order: SP variant first, monad
7445 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7446
7447static void
c19d1205 7448do_vfp_sp_monadic (void)
e16bb312 7449{
5287ad62
JB
7450 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7451 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7452}
7453
7454static void
c19d1205 7455do_vfp_sp_dyadic (void)
e16bb312 7456{
5287ad62
JB
7457 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7458 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7459 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7460}
7461
7462static void
c19d1205 7463do_vfp_sp_compare_z (void)
e16bb312 7464{
5287ad62 7465 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7466}
7467
7468static void
c19d1205 7469do_vfp_dp_sp_cvt (void)
e16bb312 7470{
5287ad62
JB
7471 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7472 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7473}
7474
7475static void
c19d1205 7476do_vfp_sp_dp_cvt (void)
e16bb312 7477{
5287ad62
JB
7478 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7479 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7480}
7481
7482static void
c19d1205 7483do_vfp_reg_from_sp (void)
e16bb312 7484{
c19d1205 7485 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7487}
7488
7489static void
c19d1205 7490do_vfp_reg2_from_sp2 (void)
e16bb312 7491{
c19d1205
ZW
7492 constraint (inst.operands[2].imm != 2,
7493 _("only two consecutive VFP SP registers allowed here"));
7494 inst.instruction |= inst.operands[0].reg << 12;
7495 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7496 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7497}
7498
7499static void
c19d1205 7500do_vfp_sp_from_reg (void)
e16bb312 7501{
5287ad62 7502 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7503 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7504}
7505
7506static void
c19d1205 7507do_vfp_sp2_from_reg2 (void)
e16bb312 7508{
c19d1205
ZW
7509 constraint (inst.operands[0].imm != 2,
7510 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7511 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7512 inst.instruction |= inst.operands[1].reg << 12;
7513 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7514}
7515
7516static void
c19d1205 7517do_vfp_sp_ldst (void)
e16bb312 7518{
5287ad62 7519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7520 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7521}
7522
7523static void
c19d1205 7524do_vfp_dp_ldst (void)
e16bb312 7525{
5287ad62 7526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7527 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7528}
7529
c19d1205 7530
e16bb312 7531static void
c19d1205 7532vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7533{
c19d1205
ZW
7534 if (inst.operands[0].writeback)
7535 inst.instruction |= WRITE_BACK;
7536 else
7537 constraint (ldstm_type != VFP_LDSTMIA,
7538 _("this addressing mode requires base-register writeback"));
7539 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7540 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7541 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7542}
7543
7544static void
c19d1205 7545vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7546{
c19d1205 7547 int count;
e16bb312 7548
c19d1205
ZW
7549 if (inst.operands[0].writeback)
7550 inst.instruction |= WRITE_BACK;
7551 else
7552 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7553 _("this addressing mode requires base-register writeback"));
e16bb312 7554
c19d1205 7555 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7556 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7557
c19d1205
ZW
7558 count = inst.operands[1].imm << 1;
7559 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7560 count += 1;
e16bb312 7561
c19d1205 7562 inst.instruction |= count;
e16bb312
NC
7563}
7564
7565static void
c19d1205 7566do_vfp_sp_ldstmia (void)
e16bb312 7567{
c19d1205 7568 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7569}
7570
7571static void
c19d1205 7572do_vfp_sp_ldstmdb (void)
e16bb312 7573{
c19d1205 7574 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7575}
7576
7577static void
c19d1205 7578do_vfp_dp_ldstmia (void)
e16bb312 7579{
c19d1205 7580 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7581}
7582
7583static void
c19d1205 7584do_vfp_dp_ldstmdb (void)
e16bb312 7585{
c19d1205 7586 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7587}
7588
7589static void
c19d1205 7590do_vfp_xp_ldstmia (void)
e16bb312 7591{
c19d1205
ZW
7592 vfp_dp_ldstm (VFP_LDSTMIAX);
7593}
e16bb312 7594
c19d1205
ZW
7595static void
7596do_vfp_xp_ldstmdb (void)
7597{
7598 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7599}
5287ad62
JB
7600
7601static void
7602do_vfp_dp_rd_rm (void)
7603{
7604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7605 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7606}
7607
7608static void
7609do_vfp_dp_rn_rd (void)
7610{
7611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7612 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7613}
7614
7615static void
7616do_vfp_dp_rd_rn (void)
7617{
7618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7619 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7620}
7621
7622static void
7623do_vfp_dp_rd_rn_rm (void)
7624{
7625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7626 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7627 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7628}
7629
7630static void
7631do_vfp_dp_rd (void)
7632{
7633 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7634}
7635
7636static void
7637do_vfp_dp_rm_rd_rn (void)
7638{
7639 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7640 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7641 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7642}
7643
7644/* VFPv3 instructions. */
7645static void
7646do_vfp_sp_const (void)
7647{
7648 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7649 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7650 inst.instruction |= (inst.operands[1].imm >> 4);
7651}
7652
7653static void
7654do_vfp_dp_const (void)
7655{
7656 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7657 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7658 inst.instruction |= (inst.operands[1].imm >> 4);
7659}
7660
7661static void
7662vfp_conv (int srcsize)
7663{
7664 unsigned immbits = srcsize - inst.operands[1].imm;
7665 inst.instruction |= (immbits & 1) << 5;
7666 inst.instruction |= (immbits >> 1);
7667}
7668
7669static void
7670do_vfp_sp_conv_16 (void)
7671{
7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7673 vfp_conv (16);
7674}
7675
7676static void
7677do_vfp_dp_conv_16 (void)
7678{
7679 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7680 vfp_conv (16);
7681}
7682
7683static void
7684do_vfp_sp_conv_32 (void)
7685{
7686 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7687 vfp_conv (32);
7688}
7689
7690static void
7691do_vfp_dp_conv_32 (void)
7692{
7693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7694 vfp_conv (32);
7695}
7696
c19d1205
ZW
7697\f
7698/* FPA instructions. Also in a logical order. */
e16bb312 7699
c19d1205
ZW
7700static void
7701do_fpa_cmp (void)
7702{
7703 inst.instruction |= inst.operands[0].reg << 16;
7704 inst.instruction |= inst.operands[1].reg;
7705}
b99bd4ef
NC
7706
7707static void
c19d1205 7708do_fpa_ldmstm (void)
b99bd4ef 7709{
c19d1205
ZW
7710 inst.instruction |= inst.operands[0].reg << 12;
7711 switch (inst.operands[1].imm)
7712 {
7713 case 1: inst.instruction |= CP_T_X; break;
7714 case 2: inst.instruction |= CP_T_Y; break;
7715 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7716 case 4: break;
7717 default: abort ();
7718 }
b99bd4ef 7719
c19d1205
ZW
7720 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7721 {
7722 /* The instruction specified "ea" or "fd", so we can only accept
7723 [Rn]{!}. The instruction does not really support stacking or
7724 unstacking, so we have to emulate these by setting appropriate
7725 bits and offsets. */
7726 constraint (inst.reloc.exp.X_op != O_constant
7727 || inst.reloc.exp.X_add_number != 0,
7728 _("this instruction does not support indexing"));
b99bd4ef 7729
c19d1205
ZW
7730 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7731 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7732
c19d1205
ZW
7733 if (!(inst.instruction & INDEX_UP))
7734 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7735
c19d1205
ZW
7736 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7737 {
7738 inst.operands[2].preind = 0;
7739 inst.operands[2].postind = 1;
7740 }
7741 }
b99bd4ef 7742
c19d1205 7743 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7744}
037e8744 7745
c19d1205
ZW
7746\f
7747/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7748
c19d1205
ZW
7749static void
7750do_iwmmxt_tandorc (void)
7751{
7752 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7753}
b99bd4ef 7754
c19d1205
ZW
7755static void
7756do_iwmmxt_textrc (void)
7757{
7758 inst.instruction |= inst.operands[0].reg << 12;
7759 inst.instruction |= inst.operands[1].imm;
7760}
b99bd4ef
NC
7761
7762static void
c19d1205 7763do_iwmmxt_textrm (void)
b99bd4ef 7764{
c19d1205
ZW
7765 inst.instruction |= inst.operands[0].reg << 12;
7766 inst.instruction |= inst.operands[1].reg << 16;
7767 inst.instruction |= inst.operands[2].imm;
7768}
b99bd4ef 7769
c19d1205
ZW
7770static void
7771do_iwmmxt_tinsr (void)
7772{
7773 inst.instruction |= inst.operands[0].reg << 16;
7774 inst.instruction |= inst.operands[1].reg << 12;
7775 inst.instruction |= inst.operands[2].imm;
7776}
b99bd4ef 7777
c19d1205
ZW
7778static void
7779do_iwmmxt_tmia (void)
7780{
7781 inst.instruction |= inst.operands[0].reg << 5;
7782 inst.instruction |= inst.operands[1].reg;
7783 inst.instruction |= inst.operands[2].reg << 12;
7784}
b99bd4ef 7785
c19d1205
ZW
7786static void
7787do_iwmmxt_waligni (void)
7788{
7789 inst.instruction |= inst.operands[0].reg << 12;
7790 inst.instruction |= inst.operands[1].reg << 16;
7791 inst.instruction |= inst.operands[2].reg;
7792 inst.instruction |= inst.operands[3].imm << 20;
7793}
b99bd4ef 7794
c19d1205
ZW
7795static void
7796do_iwmmxt_wmov (void)
7797{
7798 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7799 inst.instruction |= inst.operands[0].reg << 12;
7800 inst.instruction |= inst.operands[1].reg << 16;
7801 inst.instruction |= inst.operands[1].reg;
7802}
b99bd4ef 7803
c19d1205
ZW
7804static void
7805do_iwmmxt_wldstbh (void)
7806{
8f06b2d8 7807 int reloc;
c19d1205 7808 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7809 if (thumb_mode)
7810 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7811 else
7812 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7813 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7814}
7815
c19d1205
ZW
7816static void
7817do_iwmmxt_wldstw (void)
7818{
7819 /* RIWR_RIWC clears .isreg for a control register. */
7820 if (!inst.operands[0].isreg)
7821 {
7822 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7823 inst.instruction |= 0xf0000000;
7824 }
b99bd4ef 7825
c19d1205
ZW
7826 inst.instruction |= inst.operands[0].reg << 12;
7827 encode_arm_cp_address (1, TRUE, TRUE, 0);
7828}
b99bd4ef
NC
7829
7830static void
c19d1205 7831do_iwmmxt_wldstd (void)
b99bd4ef 7832{
c19d1205 7833 inst.instruction |= inst.operands[0].reg << 12;
f2184508 7834 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 7835}
b99bd4ef 7836
c19d1205
ZW
7837static void
7838do_iwmmxt_wshufh (void)
7839{
7840 inst.instruction |= inst.operands[0].reg << 12;
7841 inst.instruction |= inst.operands[1].reg << 16;
7842 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7843 inst.instruction |= (inst.operands[2].imm & 0x0f);
7844}
b99bd4ef 7845
c19d1205
ZW
7846static void
7847do_iwmmxt_wzero (void)
7848{
7849 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7850 inst.instruction |= inst.operands[0].reg;
7851 inst.instruction |= inst.operands[0].reg << 12;
7852 inst.instruction |= inst.operands[0].reg << 16;
7853}
7854\f
7855/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
7856 operations first, then control, shift, and load/store. */
b99bd4ef 7857
c19d1205 7858/* Insns like "foo X,Y,Z". */
b99bd4ef 7859
c19d1205
ZW
7860static void
7861do_mav_triple (void)
7862{
7863 inst.instruction |= inst.operands[0].reg << 16;
7864 inst.instruction |= inst.operands[1].reg;
7865 inst.instruction |= inst.operands[2].reg << 12;
7866}
b99bd4ef 7867
c19d1205
ZW
7868/* Insns like "foo W,X,Y,Z".
7869 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 7870
c19d1205
ZW
7871static void
7872do_mav_quad (void)
7873{
7874 inst.instruction |= inst.operands[0].reg << 5;
7875 inst.instruction |= inst.operands[1].reg << 12;
7876 inst.instruction |= inst.operands[2].reg << 16;
7877 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
7878}
7879
c19d1205
ZW
7880/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
7881static void
7882do_mav_dspsc (void)
a737bd4d 7883{
c19d1205
ZW
7884 inst.instruction |= inst.operands[1].reg << 12;
7885}
a737bd4d 7886
c19d1205
ZW
7887/* Maverick shift immediate instructions.
7888 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
7889 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 7890
c19d1205
ZW
7891static void
7892do_mav_shift (void)
7893{
7894 int imm = inst.operands[2].imm;
a737bd4d 7895
c19d1205
ZW
7896 inst.instruction |= inst.operands[0].reg << 12;
7897 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 7898
c19d1205
ZW
7899 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
7900 Bits 5-7 of the insn should have bits 4-6 of the immediate.
7901 Bit 4 should be 0. */
7902 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 7903
c19d1205
ZW
7904 inst.instruction |= imm;
7905}
7906\f
7907/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 7908
c19d1205
ZW
7909/* Xscale multiply-accumulate (argument parse)
7910 MIAcc acc0,Rm,Rs
7911 MIAPHcc acc0,Rm,Rs
7912 MIAxycc acc0,Rm,Rs. */
a737bd4d 7913
c19d1205
ZW
7914static void
7915do_xsc_mia (void)
7916{
7917 inst.instruction |= inst.operands[1].reg;
7918 inst.instruction |= inst.operands[2].reg << 12;
7919}
a737bd4d 7920
c19d1205 7921/* Xscale move-accumulator-register (argument parse)
a737bd4d 7922
c19d1205 7923 MARcc acc0,RdLo,RdHi. */
b99bd4ef 7924
c19d1205
ZW
7925static void
7926do_xsc_mar (void)
7927{
7928 inst.instruction |= inst.operands[1].reg << 12;
7929 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7930}
7931
c19d1205 7932/* Xscale move-register-accumulator (argument parse)
b99bd4ef 7933
c19d1205 7934 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
7935
7936static void
c19d1205 7937do_xsc_mra (void)
b99bd4ef 7938{
c19d1205
ZW
7939 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
7940 inst.instruction |= inst.operands[0].reg << 12;
7941 inst.instruction |= inst.operands[1].reg << 16;
7942}
7943\f
7944/* Encoding functions relevant only to Thumb. */
b99bd4ef 7945
c19d1205
ZW
7946/* inst.operands[i] is a shifted-register operand; encode
7947 it into inst.instruction in the format used by Thumb32. */
7948
7949static void
7950encode_thumb32_shifted_operand (int i)
7951{
7952 unsigned int value = inst.reloc.exp.X_add_number;
7953 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 7954
9c3c69f2
PB
7955 constraint (inst.operands[i].immisreg,
7956 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
7957 inst.instruction |= inst.operands[i].reg;
7958 if (shift == SHIFT_RRX)
7959 inst.instruction |= SHIFT_ROR << 4;
7960 else
b99bd4ef 7961 {
c19d1205
ZW
7962 constraint (inst.reloc.exp.X_op != O_constant,
7963 _("expression too complex"));
7964
7965 constraint (value > 32
7966 || (value == 32 && (shift == SHIFT_LSL
7967 || shift == SHIFT_ROR)),
7968 _("shift expression is too large"));
7969
7970 if (value == 0)
7971 shift = SHIFT_LSL;
7972 else if (value == 32)
7973 value = 0;
7974
7975 inst.instruction |= shift << 4;
7976 inst.instruction |= (value & 0x1c) << 10;
7977 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 7978 }
c19d1205 7979}
b99bd4ef 7980
b99bd4ef 7981
c19d1205
ZW
7982/* inst.operands[i] was set up by parse_address. Encode it into a
7983 Thumb32 format load or store instruction. Reject forms that cannot
7984 be used with such instructions. If is_t is true, reject forms that
7985 cannot be used with a T instruction; if is_d is true, reject forms
7986 that cannot be used with a D instruction. */
b99bd4ef 7987
c19d1205
ZW
7988static void
7989encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
7990{
7991 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7992
7993 constraint (!inst.operands[i].isreg,
53365c0d 7994 _("Instruction does not support =N addresses"));
b99bd4ef 7995
c19d1205
ZW
7996 inst.instruction |= inst.operands[i].reg << 16;
7997 if (inst.operands[i].immisreg)
b99bd4ef 7998 {
c19d1205
ZW
7999 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8000 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8001 constraint (inst.operands[i].negative,
8002 _("Thumb does not support negative register indexing"));
8003 constraint (inst.operands[i].postind,
8004 _("Thumb does not support register post-indexing"));
8005 constraint (inst.operands[i].writeback,
8006 _("Thumb does not support register indexing with writeback"));
8007 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8008 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8009
f40d1643 8010 inst.instruction |= inst.operands[i].imm;
c19d1205 8011 if (inst.operands[i].shifted)
b99bd4ef 8012 {
c19d1205
ZW
8013 constraint (inst.reloc.exp.X_op != O_constant,
8014 _("expression too complex"));
9c3c69f2
PB
8015 constraint (inst.reloc.exp.X_add_number < 0
8016 || inst.reloc.exp.X_add_number > 3,
c19d1205 8017 _("shift out of range"));
9c3c69f2 8018 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8019 }
8020 inst.reloc.type = BFD_RELOC_UNUSED;
8021 }
8022 else if (inst.operands[i].preind)
8023 {
8024 constraint (is_pc && inst.operands[i].writeback,
8025 _("cannot use writeback with PC-relative addressing"));
f40d1643 8026 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8027 _("cannot use writeback with this instruction"));
8028
8029 if (is_d)
8030 {
8031 inst.instruction |= 0x01000000;
8032 if (inst.operands[i].writeback)
8033 inst.instruction |= 0x00200000;
b99bd4ef 8034 }
c19d1205 8035 else
b99bd4ef 8036 {
c19d1205
ZW
8037 inst.instruction |= 0x00000c00;
8038 if (inst.operands[i].writeback)
8039 inst.instruction |= 0x00000100;
b99bd4ef 8040 }
c19d1205 8041 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8042 }
c19d1205 8043 else if (inst.operands[i].postind)
b99bd4ef 8044 {
c19d1205
ZW
8045 assert (inst.operands[i].writeback);
8046 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8047 constraint (is_t, _("cannot use post-indexing with this instruction"));
8048
8049 if (is_d)
8050 inst.instruction |= 0x00200000;
8051 else
8052 inst.instruction |= 0x00000900;
8053 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8054 }
8055 else /* unindexed - only for coprocessor */
8056 inst.error = _("instruction does not accept unindexed addressing");
8057}
8058
8059/* Table of Thumb instructions which exist in both 16- and 32-bit
8060 encodings (the latter only in post-V6T2 cores). The index is the
8061 value used in the insns table below. When there is more than one
8062 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8063 holds variant (1).
8064 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8065#define T16_32_TAB \
8066 X(adc, 4140, eb400000), \
8067 X(adcs, 4140, eb500000), \
8068 X(add, 1c00, eb000000), \
8069 X(adds, 1c00, eb100000), \
0110f2b8
PB
8070 X(addi, 0000, f1000000), \
8071 X(addis, 0000, f1100000), \
8072 X(add_pc,000f, f20f0000), \
8073 X(add_sp,000d, f10d0000), \
e9f89963 8074 X(adr, 000f, f20f0000), \
c19d1205
ZW
8075 X(and, 4000, ea000000), \
8076 X(ands, 4000, ea100000), \
8077 X(asr, 1000, fa40f000), \
8078 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8079 X(b, e000, f000b000), \
8080 X(bcond, d000, f0008000), \
c19d1205
ZW
8081 X(bic, 4380, ea200000), \
8082 X(bics, 4380, ea300000), \
8083 X(cmn, 42c0, eb100f00), \
8084 X(cmp, 2800, ebb00f00), \
8085 X(cpsie, b660, f3af8400), \
8086 X(cpsid, b670, f3af8600), \
8087 X(cpy, 4600, ea4f0000), \
0110f2b8 8088 X(dec_sp,80dd, f1bd0d00), \
c19d1205
ZW
8089 X(eor, 4040, ea800000), \
8090 X(eors, 4040, ea900000), \
0110f2b8 8091 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8092 X(ldmia, c800, e8900000), \
8093 X(ldr, 6800, f8500000), \
8094 X(ldrb, 7800, f8100000), \
8095 X(ldrh, 8800, f8300000), \
8096 X(ldrsb, 5600, f9100000), \
8097 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8098 X(ldr_pc,4800, f85f0000), \
8099 X(ldr_pc2,4800, f85f0000), \
8100 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8101 X(lsl, 0000, fa00f000), \
8102 X(lsls, 0000, fa10f000), \
8103 X(lsr, 0800, fa20f000), \
8104 X(lsrs, 0800, fa30f000), \
8105 X(mov, 2000, ea4f0000), \
8106 X(movs, 2000, ea5f0000), \
8107 X(mul, 4340, fb00f000), \
8108 X(muls, 4340, ffffffff), /* no 32b muls */ \
8109 X(mvn, 43c0, ea6f0000), \
8110 X(mvns, 43c0, ea7f0000), \
8111 X(neg, 4240, f1c00000), /* rsb #0 */ \
8112 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8113 X(orr, 4300, ea400000), \
8114 X(orrs, 4300, ea500000), \
e9f89963
PB
8115 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8116 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8117 X(rev, ba00, fa90f080), \
8118 X(rev16, ba40, fa90f090), \
8119 X(revsh, bac0, fa90f0b0), \
8120 X(ror, 41c0, fa60f000), \
8121 X(rors, 41c0, fa70f000), \
8122 X(sbc, 4180, eb600000), \
8123 X(sbcs, 4180, eb700000), \
8124 X(stmia, c000, e8800000), \
8125 X(str, 6000, f8400000), \
8126 X(strb, 7000, f8000000), \
8127 X(strh, 8000, f8200000), \
0110f2b8 8128 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8129 X(sub, 1e00, eba00000), \
8130 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8131 X(subi, 8000, f1a00000), \
8132 X(subis, 8000, f1b00000), \
c19d1205
ZW
8133 X(sxtb, b240, fa4ff080), \
8134 X(sxth, b200, fa0ff080), \
8135 X(tst, 4200, ea100f00), \
8136 X(uxtb, b2c0, fa5ff080), \
8137 X(uxth, b280, fa1ff080), \
8138 X(nop, bf00, f3af8000), \
8139 X(yield, bf10, f3af8001), \
8140 X(wfe, bf20, f3af8002), \
8141 X(wfi, bf30, f3af8003), \
8142 X(sev, bf40, f3af9004), /* typo, 8004? */
8143
8144/* To catch errors in encoding functions, the codes are all offset by
8145 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8146 as 16-bit instructions. */
8147#define X(a,b,c) T_MNEM_##a
8148enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8149#undef X
8150
8151#define X(a,b,c) 0x##b
8152static const unsigned short thumb_op16[] = { T16_32_TAB };
8153#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8154#undef X
8155
8156#define X(a,b,c) 0x##c
8157static const unsigned int thumb_op32[] = { T16_32_TAB };
8158#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8159#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8160#undef X
8161#undef T16_32_TAB
8162
8163/* Thumb instruction encoders, in alphabetical order. */
8164
92e90b6e
PB
8165/* ADDW or SUBW. */
8166static void
8167do_t_add_sub_w (void)
8168{
8169 int Rd, Rn;
8170
8171 Rd = inst.operands[0].reg;
8172 Rn = inst.operands[1].reg;
8173
8174 constraint (Rd == 15, _("PC not allowed as destination"));
8175 inst.instruction |= (Rn << 16) | (Rd << 8);
8176 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8177}
8178
c19d1205
ZW
8179/* Parse an add or subtract instruction. We get here with inst.instruction
8180 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8181
8182static void
8183do_t_add_sub (void)
8184{
8185 int Rd, Rs, Rn;
8186
8187 Rd = inst.operands[0].reg;
8188 Rs = (inst.operands[1].present
8189 ? inst.operands[1].reg /* Rd, Rs, foo */
8190 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8191
8192 if (unified_syntax)
8193 {
0110f2b8
PB
8194 bfd_boolean flags;
8195 bfd_boolean narrow;
8196 int opcode;
8197
8198 flags = (inst.instruction == T_MNEM_adds
8199 || inst.instruction == T_MNEM_subs);
8200 if (flags)
8201 narrow = (current_it_mask == 0);
8202 else
8203 narrow = (current_it_mask != 0);
c19d1205 8204 if (!inst.operands[2].isreg)
b99bd4ef 8205 {
16805f35
PB
8206 int add;
8207
8208 add = (inst.instruction == T_MNEM_add
8209 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8210 opcode = 0;
8211 if (inst.size_req != 4)
8212 {
0110f2b8
PB
8213 /* Attempt to use a narrow opcode, with relaxation if
8214 appropriate. */
8215 if (Rd == REG_SP && Rs == REG_SP && !flags)
8216 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8217 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8218 opcode = T_MNEM_add_sp;
8219 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8220 opcode = T_MNEM_add_pc;
8221 else if (Rd <= 7 && Rs <= 7 && narrow)
8222 {
8223 if (flags)
8224 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8225 else
8226 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8227 }
8228 if (opcode)
8229 {
8230 inst.instruction = THUMB_OP16(opcode);
8231 inst.instruction |= (Rd << 4) | Rs;
8232 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8233 if (inst.size_req != 2)
8234 inst.relax = opcode;
8235 }
8236 else
8237 constraint (inst.size_req == 2, BAD_HIREG);
8238 }
8239 if (inst.size_req == 4
8240 || (inst.size_req != 2 && !opcode))
8241 {
16805f35
PB
8242 if (Rs == REG_PC)
8243 {
8244 /* Always use addw/subw. */
8245 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8246 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8247 }
8248 else
8249 {
8250 inst.instruction = THUMB_OP32 (inst.instruction);
8251 inst.instruction = (inst.instruction & 0xe1ffffff)
8252 | 0x10000000;
8253 if (flags)
8254 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8255 else
8256 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8257 }
0110f2b8
PB
8258 inst.instruction |= inst.operands[0].reg << 8;
8259 inst.instruction |= inst.operands[1].reg << 16;
0110f2b8 8260 }
b99bd4ef 8261 }
c19d1205
ZW
8262 else
8263 {
8264 Rn = inst.operands[2].reg;
8265 /* See if we can do this with a 16-bit instruction. */
8266 if (!inst.operands[2].shifted && inst.size_req != 4)
8267 {
e27ec89e
PB
8268 if (Rd > 7 || Rs > 7 || Rn > 7)
8269 narrow = FALSE;
8270
8271 if (narrow)
c19d1205 8272 {
e27ec89e
PB
8273 inst.instruction = ((inst.instruction == T_MNEM_adds
8274 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8275 ? T_OPCODE_ADD_R3
8276 : T_OPCODE_SUB_R3);
8277 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8278 return;
8279 }
b99bd4ef 8280
c19d1205
ZW
8281 if (inst.instruction == T_MNEM_add)
8282 {
8283 if (Rd == Rs)
8284 {
8285 inst.instruction = T_OPCODE_ADD_HI;
8286 inst.instruction |= (Rd & 8) << 4;
8287 inst.instruction |= (Rd & 7);
8288 inst.instruction |= Rn << 3;
8289 return;
8290 }
8291 /* ... because addition is commutative! */
8292 else if (Rd == Rn)
8293 {
8294 inst.instruction = T_OPCODE_ADD_HI;
8295 inst.instruction |= (Rd & 8) << 4;
8296 inst.instruction |= (Rd & 7);
8297 inst.instruction |= Rs << 3;
8298 return;
8299 }
8300 }
8301 }
8302 /* If we get here, it can't be done in 16 bits. */
8303 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8304 _("shift must be constant"));
8305 inst.instruction = THUMB_OP32 (inst.instruction);
8306 inst.instruction |= Rd << 8;
8307 inst.instruction |= Rs << 16;
8308 encode_thumb32_shifted_operand (2);
8309 }
8310 }
8311 else
8312 {
8313 constraint (inst.instruction == T_MNEM_adds
8314 || inst.instruction == T_MNEM_subs,
8315 BAD_THUMB32);
b99bd4ef 8316
c19d1205 8317 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8318 {
c19d1205
ZW
8319 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8320 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8321 BAD_HIREG);
8322
8323 inst.instruction = (inst.instruction == T_MNEM_add
8324 ? 0x0000 : 0x8000);
8325 inst.instruction |= (Rd << 4) | Rs;
8326 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8327 return;
8328 }
8329
c19d1205
ZW
8330 Rn = inst.operands[2].reg;
8331 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8332
c19d1205
ZW
8333 /* We now have Rd, Rs, and Rn set to registers. */
8334 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8335 {
c19d1205
ZW
8336 /* Can't do this for SUB. */
8337 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8338 inst.instruction = T_OPCODE_ADD_HI;
8339 inst.instruction |= (Rd & 8) << 4;
8340 inst.instruction |= (Rd & 7);
8341 if (Rs == Rd)
8342 inst.instruction |= Rn << 3;
8343 else if (Rn == Rd)
8344 inst.instruction |= Rs << 3;
8345 else
8346 constraint (1, _("dest must overlap one source register"));
8347 }
8348 else
8349 {
8350 inst.instruction = (inst.instruction == T_MNEM_add
8351 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8352 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8353 }
b99bd4ef 8354 }
b99bd4ef
NC
8355}
8356
c19d1205
ZW
8357static void
8358do_t_adr (void)
8359{
0110f2b8
PB
8360 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8361 {
8362 /* Defer to section relaxation. */
8363 inst.relax = inst.instruction;
8364 inst.instruction = THUMB_OP16 (inst.instruction);
8365 inst.instruction |= inst.operands[0].reg << 4;
8366 }
8367 else if (unified_syntax && inst.size_req != 2)
e9f89963 8368 {
0110f2b8 8369 /* Generate a 32-bit opcode. */
e9f89963
PB
8370 inst.instruction = THUMB_OP32 (inst.instruction);
8371 inst.instruction |= inst.operands[0].reg << 8;
8372 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8373 inst.reloc.pc_rel = 1;
8374 }
8375 else
8376 {
0110f2b8 8377 /* Generate a 16-bit opcode. */
e9f89963
PB
8378 inst.instruction = THUMB_OP16 (inst.instruction);
8379 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8380 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8381 inst.reloc.pc_rel = 1;
b99bd4ef 8382
e9f89963
PB
8383 inst.instruction |= inst.operands[0].reg << 4;
8384 }
c19d1205 8385}
b99bd4ef 8386
c19d1205
ZW
8387/* Arithmetic instructions for which there is just one 16-bit
8388 instruction encoding, and it allows only two low registers.
8389 For maximal compatibility with ARM syntax, we allow three register
8390 operands even when Thumb-32 instructions are not available, as long
8391 as the first two are identical. For instance, both "sbc r0,r1" and
8392 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8393static void
c19d1205 8394do_t_arit3 (void)
b99bd4ef 8395{
c19d1205 8396 int Rd, Rs, Rn;
b99bd4ef 8397
c19d1205
ZW
8398 Rd = inst.operands[0].reg;
8399 Rs = (inst.operands[1].present
8400 ? inst.operands[1].reg /* Rd, Rs, foo */
8401 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8402 Rn = inst.operands[2].reg;
b99bd4ef 8403
c19d1205 8404 if (unified_syntax)
b99bd4ef 8405 {
c19d1205
ZW
8406 if (!inst.operands[2].isreg)
8407 {
8408 /* For an immediate, we always generate a 32-bit opcode;
8409 section relaxation will shrink it later if possible. */
8410 inst.instruction = THUMB_OP32 (inst.instruction);
8411 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8412 inst.instruction |= Rd << 8;
8413 inst.instruction |= Rs << 16;
8414 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8415 }
8416 else
8417 {
e27ec89e
PB
8418 bfd_boolean narrow;
8419
c19d1205 8420 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8421 if (THUMB_SETS_FLAGS (inst.instruction))
8422 narrow = current_it_mask == 0;
8423 else
8424 narrow = current_it_mask != 0;
8425
8426 if (Rd > 7 || Rn > 7 || Rs > 7)
8427 narrow = FALSE;
8428 if (inst.operands[2].shifted)
8429 narrow = FALSE;
8430 if (inst.size_req == 4)
8431 narrow = FALSE;
8432
8433 if (narrow
c19d1205
ZW
8434 && Rd == Rs)
8435 {
8436 inst.instruction = THUMB_OP16 (inst.instruction);
8437 inst.instruction |= Rd;
8438 inst.instruction |= Rn << 3;
8439 return;
8440 }
b99bd4ef 8441
c19d1205
ZW
8442 /* If we get here, it can't be done in 16 bits. */
8443 constraint (inst.operands[2].shifted
8444 && inst.operands[2].immisreg,
8445 _("shift must be constant"));
8446 inst.instruction = THUMB_OP32 (inst.instruction);
8447 inst.instruction |= Rd << 8;
8448 inst.instruction |= Rs << 16;
8449 encode_thumb32_shifted_operand (2);
8450 }
a737bd4d 8451 }
c19d1205 8452 else
b99bd4ef 8453 {
c19d1205
ZW
8454 /* On its face this is a lie - the instruction does set the
8455 flags. However, the only supported mnemonic in this mode
8456 says it doesn't. */
8457 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8458
c19d1205
ZW
8459 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8460 _("unshifted register required"));
8461 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8462 constraint (Rd != Rs,
8463 _("dest and source1 must be the same register"));
a737bd4d 8464
c19d1205
ZW
8465 inst.instruction = THUMB_OP16 (inst.instruction);
8466 inst.instruction |= Rd;
8467 inst.instruction |= Rn << 3;
b99bd4ef 8468 }
a737bd4d 8469}
b99bd4ef 8470
c19d1205
ZW
8471/* Similarly, but for instructions where the arithmetic operation is
8472 commutative, so we can allow either of them to be different from
8473 the destination operand in a 16-bit instruction. For instance, all
8474 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8475 accepted. */
8476static void
8477do_t_arit3c (void)
a737bd4d 8478{
c19d1205 8479 int Rd, Rs, Rn;
b99bd4ef 8480
c19d1205
ZW
8481 Rd = inst.operands[0].reg;
8482 Rs = (inst.operands[1].present
8483 ? inst.operands[1].reg /* Rd, Rs, foo */
8484 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8485 Rn = inst.operands[2].reg;
a737bd4d 8486
c19d1205 8487 if (unified_syntax)
a737bd4d 8488 {
c19d1205 8489 if (!inst.operands[2].isreg)
b99bd4ef 8490 {
c19d1205
ZW
8491 /* For an immediate, we always generate a 32-bit opcode;
8492 section relaxation will shrink it later if possible. */
8493 inst.instruction = THUMB_OP32 (inst.instruction);
8494 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8495 inst.instruction |= Rd << 8;
8496 inst.instruction |= Rs << 16;
8497 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8498 }
c19d1205 8499 else
a737bd4d 8500 {
e27ec89e
PB
8501 bfd_boolean narrow;
8502
c19d1205 8503 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8504 if (THUMB_SETS_FLAGS (inst.instruction))
8505 narrow = current_it_mask == 0;
8506 else
8507 narrow = current_it_mask != 0;
8508
8509 if (Rd > 7 || Rn > 7 || Rs > 7)
8510 narrow = FALSE;
8511 if (inst.operands[2].shifted)
8512 narrow = FALSE;
8513 if (inst.size_req == 4)
8514 narrow = FALSE;
8515
8516 if (narrow)
a737bd4d 8517 {
c19d1205 8518 if (Rd == Rs)
a737bd4d 8519 {
c19d1205
ZW
8520 inst.instruction = THUMB_OP16 (inst.instruction);
8521 inst.instruction |= Rd;
8522 inst.instruction |= Rn << 3;
8523 return;
a737bd4d 8524 }
c19d1205 8525 if (Rd == Rn)
a737bd4d 8526 {
c19d1205
ZW
8527 inst.instruction = THUMB_OP16 (inst.instruction);
8528 inst.instruction |= Rd;
8529 inst.instruction |= Rs << 3;
8530 return;
a737bd4d
NC
8531 }
8532 }
c19d1205
ZW
8533
8534 /* If we get here, it can't be done in 16 bits. */
8535 constraint (inst.operands[2].shifted
8536 && inst.operands[2].immisreg,
8537 _("shift must be constant"));
8538 inst.instruction = THUMB_OP32 (inst.instruction);
8539 inst.instruction |= Rd << 8;
8540 inst.instruction |= Rs << 16;
8541 encode_thumb32_shifted_operand (2);
a737bd4d 8542 }
b99bd4ef 8543 }
c19d1205
ZW
8544 else
8545 {
8546 /* On its face this is a lie - the instruction does set the
8547 flags. However, the only supported mnemonic in this mode
8548 says it doesn't. */
8549 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8550
c19d1205
ZW
8551 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8552 _("unshifted register required"));
8553 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8554
8555 inst.instruction = THUMB_OP16 (inst.instruction);
8556 inst.instruction |= Rd;
8557
8558 if (Rd == Rs)
8559 inst.instruction |= Rn << 3;
8560 else if (Rd == Rn)
8561 inst.instruction |= Rs << 3;
8562 else
8563 constraint (1, _("dest must overlap one source register"));
8564 }
a737bd4d
NC
8565}
8566
62b3e311
PB
8567static void
8568do_t_barrier (void)
8569{
8570 if (inst.operands[0].present)
8571 {
8572 constraint ((inst.instruction & 0xf0) != 0x40
8573 && inst.operands[0].imm != 0xf,
8574 "bad barrier type");
8575 inst.instruction |= inst.operands[0].imm;
8576 }
8577 else
8578 inst.instruction |= 0xf;
8579}
8580
c19d1205
ZW
8581static void
8582do_t_bfc (void)
a737bd4d 8583{
c19d1205
ZW
8584 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8585 constraint (msb > 32, _("bit-field extends past end of register"));
8586 /* The instruction encoding stores the LSB and MSB,
8587 not the LSB and width. */
8588 inst.instruction |= inst.operands[0].reg << 8;
8589 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8590 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8591 inst.instruction |= msb - 1;
b99bd4ef
NC
8592}
8593
c19d1205
ZW
8594static void
8595do_t_bfi (void)
b99bd4ef 8596{
c19d1205 8597 unsigned int msb;
b99bd4ef 8598
c19d1205
ZW
8599 /* #0 in second position is alternative syntax for bfc, which is
8600 the same instruction but with REG_PC in the Rm field. */
8601 if (!inst.operands[1].isreg)
8602 inst.operands[1].reg = REG_PC;
b99bd4ef 8603
c19d1205
ZW
8604 msb = inst.operands[2].imm + inst.operands[3].imm;
8605 constraint (msb > 32, _("bit-field extends past end of register"));
8606 /* The instruction encoding stores the LSB and MSB,
8607 not the LSB and width. */
8608 inst.instruction |= inst.operands[0].reg << 8;
8609 inst.instruction |= inst.operands[1].reg << 16;
8610 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8611 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8612 inst.instruction |= msb - 1;
b99bd4ef
NC
8613}
8614
c19d1205
ZW
8615static void
8616do_t_bfx (void)
b99bd4ef 8617{
c19d1205
ZW
8618 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8619 _("bit-field extends past end of register"));
8620 inst.instruction |= inst.operands[0].reg << 8;
8621 inst.instruction |= inst.operands[1].reg << 16;
8622 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8623 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8624 inst.instruction |= inst.operands[3].imm - 1;
8625}
b99bd4ef 8626
c19d1205
ZW
8627/* ARM V5 Thumb BLX (argument parse)
8628 BLX <target_addr> which is BLX(1)
8629 BLX <Rm> which is BLX(2)
8630 Unfortunately, there are two different opcodes for this mnemonic.
8631 So, the insns[].value is not used, and the code here zaps values
8632 into inst.instruction.
b99bd4ef 8633
c19d1205
ZW
8634 ??? How to take advantage of the additional two bits of displacement
8635 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8636
c19d1205
ZW
8637static void
8638do_t_blx (void)
8639{
dfa9f0d5 8640 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8641 if (inst.operands[0].isreg)
8642 /* We have a register, so this is BLX(2). */
8643 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8644 else
8645 {
c19d1205 8646 /* No register. This must be BLX(1). */
2fc8bdac 8647 inst.instruction = 0xf000e800;
39b41c9c
PB
8648#ifdef OBJ_ELF
8649 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8650 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8651 else
8652#endif
8653 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8654 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8655 }
8656}
8657
c19d1205
ZW
8658static void
8659do_t_branch (void)
b99bd4ef 8660{
0110f2b8 8661 int opcode;
dfa9f0d5
PB
8662 int cond;
8663
8664 if (current_it_mask)
8665 {
8666 /* Conditional branches inside IT blocks are encoded as unconditional
8667 branches. */
8668 cond = COND_ALWAYS;
8669 /* A branch must be the last instruction in an IT block. */
8670 constraint (current_it_mask != 0x10, BAD_BRANCH);
8671 }
8672 else
8673 cond = inst.cond;
8674
8675 if (cond != COND_ALWAYS)
0110f2b8
PB
8676 opcode = T_MNEM_bcond;
8677 else
8678 opcode = inst.instruction;
8679
8680 if (unified_syntax && inst.size_req == 4)
c19d1205 8681 {
0110f2b8 8682 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8683 if (cond == COND_ALWAYS)
0110f2b8 8684 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8685 else
8686 {
dfa9f0d5
PB
8687 assert (cond != 0xF);
8688 inst.instruction |= cond << 22;
c19d1205
ZW
8689 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8690 }
8691 }
b99bd4ef
NC
8692 else
8693 {
0110f2b8 8694 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8695 if (cond == COND_ALWAYS)
c19d1205
ZW
8696 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8697 else
b99bd4ef 8698 {
dfa9f0d5 8699 inst.instruction |= cond << 8;
c19d1205 8700 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8701 }
0110f2b8
PB
8702 /* Allow section relaxation. */
8703 if (unified_syntax && inst.size_req != 2)
8704 inst.relax = opcode;
b99bd4ef 8705 }
c19d1205
ZW
8706
8707 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8708}
8709
8710static void
c19d1205 8711do_t_bkpt (void)
b99bd4ef 8712{
dfa9f0d5
PB
8713 constraint (inst.cond != COND_ALWAYS,
8714 _("instruction is always unconditional"));
c19d1205 8715 if (inst.operands[0].present)
b99bd4ef 8716 {
c19d1205
ZW
8717 constraint (inst.operands[0].imm > 255,
8718 _("immediate value out of range"));
8719 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8720 }
b99bd4ef
NC
8721}
8722
8723static void
c19d1205 8724do_t_branch23 (void)
b99bd4ef 8725{
dfa9f0d5 8726 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8727 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8728 inst.reloc.pc_rel = 1;
8729
c19d1205
ZW
8730 /* If the destination of the branch is a defined symbol which does not have
8731 the THUMB_FUNC attribute, then we must be calling a function which has
8732 the (interfacearm) attribute. We look for the Thumb entry point to that
8733 function and change the branch to refer to that function instead. */
8734 if ( inst.reloc.exp.X_op == O_symbol
8735 && inst.reloc.exp.X_add_symbol != NULL
8736 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8737 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8738 inst.reloc.exp.X_add_symbol =
8739 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8740}
8741
8742static void
c19d1205 8743do_t_bx (void)
90e4755a 8744{
dfa9f0d5 8745 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8746 inst.instruction |= inst.operands[0].reg << 3;
8747 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8748 should cause the alignment to be checked once it is known. This is
8749 because BX PC only works if the instruction is word aligned. */
8750}
90e4755a 8751
c19d1205
ZW
8752static void
8753do_t_bxj (void)
8754{
dfa9f0d5 8755 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8756 if (inst.operands[0].reg == REG_PC)
8757 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8758
c19d1205 8759 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8760}
8761
8762static void
c19d1205 8763do_t_clz (void)
90e4755a 8764{
c19d1205
ZW
8765 inst.instruction |= inst.operands[0].reg << 8;
8766 inst.instruction |= inst.operands[1].reg << 16;
8767 inst.instruction |= inst.operands[1].reg;
8768}
90e4755a 8769
dfa9f0d5
PB
8770static void
8771do_t_cps (void)
8772{
8773 constraint (current_it_mask, BAD_NOT_IT);
8774 inst.instruction |= inst.operands[0].imm;
8775}
8776
c19d1205
ZW
8777static void
8778do_t_cpsi (void)
8779{
dfa9f0d5 8780 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 8781 if (unified_syntax
62b3e311
PB
8782 && (inst.operands[1].present || inst.size_req == 4)
8783 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 8784 {
c19d1205
ZW
8785 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8786 inst.instruction = 0xf3af8000;
8787 inst.instruction |= imod << 9;
8788 inst.instruction |= inst.operands[0].imm << 5;
8789 if (inst.operands[1].present)
8790 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 8791 }
c19d1205 8792 else
90e4755a 8793 {
62b3e311
PB
8794 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8795 && (inst.operands[0].imm & 4),
8796 _("selected processor does not support 'A' form "
8797 "of this instruction"));
8798 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
8799 _("Thumb does not support the 2-argument "
8800 "form of this instruction"));
8801 inst.instruction |= inst.operands[0].imm;
90e4755a 8802 }
90e4755a
RE
8803}
8804
c19d1205
ZW
8805/* THUMB CPY instruction (argument parse). */
8806
90e4755a 8807static void
c19d1205 8808do_t_cpy (void)
90e4755a 8809{
c19d1205 8810 if (inst.size_req == 4)
90e4755a 8811 {
c19d1205
ZW
8812 inst.instruction = THUMB_OP32 (T_MNEM_mov);
8813 inst.instruction |= inst.operands[0].reg << 8;
8814 inst.instruction |= inst.operands[1].reg;
90e4755a 8815 }
c19d1205 8816 else
90e4755a 8817 {
c19d1205
ZW
8818 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8819 inst.instruction |= (inst.operands[0].reg & 0x7);
8820 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 8821 }
90e4755a
RE
8822}
8823
90e4755a 8824static void
c19d1205 8825do_t_czb (void)
90e4755a 8826{
dfa9f0d5 8827 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
8828 constraint (inst.operands[0].reg > 7, BAD_HIREG);
8829 inst.instruction |= inst.operands[0].reg;
8830 inst.reloc.pc_rel = 1;
8831 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
8832}
90e4755a 8833
62b3e311
PB
8834static void
8835do_t_dbg (void)
8836{
8837 inst.instruction |= inst.operands[0].imm;
8838}
8839
8840static void
8841do_t_div (void)
8842{
8843 if (!inst.operands[1].present)
8844 inst.operands[1].reg = inst.operands[0].reg;
8845 inst.instruction |= inst.operands[0].reg << 8;
8846 inst.instruction |= inst.operands[1].reg << 16;
8847 inst.instruction |= inst.operands[2].reg;
8848}
8849
c19d1205
ZW
8850static void
8851do_t_hint (void)
8852{
8853 if (unified_syntax && inst.size_req == 4)
8854 inst.instruction = THUMB_OP32 (inst.instruction);
8855 else
8856 inst.instruction = THUMB_OP16 (inst.instruction);
8857}
90e4755a 8858
c19d1205
ZW
8859static void
8860do_t_it (void)
8861{
8862 unsigned int cond = inst.operands[0].imm;
e27ec89e 8863
dfa9f0d5 8864 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
8865 current_it_mask = (inst.instruction & 0xf) | 0x10;
8866 current_cc = cond;
8867
8868 /* If the condition is a negative condition, invert the mask. */
c19d1205 8869 if ((cond & 0x1) == 0x0)
90e4755a 8870 {
c19d1205 8871 unsigned int mask = inst.instruction & 0x000f;
90e4755a 8872
c19d1205
ZW
8873 if ((mask & 0x7) == 0)
8874 /* no conversion needed */;
8875 else if ((mask & 0x3) == 0)
e27ec89e
PB
8876 mask ^= 0x8;
8877 else if ((mask & 0x1) == 0)
8878 mask ^= 0xC;
c19d1205 8879 else
e27ec89e 8880 mask ^= 0xE;
90e4755a 8881
e27ec89e
PB
8882 inst.instruction &= 0xfff0;
8883 inst.instruction |= mask;
c19d1205 8884 }
90e4755a 8885
c19d1205
ZW
8886 inst.instruction |= cond << 4;
8887}
90e4755a 8888
c19d1205
ZW
8889static void
8890do_t_ldmstm (void)
8891{
8892 /* This really doesn't seem worth it. */
8893 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
8894 _("expression too complex"));
8895 constraint (inst.operands[1].writeback,
8896 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 8897
c19d1205
ZW
8898 if (unified_syntax)
8899 {
8900 /* See if we can use a 16-bit instruction. */
8901 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
8902 && inst.size_req != 4
8903 && inst.operands[0].reg <= 7
8904 && !(inst.operands[1].imm & ~0xff)
8905 && (inst.instruction == T_MNEM_stmia
8906 ? inst.operands[0].writeback
8907 : (inst.operands[0].writeback
8908 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
90e4755a 8909 {
c19d1205
ZW
8910 if (inst.instruction == T_MNEM_stmia
8911 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
8912 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8913 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8914 inst.operands[0].reg);
90e4755a 8915
c19d1205
ZW
8916 inst.instruction = THUMB_OP16 (inst.instruction);
8917 inst.instruction |= inst.operands[0].reg << 8;
8918 inst.instruction |= inst.operands[1].imm;
8919 }
8920 else
8921 {
8922 if (inst.operands[1].imm & (1 << 13))
8923 as_warn (_("SP should not be in register list"));
8924 if (inst.instruction == T_MNEM_stmia)
90e4755a 8925 {
c19d1205
ZW
8926 if (inst.operands[1].imm & (1 << 15))
8927 as_warn (_("PC should not be in register list"));
8928 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
8929 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8930 inst.operands[0].reg);
90e4755a
RE
8931 }
8932 else
8933 {
c19d1205
ZW
8934 if (inst.operands[1].imm & (1 << 14)
8935 && inst.operands[1].imm & (1 << 15))
8936 as_warn (_("LR and PC should not both be in register list"));
8937 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8938 && inst.operands[0].writeback)
8939 as_warn (_("base register should not be in register list "
8940 "when written back"));
90e4755a 8941 }
c19d1205
ZW
8942 if (inst.instruction < 0xffff)
8943 inst.instruction = THUMB_OP32 (inst.instruction);
8944 inst.instruction |= inst.operands[0].reg << 16;
8945 inst.instruction |= inst.operands[1].imm;
8946 if (inst.operands[0].writeback)
8947 inst.instruction |= WRITE_BACK;
90e4755a
RE
8948 }
8949 }
c19d1205 8950 else
90e4755a 8951 {
c19d1205
ZW
8952 constraint (inst.operands[0].reg > 7
8953 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
8954 if (inst.instruction == T_MNEM_stmia)
f03698e6 8955 {
c19d1205
ZW
8956 if (!inst.operands[0].writeback)
8957 as_warn (_("this instruction will write back the base register"));
8958 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8959 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8960 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8961 inst.operands[0].reg);
f03698e6 8962 }
c19d1205 8963 else
90e4755a 8964 {
c19d1205
ZW
8965 if (!inst.operands[0].writeback
8966 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
8967 as_warn (_("this instruction will write back the base register"));
8968 else if (inst.operands[0].writeback
8969 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
8970 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
8971 }
8972
c19d1205
ZW
8973 inst.instruction = THUMB_OP16 (inst.instruction);
8974 inst.instruction |= inst.operands[0].reg << 8;
8975 inst.instruction |= inst.operands[1].imm;
8976 }
8977}
e28cd48c 8978
c19d1205
ZW
8979static void
8980do_t_ldrex (void)
8981{
8982 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8983 || inst.operands[1].postind || inst.operands[1].writeback
8984 || inst.operands[1].immisreg || inst.operands[1].shifted
8985 || inst.operands[1].negative,
01cfc07f 8986 BAD_ADDR_MODE);
e28cd48c 8987
c19d1205
ZW
8988 inst.instruction |= inst.operands[0].reg << 12;
8989 inst.instruction |= inst.operands[1].reg << 16;
8990 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
8991}
e28cd48c 8992
c19d1205
ZW
8993static void
8994do_t_ldrexd (void)
8995{
8996 if (!inst.operands[1].present)
1cac9012 8997 {
c19d1205
ZW
8998 constraint (inst.operands[0].reg == REG_LR,
8999 _("r14 not allowed as first register "
9000 "when second register is omitted"));
9001 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9002 }
c19d1205
ZW
9003 constraint (inst.operands[0].reg == inst.operands[1].reg,
9004 BAD_OVERLAP);
b99bd4ef 9005
c19d1205
ZW
9006 inst.instruction |= inst.operands[0].reg << 12;
9007 inst.instruction |= inst.operands[1].reg << 8;
9008 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9009}
9010
9011static void
c19d1205 9012do_t_ldst (void)
b99bd4ef 9013{
0110f2b8
PB
9014 unsigned long opcode;
9015 int Rn;
9016
9017 opcode = inst.instruction;
c19d1205 9018 if (unified_syntax)
b99bd4ef 9019 {
53365c0d
PB
9020 if (!inst.operands[1].isreg)
9021 {
9022 if (opcode <= 0xffff)
9023 inst.instruction = THUMB_OP32 (opcode);
9024 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9025 return;
9026 }
0110f2b8
PB
9027 if (inst.operands[1].isreg
9028 && !inst.operands[1].writeback
c19d1205
ZW
9029 && !inst.operands[1].shifted && !inst.operands[1].postind
9030 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9031 && opcode <= 0xffff
9032 && inst.size_req != 4)
c19d1205 9033 {
0110f2b8
PB
9034 /* Insn may have a 16-bit form. */
9035 Rn = inst.operands[1].reg;
9036 if (inst.operands[1].immisreg)
9037 {
9038 inst.instruction = THUMB_OP16 (opcode);
9039 /* [Rn, Ri] */
9040 if (Rn <= 7 && inst.operands[1].imm <= 7)
9041 goto op16;
9042 }
9043 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9044 && opcode != T_MNEM_ldrsb)
9045 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9046 || (Rn == REG_SP && opcode == T_MNEM_str))
9047 {
9048 /* [Rn, #const] */
9049 if (Rn > 7)
9050 {
9051 if (Rn == REG_PC)
9052 {
9053 if (inst.reloc.pc_rel)
9054 opcode = T_MNEM_ldr_pc2;
9055 else
9056 opcode = T_MNEM_ldr_pc;
9057 }
9058 else
9059 {
9060 if (opcode == T_MNEM_ldr)
9061 opcode = T_MNEM_ldr_sp;
9062 else
9063 opcode = T_MNEM_str_sp;
9064 }
9065 inst.instruction = inst.operands[0].reg << 8;
9066 }
9067 else
9068 {
9069 inst.instruction = inst.operands[0].reg;
9070 inst.instruction |= inst.operands[1].reg << 3;
9071 }
9072 inst.instruction |= THUMB_OP16 (opcode);
9073 if (inst.size_req == 2)
9074 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9075 else
9076 inst.relax = opcode;
9077 return;
9078 }
c19d1205 9079 }
0110f2b8
PB
9080 /* Definitely a 32-bit variant. */
9081 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9082 inst.instruction |= inst.operands[0].reg << 12;
9083 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9084 return;
9085 }
9086
c19d1205
ZW
9087 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9088
9089 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9090 {
c19d1205
ZW
9091 /* Only [Rn,Rm] is acceptable. */
9092 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9093 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9094 || inst.operands[1].postind || inst.operands[1].shifted
9095 || inst.operands[1].negative,
9096 _("Thumb does not support this addressing mode"));
9097 inst.instruction = THUMB_OP16 (inst.instruction);
9098 goto op16;
b99bd4ef 9099 }
c19d1205
ZW
9100
9101 inst.instruction = THUMB_OP16 (inst.instruction);
9102 if (!inst.operands[1].isreg)
9103 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9104 return;
b99bd4ef 9105
c19d1205
ZW
9106 constraint (!inst.operands[1].preind
9107 || inst.operands[1].shifted
9108 || inst.operands[1].writeback,
9109 _("Thumb does not support this addressing mode"));
9110 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9111 {
c19d1205
ZW
9112 constraint (inst.instruction & 0x0600,
9113 _("byte or halfword not valid for base register"));
9114 constraint (inst.operands[1].reg == REG_PC
9115 && !(inst.instruction & THUMB_LOAD_BIT),
9116 _("r15 based store not allowed"));
9117 constraint (inst.operands[1].immisreg,
9118 _("invalid base register for register offset"));
b99bd4ef 9119
c19d1205
ZW
9120 if (inst.operands[1].reg == REG_PC)
9121 inst.instruction = T_OPCODE_LDR_PC;
9122 else if (inst.instruction & THUMB_LOAD_BIT)
9123 inst.instruction = T_OPCODE_LDR_SP;
9124 else
9125 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9126
c19d1205
ZW
9127 inst.instruction |= inst.operands[0].reg << 8;
9128 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9129 return;
9130 }
90e4755a 9131
c19d1205
ZW
9132 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9133 if (!inst.operands[1].immisreg)
9134 {
9135 /* Immediate offset. */
9136 inst.instruction |= inst.operands[0].reg;
9137 inst.instruction |= inst.operands[1].reg << 3;
9138 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9139 return;
9140 }
90e4755a 9141
c19d1205
ZW
9142 /* Register offset. */
9143 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9144 constraint (inst.operands[1].negative,
9145 _("Thumb does not support this addressing mode"));
90e4755a 9146
c19d1205
ZW
9147 op16:
9148 switch (inst.instruction)
9149 {
9150 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9151 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9152 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9153 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9154 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9155 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9156 case 0x5600 /* ldrsb */:
9157 case 0x5e00 /* ldrsh */: break;
9158 default: abort ();
9159 }
90e4755a 9160
c19d1205
ZW
9161 inst.instruction |= inst.operands[0].reg;
9162 inst.instruction |= inst.operands[1].reg << 3;
9163 inst.instruction |= inst.operands[1].imm << 6;
9164}
90e4755a 9165
c19d1205
ZW
9166static void
9167do_t_ldstd (void)
9168{
9169 if (!inst.operands[1].present)
b99bd4ef 9170 {
c19d1205
ZW
9171 inst.operands[1].reg = inst.operands[0].reg + 1;
9172 constraint (inst.operands[0].reg == REG_LR,
9173 _("r14 not allowed here"));
b99bd4ef 9174 }
c19d1205
ZW
9175 inst.instruction |= inst.operands[0].reg << 12;
9176 inst.instruction |= inst.operands[1].reg << 8;
9177 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9178
b99bd4ef
NC
9179}
9180
c19d1205
ZW
9181static void
9182do_t_ldstt (void)
9183{
9184 inst.instruction |= inst.operands[0].reg << 12;
9185 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9186}
a737bd4d 9187
b99bd4ef 9188static void
c19d1205 9189do_t_mla (void)
b99bd4ef 9190{
c19d1205
ZW
9191 inst.instruction |= inst.operands[0].reg << 8;
9192 inst.instruction |= inst.operands[1].reg << 16;
9193 inst.instruction |= inst.operands[2].reg;
9194 inst.instruction |= inst.operands[3].reg << 12;
9195}
b99bd4ef 9196
c19d1205
ZW
9197static void
9198do_t_mlal (void)
9199{
9200 inst.instruction |= inst.operands[0].reg << 12;
9201 inst.instruction |= inst.operands[1].reg << 8;
9202 inst.instruction |= inst.operands[2].reg << 16;
9203 inst.instruction |= inst.operands[3].reg;
9204}
b99bd4ef 9205
c19d1205
ZW
9206static void
9207do_t_mov_cmp (void)
9208{
9209 if (unified_syntax)
b99bd4ef 9210 {
c19d1205
ZW
9211 int r0off = (inst.instruction == T_MNEM_mov
9212 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9213 unsigned long opcode;
3d388997
PB
9214 bfd_boolean narrow;
9215 bfd_boolean low_regs;
9216
9217 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9218 opcode = inst.instruction;
3d388997 9219 if (current_it_mask)
0110f2b8 9220 narrow = opcode != T_MNEM_movs;
3d388997 9221 else
0110f2b8 9222 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9223 if (inst.size_req == 4
9224 || inst.operands[1].shifted)
9225 narrow = FALSE;
9226
c19d1205
ZW
9227 if (!inst.operands[1].isreg)
9228 {
0110f2b8
PB
9229 /* Immediate operand. */
9230 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9231 narrow = 0;
9232 if (low_regs && narrow)
9233 {
9234 inst.instruction = THUMB_OP16 (opcode);
9235 inst.instruction |= inst.operands[0].reg << 8;
9236 if (inst.size_req == 2)
9237 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9238 else
9239 inst.relax = opcode;
9240 }
9241 else
9242 {
9243 inst.instruction = THUMB_OP32 (inst.instruction);
9244 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9245 inst.instruction |= inst.operands[0].reg << r0off;
9246 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9247 }
c19d1205 9248 }
3d388997 9249 else if (!narrow)
c19d1205
ZW
9250 {
9251 inst.instruction = THUMB_OP32 (inst.instruction);
9252 inst.instruction |= inst.operands[0].reg << r0off;
9253 encode_thumb32_shifted_operand (1);
9254 }
9255 else
9256 switch (inst.instruction)
9257 {
9258 case T_MNEM_mov:
9259 inst.instruction = T_OPCODE_MOV_HR;
9260 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9261 inst.instruction |= (inst.operands[0].reg & 0x7);
9262 inst.instruction |= inst.operands[1].reg << 3;
9263 break;
b99bd4ef 9264
c19d1205
ZW
9265 case T_MNEM_movs:
9266 /* We know we have low registers at this point.
9267 Generate ADD Rd, Rs, #0. */
9268 inst.instruction = T_OPCODE_ADD_I3;
9269 inst.instruction |= inst.operands[0].reg;
9270 inst.instruction |= inst.operands[1].reg << 3;
9271 break;
9272
9273 case T_MNEM_cmp:
3d388997 9274 if (low_regs)
c19d1205
ZW
9275 {
9276 inst.instruction = T_OPCODE_CMP_LR;
9277 inst.instruction |= inst.operands[0].reg;
9278 inst.instruction |= inst.operands[1].reg << 3;
9279 }
9280 else
9281 {
9282 inst.instruction = T_OPCODE_CMP_HR;
9283 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9284 inst.instruction |= (inst.operands[0].reg & 0x7);
9285 inst.instruction |= inst.operands[1].reg << 3;
9286 }
9287 break;
9288 }
b99bd4ef
NC
9289 return;
9290 }
9291
c19d1205
ZW
9292 inst.instruction = THUMB_OP16 (inst.instruction);
9293 if (inst.operands[1].isreg)
b99bd4ef 9294 {
c19d1205 9295 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9296 {
c19d1205
ZW
9297 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9298 since a MOV instruction produces unpredictable results. */
9299 if (inst.instruction == T_OPCODE_MOV_I8)
9300 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9301 else
c19d1205 9302 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9303
c19d1205
ZW
9304 inst.instruction |= inst.operands[0].reg;
9305 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9306 }
9307 else
9308 {
c19d1205
ZW
9309 if (inst.instruction == T_OPCODE_MOV_I8)
9310 inst.instruction = T_OPCODE_MOV_HR;
9311 else
9312 inst.instruction = T_OPCODE_CMP_HR;
9313 do_t_cpy ();
b99bd4ef
NC
9314 }
9315 }
c19d1205 9316 else
b99bd4ef 9317 {
c19d1205
ZW
9318 constraint (inst.operands[0].reg > 7,
9319 _("only lo regs allowed with immediate"));
9320 inst.instruction |= inst.operands[0].reg << 8;
9321 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9322 }
9323}
b99bd4ef 9324
c19d1205
ZW
9325static void
9326do_t_mov16 (void)
9327{
b6895b4f
PB
9328 bfd_vma imm;
9329 bfd_boolean top;
9330
9331 top = (inst.instruction & 0x00800000) != 0;
9332 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9333 {
9334 constraint (top, _(":lower16: not allowed this instruction"));
9335 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9336 }
9337 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9338 {
9339 constraint (!top, _(":upper16: not allowed this instruction"));
9340 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9341 }
9342
c19d1205 9343 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9344 if (inst.reloc.type == BFD_RELOC_UNUSED)
9345 {
9346 imm = inst.reloc.exp.X_add_number;
9347 inst.instruction |= (imm & 0xf000) << 4;
9348 inst.instruction |= (imm & 0x0800) << 15;
9349 inst.instruction |= (imm & 0x0700) << 4;
9350 inst.instruction |= (imm & 0x00ff);
9351 }
c19d1205 9352}
b99bd4ef 9353
c19d1205
ZW
9354static void
9355do_t_mvn_tst (void)
9356{
9357 if (unified_syntax)
9358 {
9359 int r0off = (inst.instruction == T_MNEM_mvn
9360 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9361 bfd_boolean narrow;
9362
9363 if (inst.size_req == 4
9364 || inst.instruction > 0xffff
9365 || inst.operands[1].shifted
9366 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9367 narrow = FALSE;
9368 else if (inst.instruction == T_MNEM_cmn)
9369 narrow = TRUE;
9370 else if (THUMB_SETS_FLAGS (inst.instruction))
9371 narrow = (current_it_mask == 0);
9372 else
9373 narrow = (current_it_mask != 0);
9374
c19d1205 9375 if (!inst.operands[1].isreg)
b99bd4ef 9376 {
c19d1205
ZW
9377 /* For an immediate, we always generate a 32-bit opcode;
9378 section relaxation will shrink it later if possible. */
9379 if (inst.instruction < 0xffff)
9380 inst.instruction = THUMB_OP32 (inst.instruction);
9381 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9382 inst.instruction |= inst.operands[0].reg << r0off;
9383 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9384 }
c19d1205 9385 else
b99bd4ef 9386 {
c19d1205 9387 /* See if we can do this with a 16-bit instruction. */
3d388997 9388 if (narrow)
b99bd4ef 9389 {
c19d1205
ZW
9390 inst.instruction = THUMB_OP16 (inst.instruction);
9391 inst.instruction |= inst.operands[0].reg;
9392 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9393 }
c19d1205 9394 else
b99bd4ef 9395 {
c19d1205
ZW
9396 constraint (inst.operands[1].shifted
9397 && inst.operands[1].immisreg,
9398 _("shift must be constant"));
9399 if (inst.instruction < 0xffff)
9400 inst.instruction = THUMB_OP32 (inst.instruction);
9401 inst.instruction |= inst.operands[0].reg << r0off;
9402 encode_thumb32_shifted_operand (1);
b99bd4ef 9403 }
b99bd4ef
NC
9404 }
9405 }
9406 else
9407 {
c19d1205
ZW
9408 constraint (inst.instruction > 0xffff
9409 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9410 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9411 _("unshifted register required"));
9412 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9413 BAD_HIREG);
b99bd4ef 9414
c19d1205
ZW
9415 inst.instruction = THUMB_OP16 (inst.instruction);
9416 inst.instruction |= inst.operands[0].reg;
9417 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9418 }
b99bd4ef
NC
9419}
9420
b05fe5cf 9421static void
c19d1205 9422do_t_mrs (void)
b05fe5cf 9423{
62b3e311 9424 int flags;
037e8744
JB
9425
9426 if (do_vfp_nsyn_mrs () == SUCCESS)
9427 return;
9428
62b3e311
PB
9429 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9430 if (flags == 0)
9431 {
9432 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9433 _("selected processor does not support "
9434 "requested special purpose register"));
9435 }
9436 else
9437 {
9438 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9439 _("selected processor does not support "
9440 "requested special purpose register %x"));
9441 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9442 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9443 _("'CPSR' or 'SPSR' expected"));
9444 }
9445
c19d1205 9446 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9447 inst.instruction |= (flags & SPSR_BIT) >> 2;
9448 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9449}
b05fe5cf 9450
c19d1205
ZW
9451static void
9452do_t_msr (void)
9453{
62b3e311
PB
9454 int flags;
9455
037e8744
JB
9456 if (do_vfp_nsyn_msr () == SUCCESS)
9457 return;
9458
c19d1205
ZW
9459 constraint (!inst.operands[1].isreg,
9460 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9461 flags = inst.operands[0].imm;
9462 if (flags & ~0xff)
9463 {
9464 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9465 _("selected processor does not support "
9466 "requested special purpose register"));
9467 }
9468 else
9469 {
9470 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9471 _("selected processor does not support "
9472 "requested special purpose register"));
9473 flags |= PSR_f;
9474 }
9475 inst.instruction |= (flags & SPSR_BIT) >> 2;
9476 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9477 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9478 inst.instruction |= inst.operands[1].reg << 16;
9479}
b05fe5cf 9480
c19d1205
ZW
9481static void
9482do_t_mul (void)
9483{
9484 if (!inst.operands[2].present)
9485 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9486
c19d1205
ZW
9487 /* There is no 32-bit MULS and no 16-bit MUL. */
9488 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9489 {
c19d1205
ZW
9490 inst.instruction = THUMB_OP32 (inst.instruction);
9491 inst.instruction |= inst.operands[0].reg << 8;
9492 inst.instruction |= inst.operands[1].reg << 16;
9493 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9494 }
c19d1205 9495 else
b05fe5cf 9496 {
c19d1205
ZW
9497 constraint (!unified_syntax
9498 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9499 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9500 BAD_HIREG);
b05fe5cf 9501
c19d1205
ZW
9502 inst.instruction = THUMB_OP16 (inst.instruction);
9503 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9504
c19d1205
ZW
9505 if (inst.operands[0].reg == inst.operands[1].reg)
9506 inst.instruction |= inst.operands[2].reg << 3;
9507 else if (inst.operands[0].reg == inst.operands[2].reg)
9508 inst.instruction |= inst.operands[1].reg << 3;
9509 else
9510 constraint (1, _("dest must overlap one source register"));
9511 }
9512}
b05fe5cf 9513
c19d1205
ZW
9514static void
9515do_t_mull (void)
9516{
9517 inst.instruction |= inst.operands[0].reg << 12;
9518 inst.instruction |= inst.operands[1].reg << 8;
9519 inst.instruction |= inst.operands[2].reg << 16;
9520 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9521
c19d1205
ZW
9522 if (inst.operands[0].reg == inst.operands[1].reg)
9523 as_tsktsk (_("rdhi and rdlo must be different"));
9524}
b05fe5cf 9525
c19d1205
ZW
9526static void
9527do_t_nop (void)
9528{
9529 if (unified_syntax)
9530 {
9531 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9532 {
c19d1205
ZW
9533 inst.instruction = THUMB_OP32 (inst.instruction);
9534 inst.instruction |= inst.operands[0].imm;
9535 }
9536 else
9537 {
9538 inst.instruction = THUMB_OP16 (inst.instruction);
9539 inst.instruction |= inst.operands[0].imm << 4;
9540 }
9541 }
9542 else
9543 {
9544 constraint (inst.operands[0].present,
9545 _("Thumb does not support NOP with hints"));
9546 inst.instruction = 0x46c0;
9547 }
9548}
b05fe5cf 9549
c19d1205
ZW
9550static void
9551do_t_neg (void)
9552{
9553 if (unified_syntax)
9554 {
3d388997
PB
9555 bfd_boolean narrow;
9556
9557 if (THUMB_SETS_FLAGS (inst.instruction))
9558 narrow = (current_it_mask == 0);
9559 else
9560 narrow = (current_it_mask != 0);
9561 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9562 narrow = FALSE;
9563 if (inst.size_req == 4)
9564 narrow = FALSE;
9565
9566 if (!narrow)
c19d1205
ZW
9567 {
9568 inst.instruction = THUMB_OP32 (inst.instruction);
9569 inst.instruction |= inst.operands[0].reg << 8;
9570 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9571 }
9572 else
9573 {
c19d1205
ZW
9574 inst.instruction = THUMB_OP16 (inst.instruction);
9575 inst.instruction |= inst.operands[0].reg;
9576 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9577 }
9578 }
9579 else
9580 {
c19d1205
ZW
9581 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9582 BAD_HIREG);
9583 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9584
9585 inst.instruction = THUMB_OP16 (inst.instruction);
9586 inst.instruction |= inst.operands[0].reg;
9587 inst.instruction |= inst.operands[1].reg << 3;
9588 }
9589}
9590
9591static void
9592do_t_pkhbt (void)
9593{
9594 inst.instruction |= inst.operands[0].reg << 8;
9595 inst.instruction |= inst.operands[1].reg << 16;
9596 inst.instruction |= inst.operands[2].reg;
9597 if (inst.operands[3].present)
9598 {
9599 unsigned int val = inst.reloc.exp.X_add_number;
9600 constraint (inst.reloc.exp.X_op != O_constant,
9601 _("expression too complex"));
9602 inst.instruction |= (val & 0x1c) << 10;
9603 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 9604 }
c19d1205 9605}
b05fe5cf 9606
c19d1205
ZW
9607static void
9608do_t_pkhtb (void)
9609{
9610 if (!inst.operands[3].present)
9611 inst.instruction &= ~0x00000020;
9612 do_t_pkhbt ();
b05fe5cf
ZW
9613}
9614
c19d1205
ZW
9615static void
9616do_t_pld (void)
9617{
9618 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9619}
b05fe5cf 9620
c19d1205
ZW
9621static void
9622do_t_push_pop (void)
b99bd4ef 9623{
e9f89963
PB
9624 unsigned mask;
9625
c19d1205
ZW
9626 constraint (inst.operands[0].writeback,
9627 _("push/pop do not support {reglist}^"));
9628 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9629 _("expression too complex"));
b99bd4ef 9630
e9f89963
PB
9631 mask = inst.operands[0].imm;
9632 if ((mask & ~0xff) == 0)
c19d1205
ZW
9633 inst.instruction = THUMB_OP16 (inst.instruction);
9634 else if ((inst.instruction == T_MNEM_push
e9f89963 9635 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 9636 || (inst.instruction == T_MNEM_pop
e9f89963 9637 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 9638 {
c19d1205
ZW
9639 inst.instruction = THUMB_OP16 (inst.instruction);
9640 inst.instruction |= THUMB_PP_PC_LR;
e9f89963 9641 mask &= 0xff;
c19d1205
ZW
9642 }
9643 else if (unified_syntax)
9644 {
e9f89963
PB
9645 if (mask & (1 << 13))
9646 inst.error = _("SP not allowed in register list");
c19d1205 9647 if (inst.instruction == T_MNEM_push)
b99bd4ef 9648 {
e9f89963
PB
9649 if (mask & (1 << 15))
9650 inst.error = _("PC not allowed in register list");
c19d1205
ZW
9651 }
9652 else
9653 {
e9f89963
PB
9654 if (mask & (1 << 14)
9655 && mask & (1 << 15))
9656 inst.error = _("LR and PC should not both be in register list");
c19d1205 9657 }
e9f89963
PB
9658 if ((mask & (mask - 1)) == 0)
9659 {
9660 /* Single register push/pop implemented as str/ldr. */
9661 if (inst.instruction == T_MNEM_push)
9662 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
9663 else
9664 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
9665 mask = ffs(mask) - 1;
9666 mask <<= 12;
9667 }
9668 else
9669 inst.instruction = THUMB_OP32 (inst.instruction);
c19d1205
ZW
9670 }
9671 else
9672 {
9673 inst.error = _("invalid register list to push/pop instruction");
9674 return;
9675 }
b99bd4ef 9676
e9f89963 9677 inst.instruction |= mask;
c19d1205 9678}
b99bd4ef 9679
c19d1205
ZW
9680static void
9681do_t_rbit (void)
9682{
9683 inst.instruction |= inst.operands[0].reg << 8;
9684 inst.instruction |= inst.operands[1].reg << 16;
9685}
b99bd4ef 9686
c19d1205
ZW
9687static void
9688do_t_rev (void)
9689{
9690 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9691 && inst.size_req != 4)
9692 {
9693 inst.instruction = THUMB_OP16 (inst.instruction);
9694 inst.instruction |= inst.operands[0].reg;
9695 inst.instruction |= inst.operands[1].reg << 3;
9696 }
9697 else if (unified_syntax)
9698 {
9699 inst.instruction = THUMB_OP32 (inst.instruction);
9700 inst.instruction |= inst.operands[0].reg << 8;
9701 inst.instruction |= inst.operands[1].reg << 16;
9702 inst.instruction |= inst.operands[1].reg;
9703 }
9704 else
9705 inst.error = BAD_HIREG;
9706}
b99bd4ef 9707
c19d1205
ZW
9708static void
9709do_t_rsb (void)
9710{
9711 int Rd, Rs;
b99bd4ef 9712
c19d1205
ZW
9713 Rd = inst.operands[0].reg;
9714 Rs = (inst.operands[1].present
9715 ? inst.operands[1].reg /* Rd, Rs, foo */
9716 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 9717
c19d1205
ZW
9718 inst.instruction |= Rd << 8;
9719 inst.instruction |= Rs << 16;
9720 if (!inst.operands[2].isreg)
9721 {
9722 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9723 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9724 }
9725 else
9726 encode_thumb32_shifted_operand (2);
9727}
b99bd4ef 9728
c19d1205
ZW
9729static void
9730do_t_setend (void)
9731{
dfa9f0d5 9732 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9733 if (inst.operands[0].imm)
9734 inst.instruction |= 0x8;
9735}
b99bd4ef 9736
c19d1205
ZW
9737static void
9738do_t_shift (void)
9739{
9740 if (!inst.operands[1].present)
9741 inst.operands[1].reg = inst.operands[0].reg;
9742
9743 if (unified_syntax)
9744 {
3d388997
PB
9745 bfd_boolean narrow;
9746 int shift_kind;
9747
9748 switch (inst.instruction)
9749 {
9750 case T_MNEM_asr:
9751 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9752 case T_MNEM_lsl:
9753 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9754 case T_MNEM_lsr:
9755 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9756 case T_MNEM_ror:
9757 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9758 default: abort ();
9759 }
9760
9761 if (THUMB_SETS_FLAGS (inst.instruction))
9762 narrow = (current_it_mask == 0);
9763 else
9764 narrow = (current_it_mask != 0);
9765 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9766 narrow = FALSE;
9767 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
9768 narrow = FALSE;
9769 if (inst.operands[2].isreg
9770 && (inst.operands[1].reg != inst.operands[0].reg
9771 || inst.operands[2].reg > 7))
9772 narrow = FALSE;
9773 if (inst.size_req == 4)
9774 narrow = FALSE;
9775
9776 if (!narrow)
c19d1205
ZW
9777 {
9778 if (inst.operands[2].isreg)
b99bd4ef 9779 {
c19d1205
ZW
9780 inst.instruction = THUMB_OP32 (inst.instruction);
9781 inst.instruction |= inst.operands[0].reg << 8;
9782 inst.instruction |= inst.operands[1].reg << 16;
9783 inst.instruction |= inst.operands[2].reg;
9784 }
9785 else
9786 {
9787 inst.operands[1].shifted = 1;
3d388997 9788 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
9789 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
9790 ? T_MNEM_movs : T_MNEM_mov);
9791 inst.instruction |= inst.operands[0].reg << 8;
9792 encode_thumb32_shifted_operand (1);
9793 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9794 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
9795 }
9796 }
9797 else
9798 {
c19d1205 9799 if (inst.operands[2].isreg)
b99bd4ef 9800 {
3d388997 9801 switch (shift_kind)
b99bd4ef 9802 {
3d388997
PB
9803 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
9804 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
9805 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
9806 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 9807 default: abort ();
b99bd4ef 9808 }
c19d1205
ZW
9809
9810 inst.instruction |= inst.operands[0].reg;
9811 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
9812 }
9813 else
9814 {
3d388997 9815 switch (shift_kind)
b99bd4ef 9816 {
3d388997
PB
9817 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9818 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9819 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 9820 default: abort ();
b99bd4ef 9821 }
c19d1205
ZW
9822 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9823 inst.instruction |= inst.operands[0].reg;
9824 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9825 }
9826 }
c19d1205
ZW
9827 }
9828 else
9829 {
9830 constraint (inst.operands[0].reg > 7
9831 || inst.operands[1].reg > 7, BAD_HIREG);
9832 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 9833
c19d1205
ZW
9834 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
9835 {
9836 constraint (inst.operands[2].reg > 7, BAD_HIREG);
9837 constraint (inst.operands[0].reg != inst.operands[1].reg,
9838 _("source1 and dest must be same register"));
b99bd4ef 9839
c19d1205
ZW
9840 switch (inst.instruction)
9841 {
9842 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
9843 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
9844 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
9845 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
9846 default: abort ();
9847 }
9848
9849 inst.instruction |= inst.operands[0].reg;
9850 inst.instruction |= inst.operands[2].reg << 3;
9851 }
9852 else
b99bd4ef 9853 {
c19d1205
ZW
9854 switch (inst.instruction)
9855 {
9856 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
9857 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
9858 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
9859 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
9860 default: abort ();
9861 }
9862 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9863 inst.instruction |= inst.operands[0].reg;
9864 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9865 }
9866 }
b99bd4ef
NC
9867}
9868
9869static void
c19d1205 9870do_t_simd (void)
b99bd4ef 9871{
c19d1205
ZW
9872 inst.instruction |= inst.operands[0].reg << 8;
9873 inst.instruction |= inst.operands[1].reg << 16;
9874 inst.instruction |= inst.operands[2].reg;
9875}
b99bd4ef 9876
c19d1205 9877static void
3eb17e6b 9878do_t_smc (void)
c19d1205
ZW
9879{
9880 unsigned int value = inst.reloc.exp.X_add_number;
9881 constraint (inst.reloc.exp.X_op != O_constant,
9882 _("expression too complex"));
9883 inst.reloc.type = BFD_RELOC_UNUSED;
9884 inst.instruction |= (value & 0xf000) >> 12;
9885 inst.instruction |= (value & 0x0ff0);
9886 inst.instruction |= (value & 0x000f) << 16;
9887}
b99bd4ef 9888
c19d1205
ZW
9889static void
9890do_t_ssat (void)
9891{
9892 inst.instruction |= inst.operands[0].reg << 8;
9893 inst.instruction |= inst.operands[1].imm - 1;
9894 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 9895
c19d1205 9896 if (inst.operands[3].present)
b99bd4ef 9897 {
c19d1205
ZW
9898 constraint (inst.reloc.exp.X_op != O_constant,
9899 _("expression too complex"));
b99bd4ef 9900
c19d1205 9901 if (inst.reloc.exp.X_add_number != 0)
6189168b 9902 {
c19d1205
ZW
9903 if (inst.operands[3].shift_kind == SHIFT_ASR)
9904 inst.instruction |= 0x00200000; /* sh bit */
9905 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9906 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 9907 }
c19d1205 9908 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 9909 }
b99bd4ef
NC
9910}
9911
0dd132b6 9912static void
c19d1205 9913do_t_ssat16 (void)
0dd132b6 9914{
c19d1205
ZW
9915 inst.instruction |= inst.operands[0].reg << 8;
9916 inst.instruction |= inst.operands[1].imm - 1;
9917 inst.instruction |= inst.operands[2].reg << 16;
9918}
0dd132b6 9919
c19d1205
ZW
9920static void
9921do_t_strex (void)
9922{
9923 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9924 || inst.operands[2].postind || inst.operands[2].writeback
9925 || inst.operands[2].immisreg || inst.operands[2].shifted
9926 || inst.operands[2].negative,
01cfc07f 9927 BAD_ADDR_MODE);
0dd132b6 9928
c19d1205
ZW
9929 inst.instruction |= inst.operands[0].reg << 8;
9930 inst.instruction |= inst.operands[1].reg << 12;
9931 inst.instruction |= inst.operands[2].reg << 16;
9932 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
9933}
9934
b99bd4ef 9935static void
c19d1205 9936do_t_strexd (void)
b99bd4ef 9937{
c19d1205
ZW
9938 if (!inst.operands[2].present)
9939 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 9940
c19d1205
ZW
9941 constraint (inst.operands[0].reg == inst.operands[1].reg
9942 || inst.operands[0].reg == inst.operands[2].reg
9943 || inst.operands[0].reg == inst.operands[3].reg
9944 || inst.operands[1].reg == inst.operands[2].reg,
9945 BAD_OVERLAP);
b99bd4ef 9946
c19d1205
ZW
9947 inst.instruction |= inst.operands[0].reg;
9948 inst.instruction |= inst.operands[1].reg << 12;
9949 inst.instruction |= inst.operands[2].reg << 8;
9950 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
9951}
9952
9953static void
c19d1205 9954do_t_sxtah (void)
b99bd4ef 9955{
c19d1205
ZW
9956 inst.instruction |= inst.operands[0].reg << 8;
9957 inst.instruction |= inst.operands[1].reg << 16;
9958 inst.instruction |= inst.operands[2].reg;
9959 inst.instruction |= inst.operands[3].imm << 4;
9960}
b99bd4ef 9961
c19d1205
ZW
9962static void
9963do_t_sxth (void)
9964{
9965 if (inst.instruction <= 0xffff && inst.size_req != 4
9966 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9967 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 9968 {
c19d1205
ZW
9969 inst.instruction = THUMB_OP16 (inst.instruction);
9970 inst.instruction |= inst.operands[0].reg;
9971 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9972 }
c19d1205 9973 else if (unified_syntax)
b99bd4ef 9974 {
c19d1205
ZW
9975 if (inst.instruction <= 0xffff)
9976 inst.instruction = THUMB_OP32 (inst.instruction);
9977 inst.instruction |= inst.operands[0].reg << 8;
9978 inst.instruction |= inst.operands[1].reg;
9979 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 9980 }
c19d1205 9981 else
b99bd4ef 9982 {
c19d1205
ZW
9983 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
9984 _("Thumb encoding does not support rotation"));
9985 constraint (1, BAD_HIREG);
b99bd4ef 9986 }
c19d1205 9987}
b99bd4ef 9988
c19d1205
ZW
9989static void
9990do_t_swi (void)
9991{
9992 inst.reloc.type = BFD_RELOC_ARM_SWI;
9993}
b99bd4ef 9994
92e90b6e
PB
9995static void
9996do_t_tb (void)
9997{
9998 int half;
9999
10000 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10001 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10002 constraint (inst.operands[0].immisreg,
10003 _("instruction requires register index"));
92e90b6e
PB
10004 constraint (inst.operands[0].imm == 15,
10005 _("PC is not a valid index register"));
10006 constraint (!half && inst.operands[0].shifted,
10007 _("instruction does not allow shifted index"));
92e90b6e
PB
10008 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10009}
10010
c19d1205
ZW
10011static void
10012do_t_usat (void)
10013{
10014 inst.instruction |= inst.operands[0].reg << 8;
10015 inst.instruction |= inst.operands[1].imm;
10016 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10017
c19d1205 10018 if (inst.operands[3].present)
b99bd4ef 10019 {
c19d1205
ZW
10020 constraint (inst.reloc.exp.X_op != O_constant,
10021 _("expression too complex"));
10022 if (inst.reloc.exp.X_add_number != 0)
10023 {
10024 if (inst.operands[3].shift_kind == SHIFT_ASR)
10025 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10026
c19d1205
ZW
10027 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10028 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10029 }
10030 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10031 }
b99bd4ef
NC
10032}
10033
10034static void
c19d1205 10035do_t_usat16 (void)
b99bd4ef 10036{
c19d1205
ZW
10037 inst.instruction |= inst.operands[0].reg << 8;
10038 inst.instruction |= inst.operands[1].imm;
10039 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10040}
c19d1205 10041
5287ad62
JB
10042/* Neon instruction encoder helpers. */
10043
10044/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10045
5287ad62
JB
10046/* An "invalid" code for the following tables. */
10047#define N_INV -1u
10048
10049struct neon_tab_entry
b99bd4ef 10050{
5287ad62
JB
10051 unsigned integer;
10052 unsigned float_or_poly;
10053 unsigned scalar_or_imm;
10054};
10055
10056/* Map overloaded Neon opcodes to their respective encodings. */
10057#define NEON_ENC_TAB \
10058 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10059 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10060 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10061 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10062 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10063 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10064 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10065 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10066 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10067 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10068 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10069 /* Register variants of the following two instructions are encoded as
10070 vcge / vcgt with the operands reversed. */ \
10071 X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \
10072 X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \
10073 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10074 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10075 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10076 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10077 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10078 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10079 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10080 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10081 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10082 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10083 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10084 X(vshl, 0x0000400, N_INV, 0x0800510), \
10085 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10086 X(vand, 0x0000110, N_INV, 0x0800030), \
10087 X(vbic, 0x0100110, N_INV, 0x0800030), \
10088 X(veor, 0x1000110, N_INV, N_INV), \
10089 X(vorn, 0x0300110, N_INV, 0x0800010), \
10090 X(vorr, 0x0200110, N_INV, 0x0800010), \
10091 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10092 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10093 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10094 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10095 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10096 X(vst1, 0x0000000, 0x0800000, N_INV), \
10097 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10098 X(vst2, 0x0000100, 0x0800100, N_INV), \
10099 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10100 X(vst3, 0x0000200, 0x0800200, N_INV), \
10101 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10102 X(vst4, 0x0000300, 0x0800300, N_INV), \
10103 X(vmovn, 0x1b20200, N_INV, N_INV), \
10104 X(vtrn, 0x1b20080, N_INV, N_INV), \
10105 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10106 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10107 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10108 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10109 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10110 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10111 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10112 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10113 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10114
10115enum neon_opc
10116{
10117#define X(OPC,I,F,S) N_MNEM_##OPC
10118NEON_ENC_TAB
10119#undef X
10120};
b99bd4ef 10121
5287ad62
JB
10122static const struct neon_tab_entry neon_enc_tab[] =
10123{
10124#define X(OPC,I,F,S) { (I), (F), (S) }
10125NEON_ENC_TAB
10126#undef X
10127};
b99bd4ef 10128
5287ad62
JB
10129#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10130#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10131#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10132#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10133#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10134#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10135#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10136#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10137#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10138#define NEON_ENC_SINGLE(X) \
10139 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10140#define NEON_ENC_DOUBLE(X) \
10141 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10142
037e8744
JB
10143/* Define shapes for instruction operands. The following mnemonic characters
10144 are used in this table:
5287ad62 10145
037e8744 10146 F - VFP S<n> register
5287ad62
JB
10147 D - Neon D<n> register
10148 Q - Neon Q<n> register
10149 I - Immediate
10150 S - Scalar
10151 R - ARM register
10152 L - D<n> register list
037e8744
JB
10153
10154 This table is used to generate various data:
10155 - enumerations of the form NS_DDR to be used as arguments to
10156 neon_select_shape.
10157 - a table classifying shapes into single, double, quad, mixed.
10158 - a table used to drive neon_select_shape.
5287ad62 10159*/
b99bd4ef 10160
037e8744
JB
10161#define NEON_SHAPE_DEF \
10162 X(3, (D, D, D), DOUBLE), \
10163 X(3, (Q, Q, Q), QUAD), \
10164 X(3, (D, D, I), DOUBLE), \
10165 X(3, (Q, Q, I), QUAD), \
10166 X(3, (D, D, S), DOUBLE), \
10167 X(3, (Q, Q, S), QUAD), \
10168 X(2, (D, D), DOUBLE), \
10169 X(2, (Q, Q), QUAD), \
10170 X(2, (D, S), DOUBLE), \
10171 X(2, (Q, S), QUAD), \
10172 X(2, (D, R), DOUBLE), \
10173 X(2, (Q, R), QUAD), \
10174 X(2, (D, I), DOUBLE), \
10175 X(2, (Q, I), QUAD), \
10176 X(3, (D, L, D), DOUBLE), \
10177 X(2, (D, Q), MIXED), \
10178 X(2, (Q, D), MIXED), \
10179 X(3, (D, Q, I), MIXED), \
10180 X(3, (Q, D, I), MIXED), \
10181 X(3, (Q, D, D), MIXED), \
10182 X(3, (D, Q, Q), MIXED), \
10183 X(3, (Q, Q, D), MIXED), \
10184 X(3, (Q, D, S), MIXED), \
10185 X(3, (D, Q, S), MIXED), \
10186 X(4, (D, D, D, I), DOUBLE), \
10187 X(4, (Q, Q, Q, I), QUAD), \
10188 X(2, (F, F), SINGLE), \
10189 X(3, (F, F, F), SINGLE), \
10190 X(2, (F, I), SINGLE), \
10191 X(2, (F, D), MIXED), \
10192 X(2, (D, F), MIXED), \
10193 X(3, (F, F, I), MIXED), \
10194 X(4, (R, R, F, F), SINGLE), \
10195 X(4, (F, F, R, R), SINGLE), \
10196 X(3, (D, R, R), DOUBLE), \
10197 X(3, (R, R, D), DOUBLE), \
10198 X(2, (S, R), SINGLE), \
10199 X(2, (R, S), SINGLE), \
10200 X(2, (F, R), SINGLE), \
10201 X(2, (R, F), SINGLE)
10202
10203#define S2(A,B) NS_##A##B
10204#define S3(A,B,C) NS_##A##B##C
10205#define S4(A,B,C,D) NS_##A##B##C##D
10206
10207#define X(N, L, C) S##N L
10208
5287ad62
JB
10209enum neon_shape
10210{
037e8744
JB
10211 NEON_SHAPE_DEF,
10212 NS_NULL
5287ad62 10213};
b99bd4ef 10214
037e8744
JB
10215#undef X
10216#undef S2
10217#undef S3
10218#undef S4
10219
10220enum neon_shape_class
10221{
10222 SC_SINGLE,
10223 SC_DOUBLE,
10224 SC_QUAD,
10225 SC_MIXED
10226};
10227
10228#define X(N, L, C) SC_##C
10229
10230static enum neon_shape_class neon_shape_class[] =
10231{
10232 NEON_SHAPE_DEF
10233};
10234
10235#undef X
10236
10237enum neon_shape_el
10238{
10239 SE_F,
10240 SE_D,
10241 SE_Q,
10242 SE_I,
10243 SE_S,
10244 SE_R,
10245 SE_L
10246};
10247
10248/* Register widths of above. */
10249static unsigned neon_shape_el_size[] =
10250{
10251 32,
10252 64,
10253 128,
10254 0,
10255 32,
10256 32,
10257 0
10258};
10259
10260struct neon_shape_info
10261{
10262 unsigned els;
10263 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10264};
10265
10266#define S2(A,B) { SE_##A, SE_##B }
10267#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10268#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10269
10270#define X(N, L, C) { N, S##N L }
10271
10272static struct neon_shape_info neon_shape_tab[] =
10273{
10274 NEON_SHAPE_DEF
10275};
10276
10277#undef X
10278#undef S2
10279#undef S3
10280#undef S4
10281
5287ad62
JB
10282/* Bit masks used in type checking given instructions.
10283 'N_EQK' means the type must be the same as (or based on in some way) the key
10284 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10285 set, various other bits can be set as well in order to modify the meaning of
10286 the type constraint. */
10287
10288enum neon_type_mask
10289{
10290 N_S8 = 0x000001,
10291 N_S16 = 0x000002,
10292 N_S32 = 0x000004,
10293 N_S64 = 0x000008,
10294 N_U8 = 0x000010,
10295 N_U16 = 0x000020,
10296 N_U32 = 0x000040,
10297 N_U64 = 0x000080,
10298 N_I8 = 0x000100,
10299 N_I16 = 0x000200,
10300 N_I32 = 0x000400,
10301 N_I64 = 0x000800,
10302 N_8 = 0x001000,
10303 N_16 = 0x002000,
10304 N_32 = 0x004000,
10305 N_64 = 0x008000,
10306 N_P8 = 0x010000,
10307 N_P16 = 0x020000,
10308 N_F32 = 0x040000,
037e8744
JB
10309 N_F64 = 0x080000,
10310 N_KEY = 0x100000, /* key element (main type specifier). */
10311 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10312 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
5287ad62
JB
10313 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10314 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10315 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10316 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10317 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10318 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 10319 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10320 N_UTYP = 0,
037e8744 10321 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10322};
10323
dcbf9037
JB
10324#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10325
5287ad62
JB
10326#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10327#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10328#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10329#define N_SUF_32 (N_SU_32 | N_F32)
10330#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10331#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10332
10333/* Pass this as the first type argument to neon_check_type to ignore types
10334 altogether. */
10335#define N_IGNORE_TYPE (N_KEY | N_EQK)
10336
037e8744
JB
10337/* Select a "shape" for the current instruction (describing register types or
10338 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10339 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10340 function of operand parsing, so this function doesn't need to be called.
10341 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10342
10343static enum neon_shape
037e8744 10344neon_select_shape (enum neon_shape shape, ...)
5287ad62 10345{
037e8744
JB
10346 va_list ap;
10347 enum neon_shape first_shape = shape;
5287ad62
JB
10348
10349 /* Fix missing optional operands. FIXME: we don't know at this point how
10350 many arguments we should have, so this makes the assumption that we have
10351 > 1. This is true of all current Neon opcodes, I think, but may not be
10352 true in the future. */
10353 if (!inst.operands[1].present)
10354 inst.operands[1] = inst.operands[0];
10355
037e8744 10356 va_start (ap, shape);
5287ad62 10357
037e8744
JB
10358 for (; shape != NS_NULL; shape = va_arg (ap, int))
10359 {
10360 unsigned j;
10361 int matches = 1;
10362
10363 for (j = 0; j < neon_shape_tab[shape].els; j++)
10364 {
10365 if (!inst.operands[j].present)
10366 {
10367 matches = 0;
10368 break;
10369 }
10370
10371 switch (neon_shape_tab[shape].el[j])
10372 {
10373 case SE_F:
10374 if (!(inst.operands[j].isreg
10375 && inst.operands[j].isvec
10376 && inst.operands[j].issingle
10377 && !inst.operands[j].isquad))
10378 matches = 0;
10379 break;
10380
10381 case SE_D:
10382 if (!(inst.operands[j].isreg
10383 && inst.operands[j].isvec
10384 && !inst.operands[j].isquad
10385 && !inst.operands[j].issingle))
10386 matches = 0;
10387 break;
10388
10389 case SE_R:
10390 if (!(inst.operands[j].isreg
10391 && !inst.operands[j].isvec))
10392 matches = 0;
10393 break;
10394
10395 case SE_Q:
10396 if (!(inst.operands[j].isreg
10397 && inst.operands[j].isvec
10398 && inst.operands[j].isquad
10399 && !inst.operands[j].issingle))
10400 matches = 0;
10401 break;
10402
10403 case SE_I:
10404 if (!(!inst.operands[j].isreg
10405 && !inst.operands[j].isscalar))
10406 matches = 0;
10407 break;
10408
10409 case SE_S:
10410 if (!(!inst.operands[j].isreg
10411 && inst.operands[j].isscalar))
10412 matches = 0;
10413 break;
10414
10415 case SE_L:
10416 break;
10417 }
10418 }
10419 if (matches)
5287ad62 10420 break;
037e8744 10421 }
5287ad62 10422
037e8744 10423 va_end (ap);
5287ad62 10424
037e8744
JB
10425 if (shape == NS_NULL && first_shape != NS_NULL)
10426 first_error (_("invalid instruction shape"));
5287ad62 10427
037e8744
JB
10428 return shape;
10429}
5287ad62 10430
037e8744
JB
10431/* True if SHAPE is predominantly a quadword operation (most of the time, this
10432 means the Q bit should be set). */
10433
10434static int
10435neon_quad (enum neon_shape shape)
10436{
10437 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10438}
037e8744 10439
5287ad62
JB
10440static void
10441neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10442 unsigned *g_size)
10443{
10444 /* Allow modification to be made to types which are constrained to be
10445 based on the key element, based on bits set alongside N_EQK. */
10446 if ((typebits & N_EQK) != 0)
10447 {
10448 if ((typebits & N_HLF) != 0)
10449 *g_size /= 2;
10450 else if ((typebits & N_DBL) != 0)
10451 *g_size *= 2;
10452 if ((typebits & N_SGN) != 0)
10453 *g_type = NT_signed;
10454 else if ((typebits & N_UNS) != 0)
10455 *g_type = NT_unsigned;
10456 else if ((typebits & N_INT) != 0)
10457 *g_type = NT_integer;
10458 else if ((typebits & N_FLT) != 0)
10459 *g_type = NT_float;
dcbf9037
JB
10460 else if ((typebits & N_SIZ) != 0)
10461 *g_type = NT_untyped;
5287ad62
JB
10462 }
10463}
10464
10465/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10466 operand type, i.e. the single type specified in a Neon instruction when it
10467 is the only one given. */
10468
10469static struct neon_type_el
10470neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10471{
10472 struct neon_type_el dest = *key;
10473
10474 assert ((thisarg & N_EQK) != 0);
10475
10476 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10477
10478 return dest;
10479}
10480
10481/* Convert Neon type and size into compact bitmask representation. */
10482
10483static enum neon_type_mask
10484type_chk_of_el_type (enum neon_el_type type, unsigned size)
10485{
10486 switch (type)
10487 {
10488 case NT_untyped:
10489 switch (size)
10490 {
10491 case 8: return N_8;
10492 case 16: return N_16;
10493 case 32: return N_32;
10494 case 64: return N_64;
10495 default: ;
10496 }
10497 break;
10498
10499 case NT_integer:
10500 switch (size)
10501 {
10502 case 8: return N_I8;
10503 case 16: return N_I16;
10504 case 32: return N_I32;
10505 case 64: return N_I64;
10506 default: ;
10507 }
10508 break;
10509
10510 case NT_float:
037e8744
JB
10511 switch (size)
10512 {
10513 case 32: return N_F32;
10514 case 64: return N_F64;
10515 default: ;
10516 }
5287ad62
JB
10517 break;
10518
10519 case NT_poly:
10520 switch (size)
10521 {
10522 case 8: return N_P8;
10523 case 16: return N_P16;
10524 default: ;
10525 }
10526 break;
10527
10528 case NT_signed:
10529 switch (size)
10530 {
10531 case 8: return N_S8;
10532 case 16: return N_S16;
10533 case 32: return N_S32;
10534 case 64: return N_S64;
10535 default: ;
10536 }
10537 break;
10538
10539 case NT_unsigned:
10540 switch (size)
10541 {
10542 case 8: return N_U8;
10543 case 16: return N_U16;
10544 case 32: return N_U32;
10545 case 64: return N_U64;
10546 default: ;
10547 }
10548 break;
10549
10550 default: ;
10551 }
10552
10553 return N_UTYP;
10554}
10555
10556/* Convert compact Neon bitmask type representation to a type and size. Only
10557 handles the case where a single bit is set in the mask. */
10558
dcbf9037 10559static int
5287ad62
JB
10560el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10561 enum neon_type_mask mask)
10562{
dcbf9037
JB
10563 if ((mask & N_EQK) != 0)
10564 return FAIL;
10565
5287ad62
JB
10566 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10567 *size = 8;
dcbf9037 10568 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10569 *size = 16;
dcbf9037 10570 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10571 *size = 32;
037e8744 10572 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10573 *size = 64;
dcbf9037
JB
10574 else
10575 return FAIL;
10576
5287ad62
JB
10577 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10578 *type = NT_signed;
dcbf9037 10579 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10580 *type = NT_unsigned;
dcbf9037 10581 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10582 *type = NT_integer;
dcbf9037 10583 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10584 *type = NT_untyped;
dcbf9037 10585 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10586 *type = NT_poly;
037e8744 10587 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10588 *type = NT_float;
dcbf9037
JB
10589 else
10590 return FAIL;
10591
10592 return SUCCESS;
5287ad62
JB
10593}
10594
10595/* Modify a bitmask of allowed types. This is only needed for type
10596 relaxation. */
10597
10598static unsigned
10599modify_types_allowed (unsigned allowed, unsigned mods)
10600{
10601 unsigned size;
10602 enum neon_el_type type;
10603 unsigned destmask;
10604 int i;
10605
10606 destmask = 0;
10607
10608 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10609 {
dcbf9037
JB
10610 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10611 {
10612 neon_modify_type_size (mods, &type, &size);
10613 destmask |= type_chk_of_el_type (type, size);
10614 }
5287ad62
JB
10615 }
10616
10617 return destmask;
10618}
10619
10620/* Check type and return type classification.
10621 The manual states (paraphrase): If one datatype is given, it indicates the
10622 type given in:
10623 - the second operand, if there is one
10624 - the operand, if there is no second operand
10625 - the result, if there are no operands.
10626 This isn't quite good enough though, so we use a concept of a "key" datatype
10627 which is set on a per-instruction basis, which is the one which matters when
10628 only one data type is written.
10629 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 10630 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
10631
10632static struct neon_type_el
10633neon_check_type (unsigned els, enum neon_shape ns, ...)
10634{
10635 va_list ap;
10636 unsigned i, pass, key_el = 0;
10637 unsigned types[NEON_MAX_TYPE_ELS];
10638 enum neon_el_type k_type = NT_invtype;
10639 unsigned k_size = -1u;
10640 struct neon_type_el badtype = {NT_invtype, -1};
10641 unsigned key_allowed = 0;
10642
10643 /* Optional registers in Neon instructions are always (not) in operand 1.
10644 Fill in the missing operand here, if it was omitted. */
10645 if (els > 1 && !inst.operands[1].present)
10646 inst.operands[1] = inst.operands[0];
10647
10648 /* Suck up all the varargs. */
10649 va_start (ap, ns);
10650 for (i = 0; i < els; i++)
10651 {
10652 unsigned thisarg = va_arg (ap, unsigned);
10653 if (thisarg == N_IGNORE_TYPE)
10654 {
10655 va_end (ap);
10656 return badtype;
10657 }
10658 types[i] = thisarg;
10659 if ((thisarg & N_KEY) != 0)
10660 key_el = i;
10661 }
10662 va_end (ap);
10663
dcbf9037
JB
10664 if (inst.vectype.elems > 0)
10665 for (i = 0; i < els; i++)
10666 if (inst.operands[i].vectype.type != NT_invtype)
10667 {
10668 first_error (_("types specified in both the mnemonic and operands"));
10669 return badtype;
10670 }
10671
5287ad62
JB
10672 /* Duplicate inst.vectype elements here as necessary.
10673 FIXME: No idea if this is exactly the same as the ARM assembler,
10674 particularly when an insn takes one register and one non-register
10675 operand. */
10676 if (inst.vectype.elems == 1 && els > 1)
10677 {
10678 unsigned j;
10679 inst.vectype.elems = els;
10680 inst.vectype.el[key_el] = inst.vectype.el[0];
10681 for (j = 0; j < els; j++)
dcbf9037
JB
10682 if (j != key_el)
10683 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10684 types[j]);
10685 }
10686 else if (inst.vectype.elems == 0 && els > 0)
10687 {
10688 unsigned j;
10689 /* No types were given after the mnemonic, so look for types specified
10690 after each operand. We allow some flexibility here; as long as the
10691 "key" operand has a type, we can infer the others. */
10692 for (j = 0; j < els; j++)
10693 if (inst.operands[j].vectype.type != NT_invtype)
10694 inst.vectype.el[j] = inst.operands[j].vectype;
10695
10696 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 10697 {
dcbf9037
JB
10698 for (j = 0; j < els; j++)
10699 if (inst.operands[j].vectype.type == NT_invtype)
10700 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10701 types[j]);
10702 }
10703 else
10704 {
10705 first_error (_("operand types can't be inferred"));
10706 return badtype;
5287ad62
JB
10707 }
10708 }
10709 else if (inst.vectype.elems != els)
10710 {
dcbf9037 10711 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
10712 return badtype;
10713 }
10714
10715 for (pass = 0; pass < 2; pass++)
10716 {
10717 for (i = 0; i < els; i++)
10718 {
10719 unsigned thisarg = types[i];
10720 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
10721 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
10722 enum neon_el_type g_type = inst.vectype.el[i].type;
10723 unsigned g_size = inst.vectype.el[i].size;
10724
10725 /* Decay more-specific signed & unsigned types to sign-insensitive
10726 integer types if sign-specific variants are unavailable. */
10727 if ((g_type == NT_signed || g_type == NT_unsigned)
10728 && (types_allowed & N_SU_ALL) == 0)
10729 g_type = NT_integer;
10730
10731 /* If only untyped args are allowed, decay any more specific types to
10732 them. Some instructions only care about signs for some element
10733 sizes, so handle that properly. */
10734 if ((g_size == 8 && (types_allowed & N_8) != 0)
10735 || (g_size == 16 && (types_allowed & N_16) != 0)
10736 || (g_size == 32 && (types_allowed & N_32) != 0)
10737 || (g_size == 64 && (types_allowed & N_64) != 0))
10738 g_type = NT_untyped;
10739
10740 if (pass == 0)
10741 {
10742 if ((thisarg & N_KEY) != 0)
10743 {
10744 k_type = g_type;
10745 k_size = g_size;
10746 key_allowed = thisarg & ~N_KEY;
10747 }
10748 }
10749 else
10750 {
037e8744
JB
10751 if ((thisarg & N_VFP) != 0)
10752 {
10753 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
10754 unsigned regwidth = neon_shape_el_size[regshape], match;
10755
10756 /* In VFP mode, operands must match register widths. If we
10757 have a key operand, use its width, else use the width of
10758 the current operand. */
10759 if (k_size != -1u)
10760 match = k_size;
10761 else
10762 match = g_size;
10763
10764 if (regwidth != match)
10765 {
10766 first_error (_("operand size must match register width"));
10767 return badtype;
10768 }
10769 }
10770
5287ad62
JB
10771 if ((thisarg & N_EQK) == 0)
10772 {
10773 unsigned given_type = type_chk_of_el_type (g_type, g_size);
10774
10775 if ((given_type & types_allowed) == 0)
10776 {
dcbf9037 10777 first_error (_("bad type in Neon instruction"));
5287ad62
JB
10778 return badtype;
10779 }
10780 }
10781 else
10782 {
10783 enum neon_el_type mod_k_type = k_type;
10784 unsigned mod_k_size = k_size;
10785 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
10786 if (g_type != mod_k_type || g_size != mod_k_size)
10787 {
dcbf9037 10788 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
10789 return badtype;
10790 }
10791 }
10792 }
10793 }
10794 }
10795
10796 return inst.vectype.el[key_el];
10797}
10798
037e8744 10799/* Neon-style VFP instruction forwarding. */
5287ad62 10800
037e8744
JB
10801/* Thumb VFP instructions have 0xE in the condition field. */
10802
10803static void
10804do_vfp_cond_or_thumb (void)
5287ad62
JB
10805{
10806 if (thumb_mode)
037e8744 10807 inst.instruction |= 0xe0000000;
5287ad62 10808 else
037e8744 10809 inst.instruction |= inst.cond << 28;
5287ad62
JB
10810}
10811
037e8744
JB
10812/* Look up and encode a simple mnemonic, for use as a helper function for the
10813 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
10814 etc. It is assumed that operand parsing has already been done, and that the
10815 operands are in the form expected by the given opcode (this isn't necessarily
10816 the same as the form in which they were parsed, hence some massaging must
10817 take place before this function is called).
10818 Checks current arch version against that in the looked-up opcode. */
5287ad62 10819
037e8744
JB
10820static void
10821do_vfp_nsyn_opcode (const char *opname)
5287ad62 10822{
037e8744
JB
10823 const struct asm_opcode *opcode;
10824
10825 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 10826
037e8744
JB
10827 if (!opcode)
10828 abort ();
5287ad62 10829
037e8744
JB
10830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
10831 thumb_mode ? *opcode->tvariant : *opcode->avariant),
10832 _(BAD_FPU));
5287ad62 10833
037e8744
JB
10834 if (thumb_mode)
10835 {
10836 inst.instruction = opcode->tvalue;
10837 opcode->tencode ();
10838 }
10839 else
10840 {
10841 inst.instruction = (inst.cond << 28) | opcode->avalue;
10842 opcode->aencode ();
10843 }
10844}
5287ad62
JB
10845
10846static void
037e8744 10847do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 10848{
037e8744
JB
10849 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
10850
10851 if (rs == NS_FFF)
10852 {
10853 if (is_add)
10854 do_vfp_nsyn_opcode ("fadds");
10855 else
10856 do_vfp_nsyn_opcode ("fsubs");
10857 }
10858 else
10859 {
10860 if (is_add)
10861 do_vfp_nsyn_opcode ("faddd");
10862 else
10863 do_vfp_nsyn_opcode ("fsubd");
10864 }
10865}
10866
10867/* Check operand types to see if this is a VFP instruction, and if so call
10868 PFN (). */
10869
10870static int
10871try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
10872{
10873 enum neon_shape rs;
10874 struct neon_type_el et;
10875
10876 switch (args)
10877 {
10878 case 2:
10879 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
10880 et = neon_check_type (2, rs,
10881 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10882 break;
10883
10884 case 3:
10885 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10886 et = neon_check_type (3, rs,
10887 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10888 break;
10889
10890 default:
10891 abort ();
10892 }
10893
10894 if (et.type != NT_invtype)
10895 {
10896 pfn (rs);
10897 return SUCCESS;
10898 }
10899 else
10900 inst.error = NULL;
10901
10902 return FAIL;
10903}
10904
10905static void
10906do_vfp_nsyn_mla_mls (enum neon_shape rs)
10907{
10908 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
10909
10910 if (rs == NS_FFF)
10911 {
10912 if (is_mla)
10913 do_vfp_nsyn_opcode ("fmacs");
10914 else
10915 do_vfp_nsyn_opcode ("fmscs");
10916 }
10917 else
10918 {
10919 if (is_mla)
10920 do_vfp_nsyn_opcode ("fmacd");
10921 else
10922 do_vfp_nsyn_opcode ("fmscd");
10923 }
10924}
10925
10926static void
10927do_vfp_nsyn_mul (enum neon_shape rs)
10928{
10929 if (rs == NS_FFF)
10930 do_vfp_nsyn_opcode ("fmuls");
10931 else
10932 do_vfp_nsyn_opcode ("fmuld");
10933}
10934
10935static void
10936do_vfp_nsyn_abs_neg (enum neon_shape rs)
10937{
10938 int is_neg = (inst.instruction & 0x80) != 0;
10939 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
10940
10941 if (rs == NS_FF)
10942 {
10943 if (is_neg)
10944 do_vfp_nsyn_opcode ("fnegs");
10945 else
10946 do_vfp_nsyn_opcode ("fabss");
10947 }
10948 else
10949 {
10950 if (is_neg)
10951 do_vfp_nsyn_opcode ("fnegd");
10952 else
10953 do_vfp_nsyn_opcode ("fabsd");
10954 }
10955}
10956
10957/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
10958 insns belong to Neon, and are handled elsewhere. */
10959
10960static void
10961do_vfp_nsyn_ldm_stm (int is_dbmode)
10962{
10963 int is_ldm = (inst.instruction & (1 << 20)) != 0;
10964 if (is_ldm)
10965 {
10966 if (is_dbmode)
10967 do_vfp_nsyn_opcode ("fldmdbs");
10968 else
10969 do_vfp_nsyn_opcode ("fldmias");
10970 }
10971 else
10972 {
10973 if (is_dbmode)
10974 do_vfp_nsyn_opcode ("fstmdbs");
10975 else
10976 do_vfp_nsyn_opcode ("fstmias");
10977 }
10978}
10979
037e8744
JB
10980static void
10981do_vfp_nsyn_sqrt (void)
10982{
10983 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
10984 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10985
10986 if (rs == NS_FF)
10987 do_vfp_nsyn_opcode ("fsqrts");
10988 else
10989 do_vfp_nsyn_opcode ("fsqrtd");
10990}
10991
10992static void
10993do_vfp_nsyn_div (void)
10994{
10995 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10996 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
10997 N_F32 | N_F64 | N_KEY | N_VFP);
10998
10999 if (rs == NS_FFF)
11000 do_vfp_nsyn_opcode ("fdivs");
11001 else
11002 do_vfp_nsyn_opcode ("fdivd");
11003}
11004
11005static void
11006do_vfp_nsyn_nmul (void)
11007{
11008 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11009 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11010 N_F32 | N_F64 | N_KEY | N_VFP);
11011
11012 if (rs == NS_FFF)
11013 {
11014 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11015 do_vfp_sp_dyadic ();
11016 }
11017 else
11018 {
11019 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11020 do_vfp_dp_rd_rn_rm ();
11021 }
11022 do_vfp_cond_or_thumb ();
11023}
11024
11025static void
11026do_vfp_nsyn_cmp (void)
11027{
11028 if (inst.operands[1].isreg)
11029 {
11030 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11031 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11032
11033 if (rs == NS_FF)
11034 {
11035 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11036 do_vfp_sp_monadic ();
11037 }
11038 else
11039 {
11040 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11041 do_vfp_dp_rd_rm ();
11042 }
11043 }
11044 else
11045 {
11046 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11047 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11048
11049 switch (inst.instruction & 0x0fffffff)
11050 {
11051 case N_MNEM_vcmp:
11052 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11053 break;
11054 case N_MNEM_vcmpe:
11055 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11056 break;
11057 default:
11058 abort ();
11059 }
11060
11061 if (rs == NS_FI)
11062 {
11063 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11064 do_vfp_sp_compare_z ();
11065 }
11066 else
11067 {
11068 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11069 do_vfp_dp_rd ();
11070 }
11071 }
11072 do_vfp_cond_or_thumb ();
11073}
11074
11075static void
11076nsyn_insert_sp (void)
11077{
11078 inst.operands[1] = inst.operands[0];
11079 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11080 inst.operands[0].reg = 13;
11081 inst.operands[0].isreg = 1;
11082 inst.operands[0].writeback = 1;
11083 inst.operands[0].present = 1;
11084}
11085
11086static void
11087do_vfp_nsyn_push (void)
11088{
11089 nsyn_insert_sp ();
11090 if (inst.operands[1].issingle)
11091 do_vfp_nsyn_opcode ("fstmdbs");
11092 else
11093 do_vfp_nsyn_opcode ("fstmdbd");
11094}
11095
11096static void
11097do_vfp_nsyn_pop (void)
11098{
11099 nsyn_insert_sp ();
11100 if (inst.operands[1].issingle)
11101 do_vfp_nsyn_opcode ("fldmdbs");
11102 else
11103 do_vfp_nsyn_opcode ("fldmdbd");
11104}
11105
11106/* Fix up Neon data-processing instructions, ORing in the correct bits for
11107 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11108
11109static unsigned
11110neon_dp_fixup (unsigned i)
11111{
11112 if (thumb_mode)
11113 {
11114 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11115 if (i & (1 << 24))
11116 i |= 1 << 28;
11117
11118 i &= ~(1 << 24);
11119
11120 i |= 0xef000000;
11121 }
11122 else
11123 i |= 0xf2000000;
11124
11125 return i;
11126}
11127
11128/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11129 (0, 1, 2, 3). */
11130
11131static unsigned
11132neon_logbits (unsigned x)
11133{
11134 return ffs (x) - 4;
11135}
11136
11137#define LOW4(R) ((R) & 0xf)
11138#define HI1(R) (((R) >> 4) & 1)
11139
11140/* Encode insns with bit pattern:
11141
11142 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11143 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11144
11145 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11146 different meaning for some instruction. */
11147
11148static void
11149neon_three_same (int isquad, int ubit, int size)
11150{
11151 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11152 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11153 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11154 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11155 inst.instruction |= LOW4 (inst.operands[2].reg);
11156 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11157 inst.instruction |= (isquad != 0) << 6;
11158 inst.instruction |= (ubit != 0) << 24;
11159 if (size != -1)
11160 inst.instruction |= neon_logbits (size) << 20;
11161
11162 inst.instruction = neon_dp_fixup (inst.instruction);
11163}
11164
11165/* Encode instructions of the form:
11166
11167 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11168 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11169
11170 Don't write size if SIZE == -1. */
11171
11172static void
11173neon_two_same (int qbit, int ubit, int size)
11174{
11175 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11176 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11177 inst.instruction |= LOW4 (inst.operands[1].reg);
11178 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11179 inst.instruction |= (qbit != 0) << 6;
11180 inst.instruction |= (ubit != 0) << 24;
11181
11182 if (size != -1)
11183 inst.instruction |= neon_logbits (size) << 18;
11184
11185 inst.instruction = neon_dp_fixup (inst.instruction);
11186}
11187
11188/* Neon instruction encoders, in approximate order of appearance. */
11189
11190static void
11191do_neon_dyadic_i_su (void)
11192{
037e8744 11193 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11194 struct neon_type_el et = neon_check_type (3, rs,
11195 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11196 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11197}
11198
11199static void
11200do_neon_dyadic_i64_su (void)
11201{
037e8744 11202 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11203 struct neon_type_el et = neon_check_type (3, rs,
11204 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11205 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11206}
11207
11208static void
11209neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11210 unsigned immbits)
11211{
11212 unsigned size = et.size >> 3;
11213 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11214 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11215 inst.instruction |= LOW4 (inst.operands[1].reg);
11216 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11217 inst.instruction |= (isquad != 0) << 6;
11218 inst.instruction |= immbits << 16;
11219 inst.instruction |= (size >> 3) << 7;
11220 inst.instruction |= (size & 0x7) << 19;
11221 if (write_ubit)
11222 inst.instruction |= (uval != 0) << 24;
11223
11224 inst.instruction = neon_dp_fixup (inst.instruction);
11225}
11226
11227static void
11228do_neon_shl_imm (void)
11229{
11230 if (!inst.operands[2].isreg)
11231 {
037e8744 11232 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11233 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11234 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11235 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11236 }
11237 else
11238 {
037e8744 11239 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11240 struct neon_type_el et = neon_check_type (3, rs,
11241 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11242 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11243 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11244 }
11245}
11246
11247static void
11248do_neon_qshl_imm (void)
11249{
11250 if (!inst.operands[2].isreg)
11251 {
037e8744 11252 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11253 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11254 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11255 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11256 inst.operands[2].imm);
11257 }
11258 else
11259 {
037e8744 11260 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11261 struct neon_type_el et = neon_check_type (3, rs,
11262 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11263 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11264 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11265 }
11266}
11267
11268static int
11269neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11270{
11271 /* Handle .I8 and .I64 as pseudo-instructions. */
11272 switch (size)
11273 {
11274 case 8:
11275 /* Unfortunately, this will make everything apart from zero out-of-range.
11276 FIXME is this the intended semantics? There doesn't seem much point in
11277 accepting .I8 if so. */
11278 immediate |= immediate << 8;
11279 size = 16;
11280 break;
11281 case 64:
11282 /* Similarly, anything other than zero will be replicated in bits [63:32],
11283 which probably isn't want we want if we specified .I64. */
11284 if (immediate != 0)
11285 goto bad_immediate;
11286 size = 32;
11287 break;
11288 default: ;
11289 }
11290
11291 if (immediate == (immediate & 0x000000ff))
11292 {
11293 *immbits = immediate;
11294 return (size == 16) ? 0x9 : 0x1;
11295 }
11296 else if (immediate == (immediate & 0x0000ff00))
11297 {
11298 *immbits = immediate >> 8;
11299 return (size == 16) ? 0xb : 0x3;
11300 }
11301 else if (immediate == (immediate & 0x00ff0000))
11302 {
11303 *immbits = immediate >> 16;
11304 return 0x5;
11305 }
11306 else if (immediate == (immediate & 0xff000000))
11307 {
11308 *immbits = immediate >> 24;
11309 return 0x7;
11310 }
11311
11312 bad_immediate:
dcbf9037 11313 first_error (_("immediate value out of range"));
5287ad62
JB
11314 return FAIL;
11315}
11316
11317/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11318 A, B, C, D. */
11319
11320static int
11321neon_bits_same_in_bytes (unsigned imm)
11322{
11323 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11324 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11325 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11326 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11327}
11328
11329/* For immediate of above form, return 0bABCD. */
11330
11331static unsigned
11332neon_squash_bits (unsigned imm)
11333{
11334 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11335 | ((imm & 0x01000000) >> 21);
11336}
11337
136da414 11338/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11339
11340static unsigned
11341neon_qfloat_bits (unsigned imm)
11342{
136da414 11343 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11344}
11345
11346/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11347 the instruction. *OP is passed as the initial value of the op field, and
11348 may be set to a different value depending on the constant (i.e.
11349 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11350 MVN). */
11351
11352static int
11353neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, unsigned *immbits,
136da414 11354 int *op, int size, enum neon_el_type type)
5287ad62 11355{
136da414
JB
11356 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11357 {
11358 if (size != 32 || *op == 1)
11359 return FAIL;
11360 *immbits = neon_qfloat_bits (immlo);
11361 return 0xf;
11362 }
11363 else if (size == 64 && neon_bits_same_in_bytes (immhi)
5287ad62
JB
11364 && neon_bits_same_in_bytes (immlo))
11365 {
11366 /* Check this one first so we don't have to bother with immhi in later
11367 tests. */
11368 if (*op == 1)
11369 return FAIL;
11370 *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo);
11371 *op = 1;
11372 return 0xe;
11373 }
11374 else if (immhi != 0)
11375 return FAIL;
11376 else if (immlo == (immlo & 0x000000ff))
11377 {
11378 /* 64-bit case was already handled. Don't allow MVN with 8-bit
11379 immediate. */
11380 if ((size != 8 && size != 16 && size != 32)
11381 || (size == 8 && *op == 1))
11382 return FAIL;
11383 *immbits = immlo;
11384 return (size == 8) ? 0xe : (size == 16) ? 0x8 : 0x0;
11385 }
11386 else if (immlo == (immlo & 0x0000ff00))
11387 {
11388 if (size != 16 && size != 32)
11389 return FAIL;
11390 *immbits = immlo >> 8;
11391 return (size == 16) ? 0xa : 0x2;
11392 }
11393 else if (immlo == (immlo & 0x00ff0000))
11394 {
11395 if (size != 32)
11396 return FAIL;
11397 *immbits = immlo >> 16;
11398 return 0x4;
11399 }
11400 else if (immlo == (immlo & 0xff000000))
11401 {
11402 if (size != 32)
11403 return FAIL;
11404 *immbits = immlo >> 24;
11405 return 0x6;
11406 }
11407 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11408 {
11409 if (size != 32)
11410 return FAIL;
11411 *immbits = (immlo >> 8) & 0xff;
11412 return 0xc;
11413 }
11414 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11415 {
11416 if (size != 32)
11417 return FAIL;
11418 *immbits = (immlo >> 16) & 0xff;
11419 return 0xd;
11420 }
5287ad62
JB
11421
11422 return FAIL;
11423}
11424
11425/* Write immediate bits [7:0] to the following locations:
11426
11427 |28/24|23 19|18 16|15 4|3 0|
11428 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11429
11430 This function is used by VMOV/VMVN/VORR/VBIC. */
11431
11432static void
11433neon_write_immbits (unsigned immbits)
11434{
11435 inst.instruction |= immbits & 0xf;
11436 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11437 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11438}
11439
11440/* Invert low-order SIZE bits of XHI:XLO. */
11441
11442static void
11443neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11444{
11445 unsigned immlo = xlo ? *xlo : 0;
11446 unsigned immhi = xhi ? *xhi : 0;
11447
11448 switch (size)
11449 {
11450 case 8:
11451 immlo = (~immlo) & 0xff;
11452 break;
11453
11454 case 16:
11455 immlo = (~immlo) & 0xffff;
11456 break;
11457
11458 case 64:
11459 immhi = (~immhi) & 0xffffffff;
11460 /* fall through. */
11461
11462 case 32:
11463 immlo = (~immlo) & 0xffffffff;
11464 break;
11465
11466 default:
11467 abort ();
11468 }
11469
11470 if (xlo)
11471 *xlo = immlo;
11472
11473 if (xhi)
11474 *xhi = immhi;
11475}
11476
11477static void
11478do_neon_logic (void)
11479{
11480 if (inst.operands[2].present && inst.operands[2].isreg)
11481 {
037e8744 11482 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11483 neon_check_type (3, rs, N_IGNORE_TYPE);
11484 /* U bit and size field were set as part of the bitmask. */
11485 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11486 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11487 }
11488 else
11489 {
037e8744
JB
11490 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11491 struct neon_type_el et = neon_check_type (2, rs,
11492 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11493 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11494 unsigned immbits;
11495 int cmode;
11496
11497 if (et.type == NT_invtype)
11498 return;
11499
11500 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11501
11502 switch (opcode)
11503 {
11504 case N_MNEM_vbic:
11505 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11506 et.size);
11507 break;
11508
11509 case N_MNEM_vorr:
11510 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11511 et.size);
11512 break;
11513
11514 case N_MNEM_vand:
11515 /* Pseudo-instruction for VBIC. */
11516 immbits = inst.operands[1].imm;
11517 neon_invert_size (&immbits, 0, et.size);
11518 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11519 break;
11520
11521 case N_MNEM_vorn:
11522 /* Pseudo-instruction for VORR. */
11523 immbits = inst.operands[1].imm;
11524 neon_invert_size (&immbits, 0, et.size);
11525 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11526 break;
11527
11528 default:
11529 abort ();
11530 }
11531
11532 if (cmode == FAIL)
11533 return;
11534
037e8744 11535 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11536 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11537 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11538 inst.instruction |= cmode << 8;
11539 neon_write_immbits (immbits);
11540
11541 inst.instruction = neon_dp_fixup (inst.instruction);
11542 }
11543}
11544
11545static void
11546do_neon_bitfield (void)
11547{
037e8744 11548 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 11549 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 11550 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11551}
11552
11553static void
dcbf9037
JB
11554neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11555 unsigned destbits)
5287ad62 11556{
037e8744 11557 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
11558 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11559 types | N_KEY);
5287ad62
JB
11560 if (et.type == NT_float)
11561 {
11562 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 11563 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11564 }
11565 else
11566 {
11567 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11568 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
11569 }
11570}
11571
11572static void
11573do_neon_dyadic_if_su (void)
11574{
dcbf9037 11575 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
11576}
11577
11578static void
11579do_neon_dyadic_if_su_d (void)
11580{
11581 /* This version only allow D registers, but that constraint is enforced during
11582 operand parsing so we don't need to do anything extra here. */
dcbf9037 11583 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
11584}
11585
11586static void
11587do_neon_dyadic_if_i (void)
11588{
dcbf9037 11589 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
5287ad62
JB
11590}
11591
11592static void
11593do_neon_dyadic_if_i_d (void)
11594{
dcbf9037 11595 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
5287ad62
JB
11596}
11597
037e8744
JB
11598enum vfp_or_neon_is_neon_bits
11599{
11600 NEON_CHECK_CC = 1,
11601 NEON_CHECK_ARCH = 2
11602};
11603
11604/* Call this function if an instruction which may have belonged to the VFP or
11605 Neon instruction sets, but turned out to be a Neon instruction (due to the
11606 operand types involved, etc.). We have to check and/or fix-up a couple of
11607 things:
11608
11609 - Make sure the user hasn't attempted to make a Neon instruction
11610 conditional.
11611 - Alter the value in the condition code field if necessary.
11612 - Make sure that the arch supports Neon instructions.
11613
11614 Which of these operations take place depends on bits from enum
11615 vfp_or_neon_is_neon_bits.
11616
11617 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11618 current instruction's condition is COND_ALWAYS, the condition field is
11619 changed to inst.uncond_value. This is necessary because instructions shared
11620 between VFP and Neon may be conditional for the VFP variants only, and the
11621 unconditional Neon version must have, e.g., 0xF in the condition field. */
11622
11623static int
11624vfp_or_neon_is_neon (unsigned check)
11625{
11626 /* Conditions are always legal in Thumb mode (IT blocks). */
11627 if (!thumb_mode && (check & NEON_CHECK_CC))
11628 {
11629 if (inst.cond != COND_ALWAYS)
11630 {
11631 first_error (_(BAD_COND));
11632 return FAIL;
11633 }
11634 if (inst.uncond_value != -1)
11635 inst.instruction |= inst.uncond_value << 28;
11636 }
11637
11638 if ((check & NEON_CHECK_ARCH)
11639 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
11640 {
11641 first_error (_(BAD_FPU));
11642 return FAIL;
11643 }
11644
11645 return SUCCESS;
11646}
11647
5287ad62
JB
11648static void
11649do_neon_addsub_if_i (void)
11650{
037e8744
JB
11651 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
11652 return;
11653
11654 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11655 return;
11656
5287ad62
JB
11657 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11658 affected if we specify unsigned args. */
dcbf9037 11659 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
11660}
11661
11662/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11663 result to be:
11664 V<op> A,B (A is operand 0, B is operand 2)
11665 to mean:
11666 V<op> A,B,A
11667 not:
11668 V<op> A,B,B
11669 so handle that case specially. */
11670
11671static void
11672neon_exchange_operands (void)
11673{
11674 void *scratch = alloca (sizeof (inst.operands[0]));
11675 if (inst.operands[1].present)
11676 {
11677 /* Swap operands[1] and operands[2]. */
11678 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
11679 inst.operands[1] = inst.operands[2];
11680 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
11681 }
11682 else
11683 {
11684 inst.operands[1] = inst.operands[2];
11685 inst.operands[2] = inst.operands[0];
11686 }
11687}
11688
11689static void
11690neon_compare (unsigned regtypes, unsigned immtypes, int invert)
11691{
11692 if (inst.operands[2].isreg)
11693 {
11694 if (invert)
11695 neon_exchange_operands ();
dcbf9037 11696 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
11697 }
11698 else
11699 {
037e8744 11700 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
11701 struct neon_type_el et = neon_check_type (2, rs,
11702 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
11703
11704 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11705 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11706 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11707 inst.instruction |= LOW4 (inst.operands[1].reg);
11708 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 11709 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11710 inst.instruction |= (et.type == NT_float) << 10;
11711 inst.instruction |= neon_logbits (et.size) << 18;
11712
11713 inst.instruction = neon_dp_fixup (inst.instruction);
11714 }
11715}
11716
11717static void
11718do_neon_cmp (void)
11719{
11720 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
11721}
11722
11723static void
11724do_neon_cmp_inv (void)
11725{
11726 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
11727}
11728
11729static void
11730do_neon_ceq (void)
11731{
11732 neon_compare (N_IF_32, N_IF_32, FALSE);
11733}
11734
11735/* For multiply instructions, we have the possibility of 16-bit or 32-bit
11736 scalars, which are encoded in 5 bits, M : Rm.
11737 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
11738 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
11739 index in M. */
11740
11741static unsigned
11742neon_scalar_for_mul (unsigned scalar, unsigned elsize)
11743{
dcbf9037
JB
11744 unsigned regno = NEON_SCALAR_REG (scalar);
11745 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
11746
11747 switch (elsize)
11748 {
11749 case 16:
11750 if (regno > 7 || elno > 3)
11751 goto bad_scalar;
11752 return regno | (elno << 3);
11753
11754 case 32:
11755 if (regno > 15 || elno > 1)
11756 goto bad_scalar;
11757 return regno | (elno << 4);
11758
11759 default:
11760 bad_scalar:
dcbf9037 11761 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
11762 }
11763
11764 return 0;
11765}
11766
11767/* Encode multiply / multiply-accumulate scalar instructions. */
11768
11769static void
11770neon_mul_mac (struct neon_type_el et, int ubit)
11771{
dcbf9037
JB
11772 unsigned scalar;
11773
11774 /* Give a more helpful error message if we have an invalid type. */
11775 if (et.type == NT_invtype)
11776 return;
11777
11778 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
11779 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11780 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11781 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11782 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11783 inst.instruction |= LOW4 (scalar);
11784 inst.instruction |= HI1 (scalar) << 5;
11785 inst.instruction |= (et.type == NT_float) << 8;
11786 inst.instruction |= neon_logbits (et.size) << 20;
11787 inst.instruction |= (ubit != 0) << 24;
11788
11789 inst.instruction = neon_dp_fixup (inst.instruction);
11790}
11791
11792static void
11793do_neon_mac_maybe_scalar (void)
11794{
037e8744
JB
11795 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
11796 return;
11797
11798 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11799 return;
11800
5287ad62
JB
11801 if (inst.operands[2].isscalar)
11802 {
037e8744 11803 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
11804 struct neon_type_el et = neon_check_type (3, rs,
11805 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
11806 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 11807 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
11808 }
11809 else
11810 do_neon_dyadic_if_i ();
11811}
11812
11813static void
11814do_neon_tst (void)
11815{
037e8744 11816 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11817 struct neon_type_el et = neon_check_type (3, rs,
11818 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 11819 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
11820}
11821
11822/* VMUL with 3 registers allows the P8 type. The scalar version supports the
11823 same types as the MAC equivalents. The polynomial type for this instruction
11824 is encoded the same as the integer type. */
11825
11826static void
11827do_neon_mul (void)
11828{
037e8744
JB
11829 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
11830 return;
11831
11832 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11833 return;
11834
5287ad62
JB
11835 if (inst.operands[2].isscalar)
11836 do_neon_mac_maybe_scalar ();
11837 else
dcbf9037 11838 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
11839}
11840
11841static void
11842do_neon_qdmulh (void)
11843{
11844 if (inst.operands[2].isscalar)
11845 {
037e8744 11846 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
11847 struct neon_type_el et = neon_check_type (3, rs,
11848 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11849 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 11850 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
11851 }
11852 else
11853 {
037e8744 11854 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11855 struct neon_type_el et = neon_check_type (3, rs,
11856 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11857 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11858 /* The U bit (rounding) comes from bit mask. */
037e8744 11859 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
11860 }
11861}
11862
11863static void
11864do_neon_fcmp_absolute (void)
11865{
037e8744 11866 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11867 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11868 /* Size field comes from bit mask. */
037e8744 11869 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
11870}
11871
11872static void
11873do_neon_fcmp_absolute_inv (void)
11874{
11875 neon_exchange_operands ();
11876 do_neon_fcmp_absolute ();
11877}
11878
11879static void
11880do_neon_step (void)
11881{
037e8744 11882 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 11883 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 11884 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11885}
11886
11887static void
11888do_neon_abs_neg (void)
11889{
037e8744
JB
11890 enum neon_shape rs;
11891 struct neon_type_el et;
11892
11893 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
11894 return;
11895
11896 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11897 return;
11898
11899 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
11900 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
11901
5287ad62
JB
11902 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11903 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11904 inst.instruction |= LOW4 (inst.operands[1].reg);
11905 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 11906 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11907 inst.instruction |= (et.type == NT_float) << 10;
11908 inst.instruction |= neon_logbits (et.size) << 18;
11909
11910 inst.instruction = neon_dp_fixup (inst.instruction);
11911}
11912
11913static void
11914do_neon_sli (void)
11915{
037e8744 11916 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11917 struct neon_type_el et = neon_check_type (2, rs,
11918 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11919 int imm = inst.operands[2].imm;
11920 constraint (imm < 0 || (unsigned)imm >= et.size,
11921 _("immediate out of range for insert"));
037e8744 11922 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
11923}
11924
11925static void
11926do_neon_sri (void)
11927{
037e8744 11928 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11929 struct neon_type_el et = neon_check_type (2, rs,
11930 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11931 int imm = inst.operands[2].imm;
11932 constraint (imm < 1 || (unsigned)imm > et.size,
11933 _("immediate out of range for insert"));
037e8744 11934 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
11935}
11936
11937static void
11938do_neon_qshlu_imm (void)
11939{
037e8744 11940 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11941 struct neon_type_el et = neon_check_type (2, rs,
11942 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
11943 int imm = inst.operands[2].imm;
11944 constraint (imm < 0 || (unsigned)imm >= et.size,
11945 _("immediate out of range for shift"));
11946 /* Only encodes the 'U present' variant of the instruction.
11947 In this case, signed types have OP (bit 8) set to 0.
11948 Unsigned types have OP set to 1. */
11949 inst.instruction |= (et.type == NT_unsigned) << 8;
11950 /* The rest of the bits are the same as other immediate shifts. */
037e8744 11951 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
11952}
11953
11954static void
11955do_neon_qmovn (void)
11956{
11957 struct neon_type_el et = neon_check_type (2, NS_DQ,
11958 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
11959 /* Saturating move where operands can be signed or unsigned, and the
11960 destination has the same signedness. */
11961 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11962 if (et.type == NT_unsigned)
11963 inst.instruction |= 0xc0;
11964 else
11965 inst.instruction |= 0x80;
11966 neon_two_same (0, 1, et.size / 2);
11967}
11968
11969static void
11970do_neon_qmovun (void)
11971{
11972 struct neon_type_el et = neon_check_type (2, NS_DQ,
11973 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
11974 /* Saturating move with unsigned results. Operands must be signed. */
11975 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11976 neon_two_same (0, 1, et.size / 2);
11977}
11978
11979static void
11980do_neon_rshift_sat_narrow (void)
11981{
11982 /* FIXME: Types for narrowing. If operands are signed, results can be signed
11983 or unsigned. If operands are unsigned, results must also be unsigned. */
11984 struct neon_type_el et = neon_check_type (2, NS_DQI,
11985 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
11986 int imm = inst.operands[2].imm;
11987 /* This gets the bounds check, size encoding and immediate bits calculation
11988 right. */
11989 et.size /= 2;
11990
11991 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
11992 VQMOVN.I<size> <Dd>, <Qm>. */
11993 if (imm == 0)
11994 {
11995 inst.operands[2].present = 0;
11996 inst.instruction = N_MNEM_vqmovn;
11997 do_neon_qmovn ();
11998 return;
11999 }
12000
12001 constraint (imm < 1 || (unsigned)imm > et.size,
12002 _("immediate out of range"));
12003 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12004}
12005
12006static void
12007do_neon_rshift_sat_narrow_u (void)
12008{
12009 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12010 or unsigned. If operands are unsigned, results must also be unsigned. */
12011 struct neon_type_el et = neon_check_type (2, NS_DQI,
12012 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12013 int imm = inst.operands[2].imm;
12014 /* This gets the bounds check, size encoding and immediate bits calculation
12015 right. */
12016 et.size /= 2;
12017
12018 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12019 VQMOVUN.I<size> <Dd>, <Qm>. */
12020 if (imm == 0)
12021 {
12022 inst.operands[2].present = 0;
12023 inst.instruction = N_MNEM_vqmovun;
12024 do_neon_qmovun ();
12025 return;
12026 }
12027
12028 constraint (imm < 1 || (unsigned)imm > et.size,
12029 _("immediate out of range"));
12030 /* FIXME: The manual is kind of unclear about what value U should have in
12031 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12032 must be 1. */
12033 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12034}
12035
12036static void
12037do_neon_movn (void)
12038{
12039 struct neon_type_el et = neon_check_type (2, NS_DQ,
12040 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12041 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12042 neon_two_same (0, 1, et.size / 2);
12043}
12044
12045static void
12046do_neon_rshift_narrow (void)
12047{
12048 struct neon_type_el et = neon_check_type (2, NS_DQI,
12049 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12050 int imm = inst.operands[2].imm;
12051 /* This gets the bounds check, size encoding and immediate bits calculation
12052 right. */
12053 et.size /= 2;
12054
12055 /* If immediate is zero then we are a pseudo-instruction for
12056 VMOVN.I<size> <Dd>, <Qm> */
12057 if (imm == 0)
12058 {
12059 inst.operands[2].present = 0;
12060 inst.instruction = N_MNEM_vmovn;
12061 do_neon_movn ();
12062 return;
12063 }
12064
12065 constraint (imm < 1 || (unsigned)imm > et.size,
12066 _("immediate out of range for narrowing operation"));
12067 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12068}
12069
12070static void
12071do_neon_shll (void)
12072{
12073 /* FIXME: Type checking when lengthening. */
12074 struct neon_type_el et = neon_check_type (2, NS_QDI,
12075 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12076 unsigned imm = inst.operands[2].imm;
12077
12078 if (imm == et.size)
12079 {
12080 /* Maximum shift variant. */
12081 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12082 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12083 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12084 inst.instruction |= LOW4 (inst.operands[1].reg);
12085 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12086 inst.instruction |= neon_logbits (et.size) << 18;
12087
12088 inst.instruction = neon_dp_fixup (inst.instruction);
12089 }
12090 else
12091 {
12092 /* A more-specific type check for non-max versions. */
12093 et = neon_check_type (2, NS_QDI,
12094 N_EQK | N_DBL, N_SU_32 | N_KEY);
12095 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12096 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12097 }
12098}
12099
037e8744 12100/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12101 the current instruction is. */
12102
12103static int
12104neon_cvt_flavour (enum neon_shape rs)
12105{
037e8744
JB
12106#define CVT_VAR(C,X,Y) \
12107 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12108 if (et.type != NT_invtype) \
12109 { \
12110 inst.error = NULL; \
12111 return (C); \
5287ad62
JB
12112 }
12113 struct neon_type_el et;
037e8744
JB
12114 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12115 || rs == NS_FF) ? N_VFP : 0;
12116 /* The instruction versions which take an immediate take one register
12117 argument, which is extended to the width of the full register. Thus the
12118 "source" and "destination" registers must have the same width. Hack that
12119 here by making the size equal to the key (wider, in this case) operand. */
12120 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5287ad62
JB
12121
12122 CVT_VAR (0, N_S32, N_F32);
12123 CVT_VAR (1, N_U32, N_F32);
12124 CVT_VAR (2, N_F32, N_S32);
12125 CVT_VAR (3, N_F32, N_U32);
12126
037e8744
JB
12127 whole_reg = N_VFP;
12128
12129 /* VFP instructions. */
12130 CVT_VAR (4, N_F32, N_F64);
12131 CVT_VAR (5, N_F64, N_F32);
12132 CVT_VAR (6, N_S32, N_F64 | key);
12133 CVT_VAR (7, N_U32, N_F64 | key);
12134 CVT_VAR (8, N_F64 | key, N_S32);
12135 CVT_VAR (9, N_F64 | key, N_U32);
12136 /* VFP instructions with bitshift. */
12137 CVT_VAR (10, N_F32 | key, N_S16);
12138 CVT_VAR (11, N_F32 | key, N_U16);
12139 CVT_VAR (12, N_F64 | key, N_S16);
12140 CVT_VAR (13, N_F64 | key, N_U16);
12141 CVT_VAR (14, N_S16, N_F32 | key);
12142 CVT_VAR (15, N_U16, N_F32 | key);
12143 CVT_VAR (16, N_S16, N_F64 | key);
12144 CVT_VAR (17, N_U16, N_F64 | key);
12145
5287ad62
JB
12146 return -1;
12147#undef CVT_VAR
12148}
12149
037e8744
JB
12150/* Neon-syntax VFP conversions. */
12151
5287ad62 12152static void
037e8744 12153do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12154{
037e8744
JB
12155 const char *opname = 0;
12156
12157 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12158 {
037e8744
JB
12159 /* Conversions with immediate bitshift. */
12160 const char *enc[] =
12161 {
12162 "ftosls",
12163 "ftouls",
12164 "fsltos",
12165 "fultos",
12166 NULL,
12167 NULL,
12168 "ftosld",
12169 "ftould",
12170 "fsltod",
12171 "fultod",
12172 "fshtos",
12173 "fuhtos",
12174 "fshtod",
12175 "fuhtod",
12176 "ftoshs",
12177 "ftouhs",
12178 "ftoshd",
12179 "ftouhd"
12180 };
12181
12182 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12183 {
12184 opname = enc[flavour];
12185 constraint (inst.operands[0].reg != inst.operands[1].reg,
12186 _("operands 0 and 1 must be the same register"));
12187 inst.operands[1] = inst.operands[2];
12188 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12189 }
5287ad62
JB
12190 }
12191 else
12192 {
037e8744
JB
12193 /* Conversions without bitshift. */
12194 const char *enc[] =
12195 {
12196 "ftosis",
12197 "ftouis",
12198 "fsitos",
12199 "fuitos",
12200 "fcvtsd",
12201 "fcvtds",
12202 "ftosid",
12203 "ftouid",
12204 "fsitod",
12205 "fuitod"
12206 };
12207
12208 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12209 opname = enc[flavour];
12210 }
12211
12212 if (opname)
12213 do_vfp_nsyn_opcode (opname);
12214}
12215
12216static void
12217do_vfp_nsyn_cvtz (void)
12218{
12219 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12220 int flavour = neon_cvt_flavour (rs);
12221 const char *enc[] =
12222 {
12223 "ftosizs",
12224 "ftouizs",
12225 NULL,
12226 NULL,
12227 NULL,
12228 NULL,
12229 "ftosizd",
12230 "ftouizd"
12231 };
12232
12233 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12234 do_vfp_nsyn_opcode (enc[flavour]);
12235}
12236
12237static void
12238do_neon_cvt (void)
12239{
12240 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12241 NS_FD, NS_DF, NS_FF, NS_NULL);
12242 int flavour = neon_cvt_flavour (rs);
12243
12244 /* VFP rather than Neon conversions. */
12245 if (flavour >= 4)
12246 {
12247 do_vfp_nsyn_cvt (rs, flavour);
12248 return;
12249 }
12250
12251 switch (rs)
12252 {
12253 case NS_DDI:
12254 case NS_QQI:
12255 {
12256 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12257 return;
12258
12259 /* Fixed-point conversion with #0 immediate is encoded as an
12260 integer conversion. */
12261 if (inst.operands[2].present && inst.operands[2].imm == 0)
12262 goto int_encode;
12263 unsigned immbits = 32 - inst.operands[2].imm;
12264 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12265 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12266 if (flavour != -1)
12267 inst.instruction |= enctab[flavour];
12268 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12269 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12270 inst.instruction |= LOW4 (inst.operands[1].reg);
12271 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12272 inst.instruction |= neon_quad (rs) << 6;
12273 inst.instruction |= 1 << 21;
12274 inst.instruction |= immbits << 16;
12275
12276 inst.instruction = neon_dp_fixup (inst.instruction);
12277 }
12278 break;
12279
12280 case NS_DD:
12281 case NS_QQ:
12282 int_encode:
12283 {
12284 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12285
12286 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12287
12288 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12289 return;
12290
12291 if (flavour != -1)
12292 inst.instruction |= enctab[flavour];
12293
12294 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12295 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12296 inst.instruction |= LOW4 (inst.operands[1].reg);
12297 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12298 inst.instruction |= neon_quad (rs) << 6;
12299 inst.instruction |= 2 << 18;
12300
12301 inst.instruction = neon_dp_fixup (inst.instruction);
12302 }
12303 break;
12304
12305 default:
12306 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12307 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12308 }
5287ad62
JB
12309}
12310
12311static void
12312neon_move_immediate (void)
12313{
037e8744
JB
12314 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12315 struct neon_type_el et = neon_check_type (2, rs,
12316 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
12317 unsigned immlo, immhi = 0, immbits;
12318 int op, cmode;
12319
037e8744
JB
12320 constraint (et.type == NT_invtype,
12321 _("operand size must be specified for immediate VMOV"));
12322
5287ad62
JB
12323 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12324 op = (inst.instruction & (1 << 5)) != 0;
12325
12326 immlo = inst.operands[1].imm;
12327 if (inst.operands[1].regisimm)
12328 immhi = inst.operands[1].reg;
12329
12330 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12331 _("immediate has bits set outside the operand size"));
12332
12333 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
136da414 12334 et.size, et.type)) == FAIL)
5287ad62
JB
12335 {
12336 /* Invert relevant bits only. */
12337 neon_invert_size (&immlo, &immhi, et.size);
12338 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12339 with one or the other; those cases are caught by
12340 neon_cmode_for_move_imm. */
12341 op = !op;
12342 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
136da414 12343 et.size, et.type)) == FAIL)
5287ad62 12344 {
dcbf9037 12345 first_error (_("immediate out of range"));
5287ad62
JB
12346 return;
12347 }
12348 }
12349
12350 inst.instruction &= ~(1 << 5);
12351 inst.instruction |= op << 5;
12352
12353 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12354 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12355 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12356 inst.instruction |= cmode << 8;
12357
12358 neon_write_immbits (immbits);
12359}
12360
12361static void
12362do_neon_mvn (void)
12363{
12364 if (inst.operands[1].isreg)
12365 {
037e8744 12366 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12367
12368 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12369 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12370 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12371 inst.instruction |= LOW4 (inst.operands[1].reg);
12372 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12373 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12374 }
12375 else
12376 {
12377 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12378 neon_move_immediate ();
12379 }
12380
12381 inst.instruction = neon_dp_fixup (inst.instruction);
12382}
12383
12384/* Encode instructions of form:
12385
12386 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12387 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12388
12389*/
12390
12391static void
12392neon_mixed_length (struct neon_type_el et, unsigned size)
12393{
12394 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12395 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12396 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12397 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12398 inst.instruction |= LOW4 (inst.operands[2].reg);
12399 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12400 inst.instruction |= (et.type == NT_unsigned) << 24;
12401 inst.instruction |= neon_logbits (size) << 20;
12402
12403 inst.instruction = neon_dp_fixup (inst.instruction);
12404}
12405
12406static void
12407do_neon_dyadic_long (void)
12408{
12409 /* FIXME: Type checking for lengthening op. */
12410 struct neon_type_el et = neon_check_type (3, NS_QDD,
12411 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12412 neon_mixed_length (et, et.size);
12413}
12414
12415static void
12416do_neon_abal (void)
12417{
12418 struct neon_type_el et = neon_check_type (3, NS_QDD,
12419 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12420 neon_mixed_length (et, et.size);
12421}
12422
12423static void
12424neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12425{
12426 if (inst.operands[2].isscalar)
12427 {
dcbf9037
JB
12428 struct neon_type_el et = neon_check_type (3, NS_QDS,
12429 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12430 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12431 neon_mul_mac (et, et.type == NT_unsigned);
12432 }
12433 else
12434 {
12435 struct neon_type_el et = neon_check_type (3, NS_QDD,
12436 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12437 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12438 neon_mixed_length (et, et.size);
12439 }
12440}
12441
12442static void
12443do_neon_mac_maybe_scalar_long (void)
12444{
12445 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12446}
12447
12448static void
12449do_neon_dyadic_wide (void)
12450{
12451 struct neon_type_el et = neon_check_type (3, NS_QQD,
12452 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12453 neon_mixed_length (et, et.size);
12454}
12455
12456static void
12457do_neon_dyadic_narrow (void)
12458{
12459 struct neon_type_el et = neon_check_type (3, NS_QDD,
12460 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12461 neon_mixed_length (et, et.size / 2);
12462}
12463
12464static void
12465do_neon_mul_sat_scalar_long (void)
12466{
12467 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12468}
12469
12470static void
12471do_neon_vmull (void)
12472{
12473 if (inst.operands[2].isscalar)
12474 do_neon_mac_maybe_scalar_long ();
12475 else
12476 {
12477 struct neon_type_el et = neon_check_type (3, NS_QDD,
12478 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12479 if (et.type == NT_poly)
12480 inst.instruction = NEON_ENC_POLY (inst.instruction);
12481 else
12482 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12483 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12484 zero. Should be OK as-is. */
12485 neon_mixed_length (et, et.size);
12486 }
12487}
12488
12489static void
12490do_neon_ext (void)
12491{
037e8744 12492 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
12493 struct neon_type_el et = neon_check_type (3, rs,
12494 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12495 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12496 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12497 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12498 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12499 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12500 inst.instruction |= LOW4 (inst.operands[2].reg);
12501 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 12502 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12503 inst.instruction |= imm << 8;
12504
12505 inst.instruction = neon_dp_fixup (inst.instruction);
12506}
12507
12508static void
12509do_neon_rev (void)
12510{
037e8744 12511 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12512 struct neon_type_el et = neon_check_type (2, rs,
12513 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12514 unsigned op = (inst.instruction >> 7) & 3;
12515 /* N (width of reversed regions) is encoded as part of the bitmask. We
12516 extract it here to check the elements to be reversed are smaller.
12517 Otherwise we'd get a reserved instruction. */
12518 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12519 assert (elsize != 0);
12520 constraint (et.size >= elsize,
12521 _("elements must be smaller than reversal region"));
037e8744 12522 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12523}
12524
12525static void
12526do_neon_dup (void)
12527{
12528 if (inst.operands[1].isscalar)
12529 {
037e8744 12530 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
12531 struct neon_type_el et = neon_check_type (2, rs,
12532 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 12533 unsigned sizebits = et.size >> 3;
dcbf9037 12534 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 12535 int logsize = neon_logbits (et.size);
dcbf9037 12536 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
12537
12538 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12539 return;
12540
5287ad62
JB
12541 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12542 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12543 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12544 inst.instruction |= LOW4 (dm);
12545 inst.instruction |= HI1 (dm) << 5;
037e8744 12546 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12547 inst.instruction |= x << 17;
12548 inst.instruction |= sizebits << 16;
12549
12550 inst.instruction = neon_dp_fixup (inst.instruction);
12551 }
12552 else
12553 {
037e8744
JB
12554 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12555 struct neon_type_el et = neon_check_type (2, rs,
12556 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
12557 /* Duplicate ARM register to lanes of vector. */
12558 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12559 switch (et.size)
12560 {
12561 case 8: inst.instruction |= 0x400000; break;
12562 case 16: inst.instruction |= 0x000020; break;
12563 case 32: inst.instruction |= 0x000000; break;
12564 default: break;
12565 }
12566 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12567 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12568 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 12569 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
12570 /* The encoding for this instruction is identical for the ARM and Thumb
12571 variants, except for the condition field. */
037e8744 12572 do_vfp_cond_or_thumb ();
5287ad62
JB
12573 }
12574}
12575
12576/* VMOV has particularly many variations. It can be one of:
12577 0. VMOV<c><q> <Qd>, <Qm>
12578 1. VMOV<c><q> <Dd>, <Dm>
12579 (Register operations, which are VORR with Rm = Rn.)
12580 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12581 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12582 (Immediate loads.)
12583 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12584 (ARM register to scalar.)
12585 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12586 (Two ARM registers to vector.)
12587 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12588 (Scalar to ARM register.)
12589 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12590 (Vector to two ARM registers.)
037e8744
JB
12591 8. VMOV.F32 <Sd>, <Sm>
12592 9. VMOV.F64 <Dd>, <Dm>
12593 (VFP register moves.)
12594 10. VMOV.F32 <Sd>, #imm
12595 11. VMOV.F64 <Dd>, #imm
12596 (VFP float immediate load.)
12597 12. VMOV <Rd>, <Sm>
12598 (VFP single to ARM reg.)
12599 13. VMOV <Sd>, <Rm>
12600 (ARM reg to VFP single.)
12601 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12602 (Two ARM regs to two VFP singles.)
12603 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12604 (Two VFP singles to two ARM regs.)
5287ad62 12605
037e8744
JB
12606 These cases can be disambiguated using neon_select_shape, except cases 1/9
12607 and 3/11 which depend on the operand type too.
5287ad62
JB
12608
12609 All the encoded bits are hardcoded by this function.
12610
b7fc2769
JB
12611 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12612 Cases 5, 7 may be used with VFPv2 and above.
12613
5287ad62
JB
12614 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12615 can specify a type where it doesn't make sense to, and is ignored).
12616*/
12617
12618static void
12619do_neon_mov (void)
12620{
037e8744
JB
12621 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
12622 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
12623 NS_NULL);
12624 struct neon_type_el et;
12625 const char *ldconst = 0;
5287ad62 12626
037e8744 12627 switch (rs)
5287ad62 12628 {
037e8744
JB
12629 case NS_DD: /* case 1/9. */
12630 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12631 /* It is not an error here if no type is given. */
12632 inst.error = NULL;
12633 if (et.type == NT_float && et.size == 64)
5287ad62 12634 {
037e8744
JB
12635 do_vfp_nsyn_opcode ("fcpyd");
12636 break;
5287ad62 12637 }
037e8744 12638 /* fall through. */
5287ad62 12639
037e8744
JB
12640 case NS_QQ: /* case 0/1. */
12641 {
12642 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12643 return;
12644 /* The architecture manual I have doesn't explicitly state which
12645 value the U bit should have for register->register moves, but
12646 the equivalent VORR instruction has U = 0, so do that. */
12647 inst.instruction = 0x0200110;
12648 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12649 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12650 inst.instruction |= LOW4 (inst.operands[1].reg);
12651 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12652 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12653 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12654 inst.instruction |= neon_quad (rs) << 6;
12655
12656 inst.instruction = neon_dp_fixup (inst.instruction);
12657 }
12658 break;
12659
12660 case NS_DI: /* case 3/11. */
12661 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12662 inst.error = NULL;
12663 if (et.type == NT_float && et.size == 64)
5287ad62 12664 {
037e8744
JB
12665 /* case 11 (fconstd). */
12666 ldconst = "fconstd";
12667 goto encode_fconstd;
5287ad62 12668 }
037e8744
JB
12669 /* fall through. */
12670
12671 case NS_QI: /* case 2/3. */
12672 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12673 return;
12674 inst.instruction = 0x0800010;
12675 neon_move_immediate ();
12676 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62
JB
12677 break;
12678
037e8744
JB
12679 case NS_SR: /* case 4. */
12680 {
12681 unsigned bcdebits = 0;
12682 struct neon_type_el et = neon_check_type (2, NS_NULL,
12683 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12684 int logsize = neon_logbits (et.size);
12685 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
12686 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
12687
12688 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12689 _(BAD_FPU));
12690 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12691 && et.size != 32, _(BAD_FPU));
12692 constraint (et.type == NT_invtype, _("bad type for scalar"));
12693 constraint (x >= 64 / et.size, _("scalar index out of range"));
12694
12695 switch (et.size)
12696 {
12697 case 8: bcdebits = 0x8; break;
12698 case 16: bcdebits = 0x1; break;
12699 case 32: bcdebits = 0x0; break;
12700 default: ;
12701 }
12702
12703 bcdebits |= x << logsize;
12704
12705 inst.instruction = 0xe000b10;
12706 do_vfp_cond_or_thumb ();
12707 inst.instruction |= LOW4 (dn) << 16;
12708 inst.instruction |= HI1 (dn) << 7;
12709 inst.instruction |= inst.operands[1].reg << 12;
12710 inst.instruction |= (bcdebits & 3) << 5;
12711 inst.instruction |= (bcdebits >> 2) << 21;
12712 }
12713 break;
12714
12715 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 12716 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 12717 _(BAD_FPU));
b7fc2769 12718
037e8744
JB
12719 inst.instruction = 0xc400b10;
12720 do_vfp_cond_or_thumb ();
12721 inst.instruction |= LOW4 (inst.operands[0].reg);
12722 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
12723 inst.instruction |= inst.operands[1].reg << 12;
12724 inst.instruction |= inst.operands[2].reg << 16;
12725 break;
12726
12727 case NS_RS: /* case 6. */
12728 {
12729 struct neon_type_el et = neon_check_type (2, NS_NULL,
12730 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
12731 unsigned logsize = neon_logbits (et.size);
12732 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
12733 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
12734 unsigned abcdebits = 0;
12735
12736 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12737 _(BAD_FPU));
12738 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12739 && et.size != 32, _(BAD_FPU));
12740 constraint (et.type == NT_invtype, _("bad type for scalar"));
12741 constraint (x >= 64 / et.size, _("scalar index out of range"));
12742
12743 switch (et.size)
12744 {
12745 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
12746 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
12747 case 32: abcdebits = 0x00; break;
12748 default: ;
12749 }
12750
12751 abcdebits |= x << logsize;
12752 inst.instruction = 0xe100b10;
12753 do_vfp_cond_or_thumb ();
12754 inst.instruction |= LOW4 (dn) << 16;
12755 inst.instruction |= HI1 (dn) << 7;
12756 inst.instruction |= inst.operands[0].reg << 12;
12757 inst.instruction |= (abcdebits & 3) << 5;
12758 inst.instruction |= (abcdebits >> 2) << 21;
12759 }
12760 break;
12761
12762 case NS_RRD: /* case 7 (fmrrd). */
12763 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12764 _(BAD_FPU));
12765
12766 inst.instruction = 0xc500b10;
12767 do_vfp_cond_or_thumb ();
12768 inst.instruction |= inst.operands[0].reg << 12;
12769 inst.instruction |= inst.operands[1].reg << 16;
12770 inst.instruction |= LOW4 (inst.operands[2].reg);
12771 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12772 break;
12773
12774 case NS_FF: /* case 8 (fcpys). */
12775 do_vfp_nsyn_opcode ("fcpys");
12776 break;
12777
12778 case NS_FI: /* case 10 (fconsts). */
12779 ldconst = "fconsts";
12780 encode_fconstd:
12781 if (is_quarter_float (inst.operands[1].imm))
5287ad62 12782 {
037e8744
JB
12783 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
12784 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
12785 }
12786 else
037e8744
JB
12787 first_error (_("immediate out of range"));
12788 break;
12789
12790 case NS_RF: /* case 12 (fmrs). */
12791 do_vfp_nsyn_opcode ("fmrs");
12792 break;
12793
12794 case NS_FR: /* case 13 (fmsr). */
12795 do_vfp_nsyn_opcode ("fmsr");
12796 break;
12797
12798 /* The encoders for the fmrrs and fmsrr instructions expect three operands
12799 (one of which is a list), but we have parsed four. Do some fiddling to
12800 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
12801 expect. */
12802 case NS_RRFF: /* case 14 (fmrrs). */
12803 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
12804 _("VFP registers must be adjacent"));
12805 inst.operands[2].imm = 2;
12806 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12807 do_vfp_nsyn_opcode ("fmrrs");
12808 break;
12809
12810 case NS_FFRR: /* case 15 (fmsrr). */
12811 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
12812 _("VFP registers must be adjacent"));
12813 inst.operands[1] = inst.operands[2];
12814 inst.operands[2] = inst.operands[3];
12815 inst.operands[0].imm = 2;
12816 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12817 do_vfp_nsyn_opcode ("fmsrr");
5287ad62
JB
12818 break;
12819
12820 default:
12821 abort ();
12822 }
12823}
12824
12825static void
12826do_neon_rshift_round_imm (void)
12827{
037e8744 12828 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12829 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12830 int imm = inst.operands[2].imm;
12831
12832 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
12833 if (imm == 0)
12834 {
12835 inst.operands[2].present = 0;
12836 do_neon_mov ();
12837 return;
12838 }
12839
12840 constraint (imm < 1 || (unsigned)imm > et.size,
12841 _("immediate out of range for shift"));
037e8744 12842 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12843 et.size - imm);
12844}
12845
12846static void
12847do_neon_movl (void)
12848{
12849 struct neon_type_el et = neon_check_type (2, NS_QD,
12850 N_EQK | N_DBL, N_SU_32 | N_KEY);
12851 unsigned sizebits = et.size >> 3;
12852 inst.instruction |= sizebits << 19;
12853 neon_two_same (0, et.type == NT_unsigned, -1);
12854}
12855
12856static void
12857do_neon_trn (void)
12858{
037e8744 12859 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12860 struct neon_type_el et = neon_check_type (2, rs,
12861 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12862 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12863 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12864}
12865
12866static void
12867do_neon_zip_uzp (void)
12868{
037e8744 12869 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12870 struct neon_type_el et = neon_check_type (2, rs,
12871 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12872 if (rs == NS_DD && et.size == 32)
12873 {
12874 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
12875 inst.instruction = N_MNEM_vtrn;
12876 do_neon_trn ();
12877 return;
12878 }
037e8744 12879 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12880}
12881
12882static void
12883do_neon_sat_abs_neg (void)
12884{
037e8744 12885 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12886 struct neon_type_el et = neon_check_type (2, rs,
12887 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 12888 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12889}
12890
12891static void
12892do_neon_pair_long (void)
12893{
037e8744 12894 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12895 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
12896 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
12897 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 12898 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12899}
12900
12901static void
12902do_neon_recip_est (void)
12903{
037e8744 12904 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12905 struct neon_type_el et = neon_check_type (2, rs,
12906 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
12907 inst.instruction |= (et.type == NT_float) << 8;
037e8744 12908 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12909}
12910
12911static void
12912do_neon_cls (void)
12913{
037e8744 12914 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12915 struct neon_type_el et = neon_check_type (2, rs,
12916 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 12917 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12918}
12919
12920static void
12921do_neon_clz (void)
12922{
037e8744 12923 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12924 struct neon_type_el et = neon_check_type (2, rs,
12925 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 12926 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12927}
12928
12929static void
12930do_neon_cnt (void)
12931{
037e8744 12932 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12933 struct neon_type_el et = neon_check_type (2, rs,
12934 N_EQK | N_INT, N_8 | N_KEY);
037e8744 12935 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12936}
12937
12938static void
12939do_neon_swp (void)
12940{
037e8744
JB
12941 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12942 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
12943}
12944
12945static void
12946do_neon_tbl_tbx (void)
12947{
12948 unsigned listlenbits;
dcbf9037 12949 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5287ad62
JB
12950
12951 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
12952 {
dcbf9037 12953 first_error (_("bad list length for table lookup"));
5287ad62
JB
12954 return;
12955 }
12956
12957 listlenbits = inst.operands[1].imm - 1;
12958 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12959 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12960 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12961 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12962 inst.instruction |= LOW4 (inst.operands[2].reg);
12963 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12964 inst.instruction |= listlenbits << 8;
12965
12966 inst.instruction = neon_dp_fixup (inst.instruction);
12967}
12968
12969static void
12970do_neon_ldm_stm (void)
12971{
12972 /* P, U and L bits are part of bitmask. */
12973 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
12974 unsigned offsetbits = inst.operands[1].imm * 2;
12975
037e8744
JB
12976 if (inst.operands[1].issingle)
12977 {
12978 do_vfp_nsyn_ldm_stm (is_dbmode);
12979 return;
12980 }
12981
5287ad62
JB
12982 constraint (is_dbmode && !inst.operands[0].writeback,
12983 _("writeback (!) must be used for VLDMDB and VSTMDB"));
12984
12985 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
12986 _("register list must contain at least 1 and at most 16 "
12987 "registers"));
12988
12989 inst.instruction |= inst.operands[0].reg << 16;
12990 inst.instruction |= inst.operands[0].writeback << 21;
12991 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12992 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
12993
12994 inst.instruction |= offsetbits;
12995
037e8744 12996 do_vfp_cond_or_thumb ();
5287ad62
JB
12997}
12998
12999static void
13000do_neon_ldr_str (void)
13001{
5287ad62
JB
13002 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13003
037e8744
JB
13004 if (inst.operands[0].issingle)
13005 {
cd2f129f
JB
13006 if (is_ldr)
13007 do_vfp_nsyn_opcode ("flds");
13008 else
13009 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13010 }
13011 else
5287ad62 13012 {
cd2f129f
JB
13013 if (is_ldr)
13014 do_vfp_nsyn_opcode ("fldd");
5287ad62 13015 else
cd2f129f 13016 do_vfp_nsyn_opcode ("fstd");
5287ad62 13017 }
5287ad62
JB
13018}
13019
13020/* "interleave" version also handles non-interleaving register VLD1/VST1
13021 instructions. */
13022
13023static void
13024do_neon_ld_st_interleave (void)
13025{
037e8744 13026 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13027 N_8 | N_16 | N_32 | N_64);
13028 unsigned alignbits = 0;
13029 unsigned idx;
13030 /* The bits in this table go:
13031 0: register stride of one (0) or two (1)
13032 1,2: register list length, minus one (1, 2, 3, 4).
13033 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13034 We use -1 for invalid entries. */
13035 const int typetable[] =
13036 {
13037 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13038 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13039 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13040 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13041 };
13042 int typebits;
13043
dcbf9037
JB
13044 if (et.type == NT_invtype)
13045 return;
13046
5287ad62
JB
13047 if (inst.operands[1].immisalign)
13048 switch (inst.operands[1].imm >> 8)
13049 {
13050 case 64: alignbits = 1; break;
13051 case 128:
13052 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13053 goto bad_alignment;
13054 alignbits = 2;
13055 break;
13056 case 256:
13057 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13058 goto bad_alignment;
13059 alignbits = 3;
13060 break;
13061 default:
13062 bad_alignment:
dcbf9037 13063 first_error (_("bad alignment"));
5287ad62
JB
13064 return;
13065 }
13066
13067 inst.instruction |= alignbits << 4;
13068 inst.instruction |= neon_logbits (et.size) << 6;
13069
13070 /* Bits [4:6] of the immediate in a list specifier encode register stride
13071 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13072 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13073 up the right value for "type" in a table based on this value and the given
13074 list style, then stick it back. */
13075 idx = ((inst.operands[0].imm >> 4) & 7)
13076 | (((inst.instruction >> 8) & 3) << 3);
13077
13078 typebits = typetable[idx];
13079
13080 constraint (typebits == -1, _("bad list type for instruction"));
13081
13082 inst.instruction &= ~0xf00;
13083 inst.instruction |= typebits << 8;
13084}
13085
13086/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13087 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13088 otherwise. The variable arguments are a list of pairs of legal (size, align)
13089 values, terminated with -1. */
13090
13091static int
13092neon_alignment_bit (int size, int align, int *do_align, ...)
13093{
13094 va_list ap;
13095 int result = FAIL, thissize, thisalign;
13096
13097 if (!inst.operands[1].immisalign)
13098 {
13099 *do_align = 0;
13100 return SUCCESS;
13101 }
13102
13103 va_start (ap, do_align);
13104
13105 do
13106 {
13107 thissize = va_arg (ap, int);
13108 if (thissize == -1)
13109 break;
13110 thisalign = va_arg (ap, int);
13111
13112 if (size == thissize && align == thisalign)
13113 result = SUCCESS;
13114 }
13115 while (result != SUCCESS);
13116
13117 va_end (ap);
13118
13119 if (result == SUCCESS)
13120 *do_align = 1;
13121 else
dcbf9037 13122 first_error (_("unsupported alignment for instruction"));
5287ad62
JB
13123
13124 return result;
13125}
13126
13127static void
13128do_neon_ld_st_lane (void)
13129{
037e8744 13130 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13131 int align_good, do_align = 0;
13132 int logsize = neon_logbits (et.size);
13133 int align = inst.operands[1].imm >> 8;
13134 int n = (inst.instruction >> 8) & 3;
13135 int max_el = 64 / et.size;
13136
dcbf9037
JB
13137 if (et.type == NT_invtype)
13138 return;
13139
5287ad62
JB
13140 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13141 _("bad list length"));
13142 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13143 _("scalar index out of range"));
13144 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13145 && et.size == 8,
13146 _("stride of 2 unavailable when element size is 8"));
13147
13148 switch (n)
13149 {
13150 case 0: /* VLD1 / VST1. */
13151 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13152 32, 32, -1);
13153 if (align_good == FAIL)
13154 return;
13155 if (do_align)
13156 {
13157 unsigned alignbits = 0;
13158 switch (et.size)
13159 {
13160 case 16: alignbits = 0x1; break;
13161 case 32: alignbits = 0x3; break;
13162 default: ;
13163 }
13164 inst.instruction |= alignbits << 4;
13165 }
13166 break;
13167
13168 case 1: /* VLD2 / VST2. */
13169 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13170 32, 64, -1);
13171 if (align_good == FAIL)
13172 return;
13173 if (do_align)
13174 inst.instruction |= 1 << 4;
13175 break;
13176
13177 case 2: /* VLD3 / VST3. */
13178 constraint (inst.operands[1].immisalign,
13179 _("can't use alignment with this instruction"));
13180 break;
13181
13182 case 3: /* VLD4 / VST4. */
13183 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13184 16, 64, 32, 64, 32, 128, -1);
13185 if (align_good == FAIL)
13186 return;
13187 if (do_align)
13188 {
13189 unsigned alignbits = 0;
13190 switch (et.size)
13191 {
13192 case 8: alignbits = 0x1; break;
13193 case 16: alignbits = 0x1; break;
13194 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13195 default: ;
13196 }
13197 inst.instruction |= alignbits << 4;
13198 }
13199 break;
13200
13201 default: ;
13202 }
13203
13204 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13205 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13206 inst.instruction |= 1 << (4 + logsize);
13207
13208 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13209 inst.instruction |= logsize << 10;
13210}
13211
13212/* Encode single n-element structure to all lanes VLD<n> instructions. */
13213
13214static void
13215do_neon_ld_dup (void)
13216{
037e8744 13217 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13218 int align_good, do_align = 0;
13219
dcbf9037
JB
13220 if (et.type == NT_invtype)
13221 return;
13222
5287ad62
JB
13223 switch ((inst.instruction >> 8) & 3)
13224 {
13225 case 0: /* VLD1. */
13226 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13227 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13228 &do_align, 16, 16, 32, 32, -1);
13229 if (align_good == FAIL)
13230 return;
13231 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13232 {
13233 case 1: break;
13234 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13235 default: first_error (_("bad list length")); return;
5287ad62
JB
13236 }
13237 inst.instruction |= neon_logbits (et.size) << 6;
13238 break;
13239
13240 case 1: /* VLD2. */
13241 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13242 &do_align, 8, 16, 16, 32, 32, 64, -1);
13243 if (align_good == FAIL)
13244 return;
13245 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13246 _("bad list length"));
13247 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13248 inst.instruction |= 1 << 5;
13249 inst.instruction |= neon_logbits (et.size) << 6;
13250 break;
13251
13252 case 2: /* VLD3. */
13253 constraint (inst.operands[1].immisalign,
13254 _("can't use alignment with this instruction"));
13255 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13256 _("bad list length"));
13257 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13258 inst.instruction |= 1 << 5;
13259 inst.instruction |= neon_logbits (et.size) << 6;
13260 break;
13261
13262 case 3: /* VLD4. */
13263 {
13264 int align = inst.operands[1].imm >> 8;
13265 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13266 16, 64, 32, 64, 32, 128, -1);
13267 if (align_good == FAIL)
13268 return;
13269 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13270 _("bad list length"));
13271 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13272 inst.instruction |= 1 << 5;
13273 if (et.size == 32 && align == 128)
13274 inst.instruction |= 0x3 << 6;
13275 else
13276 inst.instruction |= neon_logbits (et.size) << 6;
13277 }
13278 break;
13279
13280 default: ;
13281 }
13282
13283 inst.instruction |= do_align << 4;
13284}
13285
13286/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13287 apart from bits [11:4]. */
13288
13289static void
13290do_neon_ldx_stx (void)
13291{
13292 switch (NEON_LANE (inst.operands[0].imm))
13293 {
13294 case NEON_INTERLEAVE_LANES:
13295 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13296 do_neon_ld_st_interleave ();
13297 break;
13298
13299 case NEON_ALL_LANES:
13300 inst.instruction = NEON_ENC_DUP (inst.instruction);
13301 do_neon_ld_dup ();
13302 break;
13303
13304 default:
13305 inst.instruction = NEON_ENC_LANE (inst.instruction);
13306 do_neon_ld_st_lane ();
13307 }
13308
13309 /* L bit comes from bit mask. */
13310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13312 inst.instruction |= inst.operands[1].reg << 16;
13313
13314 if (inst.operands[1].postind)
13315 {
13316 int postreg = inst.operands[1].imm & 0xf;
13317 constraint (!inst.operands[1].immisreg,
13318 _("post-index must be a register"));
13319 constraint (postreg == 0xd || postreg == 0xf,
13320 _("bad register for post-index"));
13321 inst.instruction |= postreg;
13322 }
13323 else if (inst.operands[1].writeback)
13324 {
13325 inst.instruction |= 0xd;
13326 }
13327 else
13328 inst.instruction |= 0xf;
13329
13330 if (thumb_mode)
13331 inst.instruction |= 0xf9000000;
13332 else
13333 inst.instruction |= 0xf4000000;
13334}
13335
13336\f
13337/* Overall per-instruction processing. */
13338
13339/* We need to be able to fix up arbitrary expressions in some statements.
13340 This is so that we can handle symbols that are an arbitrary distance from
13341 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13342 which returns part of an address in a form which will be valid for
13343 a data instruction. We do this by pushing the expression into a symbol
13344 in the expr_section, and creating a fix for that. */
13345
13346static void
13347fix_new_arm (fragS * frag,
13348 int where,
13349 short int size,
13350 expressionS * exp,
13351 int pc_rel,
13352 int reloc)
13353{
13354 fixS * new_fix;
13355
13356 switch (exp->X_op)
13357 {
13358 case O_constant:
13359 case O_symbol:
13360 case O_add:
13361 case O_subtract:
13362 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13363 break;
13364
13365 default:
13366 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13367 pc_rel, reloc);
13368 break;
13369 }
13370
13371 /* Mark whether the fix is to a THUMB instruction, or an ARM
13372 instruction. */
13373 new_fix->tc_fix_data = thumb_mode;
13374}
13375
13376/* Create a frg for an instruction requiring relaxation. */
13377static void
13378output_relax_insn (void)
13379{
13380 char * to;
13381 symbolS *sym;
0110f2b8
PB
13382 int offset;
13383
6e1cb1a6
PB
13384#ifdef OBJ_ELF
13385 /* The size of the instruction is unknown, so tie the debug info to the
13386 start of the instruction. */
13387 dwarf2_emit_insn (0);
13388#endif
13389
0110f2b8
PB
13390 switch (inst.reloc.exp.X_op)
13391 {
13392 case O_symbol:
13393 sym = inst.reloc.exp.X_add_symbol;
13394 offset = inst.reloc.exp.X_add_number;
13395 break;
13396 case O_constant:
13397 sym = NULL;
13398 offset = inst.reloc.exp.X_add_number;
13399 break;
13400 default:
13401 sym = make_expr_symbol (&inst.reloc.exp);
13402 offset = 0;
13403 break;
13404 }
13405 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13406 inst.relax, sym, offset, NULL/*offset, opcode*/);
13407 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13408}
13409
13410/* Write a 32-bit thumb instruction to buf. */
13411static void
13412put_thumb32_insn (char * buf, unsigned long insn)
13413{
13414 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13415 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13416}
13417
b99bd4ef 13418static void
c19d1205 13419output_inst (const char * str)
b99bd4ef 13420{
c19d1205 13421 char * to = NULL;
b99bd4ef 13422
c19d1205 13423 if (inst.error)
b99bd4ef 13424 {
c19d1205 13425 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13426 return;
13427 }
0110f2b8
PB
13428 if (inst.relax) {
13429 output_relax_insn();
13430 return;
13431 }
c19d1205
ZW
13432 if (inst.size == 0)
13433 return;
b99bd4ef 13434
c19d1205
ZW
13435 to = frag_more (inst.size);
13436
13437 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 13438 {
c19d1205 13439 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 13440 put_thumb32_insn (to, inst.instruction);
b99bd4ef 13441 }
c19d1205 13442 else if (inst.size > INSN_SIZE)
b99bd4ef 13443 {
c19d1205
ZW
13444 assert (inst.size == (2 * INSN_SIZE));
13445 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13446 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 13447 }
c19d1205
ZW
13448 else
13449 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 13450
c19d1205
ZW
13451 if (inst.reloc.type != BFD_RELOC_UNUSED)
13452 fix_new_arm (frag_now, to - frag_now->fr_literal,
13453 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13454 inst.reloc.type);
b99bd4ef 13455
c19d1205
ZW
13456#ifdef OBJ_ELF
13457 dwarf2_emit_insn (inst.size);
13458#endif
13459}
b99bd4ef 13460
c19d1205
ZW
13461/* Tag values used in struct asm_opcode's tag field. */
13462enum opcode_tag
13463{
13464 OT_unconditional, /* Instruction cannot be conditionalized.
13465 The ARM condition field is still 0xE. */
13466 OT_unconditionalF, /* Instruction cannot be conditionalized
13467 and carries 0xF in its ARM condition field. */
13468 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
13469 OT_csuffixF, /* Some forms of the instruction take a conditional
13470 suffix, others place 0xF where the condition field
13471 would be. */
c19d1205
ZW
13472 OT_cinfix3, /* Instruction takes a conditional infix,
13473 beginning at character index 3. (In
13474 unified mode, it becomes a suffix.) */
088fa78e
KH
13475 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13476 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
13477 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13478 character index 3, even in unified mode. Used for
13479 legacy instructions where suffix and infix forms
13480 may be ambiguous. */
c19d1205 13481 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 13482 suffix or an infix at character index 3. */
c19d1205
ZW
13483 OT_odd_infix_unc, /* This is the unconditional variant of an
13484 instruction that takes a conditional infix
13485 at an unusual position. In unified mode,
13486 this variant will accept a suffix. */
13487 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13488 are the conditional variants of instructions that
13489 take conditional infixes in unusual positions.
13490 The infix appears at character index
13491 (tag - OT_odd_infix_0). These are not accepted
13492 in unified mode. */
13493};
b99bd4ef 13494
c19d1205
ZW
13495/* Subroutine of md_assemble, responsible for looking up the primary
13496 opcode from the mnemonic the user wrote. STR points to the
13497 beginning of the mnemonic.
13498
13499 This is not simply a hash table lookup, because of conditional
13500 variants. Most instructions have conditional variants, which are
13501 expressed with a _conditional affix_ to the mnemonic. If we were
13502 to encode each conditional variant as a literal string in the opcode
13503 table, it would have approximately 20,000 entries.
13504
13505 Most mnemonics take this affix as a suffix, and in unified syntax,
13506 'most' is upgraded to 'all'. However, in the divided syntax, some
13507 instructions take the affix as an infix, notably the s-variants of
13508 the arithmetic instructions. Of those instructions, all but six
13509 have the infix appear after the third character of the mnemonic.
13510
13511 Accordingly, the algorithm for looking up primary opcodes given
13512 an identifier is:
13513
13514 1. Look up the identifier in the opcode table.
13515 If we find a match, go to step U.
13516
13517 2. Look up the last two characters of the identifier in the
13518 conditions table. If we find a match, look up the first N-2
13519 characters of the identifier in the opcode table. If we
13520 find a match, go to step CE.
13521
13522 3. Look up the fourth and fifth characters of the identifier in
13523 the conditions table. If we find a match, extract those
13524 characters from the identifier, and look up the remaining
13525 characters in the opcode table. If we find a match, go
13526 to step CM.
13527
13528 4. Fail.
13529
13530 U. Examine the tag field of the opcode structure, in case this is
13531 one of the six instructions with its conditional infix in an
13532 unusual place. If it is, the tag tells us where to find the
13533 infix; look it up in the conditions table and set inst.cond
13534 accordingly. Otherwise, this is an unconditional instruction.
13535 Again set inst.cond accordingly. Return the opcode structure.
13536
13537 CE. Examine the tag field to make sure this is an instruction that
13538 should receive a conditional suffix. If it is not, fail.
13539 Otherwise, set inst.cond from the suffix we already looked up,
13540 and return the opcode structure.
13541
13542 CM. Examine the tag field to make sure this is an instruction that
13543 should receive a conditional infix after the third character.
13544 If it is not, fail. Otherwise, undo the edits to the current
13545 line of input and proceed as for case CE. */
13546
13547static const struct asm_opcode *
13548opcode_lookup (char **str)
13549{
13550 char *end, *base;
13551 char *affix;
13552 const struct asm_opcode *opcode;
13553 const struct asm_cond *cond;
e3cb604e 13554 char save[2];
c19d1205
ZW
13555
13556 /* Scan up to the end of the mnemonic, which must end in white space,
13557 '.' (in unified mode only), or end of string. */
13558 for (base = end = *str; *end != '\0'; end++)
13559 if (*end == ' ' || (unified_syntax && *end == '.'))
13560 break;
b99bd4ef 13561
c19d1205
ZW
13562 if (end == base)
13563 return 0;
b99bd4ef 13564
5287ad62 13565 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 13566 if (end[0] == '.')
b99bd4ef 13567 {
5287ad62
JB
13568 int offset = 2;
13569
13570 if (end[1] == 'w')
c19d1205 13571 inst.size_req = 4;
5287ad62 13572 else if (end[1] == 'n')
c19d1205
ZW
13573 inst.size_req = 2;
13574 else
5287ad62
JB
13575 offset = 0;
13576
13577 inst.vectype.elems = 0;
13578
13579 *str = end + offset;
b99bd4ef 13580
5287ad62
JB
13581 if (end[offset] == '.')
13582 {
13583 /* See if we have a Neon type suffix. */
dcbf9037 13584 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
13585 return 0;
13586 }
13587 else if (end[offset] != '\0' && end[offset] != ' ')
13588 return 0;
b99bd4ef 13589 }
c19d1205
ZW
13590 else
13591 *str = end;
b99bd4ef 13592
c19d1205
ZW
13593 /* Look for unaffixed or special-case affixed mnemonic. */
13594 opcode = hash_find_n (arm_ops_hsh, base, end - base);
13595 if (opcode)
b99bd4ef 13596 {
c19d1205
ZW
13597 /* step U */
13598 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 13599 {
c19d1205
ZW
13600 inst.cond = COND_ALWAYS;
13601 return opcode;
b99bd4ef 13602 }
b99bd4ef 13603
c19d1205
ZW
13604 if (unified_syntax)
13605 as_warn (_("conditional infixes are deprecated in unified syntax"));
13606 affix = base + (opcode->tag - OT_odd_infix_0);
13607 cond = hash_find_n (arm_cond_hsh, affix, 2);
13608 assert (cond);
b99bd4ef 13609
c19d1205
ZW
13610 inst.cond = cond->value;
13611 return opcode;
13612 }
b99bd4ef 13613
c19d1205
ZW
13614 /* Cannot have a conditional suffix on a mnemonic of less than two
13615 characters. */
13616 if (end - base < 3)
13617 return 0;
b99bd4ef 13618
c19d1205
ZW
13619 /* Look for suffixed mnemonic. */
13620 affix = end - 2;
13621 cond = hash_find_n (arm_cond_hsh, affix, 2);
13622 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
13623 if (opcode && cond)
13624 {
13625 /* step CE */
13626 switch (opcode->tag)
13627 {
e3cb604e
PB
13628 case OT_cinfix3_legacy:
13629 /* Ignore conditional suffixes matched on infix only mnemonics. */
13630 break;
13631
c19d1205 13632 case OT_cinfix3:
088fa78e 13633 case OT_cinfix3_deprecated:
c19d1205
ZW
13634 case OT_odd_infix_unc:
13635 if (!unified_syntax)
e3cb604e 13636 return 0;
c19d1205
ZW
13637 /* else fall through */
13638
13639 case OT_csuffix:
037e8744 13640 case OT_csuffixF:
c19d1205
ZW
13641 case OT_csuf_or_in3:
13642 inst.cond = cond->value;
13643 return opcode;
13644
13645 case OT_unconditional:
13646 case OT_unconditionalF:
dfa9f0d5
PB
13647 if (thumb_mode)
13648 {
13649 inst.cond = cond->value;
13650 }
13651 else
13652 {
13653 /* delayed diagnostic */
13654 inst.error = BAD_COND;
13655 inst.cond = COND_ALWAYS;
13656 }
c19d1205 13657 return opcode;
b99bd4ef 13658
c19d1205
ZW
13659 default:
13660 return 0;
13661 }
13662 }
b99bd4ef 13663
c19d1205
ZW
13664 /* Cannot have a usual-position infix on a mnemonic of less than
13665 six characters (five would be a suffix). */
13666 if (end - base < 6)
13667 return 0;
b99bd4ef 13668
c19d1205
ZW
13669 /* Look for infixed mnemonic in the usual position. */
13670 affix = base + 3;
13671 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
13672 if (!cond)
13673 return 0;
13674
13675 memcpy (save, affix, 2);
13676 memmove (affix, affix + 2, (end - affix) - 2);
13677 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
13678 memmove (affix + 2, affix, (end - affix) - 2);
13679 memcpy (affix, save, 2);
13680
088fa78e
KH
13681 if (opcode
13682 && (opcode->tag == OT_cinfix3
13683 || opcode->tag == OT_cinfix3_deprecated
13684 || opcode->tag == OT_csuf_or_in3
13685 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 13686 {
c19d1205 13687 /* step CM */
088fa78e
KH
13688 if (unified_syntax
13689 && (opcode->tag == OT_cinfix3
13690 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
13691 as_warn (_("conditional infixes are deprecated in unified syntax"));
13692
13693 inst.cond = cond->value;
13694 return opcode;
b99bd4ef
NC
13695 }
13696
c19d1205 13697 return 0;
b99bd4ef
NC
13698}
13699
c19d1205
ZW
13700void
13701md_assemble (char *str)
b99bd4ef 13702{
c19d1205
ZW
13703 char *p = str;
13704 const struct asm_opcode * opcode;
b99bd4ef 13705
c19d1205
ZW
13706 /* Align the previous label if needed. */
13707 if (last_label_seen != NULL)
b99bd4ef 13708 {
c19d1205
ZW
13709 symbol_set_frag (last_label_seen, frag_now);
13710 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
13711 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
13712 }
13713
c19d1205
ZW
13714 memset (&inst, '\0', sizeof (inst));
13715 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 13716
c19d1205
ZW
13717 opcode = opcode_lookup (&p);
13718 if (!opcode)
b99bd4ef 13719 {
c19d1205 13720 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
13721 the form alias .req reg, or a Neon .dn/.qn directive. */
13722 if (!create_register_alias (str, p)
13723 && !create_neon_reg_alias (str, p))
c19d1205 13724 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 13725
b99bd4ef
NC
13726 return;
13727 }
13728
088fa78e
KH
13729 if (opcode->tag == OT_cinfix3_deprecated)
13730 as_warn (_("s suffix on comparison instruction is deprecated"));
13731
037e8744
JB
13732 /* The value which unconditional instructions should have in place of the
13733 condition field. */
13734 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
13735
c19d1205 13736 if (thumb_mode)
b99bd4ef 13737 {
e74cfd16 13738 arm_feature_set variant;
8f06b2d8
PB
13739
13740 variant = cpu_variant;
13741 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
13742 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
13743 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 13744 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
13745 if (!opcode->tvariant
13746 || (thumb_mode == 1
13747 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 13748 {
c19d1205 13749 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
13750 return;
13751 }
c19d1205
ZW
13752 if (inst.cond != COND_ALWAYS && !unified_syntax
13753 && opcode->tencode != do_t_branch)
b99bd4ef 13754 {
c19d1205 13755 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
13756 return;
13757 }
13758
e27ec89e
PB
13759 /* Check conditional suffixes. */
13760 if (current_it_mask)
13761 {
13762 int cond;
13763 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
13764 current_it_mask <<= 1;
13765 current_it_mask &= 0x1f;
13766 /* The BKPT instruction is unconditional even in an IT block. */
13767 if (!inst.error
13768 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
13769 {
13770 as_bad (_("incorrect condition in IT block"));
13771 return;
13772 }
e27ec89e
PB
13773 }
13774 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
13775 {
13776 as_bad (_("thumb conditional instrunction not in IT block"));
13777 return;
13778 }
13779
c19d1205
ZW
13780 mapping_state (MAP_THUMB);
13781 inst.instruction = opcode->tvalue;
13782
13783 if (!parse_operands (p, opcode->operands))
13784 opcode->tencode ();
13785
e27ec89e
PB
13786 /* Clear current_it_mask at the end of an IT block. */
13787 if (current_it_mask == 0x10)
13788 current_it_mask = 0;
13789
0110f2b8 13790 if (!(inst.error || inst.relax))
b99bd4ef 13791 {
c19d1205
ZW
13792 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
13793 inst.size = (inst.instruction > 0xffff ? 4 : 2);
13794 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 13795 {
c19d1205 13796 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
13797 return;
13798 }
13799 }
e74cfd16
PB
13800 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13801 *opcode->tvariant);
ee065d83 13802 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 13803 set those bits when Thumb-2 32-bit instructions are seen. ie.
ee065d83
PB
13804 anything other than bl/blx.
13805 This is overly pessimistic for relaxable instructions. */
13806 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
13807 || inst.relax)
e74cfd16
PB
13808 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13809 arm_ext_v6t2);
c19d1205
ZW
13810 }
13811 else
13812 {
13813 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
13814 if (!opcode->avariant ||
13815 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
b99bd4ef 13816 {
c19d1205
ZW
13817 as_bad (_("selected processor does not support `%s'"), str);
13818 return;
b99bd4ef 13819 }
c19d1205 13820 if (inst.size_req)
b99bd4ef 13821 {
c19d1205
ZW
13822 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
13823 return;
b99bd4ef
NC
13824 }
13825
c19d1205
ZW
13826 mapping_state (MAP_ARM);
13827 inst.instruction = opcode->avalue;
13828 if (opcode->tag == OT_unconditionalF)
13829 inst.instruction |= 0xF << 28;
13830 else
13831 inst.instruction |= inst.cond << 28;
13832 inst.size = INSN_SIZE;
13833 if (!parse_operands (p, opcode->operands))
13834 opcode->aencode ();
ee065d83
PB
13835 /* Arm mode bx is marked as both v4T and v5 because it's still required
13836 on a hypothetical non-thumb v5 core. */
e74cfd16
PB
13837 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
13838 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
13839 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 13840 else
e74cfd16
PB
13841 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
13842 *opcode->avariant);
b99bd4ef 13843 }
c19d1205
ZW
13844 output_inst (str);
13845}
b99bd4ef 13846
c19d1205
ZW
13847/* Various frobbings of labels and their addresses. */
13848
13849void
13850arm_start_line_hook (void)
13851{
13852 last_label_seen = NULL;
b99bd4ef
NC
13853}
13854
c19d1205
ZW
13855void
13856arm_frob_label (symbolS * sym)
b99bd4ef 13857{
c19d1205 13858 last_label_seen = sym;
b99bd4ef 13859
c19d1205 13860 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 13861
c19d1205
ZW
13862#if defined OBJ_COFF || defined OBJ_ELF
13863 ARM_SET_INTERWORK (sym, support_interwork);
13864#endif
b99bd4ef 13865
c19d1205
ZW
13866 /* Note - do not allow local symbols (.Lxxx) to be labeled
13867 as Thumb functions. This is because these labels, whilst
13868 they exist inside Thumb code, are not the entry points for
13869 possible ARM->Thumb calls. Also, these labels can be used
13870 as part of a computed goto or switch statement. eg gcc
13871 can generate code that looks like this:
b99bd4ef 13872
c19d1205
ZW
13873 ldr r2, [pc, .Laaa]
13874 lsl r3, r3, #2
13875 ldr r2, [r3, r2]
13876 mov pc, r2
b99bd4ef 13877
c19d1205
ZW
13878 .Lbbb: .word .Lxxx
13879 .Lccc: .word .Lyyy
13880 ..etc...
13881 .Laaa: .word Lbbb
b99bd4ef 13882
c19d1205
ZW
13883 The first instruction loads the address of the jump table.
13884 The second instruction converts a table index into a byte offset.
13885 The third instruction gets the jump address out of the table.
13886 The fourth instruction performs the jump.
b99bd4ef 13887
c19d1205
ZW
13888 If the address stored at .Laaa is that of a symbol which has the
13889 Thumb_Func bit set, then the linker will arrange for this address
13890 to have the bottom bit set, which in turn would mean that the
13891 address computation performed by the third instruction would end
13892 up with the bottom bit set. Since the ARM is capable of unaligned
13893 word loads, the instruction would then load the incorrect address
13894 out of the jump table, and chaos would ensue. */
13895 if (label_is_thumb_function_name
13896 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
13897 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 13898 {
c19d1205
ZW
13899 /* When the address of a Thumb function is taken the bottom
13900 bit of that address should be set. This will allow
13901 interworking between Arm and Thumb functions to work
13902 correctly. */
b99bd4ef 13903
c19d1205 13904 THUMB_SET_FUNC (sym, 1);
b99bd4ef 13905
c19d1205 13906 label_is_thumb_function_name = FALSE;
b99bd4ef 13907 }
07a53e5c
RH
13908
13909#ifdef OBJ_ELF
13910 dwarf2_emit_label (sym);
13911#endif
b99bd4ef
NC
13912}
13913
c19d1205
ZW
13914int
13915arm_data_in_code (void)
b99bd4ef 13916{
c19d1205 13917 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 13918 {
c19d1205
ZW
13919 *input_line_pointer = '/';
13920 input_line_pointer += 5;
13921 *input_line_pointer = 0;
13922 return 1;
b99bd4ef
NC
13923 }
13924
c19d1205 13925 return 0;
b99bd4ef
NC
13926}
13927
c19d1205
ZW
13928char *
13929arm_canonicalize_symbol_name (char * name)
b99bd4ef 13930{
c19d1205 13931 int len;
b99bd4ef 13932
c19d1205
ZW
13933 if (thumb_mode && (len = strlen (name)) > 5
13934 && streq (name + len - 5, "/data"))
13935 *(name + len - 5) = 0;
b99bd4ef 13936
c19d1205 13937 return name;
b99bd4ef 13938}
c19d1205
ZW
13939\f
13940/* Table of all register names defined by default. The user can
13941 define additional names with .req. Note that all register names
13942 should appear in both upper and lowercase variants. Some registers
13943 also have mixed-case names. */
b99bd4ef 13944
dcbf9037 13945#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 13946#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 13947#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
13948#define REGSET(p,t) \
13949 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
13950 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
13951 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
13952 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
13953#define REGSETH(p,t) \
13954 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
13955 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
13956 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
13957 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
13958#define REGSET2(p,t) \
13959 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
13960 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
13961 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
13962 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 13963
c19d1205 13964static const struct reg_entry reg_names[] =
7ed4c4c5 13965{
c19d1205
ZW
13966 /* ARM integer registers. */
13967 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 13968
c19d1205
ZW
13969 /* ATPCS synonyms. */
13970 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
13971 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
13972 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 13973
c19d1205
ZW
13974 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
13975 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
13976 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 13977
c19d1205
ZW
13978 /* Well-known aliases. */
13979 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
13980 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
13981
13982 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
13983 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
13984
13985 /* Coprocessor numbers. */
13986 REGSET(p, CP), REGSET(P, CP),
13987
13988 /* Coprocessor register numbers. The "cr" variants are for backward
13989 compatibility. */
13990 REGSET(c, CN), REGSET(C, CN),
13991 REGSET(cr, CN), REGSET(CR, CN),
13992
13993 /* FPA registers. */
13994 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
13995 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
13996
13997 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
13998 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
13999
14000 /* VFP SP registers. */
5287ad62
JB
14001 REGSET(s,VFS), REGSET(S,VFS),
14002 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14003
14004 /* VFP DP Registers. */
5287ad62
JB
14005 REGSET(d,VFD), REGSET(D,VFD),
14006 /* Extra Neon DP registers. */
14007 REGSETH(d,VFD), REGSETH(D,VFD),
14008
14009 /* Neon QP registers. */
14010 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14011
14012 /* VFP control registers. */
14013 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14014 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14015
14016 /* Maverick DSP coprocessor registers. */
14017 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14018 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14019
14020 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14021 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14022 REGDEF(dspsc,0,DSPSC),
14023
14024 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14025 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14026 REGDEF(DSPSC,0,DSPSC),
14027
14028 /* iWMMXt data registers - p0, c0-15. */
14029 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14030
14031 /* iWMMXt control registers - p1, c0-3. */
14032 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14033 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14034 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14035 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14036
14037 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14038 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14039 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14040 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14041 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14042
14043 /* XScale accumulator registers. */
14044 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14045};
14046#undef REGDEF
14047#undef REGNUM
14048#undef REGSET
7ed4c4c5 14049
c19d1205
ZW
14050/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14051 within psr_required_here. */
14052static const struct asm_psr psrs[] =
14053{
14054 /* Backward compatibility notation. Note that "all" is no longer
14055 truly all possible PSR bits. */
14056 {"all", PSR_c | PSR_f},
14057 {"flg", PSR_f},
14058 {"ctl", PSR_c},
14059
14060 /* Individual flags. */
14061 {"f", PSR_f},
14062 {"c", PSR_c},
14063 {"x", PSR_x},
14064 {"s", PSR_s},
14065 /* Combinations of flags. */
14066 {"fs", PSR_f | PSR_s},
14067 {"fx", PSR_f | PSR_x},
14068 {"fc", PSR_f | PSR_c},
14069 {"sf", PSR_s | PSR_f},
14070 {"sx", PSR_s | PSR_x},
14071 {"sc", PSR_s | PSR_c},
14072 {"xf", PSR_x | PSR_f},
14073 {"xs", PSR_x | PSR_s},
14074 {"xc", PSR_x | PSR_c},
14075 {"cf", PSR_c | PSR_f},
14076 {"cs", PSR_c | PSR_s},
14077 {"cx", PSR_c | PSR_x},
14078 {"fsx", PSR_f | PSR_s | PSR_x},
14079 {"fsc", PSR_f | PSR_s | PSR_c},
14080 {"fxs", PSR_f | PSR_x | PSR_s},
14081 {"fxc", PSR_f | PSR_x | PSR_c},
14082 {"fcs", PSR_f | PSR_c | PSR_s},
14083 {"fcx", PSR_f | PSR_c | PSR_x},
14084 {"sfx", PSR_s | PSR_f | PSR_x},
14085 {"sfc", PSR_s | PSR_f | PSR_c},
14086 {"sxf", PSR_s | PSR_x | PSR_f},
14087 {"sxc", PSR_s | PSR_x | PSR_c},
14088 {"scf", PSR_s | PSR_c | PSR_f},
14089 {"scx", PSR_s | PSR_c | PSR_x},
14090 {"xfs", PSR_x | PSR_f | PSR_s},
14091 {"xfc", PSR_x | PSR_f | PSR_c},
14092 {"xsf", PSR_x | PSR_s | PSR_f},
14093 {"xsc", PSR_x | PSR_s | PSR_c},
14094 {"xcf", PSR_x | PSR_c | PSR_f},
14095 {"xcs", PSR_x | PSR_c | PSR_s},
14096 {"cfs", PSR_c | PSR_f | PSR_s},
14097 {"cfx", PSR_c | PSR_f | PSR_x},
14098 {"csf", PSR_c | PSR_s | PSR_f},
14099 {"csx", PSR_c | PSR_s | PSR_x},
14100 {"cxf", PSR_c | PSR_x | PSR_f},
14101 {"cxs", PSR_c | PSR_x | PSR_s},
14102 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14103 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14104 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14105 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14106 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14107 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14108 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14109 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14110 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14111 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14112 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14113 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14114 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14115 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14116 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14117 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14118 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14119 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14120 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14121 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14122 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14123 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14124 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14125 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14126};
14127
62b3e311
PB
14128/* Table of V7M psr names. */
14129static const struct asm_psr v7m_psrs[] =
14130{
14131 {"apsr", 0 },
14132 {"iapsr", 1 },
14133 {"eapsr", 2 },
14134 {"psr", 3 },
14135 {"ipsr", 5 },
14136 {"epsr", 6 },
14137 {"iepsr", 7 },
14138 {"msp", 8 },
14139 {"psp", 9 },
14140 {"primask", 16},
14141 {"basepri", 17},
14142 {"basepri_max", 18},
14143 {"faultmask", 19},
14144 {"control", 20}
14145};
14146
c19d1205
ZW
14147/* Table of all shift-in-operand names. */
14148static const struct asm_shift_name shift_names [] =
b99bd4ef 14149{
c19d1205
ZW
14150 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14151 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14152 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14153 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14154 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14155 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14156};
b99bd4ef 14157
c19d1205
ZW
14158/* Table of all explicit relocation names. */
14159#ifdef OBJ_ELF
14160static struct reloc_entry reloc_names[] =
14161{
14162 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14163 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14164 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14165 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14166 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14167 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14168 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14169 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14170 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14171 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14172 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14173};
14174#endif
b99bd4ef 14175
c19d1205
ZW
14176/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14177static const struct asm_cond conds[] =
14178{
14179 {"eq", 0x0},
14180 {"ne", 0x1},
14181 {"cs", 0x2}, {"hs", 0x2},
14182 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14183 {"mi", 0x4},
14184 {"pl", 0x5},
14185 {"vs", 0x6},
14186 {"vc", 0x7},
14187 {"hi", 0x8},
14188 {"ls", 0x9},
14189 {"ge", 0xa},
14190 {"lt", 0xb},
14191 {"gt", 0xc},
14192 {"le", 0xd},
14193 {"al", 0xe}
14194};
bfae80f2 14195
62b3e311
PB
14196static struct asm_barrier_opt barrier_opt_names[] =
14197{
14198 { "sy", 0xf },
14199 { "un", 0x7 },
14200 { "st", 0xe },
14201 { "unst", 0x6 }
14202};
14203
c19d1205
ZW
14204/* Table of ARM-format instructions. */
14205
14206/* Macros for gluing together operand strings. N.B. In all cases
14207 other than OPS0, the trailing OP_stop comes from default
14208 zero-initialization of the unspecified elements of the array. */
14209#define OPS0() { OP_stop, }
14210#define OPS1(a) { OP_##a, }
14211#define OPS2(a,b) { OP_##a,OP_##b, }
14212#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14213#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14214#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14215#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14216
14217/* These macros abstract out the exact format of the mnemonic table and
14218 save some repeated characters. */
14219
14220/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14221#define TxCE(mnem, op, top, nops, ops, ae, te) \
14222 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14223 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14224
14225/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14226 a T_MNEM_xyz enumerator. */
14227#define TCE(mnem, aop, top, nops, ops, ae, te) \
14228 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14229#define tCE(mnem, aop, top, nops, ops, ae, te) \
14230 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14231
14232/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14233 infix after the third character. */
14234#define TxC3(mnem, op, top, nops, ops, ae, te) \
14235 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14236 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14237#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14238 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14239 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14240#define TC3(mnem, aop, top, nops, ops, ae, te) \
14241 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14242#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14243 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14244#define tC3(mnem, aop, top, nops, ops, ae, te) \
14245 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14246#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14247 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14248
14249/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14250 appear in the condition table. */
14251#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14252 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14253 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14254
14255#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14256 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14257 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14258 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14259 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14260 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14261 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14262 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14263 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14264 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14265 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14266 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14267 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14268 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14269 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14270 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14271 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14272 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14273 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14274 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14275
14276#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14277 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14278#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14279 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14280
14281/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14282 field is still 0xE. Many of the Thumb variants can be executed
14283 conditionally, so this is checked separately. */
c19d1205
ZW
14284#define TUE(mnem, op, top, nops, ops, ae, te) \
14285 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14286 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14287
14288/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14289 condition code field. */
14290#define TUF(mnem, op, top, nops, ops, ae, te) \
14291 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14292 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14293
14294/* ARM-only variants of all the above. */
6a86118a
NC
14295#define CE(mnem, op, nops, ops, ae) \
14296 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14297
14298#define C3(mnem, op, nops, ops, ae) \
14299 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14300
e3cb604e
PB
14301/* Legacy mnemonics that always have conditional infix after the third
14302 character. */
14303#define CL(mnem, op, nops, ops, ae) \
14304 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14305 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14306
8f06b2d8
PB
14307/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14308#define cCE(mnem, op, nops, ops, ae) \
14309 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14310
e3cb604e
PB
14311/* Legacy coprocessor instructions where conditional infix and conditional
14312 suffix are ambiguous. For consistency this includes all FPA instructions,
14313 not just the potentially ambiguous ones. */
14314#define cCL(mnem, op, nops, ops, ae) \
14315 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14316 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14317
14318/* Coprocessor, takes either a suffix or a position-3 infix
14319 (for an FPA corner case). */
14320#define C3E(mnem, op, nops, ops, ae) \
14321 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14322 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14323
6a86118a
NC
14324#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14325 { #m1 #m2 #m3, OPS##nops ops, \
14326 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14327 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14328
14329#define CM(m1, m2, op, nops, ops, ae) \
14330 xCM_(m1, , m2, op, nops, ops, ae), \
14331 xCM_(m1, eq, m2, op, nops, ops, ae), \
14332 xCM_(m1, ne, m2, op, nops, ops, ae), \
14333 xCM_(m1, cs, m2, op, nops, ops, ae), \
14334 xCM_(m1, hs, m2, op, nops, ops, ae), \
14335 xCM_(m1, cc, m2, op, nops, ops, ae), \
14336 xCM_(m1, ul, m2, op, nops, ops, ae), \
14337 xCM_(m1, lo, m2, op, nops, ops, ae), \
14338 xCM_(m1, mi, m2, op, nops, ops, ae), \
14339 xCM_(m1, pl, m2, op, nops, ops, ae), \
14340 xCM_(m1, vs, m2, op, nops, ops, ae), \
14341 xCM_(m1, vc, m2, op, nops, ops, ae), \
14342 xCM_(m1, hi, m2, op, nops, ops, ae), \
14343 xCM_(m1, ls, m2, op, nops, ops, ae), \
14344 xCM_(m1, ge, m2, op, nops, ops, ae), \
14345 xCM_(m1, lt, m2, op, nops, ops, ae), \
14346 xCM_(m1, gt, m2, op, nops, ops, ae), \
14347 xCM_(m1, le, m2, op, nops, ops, ae), \
14348 xCM_(m1, al, m2, op, nops, ops, ae)
14349
14350#define UE(mnem, op, nops, ops, ae) \
14351 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14352
14353#define UF(mnem, op, nops, ops, ae) \
14354 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14355
5287ad62
JB
14356/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14357 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14358 use the same encoding function for each. */
14359#define NUF(mnem, op, nops, ops, enc) \
14360 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14361 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14362
14363/* Neon data processing, version which indirects through neon_enc_tab for
14364 the various overloaded versions of opcodes. */
14365#define nUF(mnem, op, nops, ops, enc) \
14366 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14367 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14368
14369/* Neon insn with conditional suffix for the ARM version, non-overloaded
14370 version. */
037e8744
JB
14371#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14372 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14373 THUMB_VARIANT, do_##enc, do_##enc }
14374
037e8744
JB
14375#define NCE(mnem, op, nops, ops, enc) \
14376 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14377
14378#define NCEF(mnem, op, nops, ops, enc) \
14379 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14380
5287ad62 14381/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14382#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14383 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14384 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14385
037e8744
JB
14386#define nCE(mnem, op, nops, ops, enc) \
14387 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14388
14389#define nCEF(mnem, op, nops, ops, enc) \
14390 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14391
c19d1205
ZW
14392#define do_0 0
14393
14394/* Thumb-only, unconditional. */
14395#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14396
c19d1205 14397static const struct asm_opcode insns[] =
bfae80f2 14398{
e74cfd16
PB
14399#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14400#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14401 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14402 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14403 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14404 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14405 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14406 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
14407 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14408 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
14409 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14410 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14411 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14412 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14413 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14414 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14415 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14416 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14417
14418 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14419 for setting PSR flag bits. They are obsolete in V6 and do not
14420 have Thumb equivalents. */
14421 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14422 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14423 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 14424 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 14425 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 14426 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 14427 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14428 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14429 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
14430
14431 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14432 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14433 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14434 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14435
4962c51a
MS
14436 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14437 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14438 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14439 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 14440
f5208ef2 14441 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14442 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14443 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 14444 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14445 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14446 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14447
14448 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 14449 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 14450 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 14451 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 14452
c19d1205 14453 /* Pseudo ops. */
e9f89963 14454 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
14455 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14456 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
14457
14458 /* Thumb-compatibility pseudo ops. */
14459 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14460 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14461 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14462 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14463 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 14464 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
14465 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14466 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14467 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14468 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14469 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14470 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14471
14472#undef THUMB_VARIANT
e74cfd16 14473#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 14474 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
14475
14476 /* V1 instructions with no Thumb analogue prior to V6T2. */
14477#undef THUMB_VARIANT
e74cfd16 14478#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14479 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14480 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14481 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14482 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14483 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
14484
14485 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14486 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14487 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14488 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14489
9c3c69f2
PB
14490 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14491 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 14492
9c3c69f2
PB
14493 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14494 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14495
14496 /* V1 instructions with no Thumb analogue at all. */
14497 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14498 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14499
14500 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14501 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14502 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14503 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14504 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14505 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14506 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14507 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14508
14509#undef ARM_VARIANT
e74cfd16 14510#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 14511#undef THUMB_VARIANT
e74cfd16 14512#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14513 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14514 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14515
14516#undef THUMB_VARIANT
e74cfd16 14517#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14518 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14519 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14520
14521 /* Generic coprocessor instructions. */
14522 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
14523 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14524 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14525 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14526 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14527 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14528 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14529
14530#undef ARM_VARIANT
e74cfd16 14531#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
14532 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14533 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14534
14535#undef ARM_VARIANT
e74cfd16 14536#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
037e8744
JB
14537 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14538 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
14539
14540#undef ARM_VARIANT
e74cfd16 14541#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
c19d1205
ZW
14542 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14543 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14544 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14545 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14546 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14547 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14548 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14549 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14550
14551#undef ARM_VARIANT
e74cfd16 14552#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 14553#undef THUMB_VARIANT
e74cfd16 14554#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
14555 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14556 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14557 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14558 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14559 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14560 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
14561
14562#undef ARM_VARIANT
e74cfd16 14563#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
14564 /* ARM Architecture 4T. */
14565 /* Note: bx (and blx) are required on V5, even if the processor does
14566 not support Thumb. */
14567 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
14568
14569#undef ARM_VARIANT
e74cfd16 14570#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 14571#undef THUMB_VARIANT
e74cfd16 14572#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
14573 /* Note: blx has 2 variants; the .value coded here is for
14574 BLX(2). Only this variant has conditional execution. */
14575 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
14576 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
14577
14578#undef THUMB_VARIANT
e74cfd16 14579#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 14580 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
14581 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14582 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14583 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14584 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14585 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14586 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14587 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14588
14589#undef ARM_VARIANT
e74cfd16 14590#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
14591 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14592 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14593 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14594 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14595
14596 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14597 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14598
14599 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14600 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14601 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14602 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14603
14604 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14605 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14606 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14607 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14608
14609 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14610 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14611
14612 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14613 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14614 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14615 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14616
14617#undef ARM_VARIANT
e74cfd16 14618#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 14619 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
4962c51a
MS
14620 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14621 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
14622
14623 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14624 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14625
14626#undef ARM_VARIANT
e74cfd16 14627#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
14628 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
14629
14630#undef ARM_VARIANT
e74cfd16 14631#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 14632#undef THUMB_VARIANT
e74cfd16 14633#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
14634 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
14635 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
14636 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14637 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14638 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14639 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14640 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14641 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14642 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14643 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
14644
14645#undef THUMB_VARIANT
e74cfd16 14646#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14647 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
14648 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14649 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
14650
14651 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
14652 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
14653
14654/* ARM V6 not included in V7M (eg. integer SIMD). */
14655#undef THUMB_VARIANT
14656#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 14657 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
14658 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
14659 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
14660 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14661 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14662 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14663 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14664 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14665 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14666 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14667 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14668 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14669 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14670 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14671 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14672 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14673 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14674 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14675 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14676 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14677 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14678 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14679 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14680 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14681 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14682 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14683 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14684 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14685 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14686 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14687 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14688 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14689 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14690 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14691 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14692 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14693 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14694 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14695 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14696 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14697 UF(rfeib, 9900a00, 1, (RRw), rfe),
14698 UF(rfeda, 8100a00, 1, (RRw), rfe),
14699 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14700 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14701 UF(rfefa, 9900a00, 1, (RRw), rfe),
14702 UF(rfeea, 8100a00, 1, (RRw), rfe),
14703 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14704 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14705 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14706 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14707 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14708 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14709 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14710 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14711 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 14712 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
14713 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14714 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14715 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14716 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14717 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14718 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14719 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14720 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14721 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14722 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14723 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14724 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14725 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14726 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14727 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14728 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14729 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14730 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14731 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
14732 UF(srsib, 9cd0500, 1, (I31w), srs),
14733 UF(srsda, 84d0500, 1, (I31w), srs),
14734 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
c19d1205
ZW
14735 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
14736 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
14737 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
14738 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14739 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
14740 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
14741
14742#undef ARM_VARIANT
e74cfd16 14743#define ARM_VARIANT &arm_ext_v6k
c19d1205 14744#undef THUMB_VARIANT
e74cfd16 14745#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
14746 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
14747 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
14748 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
14749 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
14750
ebdca51a
PB
14751#undef THUMB_VARIANT
14752#define THUMB_VARIANT &arm_ext_v6_notm
14753 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
14754 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
14755
c19d1205 14756#undef THUMB_VARIANT
e74cfd16 14757#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14758 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14759 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
14760 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14761 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
14762 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
14763
14764#undef ARM_VARIANT
e74cfd16 14765#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 14766 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
14767
14768#undef ARM_VARIANT
e74cfd16 14769#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
14770 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
14771 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
14772 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14773 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14774
14775 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
14776 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
14777 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 14778 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
14779
14780 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14781 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14782 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14783 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14784
14785 UT(cbnz, b900, 2, (RR, EXP), t_czb),
14786 UT(cbz, b100, 2, (RR, EXP), t_czb),
14787 /* ARM does not really have an IT instruction. */
14788 TUE(it, 0, bf08, 1, (COND), it, t_it),
14789 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
14790 TUE(ite, 0, bf04, 1, (COND), it, t_it),
14791 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
14792 TUE(itet, 0, bf06, 1, (COND), it, t_it),
14793 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
14794 TUE(itee, 0, bf02, 1, (COND), it, t_it),
14795 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
14796 TUE(itett, 0, bf07, 1, (COND), it, t_it),
14797 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
14798 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
14799 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
14800 TUE(itete, 0, bf05, 1, (COND), it, t_it),
14801 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
14802 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
14803
92e90b6e
PB
14804 /* Thumb2 only instructions. */
14805#undef ARM_VARIANT
e74cfd16 14806#define ARM_VARIANT NULL
92e90b6e
PB
14807
14808 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14809 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14810 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
14811 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
14812
62b3e311
PB
14813 /* Thumb-2 hardware division instructions (R and M profiles only). */
14814#undef THUMB_VARIANT
14815#define THUMB_VARIANT &arm_ext_div
14816 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
14817 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
14818
14819 /* ARM V7 instructions. */
14820#undef ARM_VARIANT
14821#define ARM_VARIANT &arm_ext_v7
14822#undef THUMB_VARIANT
14823#define THUMB_VARIANT &arm_ext_v7
14824 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
14825 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
14826 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
14827 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
14828 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
14829
c19d1205 14830#undef ARM_VARIANT
e74cfd16 14831#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
14832 cCE(wfs, e200110, 1, (RR), rd),
14833 cCE(rfs, e300110, 1, (RR), rd),
14834 cCE(wfc, e400110, 1, (RR), rd),
14835 cCE(rfc, e500110, 1, (RR), rd),
14836
4962c51a
MS
14837 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
14838 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
14839 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
14840 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 14841
4962c51a
MS
14842 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
14843 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
14844 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
14845 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
14846
14847 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
14848 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
14849 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
14850 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
14851 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
14852 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
14853 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
14854 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
14855 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
14856 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
14857 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
14858 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
14859
14860 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
14861 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
14862 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
14863 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
14864 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
14865 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
14866 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
14867 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
14868 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
14869 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
14870 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
14871 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
14872
14873 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
14874 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
14875 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
14876 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
14877 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
14878 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
14879 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
14880 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
14881 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
14882 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
14883 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
14884 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
14885
14886 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
14887 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
14888 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
14889 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
14890 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
14891 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
14892 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
14893 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
14894 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
14895 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
14896 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
14897 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
14898
14899 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
14900 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
14901 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
14902 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
14903 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
14904 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
14905 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
14906 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
14907 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
14908 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
14909 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
14910 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
14911
14912 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
14913 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
14914 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
14915 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
14916 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
14917 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
14918 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
14919 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
14920 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
14921 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
14922 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
14923 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
14924
14925 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
14926 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
14927 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
14928 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
14929 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
14930 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
14931 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
14932 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
14933 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
14934 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
14935 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
14936 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
14937
14938 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
14939 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
14940 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
14941 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
14942 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
14943 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
14944 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
14945 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
14946 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
14947 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
14948 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
14949 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
14950
14951 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
14952 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
14953 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
14954 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
14955 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
14956 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
14957 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
14958 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
14959 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
14960 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
14961 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
14962 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
14963
14964 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
14965 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
14966 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
14967 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
14968 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
14969 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
14970 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
14971 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
14972 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
14973 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
14974 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
14975 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
14976
14977 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
14978 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
14979 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
14980 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
14981 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
14982 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
14983 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
14984 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
14985 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
14986 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
14987 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
14988 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
14989
14990 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
14991 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
14992 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
14993 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
14994 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
14995 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
14996 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
14997 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
14998 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
14999 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15000 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15001 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15002
15003 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15004 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15005 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15006 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15007 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15008 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15009 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15010 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15011 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15012 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15013 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15014 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15015
15016 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15017 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15018 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15019 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15020 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15021 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15022 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15023 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15024 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15025 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15026 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15027 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15028
15029 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15030 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15031 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15032 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15033 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15034 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15035 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15036 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15037 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15038 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15039 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15040 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15041
15042 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15043 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15044 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15045 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15046 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15047 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15048 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15049 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15050 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15051 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15052 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15053 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15054
15055 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15056 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15057 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15058 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15059 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15060 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15061 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15062 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15063 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15064 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15065 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15066 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15067
15068 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15069 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15070 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15071 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15072 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15073 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15074 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15075 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15076 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15077 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15078 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15079 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15080
15081 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15082 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15083 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15084 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15085 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15086 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15087 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15088 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15089 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15090 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15091 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15092 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15093
15094 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15095 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15096 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15097 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15098 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15099 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15100 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15101 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15102 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15103 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15104 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15105 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15106
15107 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15108 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15109 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15110 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15111 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15112 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15113 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15114 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15115 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15116 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15117 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15118 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15119
15120 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15121 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15122 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15123 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15124 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15125 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15126 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15127 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15128 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15129 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15130 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15131 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15132
15133 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15134 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15135 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15136 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15137 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15138 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15139 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15140 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15141 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15142 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15143 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15144 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15145
15146 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15147 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15148 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15149 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15150 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15151 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15152 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15153 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15154 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15155 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15156 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15157 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15158
15159 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15160 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15161 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15162 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15163 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15164 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15165 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15166 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15167 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15168 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15169 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15170 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15171
15172 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15173 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15174 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15175 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15176 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15177 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15178 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15179 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15180 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15181 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15182 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15183 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15184
15185 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15186 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15187 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15188 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15189 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15190 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15191 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15192 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15193 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15194 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15195 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15196 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15197
15198 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15199 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15200 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15201 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15202 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15203 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15204 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15205 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15206 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15207 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15208 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15209 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15210
15211 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15212 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15213 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15214 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15215 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15216 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15217 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15218 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15219 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15220 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15221 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15222 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15223
15224 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15225 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15226 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15227 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15228
e3cb604e
PB
15229 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15230 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15231 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15232 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15233 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15234 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15235 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15236 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15237 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15238 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15239 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15240 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15241
c19d1205
ZW
15242 /* The implementation of the FIX instruction is broken on some
15243 assemblers, in that it accepts a precision specifier as well as a
15244 rounding specifier, despite the fact that this is meaningless.
15245 To be more compatible, we accept it as well, though of course it
15246 does not set any bits. */
8f06b2d8 15247 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15248 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15249 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15250 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15251 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15252 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15253 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15254 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15255 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15256 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15257 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15258 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15259 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15260
c19d1205
ZW
15261 /* Instructions that were new with the real FPA, call them V2. */
15262#undef ARM_VARIANT
e74cfd16 15263#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15264 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15265 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15266 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15267 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15268 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15269 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15270
15271#undef ARM_VARIANT
e74cfd16 15272#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15273 /* Moves and type conversions. */
8f06b2d8
PB
15274 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15275 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15276 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15277 cCE(fmstat, ef1fa10, 0, (), noargs),
15278 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15279 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15280 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15281 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15282 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15283 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15284 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15285 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15286
15287 /* Memory operations. */
4962c51a
MS
15288 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15289 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15290 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15291 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15292 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15293 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15294 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15295 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15296 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15297 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15298 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15299 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15300 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15301 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15302 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15303 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15304 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15305 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15306
c19d1205 15307 /* Monadic operations. */
8f06b2d8
PB
15308 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15309 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15310 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15311
15312 /* Dyadic operations. */
8f06b2d8
PB
15313 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15314 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15315 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15316 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15317 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15318 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15319 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15320 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15321 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15322
c19d1205 15323 /* Comparisons. */
8f06b2d8
PB
15324 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15325 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15326 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15327 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15328
c19d1205 15329#undef ARM_VARIANT
e74cfd16 15330#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15331 /* Moves and type conversions. */
5287ad62 15332 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15333 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15334 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15335 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15336 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15337 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15338 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15339 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15340 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15341 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15342 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15343 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15344 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15345
15346 /* Memory operations. */
4962c51a
MS
15347 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15348 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15349 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15350 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15351 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15352 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15353 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15354 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15355 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15356 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15357
c19d1205 15358 /* Monadic operations. */
5287ad62
JB
15359 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15360 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15361 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15362
15363 /* Dyadic operations. */
5287ad62
JB
15364 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15365 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15366 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15367 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15368 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15369 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15370 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15371 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15372 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15373
c19d1205 15374 /* Comparisons. */
5287ad62
JB
15375 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15376 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15377 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15378 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15379
15380#undef ARM_VARIANT
e74cfd16 15381#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15382 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15383 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15384 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15385 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15386
037e8744
JB
15387/* Instructions which may belong to either the Neon or VFP instruction sets.
15388 Individual encoder functions perform additional architecture checks. */
15389#undef ARM_VARIANT
15390#define ARM_VARIANT &fpu_vfp_ext_v1xd
15391#undef THUMB_VARIANT
15392#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15393 /* These mnemonics are unique to VFP. */
15394 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15395 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15396 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15397 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15398 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15399 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15400 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15401 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15402 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15403 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15404
15405 /* Mnemonics shared by Neon and VFP. */
15406 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15407 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15408 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15409
15410 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15411 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15412
15413 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15414 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15415
15416 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15417 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15418 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15419 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15420 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15421 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
15422 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15423 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
15424
15425 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15426
15427 /* NOTE: All VMOV encoding is special-cased! */
15428 NCE(vmov, 0, 1, (VMOV), neon_mov),
15429 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15430
5287ad62
JB
15431#undef THUMB_VARIANT
15432#define THUMB_VARIANT &fpu_neon_ext_v1
15433#undef ARM_VARIANT
15434#define ARM_VARIANT &fpu_neon_ext_v1
15435 /* Data processing with three registers of the same length. */
15436 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15437 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15438 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15439 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15440 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15441 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15442 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15443 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15444 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15445 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15446 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15447 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15448 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15449 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15450 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15451 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15452 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15453 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15454 /* If not immediate, fall back to neon_dyadic_i64_su.
15455 shl_imm should accept I8 I16 I32 I64,
15456 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15457 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15458 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15459 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15460 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15461 /* Logic ops, types optional & ignored. */
15462 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15463 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15464 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15465 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15466 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15467 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15468 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15469 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15470 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15471 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15472 /* Bitfield ops, untyped. */
15473 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15474 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15475 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15476 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15477 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15478 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15479 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15480 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15481 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15482 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15483 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15484 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15485 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15486 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15487 back to neon_dyadic_if_su. */
15488 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15489 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15490 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15491 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15492 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15493 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15494 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15495 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15496 /* Comparison. Type I8 I16 I32 F32. Non-immediate -> neon_dyadic_if_i. */
15497 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15498 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15499 /* As above, D registers only. */
15500 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15501 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15502 /* Int and float variants, signedness unimportant. */
15503 /* If not scalar, fall back to neon_dyadic_if_i. */
5287ad62 15504 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
15505 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15506 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15507 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 15508 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
15509 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15510 /* vtst takes sizes 8, 16, 32. */
15511 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15512 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15513 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 15514 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
15515 /* VQD{R}MULH takes S16 S32. */
15516 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15517 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15518 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15519 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15520 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15521 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15522 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15523 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15524 NUF(vaclt, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15525 NUF(vacltq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15526 NUF(vacle, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15527 NUF(vacleq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15528 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15529 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15530 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15531 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15532
15533 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 15534 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
15535 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
15536
15537 /* Data processing with two registers and a shift amount. */
15538 /* Right shifts, and variants with rounding.
15539 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15540 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15541 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15542 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15543 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15544 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15545 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15546 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15547 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15548 /* Shift and insert. Sizes accepted 8 16 32 64. */
15549 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15550 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
15551 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15552 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
15553 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15554 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15555 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
15556 /* Right shift immediate, saturating & narrowing, with rounding variants.
15557 Types accepted S16 S32 S64 U16 U32 U64. */
15558 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15559 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15560 /* As above, unsigned. Types accepted S16 S32 S64. */
15561 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15562 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15563 /* Right shift narrowing. Types accepted I16 I32 I64. */
15564 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15565 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15566 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15567 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
15568 /* CVT with optional immediate for fixed-point variant. */
037e8744 15569 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 15570
5287ad62
JB
15571 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
15572 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
15573
15574 /* Data processing, three registers of different lengths. */
15575 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15576 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
15577 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
15578 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
15579 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
15580 /* If not scalar, fall back to neon_dyadic_long.
15581 Vector types as above, scalar types S16 S32 U16 U32. */
15582 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15583 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15584 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15585 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15586 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15587 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15588 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15589 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15590 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15591 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15592 /* Saturating doubling multiplies. Types S16 S32. */
15593 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15594 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15595 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15596 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15597 S16 S32 U16 U32. */
15598 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
15599
15600 /* Extract. Size 8. */
15601 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
15602 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
15603
15604 /* Two registers, miscellaneous. */
15605 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15606 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
15607 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
15608 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
15609 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
15610 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
15611 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
15612 /* Vector replicate. Sizes 8 16 32. */
15613 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
15614 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
15615 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15616 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
15617 /* VMOVN. Types I16 I32 I64. */
15618 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
15619 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15620 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
15621 /* VQMOVUN. Types S16 S32 S64. */
15622 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
15623 /* VZIP / VUZP. Sizes 8 16 32. */
15624 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
15625 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
15626 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
15627 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
15628 /* VQABS / VQNEG. Types S8 S16 S32. */
15629 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15630 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
15631 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15632 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
15633 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15634 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
15635 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
15636 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
15637 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
15638 /* Reciprocal estimates. Types U32 F32. */
15639 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
15640 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
15641 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
15642 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
15643 /* VCLS. Types S8 S16 S32. */
15644 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
15645 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
15646 /* VCLZ. Types I8 I16 I32. */
15647 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
15648 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
15649 /* VCNT. Size 8. */
15650 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
15651 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
15652 /* Two address, untyped. */
15653 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
15654 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
15655 /* VTRN. Sizes 8 16 32. */
15656 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
15657 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
15658
15659 /* Table lookup. Size 8. */
15660 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15661 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15662
b7fc2769
JB
15663#undef THUMB_VARIANT
15664#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15665#undef ARM_VARIANT
15666#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
15667 /* Neon element/structure load/store. */
15668 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15669 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15670 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15671 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15672 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15673 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15674 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15675 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15676
15677#undef THUMB_VARIANT
15678#define THUMB_VARIANT &fpu_vfp_ext_v3
15679#undef ARM_VARIANT
15680#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
15681 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
15682 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
15683 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15684 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15685 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15686 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15687 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15688 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15689 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15690 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15691 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15692 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15693 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15694 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15695 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15696 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15697 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15698 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 15699
5287ad62 15700#undef THUMB_VARIANT
c19d1205 15701#undef ARM_VARIANT
e74cfd16 15702#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
15703 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15704 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15705 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15706 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15707 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15708 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15709 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
15710 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
15711
15712#undef ARM_VARIANT
e74cfd16 15713#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
15714 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
15715 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
15716 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
15717 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
15718 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
15719 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
15720 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
15721 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
15722 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
15723 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15724 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15725 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15726 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15727 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15728 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15729 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15730 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15731 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 15732 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
15733 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
15734 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15735 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15736 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15737 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15738 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15739 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15740 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
15741 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
15742 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 15743 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
15744 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
15745 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
15746 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
15747 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
15748 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
15749 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
15750 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
15751 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15752 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15753 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15754 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15755 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15756 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15757 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15758 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15759 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15760 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
15761 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15762 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15763 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15764 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15765 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15766 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15767 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15768 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15769 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15770 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15771 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15772 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15773 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15774 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15775 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15776 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15777 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15778 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15779 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15780 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15781 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15782 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15783 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15784 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15785 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15786 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15787 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15788 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15789 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15790 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15791 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15792 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15793 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15794 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15795 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15796 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15797 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15798 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15799 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15800 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15801 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15802 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
15803 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15804 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15805 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15806 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15807 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15808 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15809 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15810 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15811 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15812 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15813 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15814 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15815 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15816 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15817 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15818 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15819 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15820 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15821 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15822 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15823 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15824 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
15825 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15826 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15827 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15828 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15829 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15830 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15831 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15832 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15833 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15834 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15835 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15836 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15837 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15838 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15839 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15840 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15841 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15842 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15843 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15844 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15845 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15846 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15847 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15848 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15849 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15850 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15851 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15852 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15853 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15854 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15855 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15856 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
15857 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
15858 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
15859 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
15860 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
15861 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
15862 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15863 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15864 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15865 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
15866 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
15867 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
15868 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
15869 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
15870 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
15871 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15872 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15873 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15874 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15875 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205
ZW
15876
15877#undef ARM_VARIANT
e74cfd16 15878#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
15879 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15880 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15881 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15882 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15883 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15884 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15885 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15886 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
15887 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
15888 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
15889 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
15890 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
15891 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
15892 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
15893 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
15894 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
15895 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
15896 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
15897 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
15898 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
15899 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
15900 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
15901 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
15902 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
15903 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
15904 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
15905 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
15906 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
15907 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
15908 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
15909 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
15910 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
15911 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
15912 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
15913 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
15914 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
15915 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
15916 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
15917 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
15918 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
15919 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
15920 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
15921 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
15922 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
15923 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
15924 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
15925 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
15926 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
15927 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
15928 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
15929 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
15930 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
15931 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
15932 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
15933 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
15934 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
15935 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
15936 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
15937 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
15938 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
15939 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
15940 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
15941 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
15942 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
15943 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15944 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15945 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15946 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15947 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15948 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15949 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15950 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15951 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15952 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15953 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
15954 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
15955};
15956#undef ARM_VARIANT
15957#undef THUMB_VARIANT
15958#undef TCE
15959#undef TCM
15960#undef TUE
15961#undef TUF
15962#undef TCC
8f06b2d8 15963#undef cCE
e3cb604e
PB
15964#undef cCL
15965#undef C3E
c19d1205
ZW
15966#undef CE
15967#undef CM
15968#undef UE
15969#undef UF
15970#undef UT
5287ad62
JB
15971#undef NUF
15972#undef nUF
15973#undef NCE
15974#undef nCE
c19d1205
ZW
15975#undef OPS0
15976#undef OPS1
15977#undef OPS2
15978#undef OPS3
15979#undef OPS4
15980#undef OPS5
15981#undef OPS6
15982#undef do_0
15983\f
15984/* MD interface: bits in the object file. */
bfae80f2 15985
c19d1205
ZW
15986/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
15987 for use in the a.out file, and stores them in the array pointed to by buf.
15988 This knows about the endian-ness of the target machine and does
15989 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
15990 2 (short) and 4 (long) Floating numbers are put out as a series of
15991 LITTLENUMS (shorts, here at least). */
b99bd4ef 15992
c19d1205
ZW
15993void
15994md_number_to_chars (char * buf, valueT val, int n)
15995{
15996 if (target_big_endian)
15997 number_to_chars_bigendian (buf, val, n);
15998 else
15999 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16000}
16001
c19d1205
ZW
16002static valueT
16003md_chars_to_number (char * buf, int n)
bfae80f2 16004{
c19d1205
ZW
16005 valueT result = 0;
16006 unsigned char * where = (unsigned char *) buf;
bfae80f2 16007
c19d1205 16008 if (target_big_endian)
b99bd4ef 16009 {
c19d1205
ZW
16010 while (n--)
16011 {
16012 result <<= 8;
16013 result |= (*where++ & 255);
16014 }
b99bd4ef 16015 }
c19d1205 16016 else
b99bd4ef 16017 {
c19d1205
ZW
16018 while (n--)
16019 {
16020 result <<= 8;
16021 result |= (where[n] & 255);
16022 }
bfae80f2 16023 }
b99bd4ef 16024
c19d1205 16025 return result;
bfae80f2 16026}
b99bd4ef 16027
c19d1205 16028/* MD interface: Sections. */
b99bd4ef 16029
0110f2b8
PB
16030/* Estimate the size of a frag before relaxing. Assume everything fits in
16031 2 bytes. */
16032
c19d1205 16033int
0110f2b8 16034md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16035 segT segtype ATTRIBUTE_UNUSED)
16036{
0110f2b8
PB
16037 fragp->fr_var = 2;
16038 return 2;
16039}
16040
16041/* Convert a machine dependent frag. */
16042
16043void
16044md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16045{
16046 unsigned long insn;
16047 unsigned long old_op;
16048 char *buf;
16049 expressionS exp;
16050 fixS *fixp;
16051 int reloc_type;
16052 int pc_rel;
16053 int opcode;
16054
16055 buf = fragp->fr_literal + fragp->fr_fix;
16056
16057 old_op = bfd_get_16(abfd, buf);
16058 if (fragp->fr_symbol) {
16059 exp.X_op = O_symbol;
16060 exp.X_add_symbol = fragp->fr_symbol;
16061 } else {
16062 exp.X_op = O_constant;
16063 }
16064 exp.X_add_number = fragp->fr_offset;
16065 opcode = fragp->fr_subtype;
16066 switch (opcode)
16067 {
16068 case T_MNEM_ldr_pc:
16069 case T_MNEM_ldr_pc2:
16070 case T_MNEM_ldr_sp:
16071 case T_MNEM_str_sp:
16072 case T_MNEM_ldr:
16073 case T_MNEM_ldrb:
16074 case T_MNEM_ldrh:
16075 case T_MNEM_str:
16076 case T_MNEM_strb:
16077 case T_MNEM_strh:
16078 if (fragp->fr_var == 4)
16079 {
16080 insn = THUMB_OP32(opcode);
16081 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16082 {
16083 insn |= (old_op & 0x700) << 4;
16084 }
16085 else
16086 {
16087 insn |= (old_op & 7) << 12;
16088 insn |= (old_op & 0x38) << 13;
16089 }
16090 insn |= 0x00000c00;
16091 put_thumb32_insn (buf, insn);
16092 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16093 }
16094 else
16095 {
16096 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16097 }
16098 pc_rel = (opcode == T_MNEM_ldr_pc2);
16099 break;
16100 case T_MNEM_adr:
16101 if (fragp->fr_var == 4)
16102 {
16103 insn = THUMB_OP32 (opcode);
16104 insn |= (old_op & 0xf0) << 4;
16105 put_thumb32_insn (buf, insn);
16106 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16107 }
16108 else
16109 {
16110 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16111 exp.X_add_number -= 4;
16112 }
16113 pc_rel = 1;
16114 break;
16115 case T_MNEM_mov:
16116 case T_MNEM_movs:
16117 case T_MNEM_cmp:
16118 case T_MNEM_cmn:
16119 if (fragp->fr_var == 4)
16120 {
16121 int r0off = (opcode == T_MNEM_mov
16122 || opcode == T_MNEM_movs) ? 0 : 8;
16123 insn = THUMB_OP32 (opcode);
16124 insn = (insn & 0xe1ffffff) | 0x10000000;
16125 insn |= (old_op & 0x700) << r0off;
16126 put_thumb32_insn (buf, insn);
16127 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16128 }
16129 else
16130 {
16131 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16132 }
16133 pc_rel = 0;
16134 break;
16135 case T_MNEM_b:
16136 if (fragp->fr_var == 4)
16137 {
16138 insn = THUMB_OP32(opcode);
16139 put_thumb32_insn (buf, insn);
16140 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16141 }
16142 else
16143 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16144 pc_rel = 1;
16145 break;
16146 case T_MNEM_bcond:
16147 if (fragp->fr_var == 4)
16148 {
16149 insn = THUMB_OP32(opcode);
16150 insn |= (old_op & 0xf00) << 14;
16151 put_thumb32_insn (buf, insn);
16152 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16153 }
16154 else
16155 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16156 pc_rel = 1;
16157 break;
16158 case T_MNEM_add_sp:
16159 case T_MNEM_add_pc:
16160 case T_MNEM_inc_sp:
16161 case T_MNEM_dec_sp:
16162 if (fragp->fr_var == 4)
16163 {
16164 /* ??? Choose between add and addw. */
16165 insn = THUMB_OP32 (opcode);
16166 insn |= (old_op & 0xf0) << 4;
16167 put_thumb32_insn (buf, insn);
16805f35
PB
16168 if (opcode == T_MNEM_add_pc)
16169 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16170 else
16171 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16172 }
16173 else
16174 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16175 pc_rel = 0;
16176 break;
16177
16178 case T_MNEM_addi:
16179 case T_MNEM_addis:
16180 case T_MNEM_subi:
16181 case T_MNEM_subis:
16182 if (fragp->fr_var == 4)
16183 {
16184 insn = THUMB_OP32 (opcode);
16185 insn |= (old_op & 0xf0) << 4;
16186 insn |= (old_op & 0xf) << 16;
16187 put_thumb32_insn (buf, insn);
16805f35
PB
16188 if (insn & (1 << 20))
16189 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16190 else
16191 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16192 }
16193 else
16194 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16195 pc_rel = 0;
16196 break;
16197 default:
16198 abort();
16199 }
16200 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16201 reloc_type);
16202 fixp->fx_file = fragp->fr_file;
16203 fixp->fx_line = fragp->fr_line;
16204 fragp->fr_fix += fragp->fr_var;
16205}
16206
16207/* Return the size of a relaxable immediate operand instruction.
16208 SHIFT and SIZE specify the form of the allowable immediate. */
16209static int
16210relax_immediate (fragS *fragp, int size, int shift)
16211{
16212 offsetT offset;
16213 offsetT mask;
16214 offsetT low;
16215
16216 /* ??? Should be able to do better than this. */
16217 if (fragp->fr_symbol)
16218 return 4;
16219
16220 low = (1 << shift) - 1;
16221 mask = (1 << (shift + size)) - (1 << shift);
16222 offset = fragp->fr_offset;
16223 /* Force misaligned offsets to 32-bit variant. */
16224 if (offset & low)
16225 return -4;
16226 if (offset & ~mask)
16227 return 4;
16228 return 2;
16229}
16230
16231/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16232 load. */
16233static int
16234relax_adr (fragS *fragp, asection *sec)
16235{
16236 addressT addr;
16237 offsetT val;
16238
16239 /* Assume worst case for symbols not known to be in the same section. */
16240 if (!S_IS_DEFINED(fragp->fr_symbol)
16241 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16242 return 4;
16243
16244 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16245 addr = fragp->fr_address + fragp->fr_fix;
16246 addr = (addr + 4) & ~3;
16247 /* Fix the insn as the 4-byte version if the target address is not
16248 sufficiently aligned. This is prevents an infinite loop when two
16249 instructions have contradictory range/alignment requirements. */
16250 if (val & 3)
16251 return -4;
16252 val -= addr;
16253 if (val < 0 || val > 1020)
16254 return 4;
16255 return 2;
16256}
16257
16258/* Return the size of a relaxable add/sub immediate instruction. */
16259static int
16260relax_addsub (fragS *fragp, asection *sec)
16261{
16262 char *buf;
16263 int op;
16264
16265 buf = fragp->fr_literal + fragp->fr_fix;
16266 op = bfd_get_16(sec->owner, buf);
16267 if ((op & 0xf) == ((op >> 4) & 0xf))
16268 return relax_immediate (fragp, 8, 0);
16269 else
16270 return relax_immediate (fragp, 3, 0);
16271}
16272
16273
16274/* Return the size of a relaxable branch instruction. BITS is the
16275 size of the offset field in the narrow instruction. */
16276
16277static int
16278relax_branch (fragS *fragp, asection *sec, int bits)
16279{
16280 addressT addr;
16281 offsetT val;
16282 offsetT limit;
16283
16284 /* Assume worst case for symbols not known to be in the same section. */
16285 if (!S_IS_DEFINED(fragp->fr_symbol)
16286 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16287 return 4;
16288
16289 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16290 addr = fragp->fr_address + fragp->fr_fix + 4;
16291 val -= addr;
16292
16293 /* Offset is a signed value *2 */
16294 limit = 1 << bits;
16295 if (val >= limit || val < -limit)
16296 return 4;
16297 return 2;
16298}
16299
16300
16301/* Relax a machine dependent frag. This returns the amount by which
16302 the current size of the frag should change. */
16303
16304int
16305arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
16306{
16307 int oldsize;
16308 int newsize;
16309
16310 oldsize = fragp->fr_var;
16311 switch (fragp->fr_subtype)
16312 {
16313 case T_MNEM_ldr_pc2:
16314 newsize = relax_adr(fragp, sec);
16315 break;
16316 case T_MNEM_ldr_pc:
16317 case T_MNEM_ldr_sp:
16318 case T_MNEM_str_sp:
16319 newsize = relax_immediate(fragp, 8, 2);
16320 break;
16321 case T_MNEM_ldr:
16322 case T_MNEM_str:
16323 newsize = relax_immediate(fragp, 5, 2);
16324 break;
16325 case T_MNEM_ldrh:
16326 case T_MNEM_strh:
16327 newsize = relax_immediate(fragp, 5, 1);
16328 break;
16329 case T_MNEM_ldrb:
16330 case T_MNEM_strb:
16331 newsize = relax_immediate(fragp, 5, 0);
16332 break;
16333 case T_MNEM_adr:
16334 newsize = relax_adr(fragp, sec);
16335 break;
16336 case T_MNEM_mov:
16337 case T_MNEM_movs:
16338 case T_MNEM_cmp:
16339 case T_MNEM_cmn:
16340 newsize = relax_immediate(fragp, 8, 0);
16341 break;
16342 case T_MNEM_b:
16343 newsize = relax_branch(fragp, sec, 11);
16344 break;
16345 case T_MNEM_bcond:
16346 newsize = relax_branch(fragp, sec, 8);
16347 break;
16348 case T_MNEM_add_sp:
16349 case T_MNEM_add_pc:
16350 newsize = relax_immediate (fragp, 8, 2);
16351 break;
16352 case T_MNEM_inc_sp:
16353 case T_MNEM_dec_sp:
16354 newsize = relax_immediate (fragp, 7, 2);
16355 break;
16356 case T_MNEM_addi:
16357 case T_MNEM_addis:
16358 case T_MNEM_subi:
16359 case T_MNEM_subis:
16360 newsize = relax_addsub (fragp, sec);
16361 break;
16362 default:
16363 abort();
16364 }
16365 if (newsize < 0)
16366 {
16367 fragp->fr_var = -newsize;
16368 md_convert_frag (sec->owner, sec, fragp);
16369 frag_wane(fragp);
16370 return -(newsize + oldsize);
16371 }
16372 fragp->fr_var = newsize;
16373 return newsize - oldsize;
c19d1205 16374}
b99bd4ef 16375
c19d1205 16376/* Round up a section size to the appropriate boundary. */
b99bd4ef 16377
c19d1205
ZW
16378valueT
16379md_section_align (segT segment ATTRIBUTE_UNUSED,
16380 valueT size)
16381{
16382#ifdef OBJ_ELF
16383 return size;
16384#else
16385 /* Round all sects to multiple of 4. */
16386 return (size + 3) & ~3;
16387#endif
bfae80f2 16388}
b99bd4ef 16389
c19d1205
ZW
16390/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16391 of an rs_align_code fragment. */
16392
16393void
16394arm_handle_align (fragS * fragP)
bfae80f2 16395{
c19d1205
ZW
16396 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16397 static char const thumb_noop[2] = { 0xc0, 0x46 };
16398 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16399 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16400
16401 int bytes, fix, noop_size;
16402 char * p;
16403 const char * noop;
bfae80f2 16404
c19d1205 16405 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
16406 return;
16407
c19d1205
ZW
16408 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16409 p = fragP->fr_literal + fragP->fr_fix;
16410 fix = 0;
bfae80f2 16411
c19d1205
ZW
16412 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16413 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 16414
c19d1205 16415 if (fragP->tc_frag_data)
a737bd4d 16416 {
c19d1205
ZW
16417 if (target_big_endian)
16418 noop = thumb_bigend_noop;
16419 else
16420 noop = thumb_noop;
16421 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
16422 }
16423 else
16424 {
c19d1205
ZW
16425 if (target_big_endian)
16426 noop = arm_bigend_noop;
16427 else
16428 noop = arm_noop;
16429 noop_size = sizeof (arm_noop);
7ed4c4c5 16430 }
a737bd4d 16431
c19d1205 16432 if (bytes & (noop_size - 1))
7ed4c4c5 16433 {
c19d1205
ZW
16434 fix = bytes & (noop_size - 1);
16435 memset (p, 0, fix);
16436 p += fix;
16437 bytes -= fix;
a737bd4d 16438 }
a737bd4d 16439
c19d1205 16440 while (bytes >= noop_size)
a737bd4d 16441 {
c19d1205
ZW
16442 memcpy (p, noop, noop_size);
16443 p += noop_size;
16444 bytes -= noop_size;
16445 fix += noop_size;
a737bd4d
NC
16446 }
16447
c19d1205
ZW
16448 fragP->fr_fix += fix;
16449 fragP->fr_var = noop_size;
a737bd4d
NC
16450}
16451
c19d1205
ZW
16452/* Called from md_do_align. Used to create an alignment
16453 frag in a code section. */
16454
16455void
16456arm_frag_align_code (int n, int max)
bfae80f2 16457{
c19d1205 16458 char * p;
7ed4c4c5 16459
c19d1205
ZW
16460 /* We assume that there will never be a requirement
16461 to support alignments greater than 32 bytes. */
16462 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16463 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 16464
c19d1205
ZW
16465 p = frag_var (rs_align_code,
16466 MAX_MEM_FOR_RS_ALIGN_CODE,
16467 1,
16468 (relax_substateT) max,
16469 (symbolS *) NULL,
16470 (offsetT) n,
16471 (char *) NULL);
16472 *p = 0;
16473}
bfae80f2 16474
c19d1205 16475/* Perform target specific initialisation of a frag. */
bfae80f2 16476
c19d1205
ZW
16477void
16478arm_init_frag (fragS * fragP)
16479{
16480 /* Record whether this frag is in an ARM or a THUMB area. */
16481 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
16482}
16483
c19d1205
ZW
16484#ifdef OBJ_ELF
16485/* When we change sections we need to issue a new mapping symbol. */
16486
16487void
16488arm_elf_change_section (void)
bfae80f2 16489{
c19d1205
ZW
16490 flagword flags;
16491 segment_info_type *seginfo;
bfae80f2 16492
c19d1205
ZW
16493 /* Link an unlinked unwind index table section to the .text section. */
16494 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
16495 && elf_linked_to_section (now_seg) == NULL)
16496 elf_linked_to_section (now_seg) = text_section;
16497
16498 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
16499 return;
16500
c19d1205
ZW
16501 flags = bfd_get_section_flags (stdoutput, now_seg);
16502
16503 /* We can ignore sections that only contain debug info. */
16504 if ((flags & SEC_ALLOC) == 0)
16505 return;
bfae80f2 16506
c19d1205
ZW
16507 seginfo = seg_info (now_seg);
16508 mapstate = seginfo->tc_segment_info_data.mapstate;
16509 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
16510}
16511
c19d1205
ZW
16512int
16513arm_elf_section_type (const char * str, size_t len)
e45d0630 16514{
c19d1205
ZW
16515 if (len == 5 && strncmp (str, "exidx", 5) == 0)
16516 return SHT_ARM_EXIDX;
e45d0630 16517
c19d1205
ZW
16518 return -1;
16519}
16520\f
16521/* Code to deal with unwinding tables. */
e45d0630 16522
c19d1205 16523static void add_unwind_adjustsp (offsetT);
e45d0630 16524
c19d1205 16525/* Cenerate and deferred unwind frame offset. */
e45d0630 16526
bfae80f2 16527static void
c19d1205 16528flush_pending_unwind (void)
bfae80f2 16529{
c19d1205 16530 offsetT offset;
bfae80f2 16531
c19d1205
ZW
16532 offset = unwind.pending_offset;
16533 unwind.pending_offset = 0;
16534 if (offset != 0)
16535 add_unwind_adjustsp (offset);
bfae80f2
RE
16536}
16537
c19d1205
ZW
16538/* Add an opcode to this list for this function. Two-byte opcodes should
16539 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16540 order. */
16541
bfae80f2 16542static void
c19d1205 16543add_unwind_opcode (valueT op, int length)
bfae80f2 16544{
c19d1205
ZW
16545 /* Add any deferred stack adjustment. */
16546 if (unwind.pending_offset)
16547 flush_pending_unwind ();
bfae80f2 16548
c19d1205 16549 unwind.sp_restored = 0;
bfae80f2 16550
c19d1205 16551 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 16552 {
c19d1205
ZW
16553 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
16554 if (unwind.opcodes)
16555 unwind.opcodes = xrealloc (unwind.opcodes,
16556 unwind.opcode_alloc);
16557 else
16558 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 16559 }
c19d1205 16560 while (length > 0)
bfae80f2 16561 {
c19d1205
ZW
16562 length--;
16563 unwind.opcodes[unwind.opcode_count] = op & 0xff;
16564 op >>= 8;
16565 unwind.opcode_count++;
bfae80f2 16566 }
bfae80f2
RE
16567}
16568
c19d1205
ZW
16569/* Add unwind opcodes to adjust the stack pointer. */
16570
bfae80f2 16571static void
c19d1205 16572add_unwind_adjustsp (offsetT offset)
bfae80f2 16573{
c19d1205 16574 valueT op;
bfae80f2 16575
c19d1205 16576 if (offset > 0x200)
bfae80f2 16577 {
c19d1205
ZW
16578 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
16579 char bytes[5];
16580 int n;
16581 valueT o;
bfae80f2 16582
c19d1205
ZW
16583 /* Long form: 0xb2, uleb128. */
16584 /* This might not fit in a word so add the individual bytes,
16585 remembering the list is built in reverse order. */
16586 o = (valueT) ((offset - 0x204) >> 2);
16587 if (o == 0)
16588 add_unwind_opcode (0, 1);
bfae80f2 16589
c19d1205
ZW
16590 /* Calculate the uleb128 encoding of the offset. */
16591 n = 0;
16592 while (o)
16593 {
16594 bytes[n] = o & 0x7f;
16595 o >>= 7;
16596 if (o)
16597 bytes[n] |= 0x80;
16598 n++;
16599 }
16600 /* Add the insn. */
16601 for (; n; n--)
16602 add_unwind_opcode (bytes[n - 1], 1);
16603 add_unwind_opcode (0xb2, 1);
16604 }
16605 else if (offset > 0x100)
bfae80f2 16606 {
c19d1205
ZW
16607 /* Two short opcodes. */
16608 add_unwind_opcode (0x3f, 1);
16609 op = (offset - 0x104) >> 2;
16610 add_unwind_opcode (op, 1);
bfae80f2 16611 }
c19d1205
ZW
16612 else if (offset > 0)
16613 {
16614 /* Short opcode. */
16615 op = (offset - 4) >> 2;
16616 add_unwind_opcode (op, 1);
16617 }
16618 else if (offset < 0)
bfae80f2 16619 {
c19d1205
ZW
16620 offset = -offset;
16621 while (offset > 0x100)
bfae80f2 16622 {
c19d1205
ZW
16623 add_unwind_opcode (0x7f, 1);
16624 offset -= 0x100;
bfae80f2 16625 }
c19d1205
ZW
16626 op = ((offset - 4) >> 2) | 0x40;
16627 add_unwind_opcode (op, 1);
bfae80f2 16628 }
bfae80f2
RE
16629}
16630
c19d1205
ZW
16631/* Finish the list of unwind opcodes for this function. */
16632static void
16633finish_unwind_opcodes (void)
bfae80f2 16634{
c19d1205 16635 valueT op;
bfae80f2 16636
c19d1205 16637 if (unwind.fp_used)
bfae80f2 16638 {
708587a4 16639 /* Adjust sp as necessary. */
c19d1205
ZW
16640 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
16641 flush_pending_unwind ();
bfae80f2 16642
c19d1205
ZW
16643 /* After restoring sp from the frame pointer. */
16644 op = 0x90 | unwind.fp_reg;
16645 add_unwind_opcode (op, 1);
16646 }
16647 else
16648 flush_pending_unwind ();
bfae80f2
RE
16649}
16650
bfae80f2 16651
c19d1205
ZW
16652/* Start an exception table entry. If idx is nonzero this is an index table
16653 entry. */
bfae80f2
RE
16654
16655static void
c19d1205 16656start_unwind_section (const segT text_seg, int idx)
bfae80f2 16657{
c19d1205
ZW
16658 const char * text_name;
16659 const char * prefix;
16660 const char * prefix_once;
16661 const char * group_name;
16662 size_t prefix_len;
16663 size_t text_len;
16664 char * sec_name;
16665 size_t sec_name_len;
16666 int type;
16667 int flags;
16668 int linkonce;
bfae80f2 16669
c19d1205 16670 if (idx)
bfae80f2 16671 {
c19d1205
ZW
16672 prefix = ELF_STRING_ARM_unwind;
16673 prefix_once = ELF_STRING_ARM_unwind_once;
16674 type = SHT_ARM_EXIDX;
bfae80f2 16675 }
c19d1205 16676 else
bfae80f2 16677 {
c19d1205
ZW
16678 prefix = ELF_STRING_ARM_unwind_info;
16679 prefix_once = ELF_STRING_ARM_unwind_info_once;
16680 type = SHT_PROGBITS;
bfae80f2
RE
16681 }
16682
c19d1205
ZW
16683 text_name = segment_name (text_seg);
16684 if (streq (text_name, ".text"))
16685 text_name = "";
16686
16687 if (strncmp (text_name, ".gnu.linkonce.t.",
16688 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 16689 {
c19d1205
ZW
16690 prefix = prefix_once;
16691 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
16692 }
16693
c19d1205
ZW
16694 prefix_len = strlen (prefix);
16695 text_len = strlen (text_name);
16696 sec_name_len = prefix_len + text_len;
16697 sec_name = xmalloc (sec_name_len + 1);
16698 memcpy (sec_name, prefix, prefix_len);
16699 memcpy (sec_name + prefix_len, text_name, text_len);
16700 sec_name[prefix_len + text_len] = '\0';
bfae80f2 16701
c19d1205
ZW
16702 flags = SHF_ALLOC;
16703 linkonce = 0;
16704 group_name = 0;
bfae80f2 16705
c19d1205
ZW
16706 /* Handle COMDAT group. */
16707 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 16708 {
c19d1205
ZW
16709 group_name = elf_group_name (text_seg);
16710 if (group_name == NULL)
16711 {
16712 as_bad ("Group section `%s' has no group signature",
16713 segment_name (text_seg));
16714 ignore_rest_of_line ();
16715 return;
16716 }
16717 flags |= SHF_GROUP;
16718 linkonce = 1;
bfae80f2
RE
16719 }
16720
c19d1205 16721 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 16722
c19d1205
ZW
16723 /* Set the setion link for index tables. */
16724 if (idx)
16725 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
16726}
16727
bfae80f2 16728
c19d1205
ZW
16729/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
16730 personality routine data. Returns zero, or the index table value for
16731 and inline entry. */
16732
16733static valueT
16734create_unwind_entry (int have_data)
bfae80f2 16735{
c19d1205
ZW
16736 int size;
16737 addressT where;
16738 char *ptr;
16739 /* The current word of data. */
16740 valueT data;
16741 /* The number of bytes left in this word. */
16742 int n;
bfae80f2 16743
c19d1205 16744 finish_unwind_opcodes ();
bfae80f2 16745
c19d1205
ZW
16746 /* Remember the current text section. */
16747 unwind.saved_seg = now_seg;
16748 unwind.saved_subseg = now_subseg;
bfae80f2 16749
c19d1205 16750 start_unwind_section (now_seg, 0);
bfae80f2 16751
c19d1205 16752 if (unwind.personality_routine == NULL)
bfae80f2 16753 {
c19d1205
ZW
16754 if (unwind.personality_index == -2)
16755 {
16756 if (have_data)
16757 as_bad (_("handerdata in cantunwind frame"));
16758 return 1; /* EXIDX_CANTUNWIND. */
16759 }
bfae80f2 16760
c19d1205
ZW
16761 /* Use a default personality routine if none is specified. */
16762 if (unwind.personality_index == -1)
16763 {
16764 if (unwind.opcode_count > 3)
16765 unwind.personality_index = 1;
16766 else
16767 unwind.personality_index = 0;
16768 }
bfae80f2 16769
c19d1205
ZW
16770 /* Space for the personality routine entry. */
16771 if (unwind.personality_index == 0)
16772 {
16773 if (unwind.opcode_count > 3)
16774 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 16775
c19d1205
ZW
16776 if (!have_data)
16777 {
16778 /* All the data is inline in the index table. */
16779 data = 0x80;
16780 n = 3;
16781 while (unwind.opcode_count > 0)
16782 {
16783 unwind.opcode_count--;
16784 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16785 n--;
16786 }
bfae80f2 16787
c19d1205
ZW
16788 /* Pad with "finish" opcodes. */
16789 while (n--)
16790 data = (data << 8) | 0xb0;
bfae80f2 16791
c19d1205
ZW
16792 return data;
16793 }
16794 size = 0;
16795 }
16796 else
16797 /* We get two opcodes "free" in the first word. */
16798 size = unwind.opcode_count - 2;
16799 }
16800 else
16801 /* An extra byte is required for the opcode count. */
16802 size = unwind.opcode_count + 1;
bfae80f2 16803
c19d1205
ZW
16804 size = (size + 3) >> 2;
16805 if (size > 0xff)
16806 as_bad (_("too many unwind opcodes"));
bfae80f2 16807
c19d1205
ZW
16808 frag_align (2, 0, 0);
16809 record_alignment (now_seg, 2);
16810 unwind.table_entry = expr_build_dot ();
16811
16812 /* Allocate the table entry. */
16813 ptr = frag_more ((size << 2) + 4);
16814 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 16815
c19d1205 16816 switch (unwind.personality_index)
bfae80f2 16817 {
c19d1205
ZW
16818 case -1:
16819 /* ??? Should this be a PLT generating relocation? */
16820 /* Custom personality routine. */
16821 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
16822 BFD_RELOC_ARM_PREL31);
bfae80f2 16823
c19d1205
ZW
16824 where += 4;
16825 ptr += 4;
bfae80f2 16826
c19d1205
ZW
16827 /* Set the first byte to the number of additional words. */
16828 data = size - 1;
16829 n = 3;
16830 break;
bfae80f2 16831
c19d1205
ZW
16832 /* ABI defined personality routines. */
16833 case 0:
16834 /* Three opcodes bytes are packed into the first word. */
16835 data = 0x80;
16836 n = 3;
16837 break;
bfae80f2 16838
c19d1205
ZW
16839 case 1:
16840 case 2:
16841 /* The size and first two opcode bytes go in the first word. */
16842 data = ((0x80 + unwind.personality_index) << 8) | size;
16843 n = 2;
16844 break;
bfae80f2 16845
c19d1205
ZW
16846 default:
16847 /* Should never happen. */
16848 abort ();
16849 }
bfae80f2 16850
c19d1205
ZW
16851 /* Pack the opcodes into words (MSB first), reversing the list at the same
16852 time. */
16853 while (unwind.opcode_count > 0)
16854 {
16855 if (n == 0)
16856 {
16857 md_number_to_chars (ptr, data, 4);
16858 ptr += 4;
16859 n = 4;
16860 data = 0;
16861 }
16862 unwind.opcode_count--;
16863 n--;
16864 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16865 }
16866
16867 /* Finish off the last word. */
16868 if (n < 4)
16869 {
16870 /* Pad with "finish" opcodes. */
16871 while (n--)
16872 data = (data << 8) | 0xb0;
16873
16874 md_number_to_chars (ptr, data, 4);
16875 }
16876
16877 if (!have_data)
16878 {
16879 /* Add an empty descriptor if there is no user-specified data. */
16880 ptr = frag_more (4);
16881 md_number_to_chars (ptr, 0, 4);
16882 }
16883
16884 return 0;
bfae80f2
RE
16885}
16886
c19d1205
ZW
16887/* Convert REGNAME to a DWARF-2 register number. */
16888
16889int
1df69f4f 16890tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 16891{
1df69f4f 16892 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
16893
16894 if (reg == FAIL)
16895 return -1;
16896
16897 return reg;
bfae80f2
RE
16898}
16899
c19d1205
ZW
16900/* Initialize the DWARF-2 unwind information for this procedure. */
16901
16902void
16903tc_arm_frame_initial_instructions (void)
bfae80f2 16904{
c19d1205 16905 cfi_add_CFA_def_cfa (REG_SP, 0);
bfae80f2 16906}
c19d1205 16907#endif /* OBJ_ELF */
bfae80f2 16908
bfae80f2 16909
c19d1205 16910/* MD interface: Symbol and relocation handling. */
bfae80f2 16911
2fc8bdac
ZW
16912/* Return the address within the segment that a PC-relative fixup is
16913 relative to. For ARM, PC-relative fixups applied to instructions
16914 are generally relative to the location of the fixup plus 8 bytes.
16915 Thumb branches are offset by 4, and Thumb loads relative to PC
16916 require special handling. */
bfae80f2 16917
c19d1205 16918long
2fc8bdac 16919md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 16920{
2fc8bdac
ZW
16921 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
16922
16923 /* If this is pc-relative and we are going to emit a relocation
16924 then we just want to put out any pipeline compensation that the linker
53baae48
NC
16925 will need. Otherwise we want to use the calculated base.
16926 For WinCE we skip the bias for externals as well, since this
16927 is how the MS ARM-CE assembler behaves and we want to be compatible. */
2fc8bdac
ZW
16928 if (fixP->fx_pcrel
16929 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
16930 || (arm_force_relocation (fixP)
16931#ifdef TE_WINCE
16932 && !S_IS_EXTERNAL (fixP->fx_addsy)
16933#endif
16934 )))
2fc8bdac 16935 base = 0;
bfae80f2 16936
c19d1205 16937 switch (fixP->fx_r_type)
bfae80f2 16938 {
2fc8bdac
ZW
16939 /* PC relative addressing on the Thumb is slightly odd as the
16940 bottom two bits of the PC are forced to zero for the
16941 calculation. This happens *after* application of the
16942 pipeline offset. However, Thumb adrl already adjusts for
16943 this, so we need not do it again. */
c19d1205 16944 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 16945 return base & ~3;
c19d1205
ZW
16946
16947 case BFD_RELOC_ARM_THUMB_OFFSET:
16948 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 16949 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 16950 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 16951 return (base + 4) & ~3;
c19d1205 16952
2fc8bdac
ZW
16953 /* Thumb branches are simply offset by +4. */
16954 case BFD_RELOC_THUMB_PCREL_BRANCH7:
16955 case BFD_RELOC_THUMB_PCREL_BRANCH9:
16956 case BFD_RELOC_THUMB_PCREL_BRANCH12:
16957 case BFD_RELOC_THUMB_PCREL_BRANCH20:
16958 case BFD_RELOC_THUMB_PCREL_BRANCH23:
16959 case BFD_RELOC_THUMB_PCREL_BRANCH25:
16960 case BFD_RELOC_THUMB_PCREL_BLX:
16961 return base + 4;
bfae80f2 16962
2fc8bdac
ZW
16963 /* ARM mode branches are offset by +8. However, the Windows CE
16964 loader expects the relocation not to take this into account. */
16965 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
16966 case BFD_RELOC_ARM_PCREL_CALL:
16967 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
16968 case BFD_RELOC_ARM_PCREL_BLX:
16969 case BFD_RELOC_ARM_PLT32:
c19d1205 16970#ifdef TE_WINCE
53baae48
NC
16971 /* When handling fixups immediately, because we have already
16972 discovered the value of a symbol, or the address of the frag involved
16973 we must account for the offset by +8, as the OS loader will never see the reloc.
16974 see fixup_segment() in write.c
16975 The S_IS_EXTERNAL test handles the case of global symbols.
16976 Those need the calculated base, not just the pipe compensation the linker will need. */
16977 if (fixP->fx_pcrel
16978 && fixP->fx_addsy != NULL
16979 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
16980 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
16981 return base + 8;
2fc8bdac 16982 return base;
c19d1205 16983#else
2fc8bdac 16984 return base + 8;
c19d1205 16985#endif
2fc8bdac
ZW
16986
16987 /* ARM mode loads relative to PC are also offset by +8. Unlike
16988 branches, the Windows CE loader *does* expect the relocation
16989 to take this into account. */
16990 case BFD_RELOC_ARM_OFFSET_IMM:
16991 case BFD_RELOC_ARM_OFFSET_IMM8:
16992 case BFD_RELOC_ARM_HWLITERAL:
16993 case BFD_RELOC_ARM_LITERAL:
16994 case BFD_RELOC_ARM_CP_OFF_IMM:
16995 return base + 8;
16996
16997
16998 /* Other PC-relative relocations are un-offset. */
16999 default:
17000 return base;
17001 }
bfae80f2
RE
17002}
17003
c19d1205
ZW
17004/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17005 Otherwise we have no need to default values of symbols. */
17006
17007symbolS *
17008md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17009{
c19d1205
ZW
17010#ifdef OBJ_ELF
17011 if (name[0] == '_' && name[1] == 'G'
17012 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17013 {
17014 if (!GOT_symbol)
17015 {
17016 if (symbol_find (name))
17017 as_bad ("GOT already in the symbol table");
bfae80f2 17018
c19d1205
ZW
17019 GOT_symbol = symbol_new (name, undefined_section,
17020 (valueT) 0, & zero_address_frag);
17021 }
bfae80f2 17022
c19d1205 17023 return GOT_symbol;
bfae80f2 17024 }
c19d1205 17025#endif
bfae80f2 17026
c19d1205 17027 return 0;
bfae80f2
RE
17028}
17029
55cf6793 17030/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17031 computed as two separate immediate values, added together. We
17032 already know that this value cannot be computed by just one ARM
17033 instruction. */
17034
17035static unsigned int
17036validate_immediate_twopart (unsigned int val,
17037 unsigned int * highpart)
bfae80f2 17038{
c19d1205
ZW
17039 unsigned int a;
17040 unsigned int i;
bfae80f2 17041
c19d1205
ZW
17042 for (i = 0; i < 32; i += 2)
17043 if (((a = rotate_left (val, i)) & 0xff) != 0)
17044 {
17045 if (a & 0xff00)
17046 {
17047 if (a & ~ 0xffff)
17048 continue;
17049 * highpart = (a >> 8) | ((i + 24) << 7);
17050 }
17051 else if (a & 0xff0000)
17052 {
17053 if (a & 0xff000000)
17054 continue;
17055 * highpart = (a >> 16) | ((i + 16) << 7);
17056 }
17057 else
17058 {
17059 assert (a & 0xff000000);
17060 * highpart = (a >> 24) | ((i + 8) << 7);
17061 }
bfae80f2 17062
c19d1205
ZW
17063 return (a & 0xff) | (i << 7);
17064 }
bfae80f2 17065
c19d1205 17066 return FAIL;
bfae80f2
RE
17067}
17068
c19d1205
ZW
17069static int
17070validate_offset_imm (unsigned int val, int hwse)
17071{
17072 if ((hwse && val > 255) || val > 4095)
17073 return FAIL;
17074 return val;
17075}
bfae80f2 17076
55cf6793 17077/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17078 negative immediate constant by altering the instruction. A bit of
17079 a hack really.
17080 MOV <-> MVN
17081 AND <-> BIC
17082 ADC <-> SBC
17083 by inverting the second operand, and
17084 ADD <-> SUB
17085 CMP <-> CMN
17086 by negating the second operand. */
bfae80f2 17087
c19d1205
ZW
17088static int
17089negate_data_op (unsigned long * instruction,
17090 unsigned long value)
bfae80f2 17091{
c19d1205
ZW
17092 int op, new_inst;
17093 unsigned long negated, inverted;
bfae80f2 17094
c19d1205
ZW
17095 negated = encode_arm_immediate (-value);
17096 inverted = encode_arm_immediate (~value);
bfae80f2 17097
c19d1205
ZW
17098 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17099 switch (op)
bfae80f2 17100 {
c19d1205
ZW
17101 /* First negates. */
17102 case OPCODE_SUB: /* ADD <-> SUB */
17103 new_inst = OPCODE_ADD;
17104 value = negated;
17105 break;
bfae80f2 17106
c19d1205
ZW
17107 case OPCODE_ADD:
17108 new_inst = OPCODE_SUB;
17109 value = negated;
17110 break;
bfae80f2 17111
c19d1205
ZW
17112 case OPCODE_CMP: /* CMP <-> CMN */
17113 new_inst = OPCODE_CMN;
17114 value = negated;
17115 break;
bfae80f2 17116
c19d1205
ZW
17117 case OPCODE_CMN:
17118 new_inst = OPCODE_CMP;
17119 value = negated;
17120 break;
bfae80f2 17121
c19d1205
ZW
17122 /* Now Inverted ops. */
17123 case OPCODE_MOV: /* MOV <-> MVN */
17124 new_inst = OPCODE_MVN;
17125 value = inverted;
17126 break;
bfae80f2 17127
c19d1205
ZW
17128 case OPCODE_MVN:
17129 new_inst = OPCODE_MOV;
17130 value = inverted;
17131 break;
bfae80f2 17132
c19d1205
ZW
17133 case OPCODE_AND: /* AND <-> BIC */
17134 new_inst = OPCODE_BIC;
17135 value = inverted;
17136 break;
bfae80f2 17137
c19d1205
ZW
17138 case OPCODE_BIC:
17139 new_inst = OPCODE_AND;
17140 value = inverted;
17141 break;
bfae80f2 17142
c19d1205
ZW
17143 case OPCODE_ADC: /* ADC <-> SBC */
17144 new_inst = OPCODE_SBC;
17145 value = inverted;
17146 break;
bfae80f2 17147
c19d1205
ZW
17148 case OPCODE_SBC:
17149 new_inst = OPCODE_ADC;
17150 value = inverted;
17151 break;
bfae80f2 17152
c19d1205
ZW
17153 /* We cannot do anything. */
17154 default:
17155 return FAIL;
b99bd4ef
NC
17156 }
17157
c19d1205
ZW
17158 if (value == (unsigned) FAIL)
17159 return FAIL;
17160
17161 *instruction &= OPCODE_MASK;
17162 *instruction |= new_inst << DATA_OP_SHIFT;
17163 return value;
b99bd4ef
NC
17164}
17165
ef8d22e6
PB
17166/* Like negate_data_op, but for Thumb-2. */
17167
17168static unsigned int
17169thumb32_negate_data_op (offsetT *instruction, offsetT value)
17170{
17171 int op, new_inst;
17172 int rd;
17173 offsetT negated, inverted;
17174
17175 negated = encode_thumb32_immediate (-value);
17176 inverted = encode_thumb32_immediate (~value);
17177
17178 rd = (*instruction >> 8) & 0xf;
17179 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17180 switch (op)
17181 {
17182 /* ADD <-> SUB. Includes CMP <-> CMN. */
17183 case T2_OPCODE_SUB:
17184 new_inst = T2_OPCODE_ADD;
17185 value = negated;
17186 break;
17187
17188 case T2_OPCODE_ADD:
17189 new_inst = T2_OPCODE_SUB;
17190 value = negated;
17191 break;
17192
17193 /* ORR <-> ORN. Includes MOV <-> MVN. */
17194 case T2_OPCODE_ORR:
17195 new_inst = T2_OPCODE_ORN;
17196 value = inverted;
17197 break;
17198
17199 case T2_OPCODE_ORN:
17200 new_inst = T2_OPCODE_ORR;
17201 value = inverted;
17202 break;
17203
17204 /* AND <-> BIC. TST has no inverted equivalent. */
17205 case T2_OPCODE_AND:
17206 new_inst = T2_OPCODE_BIC;
17207 if (rd == 15)
17208 value = FAIL;
17209 else
17210 value = inverted;
17211 break;
17212
17213 case T2_OPCODE_BIC:
17214 new_inst = T2_OPCODE_AND;
17215 value = inverted;
17216 break;
17217
17218 /* ADC <-> SBC */
17219 case T2_OPCODE_ADC:
17220 new_inst = T2_OPCODE_SBC;
17221 value = inverted;
17222 break;
17223
17224 case T2_OPCODE_SBC:
17225 new_inst = T2_OPCODE_ADC;
17226 value = inverted;
17227 break;
17228
17229 /* We cannot do anything. */
17230 default:
17231 return FAIL;
17232 }
17233
17234 if (value == FAIL)
17235 return FAIL;
17236
17237 *instruction &= T2_OPCODE_MASK;
17238 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17239 return value;
17240}
17241
8f06b2d8
PB
17242/* Read a 32-bit thumb instruction from buf. */
17243static unsigned long
17244get_thumb32_insn (char * buf)
17245{
17246 unsigned long insn;
17247 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17248 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17249
17250 return insn;
17251}
17252
a8bc6c78
PB
17253
17254/* We usually want to set the low bit on the address of thumb function
17255 symbols. In particular .word foo - . should have the low bit set.
17256 Generic code tries to fold the difference of two symbols to
17257 a constant. Prevent this and force a relocation when the first symbols
17258 is a thumb function. */
17259int
17260arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17261{
17262 if (op == O_subtract
17263 && l->X_op == O_symbol
17264 && r->X_op == O_symbol
17265 && THUMB_IS_FUNC (l->X_add_symbol))
17266 {
17267 l->X_op = O_subtract;
17268 l->X_op_symbol = r->X_add_symbol;
17269 l->X_add_number -= r->X_add_number;
17270 return 1;
17271 }
17272 /* Process as normal. */
17273 return 0;
17274}
17275
c19d1205 17276void
55cf6793 17277md_apply_fix (fixS * fixP,
c19d1205
ZW
17278 valueT * valP,
17279 segT seg)
17280{
17281 offsetT value = * valP;
17282 offsetT newval;
17283 unsigned int newimm;
17284 unsigned long temp;
17285 int sign;
17286 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 17287
c19d1205 17288 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 17289
c19d1205 17290 /* Note whether this will delete the relocation. */
4962c51a 17291
c19d1205
ZW
17292 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17293 fixP->fx_done = 1;
b99bd4ef 17294
adbaf948
ZW
17295 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17296 consistency with the behavior on 32-bit hosts. Remember value
17297 for emit_reloc. */
17298 value &= 0xffffffff;
17299 value ^= 0x80000000;
17300 value -= 0x80000000;
17301
17302 *valP = value;
c19d1205 17303 fixP->fx_addnumber = value;
b99bd4ef 17304
adbaf948
ZW
17305 /* Same treatment for fixP->fx_offset. */
17306 fixP->fx_offset &= 0xffffffff;
17307 fixP->fx_offset ^= 0x80000000;
17308 fixP->fx_offset -= 0x80000000;
17309
c19d1205 17310 switch (fixP->fx_r_type)
b99bd4ef 17311 {
c19d1205
ZW
17312 case BFD_RELOC_NONE:
17313 /* This will need to go in the object file. */
17314 fixP->fx_done = 0;
17315 break;
b99bd4ef 17316
c19d1205
ZW
17317 case BFD_RELOC_ARM_IMMEDIATE:
17318 /* We claim that this fixup has been processed here,
17319 even if in fact we generate an error because we do
17320 not have a reloc for it, so tc_gen_reloc will reject it. */
17321 fixP->fx_done = 1;
b99bd4ef 17322
c19d1205
ZW
17323 if (fixP->fx_addsy
17324 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 17325 {
c19d1205
ZW
17326 as_bad_where (fixP->fx_file, fixP->fx_line,
17327 _("undefined symbol %s used as an immediate value"),
17328 S_GET_NAME (fixP->fx_addsy));
17329 break;
b99bd4ef
NC
17330 }
17331
c19d1205
ZW
17332 newimm = encode_arm_immediate (value);
17333 temp = md_chars_to_number (buf, INSN_SIZE);
17334
17335 /* If the instruction will fail, see if we can fix things up by
17336 changing the opcode. */
17337 if (newimm == (unsigned int) FAIL
17338 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 17339 {
c19d1205
ZW
17340 as_bad_where (fixP->fx_file, fixP->fx_line,
17341 _("invalid constant (%lx) after fixup"),
17342 (unsigned long) value);
17343 break;
b99bd4ef 17344 }
b99bd4ef 17345
c19d1205
ZW
17346 newimm |= (temp & 0xfffff000);
17347 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17348 break;
b99bd4ef 17349
c19d1205
ZW
17350 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17351 {
17352 unsigned int highpart = 0;
17353 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 17354
c19d1205
ZW
17355 newimm = encode_arm_immediate (value);
17356 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 17357
c19d1205
ZW
17358 /* If the instruction will fail, see if we can fix things up by
17359 changing the opcode. */
17360 if (newimm == (unsigned int) FAIL
17361 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17362 {
17363 /* No ? OK - try using two ADD instructions to generate
17364 the value. */
17365 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 17366
c19d1205
ZW
17367 /* Yes - then make sure that the second instruction is
17368 also an add. */
17369 if (newimm != (unsigned int) FAIL)
17370 newinsn = temp;
17371 /* Still No ? Try using a negated value. */
17372 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17373 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17374 /* Otherwise - give up. */
17375 else
17376 {
17377 as_bad_where (fixP->fx_file, fixP->fx_line,
17378 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17379 (long) value);
17380 break;
17381 }
b99bd4ef 17382
c19d1205
ZW
17383 /* Replace the first operand in the 2nd instruction (which
17384 is the PC) with the destination register. We have
17385 already added in the PC in the first instruction and we
17386 do not want to do it again. */
17387 newinsn &= ~ 0xf0000;
17388 newinsn |= ((newinsn & 0x0f000) << 4);
17389 }
b99bd4ef 17390
c19d1205
ZW
17391 newimm |= (temp & 0xfffff000);
17392 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 17393
c19d1205
ZW
17394 highpart |= (newinsn & 0xfffff000);
17395 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17396 }
17397 break;
b99bd4ef 17398
c19d1205 17399 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
17400 if (!fixP->fx_done && seg->use_rela_p)
17401 value = 0;
17402
c19d1205
ZW
17403 case BFD_RELOC_ARM_LITERAL:
17404 sign = value >= 0;
b99bd4ef 17405
c19d1205
ZW
17406 if (value < 0)
17407 value = - value;
b99bd4ef 17408
c19d1205 17409 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 17410 {
c19d1205
ZW
17411 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17412 as_bad_where (fixP->fx_file, fixP->fx_line,
17413 _("invalid literal constant: pool needs to be closer"));
17414 else
17415 as_bad_where (fixP->fx_file, fixP->fx_line,
17416 _("bad immediate value for offset (%ld)"),
17417 (long) value);
17418 break;
f03698e6
RE
17419 }
17420
c19d1205
ZW
17421 newval = md_chars_to_number (buf, INSN_SIZE);
17422 newval &= 0xff7ff000;
17423 newval |= value | (sign ? INDEX_UP : 0);
17424 md_number_to_chars (buf, newval, INSN_SIZE);
17425 break;
b99bd4ef 17426
c19d1205
ZW
17427 case BFD_RELOC_ARM_OFFSET_IMM8:
17428 case BFD_RELOC_ARM_HWLITERAL:
17429 sign = value >= 0;
b99bd4ef 17430
c19d1205
ZW
17431 if (value < 0)
17432 value = - value;
b99bd4ef 17433
c19d1205 17434 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 17435 {
c19d1205
ZW
17436 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17437 as_bad_where (fixP->fx_file, fixP->fx_line,
17438 _("invalid literal constant: pool needs to be closer"));
17439 else
17440 as_bad (_("bad immediate value for half-word offset (%ld)"),
17441 (long) value);
17442 break;
b99bd4ef
NC
17443 }
17444
c19d1205
ZW
17445 newval = md_chars_to_number (buf, INSN_SIZE);
17446 newval &= 0xff7ff0f0;
17447 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17448 md_number_to_chars (buf, newval, INSN_SIZE);
17449 break;
b99bd4ef 17450
c19d1205
ZW
17451 case BFD_RELOC_ARM_T32_OFFSET_U8:
17452 if (value < 0 || value > 1020 || value % 4 != 0)
17453 as_bad_where (fixP->fx_file, fixP->fx_line,
17454 _("bad immediate value for offset (%ld)"), (long) value);
17455 value /= 4;
b99bd4ef 17456
c19d1205 17457 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
17458 newval |= value;
17459 md_number_to_chars (buf+2, newval, THUMB_SIZE);
17460 break;
b99bd4ef 17461
c19d1205
ZW
17462 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17463 /* This is a complicated relocation used for all varieties of Thumb32
17464 load/store instruction with immediate offset:
17465
17466 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17467 *4, optional writeback(W)
17468 (doubleword load/store)
17469
17470 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17471 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17472 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17473 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17474 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17475
17476 Uppercase letters indicate bits that are already encoded at
17477 this point. Lowercase letters are our problem. For the
17478 second block of instructions, the secondary opcode nybble
17479 (bits 8..11) is present, and bit 23 is zero, even if this is
17480 a PC-relative operation. */
17481 newval = md_chars_to_number (buf, THUMB_SIZE);
17482 newval <<= 16;
17483 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 17484
c19d1205 17485 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 17486 {
c19d1205
ZW
17487 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17488 if (value >= 0)
17489 newval |= (1 << 23);
17490 else
17491 value = -value;
17492 if (value % 4 != 0)
17493 {
17494 as_bad_where (fixP->fx_file, fixP->fx_line,
17495 _("offset not a multiple of 4"));
17496 break;
17497 }
17498 value /= 4;
216d22bc 17499 if (value > 0xff)
c19d1205
ZW
17500 {
17501 as_bad_where (fixP->fx_file, fixP->fx_line,
17502 _("offset out of range"));
17503 break;
17504 }
17505 newval &= ~0xff;
b99bd4ef 17506 }
c19d1205 17507 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 17508 {
c19d1205
ZW
17509 /* PC-relative, 12-bit offset. */
17510 if (value >= 0)
17511 newval |= (1 << 23);
17512 else
17513 value = -value;
216d22bc 17514 if (value > 0xfff)
c19d1205
ZW
17515 {
17516 as_bad_where (fixP->fx_file, fixP->fx_line,
17517 _("offset out of range"));
17518 break;
17519 }
17520 newval &= ~0xfff;
b99bd4ef 17521 }
c19d1205 17522 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 17523 {
c19d1205
ZW
17524 /* Writeback: 8-bit, +/- offset. */
17525 if (value >= 0)
17526 newval |= (1 << 9);
17527 else
17528 value = -value;
216d22bc 17529 if (value > 0xff)
c19d1205
ZW
17530 {
17531 as_bad_where (fixP->fx_file, fixP->fx_line,
17532 _("offset out of range"));
17533 break;
17534 }
17535 newval &= ~0xff;
b99bd4ef 17536 }
c19d1205 17537 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 17538 {
c19d1205 17539 /* T-instruction: positive 8-bit offset. */
216d22bc 17540 if (value < 0 || value > 0xff)
b99bd4ef 17541 {
c19d1205
ZW
17542 as_bad_where (fixP->fx_file, fixP->fx_line,
17543 _("offset out of range"));
17544 break;
b99bd4ef 17545 }
c19d1205
ZW
17546 newval &= ~0xff;
17547 newval |= value;
b99bd4ef
NC
17548 }
17549 else
b99bd4ef 17550 {
c19d1205
ZW
17551 /* Positive 12-bit or negative 8-bit offset. */
17552 int limit;
17553 if (value >= 0)
b99bd4ef 17554 {
c19d1205
ZW
17555 newval |= (1 << 23);
17556 limit = 0xfff;
17557 }
17558 else
17559 {
17560 value = -value;
17561 limit = 0xff;
17562 }
17563 if (value > limit)
17564 {
17565 as_bad_where (fixP->fx_file, fixP->fx_line,
17566 _("offset out of range"));
17567 break;
b99bd4ef 17568 }
c19d1205 17569 newval &= ~limit;
b99bd4ef 17570 }
b99bd4ef 17571
c19d1205
ZW
17572 newval |= value;
17573 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
17574 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
17575 break;
404ff6b5 17576
c19d1205
ZW
17577 case BFD_RELOC_ARM_SHIFT_IMM:
17578 newval = md_chars_to_number (buf, INSN_SIZE);
17579 if (((unsigned long) value) > 32
17580 || (value == 32
17581 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
17582 {
17583 as_bad_where (fixP->fx_file, fixP->fx_line,
17584 _("shift expression is too large"));
17585 break;
17586 }
404ff6b5 17587
c19d1205
ZW
17588 if (value == 0)
17589 /* Shifts of zero must be done as lsl. */
17590 newval &= ~0x60;
17591 else if (value == 32)
17592 value = 0;
17593 newval &= 0xfffff07f;
17594 newval |= (value & 0x1f) << 7;
17595 md_number_to_chars (buf, newval, INSN_SIZE);
17596 break;
404ff6b5 17597
c19d1205 17598 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 17599 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 17600 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 17601 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
17602 /* We claim that this fixup has been processed here,
17603 even if in fact we generate an error because we do
17604 not have a reloc for it, so tc_gen_reloc will reject it. */
17605 fixP->fx_done = 1;
404ff6b5 17606
c19d1205
ZW
17607 if (fixP->fx_addsy
17608 && ! S_IS_DEFINED (fixP->fx_addsy))
17609 {
17610 as_bad_where (fixP->fx_file, fixP->fx_line,
17611 _("undefined symbol %s used as an immediate value"),
17612 S_GET_NAME (fixP->fx_addsy));
17613 break;
17614 }
404ff6b5 17615
c19d1205
ZW
17616 newval = md_chars_to_number (buf, THUMB_SIZE);
17617 newval <<= 16;
17618 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 17619
16805f35
PB
17620 newimm = FAIL;
17621 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
17622 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
17623 {
17624 newimm = encode_thumb32_immediate (value);
17625 if (newimm == (unsigned int) FAIL)
17626 newimm = thumb32_negate_data_op (&newval, value);
17627 }
16805f35
PB
17628 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
17629 && newimm == (unsigned int) FAIL)
92e90b6e 17630 {
16805f35
PB
17631 /* Turn add/sum into addw/subw. */
17632 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
17633 newval = (newval & 0xfeffffff) | 0x02000000;
17634
e9f89963
PB
17635 /* 12 bit immediate for addw/subw. */
17636 if (value < 0)
17637 {
17638 value = -value;
17639 newval ^= 0x00a00000;
17640 }
92e90b6e
PB
17641 if (value > 0xfff)
17642 newimm = (unsigned int) FAIL;
17643 else
17644 newimm = value;
17645 }
cc8a6dd0 17646
c19d1205 17647 if (newimm == (unsigned int)FAIL)
3631a3c8 17648 {
c19d1205
ZW
17649 as_bad_where (fixP->fx_file, fixP->fx_line,
17650 _("invalid constant (%lx) after fixup"),
17651 (unsigned long) value);
17652 break;
3631a3c8
NC
17653 }
17654
c19d1205
ZW
17655 newval |= (newimm & 0x800) << 15;
17656 newval |= (newimm & 0x700) << 4;
17657 newval |= (newimm & 0x0ff);
cc8a6dd0 17658
c19d1205
ZW
17659 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
17660 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
17661 break;
a737bd4d 17662
3eb17e6b 17663 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
17664 if (((unsigned long) value) > 0xffff)
17665 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 17666 _("invalid smc expression"));
2fc8bdac 17667 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
17668 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
17669 md_number_to_chars (buf, newval, INSN_SIZE);
17670 break;
a737bd4d 17671
c19d1205 17672 case BFD_RELOC_ARM_SWI:
adbaf948 17673 if (fixP->tc_fix_data != 0)
c19d1205
ZW
17674 {
17675 if (((unsigned long) value) > 0xff)
17676 as_bad_where (fixP->fx_file, fixP->fx_line,
17677 _("invalid swi expression"));
2fc8bdac 17678 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
17679 newval |= value;
17680 md_number_to_chars (buf, newval, THUMB_SIZE);
17681 }
17682 else
17683 {
17684 if (((unsigned long) value) > 0x00ffffff)
17685 as_bad_where (fixP->fx_file, fixP->fx_line,
17686 _("invalid swi expression"));
2fc8bdac 17687 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
17688 newval |= value;
17689 md_number_to_chars (buf, newval, INSN_SIZE);
17690 }
17691 break;
a737bd4d 17692
c19d1205
ZW
17693 case BFD_RELOC_ARM_MULTI:
17694 if (((unsigned long) value) > 0xffff)
17695 as_bad_where (fixP->fx_file, fixP->fx_line,
17696 _("invalid expression in load/store multiple"));
17697 newval = value | md_chars_to_number (buf, INSN_SIZE);
17698 md_number_to_chars (buf, newval, INSN_SIZE);
17699 break;
a737bd4d 17700
c19d1205 17701#ifdef OBJ_ELF
39b41c9c
PB
17702 case BFD_RELOC_ARM_PCREL_CALL:
17703 newval = md_chars_to_number (buf, INSN_SIZE);
17704 if ((newval & 0xf0000000) == 0xf0000000)
17705 temp = 1;
17706 else
17707 temp = 3;
17708 goto arm_branch_common;
17709
17710 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 17711 case BFD_RELOC_ARM_PLT32:
c19d1205 17712#endif
39b41c9c
PB
17713 case BFD_RELOC_ARM_PCREL_BRANCH:
17714 temp = 3;
17715 goto arm_branch_common;
a737bd4d 17716
39b41c9c
PB
17717 case BFD_RELOC_ARM_PCREL_BLX:
17718 temp = 1;
17719 arm_branch_common:
c19d1205 17720 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
17721 instruction, in a 24 bit, signed field. Bits 26 through 32 either
17722 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
17723 also be be clear. */
17724 if (value & temp)
c19d1205 17725 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
17726 _("misaligned branch destination"));
17727 if ((value & (offsetT)0xfe000000) != (offsetT)0
17728 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
17729 as_bad_where (fixP->fx_file, fixP->fx_line,
17730 _("branch out of range"));
a737bd4d 17731
2fc8bdac 17732 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 17733 {
2fc8bdac
ZW
17734 newval = md_chars_to_number (buf, INSN_SIZE);
17735 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
17736 /* Set the H bit on BLX instructions. */
17737 if (temp == 1)
17738 {
17739 if (value & 2)
17740 newval |= 0x01000000;
17741 else
17742 newval &= ~0x01000000;
17743 }
2fc8bdac 17744 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 17745 }
c19d1205 17746 break;
a737bd4d 17747
c19d1205 17748 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
2fc8bdac
ZW
17749 /* CZB can only branch forward. */
17750 if (value & ~0x7e)
17751 as_bad_where (fixP->fx_file, fixP->fx_line,
17752 _("branch out of range"));
a737bd4d 17753
2fc8bdac
ZW
17754 if (fixP->fx_done || !seg->use_rela_p)
17755 {
17756 newval = md_chars_to_number (buf, THUMB_SIZE);
080eb7fe 17757 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
2fc8bdac
ZW
17758 md_number_to_chars (buf, newval, THUMB_SIZE);
17759 }
c19d1205 17760 break;
a737bd4d 17761
c19d1205 17762 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
17763 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
17764 as_bad_where (fixP->fx_file, fixP->fx_line,
17765 _("branch out of range"));
a737bd4d 17766
2fc8bdac
ZW
17767 if (fixP->fx_done || !seg->use_rela_p)
17768 {
17769 newval = md_chars_to_number (buf, THUMB_SIZE);
17770 newval |= (value & 0x1ff) >> 1;
17771 md_number_to_chars (buf, newval, THUMB_SIZE);
17772 }
c19d1205 17773 break;
a737bd4d 17774
c19d1205 17775 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
17776 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
17777 as_bad_where (fixP->fx_file, fixP->fx_line,
17778 _("branch out of range"));
a737bd4d 17779
2fc8bdac
ZW
17780 if (fixP->fx_done || !seg->use_rela_p)
17781 {
17782 newval = md_chars_to_number (buf, THUMB_SIZE);
17783 newval |= (value & 0xfff) >> 1;
17784 md_number_to_chars (buf, newval, THUMB_SIZE);
17785 }
c19d1205 17786 break;
a737bd4d 17787
c19d1205 17788 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
17789 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
17790 as_bad_where (fixP->fx_file, fixP->fx_line,
17791 _("conditional branch out of range"));
404ff6b5 17792
2fc8bdac
ZW
17793 if (fixP->fx_done || !seg->use_rela_p)
17794 {
17795 offsetT newval2;
17796 addressT S, J1, J2, lo, hi;
404ff6b5 17797
2fc8bdac
ZW
17798 S = (value & 0x00100000) >> 20;
17799 J2 = (value & 0x00080000) >> 19;
17800 J1 = (value & 0x00040000) >> 18;
17801 hi = (value & 0x0003f000) >> 12;
17802 lo = (value & 0x00000ffe) >> 1;
6c43fab6 17803
2fc8bdac
ZW
17804 newval = md_chars_to_number (buf, THUMB_SIZE);
17805 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17806 newval |= (S << 10) | hi;
17807 newval2 |= (J1 << 13) | (J2 << 11) | lo;
17808 md_number_to_chars (buf, newval, THUMB_SIZE);
17809 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17810 }
c19d1205 17811 break;
6c43fab6 17812
c19d1205
ZW
17813 case BFD_RELOC_THUMB_PCREL_BLX:
17814 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
17815 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
17816 as_bad_where (fixP->fx_file, fixP->fx_line,
17817 _("branch out of range"));
404ff6b5 17818
2fc8bdac
ZW
17819 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
17820 /* For a BLX instruction, make sure that the relocation is rounded up
17821 to a word boundary. This follows the semantics of the instruction
17822 which specifies that bit 1 of the target address will come from bit
17823 1 of the base address. */
17824 value = (value + 1) & ~ 1;
404ff6b5 17825
2fc8bdac 17826 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 17827 {
2fc8bdac
ZW
17828 offsetT newval2;
17829
17830 newval = md_chars_to_number (buf, THUMB_SIZE);
17831 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17832 newval |= (value & 0x7fffff) >> 12;
17833 newval2 |= (value & 0xfff) >> 1;
17834 md_number_to_chars (buf, newval, THUMB_SIZE);
17835 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 17836 }
c19d1205 17837 break;
404ff6b5 17838
c19d1205 17839 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
17840 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
17841 as_bad_where (fixP->fx_file, fixP->fx_line,
17842 _("branch out of range"));
6c43fab6 17843
2fc8bdac
ZW
17844 if (fixP->fx_done || !seg->use_rela_p)
17845 {
17846 offsetT newval2;
17847 addressT S, I1, I2, lo, hi;
6c43fab6 17848
2fc8bdac
ZW
17849 S = (value & 0x01000000) >> 24;
17850 I1 = (value & 0x00800000) >> 23;
17851 I2 = (value & 0x00400000) >> 22;
17852 hi = (value & 0x003ff000) >> 12;
17853 lo = (value & 0x00000ffe) >> 1;
6c43fab6 17854
2fc8bdac
ZW
17855 I1 = !(I1 ^ S);
17856 I2 = !(I2 ^ S);
a737bd4d 17857
2fc8bdac
ZW
17858 newval = md_chars_to_number (buf, THUMB_SIZE);
17859 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17860 newval |= (S << 10) | hi;
17861 newval2 |= (I1 << 13) | (I2 << 11) | lo;
17862 md_number_to_chars (buf, newval, THUMB_SIZE);
17863 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17864 }
17865 break;
a737bd4d 17866
2fc8bdac
ZW
17867 case BFD_RELOC_8:
17868 if (fixP->fx_done || !seg->use_rela_p)
17869 md_number_to_chars (buf, value, 1);
c19d1205 17870 break;
a737bd4d 17871
c19d1205 17872 case BFD_RELOC_16:
2fc8bdac 17873 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 17874 md_number_to_chars (buf, value, 2);
c19d1205 17875 break;
a737bd4d 17876
c19d1205
ZW
17877#ifdef OBJ_ELF
17878 case BFD_RELOC_ARM_TLS_GD32:
17879 case BFD_RELOC_ARM_TLS_LE32:
17880 case BFD_RELOC_ARM_TLS_IE32:
17881 case BFD_RELOC_ARM_TLS_LDM32:
17882 case BFD_RELOC_ARM_TLS_LDO32:
17883 S_SET_THREAD_LOCAL (fixP->fx_addsy);
17884 /* fall through */
6c43fab6 17885
c19d1205
ZW
17886 case BFD_RELOC_ARM_GOT32:
17887 case BFD_RELOC_ARM_GOTOFF:
17888 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
17889 if (fixP->fx_done || !seg->use_rela_p)
17890 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
17891 break;
17892#endif
6c43fab6 17893
c19d1205
ZW
17894 case BFD_RELOC_RVA:
17895 case BFD_RELOC_32:
17896 case BFD_RELOC_ARM_TARGET1:
17897 case BFD_RELOC_ARM_ROSEGREL32:
17898 case BFD_RELOC_ARM_SBREL32:
17899 case BFD_RELOC_32_PCREL:
2fc8bdac 17900 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
17901#ifdef TE_WINCE
17902 /* For WinCE we only do this for pcrel fixups. */
17903 if (fixP->fx_done || fixP->fx_pcrel)
17904#endif
17905 md_number_to_chars (buf, value, 4);
c19d1205 17906 break;
6c43fab6 17907
c19d1205
ZW
17908#ifdef OBJ_ELF
17909 case BFD_RELOC_ARM_PREL31:
2fc8bdac 17910 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
17911 {
17912 newval = md_chars_to_number (buf, 4) & 0x80000000;
17913 if ((value ^ (value >> 1)) & 0x40000000)
17914 {
17915 as_bad_where (fixP->fx_file, fixP->fx_line,
17916 _("rel31 relocation overflow"));
17917 }
17918 newval |= value & 0x7fffffff;
17919 md_number_to_chars (buf, newval, 4);
17920 }
17921 break;
c19d1205 17922#endif
a737bd4d 17923
c19d1205 17924 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 17925 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
17926 if (value < -1023 || value > 1023 || (value & 3))
17927 as_bad_where (fixP->fx_file, fixP->fx_line,
17928 _("co-processor offset out of range"));
17929 cp_off_common:
17930 sign = value >= 0;
17931 if (value < 0)
17932 value = -value;
8f06b2d8
PB
17933 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
17934 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
17935 newval = md_chars_to_number (buf, INSN_SIZE);
17936 else
17937 newval = get_thumb32_insn (buf);
17938 newval &= 0xff7fff00;
c19d1205
ZW
17939 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
17940 if (value == 0)
17941 newval &= ~WRITE_BACK;
8f06b2d8
PB
17942 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
17943 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
17944 md_number_to_chars (buf, newval, INSN_SIZE);
17945 else
17946 put_thumb32_insn (buf, newval);
c19d1205 17947 break;
a737bd4d 17948
c19d1205 17949 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 17950 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
17951 if (value < -255 || value > 255)
17952 as_bad_where (fixP->fx_file, fixP->fx_line,
17953 _("co-processor offset out of range"));
df7849c5 17954 value *= 4;
c19d1205 17955 goto cp_off_common;
6c43fab6 17956
c19d1205
ZW
17957 case BFD_RELOC_ARM_THUMB_OFFSET:
17958 newval = md_chars_to_number (buf, THUMB_SIZE);
17959 /* Exactly what ranges, and where the offset is inserted depends
17960 on the type of instruction, we can establish this from the
17961 top 4 bits. */
17962 switch (newval >> 12)
17963 {
17964 case 4: /* PC load. */
17965 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
17966 forced to zero for these loads; md_pcrel_from has already
17967 compensated for this. */
17968 if (value & 3)
17969 as_bad_where (fixP->fx_file, fixP->fx_line,
17970 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
17971 (((unsigned long) fixP->fx_frag->fr_address
17972 + (unsigned long) fixP->fx_where) & ~3)
17973 + (unsigned long) value);
a737bd4d 17974
c19d1205
ZW
17975 if (value & ~0x3fc)
17976 as_bad_where (fixP->fx_file, fixP->fx_line,
17977 _("invalid offset, value too big (0x%08lX)"),
17978 (long) value);
a737bd4d 17979
c19d1205
ZW
17980 newval |= value >> 2;
17981 break;
a737bd4d 17982
c19d1205
ZW
17983 case 9: /* SP load/store. */
17984 if (value & ~0x3fc)
17985 as_bad_where (fixP->fx_file, fixP->fx_line,
17986 _("invalid offset, value too big (0x%08lX)"),
17987 (long) value);
17988 newval |= value >> 2;
17989 break;
6c43fab6 17990
c19d1205
ZW
17991 case 6: /* Word load/store. */
17992 if (value & ~0x7c)
17993 as_bad_where (fixP->fx_file, fixP->fx_line,
17994 _("invalid offset, value too big (0x%08lX)"),
17995 (long) value);
17996 newval |= value << 4; /* 6 - 2. */
17997 break;
a737bd4d 17998
c19d1205
ZW
17999 case 7: /* Byte load/store. */
18000 if (value & ~0x1f)
18001 as_bad_where (fixP->fx_file, fixP->fx_line,
18002 _("invalid offset, value too big (0x%08lX)"),
18003 (long) value);
18004 newval |= value << 6;
18005 break;
a737bd4d 18006
c19d1205
ZW
18007 case 8: /* Halfword load/store. */
18008 if (value & ~0x3e)
18009 as_bad_where (fixP->fx_file, fixP->fx_line,
18010 _("invalid offset, value too big (0x%08lX)"),
18011 (long) value);
18012 newval |= value << 5; /* 6 - 1. */
18013 break;
a737bd4d 18014
c19d1205
ZW
18015 default:
18016 as_bad_where (fixP->fx_file, fixP->fx_line,
18017 "Unable to process relocation for thumb opcode: %lx",
18018 (unsigned long) newval);
18019 break;
18020 }
18021 md_number_to_chars (buf, newval, THUMB_SIZE);
18022 break;
a737bd4d 18023
c19d1205
ZW
18024 case BFD_RELOC_ARM_THUMB_ADD:
18025 /* This is a complicated relocation, since we use it for all of
18026 the following immediate relocations:
a737bd4d 18027
c19d1205
ZW
18028 3bit ADD/SUB
18029 8bit ADD/SUB
18030 9bit ADD/SUB SP word-aligned
18031 10bit ADD PC/SP word-aligned
a737bd4d 18032
c19d1205
ZW
18033 The type of instruction being processed is encoded in the
18034 instruction field:
a737bd4d 18035
c19d1205
ZW
18036 0x8000 SUB
18037 0x00F0 Rd
18038 0x000F Rs
18039 */
18040 newval = md_chars_to_number (buf, THUMB_SIZE);
18041 {
18042 int rd = (newval >> 4) & 0xf;
18043 int rs = newval & 0xf;
18044 int subtract = !!(newval & 0x8000);
a737bd4d 18045
c19d1205
ZW
18046 /* Check for HI regs, only very restricted cases allowed:
18047 Adjusting SP, and using PC or SP to get an address. */
18048 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18049 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18050 as_bad_where (fixP->fx_file, fixP->fx_line,
18051 _("invalid Hi register with immediate"));
a737bd4d 18052
c19d1205
ZW
18053 /* If value is negative, choose the opposite instruction. */
18054 if (value < 0)
18055 {
18056 value = -value;
18057 subtract = !subtract;
18058 if (value < 0)
18059 as_bad_where (fixP->fx_file, fixP->fx_line,
18060 _("immediate value out of range"));
18061 }
a737bd4d 18062
c19d1205
ZW
18063 if (rd == REG_SP)
18064 {
18065 if (value & ~0x1fc)
18066 as_bad_where (fixP->fx_file, fixP->fx_line,
18067 _("invalid immediate for stack address calculation"));
18068 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18069 newval |= value >> 2;
18070 }
18071 else if (rs == REG_PC || rs == REG_SP)
18072 {
18073 if (subtract || value & ~0x3fc)
18074 as_bad_where (fixP->fx_file, fixP->fx_line,
18075 _("invalid immediate for address calculation (value = 0x%08lX)"),
18076 (unsigned long) value);
18077 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18078 newval |= rd << 8;
18079 newval |= value >> 2;
18080 }
18081 else if (rs == rd)
18082 {
18083 if (value & ~0xff)
18084 as_bad_where (fixP->fx_file, fixP->fx_line,
18085 _("immediate value out of range"));
18086 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18087 newval |= (rd << 8) | value;
18088 }
18089 else
18090 {
18091 if (value & ~0x7)
18092 as_bad_where (fixP->fx_file, fixP->fx_line,
18093 _("immediate value out of range"));
18094 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18095 newval |= rd | (rs << 3) | (value << 6);
18096 }
18097 }
18098 md_number_to_chars (buf, newval, THUMB_SIZE);
18099 break;
a737bd4d 18100
c19d1205
ZW
18101 case BFD_RELOC_ARM_THUMB_IMM:
18102 newval = md_chars_to_number (buf, THUMB_SIZE);
18103 if (value < 0 || value > 255)
18104 as_bad_where (fixP->fx_file, fixP->fx_line,
18105 _("invalid immediate: %ld is too large"),
18106 (long) value);
18107 newval |= value;
18108 md_number_to_chars (buf, newval, THUMB_SIZE);
18109 break;
a737bd4d 18110
c19d1205
ZW
18111 case BFD_RELOC_ARM_THUMB_SHIFT:
18112 /* 5bit shift value (0..32). LSL cannot take 32. */
18113 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18114 temp = newval & 0xf800;
18115 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18116 as_bad_where (fixP->fx_file, fixP->fx_line,
18117 _("invalid shift value: %ld"), (long) value);
18118 /* Shifts of zero must be encoded as LSL. */
18119 if (value == 0)
18120 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18121 /* Shifts of 32 are encoded as zero. */
18122 else if (value == 32)
18123 value = 0;
18124 newval |= value << 6;
18125 md_number_to_chars (buf, newval, THUMB_SIZE);
18126 break;
a737bd4d 18127
c19d1205
ZW
18128 case BFD_RELOC_VTABLE_INHERIT:
18129 case BFD_RELOC_VTABLE_ENTRY:
18130 fixP->fx_done = 0;
18131 return;
6c43fab6 18132
b6895b4f
PB
18133 case BFD_RELOC_ARM_MOVW:
18134 case BFD_RELOC_ARM_MOVT:
18135 case BFD_RELOC_ARM_THUMB_MOVW:
18136 case BFD_RELOC_ARM_THUMB_MOVT:
18137 if (fixP->fx_done || !seg->use_rela_p)
18138 {
18139 /* REL format relocations are limited to a 16-bit addend. */
18140 if (!fixP->fx_done)
18141 {
18142 if (value < -0x1000 || value > 0xffff)
18143 as_bad_where (fixP->fx_file, fixP->fx_line,
18144 _("offset too big"));
18145 }
18146 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18147 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18148 {
18149 value >>= 16;
18150 }
18151
18152 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18153 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18154 {
18155 newval = get_thumb32_insn (buf);
18156 newval &= 0xfbf08f00;
18157 newval |= (value & 0xf000) << 4;
18158 newval |= (value & 0x0800) << 15;
18159 newval |= (value & 0x0700) << 4;
18160 newval |= (value & 0x00ff);
18161 put_thumb32_insn (buf, newval);
18162 }
18163 else
18164 {
18165 newval = md_chars_to_number (buf, 4);
18166 newval &= 0xfff0f000;
18167 newval |= value & 0x0fff;
18168 newval |= (value & 0xf000) << 4;
18169 md_number_to_chars (buf, newval, 4);
18170 }
18171 }
18172 return;
18173
4962c51a
MS
18174 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18175 case BFD_RELOC_ARM_ALU_PC_G0:
18176 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18177 case BFD_RELOC_ARM_ALU_PC_G1:
18178 case BFD_RELOC_ARM_ALU_PC_G2:
18179 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18180 case BFD_RELOC_ARM_ALU_SB_G0:
18181 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18182 case BFD_RELOC_ARM_ALU_SB_G1:
18183 case BFD_RELOC_ARM_ALU_SB_G2:
18184 assert (!fixP->fx_done);
18185 if (!seg->use_rela_p)
18186 {
18187 bfd_vma insn;
18188 bfd_vma encoded_addend;
18189 bfd_vma addend_abs = abs (value);
18190
18191 /* Check that the absolute value of the addend can be
18192 expressed as an 8-bit constant plus a rotation. */
18193 encoded_addend = encode_arm_immediate (addend_abs);
18194 if (encoded_addend == (unsigned int) FAIL)
18195 as_bad_where (fixP->fx_file, fixP->fx_line,
18196 _("the offset 0x%08lX is not representable"),
18197 addend_abs);
18198
18199 /* Extract the instruction. */
18200 insn = md_chars_to_number (buf, INSN_SIZE);
18201
18202 /* If the addend is positive, use an ADD instruction.
18203 Otherwise use a SUB. Take care not to destroy the S bit. */
18204 insn &= 0xff1fffff;
18205 if (value < 0)
18206 insn |= 1 << 22;
18207 else
18208 insn |= 1 << 23;
18209
18210 /* Place the encoded addend into the first 12 bits of the
18211 instruction. */
18212 insn &= 0xfffff000;
18213 insn |= encoded_addend;
18214
18215 /* Update the instruction. */
18216 md_number_to_chars (buf, insn, INSN_SIZE);
18217 }
18218 break;
18219
18220 case BFD_RELOC_ARM_LDR_PC_G0:
18221 case BFD_RELOC_ARM_LDR_PC_G1:
18222 case BFD_RELOC_ARM_LDR_PC_G2:
18223 case BFD_RELOC_ARM_LDR_SB_G0:
18224 case BFD_RELOC_ARM_LDR_SB_G1:
18225 case BFD_RELOC_ARM_LDR_SB_G2:
18226 assert (!fixP->fx_done);
18227 if (!seg->use_rela_p)
18228 {
18229 bfd_vma insn;
18230 bfd_vma addend_abs = abs (value);
18231
18232 /* Check that the absolute value of the addend can be
18233 encoded in 12 bits. */
18234 if (addend_abs >= 0x1000)
18235 as_bad_where (fixP->fx_file, fixP->fx_line,
18236 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18237 addend_abs);
18238
18239 /* Extract the instruction. */
18240 insn = md_chars_to_number (buf, INSN_SIZE);
18241
18242 /* If the addend is negative, clear bit 23 of the instruction.
18243 Otherwise set it. */
18244 if (value < 0)
18245 insn &= ~(1 << 23);
18246 else
18247 insn |= 1 << 23;
18248
18249 /* Place the absolute value of the addend into the first 12 bits
18250 of the instruction. */
18251 insn &= 0xfffff000;
18252 insn |= addend_abs;
18253
18254 /* Update the instruction. */
18255 md_number_to_chars (buf, insn, INSN_SIZE);
18256 }
18257 break;
18258
18259 case BFD_RELOC_ARM_LDRS_PC_G0:
18260 case BFD_RELOC_ARM_LDRS_PC_G1:
18261 case BFD_RELOC_ARM_LDRS_PC_G2:
18262 case BFD_RELOC_ARM_LDRS_SB_G0:
18263 case BFD_RELOC_ARM_LDRS_SB_G1:
18264 case BFD_RELOC_ARM_LDRS_SB_G2:
18265 assert (!fixP->fx_done);
18266 if (!seg->use_rela_p)
18267 {
18268 bfd_vma insn;
18269 bfd_vma addend_abs = abs (value);
18270
18271 /* Check that the absolute value of the addend can be
18272 encoded in 8 bits. */
18273 if (addend_abs >= 0x100)
18274 as_bad_where (fixP->fx_file, fixP->fx_line,
18275 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18276 addend_abs);
18277
18278 /* Extract the instruction. */
18279 insn = md_chars_to_number (buf, INSN_SIZE);
18280
18281 /* If the addend is negative, clear bit 23 of the instruction.
18282 Otherwise set it. */
18283 if (value < 0)
18284 insn &= ~(1 << 23);
18285 else
18286 insn |= 1 << 23;
18287
18288 /* Place the first four bits of the absolute value of the addend
18289 into the first 4 bits of the instruction, and the remaining
18290 four into bits 8 .. 11. */
18291 insn &= 0xfffff0f0;
18292 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18293
18294 /* Update the instruction. */
18295 md_number_to_chars (buf, insn, INSN_SIZE);
18296 }
18297 break;
18298
18299 case BFD_RELOC_ARM_LDC_PC_G0:
18300 case BFD_RELOC_ARM_LDC_PC_G1:
18301 case BFD_RELOC_ARM_LDC_PC_G2:
18302 case BFD_RELOC_ARM_LDC_SB_G0:
18303 case BFD_RELOC_ARM_LDC_SB_G1:
18304 case BFD_RELOC_ARM_LDC_SB_G2:
18305 assert (!fixP->fx_done);
18306 if (!seg->use_rela_p)
18307 {
18308 bfd_vma insn;
18309 bfd_vma addend_abs = abs (value);
18310
18311 /* Check that the absolute value of the addend is a multiple of
18312 four and, when divided by four, fits in 8 bits. */
18313 if (addend_abs & 0x3)
18314 as_bad_where (fixP->fx_file, fixP->fx_line,
18315 _("bad offset 0x%08lX (must be word-aligned)"),
18316 addend_abs);
18317
18318 if ((addend_abs >> 2) > 0xff)
18319 as_bad_where (fixP->fx_file, fixP->fx_line,
18320 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18321 addend_abs);
18322
18323 /* Extract the instruction. */
18324 insn = md_chars_to_number (buf, INSN_SIZE);
18325
18326 /* If the addend is negative, clear bit 23 of the instruction.
18327 Otherwise set it. */
18328 if (value < 0)
18329 insn &= ~(1 << 23);
18330 else
18331 insn |= 1 << 23;
18332
18333 /* Place the addend (divided by four) into the first eight
18334 bits of the instruction. */
18335 insn &= 0xfffffff0;
18336 insn |= addend_abs >> 2;
18337
18338 /* Update the instruction. */
18339 md_number_to_chars (buf, insn, INSN_SIZE);
18340 }
18341 break;
18342
c19d1205
ZW
18343 case BFD_RELOC_UNUSED:
18344 default:
18345 as_bad_where (fixP->fx_file, fixP->fx_line,
18346 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18347 }
6c43fab6
RE
18348}
18349
c19d1205
ZW
18350/* Translate internal representation of relocation info to BFD target
18351 format. */
a737bd4d 18352
c19d1205 18353arelent *
00a97672 18354tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 18355{
c19d1205
ZW
18356 arelent * reloc;
18357 bfd_reloc_code_real_type code;
a737bd4d 18358
c19d1205 18359 reloc = xmalloc (sizeof (arelent));
a737bd4d 18360
c19d1205
ZW
18361 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18362 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18363 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 18364
2fc8bdac 18365 if (fixp->fx_pcrel)
00a97672
RS
18366 {
18367 if (section->use_rela_p)
18368 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18369 else
18370 fixp->fx_offset = reloc->address;
18371 }
c19d1205 18372 reloc->addend = fixp->fx_offset;
a737bd4d 18373
c19d1205 18374 switch (fixp->fx_r_type)
a737bd4d 18375 {
c19d1205
ZW
18376 case BFD_RELOC_8:
18377 if (fixp->fx_pcrel)
18378 {
18379 code = BFD_RELOC_8_PCREL;
18380 break;
18381 }
a737bd4d 18382
c19d1205
ZW
18383 case BFD_RELOC_16:
18384 if (fixp->fx_pcrel)
18385 {
18386 code = BFD_RELOC_16_PCREL;
18387 break;
18388 }
6c43fab6 18389
c19d1205
ZW
18390 case BFD_RELOC_32:
18391 if (fixp->fx_pcrel)
18392 {
18393 code = BFD_RELOC_32_PCREL;
18394 break;
18395 }
a737bd4d 18396
b6895b4f
PB
18397 case BFD_RELOC_ARM_MOVW:
18398 if (fixp->fx_pcrel)
18399 {
18400 code = BFD_RELOC_ARM_MOVW_PCREL;
18401 break;
18402 }
18403
18404 case BFD_RELOC_ARM_MOVT:
18405 if (fixp->fx_pcrel)
18406 {
18407 code = BFD_RELOC_ARM_MOVT_PCREL;
18408 break;
18409 }
18410
18411 case BFD_RELOC_ARM_THUMB_MOVW:
18412 if (fixp->fx_pcrel)
18413 {
18414 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18415 break;
18416 }
18417
18418 case BFD_RELOC_ARM_THUMB_MOVT:
18419 if (fixp->fx_pcrel)
18420 {
18421 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18422 break;
18423 }
18424
c19d1205
ZW
18425 case BFD_RELOC_NONE:
18426 case BFD_RELOC_ARM_PCREL_BRANCH:
18427 case BFD_RELOC_ARM_PCREL_BLX:
18428 case BFD_RELOC_RVA:
18429 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18430 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18431 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18432 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18433 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18434 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18435 case BFD_RELOC_THUMB_PCREL_BLX:
18436 case BFD_RELOC_VTABLE_ENTRY:
18437 case BFD_RELOC_VTABLE_INHERIT:
18438 code = fixp->fx_r_type;
18439 break;
a737bd4d 18440
c19d1205
ZW
18441 case BFD_RELOC_ARM_LITERAL:
18442 case BFD_RELOC_ARM_HWLITERAL:
18443 /* If this is called then the a literal has
18444 been referenced across a section boundary. */
18445 as_bad_where (fixp->fx_file, fixp->fx_line,
18446 _("literal referenced across section boundary"));
18447 return NULL;
a737bd4d 18448
c19d1205
ZW
18449#ifdef OBJ_ELF
18450 case BFD_RELOC_ARM_GOT32:
18451 case BFD_RELOC_ARM_GOTOFF:
18452 case BFD_RELOC_ARM_PLT32:
18453 case BFD_RELOC_ARM_TARGET1:
18454 case BFD_RELOC_ARM_ROSEGREL32:
18455 case BFD_RELOC_ARM_SBREL32:
18456 case BFD_RELOC_ARM_PREL31:
18457 case BFD_RELOC_ARM_TARGET2:
18458 case BFD_RELOC_ARM_TLS_LE32:
18459 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
18460 case BFD_RELOC_ARM_PCREL_CALL:
18461 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
18462 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18463 case BFD_RELOC_ARM_ALU_PC_G0:
18464 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18465 case BFD_RELOC_ARM_ALU_PC_G1:
18466 case BFD_RELOC_ARM_ALU_PC_G2:
18467 case BFD_RELOC_ARM_LDR_PC_G0:
18468 case BFD_RELOC_ARM_LDR_PC_G1:
18469 case BFD_RELOC_ARM_LDR_PC_G2:
18470 case BFD_RELOC_ARM_LDRS_PC_G0:
18471 case BFD_RELOC_ARM_LDRS_PC_G1:
18472 case BFD_RELOC_ARM_LDRS_PC_G2:
18473 case BFD_RELOC_ARM_LDC_PC_G0:
18474 case BFD_RELOC_ARM_LDC_PC_G1:
18475 case BFD_RELOC_ARM_LDC_PC_G2:
18476 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18477 case BFD_RELOC_ARM_ALU_SB_G0:
18478 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18479 case BFD_RELOC_ARM_ALU_SB_G1:
18480 case BFD_RELOC_ARM_ALU_SB_G2:
18481 case BFD_RELOC_ARM_LDR_SB_G0:
18482 case BFD_RELOC_ARM_LDR_SB_G1:
18483 case BFD_RELOC_ARM_LDR_SB_G2:
18484 case BFD_RELOC_ARM_LDRS_SB_G0:
18485 case BFD_RELOC_ARM_LDRS_SB_G1:
18486 case BFD_RELOC_ARM_LDRS_SB_G2:
18487 case BFD_RELOC_ARM_LDC_SB_G0:
18488 case BFD_RELOC_ARM_LDC_SB_G1:
18489 case BFD_RELOC_ARM_LDC_SB_G2:
c19d1205
ZW
18490 code = fixp->fx_r_type;
18491 break;
a737bd4d 18492
c19d1205
ZW
18493 case BFD_RELOC_ARM_TLS_GD32:
18494 case BFD_RELOC_ARM_TLS_IE32:
18495 case BFD_RELOC_ARM_TLS_LDM32:
18496 /* BFD will include the symbol's address in the addend.
18497 But we don't want that, so subtract it out again here. */
18498 if (!S_IS_COMMON (fixp->fx_addsy))
18499 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
18500 code = fixp->fx_r_type;
18501 break;
18502#endif
a737bd4d 18503
c19d1205
ZW
18504 case BFD_RELOC_ARM_IMMEDIATE:
18505 as_bad_where (fixp->fx_file, fixp->fx_line,
18506 _("internal relocation (type: IMMEDIATE) not fixed up"));
18507 return NULL;
a737bd4d 18508
c19d1205
ZW
18509 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18510 as_bad_where (fixp->fx_file, fixp->fx_line,
18511 _("ADRL used for a symbol not defined in the same file"));
18512 return NULL;
a737bd4d 18513
c19d1205 18514 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18515 if (section->use_rela_p)
18516 {
18517 code = fixp->fx_r_type;
18518 break;
18519 }
18520
c19d1205
ZW
18521 if (fixp->fx_addsy != NULL
18522 && !S_IS_DEFINED (fixp->fx_addsy)
18523 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 18524 {
c19d1205
ZW
18525 as_bad_where (fixp->fx_file, fixp->fx_line,
18526 _("undefined local label `%s'"),
18527 S_GET_NAME (fixp->fx_addsy));
18528 return NULL;
a737bd4d
NC
18529 }
18530
c19d1205
ZW
18531 as_bad_where (fixp->fx_file, fixp->fx_line,
18532 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18533 return NULL;
a737bd4d 18534
c19d1205
ZW
18535 default:
18536 {
18537 char * type;
6c43fab6 18538
c19d1205
ZW
18539 switch (fixp->fx_r_type)
18540 {
18541 case BFD_RELOC_NONE: type = "NONE"; break;
18542 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
18543 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 18544 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
18545 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
18546 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
18547 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 18548 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
18549 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
18550 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
18551 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
18552 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
18553 default: type = _("<unknown>"); break;
18554 }
18555 as_bad_where (fixp->fx_file, fixp->fx_line,
18556 _("cannot represent %s relocation in this object file format"),
18557 type);
18558 return NULL;
18559 }
a737bd4d 18560 }
6c43fab6 18561
c19d1205
ZW
18562#ifdef OBJ_ELF
18563 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
18564 && GOT_symbol
18565 && fixp->fx_addsy == GOT_symbol)
18566 {
18567 code = BFD_RELOC_ARM_GOTPC;
18568 reloc->addend = fixp->fx_offset = reloc->address;
18569 }
18570#endif
6c43fab6 18571
c19d1205 18572 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 18573
c19d1205
ZW
18574 if (reloc->howto == NULL)
18575 {
18576 as_bad_where (fixp->fx_file, fixp->fx_line,
18577 _("cannot represent %s relocation in this object file format"),
18578 bfd_get_reloc_code_name (code));
18579 return NULL;
18580 }
6c43fab6 18581
c19d1205
ZW
18582 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
18583 vtable entry to be used in the relocation's section offset. */
18584 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18585 reloc->address = fixp->fx_offset;
6c43fab6 18586
c19d1205 18587 return reloc;
6c43fab6
RE
18588}
18589
c19d1205 18590/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 18591
c19d1205
ZW
18592void
18593cons_fix_new_arm (fragS * frag,
18594 int where,
18595 int size,
18596 expressionS * exp)
6c43fab6 18597{
c19d1205
ZW
18598 bfd_reloc_code_real_type type;
18599 int pcrel = 0;
6c43fab6 18600
c19d1205
ZW
18601 /* Pick a reloc.
18602 FIXME: @@ Should look at CPU word size. */
18603 switch (size)
18604 {
18605 case 1:
18606 type = BFD_RELOC_8;
18607 break;
18608 case 2:
18609 type = BFD_RELOC_16;
18610 break;
18611 case 4:
18612 default:
18613 type = BFD_RELOC_32;
18614 break;
18615 case 8:
18616 type = BFD_RELOC_64;
18617 break;
18618 }
6c43fab6 18619
c19d1205
ZW
18620 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
18621}
6c43fab6 18622
c19d1205
ZW
18623#if defined OBJ_COFF || defined OBJ_ELF
18624void
18625arm_validate_fix (fixS * fixP)
6c43fab6 18626{
c19d1205
ZW
18627 /* If the destination of the branch is a defined symbol which does not have
18628 the THUMB_FUNC attribute, then we must be calling a function which has
18629 the (interfacearm) attribute. We look for the Thumb entry point to that
18630 function and change the branch to refer to that function instead. */
18631 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
18632 && fixP->fx_addsy != NULL
18633 && S_IS_DEFINED (fixP->fx_addsy)
18634 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 18635 {
c19d1205 18636 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 18637 }
c19d1205
ZW
18638}
18639#endif
6c43fab6 18640
c19d1205
ZW
18641int
18642arm_force_relocation (struct fix * fixp)
18643{
18644#if defined (OBJ_COFF) && defined (TE_PE)
18645 if (fixp->fx_r_type == BFD_RELOC_RVA)
18646 return 1;
18647#endif
6c43fab6 18648
c19d1205
ZW
18649 /* Resolve these relocations even if the symbol is extern or weak. */
18650 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
18651 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 18652 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 18653 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
18654 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18655 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
18656 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 18657 return 0;
a737bd4d 18658
4962c51a
MS
18659 /* Always leave these relocations for the linker. */
18660 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18661 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18662 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18663 return 1;
18664
c19d1205 18665 return generic_force_reloc (fixp);
404ff6b5
AH
18666}
18667
c19d1205 18668#ifdef OBJ_COFF
c19d1205
ZW
18669bfd_boolean
18670arm_fix_adjustable (fixS * fixP)
404ff6b5 18671{
337ff0a5
NC
18672 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
18673 local labels from being added to the output symbol table when they
18674 are used with the ADRL pseudo op. The ADRL relocation should always
18675 be resolved before the binbary is emitted, so it is safe to say that
18676 it is adjustable. */
c19d1205
ZW
18677 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
18678 return 1;
337ff0a5
NC
18679
18680 /* This is a hack for the gas/all/redef2.s test. This test causes symbols
18681 to be cloned, and without this test relocs would still be generated
6e0080dd 18682 against the original, pre-cloned symbol. Such symbols would not appear
337ff0a5
NC
18683 in the symbol table however, and so a valid reloc could not be
18684 generated. So check to see if the fixup is against a symbol which has
18685 been removed from the symbol chain, and if it is, then allow it to be
18686 adjusted into a reloc against a section symbol. */
6e0080dd
NC
18687 if (fixP->fx_addsy != NULL
18688 && ! S_IS_LOCAL (fixP->fx_addsy)
18689 && symbol_next (fixP->fx_addsy) == NULL
18690 && symbol_next (fixP->fx_addsy) == symbol_previous (fixP->fx_addsy))
18691 return 1;
337ff0a5 18692
c19d1205 18693 return 0;
404ff6b5 18694}
c19d1205 18695#endif
404ff6b5 18696
c19d1205 18697#ifdef OBJ_ELF
e28387c3
PB
18698/* Relocations against function names must be left unadjusted,
18699 so that the linker can use this information to generate interworking
18700 stubs. The MIPS version of this function
c19d1205
ZW
18701 also prevents relocations that are mips-16 specific, but I do not
18702 know why it does this.
404ff6b5 18703
c19d1205
ZW
18704 FIXME:
18705 There is one other problem that ought to be addressed here, but
18706 which currently is not: Taking the address of a label (rather
18707 than a function) and then later jumping to that address. Such
18708 addresses also ought to have their bottom bit set (assuming that
18709 they reside in Thumb code), but at the moment they will not. */
404ff6b5 18710
c19d1205
ZW
18711bfd_boolean
18712arm_fix_adjustable (fixS * fixP)
404ff6b5 18713{
c19d1205
ZW
18714 if (fixP->fx_addsy == NULL)
18715 return 1;
404ff6b5 18716
e28387c3
PB
18717 /* Preserve relocations against symbols with function type. */
18718 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
18719 return 0;
18720
c19d1205
ZW
18721 if (THUMB_IS_FUNC (fixP->fx_addsy)
18722 && fixP->fx_subsy == NULL)
18723 return 0;
a737bd4d 18724
c19d1205
ZW
18725 /* We need the symbol name for the VTABLE entries. */
18726 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18727 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18728 return 0;
404ff6b5 18729
c19d1205
ZW
18730 /* Don't allow symbols to be discarded on GOT related relocs. */
18731 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
18732 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
18733 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
18734 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
18735 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
18736 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
18737 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
18738 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
18739 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
18740 return 0;
a737bd4d 18741
4962c51a
MS
18742 /* Similarly for group relocations. */
18743 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18744 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18745 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18746 return 0;
18747
c19d1205 18748 return 1;
a737bd4d 18749}
404ff6b5 18750
c19d1205
ZW
18751const char *
18752elf32_arm_target_format (void)
404ff6b5 18753{
c19d1205
ZW
18754#ifdef TE_SYMBIAN
18755 return (target_big_endian
18756 ? "elf32-bigarm-symbian"
18757 : "elf32-littlearm-symbian");
18758#elif defined (TE_VXWORKS)
18759 return (target_big_endian
18760 ? "elf32-bigarm-vxworks"
18761 : "elf32-littlearm-vxworks");
18762#else
18763 if (target_big_endian)
18764 return "elf32-bigarm";
18765 else
18766 return "elf32-littlearm";
18767#endif
404ff6b5
AH
18768}
18769
c19d1205
ZW
18770void
18771armelf_frob_symbol (symbolS * symp,
18772 int * puntp)
404ff6b5 18773{
c19d1205
ZW
18774 elf_frob_symbol (symp, puntp);
18775}
18776#endif
404ff6b5 18777
c19d1205 18778/* MD interface: Finalization. */
a737bd4d 18779
c19d1205
ZW
18780/* A good place to do this, although this was probably not intended
18781 for this kind of use. We need to dump the literal pool before
18782 references are made to a null symbol pointer. */
a737bd4d 18783
c19d1205
ZW
18784void
18785arm_cleanup (void)
18786{
18787 literal_pool * pool;
a737bd4d 18788
c19d1205
ZW
18789 for (pool = list_of_pools; pool; pool = pool->next)
18790 {
18791 /* Put it at the end of the relevent section. */
18792 subseg_set (pool->section, pool->sub_section);
18793#ifdef OBJ_ELF
18794 arm_elf_change_section ();
18795#endif
18796 s_ltorg (0);
18797 }
404ff6b5
AH
18798}
18799
c19d1205
ZW
18800/* Adjust the symbol table. This marks Thumb symbols as distinct from
18801 ARM ones. */
404ff6b5 18802
c19d1205
ZW
18803void
18804arm_adjust_symtab (void)
404ff6b5 18805{
c19d1205
ZW
18806#ifdef OBJ_COFF
18807 symbolS * sym;
404ff6b5 18808
c19d1205
ZW
18809 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18810 {
18811 if (ARM_IS_THUMB (sym))
18812 {
18813 if (THUMB_IS_FUNC (sym))
18814 {
18815 /* Mark the symbol as a Thumb function. */
18816 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
18817 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
18818 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 18819
c19d1205
ZW
18820 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
18821 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
18822 else
18823 as_bad (_("%s: unexpected function type: %d"),
18824 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
18825 }
18826 else switch (S_GET_STORAGE_CLASS (sym))
18827 {
18828 case C_EXT:
18829 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
18830 break;
18831 case C_STAT:
18832 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
18833 break;
18834 case C_LABEL:
18835 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
18836 break;
18837 default:
18838 /* Do nothing. */
18839 break;
18840 }
18841 }
a737bd4d 18842
c19d1205
ZW
18843 if (ARM_IS_INTERWORK (sym))
18844 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 18845 }
c19d1205
ZW
18846#endif
18847#ifdef OBJ_ELF
18848 symbolS * sym;
18849 char bind;
404ff6b5 18850
c19d1205 18851 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 18852 {
c19d1205
ZW
18853 if (ARM_IS_THUMB (sym))
18854 {
18855 elf_symbol_type * elf_sym;
404ff6b5 18856
c19d1205
ZW
18857 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
18858 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 18859
b0796911
PB
18860 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
18861 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
18862 {
18863 /* If it's a .thumb_func, declare it as so,
18864 otherwise tag label as .code 16. */
18865 if (THUMB_IS_FUNC (sym))
18866 elf_sym->internal_elf_sym.st_info =
18867 ELF_ST_INFO (bind, STT_ARM_TFUNC);
18868 else
18869 elf_sym->internal_elf_sym.st_info =
18870 ELF_ST_INFO (bind, STT_ARM_16BIT);
18871 }
18872 }
18873 }
18874#endif
404ff6b5
AH
18875}
18876
c19d1205 18877/* MD interface: Initialization. */
404ff6b5 18878
a737bd4d 18879static void
c19d1205 18880set_constant_flonums (void)
a737bd4d 18881{
c19d1205 18882 int i;
404ff6b5 18883
c19d1205
ZW
18884 for (i = 0; i < NUM_FLOAT_VALS; i++)
18885 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
18886 abort ();
a737bd4d 18887}
404ff6b5 18888
c19d1205
ZW
18889void
18890md_begin (void)
a737bd4d 18891{
c19d1205
ZW
18892 unsigned mach;
18893 unsigned int i;
404ff6b5 18894
c19d1205
ZW
18895 if ( (arm_ops_hsh = hash_new ()) == NULL
18896 || (arm_cond_hsh = hash_new ()) == NULL
18897 || (arm_shift_hsh = hash_new ()) == NULL
18898 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 18899 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 18900 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
18901 || (arm_reloc_hsh = hash_new ()) == NULL
18902 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
18903 as_fatal (_("virtual memory exhausted"));
18904
18905 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
18906 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
18907 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
18908 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
18909 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
18910 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
18911 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
18912 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
18913 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
18914 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
18915 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
18916 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
18917 for (i = 0;
18918 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
18919 i++)
18920 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
18921 (PTR) (barrier_opt_names + i));
c19d1205
ZW
18922#ifdef OBJ_ELF
18923 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
18924 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
18925#endif
18926
18927 set_constant_flonums ();
404ff6b5 18928
c19d1205
ZW
18929 /* Set the cpu variant based on the command-line options. We prefer
18930 -mcpu= over -march= if both are set (as for GCC); and we prefer
18931 -mfpu= over any other way of setting the floating point unit.
18932 Use of legacy options with new options are faulted. */
e74cfd16 18933 if (legacy_cpu)
404ff6b5 18934 {
e74cfd16 18935 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
18936 as_bad (_("use of old and new-style options to set CPU type"));
18937
18938 mcpu_cpu_opt = legacy_cpu;
404ff6b5 18939 }
e74cfd16 18940 else if (!mcpu_cpu_opt)
c19d1205 18941 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 18942
e74cfd16 18943 if (legacy_fpu)
c19d1205 18944 {
e74cfd16 18945 if (mfpu_opt)
c19d1205 18946 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
18947
18948 mfpu_opt = legacy_fpu;
18949 }
e74cfd16 18950 else if (!mfpu_opt)
03b1477f 18951 {
c19d1205 18952#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
18953 /* Some environments specify a default FPU. If they don't, infer it
18954 from the processor. */
e74cfd16 18955 if (mcpu_fpu_opt)
03b1477f
RE
18956 mfpu_opt = mcpu_fpu_opt;
18957 else
18958 mfpu_opt = march_fpu_opt;
39c2da32 18959#else
e74cfd16 18960 mfpu_opt = &fpu_default;
39c2da32 18961#endif
03b1477f
RE
18962 }
18963
e74cfd16 18964 if (!mfpu_opt)
03b1477f 18965 {
e74cfd16
PB
18966 if (!mcpu_cpu_opt)
18967 mfpu_opt = &fpu_default;
18968 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
18969 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 18970 else
e74cfd16 18971 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
18972 }
18973
ee065d83 18974#ifdef CPU_DEFAULT
e74cfd16 18975 if (!mcpu_cpu_opt)
ee065d83 18976 {
e74cfd16
PB
18977 mcpu_cpu_opt = &cpu_default;
18978 selected_cpu = cpu_default;
ee065d83 18979 }
e74cfd16
PB
18980#else
18981 if (mcpu_cpu_opt)
18982 selected_cpu = *mcpu_cpu_opt;
ee065d83 18983 else
e74cfd16 18984 mcpu_cpu_opt = &arm_arch_any;
ee065d83 18985#endif
03b1477f 18986
e74cfd16 18987 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 18988
e74cfd16 18989 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 18990
f17c130b 18991#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 18992 {
7cc69913
NC
18993 unsigned int flags = 0;
18994
18995#if defined OBJ_ELF
18996 flags = meabi_flags;
d507cf36
PB
18997
18998 switch (meabi_flags)
33a392fb 18999 {
d507cf36 19000 case EF_ARM_EABI_UNKNOWN:
7cc69913 19001#endif
d507cf36
PB
19002 /* Set the flags in the private structure. */
19003 if (uses_apcs_26) flags |= F_APCS26;
19004 if (support_interwork) flags |= F_INTERWORK;
19005 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19006 if (pic_code) flags |= F_PIC;
e74cfd16 19007 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19008 flags |= F_SOFT_FLOAT;
19009
d507cf36
PB
19010 switch (mfloat_abi_opt)
19011 {
19012 case ARM_FLOAT_ABI_SOFT:
19013 case ARM_FLOAT_ABI_SOFTFP:
19014 flags |= F_SOFT_FLOAT;
19015 break;
33a392fb 19016
d507cf36
PB
19017 case ARM_FLOAT_ABI_HARD:
19018 if (flags & F_SOFT_FLOAT)
19019 as_bad (_("hard-float conflicts with specified fpu"));
19020 break;
19021 }
03b1477f 19022
e74cfd16
PB
19023 /* Using pure-endian doubles (even if soft-float). */
19024 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19025 flags |= F_VFP_FLOAT;
f17c130b 19026
fde78edd 19027#if defined OBJ_ELF
e74cfd16 19028 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19029 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19030 break;
19031
8cb51566 19032 case EF_ARM_EABI_VER4:
3a4a14e9 19033 case EF_ARM_EABI_VER5:
c19d1205 19034 /* No additional flags to set. */
d507cf36
PB
19035 break;
19036
19037 default:
19038 abort ();
19039 }
7cc69913 19040#endif
b99bd4ef
NC
19041 bfd_set_private_flags (stdoutput, flags);
19042
19043 /* We have run out flags in the COFF header to encode the
19044 status of ATPCS support, so instead we create a dummy,
c19d1205 19045 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19046 if (atpcs)
19047 {
19048 asection * sec;
19049
19050 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19051
19052 if (sec != NULL)
19053 {
19054 bfd_set_section_flags
19055 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19056 bfd_set_section_size (stdoutput, sec, 0);
19057 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19058 }
19059 }
7cc69913 19060 }
f17c130b 19061#endif
b99bd4ef
NC
19062
19063 /* Record the CPU type as well. */
e74cfd16 19064 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19065 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19066 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19067 mach = bfd_mach_arm_XScale;
e74cfd16 19068 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19069 mach = bfd_mach_arm_ep9312;
e74cfd16 19070 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19071 mach = bfd_mach_arm_5TE;
e74cfd16 19072 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19073 {
e74cfd16 19074 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19075 mach = bfd_mach_arm_5T;
19076 else
19077 mach = bfd_mach_arm_5;
19078 }
e74cfd16 19079 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19080 {
e74cfd16 19081 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19082 mach = bfd_mach_arm_4T;
19083 else
19084 mach = bfd_mach_arm_4;
19085 }
e74cfd16 19086 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19087 mach = bfd_mach_arm_3M;
e74cfd16
PB
19088 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19089 mach = bfd_mach_arm_3;
19090 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19091 mach = bfd_mach_arm_2a;
19092 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19093 mach = bfd_mach_arm_2;
19094 else
19095 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19096
19097 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19098}
19099
c19d1205 19100/* Command line processing. */
b99bd4ef 19101
c19d1205
ZW
19102/* md_parse_option
19103 Invocation line includes a switch not recognized by the base assembler.
19104 See if it's a processor-specific option.
b99bd4ef 19105
c19d1205
ZW
19106 This routine is somewhat complicated by the need for backwards
19107 compatibility (since older releases of gcc can't be changed).
19108 The new options try to make the interface as compatible as
19109 possible with GCC.
b99bd4ef 19110
c19d1205 19111 New options (supported) are:
b99bd4ef 19112
c19d1205
ZW
19113 -mcpu=<cpu name> Assemble for selected processor
19114 -march=<architecture name> Assemble for selected architecture
19115 -mfpu=<fpu architecture> Assemble for selected FPU.
19116 -EB/-mbig-endian Big-endian
19117 -EL/-mlittle-endian Little-endian
19118 -k Generate PIC code
19119 -mthumb Start in Thumb mode
19120 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19121
c19d1205 19122 For now we will also provide support for:
b99bd4ef 19123
c19d1205
ZW
19124 -mapcs-32 32-bit Program counter
19125 -mapcs-26 26-bit Program counter
19126 -macps-float Floats passed in FP registers
19127 -mapcs-reentrant Reentrant code
19128 -matpcs
19129 (sometime these will probably be replaced with -mapcs=<list of options>
19130 and -matpcs=<list of options>)
b99bd4ef 19131
c19d1205
ZW
19132 The remaining options are only supported for back-wards compatibility.
19133 Cpu variants, the arm part is optional:
19134 -m[arm]1 Currently not supported.
19135 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19136 -m[arm]3 Arm 3 processor
19137 -m[arm]6[xx], Arm 6 processors
19138 -m[arm]7[xx][t][[d]m] Arm 7 processors
19139 -m[arm]8[10] Arm 8 processors
19140 -m[arm]9[20][tdmi] Arm 9 processors
19141 -mstrongarm[110[0]] StrongARM processors
19142 -mxscale XScale processors
19143 -m[arm]v[2345[t[e]]] Arm architectures
19144 -mall All (except the ARM1)
19145 FP variants:
19146 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19147 -mfpe-old (No float load/store multiples)
19148 -mvfpxd VFP Single precision
19149 -mvfp All VFP
19150 -mno-fpu Disable all floating point instructions
b99bd4ef 19151
c19d1205
ZW
19152 The following CPU names are recognized:
19153 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19154 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19155 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19156 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19157 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19158 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19159 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19160
c19d1205 19161 */
b99bd4ef 19162
c19d1205 19163const char * md_shortopts = "m:k";
b99bd4ef 19164
c19d1205
ZW
19165#ifdef ARM_BI_ENDIAN
19166#define OPTION_EB (OPTION_MD_BASE + 0)
19167#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19168#else
c19d1205
ZW
19169#if TARGET_BYTES_BIG_ENDIAN
19170#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19171#else
c19d1205
ZW
19172#define OPTION_EL (OPTION_MD_BASE + 1)
19173#endif
b99bd4ef 19174#endif
b99bd4ef 19175
c19d1205 19176struct option md_longopts[] =
b99bd4ef 19177{
c19d1205
ZW
19178#ifdef OPTION_EB
19179 {"EB", no_argument, NULL, OPTION_EB},
19180#endif
19181#ifdef OPTION_EL
19182 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19183#endif
c19d1205
ZW
19184 {NULL, no_argument, NULL, 0}
19185};
b99bd4ef 19186
c19d1205 19187size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19188
c19d1205 19189struct arm_option_table
b99bd4ef 19190{
c19d1205
ZW
19191 char *option; /* Option name to match. */
19192 char *help; /* Help information. */
19193 int *var; /* Variable to change. */
19194 int value; /* What to change it to. */
19195 char *deprecated; /* If non-null, print this message. */
19196};
b99bd4ef 19197
c19d1205
ZW
19198struct arm_option_table arm_opts[] =
19199{
19200 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19201 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19202 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19203 &support_interwork, 1, NULL},
19204 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19205 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19206 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19207 1, NULL},
19208 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19209 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19210 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19211 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19212 NULL},
b99bd4ef 19213
c19d1205
ZW
19214 /* These are recognized by the assembler, but have no affect on code. */
19215 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19216 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
19217 {NULL, NULL, NULL, 0, NULL}
19218};
19219
19220struct arm_legacy_option_table
19221{
19222 char *option; /* Option name to match. */
19223 const arm_feature_set **var; /* Variable to change. */
19224 const arm_feature_set value; /* What to change it to. */
19225 char *deprecated; /* If non-null, print this message. */
19226};
b99bd4ef 19227
e74cfd16
PB
19228const struct arm_legacy_option_table arm_legacy_opts[] =
19229{
c19d1205
ZW
19230 /* DON'T add any new processors to this list -- we want the whole list
19231 to go away... Add them to the processors table instead. */
e74cfd16
PB
19232 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19233 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19234 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19235 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19236 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19237 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19238 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19239 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19240 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19241 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19242 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19243 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19244 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19245 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19246 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19247 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19248 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19249 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19250 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19251 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19252 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19253 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19254 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19255 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19256 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19257 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19258 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19259 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19260 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19261 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19262 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19263 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19264 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19265 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19266 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19267 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19268 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19269 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19270 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19271 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19272 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19273 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19274 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19275 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19276 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19277 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19278 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19279 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19280 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19281 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19282 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19283 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19284 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19285 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19286 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19287 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19288 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19289 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19290 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19291 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19292 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19293 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19294 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19295 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19296 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19297 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19298 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19299 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19300 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19301 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19302 N_("use -mcpu=strongarm110")},
e74cfd16 19303 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19304 N_("use -mcpu=strongarm1100")},
e74cfd16 19305 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19306 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
19307 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19308 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19309 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 19310
c19d1205 19311 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
19312 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19313 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19314 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19315 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19316 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19317 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19318 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19319 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19320 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19321 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19322 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19323 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19324 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19325 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19326 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19327 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19328 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19329 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 19330
c19d1205 19331 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
19332 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19333 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19334 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19335 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 19336 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 19337
e74cfd16 19338 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 19339};
7ed4c4c5 19340
c19d1205 19341struct arm_cpu_option_table
7ed4c4c5 19342{
c19d1205 19343 char *name;
e74cfd16 19344 const arm_feature_set value;
c19d1205
ZW
19345 /* For some CPUs we assume an FPU unless the user explicitly sets
19346 -mfpu=... */
e74cfd16 19347 const arm_feature_set default_fpu;
ee065d83
PB
19348 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19349 case. */
19350 const char *canonical_name;
c19d1205 19351};
7ed4c4c5 19352
c19d1205
ZW
19353/* This list should, at a minimum, contain all the cpu names
19354 recognized by GCC. */
e74cfd16 19355static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 19356{
ee065d83
PB
19357 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19358 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19359 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19360 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19361 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19362 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19363 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19364 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19365 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19366 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19367 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19368 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19369 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19370 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19371 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19372 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19373 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19374 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19375 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19376 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19377 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19378 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19379 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19380 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19381 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19382 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19383 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19384 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19385 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19386 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19387 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19388 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19389 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19390 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19391 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19392 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19393 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19394 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19395 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19396 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
19397 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19398 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19399 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19400 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
c19d1205
ZW
19401 /* For V5 or later processors we default to using VFP; but the user
19402 should really set the FPU type explicitly. */
ee065d83
PB
19403 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19404 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19405 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19406 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19407 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19408 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19409 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
19410 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19411 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19412 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
19413 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19414 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19415 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19416 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19417 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19418 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
19419 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19420 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19421 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19422 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19423 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19424 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
19425 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
19426 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19427 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
19428 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
19429 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
19430 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
19431 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
19432 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
19433 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
19434 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
19435 | FPU_NEON_EXT_V1),
19436 NULL},
62b3e311
PB
19437 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
19438 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
c19d1205 19439 /* ??? XSCALE is really an architecture. */
ee065d83 19440 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 19441 /* ??? iwmmxt is not a processor. */
ee065d83
PB
19442 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
19443 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 19444 /* Maverick */
e74cfd16
PB
19445 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
19446 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 19447};
7ed4c4c5 19448
c19d1205 19449struct arm_arch_option_table
7ed4c4c5 19450{
c19d1205 19451 char *name;
e74cfd16
PB
19452 const arm_feature_set value;
19453 const arm_feature_set default_fpu;
c19d1205 19454};
7ed4c4c5 19455
c19d1205
ZW
19456/* This list should, at a minimum, contain all the architecture names
19457 recognized by GCC. */
e74cfd16 19458static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
19459{
19460 {"all", ARM_ANY, FPU_ARCH_FPA},
19461 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
19462 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
19463 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
19464 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
19465 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
19466 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
19467 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
19468 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
19469 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
19470 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
19471 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
19472 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
19473 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
19474 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
19475 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
19476 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
19477 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
19478 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
19479 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
19480 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
19481 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
19482 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
19483 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
19484 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
19485 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
62b3e311
PB
19486 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
19487 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19488 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19489 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
19490 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
19491 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
e74cfd16 19492 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 19493};
7ed4c4c5 19494
c19d1205 19495/* ISA extensions in the co-processor space. */
e74cfd16 19496struct arm_option_cpu_value_table
c19d1205
ZW
19497{
19498 char *name;
e74cfd16 19499 const arm_feature_set value;
c19d1205 19500};
7ed4c4c5 19501
e74cfd16 19502static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 19503{
e74cfd16
PB
19504 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
19505 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
19506 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
19507 {NULL, ARM_ARCH_NONE}
c19d1205 19508};
7ed4c4c5 19509
c19d1205
ZW
19510/* This list should, at a minimum, contain all the fpu names
19511 recognized by GCC. */
e74cfd16 19512static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
19513{
19514 {"softfpa", FPU_NONE},
19515 {"fpe", FPU_ARCH_FPE},
19516 {"fpe2", FPU_ARCH_FPE},
19517 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
19518 {"fpa", FPU_ARCH_FPA},
19519 {"fpa10", FPU_ARCH_FPA},
19520 {"fpa11", FPU_ARCH_FPA},
19521 {"arm7500fe", FPU_ARCH_FPA},
19522 {"softvfp", FPU_ARCH_VFP},
19523 {"softvfp+vfp", FPU_ARCH_VFP_V2},
19524 {"vfp", FPU_ARCH_VFP_V2},
19525 {"vfp9", FPU_ARCH_VFP_V2},
5287ad62 19526 {"vfp3", FPU_ARCH_VFP_V3},
c19d1205
ZW
19527 {"vfp10", FPU_ARCH_VFP_V2},
19528 {"vfp10-r0", FPU_ARCH_VFP_V1},
19529 {"vfpxd", FPU_ARCH_VFP_V1xD},
19530 {"arm1020t", FPU_ARCH_VFP_V1},
19531 {"arm1020e", FPU_ARCH_VFP_V2},
19532 {"arm1136jfs", FPU_ARCH_VFP_V2},
19533 {"arm1136jf-s", FPU_ARCH_VFP_V2},
19534 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 19535 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
19536 {NULL, ARM_ARCH_NONE}
19537};
19538
19539struct arm_option_value_table
19540{
19541 char *name;
19542 long value;
c19d1205 19543};
7ed4c4c5 19544
e74cfd16 19545static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
19546{
19547 {"hard", ARM_FLOAT_ABI_HARD},
19548 {"softfp", ARM_FLOAT_ABI_SOFTFP},
19549 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 19550 {NULL, 0}
c19d1205 19551};
7ed4c4c5 19552
c19d1205 19553#ifdef OBJ_ELF
3a4a14e9 19554/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 19555static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
19556{
19557 {"gnu", EF_ARM_EABI_UNKNOWN},
19558 {"4", EF_ARM_EABI_VER4},
3a4a14e9 19559 {"5", EF_ARM_EABI_VER5},
e74cfd16 19560 {NULL, 0}
c19d1205
ZW
19561};
19562#endif
7ed4c4c5 19563
c19d1205
ZW
19564struct arm_long_option_table
19565{
19566 char * option; /* Substring to match. */
19567 char * help; /* Help information. */
19568 int (* func) (char * subopt); /* Function to decode sub-option. */
19569 char * deprecated; /* If non-null, print this message. */
19570};
7ed4c4c5
NC
19571
19572static int
e74cfd16 19573arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 19574{
e74cfd16
PB
19575 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
19576
19577 /* Copy the feature set, so that we can modify it. */
19578 *ext_set = **opt_p;
19579 *opt_p = ext_set;
19580
c19d1205 19581 while (str != NULL && *str != 0)
7ed4c4c5 19582 {
e74cfd16 19583 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
19584 char * ext;
19585 int optlen;
7ed4c4c5 19586
c19d1205
ZW
19587 if (*str != '+')
19588 {
19589 as_bad (_("invalid architectural extension"));
19590 return 0;
19591 }
7ed4c4c5 19592
c19d1205
ZW
19593 str++;
19594 ext = strchr (str, '+');
7ed4c4c5 19595
c19d1205
ZW
19596 if (ext != NULL)
19597 optlen = ext - str;
19598 else
19599 optlen = strlen (str);
7ed4c4c5 19600
c19d1205
ZW
19601 if (optlen == 0)
19602 {
19603 as_bad (_("missing architectural extension"));
19604 return 0;
19605 }
7ed4c4c5 19606
c19d1205
ZW
19607 for (opt = arm_extensions; opt->name != NULL; opt++)
19608 if (strncmp (opt->name, str, optlen) == 0)
19609 {
e74cfd16 19610 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
19611 break;
19612 }
7ed4c4c5 19613
c19d1205
ZW
19614 if (opt->name == NULL)
19615 {
19616 as_bad (_("unknown architectural extnsion `%s'"), str);
19617 return 0;
19618 }
7ed4c4c5 19619
c19d1205
ZW
19620 str = ext;
19621 };
7ed4c4c5 19622
c19d1205
ZW
19623 return 1;
19624}
7ed4c4c5 19625
c19d1205
ZW
19626static int
19627arm_parse_cpu (char * str)
7ed4c4c5 19628{
e74cfd16 19629 const struct arm_cpu_option_table * opt;
c19d1205
ZW
19630 char * ext = strchr (str, '+');
19631 int optlen;
7ed4c4c5 19632
c19d1205
ZW
19633 if (ext != NULL)
19634 optlen = ext - str;
7ed4c4c5 19635 else
c19d1205 19636 optlen = strlen (str);
7ed4c4c5 19637
c19d1205 19638 if (optlen == 0)
7ed4c4c5 19639 {
c19d1205
ZW
19640 as_bad (_("missing cpu name `%s'"), str);
19641 return 0;
7ed4c4c5
NC
19642 }
19643
c19d1205
ZW
19644 for (opt = arm_cpus; opt->name != NULL; opt++)
19645 if (strncmp (opt->name, str, optlen) == 0)
19646 {
e74cfd16
PB
19647 mcpu_cpu_opt = &opt->value;
19648 mcpu_fpu_opt = &opt->default_fpu;
ee065d83
PB
19649 if (opt->canonical_name)
19650 strcpy(selected_cpu_name, opt->canonical_name);
19651 else
19652 {
19653 int i;
19654 for (i = 0; i < optlen; i++)
19655 selected_cpu_name[i] = TOUPPER (opt->name[i]);
19656 selected_cpu_name[i] = 0;
19657 }
7ed4c4c5 19658
c19d1205
ZW
19659 if (ext != NULL)
19660 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 19661
c19d1205
ZW
19662 return 1;
19663 }
7ed4c4c5 19664
c19d1205
ZW
19665 as_bad (_("unknown cpu `%s'"), str);
19666 return 0;
7ed4c4c5
NC
19667}
19668
c19d1205
ZW
19669static int
19670arm_parse_arch (char * str)
7ed4c4c5 19671{
e74cfd16 19672 const struct arm_arch_option_table *opt;
c19d1205
ZW
19673 char *ext = strchr (str, '+');
19674 int optlen;
7ed4c4c5 19675
c19d1205
ZW
19676 if (ext != NULL)
19677 optlen = ext - str;
7ed4c4c5 19678 else
c19d1205 19679 optlen = strlen (str);
7ed4c4c5 19680
c19d1205 19681 if (optlen == 0)
7ed4c4c5 19682 {
c19d1205
ZW
19683 as_bad (_("missing architecture name `%s'"), str);
19684 return 0;
7ed4c4c5
NC
19685 }
19686
c19d1205
ZW
19687 for (opt = arm_archs; opt->name != NULL; opt++)
19688 if (streq (opt->name, str))
19689 {
e74cfd16
PB
19690 march_cpu_opt = &opt->value;
19691 march_fpu_opt = &opt->default_fpu;
ee065d83 19692 strcpy(selected_cpu_name, opt->name);
7ed4c4c5 19693
c19d1205
ZW
19694 if (ext != NULL)
19695 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 19696
c19d1205
ZW
19697 return 1;
19698 }
19699
19700 as_bad (_("unknown architecture `%s'\n"), str);
19701 return 0;
7ed4c4c5 19702}
eb043451 19703
c19d1205
ZW
19704static int
19705arm_parse_fpu (char * str)
19706{
e74cfd16 19707 const struct arm_option_cpu_value_table * opt;
b99bd4ef 19708
c19d1205
ZW
19709 for (opt = arm_fpus; opt->name != NULL; opt++)
19710 if (streq (opt->name, str))
19711 {
e74cfd16 19712 mfpu_opt = &opt->value;
c19d1205
ZW
19713 return 1;
19714 }
b99bd4ef 19715
c19d1205
ZW
19716 as_bad (_("unknown floating point format `%s'\n"), str);
19717 return 0;
19718}
19719
19720static int
19721arm_parse_float_abi (char * str)
b99bd4ef 19722{
e74cfd16 19723 const struct arm_option_value_table * opt;
b99bd4ef 19724
c19d1205
ZW
19725 for (opt = arm_float_abis; opt->name != NULL; opt++)
19726 if (streq (opt->name, str))
19727 {
19728 mfloat_abi_opt = opt->value;
19729 return 1;
19730 }
cc8a6dd0 19731
c19d1205
ZW
19732 as_bad (_("unknown floating point abi `%s'\n"), str);
19733 return 0;
19734}
b99bd4ef 19735
c19d1205
ZW
19736#ifdef OBJ_ELF
19737static int
19738arm_parse_eabi (char * str)
19739{
e74cfd16 19740 const struct arm_option_value_table *opt;
cc8a6dd0 19741
c19d1205
ZW
19742 for (opt = arm_eabis; opt->name != NULL; opt++)
19743 if (streq (opt->name, str))
19744 {
19745 meabi_flags = opt->value;
19746 return 1;
19747 }
19748 as_bad (_("unknown EABI `%s'\n"), str);
19749 return 0;
19750}
19751#endif
cc8a6dd0 19752
c19d1205
ZW
19753struct arm_long_option_table arm_long_opts[] =
19754{
19755 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
19756 arm_parse_cpu, NULL},
19757 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
19758 arm_parse_arch, NULL},
19759 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
19760 arm_parse_fpu, NULL},
19761 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
19762 arm_parse_float_abi, NULL},
19763#ifdef OBJ_ELF
19764 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
19765 arm_parse_eabi, NULL},
19766#endif
19767 {NULL, NULL, 0, NULL}
19768};
cc8a6dd0 19769
c19d1205
ZW
19770int
19771md_parse_option (int c, char * arg)
19772{
19773 struct arm_option_table *opt;
e74cfd16 19774 const struct arm_legacy_option_table *fopt;
c19d1205 19775 struct arm_long_option_table *lopt;
b99bd4ef 19776
c19d1205 19777 switch (c)
b99bd4ef 19778 {
c19d1205
ZW
19779#ifdef OPTION_EB
19780 case OPTION_EB:
19781 target_big_endian = 1;
19782 break;
19783#endif
cc8a6dd0 19784
c19d1205
ZW
19785#ifdef OPTION_EL
19786 case OPTION_EL:
19787 target_big_endian = 0;
19788 break;
19789#endif
b99bd4ef 19790
c19d1205
ZW
19791 case 'a':
19792 /* Listing option. Just ignore these, we don't support additional
19793 ones. */
19794 return 0;
b99bd4ef 19795
c19d1205
ZW
19796 default:
19797 for (opt = arm_opts; opt->option != NULL; opt++)
19798 {
19799 if (c == opt->option[0]
19800 && ((arg == NULL && opt->option[1] == 0)
19801 || streq (arg, opt->option + 1)))
19802 {
19803#if WARN_DEPRECATED
19804 /* If the option is deprecated, tell the user. */
19805 if (opt->deprecated != NULL)
19806 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19807 arg ? arg : "", _(opt->deprecated));
19808#endif
b99bd4ef 19809
c19d1205
ZW
19810 if (opt->var != NULL)
19811 *opt->var = opt->value;
cc8a6dd0 19812
c19d1205
ZW
19813 return 1;
19814 }
19815 }
b99bd4ef 19816
e74cfd16
PB
19817 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
19818 {
19819 if (c == fopt->option[0]
19820 && ((arg == NULL && fopt->option[1] == 0)
19821 || streq (arg, fopt->option + 1)))
19822 {
19823#if WARN_DEPRECATED
19824 /* If the option is deprecated, tell the user. */
19825 if (fopt->deprecated != NULL)
19826 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19827 arg ? arg : "", _(fopt->deprecated));
19828#endif
19829
19830 if (fopt->var != NULL)
19831 *fopt->var = &fopt->value;
19832
19833 return 1;
19834 }
19835 }
19836
c19d1205
ZW
19837 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19838 {
19839 /* These options are expected to have an argument. */
19840 if (c == lopt->option[0]
19841 && arg != NULL
19842 && strncmp (arg, lopt->option + 1,
19843 strlen (lopt->option + 1)) == 0)
19844 {
19845#if WARN_DEPRECATED
19846 /* If the option is deprecated, tell the user. */
19847 if (lopt->deprecated != NULL)
19848 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
19849 _(lopt->deprecated));
19850#endif
b99bd4ef 19851
c19d1205
ZW
19852 /* Call the sup-option parser. */
19853 return lopt->func (arg + strlen (lopt->option) - 1);
19854 }
19855 }
a737bd4d 19856
c19d1205
ZW
19857 return 0;
19858 }
a394c00f 19859
c19d1205
ZW
19860 return 1;
19861}
a394c00f 19862
c19d1205
ZW
19863void
19864md_show_usage (FILE * fp)
a394c00f 19865{
c19d1205
ZW
19866 struct arm_option_table *opt;
19867 struct arm_long_option_table *lopt;
a394c00f 19868
c19d1205 19869 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 19870
c19d1205
ZW
19871 for (opt = arm_opts; opt->option != NULL; opt++)
19872 if (opt->help != NULL)
19873 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 19874
c19d1205
ZW
19875 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19876 if (lopt->help != NULL)
19877 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 19878
c19d1205
ZW
19879#ifdef OPTION_EB
19880 fprintf (fp, _("\
19881 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
19882#endif
19883
c19d1205
ZW
19884#ifdef OPTION_EL
19885 fprintf (fp, _("\
19886 -EL assemble code for a little-endian cpu\n"));
a737bd4d 19887#endif
c19d1205 19888}
ee065d83
PB
19889
19890
19891#ifdef OBJ_ELF
62b3e311
PB
19892typedef struct
19893{
19894 int val;
19895 arm_feature_set flags;
19896} cpu_arch_ver_table;
19897
19898/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
19899 least features first. */
19900static const cpu_arch_ver_table cpu_arch_ver[] =
19901{
19902 {1, ARM_ARCH_V4},
19903 {2, ARM_ARCH_V4T},
19904 {3, ARM_ARCH_V5},
19905 {4, ARM_ARCH_V5TE},
19906 {5, ARM_ARCH_V5TEJ},
19907 {6, ARM_ARCH_V6},
19908 {7, ARM_ARCH_V6Z},
19909 {8, ARM_ARCH_V6K},
19910 {9, ARM_ARCH_V6T2},
19911 {10, ARM_ARCH_V7A},
19912 {10, ARM_ARCH_V7R},
19913 {10, ARM_ARCH_V7M},
19914 {0, ARM_ARCH_NONE}
19915};
19916
ee065d83
PB
19917/* Set the public EABI object attributes. */
19918static void
19919aeabi_set_public_attributes (void)
19920{
19921 int arch;
e74cfd16 19922 arm_feature_set flags;
62b3e311
PB
19923 arm_feature_set tmp;
19924 const cpu_arch_ver_table *p;
ee065d83
PB
19925
19926 /* Choose the architecture based on the capabilities of the requested cpu
19927 (if any) and/or the instructions actually used. */
e74cfd16
PB
19928 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
19929 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
19930 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
5287ad62 19931
62b3e311
PB
19932 tmp = flags;
19933 arch = 0;
19934 for (p = cpu_arch_ver; p->val; p++)
19935 {
19936 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
19937 {
19938 arch = p->val;
19939 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
19940 }
19941 }
ee065d83
PB
19942
19943 /* Tag_CPU_name. */
19944 if (selected_cpu_name[0])
19945 {
19946 char *p;
19947
19948 p = selected_cpu_name;
19949 if (strncmp(p, "armv", 4) == 0)
19950 {
19951 int i;
19952
19953 p += 4;
19954 for (i = 0; p[i]; i++)
19955 p[i] = TOUPPER (p[i]);
19956 }
19957 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
19958 }
19959 /* Tag_CPU_arch. */
19960 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
62b3e311
PB
19961 /* Tag_CPU_arch_profile. */
19962 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
19963 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
19964 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
19965 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
19966 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
19967 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
ee065d83 19968 /* Tag_ARM_ISA_use. */
e74cfd16 19969 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
ee065d83
PB
19970 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
19971 /* Tag_THUMB_ISA_use. */
e74cfd16 19972 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
ee065d83 19973 elf32_arm_add_eabi_attr_int (stdoutput, 9,
e74cfd16 19974 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 19975 /* Tag_VFP_arch. */
5287ad62
JB
19976 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
19977 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
19978 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
19979 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
19980 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
ee065d83 19981 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
5287ad62
JB
19982 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
19983 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
19984 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
19985 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
ee065d83
PB
19986 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
19987 /* Tag_WMMX_arch. */
e74cfd16
PB
19988 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
19989 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
ee065d83 19990 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
5287ad62
JB
19991 /* Tag_NEON_arch. */
19992 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
19993 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
19994 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
ee065d83
PB
19995}
19996
19997/* Add the .ARM.attributes section. */
19998void
19999arm_md_end (void)
20000{
20001 segT s;
20002 char *p;
20003 addressT addr;
20004 offsetT size;
20005
20006 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20007 return;
20008
20009 aeabi_set_public_attributes ();
20010 size = elf32_arm_eabi_attr_size (stdoutput);
20011 s = subseg_new (".ARM.attributes", 0);
20012 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
20013 addr = frag_now_fix ();
20014 p = frag_more (size);
20015 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
20016}
8463be01 20017#endif /* OBJ_ELF */
ee065d83
PB
20018
20019
20020/* Parse a .cpu directive. */
20021
20022static void
20023s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20024{
e74cfd16 20025 const struct arm_cpu_option_table *opt;
ee065d83
PB
20026 char *name;
20027 char saved_char;
20028
20029 name = input_line_pointer;
20030 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20031 input_line_pointer++;
20032 saved_char = *input_line_pointer;
20033 *input_line_pointer = 0;
20034
20035 /* Skip the first "all" entry. */
20036 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20037 if (streq (opt->name, name))
20038 {
e74cfd16
PB
20039 mcpu_cpu_opt = &opt->value;
20040 selected_cpu = opt->value;
ee065d83
PB
20041 if (opt->canonical_name)
20042 strcpy(selected_cpu_name, opt->canonical_name);
20043 else
20044 {
20045 int i;
20046 for (i = 0; opt->name[i]; i++)
20047 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20048 selected_cpu_name[i] = 0;
20049 }
e74cfd16 20050 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20051 *input_line_pointer = saved_char;
20052 demand_empty_rest_of_line ();
20053 return;
20054 }
20055 as_bad (_("unknown cpu `%s'"), name);
20056 *input_line_pointer = saved_char;
20057 ignore_rest_of_line ();
20058}
20059
20060
20061/* Parse a .arch directive. */
20062
20063static void
20064s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20065{
e74cfd16 20066 const struct arm_arch_option_table *opt;
ee065d83
PB
20067 char saved_char;
20068 char *name;
20069
20070 name = input_line_pointer;
20071 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20072 input_line_pointer++;
20073 saved_char = *input_line_pointer;
20074 *input_line_pointer = 0;
20075
20076 /* Skip the first "all" entry. */
20077 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20078 if (streq (opt->name, name))
20079 {
e74cfd16
PB
20080 mcpu_cpu_opt = &opt->value;
20081 selected_cpu = opt->value;
ee065d83 20082 strcpy(selected_cpu_name, opt->name);
e74cfd16 20083 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20084 *input_line_pointer = saved_char;
20085 demand_empty_rest_of_line ();
20086 return;
20087 }
20088
20089 as_bad (_("unknown architecture `%s'\n"), name);
20090 *input_line_pointer = saved_char;
20091 ignore_rest_of_line ();
20092}
20093
20094
20095/* Parse a .fpu directive. */
20096
20097static void
20098s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20099{
e74cfd16 20100 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20101 char saved_char;
20102 char *name;
20103
20104 name = input_line_pointer;
20105 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20106 input_line_pointer++;
20107 saved_char = *input_line_pointer;
20108 *input_line_pointer = 0;
20109
20110 for (opt = arm_fpus; opt->name != NULL; opt++)
20111 if (streq (opt->name, name))
20112 {
e74cfd16
PB
20113 mfpu_opt = &opt->value;
20114 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20115 *input_line_pointer = saved_char;
20116 demand_empty_rest_of_line ();
20117 return;
20118 }
20119
20120 as_bad (_("unknown floating point format `%s'\n"), name);
20121 *input_line_pointer = saved_char;
20122 ignore_rest_of_line ();
20123}
ee065d83 20124
This page took 1.638274 seconds and 4 git commands to generate.