* Makefile.am (ALL_EMULATION_SOURCES): Add eelf32am33lin.c
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
8d67f500
NC
242
243/* Return if no cpu was selected on command-line. */
244static bfd_boolean
245no_cpu_selected (void)
246{
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249}
250
7cc69913 251#ifdef OBJ_ELF
deeaaff8
DJ
252# ifdef EABI_DEFAULT
253static int meabi_flags = EABI_DEFAULT;
254# else
d507cf36 255static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 256# endif
e1da3f5b 257
ee3c0378
AS
258static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
e1da3f5b 260bfd_boolean
5f4273c7 261arm_is_eabi (void)
e1da3f5b
PB
262{
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264}
7cc69913 265#endif
b99bd4ef 266
b99bd4ef 267#ifdef OBJ_ELF
c19d1205 268/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
269symbolS * GOT_symbol;
270#endif
271
b99bd4ef
NC
272/* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276static int thumb_mode = 0;
8dc2430f
NC
277/* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280#define MODE_RECORDED (1 << 4)
b99bd4ef 281
e07e6e58
NC
282/* Specifies the intrinsic IT insn behavior mode. */
283enum implicit_it_mode
284{
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289};
290static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
c19d1205
ZW
292/* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315static bfd_boolean unified_syntax = FALSE;
b99bd4ef 316
5287ad62
JB
317enum neon_el_type
318{
dcbf9037 319 NT_invtype,
5287ad62
JB
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
dcbf9037 325 NT_unsigned
5287ad62
JB
326};
327
328struct neon_type_el
329{
330 enum neon_el_type type;
331 unsigned size;
332};
333
334#define NEON_MAX_TYPE_ELS 4
335
336struct neon_type
337{
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340};
341
e07e6e58
NC
342enum it_instruction_type
343{
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352};
353
b99bd4ef
NC
354struct arm_it
355{
c19d1205 356 const char * error;
b99bd4ef 357 unsigned long instruction;
c19d1205
ZW
358 int size;
359 int size_req;
360 int cond;
037e8744
JB
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
5287ad62 365 struct neon_type vectype;
88714cb8
DG
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
0110f2b8
PB
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
b99bd4ef
NC
372 struct
373 {
374 bfd_reloc_code_real_type type;
c19d1205
ZW
375 expressionS exp;
376 int pc_rel;
b99bd4ef 377 } reloc;
b99bd4ef 378
e07e6e58
NC
379 enum it_instruction_type it_insn_type;
380
c19d1205
ZW
381 struct
382 {
383 unsigned reg;
ca3f61f7 384 signed int imm;
dcbf9037 385 struct neon_type_el vectype;
ca3f61f7
NC
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 405 } operands[6];
b99bd4ef
NC
406};
407
c19d1205 408static struct arm_it inst;
b99bd4ef
NC
409
410#define NUM_FLOAT_VALS 8
411
05d2d07e 412const char * fp_const[] =
b99bd4ef
NC
413{
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415};
416
c19d1205 417/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
418#define MAX_LITTLENUMS 6
419
420LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422#define FAIL (-1)
423#define SUCCESS (0)
424
425#define SUFF_S 1
426#define SUFF_D 2
427#define SUFF_E 3
428#define SUFF_P 4
429
c19d1205
ZW
430#define CP_T_X 0x00008000
431#define CP_T_Y 0x00400000
b99bd4ef 432
c19d1205
ZW
433#define CONDS_BIT 0x00100000
434#define LOAD_BIT 0x00100000
b99bd4ef
NC
435
436#define DOUBLE_LOAD_FLAG 0x00000001
437
438struct asm_cond
439{
d3ce72d0 440 const char * template_name;
c921be7d 441 unsigned long value;
b99bd4ef
NC
442};
443
c19d1205 444#define COND_ALWAYS 0xE
b99bd4ef 445
b99bd4ef
NC
446struct asm_psr
447{
d3ce72d0 448 const char * template_name;
c921be7d 449 unsigned long field;
b99bd4ef
NC
450};
451
62b3e311
PB
452struct asm_barrier_opt
453{
d3ce72d0 454 const char * template_name;
c921be7d 455 unsigned long value;
62b3e311
PB
456};
457
2d2255b5 458/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
459#define SPSR_BIT (1 << 22)
460
c19d1205
ZW
461/* The individual PSR flag bits. */
462#define PSR_c (1 << 16)
463#define PSR_x (1 << 17)
464#define PSR_s (1 << 18)
465#define PSR_f (1 << 19)
b99bd4ef 466
c19d1205 467struct reloc_entry
bfae80f2 468{
c921be7d
NC
469 char * name;
470 bfd_reloc_code_real_type reloc;
bfae80f2
RE
471};
472
5287ad62 473enum vfp_reg_pos
bfae80f2 474{
5287ad62
JB
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
477};
478
479enum vfp_ldstm_type
480{
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482};
483
dcbf9037
JB
484/* Bits for DEFINED field in neon_typed_alias. */
485#define NTA_HASTYPE 1
486#define NTA_HASINDEX 2
487
488struct neon_typed_alias
489{
c921be7d
NC
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
dcbf9037
JB
493};
494
c19d1205
ZW
495/* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497enum arm_reg_type
bfae80f2 498{
c19d1205
ZW
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
5287ad62 505 REG_TYPE_NQ,
037e8744 506 REG_TYPE_VFSD,
5287ad62 507 REG_TYPE_NDQ,
037e8744 508 REG_TYPE_NSDQ,
c19d1205
ZW
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
90ec0d68 520 REG_TYPE_RNB
bfae80f2
RE
521};
522
dcbf9037
JB
523/* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
527struct reg_entry
528{
c921be7d 529 const char * name;
90ec0d68 530 unsigned int number;
c921be7d
NC
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
6c43fab6
RE
534};
535
c19d1205 536/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 537const char * const reg_expected_msgs[] =
c19d1205
ZW
538{
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
5287ad62
JB
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
037e8744 546 N_("VFP single or double precision register expected"),
5287ad62 547 N_("Neon double or quad precision register expected"),
037e8744 548 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
6c43fab6
RE
560};
561
c19d1205
ZW
562/* Some well known registers that we refer to directly elsewhere. */
563#define REG_SP 13
564#define REG_LR 14
565#define REG_PC 15
404ff6b5 566
b99bd4ef
NC
567/* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
c19d1205 569#define INSN_SIZE 4
b99bd4ef
NC
570
571struct asm_opcode
572{
573 /* Basic string to match. */
d3ce72d0 574 const char * template_name;
c19d1205
ZW
575
576 /* Parameters to instruction. */
5be8be5d 577 unsigned int operands[8];
c19d1205
ZW
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
b99bd4ef
NC
581
582 /* Basic instruction code. */
c19d1205 583 unsigned int avalue : 28;
b99bd4ef 584
c19d1205
ZW
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
b99bd4ef 587
90e4755a 588 /* Which architecture variant provides this instruction. */
c921be7d
NC
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
c19d1205
ZW
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
b99bd4ef 594
c19d1205
ZW
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
b99bd4ef
NC
597};
598
a737bd4d
NC
599/* Defines for various bits that we will want to toggle. */
600#define INST_IMMEDIATE 0x02000000
601#define OFFSET_REG 0x02000000
c19d1205 602#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
603#define SHIFT_BY_REG 0x00000010
604#define PRE_INDEX 0x01000000
605#define INDEX_UP 0x00800000
606#define WRITE_BACK 0x00200000
607#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 608#define CPSI_MMOD 0x00020000
90e4755a 609
a737bd4d
NC
610#define LITERAL_MASK 0xf000f000
611#define OPCODE_MASK 0xfe1fffff
612#define V4_STR_BIT 0x00000020
90e4755a 613
efd81785
PB
614#define T2_SUBS_PC_LR 0xf3de8f00
615
a737bd4d 616#define DATA_OP_SHIFT 21
90e4755a 617
ef8d22e6
PB
618#define T2_OPCODE_MASK 0xfe1fffff
619#define T2_DATA_OP_SHIFT 21
620
a737bd4d
NC
621/* Codes to distinguish the arithmetic instructions. */
622#define OPCODE_AND 0
623#define OPCODE_EOR 1
624#define OPCODE_SUB 2
625#define OPCODE_RSB 3
626#define OPCODE_ADD 4
627#define OPCODE_ADC 5
628#define OPCODE_SBC 6
629#define OPCODE_RSC 7
630#define OPCODE_TST 8
631#define OPCODE_TEQ 9
632#define OPCODE_CMP 10
633#define OPCODE_CMN 11
634#define OPCODE_ORR 12
635#define OPCODE_MOV 13
636#define OPCODE_BIC 14
637#define OPCODE_MVN 15
90e4755a 638
ef8d22e6
PB
639#define T2_OPCODE_AND 0
640#define T2_OPCODE_BIC 1
641#define T2_OPCODE_ORR 2
642#define T2_OPCODE_ORN 3
643#define T2_OPCODE_EOR 4
644#define T2_OPCODE_ADD 8
645#define T2_OPCODE_ADC 10
646#define T2_OPCODE_SBC 11
647#define T2_OPCODE_SUB 13
648#define T2_OPCODE_RSB 14
649
a737bd4d
NC
650#define T_OPCODE_MUL 0x4340
651#define T_OPCODE_TST 0x4200
652#define T_OPCODE_CMN 0x42c0
653#define T_OPCODE_NEG 0x4240
654#define T_OPCODE_MVN 0x43c0
90e4755a 655
a737bd4d
NC
656#define T_OPCODE_ADD_R3 0x1800
657#define T_OPCODE_SUB_R3 0x1a00
658#define T_OPCODE_ADD_HI 0x4400
659#define T_OPCODE_ADD_ST 0xb000
660#define T_OPCODE_SUB_ST 0xb080
661#define T_OPCODE_ADD_SP 0xa800
662#define T_OPCODE_ADD_PC 0xa000
663#define T_OPCODE_ADD_I8 0x3000
664#define T_OPCODE_SUB_I8 0x3800
665#define T_OPCODE_ADD_I3 0x1c00
666#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 667
a737bd4d
NC
668#define T_OPCODE_ASR_R 0x4100
669#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
670#define T_OPCODE_LSR_R 0x40c0
671#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
672#define T_OPCODE_ASR_I 0x1000
673#define T_OPCODE_LSL_I 0x0000
674#define T_OPCODE_LSR_I 0x0800
b99bd4ef 675
a737bd4d
NC
676#define T_OPCODE_MOV_I8 0x2000
677#define T_OPCODE_CMP_I8 0x2800
678#define T_OPCODE_CMP_LR 0x4280
679#define T_OPCODE_MOV_HR 0x4600
680#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 681
a737bd4d
NC
682#define T_OPCODE_LDR_PC 0x4800
683#define T_OPCODE_LDR_SP 0x9800
684#define T_OPCODE_STR_SP 0x9000
685#define T_OPCODE_LDR_IW 0x6800
686#define T_OPCODE_STR_IW 0x6000
687#define T_OPCODE_LDR_IH 0x8800
688#define T_OPCODE_STR_IH 0x8000
689#define T_OPCODE_LDR_IB 0x7800
690#define T_OPCODE_STR_IB 0x7000
691#define T_OPCODE_LDR_RW 0x5800
692#define T_OPCODE_STR_RW 0x5000
693#define T_OPCODE_LDR_RH 0x5a00
694#define T_OPCODE_STR_RH 0x5200
695#define T_OPCODE_LDR_RB 0x5c00
696#define T_OPCODE_STR_RB 0x5400
c9b604bd 697
a737bd4d
NC
698#define T_OPCODE_PUSH 0xb400
699#define T_OPCODE_POP 0xbc00
b99bd4ef 700
2fc8bdac 701#define T_OPCODE_BRANCH 0xe000
b99bd4ef 702
a737bd4d 703#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 704#define THUMB_PP_PC_LR 0x0100
c19d1205 705#define THUMB_LOAD_BIT 0x0800
53365c0d 706#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
707
708#define BAD_ARGS _("bad arguments to instruction")
fdfde340 709#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
710#define BAD_PC _("r15 not allowed here")
711#define BAD_COND _("instruction cannot be conditional")
712#define BAD_OVERLAP _("registers may not be the same")
713#define BAD_HIREG _("lo register required")
714#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 715#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
716#define BAD_BRANCH _("branch must be last instruction in IT block")
717#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 718#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
719#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720#define BAD_IT_COND _("incorrect condition in IT block")
721#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 722#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
723#define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725#define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
c19d1205 727
c921be7d
NC
728static struct hash_control * arm_ops_hsh;
729static struct hash_control * arm_cond_hsh;
730static struct hash_control * arm_shift_hsh;
731static struct hash_control * arm_psr_hsh;
732static struct hash_control * arm_v7m_psr_hsh;
733static struct hash_control * arm_reg_hsh;
734static struct hash_control * arm_reloc_hsh;
735static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 736
b99bd4ef
NC
737/* Stuff needed to resolve the label ambiguity
738 As:
739 ...
740 label: <insn>
741 may differ from:
742 ...
743 label:
5f4273c7 744 <insn> */
b99bd4ef
NC
745
746symbolS * last_label_seen;
b34976b6 747static int label_is_thumb_function_name = FALSE;
e07e6e58 748
3d0c9500
NC
749/* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
a737bd4d 751
c19d1205 752#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 753typedef struct literal_pool
b99bd4ef 754{
c921be7d
NC
755 expressionS literals [MAX_LITERAL_POOL_SIZE];
756 unsigned int next_free_entry;
757 unsigned int id;
758 symbolS * symbol;
759 segT section;
760 subsegT sub_section;
761 struct literal_pool * next;
3d0c9500 762} literal_pool;
b99bd4ef 763
3d0c9500
NC
764/* Pointer to a linked list of literal pools. */
765literal_pool * list_of_pools = NULL;
e27ec89e 766
e07e6e58
NC
767#ifdef OBJ_ELF
768# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
769#else
770static struct current_it now_it;
771#endif
772
773static inline int
774now_it_compatible (int cond)
775{
776 return (cond & ~1) == (now_it.cc & ~1);
777}
778
779static inline int
780conditional_insn (void)
781{
782 return inst.cond != COND_ALWAYS;
783}
784
785static int in_it_block (void);
786
787static int handle_it_state (void);
788
789static void force_automatic_it_block_close (void);
790
c921be7d
NC
791static void it_fsm_post_encode (void);
792
e07e6e58
NC
793#define set_it_insn_type(type) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return; \
799 } \
800 while (0)
801
c921be7d
NC
802#define set_it_insn_type_nonvoid(type, failret) \
803 do \
804 { \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
807 return failret; \
808 } \
809 while(0)
810
e07e6e58
NC
811#define set_it_insn_type_last() \
812 do \
813 { \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
816 else \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
818 } \
819 while (0)
820
c19d1205 821/* Pure syntax. */
b99bd4ef 822
c19d1205
ZW
823/* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825const char comment_chars[] = "@";
3d0c9500 826
c19d1205
ZW
827/* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830/* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833/* Also note that comments like this one will always work. */
834const char line_comment_chars[] = "#";
3d0c9500 835
c19d1205 836const char line_separator_chars[] = ";";
b99bd4ef 837
c19d1205
ZW
838/* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840const char EXP_CHARS[] = "eE";
3d0c9500 841
c19d1205
ZW
842/* Chars that mean this number is a floating point constant. */
843/* As in 0f12.456 */
844/* or 0d1.2345e12 */
b99bd4ef 845
c19d1205 846const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 847
c19d1205
ZW
848/* Prefix characters that indicate the start of an immediate
849 value. */
850#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 851
c19d1205
ZW
852/* Separator character handling. */
853
854#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
855
856static inline int
857skip_past_char (char ** str, char c)
858{
859 if (**str == c)
860 {
861 (*str)++;
862 return SUCCESS;
3d0c9500 863 }
c19d1205
ZW
864 else
865 return FAIL;
866}
c921be7d 867
c19d1205 868#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 869
c19d1205
ZW
870/* Arithmetic expressions (possibly involving symbols). */
871
872/* Return TRUE if anything in the expression is a bignum. */
873
874static int
875walk_no_bignums (symbolS * sp)
876{
877 if (symbol_get_value_expression (sp)->X_op == O_big)
878 return 1;
879
880 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 881 {
c19d1205
ZW
882 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
883 || (symbol_get_value_expression (sp)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
885 }
886
c19d1205 887 return 0;
3d0c9500
NC
888}
889
c19d1205
ZW
890static int in_my_get_expression = 0;
891
892/* Third argument to my_get_expression. */
893#define GE_NO_PREFIX 0
894#define GE_IMM_PREFIX 1
895#define GE_OPT_PREFIX 2
5287ad62
JB
896/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898#define GE_OPT_PREFIX_BIG 3
a737bd4d 899
b99bd4ef 900static int
c19d1205 901my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 902{
c19d1205
ZW
903 char * save_in;
904 segT seg;
b99bd4ef 905
c19d1205
ZW
906 /* In unified syntax, all prefixes are optional. */
907 if (unified_syntax)
5287ad62
JB
908 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
909 : GE_OPT_PREFIX;
b99bd4ef 910
c19d1205 911 switch (prefix_mode)
b99bd4ef 912 {
c19d1205
ZW
913 case GE_NO_PREFIX: break;
914 case GE_IMM_PREFIX:
915 if (!is_immediate_prefix (**str))
916 {
917 inst.error = _("immediate expression requires a # prefix");
918 return FAIL;
919 }
920 (*str)++;
921 break;
922 case GE_OPT_PREFIX:
5287ad62 923 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
924 if (is_immediate_prefix (**str))
925 (*str)++;
926 break;
927 default: abort ();
928 }
b99bd4ef 929
c19d1205 930 memset (ep, 0, sizeof (expressionS));
b99bd4ef 931
c19d1205
ZW
932 save_in = input_line_pointer;
933 input_line_pointer = *str;
934 in_my_get_expression = 1;
935 seg = expression (ep);
936 in_my_get_expression = 0;
937
f86adc07 938 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 939 {
f86adc07 940 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 if (inst.error == NULL)
f86adc07
NS
944 inst.error = (ep->X_op == O_absent
945 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
946 return 1;
947 }
b99bd4ef 948
c19d1205
ZW
949#ifdef OBJ_AOUT
950 if (seg != absolute_section
951 && seg != text_section
952 && seg != data_section
953 && seg != bss_section
954 && seg != undefined_section)
955 {
956 inst.error = _("bad segment");
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 1;
b99bd4ef 960 }
87975d2a
AM
961#else
962 (void) seg;
c19d1205 963#endif
b99bd4ef 964
c19d1205
ZW
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
5287ad62
JB
968 if (prefix_mode != GE_OPT_PREFIX_BIG
969 && (ep->X_op == O_big
970 || (ep->X_add_symbol
971 && (walk_no_bignums (ep->X_add_symbol)
972 || (ep->X_op_symbol
973 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
974 {
975 inst.error = _("invalid constant");
976 *str = input_line_pointer;
977 input_line_pointer = save_in;
978 return 1;
979 }
b99bd4ef 980
c19d1205
ZW
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 0;
b99bd4ef
NC
984}
985
c19d1205
ZW
986/* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
b99bd4ef 990
c19d1205
ZW
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 997
c19d1205 998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 999
c19d1205
ZW
1000char *
1001md_atof (int type, char * litP, int * sizeP)
1002{
1003 int prec;
1004 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1005 char *t;
1006 int i;
b99bd4ef 1007
c19d1205
ZW
1008 switch (type)
1009 {
1010 case 'f':
1011 case 'F':
1012 case 's':
1013 case 'S':
1014 prec = 2;
1015 break;
b99bd4ef 1016
c19d1205
ZW
1017 case 'd':
1018 case 'D':
1019 case 'r':
1020 case 'R':
1021 prec = 4;
1022 break;
b99bd4ef 1023
c19d1205
ZW
1024 case 'x':
1025 case 'X':
499ac353 1026 prec = 5;
c19d1205 1027 break;
b99bd4ef 1028
c19d1205
ZW
1029 case 'p':
1030 case 'P':
499ac353 1031 prec = 5;
c19d1205 1032 break;
a737bd4d 1033
c19d1205
ZW
1034 default:
1035 *sizeP = 0;
499ac353 1036 return _("Unrecognized or unsupported floating point constant");
c19d1205 1037 }
b99bd4ef 1038
c19d1205
ZW
1039 t = atof_ieee (input_line_pointer, type, words);
1040 if (t)
1041 input_line_pointer = t;
499ac353 1042 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1043
c19d1205
ZW
1044 if (target_big_endian)
1045 {
1046 for (i = 0; i < prec; i++)
1047 {
499ac353
NC
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1050 }
1051 }
1052 else
1053 {
e74cfd16 1054 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1055 for (i = prec - 1; i >= 0; i--)
1056 {
499ac353
NC
1057 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1058 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1059 }
1060 else
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i = 0; i < prec; i += 2)
1064 {
499ac353
NC
1065 md_number_to_chars (litP, (valueT) words[i + 1],
1066 sizeof (LITTLENUM_TYPE));
1067 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1068 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1069 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1070 }
1071 }
b99bd4ef 1072
499ac353 1073 return NULL;
c19d1205 1074}
b99bd4ef 1075
c19d1205
ZW
1076/* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1078void
91d6fa6a 1079md_operand (expressionS * exp)
c19d1205
ZW
1080{
1081 if (in_my_get_expression)
91d6fa6a 1082 exp->X_op = O_illegal;
b99bd4ef
NC
1083}
1084
c19d1205 1085/* Immediate values. */
b99bd4ef 1086
c19d1205
ZW
1087/* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1090#ifdef OBJ_ELF
1091static int
1092immediate_for_directive (int *val)
b99bd4ef 1093{
c19d1205
ZW
1094 expressionS exp;
1095 exp.X_op = O_illegal;
b99bd4ef 1096
c19d1205
ZW
1097 if (is_immediate_prefix (*input_line_pointer))
1098 {
1099 input_line_pointer++;
1100 expression (&exp);
1101 }
b99bd4ef 1102
c19d1205
ZW
1103 if (exp.X_op != O_constant)
1104 {
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1107 return FAIL;
1108 }
1109 *val = exp.X_add_number;
1110 return SUCCESS;
b99bd4ef 1111}
c19d1205 1112#endif
b99bd4ef 1113
c19d1205 1114/* Register parsing. */
b99bd4ef 1115
c19d1205
ZW
1116/* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1120
1121static struct reg_entry *
1122arm_reg_parse_multi (char **ccp)
b99bd4ef 1123{
c19d1205
ZW
1124 char *start = *ccp;
1125 char *p;
1126 struct reg_entry *reg;
b99bd4ef 1127
c19d1205
ZW
1128#ifdef REGISTER_PREFIX
1129 if (*start != REGISTER_PREFIX)
01cfc07f 1130 return NULL;
c19d1205
ZW
1131 start++;
1132#endif
1133#ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start == OPTIONAL_REGISTER_PREFIX)
1135 start++;
1136#endif
b99bd4ef 1137
c19d1205
ZW
1138 p = start;
1139 if (!ISALPHA (*p) || !is_name_beginner (*p))
1140 return NULL;
b99bd4ef 1141
c19d1205
ZW
1142 do
1143 p++;
1144 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1145
1146 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1147
1148 if (!reg)
1149 return NULL;
1150
1151 *ccp = p;
1152 return reg;
b99bd4ef
NC
1153}
1154
1155static int
dcbf9037
JB
1156arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1157 enum arm_reg_type type)
b99bd4ef 1158{
c19d1205
ZW
1159 /* Alternative syntaxes are accepted for a few register classes. */
1160 switch (type)
1161 {
1162 case REG_TYPE_MVF:
1163 case REG_TYPE_MVD:
1164 case REG_TYPE_MVFX:
1165 case REG_TYPE_MVDX:
1166 /* Generic coprocessor register names are allowed for these. */
79134647 1167 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1168 return reg->number;
1169 break;
69b97547 1170
c19d1205
ZW
1171 case REG_TYPE_CP:
1172 /* For backward compatibility, a bare number is valid here. */
1173 {
1174 unsigned long processor = strtoul (start, ccp, 10);
1175 if (*ccp != start && processor <= 15)
1176 return processor;
1177 }
6057a28f 1178
c19d1205
ZW
1179 case REG_TYPE_MMXWC:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
79134647 1182 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1183 return reg->number;
6057a28f 1184 break;
c19d1205 1185
6057a28f 1186 default:
c19d1205 1187 break;
6057a28f
NC
1188 }
1189
dcbf9037
JB
1190 return FAIL;
1191}
1192
1193/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1195
1196static int
1197arm_reg_parse (char **ccp, enum arm_reg_type type)
1198{
1199 char *start = *ccp;
1200 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1201 int ret;
1202
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1205 return FAIL;
1206
1207 if (reg && reg->type == type)
1208 return reg->number;
1209
1210 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1211 return ret;
1212
c19d1205
ZW
1213 *ccp = start;
1214 return FAIL;
1215}
69b97547 1216
dcbf9037
JB
1217/* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1219 properly. E.g.,
1220
1221 .i32.i32.s16
1222 .s32.f32
1223 .u16
1224
1225 Can all be legally parsed by this function.
1226
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1230
1231static int
1232parse_neon_type (struct neon_type *type, char **str)
1233{
1234 char *ptr = *str;
1235
1236 if (type)
1237 type->elems = 0;
1238
1239 while (type->elems < NEON_MAX_TYPE_ELS)
1240 {
1241 enum neon_el_type thistype = NT_untyped;
1242 unsigned thissize = -1u;
1243
1244 if (*ptr != '.')
1245 break;
1246
1247 ptr++;
1248
1249 /* Just a size without an explicit type. */
1250 if (ISDIGIT (*ptr))
1251 goto parsesize;
1252
1253 switch (TOLOWER (*ptr))
1254 {
1255 case 'i': thistype = NT_integer; break;
1256 case 'f': thistype = NT_float; break;
1257 case 'p': thistype = NT_poly; break;
1258 case 's': thistype = NT_signed; break;
1259 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1260 case 'd':
1261 thistype = NT_float;
1262 thissize = 64;
1263 ptr++;
1264 goto done;
dcbf9037
JB
1265 default:
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1267 return FAIL;
1268 }
1269
1270 ptr++;
1271
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype == NT_float && !ISDIGIT (*ptr))
1274 thissize = 32;
1275 else
1276 {
1277 parsesize:
1278 thissize = strtoul (ptr, &ptr, 10);
1279
1280 if (thissize != 8 && thissize != 16 && thissize != 32
1281 && thissize != 64)
1282 {
1283 as_bad (_("bad size %d in type specifier"), thissize);
1284 return FAIL;
1285 }
1286 }
1287
037e8744 1288 done:
dcbf9037
JB
1289 if (type)
1290 {
1291 type->el[type->elems].type = thistype;
1292 type->el[type->elems].size = thissize;
1293 type->elems++;
1294 }
1295 }
1296
1297 /* Empty/missing type is not a successful parse. */
1298 if (type->elems == 0)
1299 return FAIL;
1300
1301 *str = ptr;
1302
1303 return SUCCESS;
1304}
1305
1306/* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1310
1311static void
1312first_error (const char *err)
1313{
1314 if (!inst.error)
1315 inst.error = err;
1316}
1317
1318/* Parse a single type, e.g. ".s32", leading period included. */
1319static int
1320parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1321{
1322 char *str = *ccp;
1323 struct neon_type optype;
1324
1325 if (*str == '.')
1326 {
1327 if (parse_neon_type (&optype, &str) == SUCCESS)
1328 {
1329 if (optype.elems == 1)
1330 *vectype = optype.el[0];
1331 else
1332 {
1333 first_error (_("only one type should be specified for operand"));
1334 return FAIL;
1335 }
1336 }
1337 else
1338 {
1339 first_error (_("vector type expected"));
1340 return FAIL;
1341 }
1342 }
1343 else
1344 return FAIL;
5f4273c7 1345
dcbf9037 1346 *ccp = str;
5f4273c7 1347
dcbf9037
JB
1348 return SUCCESS;
1349}
1350
1351/* Special meanings for indices (which have a range of 0-7), which will fit into
1352 a 4-bit integer. */
1353
1354#define NEON_ALL_LANES 15
1355#define NEON_INTERLEAVE_LANES 14
1356
1357/* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1361
1362static int
1363parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1364 enum arm_reg_type *rtype,
1365 struct neon_typed_alias *typeinfo)
1366{
1367 char *str = *ccp;
1368 struct reg_entry *reg = arm_reg_parse_multi (&str);
1369 struct neon_typed_alias atype;
1370 struct neon_type_el parsetype;
1371
1372 atype.defined = 0;
1373 atype.index = -1;
1374 atype.eltype.type = NT_invtype;
1375 atype.eltype.size = -1;
1376
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1379 if (reg == NULL)
1380 {
1381 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1382 if (altreg != FAIL)
1383 *ccp = str;
1384 if (typeinfo)
1385 *typeinfo = atype;
1386 return altreg;
1387 }
1388
037e8744
JB
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type == REG_TYPE_NDQ
1391 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1392 || (type == REG_TYPE_VFSD
1393 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1394 || (type == REG_TYPE_NSDQ
1395 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1396 || reg->type == REG_TYPE_NQ))
1397 || (type == REG_TYPE_MMXWC
1398 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1399 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1400
1401 if (type != reg->type)
1402 return FAIL;
1403
1404 if (reg->neon)
1405 atype = *reg->neon;
5f4273c7 1406
dcbf9037
JB
1407 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1408 {
1409 if ((atype.defined & NTA_HASTYPE) != 0)
1410 {
1411 first_error (_("can't redefine type for operand"));
1412 return FAIL;
1413 }
1414 atype.defined |= NTA_HASTYPE;
1415 atype.eltype = parsetype;
1416 }
5f4273c7 1417
dcbf9037
JB
1418 if (skip_past_char (&str, '[') == SUCCESS)
1419 {
1420 if (type != REG_TYPE_VFD)
1421 {
1422 first_error (_("only D registers may be indexed"));
1423 return FAIL;
1424 }
5f4273c7 1425
dcbf9037
JB
1426 if ((atype.defined & NTA_HASINDEX) != 0)
1427 {
1428 first_error (_("can't change index for operand"));
1429 return FAIL;
1430 }
1431
1432 atype.defined |= NTA_HASINDEX;
1433
1434 if (skip_past_char (&str, ']') == SUCCESS)
1435 atype.index = NEON_ALL_LANES;
1436 else
1437 {
1438 expressionS exp;
1439
1440 my_get_expression (&exp, &str, GE_NO_PREFIX);
1441
1442 if (exp.X_op != O_constant)
1443 {
1444 first_error (_("constant expression required"));
1445 return FAIL;
1446 }
1447
1448 if (skip_past_char (&str, ']') == FAIL)
1449 return FAIL;
1450
1451 atype.index = exp.X_add_number;
1452 }
1453 }
5f4273c7 1454
dcbf9037
JB
1455 if (typeinfo)
1456 *typeinfo = atype;
5f4273c7 1457
dcbf9037
JB
1458 if (rtype)
1459 *rtype = type;
5f4273c7 1460
dcbf9037 1461 *ccp = str;
5f4273c7 1462
dcbf9037
JB
1463 return reg->number;
1464}
1465
1466/* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1471 This function will fault on encountering a scalar. */
dcbf9037
JB
1472
1473static int
1474arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1475 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1476{
1477 struct neon_typed_alias atype;
1478 char *str = *ccp;
1479 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1480
1481 if (reg == FAIL)
1482 return FAIL;
1483
0855e32b
NS
1484 /* Do not allow regname(... to parse as a register. */
1485 if (*str == '(')
1486 return FAIL;
1487
dcbf9037
JB
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype.defined & NTA_HASINDEX) != 0)
1490 {
1491 first_error (_("register operand expected, but got scalar"));
1492 return FAIL;
1493 }
1494
1495 if (vectype)
1496 *vectype = atype.eltype;
1497
1498 *ccp = str;
1499
1500 return reg;
1501}
1502
1503#define NEON_SCALAR_REG(X) ((X) >> 4)
1504#define NEON_SCALAR_INDEX(X) ((X) & 15)
1505
5287ad62
JB
1506/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1509
1510static int
dcbf9037 1511parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1512{
dcbf9037 1513 int reg;
5287ad62 1514 char *str = *ccp;
dcbf9037 1515 struct neon_typed_alias atype;
5f4273c7 1516
dcbf9037 1517 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1518
dcbf9037 1519 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1520 return FAIL;
5f4273c7 1521
dcbf9037 1522 if (atype.index == NEON_ALL_LANES)
5287ad62 1523 {
dcbf9037 1524 first_error (_("scalar must have an index"));
5287ad62
JB
1525 return FAIL;
1526 }
dcbf9037 1527 else if (atype.index >= 64 / elsize)
5287ad62 1528 {
dcbf9037 1529 first_error (_("scalar index out of range"));
5287ad62
JB
1530 return FAIL;
1531 }
5f4273c7 1532
dcbf9037
JB
1533 if (type)
1534 *type = atype.eltype;
5f4273c7 1535
5287ad62 1536 *ccp = str;
5f4273c7 1537
dcbf9037 1538 return reg * 16 + atype.index;
5287ad62
JB
1539}
1540
c19d1205 1541/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1542
c19d1205
ZW
1543static long
1544parse_reg_list (char ** strp)
1545{
1546 char * str = * strp;
1547 long range = 0;
1548 int another_range;
a737bd4d 1549
c19d1205
ZW
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1551 do
6057a28f 1552 {
c19d1205 1553 another_range = 0;
a737bd4d 1554
c19d1205
ZW
1555 if (*str == '{')
1556 {
1557 int in_range = 0;
1558 int cur_reg = -1;
a737bd4d 1559
c19d1205
ZW
1560 str++;
1561 do
1562 {
1563 int reg;
6057a28f 1564
dcbf9037 1565 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1566 {
dcbf9037 1567 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1568 return FAIL;
1569 }
a737bd4d 1570
c19d1205
ZW
1571 if (in_range)
1572 {
1573 int i;
a737bd4d 1574
c19d1205
ZW
1575 if (reg <= cur_reg)
1576 {
dcbf9037 1577 first_error (_("bad range in register list"));
c19d1205
ZW
1578 return FAIL;
1579 }
40a18ebd 1580
c19d1205
ZW
1581 for (i = cur_reg + 1; i < reg; i++)
1582 {
1583 if (range & (1 << i))
1584 as_tsktsk
1585 (_("Warning: duplicated register (r%d) in register list"),
1586 i);
1587 else
1588 range |= 1 << i;
1589 }
1590 in_range = 0;
1591 }
a737bd4d 1592
c19d1205
ZW
1593 if (range & (1 << reg))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1595 reg);
1596 else if (reg <= cur_reg)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1598
c19d1205
ZW
1599 range |= 1 << reg;
1600 cur_reg = reg;
1601 }
1602 while (skip_past_comma (&str) != FAIL
1603 || (in_range = 1, *str++ == '-'));
1604 str--;
a737bd4d 1605
c19d1205
ZW
1606 if (*str++ != '}')
1607 {
dcbf9037 1608 first_error (_("missing `}'"));
c19d1205
ZW
1609 return FAIL;
1610 }
1611 }
1612 else
1613 {
91d6fa6a 1614 expressionS exp;
40a18ebd 1615
91d6fa6a 1616 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1617 return FAIL;
40a18ebd 1618
91d6fa6a 1619 if (exp.X_op == O_constant)
c19d1205 1620 {
91d6fa6a
NC
1621 if (exp.X_add_number
1622 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1623 {
1624 inst.error = _("invalid register mask");
1625 return FAIL;
1626 }
a737bd4d 1627
91d6fa6a 1628 if ((range & exp.X_add_number) != 0)
c19d1205 1629 {
91d6fa6a 1630 int regno = range & exp.X_add_number;
a737bd4d 1631
c19d1205
ZW
1632 regno &= -regno;
1633 regno = (1 << regno) - 1;
1634 as_tsktsk
1635 (_("Warning: duplicated register (r%d) in register list"),
1636 regno);
1637 }
a737bd4d 1638
91d6fa6a 1639 range |= exp.X_add_number;
c19d1205
ZW
1640 }
1641 else
1642 {
1643 if (inst.reloc.type != 0)
1644 {
1645 inst.error = _("expression too complex");
1646 return FAIL;
1647 }
a737bd4d 1648
91d6fa6a 1649 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1650 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1651 inst.reloc.pc_rel = 0;
1652 }
1653 }
a737bd4d 1654
c19d1205
ZW
1655 if (*str == '|' || *str == '+')
1656 {
1657 str++;
1658 another_range = 1;
1659 }
a737bd4d 1660 }
c19d1205 1661 while (another_range);
a737bd4d 1662
c19d1205
ZW
1663 *strp = str;
1664 return range;
a737bd4d
NC
1665}
1666
5287ad62
JB
1667/* Types of registers in a list. */
1668
1669enum reg_list_els
1670{
1671 REGLIST_VFP_S,
1672 REGLIST_VFP_D,
1673 REGLIST_NEON_D
1674};
1675
c19d1205
ZW
1676/* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1683 some cases, e.g.:
1684 vtbl.8 d3,d4,d5
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
dcbf9037
JB
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1689 bug. */
6057a28f 1690
c19d1205 1691static int
037e8744 1692parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1693{
037e8744 1694 char *str = *ccp;
c19d1205
ZW
1695 int base_reg;
1696 int new_base;
21d799b5 1697 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1698 int max_regs = 0;
c19d1205
ZW
1699 int count = 0;
1700 int warned = 0;
1701 unsigned long mask = 0;
a737bd4d 1702 int i;
6057a28f 1703
037e8744 1704 if (*str != '{')
5287ad62
JB
1705 {
1706 inst.error = _("expecting {");
1707 return FAIL;
1708 }
6057a28f 1709
037e8744 1710 str++;
6057a28f 1711
5287ad62 1712 switch (etype)
c19d1205 1713 {
5287ad62 1714 case REGLIST_VFP_S:
c19d1205
ZW
1715 regtype = REG_TYPE_VFS;
1716 max_regs = 32;
5287ad62 1717 break;
5f4273c7 1718
5287ad62
JB
1719 case REGLIST_VFP_D:
1720 regtype = REG_TYPE_VFD;
b7fc2769 1721 break;
5f4273c7 1722
b7fc2769
JB
1723 case REGLIST_NEON_D:
1724 regtype = REG_TYPE_NDQ;
1725 break;
1726 }
1727
1728 if (etype != REGLIST_VFP_S)
1729 {
b1cc4aeb
PB
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1732 {
1733 max_regs = 32;
1734 if (thumb_mode)
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1736 fpu_vfp_ext_d32);
5287ad62
JB
1737 else
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1739 fpu_vfp_ext_d32);
5287ad62
JB
1740 }
1741 else
1742 max_regs = 16;
c19d1205 1743 }
6057a28f 1744
c19d1205 1745 base_reg = max_regs;
a737bd4d 1746
c19d1205
ZW
1747 do
1748 {
5287ad62 1749 int setmask = 1, addregs = 1;
dcbf9037 1750
037e8744 1751 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1752
c19d1205 1753 if (new_base == FAIL)
a737bd4d 1754 {
dcbf9037 1755 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1756 return FAIL;
1757 }
5f4273c7 1758
b7fc2769
JB
1759 if (new_base >= max_regs)
1760 {
1761 first_error (_("register out of range in list"));
1762 return FAIL;
1763 }
5f4273c7 1764
5287ad62
JB
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype == REG_TYPE_NQ)
1767 {
1768 setmask = 3;
1769 addregs = 2;
1770 }
1771
c19d1205
ZW
1772 if (new_base < base_reg)
1773 base_reg = new_base;
a737bd4d 1774
5287ad62 1775 if (mask & (setmask << new_base))
c19d1205 1776 {
dcbf9037 1777 first_error (_("invalid register list"));
c19d1205 1778 return FAIL;
a737bd4d 1779 }
a737bd4d 1780
c19d1205
ZW
1781 if ((mask >> new_base) != 0 && ! warned)
1782 {
1783 as_tsktsk (_("register list not in ascending order"));
1784 warned = 1;
1785 }
0bbf2aa4 1786
5287ad62
JB
1787 mask |= setmask << new_base;
1788 count += addregs;
0bbf2aa4 1789
037e8744 1790 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1791 {
1792 int high_range;
0bbf2aa4 1793
037e8744 1794 str++;
0bbf2aa4 1795
037e8744 1796 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1797 == FAIL)
c19d1205
ZW
1798 {
1799 inst.error = gettext (reg_expected_msgs[regtype]);
1800 return FAIL;
1801 }
0bbf2aa4 1802
b7fc2769
JB
1803 if (high_range >= max_regs)
1804 {
1805 first_error (_("register out of range in list"));
1806 return FAIL;
1807 }
1808
5287ad62
JB
1809 if (regtype == REG_TYPE_NQ)
1810 high_range = high_range + 1;
1811
c19d1205
ZW
1812 if (high_range <= new_base)
1813 {
1814 inst.error = _("register range not in ascending order");
1815 return FAIL;
1816 }
0bbf2aa4 1817
5287ad62 1818 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1819 {
5287ad62 1820 if (mask & (setmask << new_base))
0bbf2aa4 1821 {
c19d1205
ZW
1822 inst.error = _("invalid register list");
1823 return FAIL;
0bbf2aa4 1824 }
c19d1205 1825
5287ad62
JB
1826 mask |= setmask << new_base;
1827 count += addregs;
0bbf2aa4 1828 }
0bbf2aa4 1829 }
0bbf2aa4 1830 }
037e8744 1831 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1832
037e8744 1833 str++;
0bbf2aa4 1834
c19d1205
ZW
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count == 0 || count > max_regs)
1837 abort ();
1838
1839 *pbase = base_reg;
1840
1841 /* Final test -- the registers must be consecutive. */
1842 mask >>= base_reg;
1843 for (i = 0; i < count; i++)
1844 {
1845 if ((mask & (1u << i)) == 0)
1846 {
1847 inst.error = _("non-contiguous register range");
1848 return FAIL;
1849 }
1850 }
1851
037e8744
JB
1852 *ccp = str;
1853
c19d1205 1854 return count;
b99bd4ef
NC
1855}
1856
dcbf9037
JB
1857/* True if two alias types are the same. */
1858
c921be7d 1859static bfd_boolean
dcbf9037
JB
1860neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1861{
1862 if (!a && !b)
c921be7d 1863 return TRUE;
5f4273c7 1864
dcbf9037 1865 if (!a || !b)
c921be7d 1866 return FALSE;
dcbf9037
JB
1867
1868 if (a->defined != b->defined)
c921be7d 1869 return FALSE;
5f4273c7 1870
dcbf9037
JB
1871 if ((a->defined & NTA_HASTYPE) != 0
1872 && (a->eltype.type != b->eltype.type
1873 || a->eltype.size != b->eltype.size))
c921be7d 1874 return FALSE;
dcbf9037
JB
1875
1876 if ((a->defined & NTA_HASINDEX) != 0
1877 && (a->index != b->index))
c921be7d 1878 return FALSE;
5f4273c7 1879
c921be7d 1880 return TRUE;
dcbf9037
JB
1881}
1882
5287ad62
JB
1883/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
dcbf9037 1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1886 the return value.
1887 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1890
5287ad62 1891#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1892#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1893#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1894
1895static int
dcbf9037
JB
1896parse_neon_el_struct_list (char **str, unsigned *pbase,
1897 struct neon_type_el *eltype)
5287ad62
JB
1898{
1899 char *ptr = *str;
1900 int base_reg = -1;
1901 int reg_incr = -1;
1902 int count = 0;
1903 int lane = -1;
1904 int leading_brace = 0;
1905 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1906 const char *const incr_error = _("register stride must be 1 or 2");
1907 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1908 struct neon_typed_alias firsttype;
5f4273c7 1909
5287ad62
JB
1910 if (skip_past_char (&ptr, '{') == SUCCESS)
1911 leading_brace = 1;
5f4273c7 1912
5287ad62
JB
1913 do
1914 {
dcbf9037
JB
1915 struct neon_typed_alias atype;
1916 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1917
5287ad62
JB
1918 if (getreg == FAIL)
1919 {
dcbf9037 1920 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1921 return FAIL;
1922 }
5f4273c7 1923
5287ad62
JB
1924 if (base_reg == -1)
1925 {
1926 base_reg = getreg;
1927 if (rtype == REG_TYPE_NQ)
1928 {
1929 reg_incr = 1;
5287ad62 1930 }
dcbf9037 1931 firsttype = atype;
5287ad62
JB
1932 }
1933 else if (reg_incr == -1)
1934 {
1935 reg_incr = getreg - base_reg;
1936 if (reg_incr < 1 || reg_incr > 2)
1937 {
dcbf9037 1938 first_error (_(incr_error));
5287ad62
JB
1939 return FAIL;
1940 }
1941 }
1942 else if (getreg != base_reg + reg_incr * count)
1943 {
dcbf9037
JB
1944 first_error (_(incr_error));
1945 return FAIL;
1946 }
1947
c921be7d 1948 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1949 {
1950 first_error (_(type_error));
5287ad62
JB
1951 return FAIL;
1952 }
5f4273c7 1953
5287ad62
JB
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1955 modes. */
1956 if (ptr[0] == '-')
1957 {
dcbf9037 1958 struct neon_typed_alias htype;
5287ad62
JB
1959 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1960 if (lane == -1)
1961 lane = NEON_INTERLEAVE_LANES;
1962 else if (lane != NEON_INTERLEAVE_LANES)
1963 {
dcbf9037 1964 first_error (_(type_error));
5287ad62
JB
1965 return FAIL;
1966 }
1967 if (reg_incr == -1)
1968 reg_incr = 1;
1969 else if (reg_incr != 1)
1970 {
dcbf9037 1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1972 return FAIL;
1973 }
1974 ptr++;
dcbf9037 1975 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1976 if (hireg == FAIL)
1977 {
dcbf9037
JB
1978 first_error (_(reg_expected_msgs[rtype]));
1979 return FAIL;
1980 }
c921be7d 1981 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1982 {
1983 first_error (_(type_error));
5287ad62
JB
1984 return FAIL;
1985 }
1986 count += hireg + dregs - getreg;
1987 continue;
1988 }
5f4273c7 1989
5287ad62
JB
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype == REG_TYPE_NQ)
1992 {
1993 count += 2;
1994 continue;
1995 }
5f4273c7 1996
dcbf9037 1997 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1998 {
dcbf9037
JB
1999 if (lane == -1)
2000 lane = atype.index;
2001 else if (lane != atype.index)
5287ad62 2002 {
dcbf9037
JB
2003 first_error (_(type_error));
2004 return FAIL;
5287ad62
JB
2005 }
2006 }
2007 else if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
dcbf9037 2011 first_error (_(type_error));
5287ad62
JB
2012 return FAIL;
2013 }
2014 count++;
2015 }
2016 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2017
5287ad62
JB
2018 /* No lane set by [x]. We must be interleaving structures. */
2019 if (lane == -1)
2020 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2021
5287ad62
JB
2022 /* Sanity check. */
2023 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2024 || (count > 1 && reg_incr == -1))
2025 {
dcbf9037 2026 first_error (_("error parsing element/structure list"));
5287ad62
JB
2027 return FAIL;
2028 }
2029
2030 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2031 {
dcbf9037 2032 first_error (_("expected }"));
5287ad62
JB
2033 return FAIL;
2034 }
5f4273c7 2035
5287ad62
JB
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038
dcbf9037
JB
2039 if (eltype)
2040 *eltype = firsttype.eltype;
2041
5287ad62
JB
2042 *pbase = base_reg;
2043 *str = ptr;
5f4273c7 2044
5287ad62
JB
2045 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2046}
2047
c19d1205
ZW
2048/* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2053static int
2054parse_reloc (char **str)
b99bd4ef 2055{
c19d1205
ZW
2056 struct reloc_entry *r;
2057 char *p, *q;
b99bd4ef 2058
c19d1205
ZW
2059 if (**str != '(')
2060 return BFD_RELOC_UNUSED;
b99bd4ef 2061
c19d1205
ZW
2062 p = *str + 1;
2063 q = p;
2064
2065 while (*q && *q != ')' && *q != ',')
2066 q++;
2067 if (*q != ')')
2068 return -1;
2069
21d799b5
NC
2070 if ((r = (struct reloc_entry *)
2071 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2072 return -1;
2073
2074 *str = q + 1;
2075 return r->reloc;
b99bd4ef
NC
2076}
2077
c19d1205
ZW
2078/* Directives: register aliases. */
2079
dcbf9037 2080static struct reg_entry *
90ec0d68 2081insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2082{
d3ce72d0 2083 struct reg_entry *new_reg;
c19d1205 2084 const char *name;
b99bd4ef 2085
d3ce72d0 2086 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2087 {
d3ce72d0 2088 if (new_reg->builtin)
c19d1205 2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2090
c19d1205
ZW
2091 /* Only warn about a redefinition if it's not defined as the
2092 same register. */
d3ce72d0 2093 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2094 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2095
d929913e 2096 return NULL;
c19d1205 2097 }
b99bd4ef 2098
c19d1205 2099 name = xstrdup (str);
d3ce72d0 2100 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2101
d3ce72d0
NC
2102 new_reg->name = name;
2103 new_reg->number = number;
2104 new_reg->type = type;
2105 new_reg->builtin = FALSE;
2106 new_reg->neon = NULL;
b99bd4ef 2107
d3ce72d0 2108 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2109 abort ();
5f4273c7 2110
d3ce72d0 2111 return new_reg;
dcbf9037
JB
2112}
2113
2114static void
2115insert_neon_reg_alias (char *str, int number, int type,
2116 struct neon_typed_alias *atype)
2117{
2118 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2119
dcbf9037
JB
2120 if (!reg)
2121 {
2122 first_error (_("attempt to redefine typed alias"));
2123 return;
2124 }
5f4273c7 2125
dcbf9037
JB
2126 if (atype)
2127 {
21d799b5
NC
2128 reg->neon = (struct neon_typed_alias *)
2129 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2130 *reg->neon = *atype;
2131 }
c19d1205 2132}
b99bd4ef 2133
c19d1205 2134/* Look for the .req directive. This is of the form:
b99bd4ef 2135
c19d1205 2136 new_register_name .req existing_register_name
b99bd4ef 2137
c19d1205 2138 If we find one, or if it looks sufficiently like one that we want to
d929913e 2139 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2140
d929913e 2141static bfd_boolean
c19d1205
ZW
2142create_register_alias (char * newname, char *p)
2143{
2144 struct reg_entry *old;
2145 char *oldname, *nbuf;
2146 size_t nlen;
b99bd4ef 2147
c19d1205
ZW
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2150 oldname = p;
2151 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2152 return FALSE;
b99bd4ef 2153
c19d1205
ZW
2154 oldname += 6;
2155 if (*oldname == '\0')
d929913e 2156 return FALSE;
b99bd4ef 2157
21d799b5 2158 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2159 if (!old)
b99bd4ef 2160 {
c19d1205 2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2162 return TRUE;
b99bd4ef
NC
2163 }
2164
c19d1205
ZW
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168#ifdef TC_CASE_SENSITIVE
2169 nlen = p - newname;
2170#else
2171 newname = original_case_string;
2172 nlen = strlen (newname);
2173#endif
b99bd4ef 2174
21d799b5 2175 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2176 memcpy (nbuf, newname, nlen);
2177 nbuf[nlen] = '\0';
b99bd4ef 2178
c19d1205
ZW
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2181 name. */
d929913e
NC
2182 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2183 {
2184 for (p = nbuf; *p; p++)
2185 *p = TOUPPER (*p);
c19d1205 2186
d929913e
NC
2187 if (strncmp (nbuf, newname, nlen))
2188 {
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2193 foo .req r0
2194 Foo .req r1
2195 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2196 the artificial FOO alias because it has already been created by the
d929913e
NC
2197 first .req. */
2198 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2199 return TRUE;
2200 }
c19d1205 2201
d929913e
NC
2202 for (p = nbuf; *p; p++)
2203 *p = TOLOWER (*p);
c19d1205 2204
d929913e
NC
2205 if (strncmp (nbuf, newname, nlen))
2206 insert_reg_alias (nbuf, old->number, old->type);
2207 }
c19d1205 2208
d929913e 2209 return TRUE;
b99bd4ef
NC
2210}
2211
dcbf9037
JB
2212/* Create a Neon typed/indexed register alias using directives, e.g.:
2213 X .dn d5.s32[1]
2214 Y .qn 6.s16
2215 Z .dn d7
2216 T .dn Z[0]
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
5f4273c7 2220 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2221
c921be7d 2222static bfd_boolean
dcbf9037
JB
2223create_neon_reg_alias (char *newname, char *p)
2224{
2225 enum arm_reg_type basetype;
2226 struct reg_entry *basereg;
2227 struct reg_entry mybasereg;
2228 struct neon_type ntype;
2229 struct neon_typed_alias typeinfo;
12d6b0b7 2230 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2231 int namelen;
5f4273c7 2232
dcbf9037
JB
2233 typeinfo.defined = 0;
2234 typeinfo.eltype.type = NT_invtype;
2235 typeinfo.eltype.size = -1;
2236 typeinfo.index = -1;
5f4273c7 2237
dcbf9037 2238 nameend = p;
5f4273c7 2239
dcbf9037
JB
2240 if (strncmp (p, " .dn ", 5) == 0)
2241 basetype = REG_TYPE_VFD;
2242 else if (strncmp (p, " .qn ", 5) == 0)
2243 basetype = REG_TYPE_NQ;
2244 else
c921be7d 2245 return FALSE;
5f4273c7 2246
dcbf9037 2247 p += 5;
5f4273c7 2248
dcbf9037 2249 if (*p == '\0')
c921be7d 2250 return FALSE;
5f4273c7 2251
dcbf9037
JB
2252 basereg = arm_reg_parse_multi (&p);
2253
2254 if (basereg && basereg->type != basetype)
2255 {
2256 as_bad (_("bad type for register"));
c921be7d 2257 return FALSE;
dcbf9037
JB
2258 }
2259
2260 if (basereg == NULL)
2261 {
2262 expressionS exp;
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp, &p, GE_NO_PREFIX);
2265 if (exp.X_op != O_constant)
2266 {
2267 as_bad (_("expression must be constant"));
c921be7d 2268 return FALSE;
dcbf9037
JB
2269 }
2270 basereg = &mybasereg;
2271 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2272 : exp.X_add_number;
2273 basereg->neon = 0;
2274 }
2275
2276 if (basereg->neon)
2277 typeinfo = *basereg->neon;
2278
2279 if (parse_neon_type (&ntype, &p) == SUCCESS)
2280 {
2281 /* We got a type. */
2282 if (typeinfo.defined & NTA_HASTYPE)
2283 {
2284 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037
JB
2288 typeinfo.defined |= NTA_HASTYPE;
2289 if (ntype.elems != 1)
2290 {
2291 as_bad (_("you must specify a single type only"));
c921be7d 2292 return FALSE;
dcbf9037
JB
2293 }
2294 typeinfo.eltype = ntype.el[0];
2295 }
5f4273c7 2296
dcbf9037
JB
2297 if (skip_past_char (&p, '[') == SUCCESS)
2298 {
2299 expressionS exp;
2300 /* We got a scalar index. */
5f4273c7 2301
dcbf9037
JB
2302 if (typeinfo.defined & NTA_HASINDEX)
2303 {
2304 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2305 return FALSE;
dcbf9037 2306 }
5f4273c7 2307
dcbf9037 2308 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2309
dcbf9037
JB
2310 if (exp.X_op != O_constant)
2311 {
2312 as_bad (_("scalar index must be constant"));
c921be7d 2313 return FALSE;
dcbf9037 2314 }
5f4273c7 2315
dcbf9037
JB
2316 typeinfo.defined |= NTA_HASINDEX;
2317 typeinfo.index = exp.X_add_number;
5f4273c7 2318
dcbf9037
JB
2319 if (skip_past_char (&p, ']') == FAIL)
2320 {
2321 as_bad (_("expecting ]"));
c921be7d 2322 return FALSE;
dcbf9037
JB
2323 }
2324 }
2325
15735687
NS
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329#ifdef TC_CASE_SENSITIVE
dcbf9037 2330 namelen = nameend - newname;
15735687
NS
2331#else
2332 newname = original_case_string;
2333 namelen = strlen (newname);
2334#endif
2335
21d799b5 2336 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2337 strncpy (namebuf, newname, namelen);
2338 namebuf[namelen] = '\0';
5f4273c7 2339
dcbf9037
JB
2340 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2341 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2342
dcbf9037
JB
2343 /* Insert name in all uppercase. */
2344 for (p = namebuf; *p; p++)
2345 *p = TOUPPER (*p);
5f4273c7 2346
dcbf9037
JB
2347 if (strncmp (namebuf, newname, namelen))
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2350
dcbf9037
JB
2351 /* Insert name in all lowercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOLOWER (*p);
5f4273c7 2354
dcbf9037
JB
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2358
c921be7d 2359 return TRUE;
dcbf9037
JB
2360}
2361
c19d1205
ZW
2362/* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
c921be7d 2364
b99bd4ef 2365static void
c19d1205 2366s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2367{
c19d1205
ZW
2368 as_bad (_("invalid syntax for .req directive"));
2369}
b99bd4ef 2370
dcbf9037
JB
2371static void
2372s_dn (int a ATTRIBUTE_UNUSED)
2373{
2374 as_bad (_("invalid syntax for .dn directive"));
2375}
2376
2377static void
2378s_qn (int a ATTRIBUTE_UNUSED)
2379{
2380 as_bad (_("invalid syntax for .qn directive"));
2381}
2382
c19d1205
ZW
2383/* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
b99bd4ef 2385
c19d1205
ZW
2386 my_alias .req r11
2387 .unreq my_alias */
b99bd4ef
NC
2388
2389static void
c19d1205 2390s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2391{
c19d1205
ZW
2392 char * name;
2393 char saved_char;
b99bd4ef 2394
c19d1205
ZW
2395 name = input_line_pointer;
2396
2397 while (*input_line_pointer != 0
2398 && *input_line_pointer != ' '
2399 && *input_line_pointer != '\n')
2400 ++input_line_pointer;
2401
2402 saved_char = *input_line_pointer;
2403 *input_line_pointer = 0;
2404
2405 if (!*name)
2406 as_bad (_("invalid syntax for .unreq directive"));
2407 else
2408 {
21d799b5
NC
2409 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2410 name);
c19d1205
ZW
2411
2412 if (!reg)
2413 as_bad (_("unknown register alias '%s'"), name);
2414 else if (reg->builtin)
a1727c1a 2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2416 name);
2417 else
2418 {
d929913e
NC
2419 char * p;
2420 char * nbuf;
2421
db0bc284 2422 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2423 free ((char *) reg->name);
dcbf9037
JB
2424 if (reg->neon)
2425 free (reg->neon);
c19d1205 2426 free (reg);
d929913e
NC
2427
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
5f4273c7 2431
d929913e
NC
2432 nbuf = strdup (name);
2433 for (p = nbuf; *p; p++)
2434 *p = TOUPPER (*p);
21d799b5 2435 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2436 if (reg)
2437 {
db0bc284 2438 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2439 free ((char *) reg->name);
2440 if (reg->neon)
2441 free (reg->neon);
2442 free (reg);
2443 }
2444
2445 for (p = nbuf; *p; p++)
2446 *p = TOLOWER (*p);
21d799b5 2447 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2448 if (reg)
2449 {
db0bc284 2450 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2451 free ((char *) reg->name);
2452 if (reg->neon)
2453 free (reg->neon);
2454 free (reg);
2455 }
2456
2457 free (nbuf);
c19d1205
ZW
2458 }
2459 }
b99bd4ef 2460
c19d1205 2461 *input_line_pointer = saved_char;
b99bd4ef
NC
2462 demand_empty_rest_of_line ();
2463}
2464
c19d1205
ZW
2465/* Directives: Instruction set selection. */
2466
2467#ifdef OBJ_ELF
2468/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2472
cd000bff
DJ
2473/* Create a new mapping symbol for the transition to STATE. */
2474
2475static void
2476make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2477{
a737bd4d 2478 symbolS * symbolP;
c19d1205
ZW
2479 const char * symname;
2480 int type;
b99bd4ef 2481
c19d1205 2482 switch (state)
b99bd4ef 2483 {
c19d1205
ZW
2484 case MAP_DATA:
2485 symname = "$d";
2486 type = BSF_NO_FLAGS;
2487 break;
2488 case MAP_ARM:
2489 symname = "$a";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_THUMB:
2493 symname = "$t";
2494 type = BSF_NO_FLAGS;
2495 break;
c19d1205
ZW
2496 default:
2497 abort ();
2498 }
2499
cd000bff 2500 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2501 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2502
2503 switch (state)
2504 {
2505 case MAP_ARM:
2506 THUMB_SET_FUNC (symbolP, 0);
2507 ARM_SET_THUMB (symbolP, 0);
2508 ARM_SET_INTERWORK (symbolP, support_interwork);
2509 break;
2510
2511 case MAP_THUMB:
2512 THUMB_SET_FUNC (symbolP, 1);
2513 ARM_SET_THUMB (symbolP, 1);
2514 ARM_SET_INTERWORK (symbolP, support_interwork);
2515 break;
2516
2517 case MAP_DATA:
2518 default:
cd000bff
DJ
2519 break;
2520 }
2521
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2de7820f
JZ
2525 check_mapping_symbols.
2526
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2531 if (value == 0)
2532 {
2de7820f
JZ
2533 if (frag->tc_frag_data.first_map != NULL)
2534 {
2535 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2536 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2537 }
cd000bff
DJ
2538 frag->tc_frag_data.first_map = symbolP;
2539 }
2540 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2541 {
2542 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2543 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2544 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2545 }
cd000bff
DJ
2546 frag->tc_frag_data.last_map = symbolP;
2547}
2548
2549/* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2552
2553static void
2554insert_data_mapping_symbol (enum mstate state,
2555 valueT value, fragS *frag, offsetT bytes)
2556{
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag->tc_frag_data.last_map != NULL
2559 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2560 {
2561 symbolS *symp = frag->tc_frag_data.last_map;
2562
2563 if (value == 0)
2564 {
2565 know (frag->tc_frag_data.first_map == symp);
2566 frag->tc_frag_data.first_map = NULL;
2567 }
2568 frag->tc_frag_data.last_map = NULL;
2569 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2570 }
cd000bff
DJ
2571
2572 make_mapping_symbol (MAP_DATA, value, frag);
2573 make_mapping_symbol (state, value + bytes, frag);
2574}
2575
2576static void mapping_state_2 (enum mstate state, int max_chars);
2577
2578/* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2580
2581void
2582mapping_state (enum mstate state)
2583{
940b5ce0
DJ
2584 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2585
cd000bff
DJ
2586#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2587
2588 if (mapstate == state)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2591 return;
2592 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2593 /* This case will be evaluated later in the next else. */
2594 return;
2595 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2596 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2597 {
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2603 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2604
2605 if (add_symbol)
2606 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2607 }
2608
2609 mapping_state_2 (state, 0);
2610#undef TRANSITION
2611}
2612
2613/* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2615
2616static void
2617mapping_state_2 (enum mstate state, int max_chars)
2618{
940b5ce0
DJ
2619 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2620
2621 if (!SEG_NORMAL (now_seg))
2622 return;
2623
cd000bff
DJ
2624 if (mapstate == state)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2627 return;
2628
cd000bff
DJ
2629 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2630 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2631}
2632#else
d3106081
NS
2633#define mapping_state(x) ((void)0)
2634#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2635#endif
2636
2637/* Find the real, Thumb encoded start of a Thumb function. */
2638
4343666d 2639#ifdef OBJ_COFF
c19d1205
ZW
2640static symbolS *
2641find_real_start (symbolS * symbolP)
2642{
2643 char * real_start;
2644 const char * name = S_GET_NAME (symbolP);
2645 symbolS * new_target;
2646
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648#define STUB_NAME ".real_start_of"
2649
2650 if (name == NULL)
2651 abort ();
2652
37f6032b
ZW
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2659 return symbolP;
2660
37f6032b 2661 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2662 new_target = symbol_find (real_start);
2663
2664 if (new_target == NULL)
2665 {
bd3ba5d1 2666 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2667 new_target = symbolP;
2668 }
2669
c19d1205
ZW
2670 return new_target;
2671}
4343666d 2672#endif
c19d1205
ZW
2673
2674static void
2675opcode_select (int width)
2676{
2677 switch (width)
2678 {
2679 case 16:
2680 if (! thumb_mode)
2681 {
e74cfd16 2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2684
2685 thumb_mode = 1;
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg, 1);
2689 }
c19d1205
ZW
2690 break;
2691
2692 case 32:
2693 if (thumb_mode)
2694 {
e74cfd16 2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2696 as_bad (_("selected processor does not support ARM opcodes"));
2697
2698 thumb_mode = 0;
2699
2700 if (!need_pass_2)
2701 frag_align (2, 0, 0);
2702
2703 record_alignment (now_seg, 1);
2704 }
c19d1205
ZW
2705 break;
2706
2707 default:
2708 as_bad (_("invalid instruction size selected (%d)"), width);
2709 }
2710}
2711
2712static void
2713s_arm (int ignore ATTRIBUTE_UNUSED)
2714{
2715 opcode_select (32);
2716 demand_empty_rest_of_line ();
2717}
2718
2719static void
2720s_thumb (int ignore ATTRIBUTE_UNUSED)
2721{
2722 opcode_select (16);
2723 demand_empty_rest_of_line ();
2724}
2725
2726static void
2727s_code (int unused ATTRIBUTE_UNUSED)
2728{
2729 int temp;
2730
2731 temp = get_absolute_expression ();
2732 switch (temp)
2733 {
2734 case 16:
2735 case 32:
2736 opcode_select (temp);
2737 break;
2738
2739 default:
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2741 }
2742}
2743
2744static void
2745s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2746{
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2752 if (! thumb_mode)
2753 {
2754 thumb_mode = 2;
2755 record_alignment (now_seg, 1);
2756 }
2757
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2763{
2764 s_thumb (0);
2765
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name = TRUE;
2769}
2770
2771/* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2773
2774static void
2775s_thumb_set (int equiv)
2776{
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2779 is created. */
2780 char * name;
2781 char delim;
2782 char * end_name;
2783 symbolS * symbolP;
2784
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2787 Dean - in haste. */
2788 name = input_line_pointer;
2789 delim = get_symbol_end ();
2790 end_name = input_line_pointer;
2791 *end_name = delim;
2792
2793 if (*input_line_pointer != ',')
2794 {
2795 *end_name = 0;
2796 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2797 *end_name = delim;
2798 ignore_rest_of_line ();
2799 return;
2800 }
2801
2802 input_line_pointer++;
2803 *end_name = 0;
2804
2805 if (name[0] == '.' && name[1] == '\0')
2806 {
2807 /* XXX - this should not happen to .thumb_set. */
2808 abort ();
2809 }
2810
2811 if ((symbolP = symbol_find (name)) == NULL
2812 && (symbolP = md_undefined_symbol (name)) == NULL)
2813 {
2814#ifndef NO_LISTING
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
c19d1205 2817 for this symbol. */
b99bd4ef
NC
2818 if (listing & LISTING_SYMBOLS)
2819 {
2820 extern struct list_info_struct * listing_tail;
21d799b5 2821 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2822
2823 memset (dummy_frag, 0, sizeof (fragS));
2824 dummy_frag->fr_type = rs_fill;
2825 dummy_frag->line = listing_tail;
2826 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2827 dummy_frag->fr_symbol = symbolP;
2828 }
2829 else
2830#endif
2831 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2832
2833#ifdef OBJ_COFF
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP);
2836#endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2838
2839 symbol_table_insert (symbolP);
2840
2841 * end_name = delim;
2842
2843 if (equiv
2844 && S_IS_DEFINED (symbolP)
2845 && S_GET_SEGMENT (symbolP) != reg_section)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2847
2848 pseudo_set (symbolP);
2849
2850 demand_empty_rest_of_line ();
2851
c19d1205 2852 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2853
2854 THUMB_SET_FUNC (symbolP, 1);
2855 ARM_SET_THUMB (symbolP, 1);
2856#if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP, support_interwork);
2858#endif
2859}
2860
c19d1205 2861/* Directives: Mode selection. */
b99bd4ef 2862
c19d1205
ZW
2863/* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2866static void
c19d1205 2867s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2868{
c19d1205
ZW
2869 char *name, delim;
2870
2871 name = input_line_pointer;
2872 delim = get_symbol_end ();
2873
2874 if (!strcasecmp (name, "unified"))
2875 unified_syntax = TRUE;
2876 else if (!strcasecmp (name, "divided"))
2877 unified_syntax = FALSE;
2878 else
2879 {
2880 as_bad (_("unrecognized syntax mode \"%s\""), name);
2881 return;
2882 }
2883 *input_line_pointer = delim;
b99bd4ef
NC
2884 demand_empty_rest_of_line ();
2885}
2886
c19d1205
ZW
2887/* Directives: sectioning and alignment. */
2888
2889/* Same as s_align_ptwo but align 0 => align 2. */
2890
b99bd4ef 2891static void
c19d1205 2892s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2893{
a737bd4d 2894 int temp;
dce323d1 2895 bfd_boolean fill_p;
c19d1205
ZW
2896 long temp_fill;
2897 long max_alignment = 15;
b99bd4ef
NC
2898
2899 temp = get_absolute_expression ();
c19d1205
ZW
2900 if (temp > max_alignment)
2901 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2902 else if (temp < 0)
b99bd4ef 2903 {
c19d1205
ZW
2904 as_bad (_("alignment negative. 0 assumed."));
2905 temp = 0;
2906 }
b99bd4ef 2907
c19d1205
ZW
2908 if (*input_line_pointer == ',')
2909 {
2910 input_line_pointer++;
2911 temp_fill = get_absolute_expression ();
dce323d1 2912 fill_p = TRUE;
b99bd4ef 2913 }
c19d1205 2914 else
dce323d1
PB
2915 {
2916 fill_p = FALSE;
2917 temp_fill = 0;
2918 }
b99bd4ef 2919
c19d1205
ZW
2920 if (!temp)
2921 temp = 2;
b99bd4ef 2922
c19d1205
ZW
2923 /* Only make a frag if we HAVE to. */
2924 if (temp && !need_pass_2)
dce323d1
PB
2925 {
2926 if (!fill_p && subseg_text_p (now_seg))
2927 frag_align_code (temp, 0);
2928 else
2929 frag_align (temp, (int) temp_fill, 0);
2930 }
c19d1205
ZW
2931 demand_empty_rest_of_line ();
2932
2933 record_alignment (now_seg, temp);
b99bd4ef
NC
2934}
2935
c19d1205
ZW
2936static void
2937s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2938{
c19d1205
ZW
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section, 0);
2942 demand_empty_rest_of_line ();
cd000bff
DJ
2943
2944#ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2946#endif
c19d1205 2947}
b99bd4ef 2948
c19d1205
ZW
2949static void
2950s_even (int ignore ATTRIBUTE_UNUSED)
2951{
2952 /* Never make frag if expect extra pass. */
2953 if (!need_pass_2)
2954 frag_align (1, 0, 0);
b99bd4ef 2955
c19d1205 2956 record_alignment (now_seg, 1);
b99bd4ef 2957
c19d1205 2958 demand_empty_rest_of_line ();
b99bd4ef
NC
2959}
2960
c19d1205 2961/* Directives: Literal pools. */
a737bd4d 2962
c19d1205
ZW
2963static literal_pool *
2964find_literal_pool (void)
a737bd4d 2965{
c19d1205 2966 literal_pool * pool;
a737bd4d 2967
c19d1205 2968 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2969 {
c19d1205
ZW
2970 if (pool->section == now_seg
2971 && pool->sub_section == now_subseg)
2972 break;
a737bd4d
NC
2973 }
2974
c19d1205 2975 return pool;
a737bd4d
NC
2976}
2977
c19d1205
ZW
2978static literal_pool *
2979find_or_make_literal_pool (void)
a737bd4d 2980{
c19d1205
ZW
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num = 1;
2983 literal_pool * pool;
a737bd4d 2984
c19d1205 2985 pool = find_literal_pool ();
a737bd4d 2986
c19d1205 2987 if (pool == NULL)
a737bd4d 2988 {
c19d1205 2989 /* Create a new pool. */
21d799b5 2990 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2991 if (! pool)
2992 return NULL;
a737bd4d 2993
c19d1205
ZW
2994 pool->next_free_entry = 0;
2995 pool->section = now_seg;
2996 pool->sub_section = now_subseg;
2997 pool->next = list_of_pools;
2998 pool->symbol = NULL;
2999
3000 /* Add it to the list. */
3001 list_of_pools = pool;
a737bd4d 3002 }
a737bd4d 3003
c19d1205
ZW
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool->symbol == NULL)
a737bd4d 3006 {
c19d1205
ZW
3007 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3008 (valueT) 0, &zero_address_frag);
3009 pool->id = latest_pool_num ++;
a737bd4d
NC
3010 }
3011
c19d1205
ZW
3012 /* Done. */
3013 return pool;
a737bd4d
NC
3014}
3015
c19d1205 3016/* Add the literal in the global 'inst'
5f4273c7 3017 structure to the relevant literal pool. */
b99bd4ef
NC
3018
3019static int
c19d1205 3020add_to_lit_pool (void)
b99bd4ef 3021{
c19d1205
ZW
3022 literal_pool * pool;
3023 unsigned int entry;
b99bd4ef 3024
c19d1205
ZW
3025 pool = find_or_make_literal_pool ();
3026
3027 /* Check if this literal value is already in the pool. */
3028 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3029 {
c19d1205
ZW
3030 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3031 && (inst.reloc.exp.X_op == O_constant)
3032 && (pool->literals[entry].X_add_number
3033 == inst.reloc.exp.X_add_number)
3034 && (pool->literals[entry].X_unsigned
3035 == inst.reloc.exp.X_unsigned))
3036 break;
3037
3038 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3039 && (inst.reloc.exp.X_op == O_symbol)
3040 && (pool->literals[entry].X_add_number
3041 == inst.reloc.exp.X_add_number)
3042 && (pool->literals[entry].X_add_symbol
3043 == inst.reloc.exp.X_add_symbol)
3044 && (pool->literals[entry].X_op_symbol
3045 == inst.reloc.exp.X_op_symbol))
3046 break;
b99bd4ef
NC
3047 }
3048
c19d1205
ZW
3049 /* Do we need to create a new entry? */
3050 if (entry == pool->next_free_entry)
3051 {
3052 if (entry >= MAX_LITERAL_POOL_SIZE)
3053 {
3054 inst.error = _("literal pool overflow");
3055 return FAIL;
3056 }
3057
3058 pool->literals[entry] = inst.reloc.exp;
3059 pool->next_free_entry += 1;
3060 }
b99bd4ef 3061
c19d1205
ZW
3062 inst.reloc.exp.X_op = O_symbol;
3063 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3064 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3065
c19d1205 3066 return SUCCESS;
b99bd4ef
NC
3067}
3068
c19d1205
ZW
3069/* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
e16bb312 3071
c19d1205
ZW
3072static void
3073symbol_locate (symbolS * symbolP,
3074 const char * name, /* It is copied, the caller can modify. */
3075 segT segment, /* Segment identifier (SEG_<something>). */
3076 valueT valu, /* Symbol value. */
3077 fragS * frag) /* Associated fragment. */
3078{
3079 unsigned int name_length;
3080 char * preserved_copy_of_name;
e16bb312 3081
c19d1205
ZW
3082 name_length = strlen (name) + 1; /* +1 for \0. */
3083 obstack_grow (&notes, name, name_length);
21d799b5 3084 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3085
c19d1205
ZW
3086#ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name =
3088 tc_canonicalize_symbol_name (preserved_copy_of_name);
3089#endif
b99bd4ef 3090
c19d1205 3091 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3092
c19d1205
ZW
3093 S_SET_SEGMENT (symbolP, segment);
3094 S_SET_VALUE (symbolP, valu);
3095 symbol_clear_list_pointers (symbolP);
b99bd4ef 3096
c19d1205 3097 symbol_set_frag (symbolP, frag);
b99bd4ef 3098
c19d1205
ZW
3099 /* Link to end of symbol chain. */
3100 {
3101 extern int symbol_table_frozen;
b99bd4ef 3102
c19d1205
ZW
3103 if (symbol_table_frozen)
3104 abort ();
3105 }
b99bd4ef 3106
c19d1205 3107 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3108
c19d1205 3109 obj_symbol_new_hook (symbolP);
b99bd4ef 3110
c19d1205
ZW
3111#ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP);
3113#endif
3114
3115#ifdef DEBUG_SYMS
3116 verify_symbol_chain (symbol_rootP, symbol_lastP);
3117#endif /* DEBUG_SYMS */
b99bd4ef
NC
3118}
3119
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3123{
c19d1205
ZW
3124 unsigned int entry;
3125 literal_pool * pool;
3126 char sym_name[20];
b99bd4ef 3127
c19d1205
ZW
3128 pool = find_literal_pool ();
3129 if (pool == NULL
3130 || pool->symbol == NULL
3131 || pool->next_free_entry == 0)
3132 return;
b99bd4ef 3133
c19d1205 3134 mapping_state (MAP_DATA);
b99bd4ef 3135
c19d1205
ZW
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3138 if (!need_pass_2)
3139 frag_align (2, 0, 0);
b99bd4ef 3140
c19d1205 3141 record_alignment (now_seg, 2);
b99bd4ef 3142
c19d1205 3143 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3144
c19d1205
ZW
3145 symbol_locate (pool->symbol, sym_name, now_seg,
3146 (valueT) frag_now_fix (), frag_now);
3147 symbol_table_insert (pool->symbol);
b99bd4ef 3148
c19d1205 3149 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3150
c19d1205
ZW
3151#if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3153#endif
6c43fab6 3154
c19d1205
ZW
3155 for (entry = 0; entry < pool->next_free_entry; entry ++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3158
c19d1205
ZW
3159 /* Mark the pool as empty. */
3160 pool->next_free_entry = 0;
3161 pool->symbol = NULL;
b99bd4ef
NC
3162}
3163
c19d1205
ZW
3164#ifdef OBJ_ELF
3165/* Forward declarations for functions below, in the MD interface
3166 section. */
3167static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3168static valueT create_unwind_entry (int);
3169static void start_unwind_section (const segT, int);
3170static void add_unwind_opcode (valueT, int);
3171static void flush_pending_unwind (void);
b99bd4ef 3172
c19d1205 3173/* Directives: Data. */
b99bd4ef 3174
c19d1205
ZW
3175static void
3176s_arm_elf_cons (int nbytes)
3177{
3178 expressionS exp;
b99bd4ef 3179
c19d1205
ZW
3180#ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3182#endif
b99bd4ef 3183
c19d1205 3184 if (is_it_end_of_statement ())
b99bd4ef 3185 {
c19d1205
ZW
3186 demand_empty_rest_of_line ();
3187 return;
b99bd4ef
NC
3188 }
3189
c19d1205
ZW
3190#ifdef md_cons_align
3191 md_cons_align (nbytes);
3192#endif
b99bd4ef 3193
c19d1205
ZW
3194 mapping_state (MAP_DATA);
3195 do
b99bd4ef 3196 {
c19d1205
ZW
3197 int reloc;
3198 char *base = input_line_pointer;
b99bd4ef 3199
c19d1205 3200 expression (& exp);
b99bd4ef 3201
c19d1205
ZW
3202 if (exp.X_op != O_symbol)
3203 emit_expr (&exp, (unsigned int) nbytes);
3204 else
3205 {
3206 char *before_reloc = input_line_pointer;
3207 reloc = parse_reloc (&input_line_pointer);
3208 if (reloc == -1)
3209 {
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3212 return;
3213 }
3214 else if (reloc == BFD_RELOC_UNUSED)
3215 emit_expr (&exp, (unsigned int) nbytes);
3216 else
3217 {
21d799b5
NC
3218 reloc_howto_type *howto = (reloc_howto_type *)
3219 bfd_reloc_type_lookup (stdoutput,
3220 (bfd_reloc_code_real_type) reloc);
c19d1205 3221 int size = bfd_get_reloc_size (howto);
b99bd4ef 3222
2fc8bdac
ZW
3223 if (reloc == BFD_RELOC_ARM_PLT32)
3224 {
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc = BFD_RELOC_UNUSED;
3227 size = 0;
3228 }
3229
c19d1205 3230 if (size > nbytes)
2fc8bdac 3231 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3232 howto->name, nbytes);
3233 else
3234 {
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p = input_line_pointer;
3240 int offset;
21d799b5 3241 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3242 memcpy (save_buf, base, input_line_pointer - base);
3243 memmove (base + (input_line_pointer - before_reloc),
3244 base, before_reloc - base);
3245
3246 input_line_pointer = base + (input_line_pointer-before_reloc);
3247 expression (&exp);
3248 memcpy (base, save_buf, p - base);
3249
3250 offset = nbytes - size;
3251 p = frag_more ((int) nbytes);
3252 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3253 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3254 }
3255 }
3256 }
b99bd4ef 3257 }
c19d1205 3258 while (*input_line_pointer++ == ',');
b99bd4ef 3259
c19d1205
ZW
3260 /* Put terminator back into stream. */
3261 input_line_pointer --;
3262 demand_empty_rest_of_line ();
b99bd4ef
NC
3263}
3264
c921be7d
NC
3265/* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3267
3268static void
3269emit_thumb32_expr (expressionS * exp)
3270{
3271 expressionS exp_high = *exp;
3272
3273 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3274 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3275 exp->X_add_number &= 0xffff;
3276 emit_expr (exp, (unsigned int) THUMB_SIZE);
3277}
3278
3279/* Guess the instruction size based on the opcode. */
3280
3281static int
3282thumb_insn_size (int opcode)
3283{
3284 if ((unsigned int) opcode < 0xe800u)
3285 return 2;
3286 else if ((unsigned int) opcode >= 0xe8000000u)
3287 return 4;
3288 else
3289 return 0;
3290}
3291
3292static bfd_boolean
3293emit_insn (expressionS *exp, int nbytes)
3294{
3295 int size = 0;
3296
3297 if (exp->X_op == O_constant)
3298 {
3299 size = nbytes;
3300
3301 if (size == 0)
3302 size = thumb_insn_size (exp->X_add_number);
3303
3304 if (size != 0)
3305 {
3306 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3307 {
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3310 size = 0;
3311 }
3312 else
3313 {
3314 if (now_it.state == AUTOMATIC_IT_BLOCK)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3316 else
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3318
3319 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3320 emit_thumb32_expr (exp);
3321 else
3322 emit_expr (exp, (unsigned int) size);
3323
3324 it_fsm_post_encode ();
3325 }
3326 }
3327 else
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3330 }
3331 else
3332 as_bad (_("constant expression required"));
3333
3334 return (size != 0);
3335}
3336
3337/* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3339
3340static void
3341s_arm_elf_inst (int nbytes)
3342{
3343 if (is_it_end_of_statement ())
3344 {
3345 demand_empty_rest_of_line ();
3346 return;
3347 }
3348
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3351
3352 if (thumb_mode)
3353 mapping_state (MAP_THUMB);
3354 else
3355 {
3356 if (nbytes != 0)
3357 {
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3360 return;
3361 }
3362
3363 nbytes = 4;
3364
3365 mapping_state (MAP_ARM);
3366 }
3367
3368 do
3369 {
3370 expressionS exp;
3371
3372 expression (& exp);
3373
3374 if (! emit_insn (& exp, nbytes))
3375 {
3376 ignore_rest_of_line ();
3377 return;
3378 }
3379 }
3380 while (*input_line_pointer++ == ',');
3381
3382 /* Put terminator back into stream. */
3383 input_line_pointer --;
3384 demand_empty_rest_of_line ();
3385}
b99bd4ef 3386
c19d1205 3387/* Parse a .rel31 directive. */
b99bd4ef 3388
c19d1205
ZW
3389static void
3390s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3391{
3392 expressionS exp;
3393 char *p;
3394 valueT highbit;
b99bd4ef 3395
c19d1205
ZW
3396 highbit = 0;
3397 if (*input_line_pointer == '1')
3398 highbit = 0x80000000;
3399 else if (*input_line_pointer != '0')
3400 as_bad (_("expected 0 or 1"));
b99bd4ef 3401
c19d1205
ZW
3402 input_line_pointer++;
3403 if (*input_line_pointer != ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer++;
b99bd4ef 3406
c19d1205
ZW
3407#ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3409#endif
b99bd4ef 3410
c19d1205
ZW
3411#ifdef md_cons_align
3412 md_cons_align (4);
3413#endif
b99bd4ef 3414
c19d1205 3415 mapping_state (MAP_DATA);
b99bd4ef 3416
c19d1205 3417 expression (&exp);
b99bd4ef 3418
c19d1205
ZW
3419 p = frag_more (4);
3420 md_number_to_chars (p, highbit, 4);
3421 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3422 BFD_RELOC_ARM_PREL31);
b99bd4ef 3423
c19d1205 3424 demand_empty_rest_of_line ();
b99bd4ef
NC
3425}
3426
c19d1205 3427/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3428
c19d1205 3429/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3430
c19d1205
ZW
3431static void
3432s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3433{
3434 demand_empty_rest_of_line ();
921e5f0a
PB
3435 if (unwind.proc_start)
3436 {
c921be7d 3437 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3438 return;
3439 }
3440
c19d1205
ZW
3441 /* Mark the start of the function. */
3442 unwind.proc_start = expr_build_dot ();
b99bd4ef 3443
c19d1205
ZW
3444 /* Reset the rest of the unwind info. */
3445 unwind.opcode_count = 0;
3446 unwind.table_entry = NULL;
3447 unwind.personality_routine = NULL;
3448 unwind.personality_index = -1;
3449 unwind.frame_size = 0;
3450 unwind.fp_offset = 0;
fdfde340 3451 unwind.fp_reg = REG_SP;
c19d1205
ZW
3452 unwind.fp_used = 0;
3453 unwind.sp_restored = 0;
3454}
b99bd4ef 3455
b99bd4ef 3456
c19d1205
ZW
3457/* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
b99bd4ef 3459
c19d1205
ZW
3460static void
3461s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3462{
3463 demand_empty_rest_of_line ();
921e5f0a 3464 if (!unwind.proc_start)
c921be7d 3465 as_bad (MISSING_FNSTART);
921e5f0a 3466
c19d1205 3467 if (unwind.table_entry)
6decc662 3468 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3469
c19d1205
ZW
3470 create_unwind_entry (1);
3471}
a737bd4d 3472
c19d1205 3473/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3474
c19d1205
ZW
3475static void
3476s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3477{
3478 long where;
3479 char *ptr;
3480 valueT val;
940b5ce0 3481 unsigned int marked_pr_dependency;
f02232aa 3482
c19d1205 3483 demand_empty_rest_of_line ();
f02232aa 3484
921e5f0a
PB
3485 if (!unwind.proc_start)
3486 {
c921be7d 3487 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3488 return;
3489 }
3490
c19d1205
ZW
3491 /* Add eh table entry. */
3492 if (unwind.table_entry == NULL)
3493 val = create_unwind_entry (0);
3494 else
3495 val = 0;
f02232aa 3496
c19d1205
ZW
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind.saved_seg, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg, 2);
b99bd4ef 3501
c19d1205
ZW
3502 ptr = frag_more (8);
3503 where = frag_now_fix () - 8;
f02232aa 3504
c19d1205
ZW
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3507 BFD_RELOC_ARM_PREL31);
f02232aa 3508
c19d1205
ZW
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
940b5ce0
DJ
3511 marked_pr_dependency
3512 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3513 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3514 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3515 {
5f4273c7
NC
3516 static const char *const name[] =
3517 {
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3521 };
c19d1205
ZW
3522 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3523 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3524 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3525 |= 1 << unwind.personality_index;
c19d1205 3526 }
f02232aa 3527
c19d1205
ZW
3528 if (val)
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr + 4, val, 4);
3531 else
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3534 BFD_RELOC_ARM_PREL31);
f02232aa 3535
c19d1205
ZW
3536 /* Restore the original section. */
3537 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3538
3539 unwind.proc_start = NULL;
c19d1205 3540}
f02232aa 3541
f02232aa 3542
c19d1205 3543/* Parse an unwind_cantunwind directive. */
b99bd4ef 3544
c19d1205
ZW
3545static void
3546s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3547{
3548 demand_empty_rest_of_line ();
921e5f0a 3549 if (!unwind.proc_start)
c921be7d 3550 as_bad (MISSING_FNSTART);
921e5f0a 3551
c19d1205
ZW
3552 if (unwind.personality_routine || unwind.personality_index != -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3554
c19d1205
ZW
3555 unwind.personality_index = -2;
3556}
b99bd4ef 3557
b99bd4ef 3558
c19d1205 3559/* Parse a personalityindex directive. */
b99bd4ef 3560
c19d1205
ZW
3561static void
3562s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3563{
3564 expressionS exp;
b99bd4ef 3565
921e5f0a 3566 if (!unwind.proc_start)
c921be7d 3567 as_bad (MISSING_FNSTART);
921e5f0a 3568
c19d1205
ZW
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3571
c19d1205 3572 expression (&exp);
b99bd4ef 3573
c19d1205
ZW
3574 if (exp.X_op != O_constant
3575 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3576 {
c19d1205
ZW
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3579 return;
b99bd4ef
NC
3580 }
3581
c19d1205 3582 unwind.personality_index = exp.X_add_number;
b99bd4ef 3583
c19d1205
ZW
3584 demand_empty_rest_of_line ();
3585}
e16bb312 3586
e16bb312 3587
c19d1205 3588/* Parse a personality directive. */
e16bb312 3589
c19d1205
ZW
3590static void
3591s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3592{
3593 char *name, *p, c;
a737bd4d 3594
921e5f0a 3595 if (!unwind.proc_start)
c921be7d 3596 as_bad (MISSING_FNSTART);
921e5f0a 3597
c19d1205
ZW
3598 if (unwind.personality_routine || unwind.personality_index != -1)
3599 as_bad (_("duplicate .personality directive"));
a737bd4d 3600
c19d1205
ZW
3601 name = input_line_pointer;
3602 c = get_symbol_end ();
3603 p = input_line_pointer;
3604 unwind.personality_routine = symbol_find_or_make (name);
3605 *p = c;
3606 demand_empty_rest_of_line ();
3607}
e16bb312 3608
e16bb312 3609
c19d1205 3610/* Parse a directive saving core registers. */
e16bb312 3611
c19d1205
ZW
3612static void
3613s_arm_unwind_save_core (void)
e16bb312 3614{
c19d1205
ZW
3615 valueT op;
3616 long range;
3617 int n;
e16bb312 3618
c19d1205
ZW
3619 range = parse_reg_list (&input_line_pointer);
3620 if (range == FAIL)
e16bb312 3621 {
c19d1205
ZW
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3624 return;
3625 }
e16bb312 3626
c19d1205 3627 demand_empty_rest_of_line ();
e16bb312 3628
c19d1205
ZW
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind.sp_restored && unwind.fp_reg == 12
3633 && (range & 0x3000) == 0x1000)
3634 {
3635 unwind.opcode_count--;
3636 unwind.sp_restored = 0;
3637 range = (range | 0x2000) & ~0x1000;
3638 unwind.pending_offset = 0;
3639 }
e16bb312 3640
01ae4198
DJ
3641 /* Pop r4-r15. */
3642 if (range & 0xfff0)
c19d1205 3643 {
01ae4198
DJ
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n = 0; n < 8; n++)
3647 {
3648 /* Break at the first non-saved register. */
3649 if ((range & (1 << (n + 4))) == 0)
3650 break;
3651 }
3652 /* See if there are any other bits set. */
3653 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3654 {
3655 /* Use the long form. */
3656 op = 0x8000 | ((range >> 4) & 0xfff);
3657 add_unwind_opcode (op, 2);
3658 }
0dd132b6 3659 else
01ae4198
DJ
3660 {
3661 /* Use the short form. */
3662 if (range & 0x4000)
3663 op = 0xa8; /* Pop r14. */
3664 else
3665 op = 0xa0; /* Do not pop r14. */
3666 op |= (n - 1);
3667 add_unwind_opcode (op, 1);
3668 }
c19d1205 3669 }
0dd132b6 3670
c19d1205
ZW
3671 /* Pop r0-r3. */
3672 if (range & 0xf)
3673 {
3674 op = 0xb100 | (range & 0xf);
3675 add_unwind_opcode (op, 2);
0dd132b6
NC
3676 }
3677
c19d1205
ZW
3678 /* Record the number of bytes pushed. */
3679 for (n = 0; n < 16; n++)
3680 {
3681 if (range & (1 << n))
3682 unwind.frame_size += 4;
3683 }
0dd132b6
NC
3684}
3685
c19d1205
ZW
3686
3687/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3688
3689static void
c19d1205 3690s_arm_unwind_save_fpa (int reg)
b99bd4ef 3691{
c19d1205
ZW
3692 expressionS exp;
3693 int num_regs;
3694 valueT op;
b99bd4ef 3695
c19d1205
ZW
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer) != FAIL)
3698 expression (&exp);
3699 else
3700 exp.X_op = O_illegal;
b99bd4ef 3701
c19d1205 3702 if (exp.X_op != O_constant)
b99bd4ef 3703 {
c19d1205
ZW
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
b99bd4ef
NC
3706 return;
3707 }
3708
c19d1205
ZW
3709 num_regs = exp.X_add_number;
3710
3711 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3712 {
c19d1205
ZW
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
b99bd4ef
NC
3715 return;
3716 }
3717
c19d1205 3718 demand_empty_rest_of_line ();
b99bd4ef 3719
c19d1205
ZW
3720 if (reg == 4)
3721 {
3722 /* Short form. */
3723 op = 0xb4 | (num_regs - 1);
3724 add_unwind_opcode (op, 1);
3725 }
b99bd4ef
NC
3726 else
3727 {
c19d1205
ZW
3728 /* Long form. */
3729 op = 0xc800 | (reg << 4) | (num_regs - 1);
3730 add_unwind_opcode (op, 2);
b99bd4ef 3731 }
c19d1205 3732 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3733}
3734
c19d1205 3735
fa073d69
MS
3736/* Parse a directive saving VFP registers for ARMv6 and above. */
3737
3738static void
3739s_arm_unwind_save_vfp_armv6 (void)
3740{
3741 int count;
3742 unsigned int start;
3743 valueT op;
3744 int num_vfpv3_regs = 0;
3745 int num_regs_below_16;
3746
3747 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3748 if (count == FAIL)
3749 {
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3753 }
3754
3755 demand_empty_rest_of_line ();
3756
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3759
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3761 if (start >= 16)
3762 num_vfpv3_regs = count;
3763 else if (start + count > 16)
3764 num_vfpv3_regs = start + count - 16;
3765
3766 if (num_vfpv3_regs > 0)
3767 {
3768 int start_offset = start > 16 ? start - 16 : 0;
3769 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3775 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3776 if (num_regs_below_16 > 0)
3777 {
3778 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3779 add_unwind_opcode (op, 2);
3780 }
3781
3782 unwind.frame_size += count * 8;
3783}
3784
3785
3786/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3787
3788static void
c19d1205 3789s_arm_unwind_save_vfp (void)
b99bd4ef 3790{
c19d1205 3791 int count;
ca3f61f7 3792 unsigned int reg;
c19d1205 3793 valueT op;
b99bd4ef 3794
5287ad62 3795 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3796 if (count == FAIL)
b99bd4ef 3797 {
c19d1205
ZW
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
b99bd4ef
NC
3800 return;
3801 }
3802
c19d1205 3803 demand_empty_rest_of_line ();
b99bd4ef 3804
c19d1205 3805 if (reg == 8)
b99bd4ef 3806 {
c19d1205
ZW
3807 /* Short form. */
3808 op = 0xb8 | (count - 1);
3809 add_unwind_opcode (op, 1);
b99bd4ef 3810 }
c19d1205 3811 else
b99bd4ef 3812 {
c19d1205
ZW
3813 /* Long form. */
3814 op = 0xb300 | (reg << 4) | (count - 1);
3815 add_unwind_opcode (op, 2);
b99bd4ef 3816 }
c19d1205
ZW
3817 unwind.frame_size += count * 8 + 4;
3818}
b99bd4ef 3819
b99bd4ef 3820
c19d1205
ZW
3821/* Parse a directive saving iWMMXt data registers. */
3822
3823static void
3824s_arm_unwind_save_mmxwr (void)
3825{
3826 int reg;
3827 int hi_reg;
3828 int i;
3829 unsigned mask = 0;
3830 valueT op;
b99bd4ef 3831
c19d1205
ZW
3832 if (*input_line_pointer == '{')
3833 input_line_pointer++;
b99bd4ef 3834
c19d1205 3835 do
b99bd4ef 3836 {
dcbf9037 3837 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3838
c19d1205 3839 if (reg == FAIL)
b99bd4ef 3840 {
9b7132d3 3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3842 goto error;
b99bd4ef
NC
3843 }
3844
c19d1205
ZW
3845 if (mask >> reg)
3846 as_tsktsk (_("register list not in ascending order"));
3847 mask |= 1 << reg;
b99bd4ef 3848
c19d1205
ZW
3849 if (*input_line_pointer == '-')
3850 {
3851 input_line_pointer++;
dcbf9037 3852 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3853 if (hi_reg == FAIL)
3854 {
9b7132d3 3855 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3856 goto error;
3857 }
3858 else if (reg >= hi_reg)
3859 {
3860 as_bad (_("bad register range"));
3861 goto error;
3862 }
3863 for (; reg < hi_reg; reg++)
3864 mask |= 1 << reg;
3865 }
3866 }
3867 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3868
c19d1205
ZW
3869 if (*input_line_pointer == '}')
3870 input_line_pointer++;
b99bd4ef 3871
c19d1205 3872 demand_empty_rest_of_line ();
b99bd4ef 3873
708587a4 3874 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3875 the list. */
3876 flush_pending_unwind ();
b99bd4ef 3877
c19d1205 3878 for (i = 0; i < 16; i++)
b99bd4ef 3879 {
c19d1205
ZW
3880 if (mask & (1 << i))
3881 unwind.frame_size += 8;
b99bd4ef
NC
3882 }
3883
c19d1205
ZW
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3886 registers. */
3887 if (unwind.opcode_count > 0)
b99bd4ef 3888 {
c19d1205
ZW
3889 i = unwind.opcodes[unwind.opcode_count - 1];
3890 if ((i & 0xf8) == 0xc0)
3891 {
3892 i &= 7;
3893 /* Only merge if the blocks are contiguous. */
3894 if (i < 6)
3895 {
3896 if ((mask & 0xfe00) == (1 << 9))
3897 {
3898 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3899 unwind.opcode_count--;
3900 }
3901 }
3902 else if (i == 6 && unwind.opcode_count >= 2)
3903 {
3904 i = unwind.opcodes[unwind.opcode_count - 2];
3905 reg = i >> 4;
3906 i &= 0xf;
b99bd4ef 3907
c19d1205
ZW
3908 op = 0xffff << (reg - 1);
3909 if (reg > 0
87a1fd79 3910 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3911 {
3912 op = (1 << (reg + i + 1)) - 1;
3913 op &= ~((1 << reg) - 1);
3914 mask |= op;
3915 unwind.opcode_count -= 2;
3916 }
3917 }
3918 }
b99bd4ef
NC
3919 }
3920
c19d1205
ZW
3921 hi_reg = 15;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3925 {
c19d1205
ZW
3926 /* Save registers in blocks. */
3927 if (reg < 0
3928 || !(mask & (1 << reg)))
3929 {
3930 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3931 preceding block. */
c19d1205
ZW
3932 if (reg != hi_reg)
3933 {
3934 if (reg == 9)
3935 {
3936 /* Short form. */
3937 op = 0xc0 | (hi_reg - 10);
3938 add_unwind_opcode (op, 1);
3939 }
3940 else
3941 {
3942 /* Long form. */
3943 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3944 add_unwind_opcode (op, 2);
3945 }
3946 }
3947 hi_reg = reg - 1;
3948 }
b99bd4ef
NC
3949 }
3950
c19d1205
ZW
3951 return;
3952error:
3953 ignore_rest_of_line ();
b99bd4ef
NC
3954}
3955
3956static void
c19d1205 3957s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3958{
c19d1205
ZW
3959 int reg;
3960 int hi_reg;
3961 unsigned mask = 0;
3962 valueT op;
b99bd4ef 3963
c19d1205
ZW
3964 if (*input_line_pointer == '{')
3965 input_line_pointer++;
b99bd4ef 3966
c19d1205 3967 do
b99bd4ef 3968 {
dcbf9037 3969 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3970
c19d1205
ZW
3971 if (reg == FAIL)
3972 {
9b7132d3 3973 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3974 goto error;
3975 }
b99bd4ef 3976
c19d1205
ZW
3977 reg -= 8;
3978 if (mask >> reg)
3979 as_tsktsk (_("register list not in ascending order"));
3980 mask |= 1 << reg;
b99bd4ef 3981
c19d1205
ZW
3982 if (*input_line_pointer == '-')
3983 {
3984 input_line_pointer++;
dcbf9037 3985 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3986 if (hi_reg == FAIL)
3987 {
9b7132d3 3988 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3989 goto error;
3990 }
3991 else if (reg >= hi_reg)
3992 {
3993 as_bad (_("bad register range"));
3994 goto error;
3995 }
3996 for (; reg < hi_reg; reg++)
3997 mask |= 1 << reg;
3998 }
b99bd4ef 3999 }
c19d1205 4000 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4001
c19d1205
ZW
4002 if (*input_line_pointer == '}')
4003 input_line_pointer++;
b99bd4ef 4004
c19d1205
ZW
4005 demand_empty_rest_of_line ();
4006
708587a4 4007 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4008 the list. */
4009 flush_pending_unwind ();
b99bd4ef 4010
c19d1205 4011 for (reg = 0; reg < 16; reg++)
b99bd4ef 4012 {
c19d1205
ZW
4013 if (mask & (1 << reg))
4014 unwind.frame_size += 4;
b99bd4ef 4015 }
c19d1205
ZW
4016 op = 0xc700 | mask;
4017 add_unwind_opcode (op, 2);
4018 return;
4019error:
4020 ignore_rest_of_line ();
b99bd4ef
NC
4021}
4022
c19d1205 4023
fa073d69
MS
4024/* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4026
b99bd4ef 4027static void
fa073d69 4028s_arm_unwind_save (int arch_v6)
b99bd4ef 4029{
c19d1205
ZW
4030 char *peek;
4031 struct reg_entry *reg;
4032 bfd_boolean had_brace = FALSE;
b99bd4ef 4033
921e5f0a 4034 if (!unwind.proc_start)
c921be7d 4035 as_bad (MISSING_FNSTART);
921e5f0a 4036
c19d1205
ZW
4037 /* Figure out what sort of save we have. */
4038 peek = input_line_pointer;
b99bd4ef 4039
c19d1205 4040 if (*peek == '{')
b99bd4ef 4041 {
c19d1205
ZW
4042 had_brace = TRUE;
4043 peek++;
b99bd4ef
NC
4044 }
4045
c19d1205 4046 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4047
c19d1205 4048 if (!reg)
b99bd4ef 4049 {
c19d1205
ZW
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
b99bd4ef
NC
4052 return;
4053 }
4054
c19d1205 4055 switch (reg->type)
b99bd4ef 4056 {
c19d1205
ZW
4057 case REG_TYPE_FN:
4058 if (had_brace)
4059 {
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4062 return;
4063 }
93ac2687 4064 input_line_pointer = peek;
c19d1205 4065 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4066 return;
c19d1205
ZW
4067
4068 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4069 case REG_TYPE_VFD:
4070 if (arch_v6)
4071 s_arm_unwind_save_vfp_armv6 ();
4072 else
4073 s_arm_unwind_save_vfp ();
4074 return;
c19d1205
ZW
4075 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4077
4078 default:
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
b99bd4ef 4081 }
c19d1205 4082}
b99bd4ef 4083
b99bd4ef 4084
c19d1205
ZW
4085/* Parse an unwind_movsp directive. */
4086
4087static void
4088s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4089{
4090 int reg;
4091 valueT op;
4fa3602b 4092 int offset;
c19d1205 4093
921e5f0a 4094 if (!unwind.proc_start)
c921be7d 4095 as_bad (MISSING_FNSTART);
921e5f0a 4096
dcbf9037 4097 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4098 if (reg == FAIL)
b99bd4ef 4099 {
9b7132d3 4100 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4101 ignore_rest_of_line ();
b99bd4ef
NC
4102 return;
4103 }
4fa3602b
PB
4104
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer) != FAIL)
4107 {
4108 if (immediate_for_directive (&offset) == FAIL)
4109 return;
4110 }
4111 else
4112 offset = 0;
4113
c19d1205 4114 demand_empty_rest_of_line ();
b99bd4ef 4115
c19d1205 4116 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4117 {
c19d1205 4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4119 return;
4120 }
4121
c19d1205
ZW
4122 if (unwind.fp_reg != REG_SP)
4123 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4124
c19d1205
ZW
4125 /* Generate opcode to restore the value. */
4126 op = 0x90 | reg;
4127 add_unwind_opcode (op, 1);
4128
4129 /* Record the information for later. */
4130 unwind.fp_reg = reg;
4fa3602b 4131 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4132 unwind.sp_restored = 1;
b05fe5cf
ZW
4133}
4134
c19d1205
ZW
4135/* Parse an unwind_pad directive. */
4136
b05fe5cf 4137static void
c19d1205 4138s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4139{
c19d1205 4140 int offset;
b05fe5cf 4141
921e5f0a 4142 if (!unwind.proc_start)
c921be7d 4143 as_bad (MISSING_FNSTART);
921e5f0a 4144
c19d1205
ZW
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
b99bd4ef 4147
c19d1205
ZW
4148 if (offset & 3)
4149 {
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
b99bd4ef 4154
c19d1205
ZW
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind.frame_size += offset;
4157 unwind.pending_offset += offset;
4158
4159 demand_empty_rest_of_line ();
4160}
4161
4162/* Parse an unwind_setfp directive. */
4163
4164static void
4165s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4166{
c19d1205
ZW
4167 int sp_reg;
4168 int fp_reg;
4169 int offset;
4170
921e5f0a 4171 if (!unwind.proc_start)
c921be7d 4172 as_bad (MISSING_FNSTART);
921e5f0a 4173
dcbf9037 4174 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4175 if (skip_past_comma (&input_line_pointer) == FAIL)
4176 sp_reg = FAIL;
4177 else
dcbf9037 4178 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4179
c19d1205
ZW
4180 if (fp_reg == FAIL || sp_reg == FAIL)
4181 {
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4184 return;
4185 }
b99bd4ef 4186
c19d1205
ZW
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer) != FAIL)
4189 {
4190 if (immediate_for_directive (&offset) == FAIL)
4191 return;
4192 }
4193 else
4194 offset = 0;
a737bd4d 4195
c19d1205 4196 demand_empty_rest_of_line ();
a737bd4d 4197
fdfde340 4198 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4199 {
c19d1205
ZW
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4202 return;
a737bd4d
NC
4203 }
4204
c19d1205
ZW
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind.fp_reg = fp_reg;
4207 unwind.fp_used = 1;
fdfde340 4208 if (sp_reg == REG_SP)
c19d1205
ZW
4209 unwind.fp_offset = unwind.frame_size - offset;
4210 else
4211 unwind.fp_offset -= offset;
a737bd4d
NC
4212}
4213
c19d1205
ZW
4214/* Parse an unwind_raw directive. */
4215
4216static void
4217s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4218{
c19d1205 4219 expressionS exp;
708587a4 4220 /* This is an arbitrary limit. */
c19d1205
ZW
4221 unsigned char op[16];
4222 int count;
a737bd4d 4223
921e5f0a 4224 if (!unwind.proc_start)
c921be7d 4225 as_bad (MISSING_FNSTART);
921e5f0a 4226
c19d1205
ZW
4227 expression (&exp);
4228 if (exp.X_op == O_constant
4229 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4230 {
c19d1205
ZW
4231 unwind.frame_size += exp.X_add_number;
4232 expression (&exp);
4233 }
4234 else
4235 exp.X_op = O_illegal;
a737bd4d 4236
c19d1205
ZW
4237 if (exp.X_op != O_constant)
4238 {
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
a737bd4d 4243
c19d1205 4244 count = 0;
a737bd4d 4245
c19d1205
ZW
4246 /* Parse the opcode. */
4247 for (;;)
4248 {
4249 if (count >= 16)
4250 {
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
a737bd4d 4253 }
c19d1205 4254 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4255 {
c19d1205
ZW
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4258 return;
a737bd4d 4259 }
c19d1205 4260 op[count++] = exp.X_add_number;
a737bd4d 4261
c19d1205
ZW
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer) == FAIL)
4264 break;
a737bd4d 4265
c19d1205
ZW
4266 expression (&exp);
4267 }
b99bd4ef 4268
c19d1205
ZW
4269 /* Add the opcode bytes in reverse order. */
4270 while (count--)
4271 add_unwind_opcode (op[count], 1);
b99bd4ef 4272
c19d1205 4273 demand_empty_rest_of_line ();
b99bd4ef 4274}
ee065d83
PB
4275
4276
4277/* Parse a .eabi_attribute directive. */
4278
4279static void
4280s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4281{
ee3c0378
AS
4282 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4283
4284 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4285 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4286}
4287
0855e32b
NS
4288/* Emit a tls fix for the symbol. */
4289
4290static void
4291s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4292{
4293 char *p;
4294 expressionS exp;
4295#ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4297#endif
4298
4299#ifdef md_cons_align
4300 md_cons_align (4);
4301#endif
4302
4303 /* Since we're just labelling the code, there's no need to define a
4304 mapping symbol. */
4305 expression (&exp);
4306 p = obstack_next_free (&frchain_now->frch_obstack);
4307 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4308 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ);
4310}
cdf9ccec 4311#endif /* OBJ_ELF */
0855e32b 4312
ee065d83 4313static void s_arm_arch (int);
7a1d4c38 4314static void s_arm_object_arch (int);
ee065d83
PB
4315static void s_arm_cpu (int);
4316static void s_arm_fpu (int);
69133863 4317static void s_arm_arch_extension (int);
b99bd4ef 4318
f0927246
NC
4319#ifdef TE_PE
4320
4321static void
5f4273c7 4322pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4323{
4324 expressionS exp;
4325
4326 do
4327 {
4328 expression (&exp);
4329 if (exp.X_op == O_symbol)
4330 exp.X_op = O_secrel;
4331
4332 emit_expr (&exp, 4);
4333 }
4334 while (*input_line_pointer++ == ',');
4335
4336 input_line_pointer--;
4337 demand_empty_rest_of_line ();
4338}
4339#endif /* TE_PE */
4340
c19d1205
ZW
4341/* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
b99bd4ef 4346
c19d1205 4347const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4348{
c19d1205
ZW
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req, 0 },
dcbf9037
JB
4351 /* Following two are likewise never called. */
4352 { "dn", s_dn, 0 },
4353 { "qn", s_qn, 0 },
c19d1205
ZW
4354 { "unreq", s_unreq, 0 },
4355 { "bss", s_bss, 0 },
4356 { "align", s_align, 0 },
4357 { "arm", s_arm, 0 },
4358 { "thumb", s_thumb, 0 },
4359 { "code", s_code, 0 },
4360 { "force_thumb", s_force_thumb, 0 },
4361 { "thumb_func", s_thumb_func, 0 },
4362 { "thumb_set", s_thumb_set, 0 },
4363 { "even", s_even, 0 },
4364 { "ltorg", s_ltorg, 0 },
4365 { "pool", s_ltorg, 0 },
4366 { "syntax", s_syntax, 0 },
8463be01
PB
4367 { "cpu", s_arm_cpu, 0 },
4368 { "arch", s_arm_arch, 0 },
7a1d4c38 4369 { "object_arch", s_arm_object_arch, 0 },
8463be01 4370 { "fpu", s_arm_fpu, 0 },
69133863 4371 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4372#ifdef OBJ_ELF
c921be7d
NC
4373 { "word", s_arm_elf_cons, 4 },
4374 { "long", s_arm_elf_cons, 4 },
4375 { "inst.n", s_arm_elf_inst, 2 },
4376 { "inst.w", s_arm_elf_inst, 4 },
4377 { "inst", s_arm_elf_inst, 0 },
4378 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4379 { "fnstart", s_arm_unwind_fnstart, 0 },
4380 { "fnend", s_arm_unwind_fnend, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4382 { "personality", s_arm_unwind_personality, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4385 { "save", s_arm_unwind_save, 0 },
fa073d69 4386 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4387 { "movsp", s_arm_unwind_movsp, 0 },
4388 { "pad", s_arm_unwind_pad, 0 },
4389 { "setfp", s_arm_unwind_setfp, 0 },
4390 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4391 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4392 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4393#else
4394 { "word", cons, 4},
f0927246
NC
4395
4396 /* These are used for dwarf. */
4397 {"2byte", cons, 2},
4398 {"4byte", cons, 4},
4399 {"8byte", cons, 8},
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4402 { "loc", dwarf2_directive_loc, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4404#endif
4405 { "extend", float_cons, 'x' },
4406 { "ldouble", float_cons, 'x' },
4407 { "packed", float_cons, 'p' },
f0927246
NC
4408#ifdef TE_PE
4409 {"secrel32", pe_directive_secrel, 0},
4410#endif
c19d1205
ZW
4411 { 0, 0, 0 }
4412};
4413\f
4414/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4415
c19d1205
ZW
4416/* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4420 optional. */
b99bd4ef 4421
c19d1205
ZW
4422static int
4423parse_immediate (char **str, int *val, int min, int max,
4424 bfd_boolean prefix_opt)
4425{
4426 expressionS exp;
4427 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4428 if (exp.X_op != O_constant)
b99bd4ef 4429 {
c19d1205
ZW
4430 inst.error = _("constant expression required");
4431 return FAIL;
4432 }
b99bd4ef 4433
c19d1205
ZW
4434 if (exp.X_add_number < min || exp.X_add_number > max)
4435 {
4436 inst.error = _("immediate value out of range");
4437 return FAIL;
4438 }
b99bd4ef 4439
c19d1205
ZW
4440 *val = exp.X_add_number;
4441 return SUCCESS;
4442}
b99bd4ef 4443
5287ad62 4444/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4446 instructions. Puts the result directly in inst.operands[i]. */
4447
4448static int
4449parse_big_immediate (char **str, int i)
4450{
4451 expressionS exp;
4452 char *ptr = *str;
4453
4454 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4455
4456 if (exp.X_op == O_constant)
036dc3f7
PB
4457 {
4458 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
58ad575f 4462 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4463 {
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4466 inst.operands[i].regisimm = 1;
4467 }
4468 }
5287ad62 4469 else if (exp.X_op == O_big
95b75c01 4470 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4471 {
4472 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4473
5287ad62
JB
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4477 gas_assert (parts != 0);
95b75c01
NC
4478
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4484 {
4485 LITTLENUM_TYPE m = -1;
4486
4487 if (generic_bignum[parts * 2] != 0
4488 && generic_bignum[parts * 2] != m)
4489 return FAIL;
4490
4491 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4492 if (generic_bignum[j] != generic_bignum[j-1])
4493 return FAIL;
4494 }
4495
5287ad62
JB
4496 inst.operands[i].imm = 0;
4497 for (j = 0; j < parts; j++, idx++)
4498 inst.operands[i].imm |= generic_bignum[idx]
4499 << (LITTLENUM_NUMBER_OF_BITS * j);
4500 inst.operands[i].reg = 0;
4501 for (j = 0; j < parts; j++, idx++)
4502 inst.operands[i].reg |= generic_bignum[idx]
4503 << (LITTLENUM_NUMBER_OF_BITS * j);
4504 inst.operands[i].regisimm = 1;
4505 }
4506 else
4507 return FAIL;
5f4273c7 4508
5287ad62
JB
4509 *str = ptr;
4510
4511 return SUCCESS;
4512}
4513
c19d1205
ZW
4514/* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
b99bd4ef 4516
c19d1205
ZW
4517static int
4518parse_fpa_immediate (char ** str)
4519{
4520 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4521 char * save_in;
4522 expressionS exp;
4523 int i;
4524 int j;
b99bd4ef 4525
c19d1205
ZW
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
b99bd4ef 4528
c19d1205
ZW
4529 for (i = 0; fp_const[i]; i++)
4530 {
4531 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4532 {
c19d1205 4533 char *start = *str;
b99bd4ef 4534
c19d1205
ZW
4535 *str += strlen (fp_const[i]);
4536 if (is_end_of_line[(unsigned char) **str])
4537 return i + 8;
4538 *str = start;
4539 }
4540 }
b99bd4ef 4541
c19d1205
ZW
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
b99bd4ef 4546
c19d1205 4547 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4548
c19d1205
ZW
4549 /* Look for a raw floating point number. */
4550 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4551 && is_end_of_line[(unsigned char) *save_in])
4552 {
4553 for (i = 0; i < NUM_FLOAT_VALS; i++)
4554 {
4555 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4556 {
c19d1205
ZW
4557 if (words[j] != fp_values[i][j])
4558 break;
b99bd4ef
NC
4559 }
4560
c19d1205 4561 if (j == MAX_LITTLENUMS)
b99bd4ef 4562 {
c19d1205
ZW
4563 *str = save_in;
4564 return i + 8;
b99bd4ef
NC
4565 }
4566 }
4567 }
b99bd4ef 4568
c19d1205
ZW
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in = input_line_pointer;
4572 input_line_pointer = *str;
4573 if (expression (&exp) == absolute_section
4574 && exp.X_op == O_big
4575 && exp.X_add_number < 0)
4576 {
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4578 Ditto for 15. */
4579 if (gen_to_words (words, 5, (long) 15) == 0)
4580 {
4581 for (i = 0; i < NUM_FLOAT_VALS; i++)
4582 {
4583 for (j = 0; j < MAX_LITTLENUMS; j++)
4584 {
4585 if (words[j] != fp_values[i][j])
4586 break;
4587 }
b99bd4ef 4588
c19d1205
ZW
4589 if (j == MAX_LITTLENUMS)
4590 {
4591 *str = input_line_pointer;
4592 input_line_pointer = save_in;
4593 return i + 8;
4594 }
4595 }
4596 }
b99bd4ef
NC
4597 }
4598
c19d1205
ZW
4599 *str = input_line_pointer;
4600 input_line_pointer = save_in;
4601 inst.error = _("invalid FPA immediate expression");
4602 return FAIL;
b99bd4ef
NC
4603}
4604
136da414
JB
4605/* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4607
4608static int
4609is_quarter_float (unsigned imm)
4610{
4611 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4613}
4614
4615/* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
136da414
JB
4620
4621static unsigned
4622parse_qfloat_immediate (char **ccp, int *immed)
4623{
4624 char *str = *ccp;
c96612cc 4625 char *fpnum;
136da414 4626 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4627 int found_fpchar = 0;
5f4273c7 4628
136da414 4629 skip_past_char (&str, '#');
5f4273c7 4630
c96612cc
JB
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4636 fpnum = str;
4637 skip_whitespace (fpnum);
4638
4639 if (strncmp (fpnum, "0x", 2) == 0)
4640 return FAIL;
4641 else
4642 {
4643 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4644 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4645 {
4646 found_fpchar = 1;
4647 break;
4648 }
4649
4650 if (!found_fpchar)
4651 return FAIL;
4652 }
5f4273c7 4653
136da414
JB
4654 if ((str = atof_ieee (str, 's', words)) != NULL)
4655 {
4656 unsigned fpword = 0;
4657 int i;
5f4273c7 4658
136da414
JB
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4661 {
4662 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4663 fpword |= words[i];
4664 }
5f4273c7 4665
c96612cc 4666 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4667 *immed = fpword;
4668 else
4669 return FAIL;
4670
4671 *ccp = str;
5f4273c7 4672
136da414
JB
4673 return SUCCESS;
4674 }
5f4273c7 4675
136da414
JB
4676 return FAIL;
4677}
4678
c19d1205
ZW
4679/* Shift operands. */
4680enum shift_kind
b99bd4ef 4681{
c19d1205
ZW
4682 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4683};
b99bd4ef 4684
c19d1205
ZW
4685struct asm_shift_name
4686{
4687 const char *name;
4688 enum shift_kind kind;
4689};
b99bd4ef 4690
c19d1205
ZW
4691/* Third argument to parse_shift. */
4692enum parse_shift_mode
4693{
4694 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4699};
b99bd4ef 4700
c19d1205
ZW
4701/* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
b99bd4ef 4703
c19d1205
ZW
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4706 RRX
b99bd4ef 4707
c19d1205
ZW
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4710
c19d1205
ZW
4711static int
4712parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4713{
c19d1205
ZW
4714 const struct asm_shift_name *shift_name;
4715 enum shift_kind shift;
4716 char *s = *str;
4717 char *p = s;
4718 int reg;
b99bd4ef 4719
c19d1205
ZW
4720 for (p = *str; ISALPHA (*p); p++)
4721 ;
b99bd4ef 4722
c19d1205 4723 if (p == *str)
b99bd4ef 4724 {
c19d1205
ZW
4725 inst.error = _("shift expression expected");
4726 return FAIL;
b99bd4ef
NC
4727 }
4728
21d799b5
NC
4729 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4730 p - *str);
c19d1205
ZW
4731
4732 if (shift_name == NULL)
b99bd4ef 4733 {
c19d1205
ZW
4734 inst.error = _("shift expression expected");
4735 return FAIL;
b99bd4ef
NC
4736 }
4737
c19d1205 4738 shift = shift_name->kind;
b99bd4ef 4739
c19d1205
ZW
4740 switch (mode)
4741 {
4742 case NO_SHIFT_RESTRICT:
4743 case SHIFT_IMMEDIATE: break;
b99bd4ef 4744
c19d1205
ZW
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4746 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4747 {
4748 inst.error = _("'LSL' or 'ASR' required");
4749 return FAIL;
4750 }
4751 break;
b99bd4ef 4752
c19d1205
ZW
4753 case SHIFT_LSL_IMMEDIATE:
4754 if (shift != SHIFT_LSL)
4755 {
4756 inst.error = _("'LSL' required");
4757 return FAIL;
4758 }
4759 break;
b99bd4ef 4760
c19d1205
ZW
4761 case SHIFT_ASR_IMMEDIATE:
4762 if (shift != SHIFT_ASR)
4763 {
4764 inst.error = _("'ASR' required");
4765 return FAIL;
4766 }
4767 break;
b99bd4ef 4768
c19d1205
ZW
4769 default: abort ();
4770 }
b99bd4ef 4771
c19d1205
ZW
4772 if (shift != SHIFT_RRX)
4773 {
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p);
b99bd4ef 4776
c19d1205 4777 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4778 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4779 {
4780 inst.operands[i].imm = reg;
4781 inst.operands[i].immisreg = 1;
4782 }
4783 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4784 return FAIL;
4785 }
4786 inst.operands[i].shift_kind = shift;
4787 inst.operands[i].shifted = 1;
4788 *str = p;
4789 return SUCCESS;
b99bd4ef
NC
4790}
4791
c19d1205 4792/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4793
c19d1205
ZW
4794 #<immediate>
4795 #<immediate>, <rotate>
4796 <Rm>
4797 <Rm>, <shift>
b99bd4ef 4798
c19d1205
ZW
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4801 is deferred to md_apply_fix. */
b99bd4ef 4802
c19d1205
ZW
4803static int
4804parse_shifter_operand (char **str, int i)
4805{
4806 int value;
91d6fa6a 4807 expressionS exp;
b99bd4ef 4808
dcbf9037 4809 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4810 {
4811 inst.operands[i].reg = value;
4812 inst.operands[i].isreg = 1;
b99bd4ef 4813
c19d1205
ZW
4814 /* parse_shift will override this if appropriate */
4815 inst.reloc.exp.X_op = O_constant;
4816 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4817
c19d1205
ZW
4818 if (skip_past_comma (str) == FAIL)
4819 return SUCCESS;
b99bd4ef 4820
c19d1205
ZW
4821 /* Shift operation on register. */
4822 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4823 }
4824
c19d1205
ZW
4825 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4826 return FAIL;
b99bd4ef 4827
c19d1205 4828 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4829 {
c19d1205 4830 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4831 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4832 return FAIL;
b99bd4ef 4833
91d6fa6a 4834 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4835 {
4836 inst.error = _("constant expression expected");
4837 return FAIL;
4838 }
b99bd4ef 4839
91d6fa6a 4840 value = exp.X_add_number;
c19d1205
ZW
4841 if (value < 0 || value > 30 || value % 2 != 0)
4842 {
4843 inst.error = _("invalid rotation");
4844 return FAIL;
4845 }
4846 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4847 {
4848 inst.error = _("invalid constant");
4849 return FAIL;
4850 }
09d92015 4851
55cf6793 4852 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4853 inst.reloc.exp.X_add_number
4854 = (((inst.reloc.exp.X_add_number << (32 - value))
4855 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4856 }
4857
c19d1205
ZW
4858 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4859 inst.reloc.pc_rel = 0;
4860 return SUCCESS;
09d92015
MM
4861}
4862
4962c51a
MS
4863/* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4869
4870struct group_reloc_table_entry
4871{
4872 const char *name;
4873 int alu_code;
4874 int ldr_code;
4875 int ldrs_code;
4876 int ldc_code;
4877};
4878
4879typedef enum
4880{
4881 /* Varieties of non-ALU group relocation. */
4882
4883 GROUP_LDR,
4884 GROUP_LDRS,
4885 GROUP_LDC
4886} group_reloc_type;
4887
4888static struct group_reloc_table_entry group_reloc_table[] =
4889 { /* Program counter relative: */
4890 { "pc_g0_nc",
4891 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4892 0, /* LDR */
4893 0, /* LDRS */
4894 0 }, /* LDC */
4895 { "pc_g0",
4896 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4900 { "pc_g1_nc",
4901 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4902 0, /* LDR */
4903 0, /* LDRS */
4904 0 }, /* LDC */
4905 { "pc_g1",
4906 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4910 { "pc_g2",
4911 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4915 /* Section base relative */
4916 { "sb_g0_nc",
4917 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4918 0, /* LDR */
4919 0, /* LDRS */
4920 0 }, /* LDC */
4921 { "sb_g0",
4922 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4926 { "sb_g1_nc",
4927 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4928 0, /* LDR */
4929 0, /* LDRS */
4930 0 }, /* LDC */
4931 { "sb_g1",
4932 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4936 { "sb_g2",
4937 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4941
4942/* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4948
4949static int
4950find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4951{
4952 unsigned int i;
4953 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4954 {
4955 int length = strlen (group_reloc_table[i].name);
4956
5f4273c7
NC
4957 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4958 && (*str)[length] == ':')
4962c51a
MS
4959 {
4960 *out = &group_reloc_table[i];
4961 *str += (length + 1);
4962 return SUCCESS;
4963 }
4964 }
4965
4966 return FAIL;
4967}
4968
4969/* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4971
4972 #<immediate>
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4975 <Rm>
4976 <Rm>, <shift>
4977
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4980
4981 Everything else is as for parse_shifter_operand. */
4982
4983static parse_operand_result
4984parse_shifter_operand_group_reloc (char **str, int i)
4985{
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4989
4990 if (((*str)[0] == '#' && (*str)[1] == ':')
4991 || (*str)[0] == ':')
4992 {
4993 struct group_reloc_table_entry *entry;
4994
4995 if ((*str)[0] == '#')
4996 (*str) += 2;
4997 else
4998 (*str)++;
4999
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5002 {
5003 inst.error = _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5005 }
5006
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5011
5012 /* Record the relocation type (always the ALU variant here). */
21d799b5 5013 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5014 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5015
5016 return PARSE_OPERAND_SUCCESS;
5017 }
5018 else
5019 return parse_shifter_operand (str, i) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5021
5022 /* Never reached. */
5023}
5024
8e560766
MGD
5025/* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5027
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029static parse_operand_result
5030parse_neon_alignment (char **str, int i)
5031{
5032 char *p = *str;
5033 expressionS exp;
5034
5035 my_get_expression (&exp, &p, GE_NO_PREFIX);
5036
5037 if (exp.X_op != O_constant)
5038 {
5039 inst.error = _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL;
5041 }
5042
5043 inst.operands[i].imm = exp.X_add_number << 8;
5044 inst.operands[i].immisalign = 1;
5045 /* Alignments are not pre-indexes. */
5046 inst.operands[i].preind = 0;
5047
5048 *str = p;
5049 return PARSE_OPERAND_SUCCESS;
5050}
5051
c19d1205
ZW
5052/* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
09d92015 5054
c19d1205 5055 Preindexed addressing (.preind=1):
09d92015 5056
c19d1205
ZW
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5061
c19d1205 5062 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5063
c19d1205 5064 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5065
c19d1205
ZW
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5070
c19d1205 5071 Unindexed addressing (.preind=0, .postind=0):
09d92015 5072
c19d1205 5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5074
c19d1205 5075 Other:
09d92015 5076
c19d1205
ZW
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5080
c19d1205
ZW
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5083
4962c51a
MS
5084static parse_operand_result
5085parse_address_main (char **str, int i, int group_relocations,
5086 group_reloc_type group_type)
09d92015 5087{
c19d1205
ZW
5088 char *p = *str;
5089 int reg;
09d92015 5090
c19d1205 5091 if (skip_past_char (&p, '[') == FAIL)
09d92015 5092 {
c19d1205
ZW
5093 if (skip_past_char (&p, '=') == FAIL)
5094 {
974da60d 5095 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5096 inst.reloc.pc_rel = 1;
5097 inst.operands[i].reg = REG_PC;
5098 inst.operands[i].isreg = 1;
5099 inst.operands[i].preind = 1;
5100 }
974da60d 5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5102
c19d1205 5103 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5104 return PARSE_OPERAND_FAIL;
09d92015 5105
c19d1205 5106 *str = p;
4962c51a 5107 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5108 }
5109
dcbf9037 5110 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5111 {
c19d1205 5112 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5113 return PARSE_OPERAND_FAIL;
09d92015 5114 }
c19d1205
ZW
5115 inst.operands[i].reg = reg;
5116 inst.operands[i].isreg = 1;
09d92015 5117
c19d1205 5118 if (skip_past_comma (&p) == SUCCESS)
09d92015 5119 {
c19d1205 5120 inst.operands[i].preind = 1;
09d92015 5121
c19d1205
ZW
5122 if (*p == '+') p++;
5123 else if (*p == '-') p++, inst.operands[i].negative = 1;
5124
dcbf9037 5125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5126 {
c19d1205
ZW
5127 inst.operands[i].imm = reg;
5128 inst.operands[i].immisreg = 1;
5129
5130 if (skip_past_comma (&p) == SUCCESS)
5131 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5132 return PARSE_OPERAND_FAIL;
c19d1205 5133 }
5287ad62 5134 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5135 {
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5138 change. */
5139 parse_operand_result result = parse_neon_alignment (&p, i);
5140
5141 if (result != PARSE_OPERAND_SUCCESS)
5142 return result;
5143 }
c19d1205
ZW
5144 else
5145 {
5146 if (inst.operands[i].negative)
5147 {
5148 inst.operands[i].negative = 0;
5149 p--;
5150 }
4962c51a 5151
5f4273c7
NC
5152 if (group_relocations
5153 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5154 {
5155 struct group_reloc_table_entry *entry;
5156
5157 /* Skip over the #: or : sequence. */
5158 if (*p == '#')
5159 p += 2;
5160 else
5161 p++;
5162
5163 /* Try to parse a group relocation. Anything else is an
5164 error. */
5165 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5166 {
5167 inst.error = _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5169 }
5170
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5173 expression. */
5174 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5176
5177 /* Record the relocation type. */
5178 switch (group_type)
5179 {
5180 case GROUP_LDR:
21d799b5 5181 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5182 break;
5183
5184 case GROUP_LDRS:
21d799b5 5185 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5186 break;
5187
5188 case GROUP_LDC:
21d799b5 5189 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5190 break;
5191
5192 default:
9c2799c2 5193 gas_assert (0);
4962c51a
MS
5194 }
5195
5196 if (inst.reloc.type == 0)
5197 {
5198 inst.error = _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5200 }
5201 }
5202 else
26d97720
NS
5203 {
5204 char *q = p;
5205 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5206 return PARSE_OPERAND_FAIL;
5207 /* If the offset is 0, find out if it's a +0 or -0. */
5208 if (inst.reloc.exp.X_op == O_constant
5209 && inst.reloc.exp.X_add_number == 0)
5210 {
5211 skip_whitespace (q);
5212 if (*q == '#')
5213 {
5214 q++;
5215 skip_whitespace (q);
5216 }
5217 if (*q == '-')
5218 inst.operands[i].negative = 1;
5219 }
5220 }
09d92015
MM
5221 }
5222 }
8e560766
MGD
5223 else if (skip_past_char (&p, ':') == SUCCESS)
5224 {
5225 /* FIXME: '@' should be used here, but it's filtered out by generic code
5226 before we get to see it here. This may be subject to change. */
5227 parse_operand_result result = parse_neon_alignment (&p, i);
5228
5229 if (result != PARSE_OPERAND_SUCCESS)
5230 return result;
5231 }
09d92015 5232
c19d1205 5233 if (skip_past_char (&p, ']') == FAIL)
09d92015 5234 {
c19d1205 5235 inst.error = _("']' expected");
4962c51a 5236 return PARSE_OPERAND_FAIL;
09d92015
MM
5237 }
5238
c19d1205
ZW
5239 if (skip_past_char (&p, '!') == SUCCESS)
5240 inst.operands[i].writeback = 1;
09d92015 5241
c19d1205 5242 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5243 {
c19d1205
ZW
5244 if (skip_past_char (&p, '{') == SUCCESS)
5245 {
5246 /* [Rn], {expr} - unindexed, with option */
5247 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5248 0, 255, TRUE) == FAIL)
4962c51a 5249 return PARSE_OPERAND_FAIL;
09d92015 5250
c19d1205
ZW
5251 if (skip_past_char (&p, '}') == FAIL)
5252 {
5253 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5254 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5255 }
5256 if (inst.operands[i].preind)
5257 {
5258 inst.error = _("cannot combine index with option");
4962c51a 5259 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5260 }
5261 *str = p;
4962c51a 5262 return PARSE_OPERAND_SUCCESS;
09d92015 5263 }
c19d1205
ZW
5264 else
5265 {
5266 inst.operands[i].postind = 1;
5267 inst.operands[i].writeback = 1;
09d92015 5268
c19d1205
ZW
5269 if (inst.operands[i].preind)
5270 {
5271 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5272 return PARSE_OPERAND_FAIL;
c19d1205 5273 }
09d92015 5274
c19d1205
ZW
5275 if (*p == '+') p++;
5276 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5277
dcbf9037 5278 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5279 {
5287ad62
JB
5280 /* We might be using the immediate for alignment already. If we
5281 are, OR the register number into the low-order bits. */
5282 if (inst.operands[i].immisalign)
5283 inst.operands[i].imm |= reg;
5284 else
5285 inst.operands[i].imm = reg;
c19d1205 5286 inst.operands[i].immisreg = 1;
a737bd4d 5287
c19d1205
ZW
5288 if (skip_past_comma (&p) == SUCCESS)
5289 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5290 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5291 }
5292 else
5293 {
26d97720 5294 char *q = p;
c19d1205
ZW
5295 if (inst.operands[i].negative)
5296 {
5297 inst.operands[i].negative = 0;
5298 p--;
5299 }
5300 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5301 return PARSE_OPERAND_FAIL;
26d97720
NS
5302 /* If the offset is 0, find out if it's a +0 or -0. */
5303 if (inst.reloc.exp.X_op == O_constant
5304 && inst.reloc.exp.X_add_number == 0)
5305 {
5306 skip_whitespace (q);
5307 if (*q == '#')
5308 {
5309 q++;
5310 skip_whitespace (q);
5311 }
5312 if (*q == '-')
5313 inst.operands[i].negative = 1;
5314 }
c19d1205
ZW
5315 }
5316 }
a737bd4d
NC
5317 }
5318
c19d1205
ZW
5319 /* If at this point neither .preind nor .postind is set, we have a
5320 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5321 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5322 {
5323 inst.operands[i].preind = 1;
5324 inst.reloc.exp.X_op = O_constant;
5325 inst.reloc.exp.X_add_number = 0;
5326 }
5327 *str = p;
4962c51a
MS
5328 return PARSE_OPERAND_SUCCESS;
5329}
5330
5331static int
5332parse_address (char **str, int i)
5333{
21d799b5 5334 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5335 ? SUCCESS : FAIL;
5336}
5337
5338static parse_operand_result
5339parse_address_group_reloc (char **str, int i, group_reloc_type type)
5340{
5341 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5342}
5343
b6895b4f
PB
5344/* Parse an operand for a MOVW or MOVT instruction. */
5345static int
5346parse_half (char **str)
5347{
5348 char * p;
5f4273c7 5349
b6895b4f
PB
5350 p = *str;
5351 skip_past_char (&p, '#');
5f4273c7 5352 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5353 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5354 else if (strncasecmp (p, ":upper16:", 9) == 0)
5355 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5356
5357 if (inst.reloc.type != BFD_RELOC_UNUSED)
5358 {
5359 p += 9;
5f4273c7 5360 skip_whitespace (p);
b6895b4f
PB
5361 }
5362
5363 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5364 return FAIL;
5365
5366 if (inst.reloc.type == BFD_RELOC_UNUSED)
5367 {
5368 if (inst.reloc.exp.X_op != O_constant)
5369 {
5370 inst.error = _("constant expression expected");
5371 return FAIL;
5372 }
5373 if (inst.reloc.exp.X_add_number < 0
5374 || inst.reloc.exp.X_add_number > 0xffff)
5375 {
5376 inst.error = _("immediate value out of range");
5377 return FAIL;
5378 }
5379 }
5380 *str = p;
5381 return SUCCESS;
5382}
5383
c19d1205 5384/* Miscellaneous. */
a737bd4d 5385
c19d1205
ZW
5386/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5387 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5388static int
d2cd1205 5389parse_psr (char **str, bfd_boolean lhs)
09d92015 5390{
c19d1205
ZW
5391 char *p;
5392 unsigned long psr_field;
62b3e311
PB
5393 const struct asm_psr *psr;
5394 char *start;
d2cd1205 5395 bfd_boolean is_apsr = FALSE;
ac7f631b 5396 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5397
c19d1205
ZW
5398 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5399 feature for ease of use and backwards compatibility. */
5400 p = *str;
62b3e311 5401 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5402 {
5403 if (m_profile)
5404 goto unsupported_psr;
5405
5406 psr_field = SPSR_BIT;
5407 }
5408 else if (strncasecmp (p, "CPSR", 4) == 0)
5409 {
5410 if (m_profile)
5411 goto unsupported_psr;
5412
5413 psr_field = 0;
5414 }
5415 else if (strncasecmp (p, "APSR", 4) == 0)
5416 {
5417 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5418 and ARMv7-R architecture CPUs. */
5419 is_apsr = TRUE;
5420 psr_field = 0;
5421 }
5422 else if (m_profile)
62b3e311
PB
5423 {
5424 start = p;
5425 do
5426 p++;
5427 while (ISALNUM (*p) || *p == '_');
5428
d2cd1205
JB
5429 if (strncasecmp (start, "iapsr", 5) == 0
5430 || strncasecmp (start, "eapsr", 5) == 0
5431 || strncasecmp (start, "xpsr", 4) == 0
5432 || strncasecmp (start, "psr", 3) == 0)
5433 p = start + strcspn (start, "rR") + 1;
5434
21d799b5
NC
5435 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5436 p - start);
d2cd1205 5437
62b3e311
PB
5438 if (!psr)
5439 return FAIL;
09d92015 5440
d2cd1205
JB
5441 /* If APSR is being written, a bitfield may be specified. Note that
5442 APSR itself is handled above. */
5443 if (psr->field <= 3)
5444 {
5445 psr_field = psr->field;
5446 is_apsr = TRUE;
5447 goto check_suffix;
5448 }
5449
62b3e311 5450 *str = p;
d2cd1205
JB
5451 /* M-profile MSR instructions have the mask field set to "10", except
5452 *PSR variants which modify APSR, which may use a different mask (and
5453 have been handled already). Do that by setting the PSR_f field
5454 here. */
5455 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5456 }
d2cd1205
JB
5457 else
5458 goto unsupported_psr;
09d92015 5459
62b3e311 5460 p += 4;
d2cd1205 5461check_suffix:
c19d1205
ZW
5462 if (*p == '_')
5463 {
5464 /* A suffix follows. */
c19d1205
ZW
5465 p++;
5466 start = p;
a737bd4d 5467
c19d1205
ZW
5468 do
5469 p++;
5470 while (ISALNUM (*p) || *p == '_');
a737bd4d 5471
d2cd1205
JB
5472 if (is_apsr)
5473 {
5474 /* APSR uses a notation for bits, rather than fields. */
5475 unsigned int nzcvq_bits = 0;
5476 unsigned int g_bit = 0;
5477 char *bit;
5478
5479 for (bit = start; bit != p; bit++)
5480 {
5481 switch (TOLOWER (*bit))
5482 {
5483 case 'n':
5484 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5485 break;
5486
5487 case 'z':
5488 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5489 break;
5490
5491 case 'c':
5492 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5493 break;
5494
5495 case 'v':
5496 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5497 break;
5498
5499 case 'q':
5500 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5501 break;
5502
5503 case 'g':
5504 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5505 break;
5506
5507 default:
5508 inst.error = _("unexpected bit specified after APSR");
5509 return FAIL;
5510 }
5511 }
5512
5513 if (nzcvq_bits == 0x1f)
5514 psr_field |= PSR_f;
5515
5516 if (g_bit == 0x1)
5517 {
5518 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5519 {
5520 inst.error = _("selected processor does not "
5521 "support DSP extension");
5522 return FAIL;
5523 }
5524
5525 psr_field |= PSR_s;
5526 }
5527
5528 if ((nzcvq_bits & 0x20) != 0
5529 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5530 || (g_bit & 0x2) != 0)
5531 {
5532 inst.error = _("bad bitmask specified after APSR");
5533 return FAIL;
5534 }
5535 }
5536 else
5537 {
5538 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5539 p - start);
5540 if (!psr)
5541 goto error;
a737bd4d 5542
d2cd1205
JB
5543 psr_field |= psr->field;
5544 }
a737bd4d 5545 }
c19d1205 5546 else
a737bd4d 5547 {
c19d1205
ZW
5548 if (ISALNUM (*p))
5549 goto error; /* Garbage after "[CS]PSR". */
5550
d2cd1205
JB
5551 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5552 is deprecated, but allow it anyway. */
5553 if (is_apsr && lhs)
5554 {
5555 psr_field |= PSR_f;
5556 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5557 "deprecated"));
5558 }
5559 else if (!m_profile)
5560 /* These bits are never right for M-profile devices: don't set them
5561 (only code paths which read/write APSR reach here). */
5562 psr_field |= (PSR_c | PSR_f);
a737bd4d 5563 }
c19d1205
ZW
5564 *str = p;
5565 return psr_field;
a737bd4d 5566
d2cd1205
JB
5567 unsupported_psr:
5568 inst.error = _("selected processor does not support requested special "
5569 "purpose register");
5570 return FAIL;
5571
c19d1205
ZW
5572 error:
5573 inst.error = _("flag for {c}psr instruction expected");
5574 return FAIL;
a737bd4d
NC
5575}
5576
c19d1205
ZW
5577/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5578 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5579
c19d1205
ZW
5580static int
5581parse_cps_flags (char **str)
a737bd4d 5582{
c19d1205
ZW
5583 int val = 0;
5584 int saw_a_flag = 0;
5585 char *s = *str;
a737bd4d 5586
c19d1205
ZW
5587 for (;;)
5588 switch (*s++)
5589 {
5590 case '\0': case ',':
5591 goto done;
a737bd4d 5592
c19d1205
ZW
5593 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5594 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5595 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5596
c19d1205
ZW
5597 default:
5598 inst.error = _("unrecognized CPS flag");
5599 return FAIL;
5600 }
a737bd4d 5601
c19d1205
ZW
5602 done:
5603 if (saw_a_flag == 0)
a737bd4d 5604 {
c19d1205
ZW
5605 inst.error = _("missing CPS flags");
5606 return FAIL;
a737bd4d 5607 }
a737bd4d 5608
c19d1205
ZW
5609 *str = s - 1;
5610 return val;
a737bd4d
NC
5611}
5612
c19d1205
ZW
5613/* Parse an endian specifier ("BE" or "LE", case insensitive);
5614 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5615
5616static int
c19d1205 5617parse_endian_specifier (char **str)
a737bd4d 5618{
c19d1205
ZW
5619 int little_endian;
5620 char *s = *str;
a737bd4d 5621
c19d1205
ZW
5622 if (strncasecmp (s, "BE", 2))
5623 little_endian = 0;
5624 else if (strncasecmp (s, "LE", 2))
5625 little_endian = 1;
5626 else
a737bd4d 5627 {
c19d1205 5628 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5629 return FAIL;
5630 }
5631
c19d1205 5632 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5633 {
c19d1205 5634 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5635 return FAIL;
5636 }
5637
c19d1205
ZW
5638 *str = s + 2;
5639 return little_endian;
5640}
a737bd4d 5641
c19d1205
ZW
5642/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5643 value suitable for poking into the rotate field of an sxt or sxta
5644 instruction, or FAIL on error. */
5645
5646static int
5647parse_ror (char **str)
5648{
5649 int rot;
5650 char *s = *str;
5651
5652 if (strncasecmp (s, "ROR", 3) == 0)
5653 s += 3;
5654 else
a737bd4d 5655 {
c19d1205 5656 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5657 return FAIL;
5658 }
c19d1205
ZW
5659
5660 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5661 return FAIL;
5662
5663 switch (rot)
a737bd4d 5664 {
c19d1205
ZW
5665 case 0: *str = s; return 0x0;
5666 case 8: *str = s; return 0x1;
5667 case 16: *str = s; return 0x2;
5668 case 24: *str = s; return 0x3;
5669
5670 default:
5671 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5672 return FAIL;
5673 }
c19d1205 5674}
a737bd4d 5675
c19d1205
ZW
5676/* Parse a conditional code (from conds[] below). The value returned is in the
5677 range 0 .. 14, or FAIL. */
5678static int
5679parse_cond (char **str)
5680{
c462b453 5681 char *q;
c19d1205 5682 const struct asm_cond *c;
c462b453
PB
5683 int n;
5684 /* Condition codes are always 2 characters, so matching up to
5685 3 characters is sufficient. */
5686 char cond[3];
a737bd4d 5687
c462b453
PB
5688 q = *str;
5689 n = 0;
5690 while (ISALPHA (*q) && n < 3)
5691 {
e07e6e58 5692 cond[n] = TOLOWER (*q);
c462b453
PB
5693 q++;
5694 n++;
5695 }
a737bd4d 5696
21d799b5 5697 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5698 if (!c)
a737bd4d 5699 {
c19d1205 5700 inst.error = _("condition required");
a737bd4d
NC
5701 return FAIL;
5702 }
5703
c19d1205
ZW
5704 *str = q;
5705 return c->value;
5706}
5707
62b3e311
PB
5708/* Parse an option for a barrier instruction. Returns the encoding for the
5709 option, or FAIL. */
5710static int
5711parse_barrier (char **str)
5712{
5713 char *p, *q;
5714 const struct asm_barrier_opt *o;
5715
5716 p = q = *str;
5717 while (ISALPHA (*q))
5718 q++;
5719
21d799b5
NC
5720 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5721 q - p);
62b3e311
PB
5722 if (!o)
5723 return FAIL;
5724
5725 *str = q;
5726 return o->value;
5727}
5728
92e90b6e
PB
5729/* Parse the operands of a table branch instruction. Similar to a memory
5730 operand. */
5731static int
5732parse_tb (char **str)
5733{
5734 char * p = *str;
5735 int reg;
5736
5737 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5738 {
5739 inst.error = _("'[' expected");
5740 return FAIL;
5741 }
92e90b6e 5742
dcbf9037 5743 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5744 {
5745 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5746 return FAIL;
5747 }
5748 inst.operands[0].reg = reg;
5749
5750 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5751 {
5752 inst.error = _("',' expected");
5753 return FAIL;
5754 }
5f4273c7 5755
dcbf9037 5756 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5757 {
5758 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5759 return FAIL;
5760 }
5761 inst.operands[0].imm = reg;
5762
5763 if (skip_past_comma (&p) == SUCCESS)
5764 {
5765 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5766 return FAIL;
5767 if (inst.reloc.exp.X_add_number != 1)
5768 {
5769 inst.error = _("invalid shift");
5770 return FAIL;
5771 }
5772 inst.operands[0].shifted = 1;
5773 }
5774
5775 if (skip_past_char (&p, ']') == FAIL)
5776 {
5777 inst.error = _("']' expected");
5778 return FAIL;
5779 }
5780 *str = p;
5781 return SUCCESS;
5782}
5783
5287ad62
JB
5784/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5785 information on the types the operands can take and how they are encoded.
037e8744
JB
5786 Up to four operands may be read; this function handles setting the
5787 ".present" field for each read operand itself.
5287ad62
JB
5788 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5789 else returns FAIL. */
5790
5791static int
5792parse_neon_mov (char **str, int *which_operand)
5793{
5794 int i = *which_operand, val;
5795 enum arm_reg_type rtype;
5796 char *ptr = *str;
dcbf9037 5797 struct neon_type_el optype;
5f4273c7 5798
dcbf9037 5799 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5800 {
5801 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5802 inst.operands[i].reg = val;
5803 inst.operands[i].isscalar = 1;
dcbf9037 5804 inst.operands[i].vectype = optype;
5287ad62
JB
5805 inst.operands[i++].present = 1;
5806
5807 if (skip_past_comma (&ptr) == FAIL)
5808 goto wanted_comma;
5f4273c7 5809
dcbf9037 5810 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5811 goto wanted_arm;
5f4273c7 5812
5287ad62
JB
5813 inst.operands[i].reg = val;
5814 inst.operands[i].isreg = 1;
5815 inst.operands[i].present = 1;
5816 }
037e8744 5817 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5818 != FAIL)
5287ad62
JB
5819 {
5820 /* Cases 0, 1, 2, 3, 5 (D only). */
5821 if (skip_past_comma (&ptr) == FAIL)
5822 goto wanted_comma;
5f4273c7 5823
5287ad62
JB
5824 inst.operands[i].reg = val;
5825 inst.operands[i].isreg = 1;
5826 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5827 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5828 inst.operands[i].isvec = 1;
dcbf9037 5829 inst.operands[i].vectype = optype;
5287ad62
JB
5830 inst.operands[i++].present = 1;
5831
dcbf9037 5832 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5833 {
037e8744
JB
5834 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5835 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5836 inst.operands[i].reg = val;
5837 inst.operands[i].isreg = 1;
037e8744 5838 inst.operands[i].present = 1;
5287ad62
JB
5839
5840 if (rtype == REG_TYPE_NQ)
5841 {
dcbf9037 5842 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5843 return FAIL;
5844 }
037e8744
JB
5845 else if (rtype != REG_TYPE_VFS)
5846 {
5847 i++;
5848 if (skip_past_comma (&ptr) == FAIL)
5849 goto wanted_comma;
5850 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5851 goto wanted_arm;
5852 inst.operands[i].reg = val;
5853 inst.operands[i].isreg = 1;
5854 inst.operands[i].present = 1;
5855 }
5287ad62 5856 }
037e8744
JB
5857 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5858 &optype)) != FAIL)
5287ad62
JB
5859 {
5860 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5861 Case 1: VMOV<c><q> <Dd>, <Dm>
5862 Case 8: VMOV.F32 <Sd>, <Sm>
5863 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5864
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5869 inst.operands[i].isvec = 1;
dcbf9037 5870 inst.operands[i].vectype = optype;
5287ad62 5871 inst.operands[i].present = 1;
5f4273c7 5872
037e8744
JB
5873 if (skip_past_comma (&ptr) == SUCCESS)
5874 {
5875 /* Case 15. */
5876 i++;
5877
5878 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5879 goto wanted_arm;
5880
5881 inst.operands[i].reg = val;
5882 inst.operands[i].isreg = 1;
5883 inst.operands[i++].present = 1;
5f4273c7 5884
037e8744
JB
5885 if (skip_past_comma (&ptr) == FAIL)
5886 goto wanted_comma;
5f4273c7 5887
037e8744
JB
5888 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5889 goto wanted_arm;
5f4273c7 5890
037e8744
JB
5891 inst.operands[i].reg = val;
5892 inst.operands[i].isreg = 1;
5893 inst.operands[i++].present = 1;
5894 }
5287ad62 5895 }
4641781c
PB
5896 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5897 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5898 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5899 Case 10: VMOV.F32 <Sd>, #<imm>
5900 Case 11: VMOV.F64 <Dd>, #<imm> */
5901 inst.operands[i].immisfloat = 1;
5902 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5903 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5904 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5905 ;
5287ad62
JB
5906 else
5907 {
dcbf9037 5908 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5909 return FAIL;
5910 }
5911 }
dcbf9037 5912 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5913 {
5914 /* Cases 6, 7. */
5915 inst.operands[i].reg = val;
5916 inst.operands[i].isreg = 1;
5917 inst.operands[i++].present = 1;
5f4273c7 5918
5287ad62
JB
5919 if (skip_past_comma (&ptr) == FAIL)
5920 goto wanted_comma;
5f4273c7 5921
dcbf9037 5922 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5923 {
5924 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5925 inst.operands[i].reg = val;
5926 inst.operands[i].isscalar = 1;
5927 inst.operands[i].present = 1;
dcbf9037 5928 inst.operands[i].vectype = optype;
5287ad62 5929 }
dcbf9037 5930 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5931 {
5932 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5933 inst.operands[i].reg = val;
5934 inst.operands[i].isreg = 1;
5935 inst.operands[i++].present = 1;
5f4273c7 5936
5287ad62
JB
5937 if (skip_past_comma (&ptr) == FAIL)
5938 goto wanted_comma;
5f4273c7 5939
037e8744 5940 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5941 == FAIL)
5287ad62 5942 {
037e8744 5943 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5944 return FAIL;
5945 }
5946
5947 inst.operands[i].reg = val;
5948 inst.operands[i].isreg = 1;
037e8744
JB
5949 inst.operands[i].isvec = 1;
5950 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5951 inst.operands[i].vectype = optype;
5287ad62 5952 inst.operands[i].present = 1;
5f4273c7 5953
037e8744
JB
5954 if (rtype == REG_TYPE_VFS)
5955 {
5956 /* Case 14. */
5957 i++;
5958 if (skip_past_comma (&ptr) == FAIL)
5959 goto wanted_comma;
5960 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5961 &optype)) == FAIL)
5962 {
5963 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5964 return FAIL;
5965 }
5966 inst.operands[i].reg = val;
5967 inst.operands[i].isreg = 1;
5968 inst.operands[i].isvec = 1;
5969 inst.operands[i].issingle = 1;
5970 inst.operands[i].vectype = optype;
5971 inst.operands[i].present = 1;
5972 }
5973 }
5974 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5975 != FAIL)
5976 {
5977 /* Case 13. */
5978 inst.operands[i].reg = val;
5979 inst.operands[i].isreg = 1;
5980 inst.operands[i].isvec = 1;
5981 inst.operands[i].issingle = 1;
5982 inst.operands[i].vectype = optype;
5983 inst.operands[i++].present = 1;
5287ad62
JB
5984 }
5985 }
5986 else
5987 {
dcbf9037 5988 first_error (_("parse error"));
5287ad62
JB
5989 return FAIL;
5990 }
5991
5992 /* Successfully parsed the operands. Update args. */
5993 *which_operand = i;
5994 *str = ptr;
5995 return SUCCESS;
5996
5f4273c7 5997 wanted_comma:
dcbf9037 5998 first_error (_("expected comma"));
5287ad62 5999 return FAIL;
5f4273c7
NC
6000
6001 wanted_arm:
dcbf9037 6002 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6003 return FAIL;
5287ad62
JB
6004}
6005
5be8be5d
DG
6006/* Use this macro when the operand constraints are different
6007 for ARM and THUMB (e.g. ldrd). */
6008#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6009 ((arm_operand) | ((thumb_operand) << 16))
6010
c19d1205
ZW
6011/* Matcher codes for parse_operands. */
6012enum operand_parse_code
6013{
6014 OP_stop, /* end of line */
6015
6016 OP_RR, /* ARM register */
6017 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6018 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6019 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
6020 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6021 optional trailing ! */
c19d1205
ZW
6022 OP_RRw, /* ARM register, not r15, optional trailing ! */
6023 OP_RCP, /* Coprocessor number */
6024 OP_RCN, /* Coprocessor register */
6025 OP_RF, /* FPA register */
6026 OP_RVS, /* VFP single precision register */
5287ad62
JB
6027 OP_RVD, /* VFP double precision register (0..15) */
6028 OP_RND, /* Neon double precision register (0..31) */
6029 OP_RNQ, /* Neon quad precision register */
037e8744 6030 OP_RVSD, /* VFP single or double precision register */
5287ad62 6031 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6032 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6033 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6034 OP_RVC, /* VFP control register */
6035 OP_RMF, /* Maverick F register */
6036 OP_RMD, /* Maverick D register */
6037 OP_RMFX, /* Maverick FX register */
6038 OP_RMDX, /* Maverick DX register */
6039 OP_RMAX, /* Maverick AX register */
6040 OP_RMDS, /* Maverick DSPSC register */
6041 OP_RIWR, /* iWMMXt wR register */
6042 OP_RIWC, /* iWMMXt wC register */
6043 OP_RIWG, /* iWMMXt wCG register */
6044 OP_RXA, /* XScale accumulator register */
6045
6046 OP_REGLST, /* ARM register list */
6047 OP_VRSLST, /* VFP single-precision register list */
6048 OP_VRDLST, /* VFP double-precision register list */
037e8744 6049 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6050 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6051 OP_NSTRLST, /* Neon element/structure list */
6052
5287ad62 6053 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6054 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6055 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6056 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6057 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6058 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6059 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6060 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6061 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6062 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6063
6064 OP_I0, /* immediate zero */
c19d1205
ZW
6065 OP_I7, /* immediate value 0 .. 7 */
6066 OP_I15, /* 0 .. 15 */
6067 OP_I16, /* 1 .. 16 */
5287ad62 6068 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6069 OP_I31, /* 0 .. 31 */
6070 OP_I31w, /* 0 .. 31, optional trailing ! */
6071 OP_I32, /* 1 .. 32 */
5287ad62
JB
6072 OP_I32z, /* 0 .. 32 */
6073 OP_I63, /* 0 .. 63 */
c19d1205 6074 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6075 OP_I64, /* 1 .. 64 */
6076 OP_I64z, /* 0 .. 64 */
c19d1205 6077 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6078
6079 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6080 OP_I7b, /* 0 .. 7 */
6081 OP_I15b, /* 0 .. 15 */
6082 OP_I31b, /* 0 .. 31 */
6083
6084 OP_SH, /* shifter operand */
4962c51a 6085 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6086 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6087 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6088 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6089 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6090 OP_EXP, /* arbitrary expression */
6091 OP_EXPi, /* same, with optional immediate prefix */
6092 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6093 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6094
6095 OP_CPSF, /* CPS flags */
6096 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6097 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6098 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6099 OP_COND, /* conditional code */
92e90b6e 6100 OP_TB, /* Table branch. */
c19d1205 6101
037e8744
JB
6102 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6103
c19d1205
ZW
6104 OP_RRnpc_I0, /* ARM register or literal 0 */
6105 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6106 OP_RR_EXi, /* ARM register or expression with imm prefix */
6107 OP_RF_IF, /* FPA register or immediate */
6108 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6109 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6110
6111 /* Optional operands. */
6112 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6113 OP_oI31b, /* 0 .. 31 */
5287ad62 6114 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
6115 OP_oIffffb, /* 0 .. 65535 */
6116 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6117
6118 OP_oRR, /* ARM register */
6119 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6120 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6121 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6122 OP_oRND, /* Optional Neon double precision register */
6123 OP_oRNQ, /* Optional Neon quad precision register */
6124 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6125 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6126 OP_oSHll, /* LSL immediate */
6127 OP_oSHar, /* ASR immediate */
6128 OP_oSHllar, /* LSL or ASR immediate */
6129 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6130 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6131
5be8be5d
DG
6132 /* Some pre-defined mixed (ARM/THUMB) operands. */
6133 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6134 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6135 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6136
c19d1205
ZW
6137 OP_FIRST_OPTIONAL = OP_oI7b
6138};
a737bd4d 6139
c19d1205
ZW
6140/* Generic instruction operand parser. This does no encoding and no
6141 semantic validation; it merely squirrels values away in the inst
6142 structure. Returns SUCCESS or FAIL depending on whether the
6143 specified grammar matched. */
6144static int
5be8be5d 6145parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6146{
5be8be5d 6147 unsigned const int *upat = pattern;
c19d1205
ZW
6148 char *backtrack_pos = 0;
6149 const char *backtrack_error = 0;
6150 int i, val, backtrack_index = 0;
5287ad62 6151 enum arm_reg_type rtype;
4962c51a 6152 parse_operand_result result;
5be8be5d 6153 unsigned int op_parse_code;
c19d1205 6154
e07e6e58
NC
6155#define po_char_or_fail(chr) \
6156 do \
6157 { \
6158 if (skip_past_char (&str, chr) == FAIL) \
6159 goto bad_args; \
6160 } \
6161 while (0)
c19d1205 6162
e07e6e58
NC
6163#define po_reg_or_fail(regtype) \
6164 do \
dcbf9037 6165 { \
e07e6e58
NC
6166 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6167 & inst.operands[i].vectype); \
6168 if (val == FAIL) \
6169 { \
6170 first_error (_(reg_expected_msgs[regtype])); \
6171 goto failure; \
6172 } \
6173 inst.operands[i].reg = val; \
6174 inst.operands[i].isreg = 1; \
6175 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6176 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6177 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6178 || rtype == REG_TYPE_VFD \
6179 || rtype == REG_TYPE_NQ); \
dcbf9037 6180 } \
e07e6e58
NC
6181 while (0)
6182
6183#define po_reg_or_goto(regtype, label) \
6184 do \
6185 { \
6186 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6187 & inst.operands[i].vectype); \
6188 if (val == FAIL) \
6189 goto label; \
dcbf9037 6190 \
e07e6e58
NC
6191 inst.operands[i].reg = val; \
6192 inst.operands[i].isreg = 1; \
6193 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6194 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6195 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6196 || rtype == REG_TYPE_VFD \
6197 || rtype == REG_TYPE_NQ); \
6198 } \
6199 while (0)
6200
6201#define po_imm_or_fail(min, max, popt) \
6202 do \
6203 { \
6204 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6205 goto failure; \
6206 inst.operands[i].imm = val; \
6207 } \
6208 while (0)
6209
6210#define po_scalar_or_goto(elsz, label) \
6211 do \
6212 { \
6213 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6214 if (val == FAIL) \
6215 goto label; \
6216 inst.operands[i].reg = val; \
6217 inst.operands[i].isscalar = 1; \
6218 } \
6219 while (0)
6220
6221#define po_misc_or_fail(expr) \
6222 do \
6223 { \
6224 if (expr) \
6225 goto failure; \
6226 } \
6227 while (0)
6228
6229#define po_misc_or_fail_no_backtrack(expr) \
6230 do \
6231 { \
6232 result = expr; \
6233 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6234 backtrack_pos = 0; \
6235 if (result != PARSE_OPERAND_SUCCESS) \
6236 goto failure; \
6237 } \
6238 while (0)
4962c51a 6239
52e7f43d
RE
6240#define po_barrier_or_imm(str) \
6241 do \
6242 { \
6243 val = parse_barrier (&str); \
6244 if (val == FAIL) \
6245 { \
6246 if (ISALPHA (*str)) \
6247 goto failure; \
6248 else \
6249 goto immediate; \
6250 } \
6251 else \
6252 { \
6253 if ((inst.instruction & 0xf0) == 0x60 \
6254 && val != 0xf) \
6255 { \
6256 /* ISB can only take SY as an option. */ \
6257 inst.error = _("invalid barrier type"); \
6258 goto failure; \
6259 } \
6260 } \
6261 } \
6262 while (0)
6263
c19d1205
ZW
6264 skip_whitespace (str);
6265
6266 for (i = 0; upat[i] != OP_stop; i++)
6267 {
5be8be5d
DG
6268 op_parse_code = upat[i];
6269 if (op_parse_code >= 1<<16)
6270 op_parse_code = thumb ? (op_parse_code >> 16)
6271 : (op_parse_code & ((1<<16)-1));
6272
6273 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6274 {
6275 /* Remember where we are in case we need to backtrack. */
9c2799c2 6276 gas_assert (!backtrack_pos);
c19d1205
ZW
6277 backtrack_pos = str;
6278 backtrack_error = inst.error;
6279 backtrack_index = i;
6280 }
6281
b6702015 6282 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6283 po_char_or_fail (',');
6284
5be8be5d 6285 switch (op_parse_code)
c19d1205
ZW
6286 {
6287 /* Registers */
6288 case OP_oRRnpc:
5be8be5d 6289 case OP_oRRnpcsp:
c19d1205 6290 case OP_RRnpc:
5be8be5d 6291 case OP_RRnpcsp:
c19d1205
ZW
6292 case OP_oRR:
6293 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6294 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6295 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6296 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6297 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6298 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6299 case OP_oRND:
6300 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6301 case OP_RVC:
6302 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6303 break;
6304 /* Also accept generic coprocessor regs for unknown registers. */
6305 coproc_reg:
6306 po_reg_or_fail (REG_TYPE_CN);
6307 break;
c19d1205
ZW
6308 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6309 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6310 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6311 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6312 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6313 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6314 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6315 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6316 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6317 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6318 case OP_oRNQ:
6319 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6320 case OP_oRNDQ:
6321 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6322 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6323 case OP_oRNSDQ:
6324 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6325
6326 /* Neon scalar. Using an element size of 8 means that some invalid
6327 scalars are accepted here, so deal with those in later code. */
6328 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6329
5287ad62
JB
6330 case OP_RNDQ_I0:
6331 {
6332 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6333 break;
6334 try_imm0:
6335 po_imm_or_fail (0, 0, TRUE);
6336 }
6337 break;
6338
037e8744
JB
6339 case OP_RVSD_I0:
6340 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6341 break;
6342
5287ad62
JB
6343 case OP_RR_RNSC:
6344 {
6345 po_scalar_or_goto (8, try_rr);
6346 break;
6347 try_rr:
6348 po_reg_or_fail (REG_TYPE_RN);
6349 }
6350 break;
6351
037e8744
JB
6352 case OP_RNSDQ_RNSC:
6353 {
6354 po_scalar_or_goto (8, try_nsdq);
6355 break;
6356 try_nsdq:
6357 po_reg_or_fail (REG_TYPE_NSDQ);
6358 }
6359 break;
6360
5287ad62
JB
6361 case OP_RNDQ_RNSC:
6362 {
6363 po_scalar_or_goto (8, try_ndq);
6364 break;
6365 try_ndq:
6366 po_reg_or_fail (REG_TYPE_NDQ);
6367 }
6368 break;
6369
6370 case OP_RND_RNSC:
6371 {
6372 po_scalar_or_goto (8, try_vfd);
6373 break;
6374 try_vfd:
6375 po_reg_or_fail (REG_TYPE_VFD);
6376 }
6377 break;
6378
6379 case OP_VMOV:
6380 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6381 not careful then bad things might happen. */
6382 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6383 break;
6384
4316f0d2 6385 case OP_RNDQ_Ibig:
5287ad62 6386 {
4316f0d2 6387 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6388 break;
4316f0d2 6389 try_immbig:
5287ad62
JB
6390 /* There's a possibility of getting a 64-bit immediate here, so
6391 we need special handling. */
6392 if (parse_big_immediate (&str, i) == FAIL)
6393 {
6394 inst.error = _("immediate value is out of range");
6395 goto failure;
6396 }
6397 }
6398 break;
6399
6400 case OP_RNDQ_I63b:
6401 {
6402 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6403 break;
6404 try_shimm:
6405 po_imm_or_fail (0, 63, TRUE);
6406 }
6407 break;
c19d1205
ZW
6408
6409 case OP_RRnpcb:
6410 po_char_or_fail ('[');
6411 po_reg_or_fail (REG_TYPE_RN);
6412 po_char_or_fail (']');
6413 break;
a737bd4d 6414
55881a11 6415 case OP_RRnpctw:
c19d1205 6416 case OP_RRw:
b6702015 6417 case OP_oRRw:
c19d1205
ZW
6418 po_reg_or_fail (REG_TYPE_RN);
6419 if (skip_past_char (&str, '!') == SUCCESS)
6420 inst.operands[i].writeback = 1;
6421 break;
6422
6423 /* Immediates */
6424 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6425 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6426 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6427 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6428 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6429 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6430 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6431 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6432 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6433 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6434 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6435 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6436
6437 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6438 case OP_oI7b:
6439 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6440 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6441 case OP_oI31b:
6442 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6443 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6444 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6445
6446 /* Immediate variants */
6447 case OP_oI255c:
6448 po_char_or_fail ('{');
6449 po_imm_or_fail (0, 255, TRUE);
6450 po_char_or_fail ('}');
6451 break;
6452
6453 case OP_I31w:
6454 /* The expression parser chokes on a trailing !, so we have
6455 to find it first and zap it. */
6456 {
6457 char *s = str;
6458 while (*s && *s != ',')
6459 s++;
6460 if (s[-1] == '!')
6461 {
6462 s[-1] = '\0';
6463 inst.operands[i].writeback = 1;
6464 }
6465 po_imm_or_fail (0, 31, TRUE);
6466 if (str == s - 1)
6467 str = s;
6468 }
6469 break;
6470
6471 /* Expressions */
6472 case OP_EXPi: EXPi:
6473 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6474 GE_OPT_PREFIX));
6475 break;
6476
6477 case OP_EXP:
6478 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6479 GE_NO_PREFIX));
6480 break;
6481
6482 case OP_EXPr: EXPr:
6483 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6484 GE_NO_PREFIX));
6485 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6486 {
c19d1205
ZW
6487 val = parse_reloc (&str);
6488 if (val == -1)
6489 {
6490 inst.error = _("unrecognized relocation suffix");
6491 goto failure;
6492 }
6493 else if (val != BFD_RELOC_UNUSED)
6494 {
6495 inst.operands[i].imm = val;
6496 inst.operands[i].hasreloc = 1;
6497 }
a737bd4d 6498 }
c19d1205 6499 break;
a737bd4d 6500
b6895b4f
PB
6501 /* Operand for MOVW or MOVT. */
6502 case OP_HALF:
6503 po_misc_or_fail (parse_half (&str));
6504 break;
6505
e07e6e58 6506 /* Register or expression. */
c19d1205
ZW
6507 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6508 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6509
e07e6e58 6510 /* Register or immediate. */
c19d1205
ZW
6511 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6512 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6513
c19d1205
ZW
6514 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6515 IF:
6516 if (!is_immediate_prefix (*str))
6517 goto bad_args;
6518 str++;
6519 val = parse_fpa_immediate (&str);
6520 if (val == FAIL)
6521 goto failure;
6522 /* FPA immediates are encoded as registers 8-15.
6523 parse_fpa_immediate has already applied the offset. */
6524 inst.operands[i].reg = val;
6525 inst.operands[i].isreg = 1;
6526 break;
09d92015 6527
2d447fca
JM
6528 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6529 I32z: po_imm_or_fail (0, 32, FALSE); break;
6530
e07e6e58 6531 /* Two kinds of register. */
c19d1205
ZW
6532 case OP_RIWR_RIWC:
6533 {
6534 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6535 if (!rege
6536 || (rege->type != REG_TYPE_MMXWR
6537 && rege->type != REG_TYPE_MMXWC
6538 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6539 {
6540 inst.error = _("iWMMXt data or control register expected");
6541 goto failure;
6542 }
6543 inst.operands[i].reg = rege->number;
6544 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6545 }
6546 break;
09d92015 6547
41adaa5c
JM
6548 case OP_RIWC_RIWG:
6549 {
6550 struct reg_entry *rege = arm_reg_parse_multi (&str);
6551 if (!rege
6552 || (rege->type != REG_TYPE_MMXWC
6553 && rege->type != REG_TYPE_MMXWCG))
6554 {
6555 inst.error = _("iWMMXt control register expected");
6556 goto failure;
6557 }
6558 inst.operands[i].reg = rege->number;
6559 inst.operands[i].isreg = 1;
6560 }
6561 break;
6562
c19d1205
ZW
6563 /* Misc */
6564 case OP_CPSF: val = parse_cps_flags (&str); break;
6565 case OP_ENDI: val = parse_endian_specifier (&str); break;
6566 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6567 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6568 case OP_oBARRIER_I15:
6569 po_barrier_or_imm (str); break;
6570 immediate:
6571 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6572 goto failure;
6573 break;
c19d1205 6574
d2cd1205
JB
6575 case OP_wPSR:
6576 case OP_rPSR:
90ec0d68
MGD
6577 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6578 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6579 {
6580 inst.error = _("Banked registers are not available with this "
6581 "architecture.");
6582 goto failure;
6583 }
6584 break;
d2cd1205
JB
6585 try_psr:
6586 val = parse_psr (&str, op_parse_code == OP_wPSR);
6587 break;
037e8744
JB
6588
6589 case OP_APSR_RR:
6590 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6591 break;
6592 try_apsr:
6593 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6594 instruction). */
6595 if (strncasecmp (str, "APSR_", 5) == 0)
6596 {
6597 unsigned found = 0;
6598 str += 5;
6599 while (found < 15)
6600 switch (*str++)
6601 {
6602 case 'c': found = (found & 1) ? 16 : found | 1; break;
6603 case 'n': found = (found & 2) ? 16 : found | 2; break;
6604 case 'z': found = (found & 4) ? 16 : found | 4; break;
6605 case 'v': found = (found & 8) ? 16 : found | 8; break;
6606 default: found = 16;
6607 }
6608 if (found != 15)
6609 goto failure;
6610 inst.operands[i].isvec = 1;
f7c21dc7
NC
6611 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6612 inst.operands[i].reg = REG_PC;
037e8744
JB
6613 }
6614 else
6615 goto failure;
6616 break;
6617
92e90b6e
PB
6618 case OP_TB:
6619 po_misc_or_fail (parse_tb (&str));
6620 break;
6621
e07e6e58 6622 /* Register lists. */
c19d1205
ZW
6623 case OP_REGLST:
6624 val = parse_reg_list (&str);
6625 if (*str == '^')
6626 {
6627 inst.operands[1].writeback = 1;
6628 str++;
6629 }
6630 break;
09d92015 6631
c19d1205 6632 case OP_VRSLST:
5287ad62 6633 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6634 break;
09d92015 6635
c19d1205 6636 case OP_VRDLST:
5287ad62 6637 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6638 break;
a737bd4d 6639
037e8744
JB
6640 case OP_VRSDLST:
6641 /* Allow Q registers too. */
6642 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6643 REGLIST_NEON_D);
6644 if (val == FAIL)
6645 {
6646 inst.error = NULL;
6647 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6648 REGLIST_VFP_S);
6649 inst.operands[i].issingle = 1;
6650 }
6651 break;
6652
5287ad62
JB
6653 case OP_NRDLST:
6654 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6655 REGLIST_NEON_D);
6656 break;
6657
6658 case OP_NSTRLST:
dcbf9037
JB
6659 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6660 &inst.operands[i].vectype);
5287ad62
JB
6661 break;
6662
c19d1205
ZW
6663 /* Addressing modes */
6664 case OP_ADDR:
6665 po_misc_or_fail (parse_address (&str, i));
6666 break;
09d92015 6667
4962c51a
MS
6668 case OP_ADDRGLDR:
6669 po_misc_or_fail_no_backtrack (
6670 parse_address_group_reloc (&str, i, GROUP_LDR));
6671 break;
6672
6673 case OP_ADDRGLDRS:
6674 po_misc_or_fail_no_backtrack (
6675 parse_address_group_reloc (&str, i, GROUP_LDRS));
6676 break;
6677
6678 case OP_ADDRGLDC:
6679 po_misc_or_fail_no_backtrack (
6680 parse_address_group_reloc (&str, i, GROUP_LDC));
6681 break;
6682
c19d1205
ZW
6683 case OP_SH:
6684 po_misc_or_fail (parse_shifter_operand (&str, i));
6685 break;
09d92015 6686
4962c51a
MS
6687 case OP_SHG:
6688 po_misc_or_fail_no_backtrack (
6689 parse_shifter_operand_group_reloc (&str, i));
6690 break;
6691
c19d1205
ZW
6692 case OP_oSHll:
6693 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6694 break;
09d92015 6695
c19d1205
ZW
6696 case OP_oSHar:
6697 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6698 break;
09d92015 6699
c19d1205
ZW
6700 case OP_oSHllar:
6701 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6702 break;
09d92015 6703
c19d1205 6704 default:
5be8be5d 6705 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6706 }
09d92015 6707
c19d1205
ZW
6708 /* Various value-based sanity checks and shared operations. We
6709 do not signal immediate failures for the register constraints;
6710 this allows a syntax error to take precedence. */
5be8be5d 6711 switch (op_parse_code)
c19d1205
ZW
6712 {
6713 case OP_oRRnpc:
6714 case OP_RRnpc:
6715 case OP_RRnpcb:
6716 case OP_RRw:
b6702015 6717 case OP_oRRw:
c19d1205
ZW
6718 case OP_RRnpc_I0:
6719 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6720 inst.error = BAD_PC;
6721 break;
09d92015 6722
5be8be5d
DG
6723 case OP_oRRnpcsp:
6724 case OP_RRnpcsp:
6725 if (inst.operands[i].isreg)
6726 {
6727 if (inst.operands[i].reg == REG_PC)
6728 inst.error = BAD_PC;
6729 else if (inst.operands[i].reg == REG_SP)
6730 inst.error = BAD_SP;
6731 }
6732 break;
6733
55881a11
MGD
6734 case OP_RRnpctw:
6735 if (inst.operands[i].isreg
6736 && inst.operands[i].reg == REG_PC
6737 && (inst.operands[i].writeback || thumb))
6738 inst.error = BAD_PC;
6739 break;
6740
c19d1205
ZW
6741 case OP_CPSF:
6742 case OP_ENDI:
6743 case OP_oROR:
d2cd1205
JB
6744 case OP_wPSR:
6745 case OP_rPSR:
c19d1205 6746 case OP_COND:
52e7f43d 6747 case OP_oBARRIER_I15:
c19d1205
ZW
6748 case OP_REGLST:
6749 case OP_VRSLST:
6750 case OP_VRDLST:
037e8744 6751 case OP_VRSDLST:
5287ad62
JB
6752 case OP_NRDLST:
6753 case OP_NSTRLST:
c19d1205
ZW
6754 if (val == FAIL)
6755 goto failure;
6756 inst.operands[i].imm = val;
6757 break;
a737bd4d 6758
c19d1205
ZW
6759 default:
6760 break;
6761 }
09d92015 6762
c19d1205
ZW
6763 /* If we get here, this operand was successfully parsed. */
6764 inst.operands[i].present = 1;
6765 continue;
09d92015 6766
c19d1205 6767 bad_args:
09d92015 6768 inst.error = BAD_ARGS;
c19d1205
ZW
6769
6770 failure:
6771 if (!backtrack_pos)
d252fdde
PB
6772 {
6773 /* The parse routine should already have set inst.error, but set a
5f4273c7 6774 default here just in case. */
d252fdde
PB
6775 if (!inst.error)
6776 inst.error = _("syntax error");
6777 return FAIL;
6778 }
c19d1205
ZW
6779
6780 /* Do not backtrack over a trailing optional argument that
6781 absorbed some text. We will only fail again, with the
6782 'garbage following instruction' error message, which is
6783 probably less helpful than the current one. */
6784 if (backtrack_index == i && backtrack_pos != str
6785 && upat[i+1] == OP_stop)
d252fdde
PB
6786 {
6787 if (!inst.error)
6788 inst.error = _("syntax error");
6789 return FAIL;
6790 }
c19d1205
ZW
6791
6792 /* Try again, skipping the optional argument at backtrack_pos. */
6793 str = backtrack_pos;
6794 inst.error = backtrack_error;
6795 inst.operands[backtrack_index].present = 0;
6796 i = backtrack_index;
6797 backtrack_pos = 0;
09d92015 6798 }
09d92015 6799
c19d1205
ZW
6800 /* Check that we have parsed all the arguments. */
6801 if (*str != '\0' && !inst.error)
6802 inst.error = _("garbage following instruction");
09d92015 6803
c19d1205 6804 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6805}
6806
c19d1205
ZW
6807#undef po_char_or_fail
6808#undef po_reg_or_fail
6809#undef po_reg_or_goto
6810#undef po_imm_or_fail
5287ad62 6811#undef po_scalar_or_fail
52e7f43d 6812#undef po_barrier_or_imm
e07e6e58 6813
c19d1205 6814/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6815#define constraint(expr, err) \
6816 do \
c19d1205 6817 { \
e07e6e58
NC
6818 if (expr) \
6819 { \
6820 inst.error = err; \
6821 return; \
6822 } \
c19d1205 6823 } \
e07e6e58 6824 while (0)
c19d1205 6825
fdfde340
JM
6826/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6827 instructions are unpredictable if these registers are used. This
6828 is the BadReg predicate in ARM's Thumb-2 documentation. */
6829#define reject_bad_reg(reg) \
6830 do \
6831 if (reg == REG_SP || reg == REG_PC) \
6832 { \
6833 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6834 return; \
6835 } \
6836 while (0)
6837
94206790
MM
6838/* If REG is R13 (the stack pointer), warn that its use is
6839 deprecated. */
6840#define warn_deprecated_sp(reg) \
6841 do \
6842 if (warn_on_deprecated && reg == REG_SP) \
6843 as_warn (_("use of r13 is deprecated")); \
6844 while (0)
6845
c19d1205
ZW
6846/* Functions for operand encoding. ARM, then Thumb. */
6847
6848#define rotate_left(v, n) (v << n | v >> (32 - n))
6849
6850/* If VAL can be encoded in the immediate field of an ARM instruction,
6851 return the encoded form. Otherwise, return FAIL. */
6852
6853static unsigned int
6854encode_arm_immediate (unsigned int val)
09d92015 6855{
c19d1205
ZW
6856 unsigned int a, i;
6857
6858 for (i = 0; i < 32; i += 2)
6859 if ((a = rotate_left (val, i)) <= 0xff)
6860 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6861
6862 return FAIL;
09d92015
MM
6863}
6864
c19d1205
ZW
6865/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6866 return the encoded form. Otherwise, return FAIL. */
6867static unsigned int
6868encode_thumb32_immediate (unsigned int val)
09d92015 6869{
c19d1205 6870 unsigned int a, i;
09d92015 6871
9c3c69f2 6872 if (val <= 0xff)
c19d1205 6873 return val;
a737bd4d 6874
9c3c69f2 6875 for (i = 1; i <= 24; i++)
09d92015 6876 {
9c3c69f2
PB
6877 a = val >> i;
6878 if ((val & ~(0xff << i)) == 0)
6879 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6880 }
a737bd4d 6881
c19d1205
ZW
6882 a = val & 0xff;
6883 if (val == ((a << 16) | a))
6884 return 0x100 | a;
6885 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6886 return 0x300 | a;
09d92015 6887
c19d1205
ZW
6888 a = val & 0xff00;
6889 if (val == ((a << 16) | a))
6890 return 0x200 | (a >> 8);
a737bd4d 6891
c19d1205 6892 return FAIL;
09d92015 6893}
5287ad62 6894/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6895
6896static void
5287ad62
JB
6897encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6898{
6899 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6900 && reg > 15)
6901 {
b1cc4aeb 6902 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6903 {
6904 if (thumb_mode)
6905 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6906 fpu_vfp_ext_d32);
5287ad62
JB
6907 else
6908 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6909 fpu_vfp_ext_d32);
5287ad62
JB
6910 }
6911 else
6912 {
dcbf9037 6913 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6914 return;
6915 }
6916 }
6917
c19d1205 6918 switch (pos)
09d92015 6919 {
c19d1205
ZW
6920 case VFP_REG_Sd:
6921 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6922 break;
6923
6924 case VFP_REG_Sn:
6925 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6926 break;
6927
6928 case VFP_REG_Sm:
6929 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6930 break;
6931
5287ad62
JB
6932 case VFP_REG_Dd:
6933 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6934 break;
5f4273c7 6935
5287ad62
JB
6936 case VFP_REG_Dn:
6937 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6938 break;
5f4273c7 6939
5287ad62
JB
6940 case VFP_REG_Dm:
6941 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6942 break;
6943
c19d1205
ZW
6944 default:
6945 abort ();
09d92015 6946 }
09d92015
MM
6947}
6948
c19d1205 6949/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6950 if any, is handled by md_apply_fix. */
09d92015 6951static void
c19d1205 6952encode_arm_shift (int i)
09d92015 6953{
c19d1205
ZW
6954 if (inst.operands[i].shift_kind == SHIFT_RRX)
6955 inst.instruction |= SHIFT_ROR << 5;
6956 else
09d92015 6957 {
c19d1205
ZW
6958 inst.instruction |= inst.operands[i].shift_kind << 5;
6959 if (inst.operands[i].immisreg)
6960 {
6961 inst.instruction |= SHIFT_BY_REG;
6962 inst.instruction |= inst.operands[i].imm << 8;
6963 }
6964 else
6965 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6966 }
c19d1205 6967}
09d92015 6968
c19d1205
ZW
6969static void
6970encode_arm_shifter_operand (int i)
6971{
6972 if (inst.operands[i].isreg)
09d92015 6973 {
c19d1205
ZW
6974 inst.instruction |= inst.operands[i].reg;
6975 encode_arm_shift (i);
09d92015 6976 }
c19d1205
ZW
6977 else
6978 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6979}
6980
c19d1205 6981/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6982static void
c19d1205 6983encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6984{
9c2799c2 6985 gas_assert (inst.operands[i].isreg);
c19d1205 6986 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6987
c19d1205 6988 if (inst.operands[i].preind)
09d92015 6989 {
c19d1205
ZW
6990 if (is_t)
6991 {
6992 inst.error = _("instruction does not accept preindexed addressing");
6993 return;
6994 }
6995 inst.instruction |= PRE_INDEX;
6996 if (inst.operands[i].writeback)
6997 inst.instruction |= WRITE_BACK;
09d92015 6998
c19d1205
ZW
6999 }
7000 else if (inst.operands[i].postind)
7001 {
9c2799c2 7002 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7003 if (is_t)
7004 inst.instruction |= WRITE_BACK;
7005 }
7006 else /* unindexed - only for coprocessor */
09d92015 7007 {
c19d1205 7008 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7009 return;
7010 }
7011
c19d1205
ZW
7012 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7013 && (((inst.instruction & 0x000f0000) >> 16)
7014 == ((inst.instruction & 0x0000f000) >> 12)))
7015 as_warn ((inst.instruction & LOAD_BIT)
7016 ? _("destination register same as write-back base")
7017 : _("source register same as write-back base"));
09d92015
MM
7018}
7019
c19d1205
ZW
7020/* inst.operands[i] was set up by parse_address. Encode it into an
7021 ARM-format mode 2 load or store instruction. If is_t is true,
7022 reject forms that cannot be used with a T instruction (i.e. not
7023 post-indexed). */
a737bd4d 7024static void
c19d1205 7025encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7026{
5be8be5d
DG
7027 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7028
c19d1205 7029 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7030
c19d1205 7031 if (inst.operands[i].immisreg)
09d92015 7032 {
5be8be5d
DG
7033 constraint ((inst.operands[i].imm == REG_PC
7034 || (is_pc && inst.operands[i].writeback)),
7035 BAD_PC_ADDRESSING);
c19d1205
ZW
7036 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7037 inst.instruction |= inst.operands[i].imm;
7038 if (!inst.operands[i].negative)
7039 inst.instruction |= INDEX_UP;
7040 if (inst.operands[i].shifted)
7041 {
7042 if (inst.operands[i].shift_kind == SHIFT_RRX)
7043 inst.instruction |= SHIFT_ROR << 5;
7044 else
7045 {
7046 inst.instruction |= inst.operands[i].shift_kind << 5;
7047 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7048 }
7049 }
09d92015 7050 }
c19d1205 7051 else /* immediate offset in inst.reloc */
09d92015 7052 {
5be8be5d
DG
7053 if (is_pc && !inst.reloc.pc_rel)
7054 {
7055 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7056
7057 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7058 cannot use PC in addressing.
7059 PC cannot be used in writeback addressing, either. */
7060 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7061 BAD_PC_ADDRESSING);
23a10334 7062
dc5ec521 7063 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7064 if (warn_on_deprecated
7065 && !is_load
7066 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7067 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7068 }
7069
c19d1205 7070 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7071 {
7072 /* Prefer + for zero encoded value. */
7073 if (!inst.operands[i].negative)
7074 inst.instruction |= INDEX_UP;
7075 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7076 }
09d92015 7077 }
09d92015
MM
7078}
7079
c19d1205
ZW
7080/* inst.operands[i] was set up by parse_address. Encode it into an
7081 ARM-format mode 3 load or store instruction. Reject forms that
7082 cannot be used with such instructions. If is_t is true, reject
7083 forms that cannot be used with a T instruction (i.e. not
7084 post-indexed). */
7085static void
7086encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7087{
c19d1205 7088 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7089 {
c19d1205
ZW
7090 inst.error = _("instruction does not accept scaled register index");
7091 return;
09d92015 7092 }
a737bd4d 7093
c19d1205 7094 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7095
c19d1205
ZW
7096 if (inst.operands[i].immisreg)
7097 {
5be8be5d
DG
7098 constraint ((inst.operands[i].imm == REG_PC
7099 || inst.operands[i].reg == REG_PC),
7100 BAD_PC_ADDRESSING);
c19d1205
ZW
7101 inst.instruction |= inst.operands[i].imm;
7102 if (!inst.operands[i].negative)
7103 inst.instruction |= INDEX_UP;
7104 }
7105 else /* immediate offset in inst.reloc */
7106 {
5be8be5d
DG
7107 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7108 && inst.operands[i].writeback),
7109 BAD_PC_WRITEBACK);
c19d1205
ZW
7110 inst.instruction |= HWOFFSET_IMM;
7111 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7112 {
7113 /* Prefer + for zero encoded value. */
7114 if (!inst.operands[i].negative)
7115 inst.instruction |= INDEX_UP;
7116
7117 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7118 }
c19d1205 7119 }
a737bd4d
NC
7120}
7121
c19d1205
ZW
7122/* inst.operands[i] was set up by parse_address. Encode it into an
7123 ARM-format instruction. Reject all forms which cannot be encoded
7124 into a coprocessor load/store instruction. If wb_ok is false,
7125 reject use of writeback; if unind_ok is false, reject use of
7126 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7127 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7128 (in which case it is preserved). */
09d92015 7129
c19d1205
ZW
7130static int
7131encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7132{
c19d1205 7133 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7134
9c2799c2 7135 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7136
c19d1205 7137 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7138 {
9c2799c2 7139 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7140 if (!unind_ok)
7141 {
7142 inst.error = _("instruction does not support unindexed addressing");
7143 return FAIL;
7144 }
7145 inst.instruction |= inst.operands[i].imm;
7146 inst.instruction |= INDEX_UP;
7147 return SUCCESS;
09d92015 7148 }
a737bd4d 7149
c19d1205
ZW
7150 if (inst.operands[i].preind)
7151 inst.instruction |= PRE_INDEX;
a737bd4d 7152
c19d1205 7153 if (inst.operands[i].writeback)
09d92015 7154 {
c19d1205
ZW
7155 if (inst.operands[i].reg == REG_PC)
7156 {
7157 inst.error = _("pc may not be used with write-back");
7158 return FAIL;
7159 }
7160 if (!wb_ok)
7161 {
7162 inst.error = _("instruction does not support writeback");
7163 return FAIL;
7164 }
7165 inst.instruction |= WRITE_BACK;
09d92015 7166 }
a737bd4d 7167
c19d1205 7168 if (reloc_override)
21d799b5 7169 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7170 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7171 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7172 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7173 {
7174 if (thumb_mode)
7175 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7176 else
7177 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7178 }
7179
26d97720
NS
7180 /* Prefer + for zero encoded value. */
7181 if (!inst.operands[i].negative)
7182 inst.instruction |= INDEX_UP;
7183
c19d1205
ZW
7184 return SUCCESS;
7185}
a737bd4d 7186
c19d1205
ZW
7187/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7188 Determine whether it can be performed with a move instruction; if
7189 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7190 return TRUE; if it can't, convert inst.instruction to a literal-pool
7191 load and return FALSE. If this is not a valid thing to do in the
7192 current context, set inst.error and return TRUE.
a737bd4d 7193
c19d1205
ZW
7194 inst.operands[i] describes the destination register. */
7195
c921be7d 7196static bfd_boolean
c19d1205
ZW
7197move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7198{
53365c0d
PB
7199 unsigned long tbit;
7200
7201 if (thumb_p)
7202 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7203 else
7204 tbit = LOAD_BIT;
7205
7206 if ((inst.instruction & tbit) == 0)
09d92015 7207 {
c19d1205 7208 inst.error = _("invalid pseudo operation");
c921be7d 7209 return TRUE;
09d92015 7210 }
c19d1205 7211 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7212 {
7213 inst.error = _("constant expression expected");
c921be7d 7214 return TRUE;
09d92015 7215 }
c19d1205 7216 if (inst.reloc.exp.X_op == O_constant)
09d92015 7217 {
c19d1205
ZW
7218 if (thumb_p)
7219 {
53365c0d 7220 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7221 {
7222 /* This can be done with a mov(1) instruction. */
7223 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7224 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7225 return TRUE;
c19d1205
ZW
7226 }
7227 }
7228 else
7229 {
7230 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7231 if (value != FAIL)
7232 {
7233 /* This can be done with a mov instruction. */
7234 inst.instruction &= LITERAL_MASK;
7235 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7236 inst.instruction |= value & 0xfff;
c921be7d 7237 return TRUE;
c19d1205 7238 }
09d92015 7239
c19d1205
ZW
7240 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7241 if (value != FAIL)
7242 {
7243 /* This can be done with a mvn instruction. */
7244 inst.instruction &= LITERAL_MASK;
7245 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7246 inst.instruction |= value & 0xfff;
c921be7d 7247 return TRUE;
c19d1205
ZW
7248 }
7249 }
09d92015
MM
7250 }
7251
c19d1205
ZW
7252 if (add_to_lit_pool () == FAIL)
7253 {
7254 inst.error = _("literal pool insertion failed");
c921be7d 7255 return TRUE;
c19d1205
ZW
7256 }
7257 inst.operands[1].reg = REG_PC;
7258 inst.operands[1].isreg = 1;
7259 inst.operands[1].preind = 1;
7260 inst.reloc.pc_rel = 1;
7261 inst.reloc.type = (thumb_p
7262 ? BFD_RELOC_ARM_THUMB_OFFSET
7263 : (mode_3
7264 ? BFD_RELOC_ARM_HWLITERAL
7265 : BFD_RELOC_ARM_LITERAL));
c921be7d 7266 return FALSE;
09d92015
MM
7267}
7268
5f4273c7 7269/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7270 First some generics; their names are taken from the conventional
7271 bit positions for register arguments in ARM format instructions. */
09d92015 7272
a737bd4d 7273static void
c19d1205 7274do_noargs (void)
09d92015 7275{
c19d1205 7276}
a737bd4d 7277
c19d1205
ZW
7278static void
7279do_rd (void)
7280{
7281 inst.instruction |= inst.operands[0].reg << 12;
7282}
a737bd4d 7283
c19d1205
ZW
7284static void
7285do_rd_rm (void)
7286{
7287 inst.instruction |= inst.operands[0].reg << 12;
7288 inst.instruction |= inst.operands[1].reg;
7289}
09d92015 7290
c19d1205
ZW
7291static void
7292do_rd_rn (void)
7293{
7294 inst.instruction |= inst.operands[0].reg << 12;
7295 inst.instruction |= inst.operands[1].reg << 16;
7296}
a737bd4d 7297
c19d1205
ZW
7298static void
7299do_rn_rd (void)
7300{
7301 inst.instruction |= inst.operands[0].reg << 16;
7302 inst.instruction |= inst.operands[1].reg << 12;
7303}
09d92015 7304
c19d1205
ZW
7305static void
7306do_rd_rm_rn (void)
7307{
9a64e435 7308 unsigned Rn = inst.operands[2].reg;
708587a4 7309 /* Enforce restrictions on SWP instruction. */
9a64e435 7310 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7311 {
7312 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7313 _("Rn must not overlap other operands"));
7314
7315 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7316 if (warn_on_deprecated
7317 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7318 as_warn (_("swp{b} use is deprecated for this architecture"));
7319
7320 }
c19d1205
ZW
7321 inst.instruction |= inst.operands[0].reg << 12;
7322 inst.instruction |= inst.operands[1].reg;
9a64e435 7323 inst.instruction |= Rn << 16;
c19d1205 7324}
09d92015 7325
c19d1205
ZW
7326static void
7327do_rd_rn_rm (void)
7328{
7329 inst.instruction |= inst.operands[0].reg << 12;
7330 inst.instruction |= inst.operands[1].reg << 16;
7331 inst.instruction |= inst.operands[2].reg;
7332}
a737bd4d 7333
c19d1205
ZW
7334static void
7335do_rm_rd_rn (void)
7336{
5be8be5d
DG
7337 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7338 constraint (((inst.reloc.exp.X_op != O_constant
7339 && inst.reloc.exp.X_op != O_illegal)
7340 || inst.reloc.exp.X_add_number != 0),
7341 BAD_ADDR_MODE);
c19d1205
ZW
7342 inst.instruction |= inst.operands[0].reg;
7343 inst.instruction |= inst.operands[1].reg << 12;
7344 inst.instruction |= inst.operands[2].reg << 16;
7345}
09d92015 7346
c19d1205
ZW
7347static void
7348do_imm0 (void)
7349{
7350 inst.instruction |= inst.operands[0].imm;
7351}
09d92015 7352
c19d1205
ZW
7353static void
7354do_rd_cpaddr (void)
7355{
7356 inst.instruction |= inst.operands[0].reg << 12;
7357 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7358}
a737bd4d 7359
c19d1205
ZW
7360/* ARM instructions, in alphabetical order by function name (except
7361 that wrapper functions appear immediately after the function they
7362 wrap). */
09d92015 7363
c19d1205
ZW
7364/* This is a pseudo-op of the form "adr rd, label" to be converted
7365 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7366
7367static void
c19d1205 7368do_adr (void)
09d92015 7369{
c19d1205 7370 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7371
c19d1205
ZW
7372 /* Frag hacking will turn this into a sub instruction if the offset turns
7373 out to be negative. */
7374 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7375 inst.reloc.pc_rel = 1;
2fc8bdac 7376 inst.reloc.exp.X_add_number -= 8;
c19d1205 7377}
b99bd4ef 7378
c19d1205
ZW
7379/* This is a pseudo-op of the form "adrl rd, label" to be converted
7380 into a relative address of the form:
7381 add rd, pc, #low(label-.-8)"
7382 add rd, rd, #high(label-.-8)" */
b99bd4ef 7383
c19d1205
ZW
7384static void
7385do_adrl (void)
7386{
7387 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7388
c19d1205
ZW
7389 /* Frag hacking will turn this into a sub instruction if the offset turns
7390 out to be negative. */
7391 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7392 inst.reloc.pc_rel = 1;
7393 inst.size = INSN_SIZE * 2;
2fc8bdac 7394 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7395}
7396
b99bd4ef 7397static void
c19d1205 7398do_arit (void)
b99bd4ef 7399{
c19d1205
ZW
7400 if (!inst.operands[1].present)
7401 inst.operands[1].reg = inst.operands[0].reg;
7402 inst.instruction |= inst.operands[0].reg << 12;
7403 inst.instruction |= inst.operands[1].reg << 16;
7404 encode_arm_shifter_operand (2);
7405}
b99bd4ef 7406
62b3e311
PB
7407static void
7408do_barrier (void)
7409{
7410 if (inst.operands[0].present)
7411 {
7412 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7413 && inst.operands[0].imm > 0xf
7414 && inst.operands[0].imm < 0x0,
bd3ba5d1 7415 _("bad barrier type"));
62b3e311
PB
7416 inst.instruction |= inst.operands[0].imm;
7417 }
7418 else
7419 inst.instruction |= 0xf;
7420}
7421
c19d1205
ZW
7422static void
7423do_bfc (void)
7424{
7425 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7426 constraint (msb > 32, _("bit-field extends past end of register"));
7427 /* The instruction encoding stores the LSB and MSB,
7428 not the LSB and width. */
7429 inst.instruction |= inst.operands[0].reg << 12;
7430 inst.instruction |= inst.operands[1].imm << 7;
7431 inst.instruction |= (msb - 1) << 16;
7432}
b99bd4ef 7433
c19d1205
ZW
7434static void
7435do_bfi (void)
7436{
7437 unsigned int msb;
b99bd4ef 7438
c19d1205
ZW
7439 /* #0 in second position is alternative syntax for bfc, which is
7440 the same instruction but with REG_PC in the Rm field. */
7441 if (!inst.operands[1].isreg)
7442 inst.operands[1].reg = REG_PC;
b99bd4ef 7443
c19d1205
ZW
7444 msb = inst.operands[2].imm + inst.operands[3].imm;
7445 constraint (msb > 32, _("bit-field extends past end of register"));
7446 /* The instruction encoding stores the LSB and MSB,
7447 not the LSB and width. */
7448 inst.instruction |= inst.operands[0].reg << 12;
7449 inst.instruction |= inst.operands[1].reg;
7450 inst.instruction |= inst.operands[2].imm << 7;
7451 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7452}
7453
b99bd4ef 7454static void
c19d1205 7455do_bfx (void)
b99bd4ef 7456{
c19d1205
ZW
7457 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7458 _("bit-field extends past end of register"));
7459 inst.instruction |= inst.operands[0].reg << 12;
7460 inst.instruction |= inst.operands[1].reg;
7461 inst.instruction |= inst.operands[2].imm << 7;
7462 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7463}
09d92015 7464
c19d1205
ZW
7465/* ARM V5 breakpoint instruction (argument parse)
7466 BKPT <16 bit unsigned immediate>
7467 Instruction is not conditional.
7468 The bit pattern given in insns[] has the COND_ALWAYS condition,
7469 and it is an error if the caller tried to override that. */
b99bd4ef 7470
c19d1205
ZW
7471static void
7472do_bkpt (void)
7473{
7474 /* Top 12 of 16 bits to bits 19:8. */
7475 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7476
c19d1205
ZW
7477 /* Bottom 4 of 16 bits to bits 3:0. */
7478 inst.instruction |= inst.operands[0].imm & 0xf;
7479}
09d92015 7480
c19d1205
ZW
7481static void
7482encode_branch (int default_reloc)
7483{
7484 if (inst.operands[0].hasreloc)
7485 {
0855e32b
NS
7486 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7487 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7488 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7489 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7490 ? BFD_RELOC_ARM_PLT32
7491 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7492 }
b99bd4ef 7493 else
9ae92b05 7494 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7495 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7496}
7497
b99bd4ef 7498static void
c19d1205 7499do_branch (void)
b99bd4ef 7500{
39b41c9c
PB
7501#ifdef OBJ_ELF
7502 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7503 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7504 else
7505#endif
7506 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7507}
7508
7509static void
7510do_bl (void)
7511{
7512#ifdef OBJ_ELF
7513 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7514 {
7515 if (inst.cond == COND_ALWAYS)
7516 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7517 else
7518 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7519 }
7520 else
7521#endif
7522 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7523}
b99bd4ef 7524
c19d1205
ZW
7525/* ARM V5 branch-link-exchange instruction (argument parse)
7526 BLX <target_addr> ie BLX(1)
7527 BLX{<condition>} <Rm> ie BLX(2)
7528 Unfortunately, there are two different opcodes for this mnemonic.
7529 So, the insns[].value is not used, and the code here zaps values
7530 into inst.instruction.
7531 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7532
c19d1205
ZW
7533static void
7534do_blx (void)
7535{
7536 if (inst.operands[0].isreg)
b99bd4ef 7537 {
c19d1205
ZW
7538 /* Arg is a register; the opcode provided by insns[] is correct.
7539 It is not illegal to do "blx pc", just useless. */
7540 if (inst.operands[0].reg == REG_PC)
7541 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7542
c19d1205
ZW
7543 inst.instruction |= inst.operands[0].reg;
7544 }
7545 else
b99bd4ef 7546 {
c19d1205 7547 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7548 conditionally, and the opcode must be adjusted.
7549 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7550 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7551 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7552 inst.instruction = 0xfa000000;
267bf995 7553 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7554 }
c19d1205
ZW
7555}
7556
7557static void
7558do_bx (void)
7559{
845b51d6
PB
7560 bfd_boolean want_reloc;
7561
c19d1205
ZW
7562 if (inst.operands[0].reg == REG_PC)
7563 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7564
c19d1205 7565 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7566 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7567 it is for ARMv4t or earlier. */
7568 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7569 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7570 want_reloc = TRUE;
7571
5ad34203 7572#ifdef OBJ_ELF
845b51d6 7573 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7574#endif
584206db 7575 want_reloc = FALSE;
845b51d6
PB
7576
7577 if (want_reloc)
7578 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7579}
7580
c19d1205
ZW
7581
7582/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7583
7584static void
c19d1205 7585do_bxj (void)
a737bd4d 7586{
c19d1205
ZW
7587 if (inst.operands[0].reg == REG_PC)
7588 as_tsktsk (_("use of r15 in bxj is not really useful"));
7589
7590 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7591}
7592
c19d1205
ZW
7593/* Co-processor data operation:
7594 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7595 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7596static void
7597do_cdp (void)
7598{
7599 inst.instruction |= inst.operands[0].reg << 8;
7600 inst.instruction |= inst.operands[1].imm << 20;
7601 inst.instruction |= inst.operands[2].reg << 12;
7602 inst.instruction |= inst.operands[3].reg << 16;
7603 inst.instruction |= inst.operands[4].reg;
7604 inst.instruction |= inst.operands[5].imm << 5;
7605}
a737bd4d
NC
7606
7607static void
c19d1205 7608do_cmp (void)
a737bd4d 7609{
c19d1205
ZW
7610 inst.instruction |= inst.operands[0].reg << 16;
7611 encode_arm_shifter_operand (1);
a737bd4d
NC
7612}
7613
c19d1205
ZW
7614/* Transfer between coprocessor and ARM registers.
7615 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7616 MRC2
7617 MCR{cond}
7618 MCR2
7619
7620 No special properties. */
09d92015
MM
7621
7622static void
c19d1205 7623do_co_reg (void)
09d92015 7624{
fdfde340
JM
7625 unsigned Rd;
7626
7627 Rd = inst.operands[2].reg;
7628 if (thumb_mode)
7629 {
7630 if (inst.instruction == 0xee000010
7631 || inst.instruction == 0xfe000010)
7632 /* MCR, MCR2 */
7633 reject_bad_reg (Rd);
7634 else
7635 /* MRC, MRC2 */
7636 constraint (Rd == REG_SP, BAD_SP);
7637 }
7638 else
7639 {
7640 /* MCR */
7641 if (inst.instruction == 0xe000010)
7642 constraint (Rd == REG_PC, BAD_PC);
7643 }
7644
7645
c19d1205
ZW
7646 inst.instruction |= inst.operands[0].reg << 8;
7647 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7648 inst.instruction |= Rd << 12;
c19d1205
ZW
7649 inst.instruction |= inst.operands[3].reg << 16;
7650 inst.instruction |= inst.operands[4].reg;
7651 inst.instruction |= inst.operands[5].imm << 5;
7652}
09d92015 7653
c19d1205
ZW
7654/* Transfer between coprocessor register and pair of ARM registers.
7655 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7656 MCRR2
7657 MRRC{cond}
7658 MRRC2
b99bd4ef 7659
c19d1205 7660 Two XScale instructions are special cases of these:
09d92015 7661
c19d1205
ZW
7662 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7663 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7664
5f4273c7 7665 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7666
c19d1205
ZW
7667static void
7668do_co_reg2c (void)
7669{
fdfde340
JM
7670 unsigned Rd, Rn;
7671
7672 Rd = inst.operands[2].reg;
7673 Rn = inst.operands[3].reg;
7674
7675 if (thumb_mode)
7676 {
7677 reject_bad_reg (Rd);
7678 reject_bad_reg (Rn);
7679 }
7680 else
7681 {
7682 constraint (Rd == REG_PC, BAD_PC);
7683 constraint (Rn == REG_PC, BAD_PC);
7684 }
7685
c19d1205
ZW
7686 inst.instruction |= inst.operands[0].reg << 8;
7687 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7688 inst.instruction |= Rd << 12;
7689 inst.instruction |= Rn << 16;
c19d1205 7690 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7691}
7692
c19d1205
ZW
7693static void
7694do_cpsi (void)
7695{
7696 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7697 if (inst.operands[1].present)
7698 {
7699 inst.instruction |= CPSI_MMOD;
7700 inst.instruction |= inst.operands[1].imm;
7701 }
c19d1205 7702}
b99bd4ef 7703
62b3e311
PB
7704static void
7705do_dbg (void)
7706{
7707 inst.instruction |= inst.operands[0].imm;
7708}
7709
eea54501
MGD
7710static void
7711do_div (void)
7712{
7713 unsigned Rd, Rn, Rm;
7714
7715 Rd = inst.operands[0].reg;
7716 Rn = (inst.operands[1].present
7717 ? inst.operands[1].reg : Rd);
7718 Rm = inst.operands[2].reg;
7719
7720 constraint ((Rd == REG_PC), BAD_PC);
7721 constraint ((Rn == REG_PC), BAD_PC);
7722 constraint ((Rm == REG_PC), BAD_PC);
7723
7724 inst.instruction |= Rd << 16;
7725 inst.instruction |= Rn << 0;
7726 inst.instruction |= Rm << 8;
7727}
7728
b99bd4ef 7729static void
c19d1205 7730do_it (void)
b99bd4ef 7731{
c19d1205 7732 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7733 process it to do the validation as if in
7734 thumb mode, just in case the code gets
7735 assembled for thumb using the unified syntax. */
7736
c19d1205 7737 inst.size = 0;
e07e6e58
NC
7738 if (unified_syntax)
7739 {
7740 set_it_insn_type (IT_INSN);
7741 now_it.mask = (inst.instruction & 0xf) | 0x10;
7742 now_it.cc = inst.operands[0].imm;
7743 }
09d92015 7744}
b99bd4ef 7745
09d92015 7746static void
c19d1205 7747do_ldmstm (void)
ea6ef066 7748{
c19d1205
ZW
7749 int base_reg = inst.operands[0].reg;
7750 int range = inst.operands[1].imm;
ea6ef066 7751
c19d1205
ZW
7752 inst.instruction |= base_reg << 16;
7753 inst.instruction |= range;
ea6ef066 7754
c19d1205
ZW
7755 if (inst.operands[1].writeback)
7756 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7757
c19d1205 7758 if (inst.operands[0].writeback)
ea6ef066 7759 {
c19d1205
ZW
7760 inst.instruction |= WRITE_BACK;
7761 /* Check for unpredictable uses of writeback. */
7762 if (inst.instruction & LOAD_BIT)
09d92015 7763 {
c19d1205
ZW
7764 /* Not allowed in LDM type 2. */
7765 if ((inst.instruction & LDM_TYPE_2_OR_3)
7766 && ((range & (1 << REG_PC)) == 0))
7767 as_warn (_("writeback of base register is UNPREDICTABLE"));
7768 /* Only allowed if base reg not in list for other types. */
7769 else if (range & (1 << base_reg))
7770 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7771 }
7772 else /* STM. */
7773 {
7774 /* Not allowed for type 2. */
7775 if (inst.instruction & LDM_TYPE_2_OR_3)
7776 as_warn (_("writeback of base register is UNPREDICTABLE"));
7777 /* Only allowed if base reg not in list, or first in list. */
7778 else if ((range & (1 << base_reg))
7779 && (range & ((1 << base_reg) - 1)))
7780 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7781 }
ea6ef066 7782 }
a737bd4d
NC
7783}
7784
c19d1205
ZW
7785/* ARMv5TE load-consecutive (argument parse)
7786 Mode is like LDRH.
7787
7788 LDRccD R, mode
7789 STRccD R, mode. */
7790
a737bd4d 7791static void
c19d1205 7792do_ldrd (void)
a737bd4d 7793{
c19d1205
ZW
7794 constraint (inst.operands[0].reg % 2 != 0,
7795 _("first destination register must be even"));
7796 constraint (inst.operands[1].present
7797 && inst.operands[1].reg != inst.operands[0].reg + 1,
7798 _("can only load two consecutive registers"));
7799 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7800 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7801
c19d1205
ZW
7802 if (!inst.operands[1].present)
7803 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7804
c19d1205 7805 if (inst.instruction & LOAD_BIT)
a737bd4d 7806 {
c19d1205
ZW
7807 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7808 register and the first register written; we have to diagnose
7809 overlap between the base and the second register written here. */
ea6ef066 7810
c19d1205
ZW
7811 if (inst.operands[2].reg == inst.operands[1].reg
7812 && (inst.operands[2].writeback || inst.operands[2].postind))
7813 as_warn (_("base register written back, and overlaps "
7814 "second destination register"));
b05fe5cf 7815
c19d1205
ZW
7816 /* For an index-register load, the index register must not overlap the
7817 destination (even if not write-back). */
7818 else if (inst.operands[2].immisreg
ca3f61f7
NC
7819 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7820 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7821 as_warn (_("index register overlaps destination register"));
b05fe5cf 7822 }
c19d1205
ZW
7823
7824 inst.instruction |= inst.operands[0].reg << 12;
7825 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7826}
7827
7828static void
c19d1205 7829do_ldrex (void)
b05fe5cf 7830{
c19d1205
ZW
7831 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7832 || inst.operands[1].postind || inst.operands[1].writeback
7833 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7834 || inst.operands[1].negative
7835 /* This can arise if the programmer has written
7836 strex rN, rM, foo
7837 or if they have mistakenly used a register name as the last
7838 operand, eg:
7839 strex rN, rM, rX
7840 It is very difficult to distinguish between these two cases
7841 because "rX" might actually be a label. ie the register
7842 name has been occluded by a symbol of the same name. So we
7843 just generate a general 'bad addressing mode' type error
7844 message and leave it up to the programmer to discover the
7845 true cause and fix their mistake. */
7846 || (inst.operands[1].reg == REG_PC),
7847 BAD_ADDR_MODE);
b05fe5cf 7848
c19d1205
ZW
7849 constraint (inst.reloc.exp.X_op != O_constant
7850 || inst.reloc.exp.X_add_number != 0,
7851 _("offset must be zero in ARM encoding"));
b05fe5cf 7852
5be8be5d
DG
7853 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7854
c19d1205
ZW
7855 inst.instruction |= inst.operands[0].reg << 12;
7856 inst.instruction |= inst.operands[1].reg << 16;
7857 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7858}
7859
7860static void
c19d1205 7861do_ldrexd (void)
b05fe5cf 7862{
c19d1205
ZW
7863 constraint (inst.operands[0].reg % 2 != 0,
7864 _("even register required"));
7865 constraint (inst.operands[1].present
7866 && inst.operands[1].reg != inst.operands[0].reg + 1,
7867 _("can only load two consecutive registers"));
7868 /* If op 1 were present and equal to PC, this function wouldn't
7869 have been called in the first place. */
7870 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7871
c19d1205
ZW
7872 inst.instruction |= inst.operands[0].reg << 12;
7873 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7874}
7875
7876static void
c19d1205 7877do_ldst (void)
b05fe5cf 7878{
c19d1205
ZW
7879 inst.instruction |= inst.operands[0].reg << 12;
7880 if (!inst.operands[1].isreg)
7881 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7882 return;
c19d1205 7883 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7884}
7885
7886static void
c19d1205 7887do_ldstt (void)
b05fe5cf 7888{
c19d1205
ZW
7889 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7890 reject [Rn,...]. */
7891 if (inst.operands[1].preind)
b05fe5cf 7892 {
bd3ba5d1
NC
7893 constraint (inst.reloc.exp.X_op != O_constant
7894 || inst.reloc.exp.X_add_number != 0,
c19d1205 7895 _("this instruction requires a post-indexed address"));
b05fe5cf 7896
c19d1205
ZW
7897 inst.operands[1].preind = 0;
7898 inst.operands[1].postind = 1;
7899 inst.operands[1].writeback = 1;
b05fe5cf 7900 }
c19d1205
ZW
7901 inst.instruction |= inst.operands[0].reg << 12;
7902 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7903}
b05fe5cf 7904
c19d1205 7905/* Halfword and signed-byte load/store operations. */
b05fe5cf 7906
c19d1205
ZW
7907static void
7908do_ldstv4 (void)
7909{
ff4a8d2b 7910 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7911 inst.instruction |= inst.operands[0].reg << 12;
7912 if (!inst.operands[1].isreg)
7913 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7914 return;
c19d1205 7915 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7916}
7917
7918static void
c19d1205 7919do_ldsttv4 (void)
b05fe5cf 7920{
c19d1205
ZW
7921 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7922 reject [Rn,...]. */
7923 if (inst.operands[1].preind)
b05fe5cf 7924 {
bd3ba5d1
NC
7925 constraint (inst.reloc.exp.X_op != O_constant
7926 || inst.reloc.exp.X_add_number != 0,
c19d1205 7927 _("this instruction requires a post-indexed address"));
b05fe5cf 7928
c19d1205
ZW
7929 inst.operands[1].preind = 0;
7930 inst.operands[1].postind = 1;
7931 inst.operands[1].writeback = 1;
b05fe5cf 7932 }
c19d1205
ZW
7933 inst.instruction |= inst.operands[0].reg << 12;
7934 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7935}
b05fe5cf 7936
c19d1205
ZW
7937/* Co-processor register load/store.
7938 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7939static void
7940do_lstc (void)
7941{
7942 inst.instruction |= inst.operands[0].reg << 8;
7943 inst.instruction |= inst.operands[1].reg << 12;
7944 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7945}
7946
b05fe5cf 7947static void
c19d1205 7948do_mlas (void)
b05fe5cf 7949{
8fb9d7b9 7950 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7951 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7952 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7953 && !(inst.instruction & 0x00400000))
8fb9d7b9 7954 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7955
c19d1205
ZW
7956 inst.instruction |= inst.operands[0].reg << 16;
7957 inst.instruction |= inst.operands[1].reg;
7958 inst.instruction |= inst.operands[2].reg << 8;
7959 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7960}
b05fe5cf 7961
c19d1205
ZW
7962static void
7963do_mov (void)
7964{
7965 inst.instruction |= inst.operands[0].reg << 12;
7966 encode_arm_shifter_operand (1);
7967}
b05fe5cf 7968
c19d1205
ZW
7969/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7970static void
7971do_mov16 (void)
7972{
b6895b4f
PB
7973 bfd_vma imm;
7974 bfd_boolean top;
7975
7976 top = (inst.instruction & 0x00400000) != 0;
7977 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7978 _(":lower16: not allowed this instruction"));
7979 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7980 _(":upper16: not allowed instruction"));
c19d1205 7981 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7982 if (inst.reloc.type == BFD_RELOC_UNUSED)
7983 {
7984 imm = inst.reloc.exp.X_add_number;
7985 /* The value is in two pieces: 0:11, 16:19. */
7986 inst.instruction |= (imm & 0x00000fff);
7987 inst.instruction |= (imm & 0x0000f000) << 4;
7988 }
b05fe5cf 7989}
b99bd4ef 7990
037e8744
JB
7991static void do_vfp_nsyn_opcode (const char *);
7992
7993static int
7994do_vfp_nsyn_mrs (void)
7995{
7996 if (inst.operands[0].isvec)
7997 {
7998 if (inst.operands[1].reg != 1)
7999 first_error (_("operand 1 must be FPSCR"));
8000 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8001 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8002 do_vfp_nsyn_opcode ("fmstat");
8003 }
8004 else if (inst.operands[1].isvec)
8005 do_vfp_nsyn_opcode ("fmrx");
8006 else
8007 return FAIL;
5f4273c7 8008
037e8744
JB
8009 return SUCCESS;
8010}
8011
8012static int
8013do_vfp_nsyn_msr (void)
8014{
8015 if (inst.operands[0].isvec)
8016 do_vfp_nsyn_opcode ("fmxr");
8017 else
8018 return FAIL;
8019
8020 return SUCCESS;
8021}
8022
f7c21dc7
NC
8023static void
8024do_vmrs (void)
8025{
8026 unsigned Rt = inst.operands[0].reg;
8027
8028 if (thumb_mode && inst.operands[0].reg == REG_SP)
8029 {
8030 inst.error = BAD_SP;
8031 return;
8032 }
8033
8034 /* APSR_ sets isvec. All other refs to PC are illegal. */
8035 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8036 {
8037 inst.error = BAD_PC;
8038 return;
8039 }
8040
8041 if (inst.operands[1].reg != 1)
8042 first_error (_("operand 1 must be FPSCR"));
8043
8044 inst.instruction |= (Rt << 12);
8045}
8046
8047static void
8048do_vmsr (void)
8049{
8050 unsigned Rt = inst.operands[1].reg;
8051
8052 if (thumb_mode)
8053 reject_bad_reg (Rt);
8054 else if (Rt == REG_PC)
8055 {
8056 inst.error = BAD_PC;
8057 return;
8058 }
8059
8060 if (inst.operands[0].reg != 1)
8061 first_error (_("operand 0 must be FPSCR"));
8062
8063 inst.instruction |= (Rt << 12);
8064}
8065
b99bd4ef 8066static void
c19d1205 8067do_mrs (void)
b99bd4ef 8068{
90ec0d68
MGD
8069 unsigned br;
8070
037e8744
JB
8071 if (do_vfp_nsyn_mrs () == SUCCESS)
8072 return;
8073
ff4a8d2b 8074 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8075 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8076
8077 if (inst.operands[1].isreg)
8078 {
8079 br = inst.operands[1].reg;
8080 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8081 as_bad (_("bad register for mrs"));
8082 }
8083 else
8084 {
8085 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8086 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8087 != (PSR_c|PSR_f),
d2cd1205 8088 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8089 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8090 }
8091
8092 inst.instruction |= br;
c19d1205 8093}
b99bd4ef 8094
c19d1205
ZW
8095/* Two possible forms:
8096 "{C|S}PSR_<field>, Rm",
8097 "{C|S}PSR_f, #expression". */
b99bd4ef 8098
c19d1205
ZW
8099static void
8100do_msr (void)
8101{
037e8744
JB
8102 if (do_vfp_nsyn_msr () == SUCCESS)
8103 return;
8104
c19d1205
ZW
8105 inst.instruction |= inst.operands[0].imm;
8106 if (inst.operands[1].isreg)
8107 inst.instruction |= inst.operands[1].reg;
8108 else
b99bd4ef 8109 {
c19d1205
ZW
8110 inst.instruction |= INST_IMMEDIATE;
8111 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8112 inst.reloc.pc_rel = 0;
b99bd4ef 8113 }
b99bd4ef
NC
8114}
8115
c19d1205
ZW
8116static void
8117do_mul (void)
a737bd4d 8118{
ff4a8d2b
NC
8119 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8120
c19d1205
ZW
8121 if (!inst.operands[2].present)
8122 inst.operands[2].reg = inst.operands[0].reg;
8123 inst.instruction |= inst.operands[0].reg << 16;
8124 inst.instruction |= inst.operands[1].reg;
8125 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8126
8fb9d7b9
MS
8127 if (inst.operands[0].reg == inst.operands[1].reg
8128 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8129 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8130}
8131
c19d1205
ZW
8132/* Long Multiply Parser
8133 UMULL RdLo, RdHi, Rm, Rs
8134 SMULL RdLo, RdHi, Rm, Rs
8135 UMLAL RdLo, RdHi, Rm, Rs
8136 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8137
8138static void
c19d1205 8139do_mull (void)
b99bd4ef 8140{
c19d1205
ZW
8141 inst.instruction |= inst.operands[0].reg << 12;
8142 inst.instruction |= inst.operands[1].reg << 16;
8143 inst.instruction |= inst.operands[2].reg;
8144 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8145
682b27ad
PB
8146 /* rdhi and rdlo must be different. */
8147 if (inst.operands[0].reg == inst.operands[1].reg)
8148 as_tsktsk (_("rdhi and rdlo must be different"));
8149
8150 /* rdhi, rdlo and rm must all be different before armv6. */
8151 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8152 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8153 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8154 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8155}
b99bd4ef 8156
c19d1205
ZW
8157static void
8158do_nop (void)
8159{
e7495e45
NS
8160 if (inst.operands[0].present
8161 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8162 {
8163 /* Architectural NOP hints are CPSR sets with no bits selected. */
8164 inst.instruction &= 0xf0000000;
e7495e45
NS
8165 inst.instruction |= 0x0320f000;
8166 if (inst.operands[0].present)
8167 inst.instruction |= inst.operands[0].imm;
c19d1205 8168 }
b99bd4ef
NC
8169}
8170
c19d1205
ZW
8171/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8172 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8173 Condition defaults to COND_ALWAYS.
8174 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8175
8176static void
c19d1205 8177do_pkhbt (void)
b99bd4ef 8178{
c19d1205
ZW
8179 inst.instruction |= inst.operands[0].reg << 12;
8180 inst.instruction |= inst.operands[1].reg << 16;
8181 inst.instruction |= inst.operands[2].reg;
8182 if (inst.operands[3].present)
8183 encode_arm_shift (3);
8184}
b99bd4ef 8185
c19d1205 8186/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8187
c19d1205
ZW
8188static void
8189do_pkhtb (void)
8190{
8191 if (!inst.operands[3].present)
b99bd4ef 8192 {
c19d1205
ZW
8193 /* If the shift specifier is omitted, turn the instruction
8194 into pkhbt rd, rm, rn. */
8195 inst.instruction &= 0xfff00010;
8196 inst.instruction |= inst.operands[0].reg << 12;
8197 inst.instruction |= inst.operands[1].reg;
8198 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8199 }
8200 else
8201 {
c19d1205
ZW
8202 inst.instruction |= inst.operands[0].reg << 12;
8203 inst.instruction |= inst.operands[1].reg << 16;
8204 inst.instruction |= inst.operands[2].reg;
8205 encode_arm_shift (3);
b99bd4ef
NC
8206 }
8207}
8208
c19d1205 8209/* ARMv5TE: Preload-Cache
60e5ef9f 8210 MP Extensions: Preload for write
c19d1205 8211
60e5ef9f 8212 PLD(W) <addr_mode>
c19d1205
ZW
8213
8214 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8215
8216static void
c19d1205 8217do_pld (void)
b99bd4ef 8218{
c19d1205
ZW
8219 constraint (!inst.operands[0].isreg,
8220 _("'[' expected after PLD mnemonic"));
8221 constraint (inst.operands[0].postind,
8222 _("post-indexed expression used in preload instruction"));
8223 constraint (inst.operands[0].writeback,
8224 _("writeback used in preload instruction"));
8225 constraint (!inst.operands[0].preind,
8226 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8227 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8228}
b99bd4ef 8229
62b3e311
PB
8230/* ARMv7: PLI <addr_mode> */
8231static void
8232do_pli (void)
8233{
8234 constraint (!inst.operands[0].isreg,
8235 _("'[' expected after PLI mnemonic"));
8236 constraint (inst.operands[0].postind,
8237 _("post-indexed expression used in preload instruction"));
8238 constraint (inst.operands[0].writeback,
8239 _("writeback used in preload instruction"));
8240 constraint (!inst.operands[0].preind,
8241 _("unindexed addressing used in preload instruction"));
8242 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8243 inst.instruction &= ~PRE_INDEX;
8244}
8245
c19d1205
ZW
8246static void
8247do_push_pop (void)
8248{
8249 inst.operands[1] = inst.operands[0];
8250 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8251 inst.operands[0].isreg = 1;
8252 inst.operands[0].writeback = 1;
8253 inst.operands[0].reg = REG_SP;
8254 do_ldmstm ();
8255}
b99bd4ef 8256
c19d1205
ZW
8257/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8258 word at the specified address and the following word
8259 respectively.
8260 Unconditionally executed.
8261 Error if Rn is R15. */
b99bd4ef 8262
c19d1205
ZW
8263static void
8264do_rfe (void)
8265{
8266 inst.instruction |= inst.operands[0].reg << 16;
8267 if (inst.operands[0].writeback)
8268 inst.instruction |= WRITE_BACK;
8269}
b99bd4ef 8270
c19d1205 8271/* ARM V6 ssat (argument parse). */
b99bd4ef 8272
c19d1205
ZW
8273static void
8274do_ssat (void)
8275{
8276 inst.instruction |= inst.operands[0].reg << 12;
8277 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8278 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8279
c19d1205
ZW
8280 if (inst.operands[3].present)
8281 encode_arm_shift (3);
b99bd4ef
NC
8282}
8283
c19d1205 8284/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8285
8286static void
c19d1205 8287do_usat (void)
b99bd4ef 8288{
c19d1205
ZW
8289 inst.instruction |= inst.operands[0].reg << 12;
8290 inst.instruction |= inst.operands[1].imm << 16;
8291 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8292
c19d1205
ZW
8293 if (inst.operands[3].present)
8294 encode_arm_shift (3);
b99bd4ef
NC
8295}
8296
c19d1205 8297/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8298
8299static void
c19d1205 8300do_ssat16 (void)
09d92015 8301{
c19d1205
ZW
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8304 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8305}
8306
c19d1205
ZW
8307static void
8308do_usat16 (void)
a737bd4d 8309{
c19d1205
ZW
8310 inst.instruction |= inst.operands[0].reg << 12;
8311 inst.instruction |= inst.operands[1].imm << 16;
8312 inst.instruction |= inst.operands[2].reg;
8313}
a737bd4d 8314
c19d1205
ZW
8315/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8316 preserving the other bits.
a737bd4d 8317
c19d1205
ZW
8318 setend <endian_specifier>, where <endian_specifier> is either
8319 BE or LE. */
a737bd4d 8320
c19d1205
ZW
8321static void
8322do_setend (void)
8323{
8324 if (inst.operands[0].imm)
8325 inst.instruction |= 0x200;
a737bd4d
NC
8326}
8327
8328static void
c19d1205 8329do_shift (void)
a737bd4d 8330{
c19d1205
ZW
8331 unsigned int Rm = (inst.operands[1].present
8332 ? inst.operands[1].reg
8333 : inst.operands[0].reg);
a737bd4d 8334
c19d1205
ZW
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= Rm;
8337 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8338 {
c19d1205
ZW
8339 inst.instruction |= inst.operands[2].reg << 8;
8340 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8341 }
8342 else
c19d1205 8343 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8344}
8345
09d92015 8346static void
3eb17e6b 8347do_smc (void)
09d92015 8348{
3eb17e6b 8349 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8350 inst.reloc.pc_rel = 0;
09d92015
MM
8351}
8352
90ec0d68
MGD
8353static void
8354do_hvc (void)
8355{
8356 inst.reloc.type = BFD_RELOC_ARM_HVC;
8357 inst.reloc.pc_rel = 0;
8358}
8359
09d92015 8360static void
c19d1205 8361do_swi (void)
09d92015 8362{
c19d1205
ZW
8363 inst.reloc.type = BFD_RELOC_ARM_SWI;
8364 inst.reloc.pc_rel = 0;
09d92015
MM
8365}
8366
c19d1205
ZW
8367/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8368 SMLAxy{cond} Rd,Rm,Rs,Rn
8369 SMLAWy{cond} Rd,Rm,Rs,Rn
8370 Error if any register is R15. */
e16bb312 8371
c19d1205
ZW
8372static void
8373do_smla (void)
e16bb312 8374{
c19d1205
ZW
8375 inst.instruction |= inst.operands[0].reg << 16;
8376 inst.instruction |= inst.operands[1].reg;
8377 inst.instruction |= inst.operands[2].reg << 8;
8378 inst.instruction |= inst.operands[3].reg << 12;
8379}
a737bd4d 8380
c19d1205
ZW
8381/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8382 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8383 Error if any register is R15.
8384 Warning if Rdlo == Rdhi. */
a737bd4d 8385
c19d1205
ZW
8386static void
8387do_smlal (void)
8388{
8389 inst.instruction |= inst.operands[0].reg << 12;
8390 inst.instruction |= inst.operands[1].reg << 16;
8391 inst.instruction |= inst.operands[2].reg;
8392 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8393
c19d1205
ZW
8394 if (inst.operands[0].reg == inst.operands[1].reg)
8395 as_tsktsk (_("rdhi and rdlo must be different"));
8396}
a737bd4d 8397
c19d1205
ZW
8398/* ARM V5E (El Segundo) signed-multiply (argument parse)
8399 SMULxy{cond} Rd,Rm,Rs
8400 Error if any register is R15. */
a737bd4d 8401
c19d1205
ZW
8402static void
8403do_smul (void)
8404{
8405 inst.instruction |= inst.operands[0].reg << 16;
8406 inst.instruction |= inst.operands[1].reg;
8407 inst.instruction |= inst.operands[2].reg << 8;
8408}
a737bd4d 8409
b6702015
PB
8410/* ARM V6 srs (argument parse). The variable fields in the encoding are
8411 the same for both ARM and Thumb-2. */
a737bd4d 8412
c19d1205
ZW
8413static void
8414do_srs (void)
8415{
b6702015
PB
8416 int reg;
8417
8418 if (inst.operands[0].present)
8419 {
8420 reg = inst.operands[0].reg;
fdfde340 8421 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8422 }
8423 else
fdfde340 8424 reg = REG_SP;
b6702015
PB
8425
8426 inst.instruction |= reg << 16;
8427 inst.instruction |= inst.operands[1].imm;
8428 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8429 inst.instruction |= WRITE_BACK;
8430}
a737bd4d 8431
c19d1205 8432/* ARM V6 strex (argument parse). */
a737bd4d 8433
c19d1205
ZW
8434static void
8435do_strex (void)
8436{
8437 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8438 || inst.operands[2].postind || inst.operands[2].writeback
8439 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8440 || inst.operands[2].negative
8441 /* See comment in do_ldrex(). */
8442 || (inst.operands[2].reg == REG_PC),
8443 BAD_ADDR_MODE);
a737bd4d 8444
c19d1205
ZW
8445 constraint (inst.operands[0].reg == inst.operands[1].reg
8446 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8447
c19d1205
ZW
8448 constraint (inst.reloc.exp.X_op != O_constant
8449 || inst.reloc.exp.X_add_number != 0,
8450 _("offset must be zero in ARM encoding"));
a737bd4d 8451
c19d1205
ZW
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg;
8454 inst.instruction |= inst.operands[2].reg << 16;
8455 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8456}
8457
8458static void
c19d1205 8459do_strexd (void)
e16bb312 8460{
c19d1205
ZW
8461 constraint (inst.operands[1].reg % 2 != 0,
8462 _("even register required"));
8463 constraint (inst.operands[2].present
8464 && inst.operands[2].reg != inst.operands[1].reg + 1,
8465 _("can only store two consecutive registers"));
8466 /* If op 2 were present and equal to PC, this function wouldn't
8467 have been called in the first place. */
8468 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8469
c19d1205
ZW
8470 constraint (inst.operands[0].reg == inst.operands[1].reg
8471 || inst.operands[0].reg == inst.operands[1].reg + 1
8472 || inst.operands[0].reg == inst.operands[3].reg,
8473 BAD_OVERLAP);
e16bb312 8474
c19d1205
ZW
8475 inst.instruction |= inst.operands[0].reg << 12;
8476 inst.instruction |= inst.operands[1].reg;
8477 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8478}
8479
c19d1205
ZW
8480/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8481 extends it to 32-bits, and adds the result to a value in another
8482 register. You can specify a rotation by 0, 8, 16, or 24 bits
8483 before extracting the 16-bit value.
8484 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8485 Condition defaults to COND_ALWAYS.
8486 Error if any register uses R15. */
8487
e16bb312 8488static void
c19d1205 8489do_sxtah (void)
e16bb312 8490{
c19d1205
ZW
8491 inst.instruction |= inst.operands[0].reg << 12;
8492 inst.instruction |= inst.operands[1].reg << 16;
8493 inst.instruction |= inst.operands[2].reg;
8494 inst.instruction |= inst.operands[3].imm << 10;
8495}
e16bb312 8496
c19d1205 8497/* ARM V6 SXTH.
e16bb312 8498
c19d1205
ZW
8499 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8500 Condition defaults to COND_ALWAYS.
8501 Error if any register uses R15. */
e16bb312
NC
8502
8503static void
c19d1205 8504do_sxth (void)
e16bb312 8505{
c19d1205
ZW
8506 inst.instruction |= inst.operands[0].reg << 12;
8507 inst.instruction |= inst.operands[1].reg;
8508 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8509}
c19d1205
ZW
8510\f
8511/* VFP instructions. In a logical order: SP variant first, monad
8512 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8513
8514static void
c19d1205 8515do_vfp_sp_monadic (void)
e16bb312 8516{
5287ad62
JB
8517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8518 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8519}
8520
8521static void
c19d1205 8522do_vfp_sp_dyadic (void)
e16bb312 8523{
5287ad62
JB
8524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8525 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8526 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8527}
8528
8529static void
c19d1205 8530do_vfp_sp_compare_z (void)
e16bb312 8531{
5287ad62 8532 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8533}
8534
8535static void
c19d1205 8536do_vfp_dp_sp_cvt (void)
e16bb312 8537{
5287ad62
JB
8538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8540}
8541
8542static void
c19d1205 8543do_vfp_sp_dp_cvt (void)
e16bb312 8544{
5287ad62
JB
8545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8547}
8548
8549static void
c19d1205 8550do_vfp_reg_from_sp (void)
e16bb312 8551{
c19d1205 8552 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8554}
8555
8556static void
c19d1205 8557do_vfp_reg2_from_sp2 (void)
e16bb312 8558{
c19d1205
ZW
8559 constraint (inst.operands[2].imm != 2,
8560 _("only two consecutive VFP SP registers allowed here"));
8561 inst.instruction |= inst.operands[0].reg << 12;
8562 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8563 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8564}
8565
8566static void
c19d1205 8567do_vfp_sp_from_reg (void)
e16bb312 8568{
5287ad62 8569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8570 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8571}
8572
8573static void
c19d1205 8574do_vfp_sp2_from_reg2 (void)
e16bb312 8575{
c19d1205
ZW
8576 constraint (inst.operands[0].imm != 2,
8577 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8578 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8579 inst.instruction |= inst.operands[1].reg << 12;
8580 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8581}
8582
8583static void
c19d1205 8584do_vfp_sp_ldst (void)
e16bb312 8585{
5287ad62 8586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8587 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8588}
8589
8590static void
c19d1205 8591do_vfp_dp_ldst (void)
e16bb312 8592{
5287ad62 8593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8594 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8595}
8596
c19d1205 8597
e16bb312 8598static void
c19d1205 8599vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8600{
c19d1205
ZW
8601 if (inst.operands[0].writeback)
8602 inst.instruction |= WRITE_BACK;
8603 else
8604 constraint (ldstm_type != VFP_LDSTMIA,
8605 _("this addressing mode requires base-register writeback"));
8606 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8607 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8608 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8609}
8610
8611static void
c19d1205 8612vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8613{
c19d1205 8614 int count;
e16bb312 8615
c19d1205
ZW
8616 if (inst.operands[0].writeback)
8617 inst.instruction |= WRITE_BACK;
8618 else
8619 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8620 _("this addressing mode requires base-register writeback"));
e16bb312 8621
c19d1205 8622 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8624
c19d1205
ZW
8625 count = inst.operands[1].imm << 1;
8626 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8627 count += 1;
e16bb312 8628
c19d1205 8629 inst.instruction |= count;
e16bb312
NC
8630}
8631
8632static void
c19d1205 8633do_vfp_sp_ldstmia (void)
e16bb312 8634{
c19d1205 8635 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8636}
8637
8638static void
c19d1205 8639do_vfp_sp_ldstmdb (void)
e16bb312 8640{
c19d1205 8641 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8642}
8643
8644static void
c19d1205 8645do_vfp_dp_ldstmia (void)
e16bb312 8646{
c19d1205 8647 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8648}
8649
8650static void
c19d1205 8651do_vfp_dp_ldstmdb (void)
e16bb312 8652{
c19d1205 8653 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8654}
8655
8656static void
c19d1205 8657do_vfp_xp_ldstmia (void)
e16bb312 8658{
c19d1205
ZW
8659 vfp_dp_ldstm (VFP_LDSTMIAX);
8660}
e16bb312 8661
c19d1205
ZW
8662static void
8663do_vfp_xp_ldstmdb (void)
8664{
8665 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8666}
5287ad62
JB
8667
8668static void
8669do_vfp_dp_rd_rm (void)
8670{
8671 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8672 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8673}
8674
8675static void
8676do_vfp_dp_rn_rd (void)
8677{
8678 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8679 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8680}
8681
8682static void
8683do_vfp_dp_rd_rn (void)
8684{
8685 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8686 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8687}
8688
8689static void
8690do_vfp_dp_rd_rn_rm (void)
8691{
8692 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8693 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8694 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8695}
8696
8697static void
8698do_vfp_dp_rd (void)
8699{
8700 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8701}
8702
8703static void
8704do_vfp_dp_rm_rd_rn (void)
8705{
8706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8707 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8708 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8709}
8710
8711/* VFPv3 instructions. */
8712static void
8713do_vfp_sp_const (void)
8714{
8715 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8716 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8717 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8718}
8719
8720static void
8721do_vfp_dp_const (void)
8722{
8723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8724 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8725 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8726}
8727
8728static void
8729vfp_conv (int srcsize)
8730{
8731 unsigned immbits = srcsize - inst.operands[1].imm;
8732 inst.instruction |= (immbits & 1) << 5;
8733 inst.instruction |= (immbits >> 1);
8734}
8735
8736static void
8737do_vfp_sp_conv_16 (void)
8738{
8739 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8740 vfp_conv (16);
8741}
8742
8743static void
8744do_vfp_dp_conv_16 (void)
8745{
8746 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8747 vfp_conv (16);
8748}
8749
8750static void
8751do_vfp_sp_conv_32 (void)
8752{
8753 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8754 vfp_conv (32);
8755}
8756
8757static void
8758do_vfp_dp_conv_32 (void)
8759{
8760 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8761 vfp_conv (32);
8762}
c19d1205
ZW
8763\f
8764/* FPA instructions. Also in a logical order. */
e16bb312 8765
c19d1205
ZW
8766static void
8767do_fpa_cmp (void)
8768{
8769 inst.instruction |= inst.operands[0].reg << 16;
8770 inst.instruction |= inst.operands[1].reg;
8771}
b99bd4ef
NC
8772
8773static void
c19d1205 8774do_fpa_ldmstm (void)
b99bd4ef 8775{
c19d1205
ZW
8776 inst.instruction |= inst.operands[0].reg << 12;
8777 switch (inst.operands[1].imm)
8778 {
8779 case 1: inst.instruction |= CP_T_X; break;
8780 case 2: inst.instruction |= CP_T_Y; break;
8781 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8782 case 4: break;
8783 default: abort ();
8784 }
b99bd4ef 8785
c19d1205
ZW
8786 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8787 {
8788 /* The instruction specified "ea" or "fd", so we can only accept
8789 [Rn]{!}. The instruction does not really support stacking or
8790 unstacking, so we have to emulate these by setting appropriate
8791 bits and offsets. */
8792 constraint (inst.reloc.exp.X_op != O_constant
8793 || inst.reloc.exp.X_add_number != 0,
8794 _("this instruction does not support indexing"));
b99bd4ef 8795
c19d1205
ZW
8796 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8797 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8798
c19d1205
ZW
8799 if (!(inst.instruction & INDEX_UP))
8800 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8801
c19d1205
ZW
8802 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8803 {
8804 inst.operands[2].preind = 0;
8805 inst.operands[2].postind = 1;
8806 }
8807 }
b99bd4ef 8808
c19d1205 8809 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8810}
c19d1205
ZW
8811\f
8812/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8813
c19d1205
ZW
8814static void
8815do_iwmmxt_tandorc (void)
8816{
8817 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8818}
b99bd4ef 8819
c19d1205
ZW
8820static void
8821do_iwmmxt_textrc (void)
8822{
8823 inst.instruction |= inst.operands[0].reg << 12;
8824 inst.instruction |= inst.operands[1].imm;
8825}
b99bd4ef
NC
8826
8827static void
c19d1205 8828do_iwmmxt_textrm (void)
b99bd4ef 8829{
c19d1205
ZW
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 inst.instruction |= inst.operands[1].reg << 16;
8832 inst.instruction |= inst.operands[2].imm;
8833}
b99bd4ef 8834
c19d1205
ZW
8835static void
8836do_iwmmxt_tinsr (void)
8837{
8838 inst.instruction |= inst.operands[0].reg << 16;
8839 inst.instruction |= inst.operands[1].reg << 12;
8840 inst.instruction |= inst.operands[2].imm;
8841}
b99bd4ef 8842
c19d1205
ZW
8843static void
8844do_iwmmxt_tmia (void)
8845{
8846 inst.instruction |= inst.operands[0].reg << 5;
8847 inst.instruction |= inst.operands[1].reg;
8848 inst.instruction |= inst.operands[2].reg << 12;
8849}
b99bd4ef 8850
c19d1205
ZW
8851static void
8852do_iwmmxt_waligni (void)
8853{
8854 inst.instruction |= inst.operands[0].reg << 12;
8855 inst.instruction |= inst.operands[1].reg << 16;
8856 inst.instruction |= inst.operands[2].reg;
8857 inst.instruction |= inst.operands[3].imm << 20;
8858}
b99bd4ef 8859
2d447fca
JM
8860static void
8861do_iwmmxt_wmerge (void)
8862{
8863 inst.instruction |= inst.operands[0].reg << 12;
8864 inst.instruction |= inst.operands[1].reg << 16;
8865 inst.instruction |= inst.operands[2].reg;
8866 inst.instruction |= inst.operands[3].imm << 21;
8867}
8868
c19d1205
ZW
8869static void
8870do_iwmmxt_wmov (void)
8871{
8872 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8873 inst.instruction |= inst.operands[0].reg << 12;
8874 inst.instruction |= inst.operands[1].reg << 16;
8875 inst.instruction |= inst.operands[1].reg;
8876}
b99bd4ef 8877
c19d1205
ZW
8878static void
8879do_iwmmxt_wldstbh (void)
8880{
8f06b2d8 8881 int reloc;
c19d1205 8882 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8883 if (thumb_mode)
8884 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8885 else
8886 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8887 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8888}
8889
c19d1205
ZW
8890static void
8891do_iwmmxt_wldstw (void)
8892{
8893 /* RIWR_RIWC clears .isreg for a control register. */
8894 if (!inst.operands[0].isreg)
8895 {
8896 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8897 inst.instruction |= 0xf0000000;
8898 }
b99bd4ef 8899
c19d1205
ZW
8900 inst.instruction |= inst.operands[0].reg << 12;
8901 encode_arm_cp_address (1, TRUE, TRUE, 0);
8902}
b99bd4ef
NC
8903
8904static void
c19d1205 8905do_iwmmxt_wldstd (void)
b99bd4ef 8906{
c19d1205 8907 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8908 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8909 && inst.operands[1].immisreg)
8910 {
8911 inst.instruction &= ~0x1a000ff;
8912 inst.instruction |= (0xf << 28);
8913 if (inst.operands[1].preind)
8914 inst.instruction |= PRE_INDEX;
8915 if (!inst.operands[1].negative)
8916 inst.instruction |= INDEX_UP;
8917 if (inst.operands[1].writeback)
8918 inst.instruction |= WRITE_BACK;
8919 inst.instruction |= inst.operands[1].reg << 16;
8920 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8921 inst.instruction |= inst.operands[1].imm;
8922 }
8923 else
8924 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8925}
b99bd4ef 8926
c19d1205
ZW
8927static void
8928do_iwmmxt_wshufh (void)
8929{
8930 inst.instruction |= inst.operands[0].reg << 12;
8931 inst.instruction |= inst.operands[1].reg << 16;
8932 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8933 inst.instruction |= (inst.operands[2].imm & 0x0f);
8934}
b99bd4ef 8935
c19d1205
ZW
8936static void
8937do_iwmmxt_wzero (void)
8938{
8939 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8940 inst.instruction |= inst.operands[0].reg;
8941 inst.instruction |= inst.operands[0].reg << 12;
8942 inst.instruction |= inst.operands[0].reg << 16;
8943}
2d447fca
JM
8944
8945static void
8946do_iwmmxt_wrwrwr_or_imm5 (void)
8947{
8948 if (inst.operands[2].isreg)
8949 do_rd_rn_rm ();
8950 else {
8951 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8952 _("immediate operand requires iWMMXt2"));
8953 do_rd_rn ();
8954 if (inst.operands[2].imm == 0)
8955 {
8956 switch ((inst.instruction >> 20) & 0xf)
8957 {
8958 case 4:
8959 case 5:
8960 case 6:
5f4273c7 8961 case 7:
2d447fca
JM
8962 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8963 inst.operands[2].imm = 16;
8964 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8965 break;
8966 case 8:
8967 case 9:
8968 case 10:
8969 case 11:
8970 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8971 inst.operands[2].imm = 32;
8972 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8973 break;
8974 case 12:
8975 case 13:
8976 case 14:
8977 case 15:
8978 {
8979 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8980 unsigned long wrn;
8981 wrn = (inst.instruction >> 16) & 0xf;
8982 inst.instruction &= 0xff0fff0f;
8983 inst.instruction |= wrn;
8984 /* Bail out here; the instruction is now assembled. */
8985 return;
8986 }
8987 }
8988 }
8989 /* Map 32 -> 0, etc. */
8990 inst.operands[2].imm &= 0x1f;
8991 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8992 }
8993}
c19d1205
ZW
8994\f
8995/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8996 operations first, then control, shift, and load/store. */
b99bd4ef 8997
c19d1205 8998/* Insns like "foo X,Y,Z". */
b99bd4ef 8999
c19d1205
ZW
9000static void
9001do_mav_triple (void)
9002{
9003 inst.instruction |= inst.operands[0].reg << 16;
9004 inst.instruction |= inst.operands[1].reg;
9005 inst.instruction |= inst.operands[2].reg << 12;
9006}
b99bd4ef 9007
c19d1205
ZW
9008/* Insns like "foo W,X,Y,Z".
9009 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9010
c19d1205
ZW
9011static void
9012do_mav_quad (void)
9013{
9014 inst.instruction |= inst.operands[0].reg << 5;
9015 inst.instruction |= inst.operands[1].reg << 12;
9016 inst.instruction |= inst.operands[2].reg << 16;
9017 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9018}
9019
c19d1205
ZW
9020/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9021static void
9022do_mav_dspsc (void)
a737bd4d 9023{
c19d1205
ZW
9024 inst.instruction |= inst.operands[1].reg << 12;
9025}
a737bd4d 9026
c19d1205
ZW
9027/* Maverick shift immediate instructions.
9028 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9029 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9030
c19d1205
ZW
9031static void
9032do_mav_shift (void)
9033{
9034 int imm = inst.operands[2].imm;
a737bd4d 9035
c19d1205
ZW
9036 inst.instruction |= inst.operands[0].reg << 12;
9037 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9038
c19d1205
ZW
9039 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9040 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9041 Bit 4 should be 0. */
9042 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9043
c19d1205
ZW
9044 inst.instruction |= imm;
9045}
9046\f
9047/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9048
c19d1205
ZW
9049/* Xscale multiply-accumulate (argument parse)
9050 MIAcc acc0,Rm,Rs
9051 MIAPHcc acc0,Rm,Rs
9052 MIAxycc acc0,Rm,Rs. */
a737bd4d 9053
c19d1205
ZW
9054static void
9055do_xsc_mia (void)
9056{
9057 inst.instruction |= inst.operands[1].reg;
9058 inst.instruction |= inst.operands[2].reg << 12;
9059}
a737bd4d 9060
c19d1205 9061/* Xscale move-accumulator-register (argument parse)
a737bd4d 9062
c19d1205 9063 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9064
c19d1205
ZW
9065static void
9066do_xsc_mar (void)
9067{
9068 inst.instruction |= inst.operands[1].reg << 12;
9069 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9070}
9071
c19d1205 9072/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9073
c19d1205 9074 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9075
9076static void
c19d1205 9077do_xsc_mra (void)
b99bd4ef 9078{
c19d1205
ZW
9079 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9080 inst.instruction |= inst.operands[0].reg << 12;
9081 inst.instruction |= inst.operands[1].reg << 16;
9082}
9083\f
9084/* Encoding functions relevant only to Thumb. */
b99bd4ef 9085
c19d1205
ZW
9086/* inst.operands[i] is a shifted-register operand; encode
9087 it into inst.instruction in the format used by Thumb32. */
9088
9089static void
9090encode_thumb32_shifted_operand (int i)
9091{
9092 unsigned int value = inst.reloc.exp.X_add_number;
9093 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9094
9c3c69f2
PB
9095 constraint (inst.operands[i].immisreg,
9096 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9097 inst.instruction |= inst.operands[i].reg;
9098 if (shift == SHIFT_RRX)
9099 inst.instruction |= SHIFT_ROR << 4;
9100 else
b99bd4ef 9101 {
c19d1205
ZW
9102 constraint (inst.reloc.exp.X_op != O_constant,
9103 _("expression too complex"));
9104
9105 constraint (value > 32
9106 || (value == 32 && (shift == SHIFT_LSL
9107 || shift == SHIFT_ROR)),
9108 _("shift expression is too large"));
9109
9110 if (value == 0)
9111 shift = SHIFT_LSL;
9112 else if (value == 32)
9113 value = 0;
9114
9115 inst.instruction |= shift << 4;
9116 inst.instruction |= (value & 0x1c) << 10;
9117 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9118 }
c19d1205 9119}
b99bd4ef 9120
b99bd4ef 9121
c19d1205
ZW
9122/* inst.operands[i] was set up by parse_address. Encode it into a
9123 Thumb32 format load or store instruction. Reject forms that cannot
9124 be used with such instructions. If is_t is true, reject forms that
9125 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9126 that cannot be used with a D instruction. If it is a store insn,
9127 reject PC in Rn. */
b99bd4ef 9128
c19d1205
ZW
9129static void
9130encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9131{
5be8be5d 9132 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9133
9134 constraint (!inst.operands[i].isreg,
53365c0d 9135 _("Instruction does not support =N addresses"));
b99bd4ef 9136
c19d1205
ZW
9137 inst.instruction |= inst.operands[i].reg << 16;
9138 if (inst.operands[i].immisreg)
b99bd4ef 9139 {
5be8be5d 9140 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9141 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9142 constraint (inst.operands[i].negative,
9143 _("Thumb does not support negative register indexing"));
9144 constraint (inst.operands[i].postind,
9145 _("Thumb does not support register post-indexing"));
9146 constraint (inst.operands[i].writeback,
9147 _("Thumb does not support register indexing with writeback"));
9148 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9149 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9150
f40d1643 9151 inst.instruction |= inst.operands[i].imm;
c19d1205 9152 if (inst.operands[i].shifted)
b99bd4ef 9153 {
c19d1205
ZW
9154 constraint (inst.reloc.exp.X_op != O_constant,
9155 _("expression too complex"));
9c3c69f2
PB
9156 constraint (inst.reloc.exp.X_add_number < 0
9157 || inst.reloc.exp.X_add_number > 3,
c19d1205 9158 _("shift out of range"));
9c3c69f2 9159 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9160 }
9161 inst.reloc.type = BFD_RELOC_UNUSED;
9162 }
9163 else if (inst.operands[i].preind)
9164 {
5be8be5d 9165 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9166 constraint (is_t && inst.operands[i].writeback,
c19d1205 9167 _("cannot use writeback with this instruction"));
5be8be5d
DG
9168 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9169 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9170
9171 if (is_d)
9172 {
9173 inst.instruction |= 0x01000000;
9174 if (inst.operands[i].writeback)
9175 inst.instruction |= 0x00200000;
b99bd4ef 9176 }
c19d1205 9177 else
b99bd4ef 9178 {
c19d1205
ZW
9179 inst.instruction |= 0x00000c00;
9180 if (inst.operands[i].writeback)
9181 inst.instruction |= 0x00000100;
b99bd4ef 9182 }
c19d1205 9183 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9184 }
c19d1205 9185 else if (inst.operands[i].postind)
b99bd4ef 9186 {
9c2799c2 9187 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9188 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9189 constraint (is_t, _("cannot use post-indexing with this instruction"));
9190
9191 if (is_d)
9192 inst.instruction |= 0x00200000;
9193 else
9194 inst.instruction |= 0x00000900;
9195 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9196 }
9197 else /* unindexed - only for coprocessor */
9198 inst.error = _("instruction does not accept unindexed addressing");
9199}
9200
9201/* Table of Thumb instructions which exist in both 16- and 32-bit
9202 encodings (the latter only in post-V6T2 cores). The index is the
9203 value used in the insns table below. When there is more than one
9204 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9205 holds variant (1).
9206 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9207#define T16_32_TAB \
21d799b5
NC
9208 X(_adc, 4140, eb400000), \
9209 X(_adcs, 4140, eb500000), \
9210 X(_add, 1c00, eb000000), \
9211 X(_adds, 1c00, eb100000), \
9212 X(_addi, 0000, f1000000), \
9213 X(_addis, 0000, f1100000), \
9214 X(_add_pc,000f, f20f0000), \
9215 X(_add_sp,000d, f10d0000), \
9216 X(_adr, 000f, f20f0000), \
9217 X(_and, 4000, ea000000), \
9218 X(_ands, 4000, ea100000), \
9219 X(_asr, 1000, fa40f000), \
9220 X(_asrs, 1000, fa50f000), \
9221 X(_b, e000, f000b000), \
9222 X(_bcond, d000, f0008000), \
9223 X(_bic, 4380, ea200000), \
9224 X(_bics, 4380, ea300000), \
9225 X(_cmn, 42c0, eb100f00), \
9226 X(_cmp, 2800, ebb00f00), \
9227 X(_cpsie, b660, f3af8400), \
9228 X(_cpsid, b670, f3af8600), \
9229 X(_cpy, 4600, ea4f0000), \
9230 X(_dec_sp,80dd, f1ad0d00), \
9231 X(_eor, 4040, ea800000), \
9232 X(_eors, 4040, ea900000), \
9233 X(_inc_sp,00dd, f10d0d00), \
9234 X(_ldmia, c800, e8900000), \
9235 X(_ldr, 6800, f8500000), \
9236 X(_ldrb, 7800, f8100000), \
9237 X(_ldrh, 8800, f8300000), \
9238 X(_ldrsb, 5600, f9100000), \
9239 X(_ldrsh, 5e00, f9300000), \
9240 X(_ldr_pc,4800, f85f0000), \
9241 X(_ldr_pc2,4800, f85f0000), \
9242 X(_ldr_sp,9800, f85d0000), \
9243 X(_lsl, 0000, fa00f000), \
9244 X(_lsls, 0000, fa10f000), \
9245 X(_lsr, 0800, fa20f000), \
9246 X(_lsrs, 0800, fa30f000), \
9247 X(_mov, 2000, ea4f0000), \
9248 X(_movs, 2000, ea5f0000), \
9249 X(_mul, 4340, fb00f000), \
9250 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9251 X(_mvn, 43c0, ea6f0000), \
9252 X(_mvns, 43c0, ea7f0000), \
9253 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9254 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9255 X(_orr, 4300, ea400000), \
9256 X(_orrs, 4300, ea500000), \
9257 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9258 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9259 X(_rev, ba00, fa90f080), \
9260 X(_rev16, ba40, fa90f090), \
9261 X(_revsh, bac0, fa90f0b0), \
9262 X(_ror, 41c0, fa60f000), \
9263 X(_rors, 41c0, fa70f000), \
9264 X(_sbc, 4180, eb600000), \
9265 X(_sbcs, 4180, eb700000), \
9266 X(_stmia, c000, e8800000), \
9267 X(_str, 6000, f8400000), \
9268 X(_strb, 7000, f8000000), \
9269 X(_strh, 8000, f8200000), \
9270 X(_str_sp,9000, f84d0000), \
9271 X(_sub, 1e00, eba00000), \
9272 X(_subs, 1e00, ebb00000), \
9273 X(_subi, 8000, f1a00000), \
9274 X(_subis, 8000, f1b00000), \
9275 X(_sxtb, b240, fa4ff080), \
9276 X(_sxth, b200, fa0ff080), \
9277 X(_tst, 4200, ea100f00), \
9278 X(_uxtb, b2c0, fa5ff080), \
9279 X(_uxth, b280, fa1ff080), \
9280 X(_nop, bf00, f3af8000), \
9281 X(_yield, bf10, f3af8001), \
9282 X(_wfe, bf20, f3af8002), \
9283 X(_wfi, bf30, f3af8003), \
9284 X(_sev, bf40, f3af8004),
c19d1205
ZW
9285
9286/* To catch errors in encoding functions, the codes are all offset by
9287 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9288 as 16-bit instructions. */
21d799b5 9289#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9290enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9291#undef X
9292
9293#define X(a,b,c) 0x##b
9294static const unsigned short thumb_op16[] = { T16_32_TAB };
9295#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9296#undef X
9297
9298#define X(a,b,c) 0x##c
9299static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9300#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9301#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9302#undef X
9303#undef T16_32_TAB
9304
9305/* Thumb instruction encoders, in alphabetical order. */
9306
92e90b6e 9307/* ADDW or SUBW. */
c921be7d 9308
92e90b6e
PB
9309static void
9310do_t_add_sub_w (void)
9311{
9312 int Rd, Rn;
9313
9314 Rd = inst.operands[0].reg;
9315 Rn = inst.operands[1].reg;
9316
539d4391
NC
9317 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9318 is the SP-{plus,minus}-immediate form of the instruction. */
9319 if (Rn == REG_SP)
9320 constraint (Rd == REG_PC, BAD_PC);
9321 else
9322 reject_bad_reg (Rd);
fdfde340 9323
92e90b6e
PB
9324 inst.instruction |= (Rn << 16) | (Rd << 8);
9325 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9326}
9327
c19d1205
ZW
9328/* Parse an add or subtract instruction. We get here with inst.instruction
9329 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9330
9331static void
9332do_t_add_sub (void)
9333{
9334 int Rd, Rs, Rn;
9335
9336 Rd = inst.operands[0].reg;
9337 Rs = (inst.operands[1].present
9338 ? inst.operands[1].reg /* Rd, Rs, foo */
9339 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9340
e07e6e58
NC
9341 if (Rd == REG_PC)
9342 set_it_insn_type_last ();
9343
c19d1205
ZW
9344 if (unified_syntax)
9345 {
0110f2b8
PB
9346 bfd_boolean flags;
9347 bfd_boolean narrow;
9348 int opcode;
9349
9350 flags = (inst.instruction == T_MNEM_adds
9351 || inst.instruction == T_MNEM_subs);
9352 if (flags)
e07e6e58 9353 narrow = !in_it_block ();
0110f2b8 9354 else
e07e6e58 9355 narrow = in_it_block ();
c19d1205 9356 if (!inst.operands[2].isreg)
b99bd4ef 9357 {
16805f35
PB
9358 int add;
9359
fdfde340
JM
9360 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9361
16805f35
PB
9362 add = (inst.instruction == T_MNEM_add
9363 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9364 opcode = 0;
9365 if (inst.size_req != 4)
9366 {
0110f2b8
PB
9367 /* Attempt to use a narrow opcode, with relaxation if
9368 appropriate. */
9369 if (Rd == REG_SP && Rs == REG_SP && !flags)
9370 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9371 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9372 opcode = T_MNEM_add_sp;
9373 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9374 opcode = T_MNEM_add_pc;
9375 else if (Rd <= 7 && Rs <= 7 && narrow)
9376 {
9377 if (flags)
9378 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9379 else
9380 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9381 }
9382 if (opcode)
9383 {
9384 inst.instruction = THUMB_OP16(opcode);
9385 inst.instruction |= (Rd << 4) | Rs;
9386 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9387 if (inst.size_req != 2)
9388 inst.relax = opcode;
9389 }
9390 else
9391 constraint (inst.size_req == 2, BAD_HIREG);
9392 }
9393 if (inst.size_req == 4
9394 || (inst.size_req != 2 && !opcode))
9395 {
efd81785
PB
9396 if (Rd == REG_PC)
9397 {
fdfde340 9398 constraint (add, BAD_PC);
efd81785
PB
9399 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9400 _("only SUBS PC, LR, #const allowed"));
9401 constraint (inst.reloc.exp.X_op != O_constant,
9402 _("expression too complex"));
9403 constraint (inst.reloc.exp.X_add_number < 0
9404 || inst.reloc.exp.X_add_number > 0xff,
9405 _("immediate value out of range"));
9406 inst.instruction = T2_SUBS_PC_LR
9407 | inst.reloc.exp.X_add_number;
9408 inst.reloc.type = BFD_RELOC_UNUSED;
9409 return;
9410 }
9411 else if (Rs == REG_PC)
16805f35
PB
9412 {
9413 /* Always use addw/subw. */
9414 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9415 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9416 }
9417 else
9418 {
9419 inst.instruction = THUMB_OP32 (inst.instruction);
9420 inst.instruction = (inst.instruction & 0xe1ffffff)
9421 | 0x10000000;
9422 if (flags)
9423 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9424 else
9425 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9426 }
dc4503c6
PB
9427 inst.instruction |= Rd << 8;
9428 inst.instruction |= Rs << 16;
0110f2b8 9429 }
b99bd4ef 9430 }
c19d1205
ZW
9431 else
9432 {
9433 Rn = inst.operands[2].reg;
9434 /* See if we can do this with a 16-bit instruction. */
9435 if (!inst.operands[2].shifted && inst.size_req != 4)
9436 {
e27ec89e
PB
9437 if (Rd > 7 || Rs > 7 || Rn > 7)
9438 narrow = FALSE;
9439
9440 if (narrow)
c19d1205 9441 {
e27ec89e
PB
9442 inst.instruction = ((inst.instruction == T_MNEM_adds
9443 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9444 ? T_OPCODE_ADD_R3
9445 : T_OPCODE_SUB_R3);
9446 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9447 return;
9448 }
b99bd4ef 9449
7e806470 9450 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9451 {
7e806470
PB
9452 /* Thumb-1 cores (except v6-M) require at least one high
9453 register in a narrow non flag setting add. */
9454 if (Rd > 7 || Rn > 7
9455 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9456 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9457 {
7e806470
PB
9458 if (Rd == Rn)
9459 {
9460 Rn = Rs;
9461 Rs = Rd;
9462 }
c19d1205
ZW
9463 inst.instruction = T_OPCODE_ADD_HI;
9464 inst.instruction |= (Rd & 8) << 4;
9465 inst.instruction |= (Rd & 7);
9466 inst.instruction |= Rn << 3;
9467 return;
9468 }
c19d1205
ZW
9469 }
9470 }
c921be7d 9471
fdfde340
JM
9472 constraint (Rd == REG_PC, BAD_PC);
9473 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9474 constraint (Rs == REG_PC, BAD_PC);
9475 reject_bad_reg (Rn);
9476
c19d1205
ZW
9477 /* If we get here, it can't be done in 16 bits. */
9478 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9479 _("shift must be constant"));
9480 inst.instruction = THUMB_OP32 (inst.instruction);
9481 inst.instruction |= Rd << 8;
9482 inst.instruction |= Rs << 16;
9483 encode_thumb32_shifted_operand (2);
9484 }
9485 }
9486 else
9487 {
9488 constraint (inst.instruction == T_MNEM_adds
9489 || inst.instruction == T_MNEM_subs,
9490 BAD_THUMB32);
b99bd4ef 9491
c19d1205 9492 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9493 {
c19d1205
ZW
9494 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9495 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9496 BAD_HIREG);
9497
9498 inst.instruction = (inst.instruction == T_MNEM_add
9499 ? 0x0000 : 0x8000);
9500 inst.instruction |= (Rd << 4) | Rs;
9501 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9502 return;
9503 }
9504
c19d1205
ZW
9505 Rn = inst.operands[2].reg;
9506 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9507
c19d1205
ZW
9508 /* We now have Rd, Rs, and Rn set to registers. */
9509 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9510 {
c19d1205
ZW
9511 /* Can't do this for SUB. */
9512 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9513 inst.instruction = T_OPCODE_ADD_HI;
9514 inst.instruction |= (Rd & 8) << 4;
9515 inst.instruction |= (Rd & 7);
9516 if (Rs == Rd)
9517 inst.instruction |= Rn << 3;
9518 else if (Rn == Rd)
9519 inst.instruction |= Rs << 3;
9520 else
9521 constraint (1, _("dest must overlap one source register"));
9522 }
9523 else
9524 {
9525 inst.instruction = (inst.instruction == T_MNEM_add
9526 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9527 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9528 }
b99bd4ef 9529 }
b99bd4ef
NC
9530}
9531
c19d1205
ZW
9532static void
9533do_t_adr (void)
9534{
fdfde340
JM
9535 unsigned Rd;
9536
9537 Rd = inst.operands[0].reg;
9538 reject_bad_reg (Rd);
9539
9540 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9541 {
9542 /* Defer to section relaxation. */
9543 inst.relax = inst.instruction;
9544 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9545 inst.instruction |= Rd << 4;
0110f2b8
PB
9546 }
9547 else if (unified_syntax && inst.size_req != 2)
e9f89963 9548 {
0110f2b8 9549 /* Generate a 32-bit opcode. */
e9f89963 9550 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9551 inst.instruction |= Rd << 8;
e9f89963
PB
9552 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9553 inst.reloc.pc_rel = 1;
9554 }
9555 else
9556 {
0110f2b8 9557 /* Generate a 16-bit opcode. */
e9f89963
PB
9558 inst.instruction = THUMB_OP16 (inst.instruction);
9559 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9560 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9561 inst.reloc.pc_rel = 1;
b99bd4ef 9562
fdfde340 9563 inst.instruction |= Rd << 4;
e9f89963 9564 }
c19d1205 9565}
b99bd4ef 9566
c19d1205
ZW
9567/* Arithmetic instructions for which there is just one 16-bit
9568 instruction encoding, and it allows only two low registers.
9569 For maximal compatibility with ARM syntax, we allow three register
9570 operands even when Thumb-32 instructions are not available, as long
9571 as the first two are identical. For instance, both "sbc r0,r1" and
9572 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9573static void
c19d1205 9574do_t_arit3 (void)
b99bd4ef 9575{
c19d1205 9576 int Rd, Rs, Rn;
b99bd4ef 9577
c19d1205
ZW
9578 Rd = inst.operands[0].reg;
9579 Rs = (inst.operands[1].present
9580 ? inst.operands[1].reg /* Rd, Rs, foo */
9581 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9582 Rn = inst.operands[2].reg;
b99bd4ef 9583
fdfde340
JM
9584 reject_bad_reg (Rd);
9585 reject_bad_reg (Rs);
9586 if (inst.operands[2].isreg)
9587 reject_bad_reg (Rn);
9588
c19d1205 9589 if (unified_syntax)
b99bd4ef 9590 {
c19d1205
ZW
9591 if (!inst.operands[2].isreg)
9592 {
9593 /* For an immediate, we always generate a 32-bit opcode;
9594 section relaxation will shrink it later if possible. */
9595 inst.instruction = THUMB_OP32 (inst.instruction);
9596 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9597 inst.instruction |= Rd << 8;
9598 inst.instruction |= Rs << 16;
9599 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9600 }
9601 else
9602 {
e27ec89e
PB
9603 bfd_boolean narrow;
9604
c19d1205 9605 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9606 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9607 narrow = !in_it_block ();
e27ec89e 9608 else
e07e6e58 9609 narrow = in_it_block ();
e27ec89e
PB
9610
9611 if (Rd > 7 || Rn > 7 || Rs > 7)
9612 narrow = FALSE;
9613 if (inst.operands[2].shifted)
9614 narrow = FALSE;
9615 if (inst.size_req == 4)
9616 narrow = FALSE;
9617
9618 if (narrow
c19d1205
ZW
9619 && Rd == Rs)
9620 {
9621 inst.instruction = THUMB_OP16 (inst.instruction);
9622 inst.instruction |= Rd;
9623 inst.instruction |= Rn << 3;
9624 return;
9625 }
b99bd4ef 9626
c19d1205
ZW
9627 /* If we get here, it can't be done in 16 bits. */
9628 constraint (inst.operands[2].shifted
9629 && inst.operands[2].immisreg,
9630 _("shift must be constant"));
9631 inst.instruction = THUMB_OP32 (inst.instruction);
9632 inst.instruction |= Rd << 8;
9633 inst.instruction |= Rs << 16;
9634 encode_thumb32_shifted_operand (2);
9635 }
a737bd4d 9636 }
c19d1205 9637 else
b99bd4ef 9638 {
c19d1205
ZW
9639 /* On its face this is a lie - the instruction does set the
9640 flags. However, the only supported mnemonic in this mode
9641 says it doesn't. */
9642 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9643
c19d1205
ZW
9644 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9645 _("unshifted register required"));
9646 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9647 constraint (Rd != Rs,
9648 _("dest and source1 must be the same register"));
a737bd4d 9649
c19d1205
ZW
9650 inst.instruction = THUMB_OP16 (inst.instruction);
9651 inst.instruction |= Rd;
9652 inst.instruction |= Rn << 3;
b99bd4ef 9653 }
a737bd4d 9654}
b99bd4ef 9655
c19d1205
ZW
9656/* Similarly, but for instructions where the arithmetic operation is
9657 commutative, so we can allow either of them to be different from
9658 the destination operand in a 16-bit instruction. For instance, all
9659 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9660 accepted. */
9661static void
9662do_t_arit3c (void)
a737bd4d 9663{
c19d1205 9664 int Rd, Rs, Rn;
b99bd4ef 9665
c19d1205
ZW
9666 Rd = inst.operands[0].reg;
9667 Rs = (inst.operands[1].present
9668 ? inst.operands[1].reg /* Rd, Rs, foo */
9669 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9670 Rn = inst.operands[2].reg;
c921be7d 9671
fdfde340
JM
9672 reject_bad_reg (Rd);
9673 reject_bad_reg (Rs);
9674 if (inst.operands[2].isreg)
9675 reject_bad_reg (Rn);
a737bd4d 9676
c19d1205 9677 if (unified_syntax)
a737bd4d 9678 {
c19d1205 9679 if (!inst.operands[2].isreg)
b99bd4ef 9680 {
c19d1205
ZW
9681 /* For an immediate, we always generate a 32-bit opcode;
9682 section relaxation will shrink it later if possible. */
9683 inst.instruction = THUMB_OP32 (inst.instruction);
9684 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9685 inst.instruction |= Rd << 8;
9686 inst.instruction |= Rs << 16;
9687 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9688 }
c19d1205 9689 else
a737bd4d 9690 {
e27ec89e
PB
9691 bfd_boolean narrow;
9692
c19d1205 9693 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9694 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9695 narrow = !in_it_block ();
e27ec89e 9696 else
e07e6e58 9697 narrow = in_it_block ();
e27ec89e
PB
9698
9699 if (Rd > 7 || Rn > 7 || Rs > 7)
9700 narrow = FALSE;
9701 if (inst.operands[2].shifted)
9702 narrow = FALSE;
9703 if (inst.size_req == 4)
9704 narrow = FALSE;
9705
9706 if (narrow)
a737bd4d 9707 {
c19d1205 9708 if (Rd == Rs)
a737bd4d 9709 {
c19d1205
ZW
9710 inst.instruction = THUMB_OP16 (inst.instruction);
9711 inst.instruction |= Rd;
9712 inst.instruction |= Rn << 3;
9713 return;
a737bd4d 9714 }
c19d1205 9715 if (Rd == Rn)
a737bd4d 9716 {
c19d1205
ZW
9717 inst.instruction = THUMB_OP16 (inst.instruction);
9718 inst.instruction |= Rd;
9719 inst.instruction |= Rs << 3;
9720 return;
a737bd4d
NC
9721 }
9722 }
c19d1205
ZW
9723
9724 /* If we get here, it can't be done in 16 bits. */
9725 constraint (inst.operands[2].shifted
9726 && inst.operands[2].immisreg,
9727 _("shift must be constant"));
9728 inst.instruction = THUMB_OP32 (inst.instruction);
9729 inst.instruction |= Rd << 8;
9730 inst.instruction |= Rs << 16;
9731 encode_thumb32_shifted_operand (2);
a737bd4d 9732 }
b99bd4ef 9733 }
c19d1205
ZW
9734 else
9735 {
9736 /* On its face this is a lie - the instruction does set the
9737 flags. However, the only supported mnemonic in this mode
9738 says it doesn't. */
9739 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9740
c19d1205
ZW
9741 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9742 _("unshifted register required"));
9743 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9744
9745 inst.instruction = THUMB_OP16 (inst.instruction);
9746 inst.instruction |= Rd;
9747
9748 if (Rd == Rs)
9749 inst.instruction |= Rn << 3;
9750 else if (Rd == Rn)
9751 inst.instruction |= Rs << 3;
9752 else
9753 constraint (1, _("dest must overlap one source register"));
9754 }
a737bd4d
NC
9755}
9756
62b3e311
PB
9757static void
9758do_t_barrier (void)
9759{
9760 if (inst.operands[0].present)
9761 {
9762 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9763 && inst.operands[0].imm > 0xf
9764 && inst.operands[0].imm < 0x0,
bd3ba5d1 9765 _("bad barrier type"));
62b3e311
PB
9766 inst.instruction |= inst.operands[0].imm;
9767 }
9768 else
9769 inst.instruction |= 0xf;
9770}
9771
c19d1205
ZW
9772static void
9773do_t_bfc (void)
a737bd4d 9774{
fdfde340 9775 unsigned Rd;
c19d1205
ZW
9776 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9777 constraint (msb > 32, _("bit-field extends past end of register"));
9778 /* The instruction encoding stores the LSB and MSB,
9779 not the LSB and width. */
fdfde340
JM
9780 Rd = inst.operands[0].reg;
9781 reject_bad_reg (Rd);
9782 inst.instruction |= Rd << 8;
c19d1205
ZW
9783 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9784 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9785 inst.instruction |= msb - 1;
b99bd4ef
NC
9786}
9787
c19d1205
ZW
9788static void
9789do_t_bfi (void)
b99bd4ef 9790{
fdfde340 9791 int Rd, Rn;
c19d1205 9792 unsigned int msb;
b99bd4ef 9793
fdfde340
JM
9794 Rd = inst.operands[0].reg;
9795 reject_bad_reg (Rd);
9796
c19d1205
ZW
9797 /* #0 in second position is alternative syntax for bfc, which is
9798 the same instruction but with REG_PC in the Rm field. */
9799 if (!inst.operands[1].isreg)
fdfde340
JM
9800 Rn = REG_PC;
9801 else
9802 {
9803 Rn = inst.operands[1].reg;
9804 reject_bad_reg (Rn);
9805 }
b99bd4ef 9806
c19d1205
ZW
9807 msb = inst.operands[2].imm + inst.operands[3].imm;
9808 constraint (msb > 32, _("bit-field extends past end of register"));
9809 /* The instruction encoding stores the LSB and MSB,
9810 not the LSB and width. */
fdfde340
JM
9811 inst.instruction |= Rd << 8;
9812 inst.instruction |= Rn << 16;
c19d1205
ZW
9813 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9814 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9815 inst.instruction |= msb - 1;
b99bd4ef
NC
9816}
9817
c19d1205
ZW
9818static void
9819do_t_bfx (void)
b99bd4ef 9820{
fdfde340
JM
9821 unsigned Rd, Rn;
9822
9823 Rd = inst.operands[0].reg;
9824 Rn = inst.operands[1].reg;
9825
9826 reject_bad_reg (Rd);
9827 reject_bad_reg (Rn);
9828
c19d1205
ZW
9829 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9830 _("bit-field extends past end of register"));
fdfde340
JM
9831 inst.instruction |= Rd << 8;
9832 inst.instruction |= Rn << 16;
c19d1205
ZW
9833 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9834 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9835 inst.instruction |= inst.operands[3].imm - 1;
9836}
b99bd4ef 9837
c19d1205
ZW
9838/* ARM V5 Thumb BLX (argument parse)
9839 BLX <target_addr> which is BLX(1)
9840 BLX <Rm> which is BLX(2)
9841 Unfortunately, there are two different opcodes for this mnemonic.
9842 So, the insns[].value is not used, and the code here zaps values
9843 into inst.instruction.
b99bd4ef 9844
c19d1205
ZW
9845 ??? How to take advantage of the additional two bits of displacement
9846 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9847
c19d1205
ZW
9848static void
9849do_t_blx (void)
9850{
e07e6e58
NC
9851 set_it_insn_type_last ();
9852
c19d1205 9853 if (inst.operands[0].isreg)
fdfde340
JM
9854 {
9855 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9856 /* We have a register, so this is BLX(2). */
9857 inst.instruction |= inst.operands[0].reg << 3;
9858 }
b99bd4ef
NC
9859 else
9860 {
c19d1205 9861 /* No register. This must be BLX(1). */
2fc8bdac 9862 inst.instruction = 0xf000e800;
0855e32b 9863 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9864 }
9865}
9866
c19d1205
ZW
9867static void
9868do_t_branch (void)
b99bd4ef 9869{
0110f2b8 9870 int opcode;
dfa9f0d5 9871 int cond;
9ae92b05 9872 int reloc;
dfa9f0d5 9873
e07e6e58
NC
9874 cond = inst.cond;
9875 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9876
9877 if (in_it_block ())
dfa9f0d5
PB
9878 {
9879 /* Conditional branches inside IT blocks are encoded as unconditional
9880 branches. */
9881 cond = COND_ALWAYS;
dfa9f0d5
PB
9882 }
9883 else
9884 cond = inst.cond;
9885
9886 if (cond != COND_ALWAYS)
0110f2b8
PB
9887 opcode = T_MNEM_bcond;
9888 else
9889 opcode = inst.instruction;
9890
12d6b0b7
RS
9891 if (unified_syntax
9892 && (inst.size_req == 4
10960bfb
PB
9893 || (inst.size_req != 2
9894 && (inst.operands[0].hasreloc
9895 || inst.reloc.exp.X_op == O_constant))))
c19d1205 9896 {
0110f2b8 9897 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9898 if (cond == COND_ALWAYS)
9ae92b05 9899 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9900 else
9901 {
9c2799c2 9902 gas_assert (cond != 0xF);
dfa9f0d5 9903 inst.instruction |= cond << 22;
9ae92b05 9904 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9905 }
9906 }
b99bd4ef
NC
9907 else
9908 {
0110f2b8 9909 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9910 if (cond == COND_ALWAYS)
9ae92b05 9911 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9912 else
b99bd4ef 9913 {
dfa9f0d5 9914 inst.instruction |= cond << 8;
9ae92b05 9915 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9916 }
0110f2b8
PB
9917 /* Allow section relaxation. */
9918 if (unified_syntax && inst.size_req != 2)
9919 inst.relax = opcode;
b99bd4ef 9920 }
9ae92b05 9921 inst.reloc.type = reloc;
c19d1205 9922 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9923}
9924
9925static void
c19d1205 9926do_t_bkpt (void)
b99bd4ef 9927{
dfa9f0d5
PB
9928 constraint (inst.cond != COND_ALWAYS,
9929 _("instruction is always unconditional"));
c19d1205 9930 if (inst.operands[0].present)
b99bd4ef 9931 {
c19d1205
ZW
9932 constraint (inst.operands[0].imm > 255,
9933 _("immediate value out of range"));
9934 inst.instruction |= inst.operands[0].imm;
e07e6e58 9935 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9936 }
b99bd4ef
NC
9937}
9938
9939static void
c19d1205 9940do_t_branch23 (void)
b99bd4ef 9941{
e07e6e58 9942 set_it_insn_type_last ();
0855e32b
NS
9943 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9944
9945 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9946 this file. We used to simply ignore the PLT reloc type here --
9947 the branch encoding is now needed to deal with TLSCALL relocs.
9948 So if we see a PLT reloc now, put it back to how it used to be to
9949 keep the preexisting behaviour. */
9950 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9951 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 9952
4343666d 9953#if defined(OBJ_COFF)
c19d1205
ZW
9954 /* If the destination of the branch is a defined symbol which does not have
9955 the THUMB_FUNC attribute, then we must be calling a function which has
9956 the (interfacearm) attribute. We look for the Thumb entry point to that
9957 function and change the branch to refer to that function instead. */
9958 if ( inst.reloc.exp.X_op == O_symbol
9959 && inst.reloc.exp.X_add_symbol != NULL
9960 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9961 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9962 inst.reloc.exp.X_add_symbol =
9963 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9964#endif
90e4755a
RE
9965}
9966
9967static void
c19d1205 9968do_t_bx (void)
90e4755a 9969{
e07e6e58 9970 set_it_insn_type_last ();
c19d1205
ZW
9971 inst.instruction |= inst.operands[0].reg << 3;
9972 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9973 should cause the alignment to be checked once it is known. This is
9974 because BX PC only works if the instruction is word aligned. */
9975}
90e4755a 9976
c19d1205
ZW
9977static void
9978do_t_bxj (void)
9979{
fdfde340 9980 int Rm;
90e4755a 9981
e07e6e58 9982 set_it_insn_type_last ();
fdfde340
JM
9983 Rm = inst.operands[0].reg;
9984 reject_bad_reg (Rm);
9985 inst.instruction |= Rm << 16;
90e4755a
RE
9986}
9987
9988static void
c19d1205 9989do_t_clz (void)
90e4755a 9990{
fdfde340
JM
9991 unsigned Rd;
9992 unsigned Rm;
9993
9994 Rd = inst.operands[0].reg;
9995 Rm = inst.operands[1].reg;
9996
9997 reject_bad_reg (Rd);
9998 reject_bad_reg (Rm);
9999
10000 inst.instruction |= Rd << 8;
10001 inst.instruction |= Rm << 16;
10002 inst.instruction |= Rm;
c19d1205 10003}
90e4755a 10004
dfa9f0d5
PB
10005static void
10006do_t_cps (void)
10007{
e07e6e58 10008 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10009 inst.instruction |= inst.operands[0].imm;
10010}
10011
c19d1205
ZW
10012static void
10013do_t_cpsi (void)
10014{
e07e6e58 10015 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10016 if (unified_syntax
62b3e311
PB
10017 && (inst.operands[1].present || inst.size_req == 4)
10018 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10019 {
c19d1205
ZW
10020 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10021 inst.instruction = 0xf3af8000;
10022 inst.instruction |= imod << 9;
10023 inst.instruction |= inst.operands[0].imm << 5;
10024 if (inst.operands[1].present)
10025 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10026 }
c19d1205 10027 else
90e4755a 10028 {
62b3e311
PB
10029 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10030 && (inst.operands[0].imm & 4),
10031 _("selected processor does not support 'A' form "
10032 "of this instruction"));
10033 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10034 _("Thumb does not support the 2-argument "
10035 "form of this instruction"));
10036 inst.instruction |= inst.operands[0].imm;
90e4755a 10037 }
90e4755a
RE
10038}
10039
c19d1205
ZW
10040/* THUMB CPY instruction (argument parse). */
10041
90e4755a 10042static void
c19d1205 10043do_t_cpy (void)
90e4755a 10044{
c19d1205 10045 if (inst.size_req == 4)
90e4755a 10046 {
c19d1205
ZW
10047 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10048 inst.instruction |= inst.operands[0].reg << 8;
10049 inst.instruction |= inst.operands[1].reg;
90e4755a 10050 }
c19d1205 10051 else
90e4755a 10052 {
c19d1205
ZW
10053 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10054 inst.instruction |= (inst.operands[0].reg & 0x7);
10055 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10056 }
90e4755a
RE
10057}
10058
90e4755a 10059static void
25fe350b 10060do_t_cbz (void)
90e4755a 10061{
e07e6e58 10062 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10063 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10064 inst.instruction |= inst.operands[0].reg;
10065 inst.reloc.pc_rel = 1;
10066 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10067}
90e4755a 10068
62b3e311
PB
10069static void
10070do_t_dbg (void)
10071{
10072 inst.instruction |= inst.operands[0].imm;
10073}
10074
10075static void
10076do_t_div (void)
10077{
fdfde340
JM
10078 unsigned Rd, Rn, Rm;
10079
10080 Rd = inst.operands[0].reg;
10081 Rn = (inst.operands[1].present
10082 ? inst.operands[1].reg : Rd);
10083 Rm = inst.operands[2].reg;
10084
10085 reject_bad_reg (Rd);
10086 reject_bad_reg (Rn);
10087 reject_bad_reg (Rm);
10088
10089 inst.instruction |= Rd << 8;
10090 inst.instruction |= Rn << 16;
10091 inst.instruction |= Rm;
62b3e311
PB
10092}
10093
c19d1205
ZW
10094static void
10095do_t_hint (void)
10096{
10097 if (unified_syntax && inst.size_req == 4)
10098 inst.instruction = THUMB_OP32 (inst.instruction);
10099 else
10100 inst.instruction = THUMB_OP16 (inst.instruction);
10101}
90e4755a 10102
c19d1205
ZW
10103static void
10104do_t_it (void)
10105{
10106 unsigned int cond = inst.operands[0].imm;
e27ec89e 10107
e07e6e58
NC
10108 set_it_insn_type (IT_INSN);
10109 now_it.mask = (inst.instruction & 0xf) | 0x10;
10110 now_it.cc = cond;
e27ec89e
PB
10111
10112 /* If the condition is a negative condition, invert the mask. */
c19d1205 10113 if ((cond & 0x1) == 0x0)
90e4755a 10114 {
c19d1205 10115 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10116
c19d1205
ZW
10117 if ((mask & 0x7) == 0)
10118 /* no conversion needed */;
10119 else if ((mask & 0x3) == 0)
e27ec89e
PB
10120 mask ^= 0x8;
10121 else if ((mask & 0x1) == 0)
10122 mask ^= 0xC;
c19d1205 10123 else
e27ec89e 10124 mask ^= 0xE;
90e4755a 10125
e27ec89e
PB
10126 inst.instruction &= 0xfff0;
10127 inst.instruction |= mask;
c19d1205 10128 }
90e4755a 10129
c19d1205
ZW
10130 inst.instruction |= cond << 4;
10131}
90e4755a 10132
3c707909
PB
10133/* Helper function used for both push/pop and ldm/stm. */
10134static void
10135encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10136{
10137 bfd_boolean load;
10138
10139 load = (inst.instruction & (1 << 20)) != 0;
10140
10141 if (mask & (1 << 13))
10142 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10143
10144 if ((mask & (1 << base)) != 0
10145 && writeback)
10146 inst.error = _("having the base register in the register list when "
10147 "using write back is UNPREDICTABLE");
10148
3c707909
PB
10149 if (load)
10150 {
e07e6e58
NC
10151 if (mask & (1 << 15))
10152 {
10153 if (mask & (1 << 14))
10154 inst.error = _("LR and PC should not both be in register list");
10155 else
10156 set_it_insn_type_last ();
10157 }
3c707909
PB
10158 }
10159 else
10160 {
10161 if (mask & (1 << 15))
10162 inst.error = _("PC not allowed in register list");
3c707909
PB
10163 }
10164
10165 if ((mask & (mask - 1)) == 0)
10166 {
10167 /* Single register transfers implemented as str/ldr. */
10168 if (writeback)
10169 {
10170 if (inst.instruction & (1 << 23))
10171 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10172 else
10173 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10174 }
10175 else
10176 {
10177 if (inst.instruction & (1 << 23))
10178 inst.instruction = 0x00800000; /* ia -> [base] */
10179 else
10180 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10181 }
10182
10183 inst.instruction |= 0xf8400000;
10184 if (load)
10185 inst.instruction |= 0x00100000;
10186
5f4273c7 10187 mask = ffs (mask) - 1;
3c707909
PB
10188 mask <<= 12;
10189 }
10190 else if (writeback)
10191 inst.instruction |= WRITE_BACK;
10192
10193 inst.instruction |= mask;
10194 inst.instruction |= base << 16;
10195}
10196
c19d1205
ZW
10197static void
10198do_t_ldmstm (void)
10199{
10200 /* This really doesn't seem worth it. */
10201 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10202 _("expression too complex"));
10203 constraint (inst.operands[1].writeback,
10204 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10205
c19d1205
ZW
10206 if (unified_syntax)
10207 {
3c707909
PB
10208 bfd_boolean narrow;
10209 unsigned mask;
10210
10211 narrow = FALSE;
c19d1205
ZW
10212 /* See if we can use a 16-bit instruction. */
10213 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10214 && inst.size_req != 4
3c707909 10215 && !(inst.operands[1].imm & ~0xff))
90e4755a 10216 {
3c707909 10217 mask = 1 << inst.operands[0].reg;
90e4755a 10218
eab4f823 10219 if (inst.operands[0].reg <= 7)
90e4755a 10220 {
3c707909 10221 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10222 ? inst.operands[0].writeback
10223 : (inst.operands[0].writeback
10224 == !(inst.operands[1].imm & mask)))
10225 {
10226 if (inst.instruction == T_MNEM_stmia
10227 && (inst.operands[1].imm & mask)
10228 && (inst.operands[1].imm & (mask - 1)))
10229 as_warn (_("value stored for r%d is UNKNOWN"),
10230 inst.operands[0].reg);
3c707909 10231
eab4f823
MGD
10232 inst.instruction = THUMB_OP16 (inst.instruction);
10233 inst.instruction |= inst.operands[0].reg << 8;
10234 inst.instruction |= inst.operands[1].imm;
10235 narrow = TRUE;
10236 }
10237 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10238 {
10239 /* This means 1 register in reg list one of 3 situations:
10240 1. Instruction is stmia, but without writeback.
10241 2. lmdia without writeback, but with Rn not in
10242 reglist.
10243 3. ldmia with writeback, but with Rn in reglist.
10244 Case 3 is UNPREDICTABLE behaviour, so we handle
10245 case 1 and 2 which can be converted into a 16-bit
10246 str or ldr. The SP cases are handled below. */
10247 unsigned long opcode;
10248 /* First, record an error for Case 3. */
10249 if (inst.operands[1].imm & mask
10250 && inst.operands[0].writeback)
10251 inst.error =
10252 _("having the base register in the register list when "
10253 "using write back is UNPREDICTABLE");
10254
10255 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10256 : T_MNEM_ldr);
10257 inst.instruction = THUMB_OP16 (opcode);
10258 inst.instruction |= inst.operands[0].reg << 3;
10259 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10260 narrow = TRUE;
10261 }
90e4755a 10262 }
eab4f823 10263 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10264 {
eab4f823
MGD
10265 if (inst.operands[0].writeback)
10266 {
10267 inst.instruction =
10268 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10269 ? T_MNEM_push : T_MNEM_pop);
10270 inst.instruction |= inst.operands[1].imm;
10271 narrow = TRUE;
10272 }
10273 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10274 {
10275 inst.instruction =
10276 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10277 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10278 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10279 narrow = TRUE;
10280 }
90e4755a 10281 }
3c707909
PB
10282 }
10283
10284 if (!narrow)
10285 {
c19d1205
ZW
10286 if (inst.instruction < 0xffff)
10287 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10288
5f4273c7
NC
10289 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10290 inst.operands[0].writeback);
90e4755a
RE
10291 }
10292 }
c19d1205 10293 else
90e4755a 10294 {
c19d1205
ZW
10295 constraint (inst.operands[0].reg > 7
10296 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10297 constraint (inst.instruction != T_MNEM_ldmia
10298 && inst.instruction != T_MNEM_stmia,
10299 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10300 if (inst.instruction == T_MNEM_stmia)
f03698e6 10301 {
c19d1205
ZW
10302 if (!inst.operands[0].writeback)
10303 as_warn (_("this instruction will write back the base register"));
10304 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10305 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10306 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10307 inst.operands[0].reg);
f03698e6 10308 }
c19d1205 10309 else
90e4755a 10310 {
c19d1205
ZW
10311 if (!inst.operands[0].writeback
10312 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10313 as_warn (_("this instruction will write back the base register"));
10314 else if (inst.operands[0].writeback
10315 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10316 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10317 }
10318
c19d1205
ZW
10319 inst.instruction = THUMB_OP16 (inst.instruction);
10320 inst.instruction |= inst.operands[0].reg << 8;
10321 inst.instruction |= inst.operands[1].imm;
10322 }
10323}
e28cd48c 10324
c19d1205
ZW
10325static void
10326do_t_ldrex (void)
10327{
10328 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10329 || inst.operands[1].postind || inst.operands[1].writeback
10330 || inst.operands[1].immisreg || inst.operands[1].shifted
10331 || inst.operands[1].negative,
01cfc07f 10332 BAD_ADDR_MODE);
e28cd48c 10333
5be8be5d
DG
10334 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10335
c19d1205
ZW
10336 inst.instruction |= inst.operands[0].reg << 12;
10337 inst.instruction |= inst.operands[1].reg << 16;
10338 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10339}
e28cd48c 10340
c19d1205
ZW
10341static void
10342do_t_ldrexd (void)
10343{
10344 if (!inst.operands[1].present)
1cac9012 10345 {
c19d1205
ZW
10346 constraint (inst.operands[0].reg == REG_LR,
10347 _("r14 not allowed as first register "
10348 "when second register is omitted"));
10349 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10350 }
c19d1205
ZW
10351 constraint (inst.operands[0].reg == inst.operands[1].reg,
10352 BAD_OVERLAP);
b99bd4ef 10353
c19d1205
ZW
10354 inst.instruction |= inst.operands[0].reg << 12;
10355 inst.instruction |= inst.operands[1].reg << 8;
10356 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10357}
10358
10359static void
c19d1205 10360do_t_ldst (void)
b99bd4ef 10361{
0110f2b8
PB
10362 unsigned long opcode;
10363 int Rn;
10364
e07e6e58
NC
10365 if (inst.operands[0].isreg
10366 && !inst.operands[0].preind
10367 && inst.operands[0].reg == REG_PC)
10368 set_it_insn_type_last ();
10369
0110f2b8 10370 opcode = inst.instruction;
c19d1205 10371 if (unified_syntax)
b99bd4ef 10372 {
53365c0d
PB
10373 if (!inst.operands[1].isreg)
10374 {
10375 if (opcode <= 0xffff)
10376 inst.instruction = THUMB_OP32 (opcode);
10377 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10378 return;
10379 }
0110f2b8
PB
10380 if (inst.operands[1].isreg
10381 && !inst.operands[1].writeback
c19d1205
ZW
10382 && !inst.operands[1].shifted && !inst.operands[1].postind
10383 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10384 && opcode <= 0xffff
10385 && inst.size_req != 4)
c19d1205 10386 {
0110f2b8
PB
10387 /* Insn may have a 16-bit form. */
10388 Rn = inst.operands[1].reg;
10389 if (inst.operands[1].immisreg)
10390 {
10391 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10392 /* [Rn, Rik] */
0110f2b8
PB
10393 if (Rn <= 7 && inst.operands[1].imm <= 7)
10394 goto op16;
5be8be5d
DG
10395 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10396 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10397 }
10398 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10399 && opcode != T_MNEM_ldrsb)
10400 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10401 || (Rn == REG_SP && opcode == T_MNEM_str))
10402 {
10403 /* [Rn, #const] */
10404 if (Rn > 7)
10405 {
10406 if (Rn == REG_PC)
10407 {
10408 if (inst.reloc.pc_rel)
10409 opcode = T_MNEM_ldr_pc2;
10410 else
10411 opcode = T_MNEM_ldr_pc;
10412 }
10413 else
10414 {
10415 if (opcode == T_MNEM_ldr)
10416 opcode = T_MNEM_ldr_sp;
10417 else
10418 opcode = T_MNEM_str_sp;
10419 }
10420 inst.instruction = inst.operands[0].reg << 8;
10421 }
10422 else
10423 {
10424 inst.instruction = inst.operands[0].reg;
10425 inst.instruction |= inst.operands[1].reg << 3;
10426 }
10427 inst.instruction |= THUMB_OP16 (opcode);
10428 if (inst.size_req == 2)
10429 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10430 else
10431 inst.relax = opcode;
10432 return;
10433 }
c19d1205 10434 }
0110f2b8 10435 /* Definitely a 32-bit variant. */
5be8be5d 10436
8d67f500
NC
10437 /* Warning for Erratum 752419. */
10438 if (opcode == T_MNEM_ldr
10439 && inst.operands[0].reg == REG_SP
10440 && inst.operands[1].writeback == 1
10441 && !inst.operands[1].immisreg)
10442 {
10443 if (no_cpu_selected ()
10444 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10445 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10446 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10447 as_warn (_("This instruction may be unpredictable "
10448 "if executed on M-profile cores "
10449 "with interrupts enabled."));
10450 }
10451
5be8be5d
DG
10452 /* Do some validations regarding addressing modes. */
10453 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10454 && opcode != T_MNEM_str)
10455 reject_bad_reg (inst.operands[1].imm);
10456
0110f2b8 10457 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10458 inst.instruction |= inst.operands[0].reg << 12;
10459 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10460 return;
10461 }
10462
c19d1205
ZW
10463 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10464
10465 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10466 {
c19d1205
ZW
10467 /* Only [Rn,Rm] is acceptable. */
10468 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10469 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10470 || inst.operands[1].postind || inst.operands[1].shifted
10471 || inst.operands[1].negative,
10472 _("Thumb does not support this addressing mode"));
10473 inst.instruction = THUMB_OP16 (inst.instruction);
10474 goto op16;
b99bd4ef 10475 }
5f4273c7 10476
c19d1205
ZW
10477 inst.instruction = THUMB_OP16 (inst.instruction);
10478 if (!inst.operands[1].isreg)
10479 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10480 return;
b99bd4ef 10481
c19d1205
ZW
10482 constraint (!inst.operands[1].preind
10483 || inst.operands[1].shifted
10484 || inst.operands[1].writeback,
10485 _("Thumb does not support this addressing mode"));
10486 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10487 {
c19d1205
ZW
10488 constraint (inst.instruction & 0x0600,
10489 _("byte or halfword not valid for base register"));
10490 constraint (inst.operands[1].reg == REG_PC
10491 && !(inst.instruction & THUMB_LOAD_BIT),
10492 _("r15 based store not allowed"));
10493 constraint (inst.operands[1].immisreg,
10494 _("invalid base register for register offset"));
b99bd4ef 10495
c19d1205
ZW
10496 if (inst.operands[1].reg == REG_PC)
10497 inst.instruction = T_OPCODE_LDR_PC;
10498 else if (inst.instruction & THUMB_LOAD_BIT)
10499 inst.instruction = T_OPCODE_LDR_SP;
10500 else
10501 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10502
c19d1205
ZW
10503 inst.instruction |= inst.operands[0].reg << 8;
10504 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10505 return;
10506 }
90e4755a 10507
c19d1205
ZW
10508 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10509 if (!inst.operands[1].immisreg)
10510 {
10511 /* Immediate offset. */
10512 inst.instruction |= inst.operands[0].reg;
10513 inst.instruction |= inst.operands[1].reg << 3;
10514 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10515 return;
10516 }
90e4755a 10517
c19d1205
ZW
10518 /* Register offset. */
10519 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10520 constraint (inst.operands[1].negative,
10521 _("Thumb does not support this addressing mode"));
90e4755a 10522
c19d1205
ZW
10523 op16:
10524 switch (inst.instruction)
10525 {
10526 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10527 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10528 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10529 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10530 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10531 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10532 case 0x5600 /* ldrsb */:
10533 case 0x5e00 /* ldrsh */: break;
10534 default: abort ();
10535 }
90e4755a 10536
c19d1205
ZW
10537 inst.instruction |= inst.operands[0].reg;
10538 inst.instruction |= inst.operands[1].reg << 3;
10539 inst.instruction |= inst.operands[1].imm << 6;
10540}
90e4755a 10541
c19d1205
ZW
10542static void
10543do_t_ldstd (void)
10544{
10545 if (!inst.operands[1].present)
b99bd4ef 10546 {
c19d1205
ZW
10547 inst.operands[1].reg = inst.operands[0].reg + 1;
10548 constraint (inst.operands[0].reg == REG_LR,
10549 _("r14 not allowed here"));
b99bd4ef 10550 }
c19d1205
ZW
10551 inst.instruction |= inst.operands[0].reg << 12;
10552 inst.instruction |= inst.operands[1].reg << 8;
10553 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10554}
10555
c19d1205
ZW
10556static void
10557do_t_ldstt (void)
10558{
10559 inst.instruction |= inst.operands[0].reg << 12;
10560 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10561}
a737bd4d 10562
b99bd4ef 10563static void
c19d1205 10564do_t_mla (void)
b99bd4ef 10565{
fdfde340 10566 unsigned Rd, Rn, Rm, Ra;
c921be7d 10567
fdfde340
JM
10568 Rd = inst.operands[0].reg;
10569 Rn = inst.operands[1].reg;
10570 Rm = inst.operands[2].reg;
10571 Ra = inst.operands[3].reg;
10572
10573 reject_bad_reg (Rd);
10574 reject_bad_reg (Rn);
10575 reject_bad_reg (Rm);
10576 reject_bad_reg (Ra);
10577
10578 inst.instruction |= Rd << 8;
10579 inst.instruction |= Rn << 16;
10580 inst.instruction |= Rm;
10581 inst.instruction |= Ra << 12;
c19d1205 10582}
b99bd4ef 10583
c19d1205
ZW
10584static void
10585do_t_mlal (void)
10586{
fdfde340
JM
10587 unsigned RdLo, RdHi, Rn, Rm;
10588
10589 RdLo = inst.operands[0].reg;
10590 RdHi = inst.operands[1].reg;
10591 Rn = inst.operands[2].reg;
10592 Rm = inst.operands[3].reg;
10593
10594 reject_bad_reg (RdLo);
10595 reject_bad_reg (RdHi);
10596 reject_bad_reg (Rn);
10597 reject_bad_reg (Rm);
10598
10599 inst.instruction |= RdLo << 12;
10600 inst.instruction |= RdHi << 8;
10601 inst.instruction |= Rn << 16;
10602 inst.instruction |= Rm;
c19d1205 10603}
b99bd4ef 10604
c19d1205
ZW
10605static void
10606do_t_mov_cmp (void)
10607{
fdfde340
JM
10608 unsigned Rn, Rm;
10609
10610 Rn = inst.operands[0].reg;
10611 Rm = inst.operands[1].reg;
10612
e07e6e58
NC
10613 if (Rn == REG_PC)
10614 set_it_insn_type_last ();
10615
c19d1205 10616 if (unified_syntax)
b99bd4ef 10617 {
c19d1205
ZW
10618 int r0off = (inst.instruction == T_MNEM_mov
10619 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10620 unsigned long opcode;
3d388997
PB
10621 bfd_boolean narrow;
10622 bfd_boolean low_regs;
10623
fdfde340 10624 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10625 opcode = inst.instruction;
e07e6e58 10626 if (in_it_block ())
0110f2b8 10627 narrow = opcode != T_MNEM_movs;
3d388997 10628 else
0110f2b8 10629 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10630 if (inst.size_req == 4
10631 || inst.operands[1].shifted)
10632 narrow = FALSE;
10633
efd81785
PB
10634 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10635 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10636 && !inst.operands[1].shifted
fdfde340
JM
10637 && Rn == REG_PC
10638 && Rm == REG_LR)
efd81785
PB
10639 {
10640 inst.instruction = T2_SUBS_PC_LR;
10641 return;
10642 }
10643
fdfde340
JM
10644 if (opcode == T_MNEM_cmp)
10645 {
10646 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10647 if (narrow)
10648 {
10649 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10650 but valid. */
10651 warn_deprecated_sp (Rm);
10652 /* R15 was documented as a valid choice for Rm in ARMv6,
10653 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10654 tools reject R15, so we do too. */
10655 constraint (Rm == REG_PC, BAD_PC);
10656 }
10657 else
10658 reject_bad_reg (Rm);
fdfde340
JM
10659 }
10660 else if (opcode == T_MNEM_mov
10661 || opcode == T_MNEM_movs)
10662 {
10663 if (inst.operands[1].isreg)
10664 {
10665 if (opcode == T_MNEM_movs)
10666 {
10667 reject_bad_reg (Rn);
10668 reject_bad_reg (Rm);
10669 }
76fa04a4
MGD
10670 else if (narrow)
10671 {
10672 /* This is mov.n. */
10673 if ((Rn == REG_SP || Rn == REG_PC)
10674 && (Rm == REG_SP || Rm == REG_PC))
10675 {
10676 as_warn (_("Use of r%u as a source register is "
10677 "deprecated when r%u is the destination "
10678 "register."), Rm, Rn);
10679 }
10680 }
10681 else
10682 {
10683 /* This is mov.w. */
10684 constraint (Rn == REG_PC, BAD_PC);
10685 constraint (Rm == REG_PC, BAD_PC);
10686 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10687 }
fdfde340
JM
10688 }
10689 else
10690 reject_bad_reg (Rn);
10691 }
10692
c19d1205
ZW
10693 if (!inst.operands[1].isreg)
10694 {
0110f2b8 10695 /* Immediate operand. */
e07e6e58 10696 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10697 narrow = 0;
10698 if (low_regs && narrow)
10699 {
10700 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10701 inst.instruction |= Rn << 8;
0110f2b8
PB
10702 if (inst.size_req == 2)
10703 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10704 else
10705 inst.relax = opcode;
10706 }
10707 else
10708 {
10709 inst.instruction = THUMB_OP32 (inst.instruction);
10710 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10711 inst.instruction |= Rn << r0off;
0110f2b8
PB
10712 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10713 }
c19d1205 10714 }
728ca7c9
PB
10715 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10716 && (inst.instruction == T_MNEM_mov
10717 || inst.instruction == T_MNEM_movs))
10718 {
10719 /* Register shifts are encoded as separate shift instructions. */
10720 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10721
e07e6e58 10722 if (in_it_block ())
728ca7c9
PB
10723 narrow = !flags;
10724 else
10725 narrow = flags;
10726
10727 if (inst.size_req == 4)
10728 narrow = FALSE;
10729
10730 if (!low_regs || inst.operands[1].imm > 7)
10731 narrow = FALSE;
10732
fdfde340 10733 if (Rn != Rm)
728ca7c9
PB
10734 narrow = FALSE;
10735
10736 switch (inst.operands[1].shift_kind)
10737 {
10738 case SHIFT_LSL:
10739 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10740 break;
10741 case SHIFT_ASR:
10742 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10743 break;
10744 case SHIFT_LSR:
10745 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10746 break;
10747 case SHIFT_ROR:
10748 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10749 break;
10750 default:
5f4273c7 10751 abort ();
728ca7c9
PB
10752 }
10753
10754 inst.instruction = opcode;
10755 if (narrow)
10756 {
fdfde340 10757 inst.instruction |= Rn;
728ca7c9
PB
10758 inst.instruction |= inst.operands[1].imm << 3;
10759 }
10760 else
10761 {
10762 if (flags)
10763 inst.instruction |= CONDS_BIT;
10764
fdfde340
JM
10765 inst.instruction |= Rn << 8;
10766 inst.instruction |= Rm << 16;
728ca7c9
PB
10767 inst.instruction |= inst.operands[1].imm;
10768 }
10769 }
3d388997 10770 else if (!narrow)
c19d1205 10771 {
728ca7c9
PB
10772 /* Some mov with immediate shift have narrow variants.
10773 Register shifts are handled above. */
10774 if (low_regs && inst.operands[1].shifted
10775 && (inst.instruction == T_MNEM_mov
10776 || inst.instruction == T_MNEM_movs))
10777 {
e07e6e58 10778 if (in_it_block ())
728ca7c9
PB
10779 narrow = (inst.instruction == T_MNEM_mov);
10780 else
10781 narrow = (inst.instruction == T_MNEM_movs);
10782 }
10783
10784 if (narrow)
10785 {
10786 switch (inst.operands[1].shift_kind)
10787 {
10788 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10789 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10790 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10791 default: narrow = FALSE; break;
10792 }
10793 }
10794
10795 if (narrow)
10796 {
fdfde340
JM
10797 inst.instruction |= Rn;
10798 inst.instruction |= Rm << 3;
728ca7c9
PB
10799 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10800 }
10801 else
10802 {
10803 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10804 inst.instruction |= Rn << r0off;
728ca7c9
PB
10805 encode_thumb32_shifted_operand (1);
10806 }
c19d1205
ZW
10807 }
10808 else
10809 switch (inst.instruction)
10810 {
10811 case T_MNEM_mov:
10812 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10813 inst.instruction |= (Rn & 0x8) << 4;
10814 inst.instruction |= (Rn & 0x7);
10815 inst.instruction |= Rm << 3;
c19d1205 10816 break;
b99bd4ef 10817
c19d1205
ZW
10818 case T_MNEM_movs:
10819 /* We know we have low registers at this point.
941a8a52
MGD
10820 Generate LSLS Rd, Rs, #0. */
10821 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10822 inst.instruction |= Rn;
10823 inst.instruction |= Rm << 3;
c19d1205
ZW
10824 break;
10825
10826 case T_MNEM_cmp:
3d388997 10827 if (low_regs)
c19d1205
ZW
10828 {
10829 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10830 inst.instruction |= Rn;
10831 inst.instruction |= Rm << 3;
c19d1205
ZW
10832 }
10833 else
10834 {
10835 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10836 inst.instruction |= (Rn & 0x8) << 4;
10837 inst.instruction |= (Rn & 0x7);
10838 inst.instruction |= Rm << 3;
c19d1205
ZW
10839 }
10840 break;
10841 }
b99bd4ef
NC
10842 return;
10843 }
10844
c19d1205 10845 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10846
10847 /* PR 10443: Do not silently ignore shifted operands. */
10848 constraint (inst.operands[1].shifted,
10849 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10850
c19d1205 10851 if (inst.operands[1].isreg)
b99bd4ef 10852 {
fdfde340 10853 if (Rn < 8 && Rm < 8)
b99bd4ef 10854 {
c19d1205
ZW
10855 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10856 since a MOV instruction produces unpredictable results. */
10857 if (inst.instruction == T_OPCODE_MOV_I8)
10858 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10859 else
c19d1205 10860 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10861
fdfde340
JM
10862 inst.instruction |= Rn;
10863 inst.instruction |= Rm << 3;
b99bd4ef
NC
10864 }
10865 else
10866 {
c19d1205
ZW
10867 if (inst.instruction == T_OPCODE_MOV_I8)
10868 inst.instruction = T_OPCODE_MOV_HR;
10869 else
10870 inst.instruction = T_OPCODE_CMP_HR;
10871 do_t_cpy ();
b99bd4ef
NC
10872 }
10873 }
c19d1205 10874 else
b99bd4ef 10875 {
fdfde340 10876 constraint (Rn > 7,
c19d1205 10877 _("only lo regs allowed with immediate"));
fdfde340 10878 inst.instruction |= Rn << 8;
c19d1205
ZW
10879 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10880 }
10881}
b99bd4ef 10882
c19d1205
ZW
10883static void
10884do_t_mov16 (void)
10885{
fdfde340 10886 unsigned Rd;
b6895b4f
PB
10887 bfd_vma imm;
10888 bfd_boolean top;
10889
10890 top = (inst.instruction & 0x00800000) != 0;
10891 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10892 {
10893 constraint (top, _(":lower16: not allowed this instruction"));
10894 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10895 }
10896 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10897 {
10898 constraint (!top, _(":upper16: not allowed this instruction"));
10899 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10900 }
10901
fdfde340
JM
10902 Rd = inst.operands[0].reg;
10903 reject_bad_reg (Rd);
10904
10905 inst.instruction |= Rd << 8;
b6895b4f
PB
10906 if (inst.reloc.type == BFD_RELOC_UNUSED)
10907 {
10908 imm = inst.reloc.exp.X_add_number;
10909 inst.instruction |= (imm & 0xf000) << 4;
10910 inst.instruction |= (imm & 0x0800) << 15;
10911 inst.instruction |= (imm & 0x0700) << 4;
10912 inst.instruction |= (imm & 0x00ff);
10913 }
c19d1205 10914}
b99bd4ef 10915
c19d1205
ZW
10916static void
10917do_t_mvn_tst (void)
10918{
fdfde340 10919 unsigned Rn, Rm;
c921be7d 10920
fdfde340
JM
10921 Rn = inst.operands[0].reg;
10922 Rm = inst.operands[1].reg;
10923
10924 if (inst.instruction == T_MNEM_cmp
10925 || inst.instruction == T_MNEM_cmn)
10926 constraint (Rn == REG_PC, BAD_PC);
10927 else
10928 reject_bad_reg (Rn);
10929 reject_bad_reg (Rm);
10930
c19d1205
ZW
10931 if (unified_syntax)
10932 {
10933 int r0off = (inst.instruction == T_MNEM_mvn
10934 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10935 bfd_boolean narrow;
10936
10937 if (inst.size_req == 4
10938 || inst.instruction > 0xffff
10939 || inst.operands[1].shifted
fdfde340 10940 || Rn > 7 || Rm > 7)
3d388997
PB
10941 narrow = FALSE;
10942 else if (inst.instruction == T_MNEM_cmn)
10943 narrow = TRUE;
10944 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10945 narrow = !in_it_block ();
3d388997 10946 else
e07e6e58 10947 narrow = in_it_block ();
3d388997 10948
c19d1205 10949 if (!inst.operands[1].isreg)
b99bd4ef 10950 {
c19d1205
ZW
10951 /* For an immediate, we always generate a 32-bit opcode;
10952 section relaxation will shrink it later if possible. */
10953 if (inst.instruction < 0xffff)
10954 inst.instruction = THUMB_OP32 (inst.instruction);
10955 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10956 inst.instruction |= Rn << r0off;
c19d1205 10957 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10958 }
c19d1205 10959 else
b99bd4ef 10960 {
c19d1205 10961 /* See if we can do this with a 16-bit instruction. */
3d388997 10962 if (narrow)
b99bd4ef 10963 {
c19d1205 10964 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10965 inst.instruction |= Rn;
10966 inst.instruction |= Rm << 3;
b99bd4ef 10967 }
c19d1205 10968 else
b99bd4ef 10969 {
c19d1205
ZW
10970 constraint (inst.operands[1].shifted
10971 && inst.operands[1].immisreg,
10972 _("shift must be constant"));
10973 if (inst.instruction < 0xffff)
10974 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10975 inst.instruction |= Rn << r0off;
c19d1205 10976 encode_thumb32_shifted_operand (1);
b99bd4ef 10977 }
b99bd4ef
NC
10978 }
10979 }
10980 else
10981 {
c19d1205
ZW
10982 constraint (inst.instruction > 0xffff
10983 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10984 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10985 _("unshifted register required"));
fdfde340 10986 constraint (Rn > 7 || Rm > 7,
c19d1205 10987 BAD_HIREG);
b99bd4ef 10988
c19d1205 10989 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10990 inst.instruction |= Rn;
10991 inst.instruction |= Rm << 3;
b99bd4ef 10992 }
b99bd4ef
NC
10993}
10994
b05fe5cf 10995static void
c19d1205 10996do_t_mrs (void)
b05fe5cf 10997{
fdfde340 10998 unsigned Rd;
037e8744
JB
10999
11000 if (do_vfp_nsyn_mrs () == SUCCESS)
11001 return;
11002
90ec0d68
MGD
11003 Rd = inst.operands[0].reg;
11004 reject_bad_reg (Rd);
11005 inst.instruction |= Rd << 8;
11006
11007 if (inst.operands[1].isreg)
62b3e311 11008 {
90ec0d68
MGD
11009 unsigned br = inst.operands[1].reg;
11010 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11011 as_bad (_("bad register for mrs"));
11012
11013 inst.instruction |= br & (0xf << 16);
11014 inst.instruction |= (br & 0x300) >> 4;
11015 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11016 }
11017 else
11018 {
90ec0d68 11019 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11020
d2cd1205
JB
11021 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11022 constraint (flags != 0, _("selected processor does not support "
11023 "requested special purpose register"));
90ec0d68 11024 else
d2cd1205
JB
11025 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11026 devices). */
11027 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11028 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11029
90ec0d68
MGD
11030 inst.instruction |= (flags & SPSR_BIT) >> 2;
11031 inst.instruction |= inst.operands[1].imm & 0xff;
11032 inst.instruction |= 0xf0000;
11033 }
c19d1205 11034}
b05fe5cf 11035
c19d1205
ZW
11036static void
11037do_t_msr (void)
11038{
62b3e311 11039 int flags;
fdfde340 11040 unsigned Rn;
62b3e311 11041
037e8744
JB
11042 if (do_vfp_nsyn_msr () == SUCCESS)
11043 return;
11044
c19d1205
ZW
11045 constraint (!inst.operands[1].isreg,
11046 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11047
11048 if (inst.operands[0].isreg)
11049 flags = (int)(inst.operands[0].reg);
11050 else
11051 flags = inst.operands[0].imm;
11052
d2cd1205 11053 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11054 {
d2cd1205
JB
11055 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11056
11057 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11058 && (bits & ~(PSR_s | PSR_f)) != 0)
11059 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11060 && bits != PSR_f),
11061 _("selected processor does not support requested special "
11062 "purpose register"));
62b3e311
PB
11063 }
11064 else
d2cd1205
JB
11065 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11066 "requested special purpose register"));
c921be7d 11067
fdfde340
JM
11068 Rn = inst.operands[1].reg;
11069 reject_bad_reg (Rn);
11070
62b3e311 11071 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11072 inst.instruction |= (flags & 0xf0000) >> 8;
11073 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11074 inst.instruction |= (flags & 0xff);
fdfde340 11075 inst.instruction |= Rn << 16;
c19d1205 11076}
b05fe5cf 11077
c19d1205
ZW
11078static void
11079do_t_mul (void)
11080{
17828f45 11081 bfd_boolean narrow;
fdfde340 11082 unsigned Rd, Rn, Rm;
17828f45 11083
c19d1205
ZW
11084 if (!inst.operands[2].present)
11085 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11086
fdfde340
JM
11087 Rd = inst.operands[0].reg;
11088 Rn = inst.operands[1].reg;
11089 Rm = inst.operands[2].reg;
11090
17828f45 11091 if (unified_syntax)
b05fe5cf 11092 {
17828f45 11093 if (inst.size_req == 4
fdfde340
JM
11094 || (Rd != Rn
11095 && Rd != Rm)
11096 || Rn > 7
11097 || Rm > 7)
17828f45
JM
11098 narrow = FALSE;
11099 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11100 narrow = !in_it_block ();
17828f45 11101 else
e07e6e58 11102 narrow = in_it_block ();
b05fe5cf 11103 }
c19d1205 11104 else
b05fe5cf 11105 {
17828f45 11106 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11107 constraint (Rn > 7 || Rm > 7,
c19d1205 11108 BAD_HIREG);
17828f45
JM
11109 narrow = TRUE;
11110 }
b05fe5cf 11111
17828f45
JM
11112 if (narrow)
11113 {
11114 /* 16-bit MULS/Conditional MUL. */
c19d1205 11115 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11116 inst.instruction |= Rd;
b05fe5cf 11117
fdfde340
JM
11118 if (Rd == Rn)
11119 inst.instruction |= Rm << 3;
11120 else if (Rd == Rm)
11121 inst.instruction |= Rn << 3;
c19d1205
ZW
11122 else
11123 constraint (1, _("dest must overlap one source register"));
11124 }
17828f45
JM
11125 else
11126 {
e07e6e58
NC
11127 constraint (inst.instruction != T_MNEM_mul,
11128 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11129 /* 32-bit MUL. */
11130 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11131 inst.instruction |= Rd << 8;
11132 inst.instruction |= Rn << 16;
11133 inst.instruction |= Rm << 0;
11134
11135 reject_bad_reg (Rd);
11136 reject_bad_reg (Rn);
11137 reject_bad_reg (Rm);
17828f45 11138 }
c19d1205 11139}
b05fe5cf 11140
c19d1205
ZW
11141static void
11142do_t_mull (void)
11143{
fdfde340 11144 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11145
fdfde340
JM
11146 RdLo = inst.operands[0].reg;
11147 RdHi = inst.operands[1].reg;
11148 Rn = inst.operands[2].reg;
11149 Rm = inst.operands[3].reg;
11150
11151 reject_bad_reg (RdLo);
11152 reject_bad_reg (RdHi);
11153 reject_bad_reg (Rn);
11154 reject_bad_reg (Rm);
11155
11156 inst.instruction |= RdLo << 12;
11157 inst.instruction |= RdHi << 8;
11158 inst.instruction |= Rn << 16;
11159 inst.instruction |= Rm;
11160
11161 if (RdLo == RdHi)
c19d1205
ZW
11162 as_tsktsk (_("rdhi and rdlo must be different"));
11163}
b05fe5cf 11164
c19d1205
ZW
11165static void
11166do_t_nop (void)
11167{
e07e6e58
NC
11168 set_it_insn_type (NEUTRAL_IT_INSN);
11169
c19d1205
ZW
11170 if (unified_syntax)
11171 {
11172 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11173 {
c19d1205
ZW
11174 inst.instruction = THUMB_OP32 (inst.instruction);
11175 inst.instruction |= inst.operands[0].imm;
11176 }
11177 else
11178 {
bc2d1808
NC
11179 /* PR9722: Check for Thumb2 availability before
11180 generating a thumb2 nop instruction. */
afa62d5e 11181 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11182 {
11183 inst.instruction = THUMB_OP16 (inst.instruction);
11184 inst.instruction |= inst.operands[0].imm << 4;
11185 }
11186 else
11187 inst.instruction = 0x46c0;
c19d1205
ZW
11188 }
11189 }
11190 else
11191 {
11192 constraint (inst.operands[0].present,
11193 _("Thumb does not support NOP with hints"));
11194 inst.instruction = 0x46c0;
11195 }
11196}
b05fe5cf 11197
c19d1205
ZW
11198static void
11199do_t_neg (void)
11200{
11201 if (unified_syntax)
11202 {
3d388997
PB
11203 bfd_boolean narrow;
11204
11205 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11206 narrow = !in_it_block ();
3d388997 11207 else
e07e6e58 11208 narrow = in_it_block ();
3d388997
PB
11209 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11210 narrow = FALSE;
11211 if (inst.size_req == 4)
11212 narrow = FALSE;
11213
11214 if (!narrow)
c19d1205
ZW
11215 {
11216 inst.instruction = THUMB_OP32 (inst.instruction);
11217 inst.instruction |= inst.operands[0].reg << 8;
11218 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11219 }
11220 else
11221 {
c19d1205
ZW
11222 inst.instruction = THUMB_OP16 (inst.instruction);
11223 inst.instruction |= inst.operands[0].reg;
11224 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11225 }
11226 }
11227 else
11228 {
c19d1205
ZW
11229 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11230 BAD_HIREG);
11231 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11232
11233 inst.instruction = THUMB_OP16 (inst.instruction);
11234 inst.instruction |= inst.operands[0].reg;
11235 inst.instruction |= inst.operands[1].reg << 3;
11236 }
11237}
11238
1c444d06
JM
11239static void
11240do_t_orn (void)
11241{
11242 unsigned Rd, Rn;
11243
11244 Rd = inst.operands[0].reg;
11245 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11246
fdfde340
JM
11247 reject_bad_reg (Rd);
11248 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11249 reject_bad_reg (Rn);
11250
1c444d06
JM
11251 inst.instruction |= Rd << 8;
11252 inst.instruction |= Rn << 16;
11253
11254 if (!inst.operands[2].isreg)
11255 {
11256 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11257 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11258 }
11259 else
11260 {
11261 unsigned Rm;
11262
11263 Rm = inst.operands[2].reg;
fdfde340 11264 reject_bad_reg (Rm);
1c444d06
JM
11265
11266 constraint (inst.operands[2].shifted
11267 && inst.operands[2].immisreg,
11268 _("shift must be constant"));
11269 encode_thumb32_shifted_operand (2);
11270 }
11271}
11272
c19d1205
ZW
11273static void
11274do_t_pkhbt (void)
11275{
fdfde340
JM
11276 unsigned Rd, Rn, Rm;
11277
11278 Rd = inst.operands[0].reg;
11279 Rn = inst.operands[1].reg;
11280 Rm = inst.operands[2].reg;
11281
11282 reject_bad_reg (Rd);
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
11286 inst.instruction |= Rd << 8;
11287 inst.instruction |= Rn << 16;
11288 inst.instruction |= Rm;
c19d1205
ZW
11289 if (inst.operands[3].present)
11290 {
11291 unsigned int val = inst.reloc.exp.X_add_number;
11292 constraint (inst.reloc.exp.X_op != O_constant,
11293 _("expression too complex"));
11294 inst.instruction |= (val & 0x1c) << 10;
11295 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11296 }
c19d1205 11297}
b05fe5cf 11298
c19d1205
ZW
11299static void
11300do_t_pkhtb (void)
11301{
11302 if (!inst.operands[3].present)
1ef52f49
NC
11303 {
11304 unsigned Rtmp;
11305
11306 inst.instruction &= ~0x00000020;
11307
11308 /* PR 10168. Swap the Rm and Rn registers. */
11309 Rtmp = inst.operands[1].reg;
11310 inst.operands[1].reg = inst.operands[2].reg;
11311 inst.operands[2].reg = Rtmp;
11312 }
c19d1205 11313 do_t_pkhbt ();
b05fe5cf
ZW
11314}
11315
c19d1205
ZW
11316static void
11317do_t_pld (void)
11318{
fdfde340
JM
11319 if (inst.operands[0].immisreg)
11320 reject_bad_reg (inst.operands[0].imm);
11321
c19d1205
ZW
11322 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11323}
b05fe5cf 11324
c19d1205
ZW
11325static void
11326do_t_push_pop (void)
b99bd4ef 11327{
e9f89963 11328 unsigned mask;
5f4273c7 11329
c19d1205
ZW
11330 constraint (inst.operands[0].writeback,
11331 _("push/pop do not support {reglist}^"));
11332 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11333 _("expression too complex"));
b99bd4ef 11334
e9f89963
PB
11335 mask = inst.operands[0].imm;
11336 if ((mask & ~0xff) == 0)
3c707909 11337 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11338 else if ((inst.instruction == T_MNEM_push
e9f89963 11339 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11340 || (inst.instruction == T_MNEM_pop
e9f89963 11341 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11342 {
c19d1205
ZW
11343 inst.instruction = THUMB_OP16 (inst.instruction);
11344 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11345 inst.instruction |= mask & 0xff;
c19d1205
ZW
11346 }
11347 else if (unified_syntax)
11348 {
3c707909 11349 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11350 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11351 }
11352 else
11353 {
11354 inst.error = _("invalid register list to push/pop instruction");
11355 return;
11356 }
c19d1205 11357}
b99bd4ef 11358
c19d1205
ZW
11359static void
11360do_t_rbit (void)
11361{
fdfde340
JM
11362 unsigned Rd, Rm;
11363
11364 Rd = inst.operands[0].reg;
11365 Rm = inst.operands[1].reg;
11366
11367 reject_bad_reg (Rd);
11368 reject_bad_reg (Rm);
11369
11370 inst.instruction |= Rd << 8;
11371 inst.instruction |= Rm << 16;
11372 inst.instruction |= Rm;
c19d1205 11373}
b99bd4ef 11374
c19d1205
ZW
11375static void
11376do_t_rev (void)
11377{
fdfde340
JM
11378 unsigned Rd, Rm;
11379
11380 Rd = inst.operands[0].reg;
11381 Rm = inst.operands[1].reg;
11382
11383 reject_bad_reg (Rd);
11384 reject_bad_reg (Rm);
11385
11386 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11387 && inst.size_req != 4)
11388 {
11389 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11390 inst.instruction |= Rd;
11391 inst.instruction |= Rm << 3;
c19d1205
ZW
11392 }
11393 else if (unified_syntax)
11394 {
11395 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11396 inst.instruction |= Rd << 8;
11397 inst.instruction |= Rm << 16;
11398 inst.instruction |= Rm;
c19d1205
ZW
11399 }
11400 else
11401 inst.error = BAD_HIREG;
11402}
b99bd4ef 11403
1c444d06
JM
11404static void
11405do_t_rrx (void)
11406{
11407 unsigned Rd, Rm;
11408
11409 Rd = inst.operands[0].reg;
11410 Rm = inst.operands[1].reg;
11411
fdfde340
JM
11412 reject_bad_reg (Rd);
11413 reject_bad_reg (Rm);
c921be7d 11414
1c444d06
JM
11415 inst.instruction |= Rd << 8;
11416 inst.instruction |= Rm;
11417}
11418
c19d1205
ZW
11419static void
11420do_t_rsb (void)
11421{
fdfde340 11422 unsigned Rd, Rs;
b99bd4ef 11423
c19d1205
ZW
11424 Rd = inst.operands[0].reg;
11425 Rs = (inst.operands[1].present
11426 ? inst.operands[1].reg /* Rd, Rs, foo */
11427 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11428
fdfde340
JM
11429 reject_bad_reg (Rd);
11430 reject_bad_reg (Rs);
11431 if (inst.operands[2].isreg)
11432 reject_bad_reg (inst.operands[2].reg);
11433
c19d1205
ZW
11434 inst.instruction |= Rd << 8;
11435 inst.instruction |= Rs << 16;
11436 if (!inst.operands[2].isreg)
11437 {
026d3abb
PB
11438 bfd_boolean narrow;
11439
11440 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11441 narrow = !in_it_block ();
026d3abb 11442 else
e07e6e58 11443 narrow = in_it_block ();
026d3abb
PB
11444
11445 if (Rd > 7 || Rs > 7)
11446 narrow = FALSE;
11447
11448 if (inst.size_req == 4 || !unified_syntax)
11449 narrow = FALSE;
11450
11451 if (inst.reloc.exp.X_op != O_constant
11452 || inst.reloc.exp.X_add_number != 0)
11453 narrow = FALSE;
11454
11455 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11456 relaxation, but it doesn't seem worth the hassle. */
11457 if (narrow)
11458 {
11459 inst.reloc.type = BFD_RELOC_UNUSED;
11460 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11461 inst.instruction |= Rs << 3;
11462 inst.instruction |= Rd;
11463 }
11464 else
11465 {
11466 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11467 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11468 }
c19d1205
ZW
11469 }
11470 else
11471 encode_thumb32_shifted_operand (2);
11472}
b99bd4ef 11473
c19d1205
ZW
11474static void
11475do_t_setend (void)
11476{
e07e6e58 11477 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11478 if (inst.operands[0].imm)
11479 inst.instruction |= 0x8;
11480}
b99bd4ef 11481
c19d1205
ZW
11482static void
11483do_t_shift (void)
11484{
11485 if (!inst.operands[1].present)
11486 inst.operands[1].reg = inst.operands[0].reg;
11487
11488 if (unified_syntax)
11489 {
3d388997
PB
11490 bfd_boolean narrow;
11491 int shift_kind;
11492
11493 switch (inst.instruction)
11494 {
11495 case T_MNEM_asr:
11496 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11497 case T_MNEM_lsl:
11498 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11499 case T_MNEM_lsr:
11500 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11501 case T_MNEM_ror:
11502 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11503 default: abort ();
11504 }
11505
11506 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11507 narrow = !in_it_block ();
3d388997 11508 else
e07e6e58 11509 narrow = in_it_block ();
3d388997
PB
11510 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11511 narrow = FALSE;
11512 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11513 narrow = FALSE;
11514 if (inst.operands[2].isreg
11515 && (inst.operands[1].reg != inst.operands[0].reg
11516 || inst.operands[2].reg > 7))
11517 narrow = FALSE;
11518 if (inst.size_req == 4)
11519 narrow = FALSE;
11520
fdfde340
JM
11521 reject_bad_reg (inst.operands[0].reg);
11522 reject_bad_reg (inst.operands[1].reg);
c921be7d 11523
3d388997 11524 if (!narrow)
c19d1205
ZW
11525 {
11526 if (inst.operands[2].isreg)
b99bd4ef 11527 {
fdfde340 11528 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11529 inst.instruction = THUMB_OP32 (inst.instruction);
11530 inst.instruction |= inst.operands[0].reg << 8;
11531 inst.instruction |= inst.operands[1].reg << 16;
11532 inst.instruction |= inst.operands[2].reg;
11533 }
11534 else
11535 {
11536 inst.operands[1].shifted = 1;
3d388997 11537 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11538 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11539 ? T_MNEM_movs : T_MNEM_mov);
11540 inst.instruction |= inst.operands[0].reg << 8;
11541 encode_thumb32_shifted_operand (1);
11542 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11543 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11544 }
11545 }
11546 else
11547 {
c19d1205 11548 if (inst.operands[2].isreg)
b99bd4ef 11549 {
3d388997 11550 switch (shift_kind)
b99bd4ef 11551 {
3d388997
PB
11552 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11553 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11554 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11555 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11556 default: abort ();
b99bd4ef 11557 }
5f4273c7 11558
c19d1205
ZW
11559 inst.instruction |= inst.operands[0].reg;
11560 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11561 }
11562 else
11563 {
3d388997 11564 switch (shift_kind)
b99bd4ef 11565 {
3d388997
PB
11566 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11567 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11568 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11569 default: abort ();
b99bd4ef 11570 }
c19d1205
ZW
11571 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11572 inst.instruction |= inst.operands[0].reg;
11573 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11574 }
11575 }
c19d1205
ZW
11576 }
11577 else
11578 {
11579 constraint (inst.operands[0].reg > 7
11580 || inst.operands[1].reg > 7, BAD_HIREG);
11581 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11582
c19d1205
ZW
11583 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11584 {
11585 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11586 constraint (inst.operands[0].reg != inst.operands[1].reg,
11587 _("source1 and dest must be same register"));
b99bd4ef 11588
c19d1205
ZW
11589 switch (inst.instruction)
11590 {
11591 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11592 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11593 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11594 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11595 default: abort ();
11596 }
5f4273c7 11597
c19d1205
ZW
11598 inst.instruction |= inst.operands[0].reg;
11599 inst.instruction |= inst.operands[2].reg << 3;
11600 }
11601 else
b99bd4ef 11602 {
c19d1205
ZW
11603 switch (inst.instruction)
11604 {
11605 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11606 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11607 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11608 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11609 default: abort ();
11610 }
11611 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11612 inst.instruction |= inst.operands[0].reg;
11613 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11614 }
11615 }
b99bd4ef
NC
11616}
11617
11618static void
c19d1205 11619do_t_simd (void)
b99bd4ef 11620{
fdfde340
JM
11621 unsigned Rd, Rn, Rm;
11622
11623 Rd = inst.operands[0].reg;
11624 Rn = inst.operands[1].reg;
11625 Rm = inst.operands[2].reg;
11626
11627 reject_bad_reg (Rd);
11628 reject_bad_reg (Rn);
11629 reject_bad_reg (Rm);
11630
11631 inst.instruction |= Rd << 8;
11632 inst.instruction |= Rn << 16;
11633 inst.instruction |= Rm;
c19d1205 11634}
b99bd4ef 11635
03ee1b7f
NC
11636static void
11637do_t_simd2 (void)
11638{
11639 unsigned Rd, Rn, Rm;
11640
11641 Rd = inst.operands[0].reg;
11642 Rm = inst.operands[1].reg;
11643 Rn = inst.operands[2].reg;
11644
11645 reject_bad_reg (Rd);
11646 reject_bad_reg (Rn);
11647 reject_bad_reg (Rm);
11648
11649 inst.instruction |= Rd << 8;
11650 inst.instruction |= Rn << 16;
11651 inst.instruction |= Rm;
11652}
11653
c19d1205 11654static void
3eb17e6b 11655do_t_smc (void)
c19d1205
ZW
11656{
11657 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11658 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11659 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11660 constraint (inst.reloc.exp.X_op != O_constant,
11661 _("expression too complex"));
11662 inst.reloc.type = BFD_RELOC_UNUSED;
11663 inst.instruction |= (value & 0xf000) >> 12;
11664 inst.instruction |= (value & 0x0ff0);
11665 inst.instruction |= (value & 0x000f) << 16;
11666}
b99bd4ef 11667
90ec0d68
MGD
11668static void
11669do_t_hvc (void)
11670{
11671 unsigned int value = inst.reloc.exp.X_add_number;
11672
11673 inst.reloc.type = BFD_RELOC_UNUSED;
11674 inst.instruction |= (value & 0x0fff);
11675 inst.instruction |= (value & 0xf000) << 4;
11676}
11677
c19d1205 11678static void
3a21c15a 11679do_t_ssat_usat (int bias)
c19d1205 11680{
fdfde340
JM
11681 unsigned Rd, Rn;
11682
11683 Rd = inst.operands[0].reg;
11684 Rn = inst.operands[2].reg;
11685
11686 reject_bad_reg (Rd);
11687 reject_bad_reg (Rn);
11688
11689 inst.instruction |= Rd << 8;
3a21c15a 11690 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11691 inst.instruction |= Rn << 16;
b99bd4ef 11692
c19d1205 11693 if (inst.operands[3].present)
b99bd4ef 11694 {
3a21c15a
NC
11695 offsetT shift_amount = inst.reloc.exp.X_add_number;
11696
11697 inst.reloc.type = BFD_RELOC_UNUSED;
11698
c19d1205
ZW
11699 constraint (inst.reloc.exp.X_op != O_constant,
11700 _("expression too complex"));
b99bd4ef 11701
3a21c15a 11702 if (shift_amount != 0)
6189168b 11703 {
3a21c15a
NC
11704 constraint (shift_amount > 31,
11705 _("shift expression is too large"));
11706
c19d1205 11707 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11708 inst.instruction |= 0x00200000; /* sh bit. */
11709
11710 inst.instruction |= (shift_amount & 0x1c) << 10;
11711 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11712 }
11713 }
b99bd4ef 11714}
c921be7d 11715
3a21c15a
NC
11716static void
11717do_t_ssat (void)
11718{
11719 do_t_ssat_usat (1);
11720}
b99bd4ef 11721
0dd132b6 11722static void
c19d1205 11723do_t_ssat16 (void)
0dd132b6 11724{
fdfde340
JM
11725 unsigned Rd, Rn;
11726
11727 Rd = inst.operands[0].reg;
11728 Rn = inst.operands[2].reg;
11729
11730 reject_bad_reg (Rd);
11731 reject_bad_reg (Rn);
11732
11733 inst.instruction |= Rd << 8;
c19d1205 11734 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11735 inst.instruction |= Rn << 16;
c19d1205 11736}
0dd132b6 11737
c19d1205
ZW
11738static void
11739do_t_strex (void)
11740{
11741 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11742 || inst.operands[2].postind || inst.operands[2].writeback
11743 || inst.operands[2].immisreg || inst.operands[2].shifted
11744 || inst.operands[2].negative,
01cfc07f 11745 BAD_ADDR_MODE);
0dd132b6 11746
5be8be5d
DG
11747 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11748
c19d1205
ZW
11749 inst.instruction |= inst.operands[0].reg << 8;
11750 inst.instruction |= inst.operands[1].reg << 12;
11751 inst.instruction |= inst.operands[2].reg << 16;
11752 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11753}
11754
b99bd4ef 11755static void
c19d1205 11756do_t_strexd (void)
b99bd4ef 11757{
c19d1205
ZW
11758 if (!inst.operands[2].present)
11759 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11760
c19d1205
ZW
11761 constraint (inst.operands[0].reg == inst.operands[1].reg
11762 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11763 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11764 BAD_OVERLAP);
b99bd4ef 11765
c19d1205
ZW
11766 inst.instruction |= inst.operands[0].reg;
11767 inst.instruction |= inst.operands[1].reg << 12;
11768 inst.instruction |= inst.operands[2].reg << 8;
11769 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11770}
11771
11772static void
c19d1205 11773do_t_sxtah (void)
b99bd4ef 11774{
fdfde340
JM
11775 unsigned Rd, Rn, Rm;
11776
11777 Rd = inst.operands[0].reg;
11778 Rn = inst.operands[1].reg;
11779 Rm = inst.operands[2].reg;
11780
11781 reject_bad_reg (Rd);
11782 reject_bad_reg (Rn);
11783 reject_bad_reg (Rm);
11784
11785 inst.instruction |= Rd << 8;
11786 inst.instruction |= Rn << 16;
11787 inst.instruction |= Rm;
c19d1205
ZW
11788 inst.instruction |= inst.operands[3].imm << 4;
11789}
b99bd4ef 11790
c19d1205
ZW
11791static void
11792do_t_sxth (void)
11793{
fdfde340
JM
11794 unsigned Rd, Rm;
11795
11796 Rd = inst.operands[0].reg;
11797 Rm = inst.operands[1].reg;
11798
11799 reject_bad_reg (Rd);
11800 reject_bad_reg (Rm);
c921be7d
NC
11801
11802 if (inst.instruction <= 0xffff
11803 && inst.size_req != 4
fdfde340 11804 && Rd <= 7 && Rm <= 7
c19d1205 11805 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11806 {
c19d1205 11807 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11808 inst.instruction |= Rd;
11809 inst.instruction |= Rm << 3;
b99bd4ef 11810 }
c19d1205 11811 else if (unified_syntax)
b99bd4ef 11812 {
c19d1205
ZW
11813 if (inst.instruction <= 0xffff)
11814 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11815 inst.instruction |= Rd << 8;
11816 inst.instruction |= Rm;
c19d1205 11817 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11818 }
c19d1205 11819 else
b99bd4ef 11820 {
c19d1205
ZW
11821 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11822 _("Thumb encoding does not support rotation"));
11823 constraint (1, BAD_HIREG);
b99bd4ef 11824 }
c19d1205 11825}
b99bd4ef 11826
c19d1205
ZW
11827static void
11828do_t_swi (void)
11829{
b2a5fbdc
MGD
11830 /* We have to do the following check manually as ARM_EXT_OS only applies
11831 to ARM_EXT_V6M. */
11832 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11833 {
ac7f631b
NC
11834 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11835 /* This only applies to the v6m howver, not later architectures. */
11836 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11837 as_bad (_("SVC is not permitted on this architecture"));
11838 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11839 }
11840
c19d1205
ZW
11841 inst.reloc.type = BFD_RELOC_ARM_SWI;
11842}
b99bd4ef 11843
92e90b6e
PB
11844static void
11845do_t_tb (void)
11846{
fdfde340 11847 unsigned Rn, Rm;
92e90b6e
PB
11848 int half;
11849
11850 half = (inst.instruction & 0x10) != 0;
e07e6e58 11851 set_it_insn_type_last ();
dfa9f0d5
PB
11852 constraint (inst.operands[0].immisreg,
11853 _("instruction requires register index"));
fdfde340
JM
11854
11855 Rn = inst.operands[0].reg;
11856 Rm = inst.operands[0].imm;
c921be7d 11857
fdfde340
JM
11858 constraint (Rn == REG_SP, BAD_SP);
11859 reject_bad_reg (Rm);
11860
92e90b6e
PB
11861 constraint (!half && inst.operands[0].shifted,
11862 _("instruction does not allow shifted index"));
fdfde340 11863 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11864}
11865
c19d1205
ZW
11866static void
11867do_t_usat (void)
11868{
3a21c15a 11869 do_t_ssat_usat (0);
b99bd4ef
NC
11870}
11871
11872static void
c19d1205 11873do_t_usat16 (void)
b99bd4ef 11874{
fdfde340
JM
11875 unsigned Rd, Rn;
11876
11877 Rd = inst.operands[0].reg;
11878 Rn = inst.operands[2].reg;
11879
11880 reject_bad_reg (Rd);
11881 reject_bad_reg (Rn);
11882
11883 inst.instruction |= Rd << 8;
c19d1205 11884 inst.instruction |= inst.operands[1].imm;
fdfde340 11885 inst.instruction |= Rn << 16;
b99bd4ef 11886}
c19d1205 11887
5287ad62 11888/* Neon instruction encoder helpers. */
5f4273c7 11889
5287ad62 11890/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11891
5287ad62
JB
11892/* An "invalid" code for the following tables. */
11893#define N_INV -1u
11894
11895struct neon_tab_entry
b99bd4ef 11896{
5287ad62
JB
11897 unsigned integer;
11898 unsigned float_or_poly;
11899 unsigned scalar_or_imm;
11900};
5f4273c7 11901
5287ad62
JB
11902/* Map overloaded Neon opcodes to their respective encodings. */
11903#define NEON_ENC_TAB \
11904 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11905 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11906 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11907 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11908 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11909 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11910 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11911 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11912 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11913 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11914 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11915 /* Register variants of the following two instructions are encoded as
e07e6e58 11916 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11917 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11918 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11919 X(vfma, N_INV, 0x0000c10, N_INV), \
11920 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11921 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11922 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11923 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11924 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11925 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11926 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11927 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11928 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11929 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11930 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11931 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11932 X(vshl, 0x0000400, N_INV, 0x0800510), \
11933 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11934 X(vand, 0x0000110, N_INV, 0x0800030), \
11935 X(vbic, 0x0100110, N_INV, 0x0800030), \
11936 X(veor, 0x1000110, N_INV, N_INV), \
11937 X(vorn, 0x0300110, N_INV, 0x0800010), \
11938 X(vorr, 0x0200110, N_INV, 0x0800010), \
11939 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11940 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11941 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11942 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11943 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11944 X(vst1, 0x0000000, 0x0800000, N_INV), \
11945 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11946 X(vst2, 0x0000100, 0x0800100, N_INV), \
11947 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11948 X(vst3, 0x0000200, 0x0800200, N_INV), \
11949 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11950 X(vst4, 0x0000300, 0x0800300, N_INV), \
11951 X(vmovn, 0x1b20200, N_INV, N_INV), \
11952 X(vtrn, 0x1b20080, N_INV, N_INV), \
11953 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11954 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11955 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11956 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11957 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11958 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11959 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11960 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11961 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11962 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11963 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11964
11965enum neon_opc
11966{
11967#define X(OPC,I,F,S) N_MNEM_##OPC
11968NEON_ENC_TAB
11969#undef X
11970};
b99bd4ef 11971
5287ad62
JB
11972static const struct neon_tab_entry neon_enc_tab[] =
11973{
11974#define X(OPC,I,F,S) { (I), (F), (S) }
11975NEON_ENC_TAB
11976#undef X
11977};
b99bd4ef 11978
88714cb8
DG
11979/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11980#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11981#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11982#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11983#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11984#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11985#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11986#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11987#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11988#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11989#define NEON_ENC_SINGLE_(X) \
037e8744 11990 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11991#define NEON_ENC_DOUBLE_(X) \
037e8744 11992 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11993
88714cb8
DG
11994#define NEON_ENCODE(type, inst) \
11995 do \
11996 { \
11997 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11998 inst.is_neon = 1; \
11999 } \
12000 while (0)
12001
12002#define check_neon_suffixes \
12003 do \
12004 { \
12005 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12006 { \
12007 as_bad (_("invalid neon suffix for non neon instruction")); \
12008 return; \
12009 } \
12010 } \
12011 while (0)
12012
037e8744
JB
12013/* Define shapes for instruction operands. The following mnemonic characters
12014 are used in this table:
5287ad62 12015
037e8744 12016 F - VFP S<n> register
5287ad62
JB
12017 D - Neon D<n> register
12018 Q - Neon Q<n> register
12019 I - Immediate
12020 S - Scalar
12021 R - ARM register
12022 L - D<n> register list
5f4273c7 12023
037e8744
JB
12024 This table is used to generate various data:
12025 - enumerations of the form NS_DDR to be used as arguments to
12026 neon_select_shape.
12027 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12028 - a table used to drive neon_select_shape. */
b99bd4ef 12029
037e8744
JB
12030#define NEON_SHAPE_DEF \
12031 X(3, (D, D, D), DOUBLE), \
12032 X(3, (Q, Q, Q), QUAD), \
12033 X(3, (D, D, I), DOUBLE), \
12034 X(3, (Q, Q, I), QUAD), \
12035 X(3, (D, D, S), DOUBLE), \
12036 X(3, (Q, Q, S), QUAD), \
12037 X(2, (D, D), DOUBLE), \
12038 X(2, (Q, Q), QUAD), \
12039 X(2, (D, S), DOUBLE), \
12040 X(2, (Q, S), QUAD), \
12041 X(2, (D, R), DOUBLE), \
12042 X(2, (Q, R), QUAD), \
12043 X(2, (D, I), DOUBLE), \
12044 X(2, (Q, I), QUAD), \
12045 X(3, (D, L, D), DOUBLE), \
12046 X(2, (D, Q), MIXED), \
12047 X(2, (Q, D), MIXED), \
12048 X(3, (D, Q, I), MIXED), \
12049 X(3, (Q, D, I), MIXED), \
12050 X(3, (Q, D, D), MIXED), \
12051 X(3, (D, Q, Q), MIXED), \
12052 X(3, (Q, Q, D), MIXED), \
12053 X(3, (Q, D, S), MIXED), \
12054 X(3, (D, Q, S), MIXED), \
12055 X(4, (D, D, D, I), DOUBLE), \
12056 X(4, (Q, Q, Q, I), QUAD), \
12057 X(2, (F, F), SINGLE), \
12058 X(3, (F, F, F), SINGLE), \
12059 X(2, (F, I), SINGLE), \
12060 X(2, (F, D), MIXED), \
12061 X(2, (D, F), MIXED), \
12062 X(3, (F, F, I), MIXED), \
12063 X(4, (R, R, F, F), SINGLE), \
12064 X(4, (F, F, R, R), SINGLE), \
12065 X(3, (D, R, R), DOUBLE), \
12066 X(3, (R, R, D), DOUBLE), \
12067 X(2, (S, R), SINGLE), \
12068 X(2, (R, S), SINGLE), \
12069 X(2, (F, R), SINGLE), \
12070 X(2, (R, F), SINGLE)
12071
12072#define S2(A,B) NS_##A##B
12073#define S3(A,B,C) NS_##A##B##C
12074#define S4(A,B,C,D) NS_##A##B##C##D
12075
12076#define X(N, L, C) S##N L
12077
5287ad62
JB
12078enum neon_shape
12079{
037e8744
JB
12080 NEON_SHAPE_DEF,
12081 NS_NULL
5287ad62 12082};
b99bd4ef 12083
037e8744
JB
12084#undef X
12085#undef S2
12086#undef S3
12087#undef S4
12088
12089enum neon_shape_class
12090{
12091 SC_SINGLE,
12092 SC_DOUBLE,
12093 SC_QUAD,
12094 SC_MIXED
12095};
12096
12097#define X(N, L, C) SC_##C
12098
12099static enum neon_shape_class neon_shape_class[] =
12100{
12101 NEON_SHAPE_DEF
12102};
12103
12104#undef X
12105
12106enum neon_shape_el
12107{
12108 SE_F,
12109 SE_D,
12110 SE_Q,
12111 SE_I,
12112 SE_S,
12113 SE_R,
12114 SE_L
12115};
12116
12117/* Register widths of above. */
12118static unsigned neon_shape_el_size[] =
12119{
12120 32,
12121 64,
12122 128,
12123 0,
12124 32,
12125 32,
12126 0
12127};
12128
12129struct neon_shape_info
12130{
12131 unsigned els;
12132 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12133};
12134
12135#define S2(A,B) { SE_##A, SE_##B }
12136#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12137#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12138
12139#define X(N, L, C) { N, S##N L }
12140
12141static struct neon_shape_info neon_shape_tab[] =
12142{
12143 NEON_SHAPE_DEF
12144};
12145
12146#undef X
12147#undef S2
12148#undef S3
12149#undef S4
12150
5287ad62
JB
12151/* Bit masks used in type checking given instructions.
12152 'N_EQK' means the type must be the same as (or based on in some way) the key
12153 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12154 set, various other bits can be set as well in order to modify the meaning of
12155 the type constraint. */
12156
12157enum neon_type_mask
12158{
8e79c3df
CM
12159 N_S8 = 0x0000001,
12160 N_S16 = 0x0000002,
12161 N_S32 = 0x0000004,
12162 N_S64 = 0x0000008,
12163 N_U8 = 0x0000010,
12164 N_U16 = 0x0000020,
12165 N_U32 = 0x0000040,
12166 N_U64 = 0x0000080,
12167 N_I8 = 0x0000100,
12168 N_I16 = 0x0000200,
12169 N_I32 = 0x0000400,
12170 N_I64 = 0x0000800,
12171 N_8 = 0x0001000,
12172 N_16 = 0x0002000,
12173 N_32 = 0x0004000,
12174 N_64 = 0x0008000,
12175 N_P8 = 0x0010000,
12176 N_P16 = 0x0020000,
12177 N_F16 = 0x0040000,
12178 N_F32 = 0x0080000,
12179 N_F64 = 0x0100000,
c921be7d
NC
12180 N_KEY = 0x1000000, /* Key element (main type specifier). */
12181 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12182 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12183 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12184 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12185 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12186 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12187 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12188 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12189 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12190 N_UTYP = 0,
037e8744 12191 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12192};
12193
dcbf9037
JB
12194#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12195
5287ad62
JB
12196#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12197#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12198#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12199#define N_SUF_32 (N_SU_32 | N_F32)
12200#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12201#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12202
12203/* Pass this as the first type argument to neon_check_type to ignore types
12204 altogether. */
12205#define N_IGNORE_TYPE (N_KEY | N_EQK)
12206
037e8744
JB
12207/* Select a "shape" for the current instruction (describing register types or
12208 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12209 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12210 function of operand parsing, so this function doesn't need to be called.
12211 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12212
12213static enum neon_shape
037e8744 12214neon_select_shape (enum neon_shape shape, ...)
5287ad62 12215{
037e8744
JB
12216 va_list ap;
12217 enum neon_shape first_shape = shape;
5287ad62
JB
12218
12219 /* Fix missing optional operands. FIXME: we don't know at this point how
12220 many arguments we should have, so this makes the assumption that we have
12221 > 1. This is true of all current Neon opcodes, I think, but may not be
12222 true in the future. */
12223 if (!inst.operands[1].present)
12224 inst.operands[1] = inst.operands[0];
12225
037e8744 12226 va_start (ap, shape);
5f4273c7 12227
21d799b5 12228 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12229 {
12230 unsigned j;
12231 int matches = 1;
12232
12233 for (j = 0; j < neon_shape_tab[shape].els; j++)
12234 {
12235 if (!inst.operands[j].present)
12236 {
12237 matches = 0;
12238 break;
12239 }
12240
12241 switch (neon_shape_tab[shape].el[j])
12242 {
12243 case SE_F:
12244 if (!(inst.operands[j].isreg
12245 && inst.operands[j].isvec
12246 && inst.operands[j].issingle
12247 && !inst.operands[j].isquad))
12248 matches = 0;
12249 break;
12250
12251 case SE_D:
12252 if (!(inst.operands[j].isreg
12253 && inst.operands[j].isvec
12254 && !inst.operands[j].isquad
12255 && !inst.operands[j].issingle))
12256 matches = 0;
12257 break;
12258
12259 case SE_R:
12260 if (!(inst.operands[j].isreg
12261 && !inst.operands[j].isvec))
12262 matches = 0;
12263 break;
12264
12265 case SE_Q:
12266 if (!(inst.operands[j].isreg
12267 && inst.operands[j].isvec
12268 && inst.operands[j].isquad
12269 && !inst.operands[j].issingle))
12270 matches = 0;
12271 break;
12272
12273 case SE_I:
12274 if (!(!inst.operands[j].isreg
12275 && !inst.operands[j].isscalar))
12276 matches = 0;
12277 break;
12278
12279 case SE_S:
12280 if (!(!inst.operands[j].isreg
12281 && inst.operands[j].isscalar))
12282 matches = 0;
12283 break;
12284
12285 case SE_L:
12286 break;
12287 }
3fde54a2
JZ
12288 if (!matches)
12289 break;
037e8744
JB
12290 }
12291 if (matches)
5287ad62 12292 break;
037e8744 12293 }
5f4273c7 12294
037e8744 12295 va_end (ap);
5287ad62 12296
037e8744
JB
12297 if (shape == NS_NULL && first_shape != NS_NULL)
12298 first_error (_("invalid instruction shape"));
5287ad62 12299
037e8744
JB
12300 return shape;
12301}
5287ad62 12302
037e8744
JB
12303/* True if SHAPE is predominantly a quadword operation (most of the time, this
12304 means the Q bit should be set). */
12305
12306static int
12307neon_quad (enum neon_shape shape)
12308{
12309 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12310}
037e8744 12311
5287ad62
JB
12312static void
12313neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12314 unsigned *g_size)
12315{
12316 /* Allow modification to be made to types which are constrained to be
12317 based on the key element, based on bits set alongside N_EQK. */
12318 if ((typebits & N_EQK) != 0)
12319 {
12320 if ((typebits & N_HLF) != 0)
12321 *g_size /= 2;
12322 else if ((typebits & N_DBL) != 0)
12323 *g_size *= 2;
12324 if ((typebits & N_SGN) != 0)
12325 *g_type = NT_signed;
12326 else if ((typebits & N_UNS) != 0)
12327 *g_type = NT_unsigned;
12328 else if ((typebits & N_INT) != 0)
12329 *g_type = NT_integer;
12330 else if ((typebits & N_FLT) != 0)
12331 *g_type = NT_float;
dcbf9037
JB
12332 else if ((typebits & N_SIZ) != 0)
12333 *g_type = NT_untyped;
5287ad62
JB
12334 }
12335}
5f4273c7 12336
5287ad62
JB
12337/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12338 operand type, i.e. the single type specified in a Neon instruction when it
12339 is the only one given. */
12340
12341static struct neon_type_el
12342neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12343{
12344 struct neon_type_el dest = *key;
5f4273c7 12345
9c2799c2 12346 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12347
5287ad62
JB
12348 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12349
12350 return dest;
12351}
12352
12353/* Convert Neon type and size into compact bitmask representation. */
12354
12355static enum neon_type_mask
12356type_chk_of_el_type (enum neon_el_type type, unsigned size)
12357{
12358 switch (type)
12359 {
12360 case NT_untyped:
12361 switch (size)
12362 {
12363 case 8: return N_8;
12364 case 16: return N_16;
12365 case 32: return N_32;
12366 case 64: return N_64;
12367 default: ;
12368 }
12369 break;
12370
12371 case NT_integer:
12372 switch (size)
12373 {
12374 case 8: return N_I8;
12375 case 16: return N_I16;
12376 case 32: return N_I32;
12377 case 64: return N_I64;
12378 default: ;
12379 }
12380 break;
12381
12382 case NT_float:
037e8744
JB
12383 switch (size)
12384 {
8e79c3df 12385 case 16: return N_F16;
037e8744
JB
12386 case 32: return N_F32;
12387 case 64: return N_F64;
12388 default: ;
12389 }
5287ad62
JB
12390 break;
12391
12392 case NT_poly:
12393 switch (size)
12394 {
12395 case 8: return N_P8;
12396 case 16: return N_P16;
12397 default: ;
12398 }
12399 break;
12400
12401 case NT_signed:
12402 switch (size)
12403 {
12404 case 8: return N_S8;
12405 case 16: return N_S16;
12406 case 32: return N_S32;
12407 case 64: return N_S64;
12408 default: ;
12409 }
12410 break;
12411
12412 case NT_unsigned:
12413 switch (size)
12414 {
12415 case 8: return N_U8;
12416 case 16: return N_U16;
12417 case 32: return N_U32;
12418 case 64: return N_U64;
12419 default: ;
12420 }
12421 break;
12422
12423 default: ;
12424 }
5f4273c7 12425
5287ad62
JB
12426 return N_UTYP;
12427}
12428
12429/* Convert compact Neon bitmask type representation to a type and size. Only
12430 handles the case where a single bit is set in the mask. */
12431
dcbf9037 12432static int
5287ad62
JB
12433el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12434 enum neon_type_mask mask)
12435{
dcbf9037
JB
12436 if ((mask & N_EQK) != 0)
12437 return FAIL;
12438
5287ad62
JB
12439 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12440 *size = 8;
dcbf9037 12441 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12442 *size = 16;
dcbf9037 12443 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12444 *size = 32;
037e8744 12445 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12446 *size = 64;
dcbf9037
JB
12447 else
12448 return FAIL;
12449
5287ad62
JB
12450 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12451 *type = NT_signed;
dcbf9037 12452 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12453 *type = NT_unsigned;
dcbf9037 12454 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12455 *type = NT_integer;
dcbf9037 12456 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12457 *type = NT_untyped;
dcbf9037 12458 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12459 *type = NT_poly;
037e8744 12460 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12461 *type = NT_float;
dcbf9037
JB
12462 else
12463 return FAIL;
5f4273c7 12464
dcbf9037 12465 return SUCCESS;
5287ad62
JB
12466}
12467
12468/* Modify a bitmask of allowed types. This is only needed for type
12469 relaxation. */
12470
12471static unsigned
12472modify_types_allowed (unsigned allowed, unsigned mods)
12473{
12474 unsigned size;
12475 enum neon_el_type type;
12476 unsigned destmask;
12477 int i;
5f4273c7 12478
5287ad62 12479 destmask = 0;
5f4273c7 12480
5287ad62
JB
12481 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12482 {
21d799b5
NC
12483 if (el_type_of_type_chk (&type, &size,
12484 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12485 {
12486 neon_modify_type_size (mods, &type, &size);
12487 destmask |= type_chk_of_el_type (type, size);
12488 }
5287ad62 12489 }
5f4273c7 12490
5287ad62
JB
12491 return destmask;
12492}
12493
12494/* Check type and return type classification.
12495 The manual states (paraphrase): If one datatype is given, it indicates the
12496 type given in:
12497 - the second operand, if there is one
12498 - the operand, if there is no second operand
12499 - the result, if there are no operands.
12500 This isn't quite good enough though, so we use a concept of a "key" datatype
12501 which is set on a per-instruction basis, which is the one which matters when
12502 only one data type is written.
12503 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12504 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12505
12506static struct neon_type_el
12507neon_check_type (unsigned els, enum neon_shape ns, ...)
12508{
12509 va_list ap;
12510 unsigned i, pass, key_el = 0;
12511 unsigned types[NEON_MAX_TYPE_ELS];
12512 enum neon_el_type k_type = NT_invtype;
12513 unsigned k_size = -1u;
12514 struct neon_type_el badtype = {NT_invtype, -1};
12515 unsigned key_allowed = 0;
12516
12517 /* Optional registers in Neon instructions are always (not) in operand 1.
12518 Fill in the missing operand here, if it was omitted. */
12519 if (els > 1 && !inst.operands[1].present)
12520 inst.operands[1] = inst.operands[0];
12521
12522 /* Suck up all the varargs. */
12523 va_start (ap, ns);
12524 for (i = 0; i < els; i++)
12525 {
12526 unsigned thisarg = va_arg (ap, unsigned);
12527 if (thisarg == N_IGNORE_TYPE)
12528 {
12529 va_end (ap);
12530 return badtype;
12531 }
12532 types[i] = thisarg;
12533 if ((thisarg & N_KEY) != 0)
12534 key_el = i;
12535 }
12536 va_end (ap);
12537
dcbf9037
JB
12538 if (inst.vectype.elems > 0)
12539 for (i = 0; i < els; i++)
12540 if (inst.operands[i].vectype.type != NT_invtype)
12541 {
12542 first_error (_("types specified in both the mnemonic and operands"));
12543 return badtype;
12544 }
12545
5287ad62
JB
12546 /* Duplicate inst.vectype elements here as necessary.
12547 FIXME: No idea if this is exactly the same as the ARM assembler,
12548 particularly when an insn takes one register and one non-register
12549 operand. */
12550 if (inst.vectype.elems == 1 && els > 1)
12551 {
12552 unsigned j;
12553 inst.vectype.elems = els;
12554 inst.vectype.el[key_el] = inst.vectype.el[0];
12555 for (j = 0; j < els; j++)
dcbf9037
JB
12556 if (j != key_el)
12557 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12558 types[j]);
12559 }
12560 else if (inst.vectype.elems == 0 && els > 0)
12561 {
12562 unsigned j;
12563 /* No types were given after the mnemonic, so look for types specified
12564 after each operand. We allow some flexibility here; as long as the
12565 "key" operand has a type, we can infer the others. */
12566 for (j = 0; j < els; j++)
12567 if (inst.operands[j].vectype.type != NT_invtype)
12568 inst.vectype.el[j] = inst.operands[j].vectype;
12569
12570 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12571 {
dcbf9037
JB
12572 for (j = 0; j < els; j++)
12573 if (inst.operands[j].vectype.type == NT_invtype)
12574 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12575 types[j]);
12576 }
12577 else
12578 {
12579 first_error (_("operand types can't be inferred"));
12580 return badtype;
5287ad62
JB
12581 }
12582 }
12583 else if (inst.vectype.elems != els)
12584 {
dcbf9037 12585 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12586 return badtype;
12587 }
12588
12589 for (pass = 0; pass < 2; pass++)
12590 {
12591 for (i = 0; i < els; i++)
12592 {
12593 unsigned thisarg = types[i];
12594 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12595 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12596 enum neon_el_type g_type = inst.vectype.el[i].type;
12597 unsigned g_size = inst.vectype.el[i].size;
12598
12599 /* Decay more-specific signed & unsigned types to sign-insensitive
12600 integer types if sign-specific variants are unavailable. */
12601 if ((g_type == NT_signed || g_type == NT_unsigned)
12602 && (types_allowed & N_SU_ALL) == 0)
12603 g_type = NT_integer;
12604
12605 /* If only untyped args are allowed, decay any more specific types to
12606 them. Some instructions only care about signs for some element
12607 sizes, so handle that properly. */
12608 if ((g_size == 8 && (types_allowed & N_8) != 0)
12609 || (g_size == 16 && (types_allowed & N_16) != 0)
12610 || (g_size == 32 && (types_allowed & N_32) != 0)
12611 || (g_size == 64 && (types_allowed & N_64) != 0))
12612 g_type = NT_untyped;
12613
12614 if (pass == 0)
12615 {
12616 if ((thisarg & N_KEY) != 0)
12617 {
12618 k_type = g_type;
12619 k_size = g_size;
12620 key_allowed = thisarg & ~N_KEY;
12621 }
12622 }
12623 else
12624 {
037e8744
JB
12625 if ((thisarg & N_VFP) != 0)
12626 {
99b253c5
NC
12627 enum neon_shape_el regshape;
12628 unsigned regwidth, match;
12629
12630 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12631 if (ns == NS_NULL)
12632 {
12633 first_error (_("invalid instruction shape"));
12634 return badtype;
12635 }
12636 regshape = neon_shape_tab[ns].el[i];
12637 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12638
12639 /* In VFP mode, operands must match register widths. If we
12640 have a key operand, use its width, else use the width of
12641 the current operand. */
12642 if (k_size != -1u)
12643 match = k_size;
12644 else
12645 match = g_size;
12646
12647 if (regwidth != match)
12648 {
12649 first_error (_("operand size must match register width"));
12650 return badtype;
12651 }
12652 }
5f4273c7 12653
5287ad62
JB
12654 if ((thisarg & N_EQK) == 0)
12655 {
12656 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12657
12658 if ((given_type & types_allowed) == 0)
12659 {
dcbf9037 12660 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12661 return badtype;
12662 }
12663 }
12664 else
12665 {
12666 enum neon_el_type mod_k_type = k_type;
12667 unsigned mod_k_size = k_size;
12668 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12669 if (g_type != mod_k_type || g_size != mod_k_size)
12670 {
dcbf9037 12671 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12672 return badtype;
12673 }
12674 }
12675 }
12676 }
12677 }
12678
12679 return inst.vectype.el[key_el];
12680}
12681
037e8744 12682/* Neon-style VFP instruction forwarding. */
5287ad62 12683
037e8744
JB
12684/* Thumb VFP instructions have 0xE in the condition field. */
12685
12686static void
12687do_vfp_cond_or_thumb (void)
5287ad62 12688{
88714cb8
DG
12689 inst.is_neon = 1;
12690
5287ad62 12691 if (thumb_mode)
037e8744 12692 inst.instruction |= 0xe0000000;
5287ad62 12693 else
037e8744 12694 inst.instruction |= inst.cond << 28;
5287ad62
JB
12695}
12696
037e8744
JB
12697/* Look up and encode a simple mnemonic, for use as a helper function for the
12698 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12699 etc. It is assumed that operand parsing has already been done, and that the
12700 operands are in the form expected by the given opcode (this isn't necessarily
12701 the same as the form in which they were parsed, hence some massaging must
12702 take place before this function is called).
12703 Checks current arch version against that in the looked-up opcode. */
5287ad62 12704
037e8744
JB
12705static void
12706do_vfp_nsyn_opcode (const char *opname)
5287ad62 12707{
037e8744 12708 const struct asm_opcode *opcode;
5f4273c7 12709
21d799b5 12710 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12711
037e8744
JB
12712 if (!opcode)
12713 abort ();
5287ad62 12714
037e8744
JB
12715 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12716 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12717 _(BAD_FPU));
5287ad62 12718
88714cb8
DG
12719 inst.is_neon = 1;
12720
037e8744
JB
12721 if (thumb_mode)
12722 {
12723 inst.instruction = opcode->tvalue;
12724 opcode->tencode ();
12725 }
12726 else
12727 {
12728 inst.instruction = (inst.cond << 28) | opcode->avalue;
12729 opcode->aencode ();
12730 }
12731}
5287ad62
JB
12732
12733static void
037e8744 12734do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12735{
037e8744
JB
12736 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12737
12738 if (rs == NS_FFF)
12739 {
12740 if (is_add)
12741 do_vfp_nsyn_opcode ("fadds");
12742 else
12743 do_vfp_nsyn_opcode ("fsubs");
12744 }
12745 else
12746 {
12747 if (is_add)
12748 do_vfp_nsyn_opcode ("faddd");
12749 else
12750 do_vfp_nsyn_opcode ("fsubd");
12751 }
12752}
12753
12754/* Check operand types to see if this is a VFP instruction, and if so call
12755 PFN (). */
12756
12757static int
12758try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12759{
12760 enum neon_shape rs;
12761 struct neon_type_el et;
12762
12763 switch (args)
12764 {
12765 case 2:
12766 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12767 et = neon_check_type (2, rs,
12768 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12769 break;
5f4273c7 12770
037e8744
JB
12771 case 3:
12772 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12773 et = neon_check_type (3, rs,
12774 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12775 break;
12776
12777 default:
12778 abort ();
12779 }
12780
12781 if (et.type != NT_invtype)
12782 {
12783 pfn (rs);
12784 return SUCCESS;
12785 }
037e8744 12786
99b253c5 12787 inst.error = NULL;
037e8744
JB
12788 return FAIL;
12789}
12790
12791static void
12792do_vfp_nsyn_mla_mls (enum neon_shape rs)
12793{
12794 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12795
037e8744
JB
12796 if (rs == NS_FFF)
12797 {
12798 if (is_mla)
12799 do_vfp_nsyn_opcode ("fmacs");
12800 else
1ee69515 12801 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12802 }
12803 else
12804 {
12805 if (is_mla)
12806 do_vfp_nsyn_opcode ("fmacd");
12807 else
1ee69515 12808 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12809 }
12810}
12811
62f3b8c8
PB
12812static void
12813do_vfp_nsyn_fma_fms (enum neon_shape rs)
12814{
12815 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12816
12817 if (rs == NS_FFF)
12818 {
12819 if (is_fma)
12820 do_vfp_nsyn_opcode ("ffmas");
12821 else
12822 do_vfp_nsyn_opcode ("ffnmas");
12823 }
12824 else
12825 {
12826 if (is_fma)
12827 do_vfp_nsyn_opcode ("ffmad");
12828 else
12829 do_vfp_nsyn_opcode ("ffnmad");
12830 }
12831}
12832
037e8744
JB
12833static void
12834do_vfp_nsyn_mul (enum neon_shape rs)
12835{
12836 if (rs == NS_FFF)
12837 do_vfp_nsyn_opcode ("fmuls");
12838 else
12839 do_vfp_nsyn_opcode ("fmuld");
12840}
12841
12842static void
12843do_vfp_nsyn_abs_neg (enum neon_shape rs)
12844{
12845 int is_neg = (inst.instruction & 0x80) != 0;
12846 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12847
12848 if (rs == NS_FF)
12849 {
12850 if (is_neg)
12851 do_vfp_nsyn_opcode ("fnegs");
12852 else
12853 do_vfp_nsyn_opcode ("fabss");
12854 }
12855 else
12856 {
12857 if (is_neg)
12858 do_vfp_nsyn_opcode ("fnegd");
12859 else
12860 do_vfp_nsyn_opcode ("fabsd");
12861 }
12862}
12863
12864/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12865 insns belong to Neon, and are handled elsewhere. */
12866
12867static void
12868do_vfp_nsyn_ldm_stm (int is_dbmode)
12869{
12870 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12871 if (is_ldm)
12872 {
12873 if (is_dbmode)
12874 do_vfp_nsyn_opcode ("fldmdbs");
12875 else
12876 do_vfp_nsyn_opcode ("fldmias");
12877 }
12878 else
12879 {
12880 if (is_dbmode)
12881 do_vfp_nsyn_opcode ("fstmdbs");
12882 else
12883 do_vfp_nsyn_opcode ("fstmias");
12884 }
12885}
12886
037e8744
JB
12887static void
12888do_vfp_nsyn_sqrt (void)
12889{
12890 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12891 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12892
037e8744
JB
12893 if (rs == NS_FF)
12894 do_vfp_nsyn_opcode ("fsqrts");
12895 else
12896 do_vfp_nsyn_opcode ("fsqrtd");
12897}
12898
12899static void
12900do_vfp_nsyn_div (void)
12901{
12902 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12903 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12904 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12905
037e8744
JB
12906 if (rs == NS_FFF)
12907 do_vfp_nsyn_opcode ("fdivs");
12908 else
12909 do_vfp_nsyn_opcode ("fdivd");
12910}
12911
12912static void
12913do_vfp_nsyn_nmul (void)
12914{
12915 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12916 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12917 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12918
037e8744
JB
12919 if (rs == NS_FFF)
12920 {
88714cb8 12921 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12922 do_vfp_sp_dyadic ();
12923 }
12924 else
12925 {
88714cb8 12926 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12927 do_vfp_dp_rd_rn_rm ();
12928 }
12929 do_vfp_cond_or_thumb ();
12930}
12931
12932static void
12933do_vfp_nsyn_cmp (void)
12934{
12935 if (inst.operands[1].isreg)
12936 {
12937 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12938 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12939
037e8744
JB
12940 if (rs == NS_FF)
12941 {
88714cb8 12942 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12943 do_vfp_sp_monadic ();
12944 }
12945 else
12946 {
88714cb8 12947 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12948 do_vfp_dp_rd_rm ();
12949 }
12950 }
12951 else
12952 {
12953 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12954 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12955
12956 switch (inst.instruction & 0x0fffffff)
12957 {
12958 case N_MNEM_vcmp:
12959 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12960 break;
12961 case N_MNEM_vcmpe:
12962 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12963 break;
12964 default:
12965 abort ();
12966 }
5f4273c7 12967
037e8744
JB
12968 if (rs == NS_FI)
12969 {
88714cb8 12970 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12971 do_vfp_sp_compare_z ();
12972 }
12973 else
12974 {
88714cb8 12975 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12976 do_vfp_dp_rd ();
12977 }
12978 }
12979 do_vfp_cond_or_thumb ();
12980}
12981
12982static void
12983nsyn_insert_sp (void)
12984{
12985 inst.operands[1] = inst.operands[0];
12986 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12987 inst.operands[0].reg = REG_SP;
037e8744
JB
12988 inst.operands[0].isreg = 1;
12989 inst.operands[0].writeback = 1;
12990 inst.operands[0].present = 1;
12991}
12992
12993static void
12994do_vfp_nsyn_push (void)
12995{
12996 nsyn_insert_sp ();
12997 if (inst.operands[1].issingle)
12998 do_vfp_nsyn_opcode ("fstmdbs");
12999 else
13000 do_vfp_nsyn_opcode ("fstmdbd");
13001}
13002
13003static void
13004do_vfp_nsyn_pop (void)
13005{
13006 nsyn_insert_sp ();
13007 if (inst.operands[1].issingle)
22b5b651 13008 do_vfp_nsyn_opcode ("fldmias");
037e8744 13009 else
22b5b651 13010 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13011}
13012
13013/* Fix up Neon data-processing instructions, ORing in the correct bits for
13014 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13015
88714cb8
DG
13016static void
13017neon_dp_fixup (struct arm_it* insn)
037e8744 13018{
88714cb8
DG
13019 unsigned int i = insn->instruction;
13020 insn->is_neon = 1;
13021
037e8744
JB
13022 if (thumb_mode)
13023 {
13024 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13025 if (i & (1 << 24))
13026 i |= 1 << 28;
5f4273c7 13027
037e8744 13028 i &= ~(1 << 24);
5f4273c7 13029
037e8744
JB
13030 i |= 0xef000000;
13031 }
13032 else
13033 i |= 0xf2000000;
5f4273c7 13034
88714cb8 13035 insn->instruction = i;
037e8744
JB
13036}
13037
13038/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13039 (0, 1, 2, 3). */
13040
13041static unsigned
13042neon_logbits (unsigned x)
13043{
13044 return ffs (x) - 4;
13045}
13046
13047#define LOW4(R) ((R) & 0xf)
13048#define HI1(R) (((R) >> 4) & 1)
13049
13050/* Encode insns with bit pattern:
13051
13052 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13053 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13054
037e8744
JB
13055 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13056 different meaning for some instruction. */
13057
13058static void
13059neon_three_same (int isquad, int ubit, int size)
13060{
13061 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13062 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13063 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13064 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13065 inst.instruction |= LOW4 (inst.operands[2].reg);
13066 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13067 inst.instruction |= (isquad != 0) << 6;
13068 inst.instruction |= (ubit != 0) << 24;
13069 if (size != -1)
13070 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13071
88714cb8 13072 neon_dp_fixup (&inst);
037e8744
JB
13073}
13074
13075/* Encode instructions of the form:
13076
13077 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13078 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13079
13080 Don't write size if SIZE == -1. */
13081
13082static void
13083neon_two_same (int qbit, int ubit, int size)
13084{
13085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13086 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13087 inst.instruction |= LOW4 (inst.operands[1].reg);
13088 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13089 inst.instruction |= (qbit != 0) << 6;
13090 inst.instruction |= (ubit != 0) << 24;
13091
13092 if (size != -1)
13093 inst.instruction |= neon_logbits (size) << 18;
13094
88714cb8 13095 neon_dp_fixup (&inst);
5287ad62
JB
13096}
13097
13098/* Neon instruction encoders, in approximate order of appearance. */
13099
13100static void
13101do_neon_dyadic_i_su (void)
13102{
037e8744 13103 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13104 struct neon_type_el et = neon_check_type (3, rs,
13105 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13106 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13107}
13108
13109static void
13110do_neon_dyadic_i64_su (void)
13111{
037e8744 13112 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13113 struct neon_type_el et = neon_check_type (3, rs,
13114 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13115 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13116}
13117
13118static void
13119neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13120 unsigned immbits)
13121{
13122 unsigned size = et.size >> 3;
13123 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13124 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13125 inst.instruction |= LOW4 (inst.operands[1].reg);
13126 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13127 inst.instruction |= (isquad != 0) << 6;
13128 inst.instruction |= immbits << 16;
13129 inst.instruction |= (size >> 3) << 7;
13130 inst.instruction |= (size & 0x7) << 19;
13131 if (write_ubit)
13132 inst.instruction |= (uval != 0) << 24;
13133
88714cb8 13134 neon_dp_fixup (&inst);
5287ad62
JB
13135}
13136
13137static void
13138do_neon_shl_imm (void)
13139{
13140 if (!inst.operands[2].isreg)
13141 {
037e8744 13142 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13143 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13144 NEON_ENCODE (IMMED, inst);
037e8744 13145 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13146 }
13147 else
13148 {
037e8744 13149 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13150 struct neon_type_el et = neon_check_type (3, rs,
13151 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13152 unsigned int tmp;
13153
13154 /* VSHL/VQSHL 3-register variants have syntax such as:
13155 vshl.xx Dd, Dm, Dn
13156 whereas other 3-register operations encoded by neon_three_same have
13157 syntax like:
13158 vadd.xx Dd, Dn, Dm
13159 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13160 here. */
13161 tmp = inst.operands[2].reg;
13162 inst.operands[2].reg = inst.operands[1].reg;
13163 inst.operands[1].reg = tmp;
88714cb8 13164 NEON_ENCODE (INTEGER, inst);
037e8744 13165 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13166 }
13167}
13168
13169static void
13170do_neon_qshl_imm (void)
13171{
13172 if (!inst.operands[2].isreg)
13173 {
037e8744 13174 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13175 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13176
88714cb8 13177 NEON_ENCODE (IMMED, inst);
037e8744 13178 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13179 inst.operands[2].imm);
13180 }
13181 else
13182 {
037e8744 13183 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13184 struct neon_type_el et = neon_check_type (3, rs,
13185 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13186 unsigned int tmp;
13187
13188 /* See note in do_neon_shl_imm. */
13189 tmp = inst.operands[2].reg;
13190 inst.operands[2].reg = inst.operands[1].reg;
13191 inst.operands[1].reg = tmp;
88714cb8 13192 NEON_ENCODE (INTEGER, inst);
037e8744 13193 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13194 }
13195}
13196
627907b7
JB
13197static void
13198do_neon_rshl (void)
13199{
13200 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13201 struct neon_type_el et = neon_check_type (3, rs,
13202 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13203 unsigned int tmp;
13204
13205 tmp = inst.operands[2].reg;
13206 inst.operands[2].reg = inst.operands[1].reg;
13207 inst.operands[1].reg = tmp;
13208 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13209}
13210
5287ad62
JB
13211static int
13212neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13213{
036dc3f7
PB
13214 /* Handle .I8 pseudo-instructions. */
13215 if (size == 8)
5287ad62 13216 {
5287ad62
JB
13217 /* Unfortunately, this will make everything apart from zero out-of-range.
13218 FIXME is this the intended semantics? There doesn't seem much point in
13219 accepting .I8 if so. */
13220 immediate |= immediate << 8;
13221 size = 16;
036dc3f7
PB
13222 }
13223
13224 if (size >= 32)
13225 {
13226 if (immediate == (immediate & 0x000000ff))
13227 {
13228 *immbits = immediate;
13229 return 0x1;
13230 }
13231 else if (immediate == (immediate & 0x0000ff00))
13232 {
13233 *immbits = immediate >> 8;
13234 return 0x3;
13235 }
13236 else if (immediate == (immediate & 0x00ff0000))
13237 {
13238 *immbits = immediate >> 16;
13239 return 0x5;
13240 }
13241 else if (immediate == (immediate & 0xff000000))
13242 {
13243 *immbits = immediate >> 24;
13244 return 0x7;
13245 }
13246 if ((immediate & 0xffff) != (immediate >> 16))
13247 goto bad_immediate;
13248 immediate &= 0xffff;
5287ad62
JB
13249 }
13250
13251 if (immediate == (immediate & 0x000000ff))
13252 {
13253 *immbits = immediate;
036dc3f7 13254 return 0x9;
5287ad62
JB
13255 }
13256 else if (immediate == (immediate & 0x0000ff00))
13257 {
13258 *immbits = immediate >> 8;
036dc3f7 13259 return 0xb;
5287ad62
JB
13260 }
13261
13262 bad_immediate:
dcbf9037 13263 first_error (_("immediate value out of range"));
5287ad62
JB
13264 return FAIL;
13265}
13266
13267/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13268 A, B, C, D. */
13269
13270static int
13271neon_bits_same_in_bytes (unsigned imm)
13272{
13273 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13274 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13275 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13276 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13277}
13278
13279/* For immediate of above form, return 0bABCD. */
13280
13281static unsigned
13282neon_squash_bits (unsigned imm)
13283{
13284 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13285 | ((imm & 0x01000000) >> 21);
13286}
13287
136da414 13288/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13289
13290static unsigned
13291neon_qfloat_bits (unsigned imm)
13292{
136da414 13293 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13294}
13295
13296/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13297 the instruction. *OP is passed as the initial value of the op field, and
13298 may be set to a different value depending on the constant (i.e.
13299 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13300 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13301 try smaller element sizes. */
5287ad62
JB
13302
13303static int
c96612cc
JB
13304neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13305 unsigned *immbits, int *op, int size,
13306 enum neon_el_type type)
5287ad62 13307{
c96612cc
JB
13308 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13309 float. */
13310 if (type == NT_float && !float_p)
13311 return FAIL;
13312
136da414
JB
13313 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13314 {
13315 if (size != 32 || *op == 1)
13316 return FAIL;
13317 *immbits = neon_qfloat_bits (immlo);
13318 return 0xf;
13319 }
036dc3f7
PB
13320
13321 if (size == 64)
5287ad62 13322 {
036dc3f7
PB
13323 if (neon_bits_same_in_bytes (immhi)
13324 && neon_bits_same_in_bytes (immlo))
13325 {
13326 if (*op == 1)
13327 return FAIL;
13328 *immbits = (neon_squash_bits (immhi) << 4)
13329 | neon_squash_bits (immlo);
13330 *op = 1;
13331 return 0xe;
13332 }
13333
13334 if (immhi != immlo)
13335 return FAIL;
5287ad62 13336 }
036dc3f7
PB
13337
13338 if (size >= 32)
5287ad62 13339 {
036dc3f7
PB
13340 if (immlo == (immlo & 0x000000ff))
13341 {
13342 *immbits = immlo;
13343 return 0x0;
13344 }
13345 else if (immlo == (immlo & 0x0000ff00))
13346 {
13347 *immbits = immlo >> 8;
13348 return 0x2;
13349 }
13350 else if (immlo == (immlo & 0x00ff0000))
13351 {
13352 *immbits = immlo >> 16;
13353 return 0x4;
13354 }
13355 else if (immlo == (immlo & 0xff000000))
13356 {
13357 *immbits = immlo >> 24;
13358 return 0x6;
13359 }
13360 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13361 {
13362 *immbits = (immlo >> 8) & 0xff;
13363 return 0xc;
13364 }
13365 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13366 {
13367 *immbits = (immlo >> 16) & 0xff;
13368 return 0xd;
13369 }
13370
13371 if ((immlo & 0xffff) != (immlo >> 16))
13372 return FAIL;
13373 immlo &= 0xffff;
5287ad62 13374 }
036dc3f7
PB
13375
13376 if (size >= 16)
5287ad62 13377 {
036dc3f7
PB
13378 if (immlo == (immlo & 0x000000ff))
13379 {
13380 *immbits = immlo;
13381 return 0x8;
13382 }
13383 else if (immlo == (immlo & 0x0000ff00))
13384 {
13385 *immbits = immlo >> 8;
13386 return 0xa;
13387 }
13388
13389 if ((immlo & 0xff) != (immlo >> 8))
13390 return FAIL;
13391 immlo &= 0xff;
5287ad62 13392 }
036dc3f7
PB
13393
13394 if (immlo == (immlo & 0x000000ff))
5287ad62 13395 {
036dc3f7
PB
13396 /* Don't allow MVN with 8-bit immediate. */
13397 if (*op == 1)
13398 return FAIL;
13399 *immbits = immlo;
13400 return 0xe;
5287ad62 13401 }
5287ad62
JB
13402
13403 return FAIL;
13404}
13405
13406/* Write immediate bits [7:0] to the following locations:
13407
13408 |28/24|23 19|18 16|15 4|3 0|
13409 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13410
13411 This function is used by VMOV/VMVN/VORR/VBIC. */
13412
13413static void
13414neon_write_immbits (unsigned immbits)
13415{
13416 inst.instruction |= immbits & 0xf;
13417 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13418 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13419}
13420
13421/* Invert low-order SIZE bits of XHI:XLO. */
13422
13423static void
13424neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13425{
13426 unsigned immlo = xlo ? *xlo : 0;
13427 unsigned immhi = xhi ? *xhi : 0;
13428
13429 switch (size)
13430 {
13431 case 8:
13432 immlo = (~immlo) & 0xff;
13433 break;
13434
13435 case 16:
13436 immlo = (~immlo) & 0xffff;
13437 break;
13438
13439 case 64:
13440 immhi = (~immhi) & 0xffffffff;
13441 /* fall through. */
13442
13443 case 32:
13444 immlo = (~immlo) & 0xffffffff;
13445 break;
13446
13447 default:
13448 abort ();
13449 }
13450
13451 if (xlo)
13452 *xlo = immlo;
13453
13454 if (xhi)
13455 *xhi = immhi;
13456}
13457
13458static void
13459do_neon_logic (void)
13460{
13461 if (inst.operands[2].present && inst.operands[2].isreg)
13462 {
037e8744 13463 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13464 neon_check_type (3, rs, N_IGNORE_TYPE);
13465 /* U bit and size field were set as part of the bitmask. */
88714cb8 13466 NEON_ENCODE (INTEGER, inst);
037e8744 13467 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13468 }
13469 else
13470 {
4316f0d2
DG
13471 const int three_ops_form = (inst.operands[2].present
13472 && !inst.operands[2].isreg);
13473 const int immoperand = (three_ops_form ? 2 : 1);
13474 enum neon_shape rs = (three_ops_form
13475 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13476 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13477 struct neon_type_el et = neon_check_type (2, rs,
13478 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13479 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13480 unsigned immbits;
13481 int cmode;
5f4273c7 13482
5287ad62
JB
13483 if (et.type == NT_invtype)
13484 return;
5f4273c7 13485
4316f0d2
DG
13486 if (three_ops_form)
13487 constraint (inst.operands[0].reg != inst.operands[1].reg,
13488 _("first and second operands shall be the same register"));
13489
88714cb8 13490 NEON_ENCODE (IMMED, inst);
5287ad62 13491
4316f0d2 13492 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13493 if (et.size == 64)
13494 {
13495 /* .i64 is a pseudo-op, so the immediate must be a repeating
13496 pattern. */
4316f0d2
DG
13497 if (immbits != (inst.operands[immoperand].regisimm ?
13498 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13499 {
13500 /* Set immbits to an invalid constant. */
13501 immbits = 0xdeadbeef;
13502 }
13503 }
13504
5287ad62
JB
13505 switch (opcode)
13506 {
13507 case N_MNEM_vbic:
036dc3f7 13508 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13509 break;
5f4273c7 13510
5287ad62 13511 case N_MNEM_vorr:
036dc3f7 13512 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13513 break;
5f4273c7 13514
5287ad62
JB
13515 case N_MNEM_vand:
13516 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13517 neon_invert_size (&immbits, 0, et.size);
13518 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13519 break;
5f4273c7 13520
5287ad62
JB
13521 case N_MNEM_vorn:
13522 /* Pseudo-instruction for VORR. */
5287ad62
JB
13523 neon_invert_size (&immbits, 0, et.size);
13524 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13525 break;
5f4273c7 13526
5287ad62
JB
13527 default:
13528 abort ();
13529 }
13530
13531 if (cmode == FAIL)
13532 return;
13533
037e8744 13534 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13535 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13536 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13537 inst.instruction |= cmode << 8;
13538 neon_write_immbits (immbits);
5f4273c7 13539
88714cb8 13540 neon_dp_fixup (&inst);
5287ad62
JB
13541 }
13542}
13543
13544static void
13545do_neon_bitfield (void)
13546{
037e8744 13547 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13548 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13549 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13550}
13551
13552static void
dcbf9037
JB
13553neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13554 unsigned destbits)
5287ad62 13555{
037e8744 13556 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13557 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13558 types | N_KEY);
5287ad62
JB
13559 if (et.type == NT_float)
13560 {
88714cb8 13561 NEON_ENCODE (FLOAT, inst);
037e8744 13562 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13563 }
13564 else
13565 {
88714cb8 13566 NEON_ENCODE (INTEGER, inst);
037e8744 13567 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13568 }
13569}
13570
13571static void
13572do_neon_dyadic_if_su (void)
13573{
dcbf9037 13574 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13575}
13576
13577static void
13578do_neon_dyadic_if_su_d (void)
13579{
13580 /* This version only allow D registers, but that constraint is enforced during
13581 operand parsing so we don't need to do anything extra here. */
dcbf9037 13582 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13583}
13584
5287ad62
JB
13585static void
13586do_neon_dyadic_if_i_d (void)
13587{
428e3f1f
PB
13588 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13589 affected if we specify unsigned args. */
13590 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13591}
13592
037e8744
JB
13593enum vfp_or_neon_is_neon_bits
13594{
13595 NEON_CHECK_CC = 1,
13596 NEON_CHECK_ARCH = 2
13597};
13598
13599/* Call this function if an instruction which may have belonged to the VFP or
13600 Neon instruction sets, but turned out to be a Neon instruction (due to the
13601 operand types involved, etc.). We have to check and/or fix-up a couple of
13602 things:
13603
13604 - Make sure the user hasn't attempted to make a Neon instruction
13605 conditional.
13606 - Alter the value in the condition code field if necessary.
13607 - Make sure that the arch supports Neon instructions.
13608
13609 Which of these operations take place depends on bits from enum
13610 vfp_or_neon_is_neon_bits.
13611
13612 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13613 current instruction's condition is COND_ALWAYS, the condition field is
13614 changed to inst.uncond_value. This is necessary because instructions shared
13615 between VFP and Neon may be conditional for the VFP variants only, and the
13616 unconditional Neon version must have, e.g., 0xF in the condition field. */
13617
13618static int
13619vfp_or_neon_is_neon (unsigned check)
13620{
13621 /* Conditions are always legal in Thumb mode (IT blocks). */
13622 if (!thumb_mode && (check & NEON_CHECK_CC))
13623 {
13624 if (inst.cond != COND_ALWAYS)
13625 {
13626 first_error (_(BAD_COND));
13627 return FAIL;
13628 }
13629 if (inst.uncond_value != -1)
13630 inst.instruction |= inst.uncond_value << 28;
13631 }
5f4273c7 13632
037e8744
JB
13633 if ((check & NEON_CHECK_ARCH)
13634 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13635 {
13636 first_error (_(BAD_FPU));
13637 return FAIL;
13638 }
5f4273c7 13639
037e8744
JB
13640 return SUCCESS;
13641}
13642
5287ad62
JB
13643static void
13644do_neon_addsub_if_i (void)
13645{
037e8744
JB
13646 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13647 return;
13648
13649 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13650 return;
13651
5287ad62
JB
13652 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13653 affected if we specify unsigned args. */
dcbf9037 13654 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13655}
13656
13657/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13658 result to be:
13659 V<op> A,B (A is operand 0, B is operand 2)
13660 to mean:
13661 V<op> A,B,A
13662 not:
13663 V<op> A,B,B
13664 so handle that case specially. */
13665
13666static void
13667neon_exchange_operands (void)
13668{
13669 void *scratch = alloca (sizeof (inst.operands[0]));
13670 if (inst.operands[1].present)
13671 {
13672 /* Swap operands[1] and operands[2]. */
13673 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13674 inst.operands[1] = inst.operands[2];
13675 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13676 }
13677 else
13678 {
13679 inst.operands[1] = inst.operands[2];
13680 inst.operands[2] = inst.operands[0];
13681 }
13682}
13683
13684static void
13685neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13686{
13687 if (inst.operands[2].isreg)
13688 {
13689 if (invert)
13690 neon_exchange_operands ();
dcbf9037 13691 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13692 }
13693 else
13694 {
037e8744 13695 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13696 struct neon_type_el et = neon_check_type (2, rs,
13697 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13698
88714cb8 13699 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13700 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13701 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13702 inst.instruction |= LOW4 (inst.operands[1].reg);
13703 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13704 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13705 inst.instruction |= (et.type == NT_float) << 10;
13706 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13707
88714cb8 13708 neon_dp_fixup (&inst);
5287ad62
JB
13709 }
13710}
13711
13712static void
13713do_neon_cmp (void)
13714{
13715 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13716}
13717
13718static void
13719do_neon_cmp_inv (void)
13720{
13721 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13722}
13723
13724static void
13725do_neon_ceq (void)
13726{
13727 neon_compare (N_IF_32, N_IF_32, FALSE);
13728}
13729
13730/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13731 scalars, which are encoded in 5 bits, M : Rm.
13732 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13733 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13734 index in M. */
13735
13736static unsigned
13737neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13738{
dcbf9037
JB
13739 unsigned regno = NEON_SCALAR_REG (scalar);
13740 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13741
13742 switch (elsize)
13743 {
13744 case 16:
13745 if (regno > 7 || elno > 3)
13746 goto bad_scalar;
13747 return regno | (elno << 3);
5f4273c7 13748
5287ad62
JB
13749 case 32:
13750 if (regno > 15 || elno > 1)
13751 goto bad_scalar;
13752 return regno | (elno << 4);
13753
13754 default:
13755 bad_scalar:
dcbf9037 13756 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13757 }
13758
13759 return 0;
13760}
13761
13762/* Encode multiply / multiply-accumulate scalar instructions. */
13763
13764static void
13765neon_mul_mac (struct neon_type_el et, int ubit)
13766{
dcbf9037
JB
13767 unsigned scalar;
13768
13769 /* Give a more helpful error message if we have an invalid type. */
13770 if (et.type == NT_invtype)
13771 return;
5f4273c7 13772
dcbf9037 13773 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13774 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13775 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13776 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13777 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13778 inst.instruction |= LOW4 (scalar);
13779 inst.instruction |= HI1 (scalar) << 5;
13780 inst.instruction |= (et.type == NT_float) << 8;
13781 inst.instruction |= neon_logbits (et.size) << 20;
13782 inst.instruction |= (ubit != 0) << 24;
13783
88714cb8 13784 neon_dp_fixup (&inst);
5287ad62
JB
13785}
13786
13787static void
13788do_neon_mac_maybe_scalar (void)
13789{
037e8744
JB
13790 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13791 return;
13792
13793 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13794 return;
13795
5287ad62
JB
13796 if (inst.operands[2].isscalar)
13797 {
037e8744 13798 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13799 struct neon_type_el et = neon_check_type (3, rs,
13800 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13801 NEON_ENCODE (SCALAR, inst);
037e8744 13802 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13803 }
13804 else
428e3f1f
PB
13805 {
13806 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13807 affected if we specify unsigned args. */
13808 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13809 }
5287ad62
JB
13810}
13811
62f3b8c8
PB
13812static void
13813do_neon_fmac (void)
13814{
13815 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13816 return;
13817
13818 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13819 return;
13820
13821 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13822}
13823
5287ad62
JB
13824static void
13825do_neon_tst (void)
13826{
037e8744 13827 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13828 struct neon_type_el et = neon_check_type (3, rs,
13829 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13830 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13831}
13832
13833/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13834 same types as the MAC equivalents. The polynomial type for this instruction
13835 is encoded the same as the integer type. */
13836
13837static void
13838do_neon_mul (void)
13839{
037e8744
JB
13840 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13841 return;
13842
13843 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13844 return;
13845
5287ad62
JB
13846 if (inst.operands[2].isscalar)
13847 do_neon_mac_maybe_scalar ();
13848 else
dcbf9037 13849 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13850}
13851
13852static void
13853do_neon_qdmulh (void)
13854{
13855 if (inst.operands[2].isscalar)
13856 {
037e8744 13857 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13858 struct neon_type_el et = neon_check_type (3, rs,
13859 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13860 NEON_ENCODE (SCALAR, inst);
037e8744 13861 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13862 }
13863 else
13864 {
037e8744 13865 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13866 struct neon_type_el et = neon_check_type (3, rs,
13867 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13868 NEON_ENCODE (INTEGER, inst);
5287ad62 13869 /* The U bit (rounding) comes from bit mask. */
037e8744 13870 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13871 }
13872}
13873
13874static void
13875do_neon_fcmp_absolute (void)
13876{
037e8744 13877 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13878 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13879 /* Size field comes from bit mask. */
037e8744 13880 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13881}
13882
13883static void
13884do_neon_fcmp_absolute_inv (void)
13885{
13886 neon_exchange_operands ();
13887 do_neon_fcmp_absolute ();
13888}
13889
13890static void
13891do_neon_step (void)
13892{
037e8744 13893 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13894 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13895 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13896}
13897
13898static void
13899do_neon_abs_neg (void)
13900{
037e8744
JB
13901 enum neon_shape rs;
13902 struct neon_type_el et;
5f4273c7 13903
037e8744
JB
13904 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13905 return;
13906
13907 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13908 return;
13909
13910 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13911 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13912
5287ad62
JB
13913 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13914 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13915 inst.instruction |= LOW4 (inst.operands[1].reg);
13916 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13917 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13918 inst.instruction |= (et.type == NT_float) << 10;
13919 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13920
88714cb8 13921 neon_dp_fixup (&inst);
5287ad62
JB
13922}
13923
13924static void
13925do_neon_sli (void)
13926{
037e8744 13927 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13928 struct neon_type_el et = neon_check_type (2, rs,
13929 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13930 int imm = inst.operands[2].imm;
13931 constraint (imm < 0 || (unsigned)imm >= et.size,
13932 _("immediate out of range for insert"));
037e8744 13933 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13934}
13935
13936static void
13937do_neon_sri (void)
13938{
037e8744 13939 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13940 struct neon_type_el et = neon_check_type (2, rs,
13941 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13942 int imm = inst.operands[2].imm;
13943 constraint (imm < 1 || (unsigned)imm > et.size,
13944 _("immediate out of range for insert"));
037e8744 13945 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13946}
13947
13948static void
13949do_neon_qshlu_imm (void)
13950{
037e8744 13951 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13952 struct neon_type_el et = neon_check_type (2, rs,
13953 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13954 int imm = inst.operands[2].imm;
13955 constraint (imm < 0 || (unsigned)imm >= et.size,
13956 _("immediate out of range for shift"));
13957 /* Only encodes the 'U present' variant of the instruction.
13958 In this case, signed types have OP (bit 8) set to 0.
13959 Unsigned types have OP set to 1. */
13960 inst.instruction |= (et.type == NT_unsigned) << 8;
13961 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13962 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13963}
13964
13965static void
13966do_neon_qmovn (void)
13967{
13968 struct neon_type_el et = neon_check_type (2, NS_DQ,
13969 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13970 /* Saturating move where operands can be signed or unsigned, and the
13971 destination has the same signedness. */
88714cb8 13972 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13973 if (et.type == NT_unsigned)
13974 inst.instruction |= 0xc0;
13975 else
13976 inst.instruction |= 0x80;
13977 neon_two_same (0, 1, et.size / 2);
13978}
13979
13980static void
13981do_neon_qmovun (void)
13982{
13983 struct neon_type_el et = neon_check_type (2, NS_DQ,
13984 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13985 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13986 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13987 neon_two_same (0, 1, et.size / 2);
13988}
13989
13990static void
13991do_neon_rshift_sat_narrow (void)
13992{
13993 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13994 or unsigned. If operands are unsigned, results must also be unsigned. */
13995 struct neon_type_el et = neon_check_type (2, NS_DQI,
13996 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13997 int imm = inst.operands[2].imm;
13998 /* This gets the bounds check, size encoding and immediate bits calculation
13999 right. */
14000 et.size /= 2;
5f4273c7 14001
5287ad62
JB
14002 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14003 VQMOVN.I<size> <Dd>, <Qm>. */
14004 if (imm == 0)
14005 {
14006 inst.operands[2].present = 0;
14007 inst.instruction = N_MNEM_vqmovn;
14008 do_neon_qmovn ();
14009 return;
14010 }
5f4273c7 14011
5287ad62
JB
14012 constraint (imm < 1 || (unsigned)imm > et.size,
14013 _("immediate out of range"));
14014 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14015}
14016
14017static void
14018do_neon_rshift_sat_narrow_u (void)
14019{
14020 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14021 or unsigned. If operands are unsigned, results must also be unsigned. */
14022 struct neon_type_el et = neon_check_type (2, NS_DQI,
14023 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14024 int imm = inst.operands[2].imm;
14025 /* This gets the bounds check, size encoding and immediate bits calculation
14026 right. */
14027 et.size /= 2;
14028
14029 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14030 VQMOVUN.I<size> <Dd>, <Qm>. */
14031 if (imm == 0)
14032 {
14033 inst.operands[2].present = 0;
14034 inst.instruction = N_MNEM_vqmovun;
14035 do_neon_qmovun ();
14036 return;
14037 }
14038
14039 constraint (imm < 1 || (unsigned)imm > et.size,
14040 _("immediate out of range"));
14041 /* FIXME: The manual is kind of unclear about what value U should have in
14042 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14043 must be 1. */
14044 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14045}
14046
14047static void
14048do_neon_movn (void)
14049{
14050 struct neon_type_el et = neon_check_type (2, NS_DQ,
14051 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14052 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14053 neon_two_same (0, 1, et.size / 2);
14054}
14055
14056static void
14057do_neon_rshift_narrow (void)
14058{
14059 struct neon_type_el et = neon_check_type (2, NS_DQI,
14060 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14061 int imm = inst.operands[2].imm;
14062 /* This gets the bounds check, size encoding and immediate bits calculation
14063 right. */
14064 et.size /= 2;
5f4273c7 14065
5287ad62
JB
14066 /* If immediate is zero then we are a pseudo-instruction for
14067 VMOVN.I<size> <Dd>, <Qm> */
14068 if (imm == 0)
14069 {
14070 inst.operands[2].present = 0;
14071 inst.instruction = N_MNEM_vmovn;
14072 do_neon_movn ();
14073 return;
14074 }
5f4273c7 14075
5287ad62
JB
14076 constraint (imm < 1 || (unsigned)imm > et.size,
14077 _("immediate out of range for narrowing operation"));
14078 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14079}
14080
14081static void
14082do_neon_shll (void)
14083{
14084 /* FIXME: Type checking when lengthening. */
14085 struct neon_type_el et = neon_check_type (2, NS_QDI,
14086 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14087 unsigned imm = inst.operands[2].imm;
14088
14089 if (imm == et.size)
14090 {
14091 /* Maximum shift variant. */
88714cb8 14092 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14093 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14094 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14095 inst.instruction |= LOW4 (inst.operands[1].reg);
14096 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14097 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14098
88714cb8 14099 neon_dp_fixup (&inst);
5287ad62
JB
14100 }
14101 else
14102 {
14103 /* A more-specific type check for non-max versions. */
14104 et = neon_check_type (2, NS_QDI,
14105 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14106 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14107 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14108 }
14109}
14110
037e8744 14111/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14112 the current instruction is. */
14113
14114static int
14115neon_cvt_flavour (enum neon_shape rs)
14116{
037e8744
JB
14117#define CVT_VAR(C,X,Y) \
14118 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14119 if (et.type != NT_invtype) \
14120 { \
14121 inst.error = NULL; \
14122 return (C); \
5287ad62
JB
14123 }
14124 struct neon_type_el et;
037e8744
JB
14125 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14126 || rs == NS_FF) ? N_VFP : 0;
14127 /* The instruction versions which take an immediate take one register
14128 argument, which is extended to the width of the full register. Thus the
14129 "source" and "destination" registers must have the same width. Hack that
14130 here by making the size equal to the key (wider, in this case) operand. */
14131 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14132
5287ad62
JB
14133 CVT_VAR (0, N_S32, N_F32);
14134 CVT_VAR (1, N_U32, N_F32);
14135 CVT_VAR (2, N_F32, N_S32);
14136 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14137 /* Half-precision conversions. */
14138 CVT_VAR (4, N_F32, N_F16);
14139 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14140
037e8744 14141 whole_reg = N_VFP;
5f4273c7 14142
037e8744 14143 /* VFP instructions. */
8e79c3df
CM
14144 CVT_VAR (6, N_F32, N_F64);
14145 CVT_VAR (7, N_F64, N_F32);
14146 CVT_VAR (8, N_S32, N_F64 | key);
14147 CVT_VAR (9, N_U32, N_F64 | key);
14148 CVT_VAR (10, N_F64 | key, N_S32);
14149 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14150 /* VFP instructions with bitshift. */
8e79c3df
CM
14151 CVT_VAR (12, N_F32 | key, N_S16);
14152 CVT_VAR (13, N_F32 | key, N_U16);
14153 CVT_VAR (14, N_F64 | key, N_S16);
14154 CVT_VAR (15, N_F64 | key, N_U16);
14155 CVT_VAR (16, N_S16, N_F32 | key);
14156 CVT_VAR (17, N_U16, N_F32 | key);
14157 CVT_VAR (18, N_S16, N_F64 | key);
14158 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14159
5287ad62
JB
14160 return -1;
14161#undef CVT_VAR
14162}
14163
037e8744
JB
14164/* Neon-syntax VFP conversions. */
14165
5287ad62 14166static void
037e8744 14167do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14168{
037e8744 14169 const char *opname = 0;
5f4273c7 14170
037e8744 14171 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14172 {
037e8744
JB
14173 /* Conversions with immediate bitshift. */
14174 const char *enc[] =
14175 {
14176 "ftosls",
14177 "ftouls",
14178 "fsltos",
14179 "fultos",
14180 NULL,
14181 NULL,
8e79c3df
CM
14182 NULL,
14183 NULL,
037e8744
JB
14184 "ftosld",
14185 "ftould",
14186 "fsltod",
14187 "fultod",
14188 "fshtos",
14189 "fuhtos",
14190 "fshtod",
14191 "fuhtod",
14192 "ftoshs",
14193 "ftouhs",
14194 "ftoshd",
14195 "ftouhd"
14196 };
14197
14198 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14199 {
14200 opname = enc[flavour];
14201 constraint (inst.operands[0].reg != inst.operands[1].reg,
14202 _("operands 0 and 1 must be the same register"));
14203 inst.operands[1] = inst.operands[2];
14204 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14205 }
5287ad62
JB
14206 }
14207 else
14208 {
037e8744
JB
14209 /* Conversions without bitshift. */
14210 const char *enc[] =
14211 {
14212 "ftosis",
14213 "ftouis",
14214 "fsitos",
14215 "fuitos",
8e79c3df
CM
14216 "NULL",
14217 "NULL",
037e8744
JB
14218 "fcvtsd",
14219 "fcvtds",
14220 "ftosid",
14221 "ftouid",
14222 "fsitod",
14223 "fuitod"
14224 };
14225
14226 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14227 opname = enc[flavour];
14228 }
14229
14230 if (opname)
14231 do_vfp_nsyn_opcode (opname);
14232}
14233
14234static void
14235do_vfp_nsyn_cvtz (void)
14236{
14237 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14238 int flavour = neon_cvt_flavour (rs);
14239 const char *enc[] =
14240 {
14241 "ftosizs",
14242 "ftouizs",
14243 NULL,
14244 NULL,
14245 NULL,
14246 NULL,
8e79c3df
CM
14247 NULL,
14248 NULL,
037e8744
JB
14249 "ftosizd",
14250 "ftouizd"
14251 };
14252
14253 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14254 do_vfp_nsyn_opcode (enc[flavour]);
14255}
f31fef98 14256
037e8744 14257static void
e3e535bc 14258do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14259{
14260 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14261 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14262 int flavour = neon_cvt_flavour (rs);
14263
e3e535bc
NC
14264 /* PR11109: Handle round-to-zero for VCVT conversions. */
14265 if (round_to_zero
14266 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14267 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14268 && (rs == NS_FD || rs == NS_FF))
14269 {
14270 do_vfp_nsyn_cvtz ();
14271 return;
14272 }
14273
037e8744 14274 /* VFP rather than Neon conversions. */
8e79c3df 14275 if (flavour >= 6)
037e8744
JB
14276 {
14277 do_vfp_nsyn_cvt (rs, flavour);
14278 return;
14279 }
14280
14281 switch (rs)
14282 {
14283 case NS_DDI:
14284 case NS_QQI:
14285 {
35997600
NC
14286 unsigned immbits;
14287 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14288
037e8744
JB
14289 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14290 return;
14291
14292 /* Fixed-point conversion with #0 immediate is encoded as an
14293 integer conversion. */
14294 if (inst.operands[2].present && inst.operands[2].imm == 0)
14295 goto int_encode;
35997600 14296 immbits = 32 - inst.operands[2].imm;
88714cb8 14297 NEON_ENCODE (IMMED, inst);
037e8744
JB
14298 if (flavour != -1)
14299 inst.instruction |= enctab[flavour];
14300 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14301 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14302 inst.instruction |= LOW4 (inst.operands[1].reg);
14303 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14304 inst.instruction |= neon_quad (rs) << 6;
14305 inst.instruction |= 1 << 21;
14306 inst.instruction |= immbits << 16;
14307
88714cb8 14308 neon_dp_fixup (&inst);
037e8744
JB
14309 }
14310 break;
14311
14312 case NS_DD:
14313 case NS_QQ:
14314 int_encode:
14315 {
14316 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14317
88714cb8 14318 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14319
14320 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14321 return;
14322
14323 if (flavour != -1)
14324 inst.instruction |= enctab[flavour];
14325
14326 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14327 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14328 inst.instruction |= LOW4 (inst.operands[1].reg);
14329 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14330 inst.instruction |= neon_quad (rs) << 6;
14331 inst.instruction |= 2 << 18;
14332
88714cb8 14333 neon_dp_fixup (&inst);
037e8744
JB
14334 }
14335 break;
14336
8e79c3df
CM
14337 /* Half-precision conversions for Advanced SIMD -- neon. */
14338 case NS_QD:
14339 case NS_DQ:
14340
14341 if ((rs == NS_DQ)
14342 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14343 {
14344 as_bad (_("operand size must match register width"));
14345 break;
14346 }
14347
14348 if ((rs == NS_QD)
14349 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14350 {
14351 as_bad (_("operand size must match register width"));
14352 break;
14353 }
14354
14355 if (rs == NS_DQ)
14356 inst.instruction = 0x3b60600;
14357 else
14358 inst.instruction = 0x3b60700;
14359
14360 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14361 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14362 inst.instruction |= LOW4 (inst.operands[1].reg);
14363 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14364 neon_dp_fixup (&inst);
8e79c3df
CM
14365 break;
14366
037e8744
JB
14367 default:
14368 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14369 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14370 }
5287ad62
JB
14371}
14372
e3e535bc
NC
14373static void
14374do_neon_cvtr (void)
14375{
14376 do_neon_cvt_1 (FALSE);
14377}
14378
14379static void
14380do_neon_cvt (void)
14381{
14382 do_neon_cvt_1 (TRUE);
14383}
14384
8e79c3df
CM
14385static void
14386do_neon_cvtb (void)
14387{
14388 inst.instruction = 0xeb20a40;
14389
14390 /* The sizes are attached to the mnemonic. */
14391 if (inst.vectype.el[0].type != NT_invtype
14392 && inst.vectype.el[0].size == 16)
14393 inst.instruction |= 0x00010000;
14394
14395 /* Programmer's syntax: the sizes are attached to the operands. */
14396 else if (inst.operands[0].vectype.type != NT_invtype
14397 && inst.operands[0].vectype.size == 16)
14398 inst.instruction |= 0x00010000;
14399
14400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14402 do_vfp_cond_or_thumb ();
14403}
14404
14405
14406static void
14407do_neon_cvtt (void)
14408{
14409 do_neon_cvtb ();
14410 inst.instruction |= 0x80;
14411}
14412
5287ad62
JB
14413static void
14414neon_move_immediate (void)
14415{
037e8744
JB
14416 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14417 struct neon_type_el et = neon_check_type (2, rs,
14418 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14419 unsigned immlo, immhi = 0, immbits;
c96612cc 14420 int op, cmode, float_p;
5287ad62 14421
037e8744
JB
14422 constraint (et.type == NT_invtype,
14423 _("operand size must be specified for immediate VMOV"));
14424
5287ad62
JB
14425 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14426 op = (inst.instruction & (1 << 5)) != 0;
14427
14428 immlo = inst.operands[1].imm;
14429 if (inst.operands[1].regisimm)
14430 immhi = inst.operands[1].reg;
14431
14432 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14433 _("immediate has bits set outside the operand size"));
14434
c96612cc
JB
14435 float_p = inst.operands[1].immisfloat;
14436
14437 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14438 et.size, et.type)) == FAIL)
5287ad62
JB
14439 {
14440 /* Invert relevant bits only. */
14441 neon_invert_size (&immlo, &immhi, et.size);
14442 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14443 with one or the other; those cases are caught by
14444 neon_cmode_for_move_imm. */
14445 op = !op;
c96612cc
JB
14446 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14447 &op, et.size, et.type)) == FAIL)
5287ad62 14448 {
dcbf9037 14449 first_error (_("immediate out of range"));
5287ad62
JB
14450 return;
14451 }
14452 }
14453
14454 inst.instruction &= ~(1 << 5);
14455 inst.instruction |= op << 5;
14456
14457 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14458 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14459 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14460 inst.instruction |= cmode << 8;
14461
14462 neon_write_immbits (immbits);
14463}
14464
14465static void
14466do_neon_mvn (void)
14467{
14468 if (inst.operands[1].isreg)
14469 {
037e8744 14470 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14471
88714cb8 14472 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14475 inst.instruction |= LOW4 (inst.operands[1].reg);
14476 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14477 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14478 }
14479 else
14480 {
88714cb8 14481 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14482 neon_move_immediate ();
14483 }
14484
88714cb8 14485 neon_dp_fixup (&inst);
5287ad62
JB
14486}
14487
14488/* Encode instructions of form:
14489
14490 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14491 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14492
14493static void
14494neon_mixed_length (struct neon_type_el et, unsigned size)
14495{
14496 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14497 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14498 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14499 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14500 inst.instruction |= LOW4 (inst.operands[2].reg);
14501 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14502 inst.instruction |= (et.type == NT_unsigned) << 24;
14503 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14504
88714cb8 14505 neon_dp_fixup (&inst);
5287ad62
JB
14506}
14507
14508static void
14509do_neon_dyadic_long (void)
14510{
14511 /* FIXME: Type checking for lengthening op. */
14512 struct neon_type_el et = neon_check_type (3, NS_QDD,
14513 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14514 neon_mixed_length (et, et.size);
14515}
14516
14517static void
14518do_neon_abal (void)
14519{
14520 struct neon_type_el et = neon_check_type (3, NS_QDD,
14521 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14522 neon_mixed_length (et, et.size);
14523}
14524
14525static void
14526neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14527{
14528 if (inst.operands[2].isscalar)
14529 {
dcbf9037
JB
14530 struct neon_type_el et = neon_check_type (3, NS_QDS,
14531 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14532 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14533 neon_mul_mac (et, et.type == NT_unsigned);
14534 }
14535 else
14536 {
14537 struct neon_type_el et = neon_check_type (3, NS_QDD,
14538 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14539 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14540 neon_mixed_length (et, et.size);
14541 }
14542}
14543
14544static void
14545do_neon_mac_maybe_scalar_long (void)
14546{
14547 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14548}
14549
14550static void
14551do_neon_dyadic_wide (void)
14552{
14553 struct neon_type_el et = neon_check_type (3, NS_QQD,
14554 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14555 neon_mixed_length (et, et.size);
14556}
14557
14558static void
14559do_neon_dyadic_narrow (void)
14560{
14561 struct neon_type_el et = neon_check_type (3, NS_QDD,
14562 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14563 /* Operand sign is unimportant, and the U bit is part of the opcode,
14564 so force the operand type to integer. */
14565 et.type = NT_integer;
5287ad62
JB
14566 neon_mixed_length (et, et.size / 2);
14567}
14568
14569static void
14570do_neon_mul_sat_scalar_long (void)
14571{
14572 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14573}
14574
14575static void
14576do_neon_vmull (void)
14577{
14578 if (inst.operands[2].isscalar)
14579 do_neon_mac_maybe_scalar_long ();
14580 else
14581 {
14582 struct neon_type_el et = neon_check_type (3, NS_QDD,
14583 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14584 if (et.type == NT_poly)
88714cb8 14585 NEON_ENCODE (POLY, inst);
5287ad62 14586 else
88714cb8 14587 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14588 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14589 zero. Should be OK as-is. */
14590 neon_mixed_length (et, et.size);
14591 }
14592}
14593
14594static void
14595do_neon_ext (void)
14596{
037e8744 14597 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14598 struct neon_type_el et = neon_check_type (3, rs,
14599 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14600 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14601
14602 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14603 _("shift out of range"));
5287ad62
JB
14604 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14605 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14606 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14607 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14608 inst.instruction |= LOW4 (inst.operands[2].reg);
14609 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14610 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14611 inst.instruction |= imm << 8;
5f4273c7 14612
88714cb8 14613 neon_dp_fixup (&inst);
5287ad62
JB
14614}
14615
14616static void
14617do_neon_rev (void)
14618{
037e8744 14619 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14620 struct neon_type_el et = neon_check_type (2, rs,
14621 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14622 unsigned op = (inst.instruction >> 7) & 3;
14623 /* N (width of reversed regions) is encoded as part of the bitmask. We
14624 extract it here to check the elements to be reversed are smaller.
14625 Otherwise we'd get a reserved instruction. */
14626 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14627 gas_assert (elsize != 0);
5287ad62
JB
14628 constraint (et.size >= elsize,
14629 _("elements must be smaller than reversal region"));
037e8744 14630 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14631}
14632
14633static void
14634do_neon_dup (void)
14635{
14636 if (inst.operands[1].isscalar)
14637 {
037e8744 14638 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14639 struct neon_type_el et = neon_check_type (2, rs,
14640 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14641 unsigned sizebits = et.size >> 3;
dcbf9037 14642 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14643 int logsize = neon_logbits (et.size);
dcbf9037 14644 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14645
14646 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14647 return;
14648
88714cb8 14649 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14652 inst.instruction |= LOW4 (dm);
14653 inst.instruction |= HI1 (dm) << 5;
037e8744 14654 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14655 inst.instruction |= x << 17;
14656 inst.instruction |= sizebits << 16;
5f4273c7 14657
88714cb8 14658 neon_dp_fixup (&inst);
5287ad62
JB
14659 }
14660 else
14661 {
037e8744
JB
14662 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14663 struct neon_type_el et = neon_check_type (2, rs,
14664 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14665 /* Duplicate ARM register to lanes of vector. */
88714cb8 14666 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14667 switch (et.size)
14668 {
14669 case 8: inst.instruction |= 0x400000; break;
14670 case 16: inst.instruction |= 0x000020; break;
14671 case 32: inst.instruction |= 0x000000; break;
14672 default: break;
14673 }
14674 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14675 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14676 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14677 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14678 /* The encoding for this instruction is identical for the ARM and Thumb
14679 variants, except for the condition field. */
037e8744 14680 do_vfp_cond_or_thumb ();
5287ad62
JB
14681 }
14682}
14683
14684/* VMOV has particularly many variations. It can be one of:
14685 0. VMOV<c><q> <Qd>, <Qm>
14686 1. VMOV<c><q> <Dd>, <Dm>
14687 (Register operations, which are VORR with Rm = Rn.)
14688 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14689 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14690 (Immediate loads.)
14691 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14692 (ARM register to scalar.)
14693 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14694 (Two ARM registers to vector.)
14695 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14696 (Scalar to ARM register.)
14697 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14698 (Vector to two ARM registers.)
037e8744
JB
14699 8. VMOV.F32 <Sd>, <Sm>
14700 9. VMOV.F64 <Dd>, <Dm>
14701 (VFP register moves.)
14702 10. VMOV.F32 <Sd>, #imm
14703 11. VMOV.F64 <Dd>, #imm
14704 (VFP float immediate load.)
14705 12. VMOV <Rd>, <Sm>
14706 (VFP single to ARM reg.)
14707 13. VMOV <Sd>, <Rm>
14708 (ARM reg to VFP single.)
14709 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14710 (Two ARM regs to two VFP singles.)
14711 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14712 (Two VFP singles to two ARM regs.)
5f4273c7 14713
037e8744
JB
14714 These cases can be disambiguated using neon_select_shape, except cases 1/9
14715 and 3/11 which depend on the operand type too.
5f4273c7 14716
5287ad62 14717 All the encoded bits are hardcoded by this function.
5f4273c7 14718
b7fc2769
JB
14719 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14720 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14721
5287ad62 14722 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14723 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14724
14725static void
14726do_neon_mov (void)
14727{
037e8744
JB
14728 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14729 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14730 NS_NULL);
14731 struct neon_type_el et;
14732 const char *ldconst = 0;
5287ad62 14733
037e8744 14734 switch (rs)
5287ad62 14735 {
037e8744
JB
14736 case NS_DD: /* case 1/9. */
14737 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14738 /* It is not an error here if no type is given. */
14739 inst.error = NULL;
14740 if (et.type == NT_float && et.size == 64)
5287ad62 14741 {
037e8744
JB
14742 do_vfp_nsyn_opcode ("fcpyd");
14743 break;
5287ad62 14744 }
037e8744 14745 /* fall through. */
5287ad62 14746
037e8744
JB
14747 case NS_QQ: /* case 0/1. */
14748 {
14749 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14750 return;
14751 /* The architecture manual I have doesn't explicitly state which
14752 value the U bit should have for register->register moves, but
14753 the equivalent VORR instruction has U = 0, so do that. */
14754 inst.instruction = 0x0200110;
14755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14757 inst.instruction |= LOW4 (inst.operands[1].reg);
14758 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14759 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14760 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14761 inst.instruction |= neon_quad (rs) << 6;
14762
88714cb8 14763 neon_dp_fixup (&inst);
037e8744
JB
14764 }
14765 break;
5f4273c7 14766
037e8744
JB
14767 case NS_DI: /* case 3/11. */
14768 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14769 inst.error = NULL;
14770 if (et.type == NT_float && et.size == 64)
5287ad62 14771 {
037e8744
JB
14772 /* case 11 (fconstd). */
14773 ldconst = "fconstd";
14774 goto encode_fconstd;
5287ad62 14775 }
037e8744
JB
14776 /* fall through. */
14777
14778 case NS_QI: /* case 2/3. */
14779 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14780 return;
14781 inst.instruction = 0x0800010;
14782 neon_move_immediate ();
88714cb8 14783 neon_dp_fixup (&inst);
5287ad62 14784 break;
5f4273c7 14785
037e8744
JB
14786 case NS_SR: /* case 4. */
14787 {
14788 unsigned bcdebits = 0;
91d6fa6a 14789 int logsize;
037e8744
JB
14790 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14791 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14792
91d6fa6a
NC
14793 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14794 logsize = neon_logbits (et.size);
14795
037e8744
JB
14796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14797 _(BAD_FPU));
14798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14799 && et.size != 32, _(BAD_FPU));
14800 constraint (et.type == NT_invtype, _("bad type for scalar"));
14801 constraint (x >= 64 / et.size, _("scalar index out of range"));
14802
14803 switch (et.size)
14804 {
14805 case 8: bcdebits = 0x8; break;
14806 case 16: bcdebits = 0x1; break;
14807 case 32: bcdebits = 0x0; break;
14808 default: ;
14809 }
14810
14811 bcdebits |= x << logsize;
14812
14813 inst.instruction = 0xe000b10;
14814 do_vfp_cond_or_thumb ();
14815 inst.instruction |= LOW4 (dn) << 16;
14816 inst.instruction |= HI1 (dn) << 7;
14817 inst.instruction |= inst.operands[1].reg << 12;
14818 inst.instruction |= (bcdebits & 3) << 5;
14819 inst.instruction |= (bcdebits >> 2) << 21;
14820 }
14821 break;
5f4273c7 14822
037e8744 14823 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14824 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14825 _(BAD_FPU));
b7fc2769 14826
037e8744
JB
14827 inst.instruction = 0xc400b10;
14828 do_vfp_cond_or_thumb ();
14829 inst.instruction |= LOW4 (inst.operands[0].reg);
14830 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14831 inst.instruction |= inst.operands[1].reg << 12;
14832 inst.instruction |= inst.operands[2].reg << 16;
14833 break;
5f4273c7 14834
037e8744
JB
14835 case NS_RS: /* case 6. */
14836 {
91d6fa6a 14837 unsigned logsize;
037e8744
JB
14838 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14839 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14840 unsigned abcdebits = 0;
14841
91d6fa6a
NC
14842 et = neon_check_type (2, NS_NULL,
14843 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14844 logsize = neon_logbits (et.size);
14845
037e8744
JB
14846 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14847 _(BAD_FPU));
14848 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14849 && et.size != 32, _(BAD_FPU));
14850 constraint (et.type == NT_invtype, _("bad type for scalar"));
14851 constraint (x >= 64 / et.size, _("scalar index out of range"));
14852
14853 switch (et.size)
14854 {
14855 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14856 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14857 case 32: abcdebits = 0x00; break;
14858 default: ;
14859 }
14860
14861 abcdebits |= x << logsize;
14862 inst.instruction = 0xe100b10;
14863 do_vfp_cond_or_thumb ();
14864 inst.instruction |= LOW4 (dn) << 16;
14865 inst.instruction |= HI1 (dn) << 7;
14866 inst.instruction |= inst.operands[0].reg << 12;
14867 inst.instruction |= (abcdebits & 3) << 5;
14868 inst.instruction |= (abcdebits >> 2) << 21;
14869 }
14870 break;
5f4273c7 14871
037e8744
JB
14872 case NS_RRD: /* case 7 (fmrrd). */
14873 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14874 _(BAD_FPU));
14875
14876 inst.instruction = 0xc500b10;
14877 do_vfp_cond_or_thumb ();
14878 inst.instruction |= inst.operands[0].reg << 12;
14879 inst.instruction |= inst.operands[1].reg << 16;
14880 inst.instruction |= LOW4 (inst.operands[2].reg);
14881 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14882 break;
5f4273c7 14883
037e8744
JB
14884 case NS_FF: /* case 8 (fcpys). */
14885 do_vfp_nsyn_opcode ("fcpys");
14886 break;
5f4273c7 14887
037e8744
JB
14888 case NS_FI: /* case 10 (fconsts). */
14889 ldconst = "fconsts";
14890 encode_fconstd:
14891 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14892 {
037e8744
JB
14893 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14894 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14895 }
14896 else
037e8744
JB
14897 first_error (_("immediate out of range"));
14898 break;
5f4273c7 14899
037e8744
JB
14900 case NS_RF: /* case 12 (fmrs). */
14901 do_vfp_nsyn_opcode ("fmrs");
14902 break;
5f4273c7 14903
037e8744
JB
14904 case NS_FR: /* case 13 (fmsr). */
14905 do_vfp_nsyn_opcode ("fmsr");
14906 break;
5f4273c7 14907
037e8744
JB
14908 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14909 (one of which is a list), but we have parsed four. Do some fiddling to
14910 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14911 expect. */
14912 case NS_RRFF: /* case 14 (fmrrs). */
14913 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14914 _("VFP registers must be adjacent"));
14915 inst.operands[2].imm = 2;
14916 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14917 do_vfp_nsyn_opcode ("fmrrs");
14918 break;
5f4273c7 14919
037e8744
JB
14920 case NS_FFRR: /* case 15 (fmsrr). */
14921 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14922 _("VFP registers must be adjacent"));
14923 inst.operands[1] = inst.operands[2];
14924 inst.operands[2] = inst.operands[3];
14925 inst.operands[0].imm = 2;
14926 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14927 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14928 break;
5f4273c7 14929
5287ad62
JB
14930 default:
14931 abort ();
14932 }
14933}
14934
14935static void
14936do_neon_rshift_round_imm (void)
14937{
037e8744 14938 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14939 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14940 int imm = inst.operands[2].imm;
14941
14942 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14943 if (imm == 0)
14944 {
14945 inst.operands[2].present = 0;
14946 do_neon_mov ();
14947 return;
14948 }
14949
14950 constraint (imm < 1 || (unsigned)imm > et.size,
14951 _("immediate out of range for shift"));
037e8744 14952 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14953 et.size - imm);
14954}
14955
14956static void
14957do_neon_movl (void)
14958{
14959 struct neon_type_el et = neon_check_type (2, NS_QD,
14960 N_EQK | N_DBL, N_SU_32 | N_KEY);
14961 unsigned sizebits = et.size >> 3;
14962 inst.instruction |= sizebits << 19;
14963 neon_two_same (0, et.type == NT_unsigned, -1);
14964}
14965
14966static void
14967do_neon_trn (void)
14968{
037e8744 14969 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14970 struct neon_type_el et = neon_check_type (2, rs,
14971 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14972 NEON_ENCODE (INTEGER, inst);
037e8744 14973 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14974}
14975
14976static void
14977do_neon_zip_uzp (void)
14978{
037e8744 14979 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14980 struct neon_type_el et = neon_check_type (2, rs,
14981 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14982 if (rs == NS_DD && et.size == 32)
14983 {
14984 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14985 inst.instruction = N_MNEM_vtrn;
14986 do_neon_trn ();
14987 return;
14988 }
037e8744 14989 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14990}
14991
14992static void
14993do_neon_sat_abs_neg (void)
14994{
037e8744 14995 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14996 struct neon_type_el et = neon_check_type (2, rs,
14997 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14998 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14999}
15000
15001static void
15002do_neon_pair_long (void)
15003{
037e8744 15004 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15005 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15006 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15007 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15008 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15009}
15010
15011static void
15012do_neon_recip_est (void)
15013{
037e8744 15014 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15015 struct neon_type_el et = neon_check_type (2, rs,
15016 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15017 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15018 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15019}
15020
15021static void
15022do_neon_cls (void)
15023{
037e8744 15024 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15025 struct neon_type_el et = neon_check_type (2, rs,
15026 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15027 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15028}
15029
15030static void
15031do_neon_clz (void)
15032{
037e8744 15033 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15034 struct neon_type_el et = neon_check_type (2, rs,
15035 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15036 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15037}
15038
15039static void
15040do_neon_cnt (void)
15041{
037e8744 15042 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15043 struct neon_type_el et = neon_check_type (2, rs,
15044 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15045 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15046}
15047
15048static void
15049do_neon_swp (void)
15050{
037e8744
JB
15051 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15052 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15053}
15054
15055static void
15056do_neon_tbl_tbx (void)
15057{
15058 unsigned listlenbits;
dcbf9037 15059 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15060
5287ad62
JB
15061 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15062 {
dcbf9037 15063 first_error (_("bad list length for table lookup"));
5287ad62
JB
15064 return;
15065 }
5f4273c7 15066
5287ad62
JB
15067 listlenbits = inst.operands[1].imm - 1;
15068 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15069 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15070 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15071 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15072 inst.instruction |= LOW4 (inst.operands[2].reg);
15073 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15074 inst.instruction |= listlenbits << 8;
5f4273c7 15075
88714cb8 15076 neon_dp_fixup (&inst);
5287ad62
JB
15077}
15078
15079static void
15080do_neon_ldm_stm (void)
15081{
15082 /* P, U and L bits are part of bitmask. */
15083 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15084 unsigned offsetbits = inst.operands[1].imm * 2;
15085
037e8744
JB
15086 if (inst.operands[1].issingle)
15087 {
15088 do_vfp_nsyn_ldm_stm (is_dbmode);
15089 return;
15090 }
15091
5287ad62
JB
15092 constraint (is_dbmode && !inst.operands[0].writeback,
15093 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15094
15095 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15096 _("register list must contain at least 1 and at most 16 "
15097 "registers"));
15098
15099 inst.instruction |= inst.operands[0].reg << 16;
15100 inst.instruction |= inst.operands[0].writeback << 21;
15101 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15102 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15103
15104 inst.instruction |= offsetbits;
5f4273c7 15105
037e8744 15106 do_vfp_cond_or_thumb ();
5287ad62
JB
15107}
15108
15109static void
15110do_neon_ldr_str (void)
15111{
5287ad62 15112 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15113
6844b2c2
MGD
15114 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15115 And is UNPREDICTABLE in thumb mode. */
15116 if (!is_ldr
15117 && inst.operands[1].reg == REG_PC
15118 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15119 {
15120 if (!thumb_mode && warn_on_deprecated)
15121 as_warn (_("Use of PC here is deprecated"));
15122 else
15123 inst.error = _("Use of PC here is UNPREDICTABLE");
15124 }
15125
037e8744
JB
15126 if (inst.operands[0].issingle)
15127 {
cd2f129f
JB
15128 if (is_ldr)
15129 do_vfp_nsyn_opcode ("flds");
15130 else
15131 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15132 }
15133 else
5287ad62 15134 {
cd2f129f
JB
15135 if (is_ldr)
15136 do_vfp_nsyn_opcode ("fldd");
5287ad62 15137 else
cd2f129f 15138 do_vfp_nsyn_opcode ("fstd");
5287ad62 15139 }
5287ad62
JB
15140}
15141
15142/* "interleave" version also handles non-interleaving register VLD1/VST1
15143 instructions. */
15144
15145static void
15146do_neon_ld_st_interleave (void)
15147{
037e8744 15148 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15149 N_8 | N_16 | N_32 | N_64);
15150 unsigned alignbits = 0;
15151 unsigned idx;
15152 /* The bits in this table go:
15153 0: register stride of one (0) or two (1)
15154 1,2: register list length, minus one (1, 2, 3, 4).
15155 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15156 We use -1 for invalid entries. */
15157 const int typetable[] =
15158 {
15159 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15160 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15161 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15162 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15163 };
15164 int typebits;
15165
dcbf9037
JB
15166 if (et.type == NT_invtype)
15167 return;
15168
5287ad62
JB
15169 if (inst.operands[1].immisalign)
15170 switch (inst.operands[1].imm >> 8)
15171 {
15172 case 64: alignbits = 1; break;
15173 case 128:
e23c0ad8
JZ
15174 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15175 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15176 goto bad_alignment;
15177 alignbits = 2;
15178 break;
15179 case 256:
e23c0ad8 15180 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15181 goto bad_alignment;
15182 alignbits = 3;
15183 break;
15184 default:
15185 bad_alignment:
dcbf9037 15186 first_error (_("bad alignment"));
5287ad62
JB
15187 return;
15188 }
15189
15190 inst.instruction |= alignbits << 4;
15191 inst.instruction |= neon_logbits (et.size) << 6;
15192
15193 /* Bits [4:6] of the immediate in a list specifier encode register stride
15194 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15195 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15196 up the right value for "type" in a table based on this value and the given
15197 list style, then stick it back. */
15198 idx = ((inst.operands[0].imm >> 4) & 7)
15199 | (((inst.instruction >> 8) & 3) << 3);
15200
15201 typebits = typetable[idx];
5f4273c7 15202
5287ad62
JB
15203 constraint (typebits == -1, _("bad list type for instruction"));
15204
15205 inst.instruction &= ~0xf00;
15206 inst.instruction |= typebits << 8;
15207}
15208
15209/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15210 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15211 otherwise. The variable arguments are a list of pairs of legal (size, align)
15212 values, terminated with -1. */
15213
15214static int
15215neon_alignment_bit (int size, int align, int *do_align, ...)
15216{
15217 va_list ap;
15218 int result = FAIL, thissize, thisalign;
5f4273c7 15219
5287ad62
JB
15220 if (!inst.operands[1].immisalign)
15221 {
15222 *do_align = 0;
15223 return SUCCESS;
15224 }
5f4273c7 15225
5287ad62
JB
15226 va_start (ap, do_align);
15227
15228 do
15229 {
15230 thissize = va_arg (ap, int);
15231 if (thissize == -1)
15232 break;
15233 thisalign = va_arg (ap, int);
15234
15235 if (size == thissize && align == thisalign)
15236 result = SUCCESS;
15237 }
15238 while (result != SUCCESS);
15239
15240 va_end (ap);
15241
15242 if (result == SUCCESS)
15243 *do_align = 1;
15244 else
dcbf9037 15245 first_error (_("unsupported alignment for instruction"));
5f4273c7 15246
5287ad62
JB
15247 return result;
15248}
15249
15250static void
15251do_neon_ld_st_lane (void)
15252{
037e8744 15253 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15254 int align_good, do_align = 0;
15255 int logsize = neon_logbits (et.size);
15256 int align = inst.operands[1].imm >> 8;
15257 int n = (inst.instruction >> 8) & 3;
15258 int max_el = 64 / et.size;
5f4273c7 15259
dcbf9037
JB
15260 if (et.type == NT_invtype)
15261 return;
5f4273c7 15262
5287ad62
JB
15263 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15264 _("bad list length"));
15265 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15266 _("scalar index out of range"));
15267 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15268 && et.size == 8,
15269 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15270
5287ad62
JB
15271 switch (n)
15272 {
15273 case 0: /* VLD1 / VST1. */
15274 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15275 32, 32, -1);
15276 if (align_good == FAIL)
15277 return;
15278 if (do_align)
15279 {
15280 unsigned alignbits = 0;
15281 switch (et.size)
15282 {
15283 case 16: alignbits = 0x1; break;
15284 case 32: alignbits = 0x3; break;
15285 default: ;
15286 }
15287 inst.instruction |= alignbits << 4;
15288 }
15289 break;
15290
15291 case 1: /* VLD2 / VST2. */
15292 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15293 32, 64, -1);
15294 if (align_good == FAIL)
15295 return;
15296 if (do_align)
15297 inst.instruction |= 1 << 4;
15298 break;
15299
15300 case 2: /* VLD3 / VST3. */
15301 constraint (inst.operands[1].immisalign,
15302 _("can't use alignment with this instruction"));
15303 break;
15304
15305 case 3: /* VLD4 / VST4. */
15306 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15307 16, 64, 32, 64, 32, 128, -1);
15308 if (align_good == FAIL)
15309 return;
15310 if (do_align)
15311 {
15312 unsigned alignbits = 0;
15313 switch (et.size)
15314 {
15315 case 8: alignbits = 0x1; break;
15316 case 16: alignbits = 0x1; break;
15317 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15318 default: ;
15319 }
15320 inst.instruction |= alignbits << 4;
15321 }
15322 break;
15323
15324 default: ;
15325 }
15326
15327 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15328 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15329 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15330
5287ad62
JB
15331 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15332 inst.instruction |= logsize << 10;
15333}
15334
15335/* Encode single n-element structure to all lanes VLD<n> instructions. */
15336
15337static void
15338do_neon_ld_dup (void)
15339{
037e8744 15340 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15341 int align_good, do_align = 0;
15342
dcbf9037
JB
15343 if (et.type == NT_invtype)
15344 return;
15345
5287ad62
JB
15346 switch ((inst.instruction >> 8) & 3)
15347 {
15348 case 0: /* VLD1. */
9c2799c2 15349 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15350 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15351 &do_align, 16, 16, 32, 32, -1);
15352 if (align_good == FAIL)
15353 return;
15354 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15355 {
15356 case 1: break;
15357 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15358 default: first_error (_("bad list length")); return;
5287ad62
JB
15359 }
15360 inst.instruction |= neon_logbits (et.size) << 6;
15361 break;
15362
15363 case 1: /* VLD2. */
15364 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15365 &do_align, 8, 16, 16, 32, 32, 64, -1);
15366 if (align_good == FAIL)
15367 return;
15368 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15369 _("bad list length"));
15370 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15371 inst.instruction |= 1 << 5;
15372 inst.instruction |= neon_logbits (et.size) << 6;
15373 break;
15374
15375 case 2: /* VLD3. */
15376 constraint (inst.operands[1].immisalign,
15377 _("can't use alignment with this instruction"));
15378 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15379 _("bad list length"));
15380 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15381 inst.instruction |= 1 << 5;
15382 inst.instruction |= neon_logbits (et.size) << 6;
15383 break;
15384
15385 case 3: /* VLD4. */
15386 {
15387 int align = inst.operands[1].imm >> 8;
15388 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15389 16, 64, 32, 64, 32, 128, -1);
15390 if (align_good == FAIL)
15391 return;
15392 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15393 _("bad list length"));
15394 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15395 inst.instruction |= 1 << 5;
15396 if (et.size == 32 && align == 128)
15397 inst.instruction |= 0x3 << 6;
15398 else
15399 inst.instruction |= neon_logbits (et.size) << 6;
15400 }
15401 break;
15402
15403 default: ;
15404 }
15405
15406 inst.instruction |= do_align << 4;
15407}
15408
15409/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15410 apart from bits [11:4]. */
15411
15412static void
15413do_neon_ldx_stx (void)
15414{
b1a769ed
DG
15415 if (inst.operands[1].isreg)
15416 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15417
5287ad62
JB
15418 switch (NEON_LANE (inst.operands[0].imm))
15419 {
15420 case NEON_INTERLEAVE_LANES:
88714cb8 15421 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15422 do_neon_ld_st_interleave ();
15423 break;
5f4273c7 15424
5287ad62 15425 case NEON_ALL_LANES:
88714cb8 15426 NEON_ENCODE (DUP, inst);
5287ad62
JB
15427 do_neon_ld_dup ();
15428 break;
5f4273c7 15429
5287ad62 15430 default:
88714cb8 15431 NEON_ENCODE (LANE, inst);
5287ad62
JB
15432 do_neon_ld_st_lane ();
15433 }
15434
15435 /* L bit comes from bit mask. */
15436 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15437 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15438 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15439
5287ad62
JB
15440 if (inst.operands[1].postind)
15441 {
15442 int postreg = inst.operands[1].imm & 0xf;
15443 constraint (!inst.operands[1].immisreg,
15444 _("post-index must be a register"));
15445 constraint (postreg == 0xd || postreg == 0xf,
15446 _("bad register for post-index"));
15447 inst.instruction |= postreg;
15448 }
15449 else if (inst.operands[1].writeback)
15450 {
15451 inst.instruction |= 0xd;
15452 }
15453 else
5f4273c7
NC
15454 inst.instruction |= 0xf;
15455
5287ad62
JB
15456 if (thumb_mode)
15457 inst.instruction |= 0xf9000000;
15458 else
15459 inst.instruction |= 0xf4000000;
15460}
5287ad62
JB
15461\f
15462/* Overall per-instruction processing. */
15463
15464/* We need to be able to fix up arbitrary expressions in some statements.
15465 This is so that we can handle symbols that are an arbitrary distance from
15466 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15467 which returns part of an address in a form which will be valid for
15468 a data instruction. We do this by pushing the expression into a symbol
15469 in the expr_section, and creating a fix for that. */
15470
15471static void
15472fix_new_arm (fragS * frag,
15473 int where,
15474 short int size,
15475 expressionS * exp,
15476 int pc_rel,
15477 int reloc)
15478{
15479 fixS * new_fix;
15480
15481 switch (exp->X_op)
15482 {
15483 case O_constant:
6e7ce2cd
PB
15484 if (pc_rel)
15485 {
15486 /* Create an absolute valued symbol, so we have something to
15487 refer to in the object file. Unfortunately for us, gas's
15488 generic expression parsing will already have folded out
15489 any use of .set foo/.type foo %function that may have
15490 been used to set type information of the target location,
15491 that's being specified symbolically. We have to presume
15492 the user knows what they are doing. */
15493 char name[16 + 8];
15494 symbolS *symbol;
15495
15496 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15497
15498 symbol = symbol_find_or_make (name);
15499 S_SET_SEGMENT (symbol, absolute_section);
15500 symbol_set_frag (symbol, &zero_address_frag);
15501 S_SET_VALUE (symbol, exp->X_add_number);
15502 exp->X_op = O_symbol;
15503 exp->X_add_symbol = symbol;
15504 exp->X_add_number = 0;
15505 }
15506 /* FALLTHROUGH */
5287ad62
JB
15507 case O_symbol:
15508 case O_add:
15509 case O_subtract:
21d799b5
NC
15510 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15511 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15512 break;
15513
15514 default:
21d799b5
NC
15515 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15516 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15517 break;
15518 }
15519
15520 /* Mark whether the fix is to a THUMB instruction, or an ARM
15521 instruction. */
15522 new_fix->tc_fix_data = thumb_mode;
15523}
15524
15525/* Create a frg for an instruction requiring relaxation. */
15526static void
15527output_relax_insn (void)
15528{
15529 char * to;
15530 symbolS *sym;
0110f2b8
PB
15531 int offset;
15532
6e1cb1a6
PB
15533 /* The size of the instruction is unknown, so tie the debug info to the
15534 start of the instruction. */
15535 dwarf2_emit_insn (0);
6e1cb1a6 15536
0110f2b8
PB
15537 switch (inst.reloc.exp.X_op)
15538 {
15539 case O_symbol:
15540 sym = inst.reloc.exp.X_add_symbol;
15541 offset = inst.reloc.exp.X_add_number;
15542 break;
15543 case O_constant:
15544 sym = NULL;
15545 offset = inst.reloc.exp.X_add_number;
15546 break;
15547 default:
15548 sym = make_expr_symbol (&inst.reloc.exp);
15549 offset = 0;
15550 break;
15551 }
15552 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15553 inst.relax, sym, offset, NULL/*offset, opcode*/);
15554 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15555}
15556
15557/* Write a 32-bit thumb instruction to buf. */
15558static void
15559put_thumb32_insn (char * buf, unsigned long insn)
15560{
15561 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15562 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15563}
15564
b99bd4ef 15565static void
c19d1205 15566output_inst (const char * str)
b99bd4ef 15567{
c19d1205 15568 char * to = NULL;
b99bd4ef 15569
c19d1205 15570 if (inst.error)
b99bd4ef 15571 {
c19d1205 15572 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15573 return;
15574 }
5f4273c7
NC
15575 if (inst.relax)
15576 {
15577 output_relax_insn ();
0110f2b8 15578 return;
5f4273c7 15579 }
c19d1205
ZW
15580 if (inst.size == 0)
15581 return;
b99bd4ef 15582
c19d1205 15583 to = frag_more (inst.size);
8dc2430f
NC
15584 /* PR 9814: Record the thumb mode into the current frag so that we know
15585 what type of NOP padding to use, if necessary. We override any previous
15586 setting so that if the mode has changed then the NOPS that we use will
15587 match the encoding of the last instruction in the frag. */
cd000bff 15588 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15589
15590 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15591 {
9c2799c2 15592 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15593 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15594 }
c19d1205 15595 else if (inst.size > INSN_SIZE)
b99bd4ef 15596 {
9c2799c2 15597 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15598 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15599 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15600 }
c19d1205
ZW
15601 else
15602 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15603
c19d1205
ZW
15604 if (inst.reloc.type != BFD_RELOC_UNUSED)
15605 fix_new_arm (frag_now, to - frag_now->fr_literal,
15606 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15607 inst.reloc.type);
b99bd4ef 15608
c19d1205 15609 dwarf2_emit_insn (inst.size);
c19d1205 15610}
b99bd4ef 15611
e07e6e58
NC
15612static char *
15613output_it_inst (int cond, int mask, char * to)
15614{
15615 unsigned long instruction = 0xbf00;
15616
15617 mask &= 0xf;
15618 instruction |= mask;
15619 instruction |= cond << 4;
15620
15621 if (to == NULL)
15622 {
15623 to = frag_more (2);
15624#ifdef OBJ_ELF
15625 dwarf2_emit_insn (2);
15626#endif
15627 }
15628
15629 md_number_to_chars (to, instruction, 2);
15630
15631 return to;
15632}
15633
c19d1205
ZW
15634/* Tag values used in struct asm_opcode's tag field. */
15635enum opcode_tag
15636{
15637 OT_unconditional, /* Instruction cannot be conditionalized.
15638 The ARM condition field is still 0xE. */
15639 OT_unconditionalF, /* Instruction cannot be conditionalized
15640 and carries 0xF in its ARM condition field. */
15641 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15642 OT_csuffixF, /* Some forms of the instruction take a conditional
15643 suffix, others place 0xF where the condition field
15644 would be. */
c19d1205
ZW
15645 OT_cinfix3, /* Instruction takes a conditional infix,
15646 beginning at character index 3. (In
15647 unified mode, it becomes a suffix.) */
088fa78e
KH
15648 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15649 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15650 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15651 character index 3, even in unified mode. Used for
15652 legacy instructions where suffix and infix forms
15653 may be ambiguous. */
c19d1205 15654 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15655 suffix or an infix at character index 3. */
c19d1205
ZW
15656 OT_odd_infix_unc, /* This is the unconditional variant of an
15657 instruction that takes a conditional infix
15658 at an unusual position. In unified mode,
15659 this variant will accept a suffix. */
15660 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15661 are the conditional variants of instructions that
15662 take conditional infixes in unusual positions.
15663 The infix appears at character index
15664 (tag - OT_odd_infix_0). These are not accepted
15665 in unified mode. */
15666};
b99bd4ef 15667
c19d1205
ZW
15668/* Subroutine of md_assemble, responsible for looking up the primary
15669 opcode from the mnemonic the user wrote. STR points to the
15670 beginning of the mnemonic.
15671
15672 This is not simply a hash table lookup, because of conditional
15673 variants. Most instructions have conditional variants, which are
15674 expressed with a _conditional affix_ to the mnemonic. If we were
15675 to encode each conditional variant as a literal string in the opcode
15676 table, it would have approximately 20,000 entries.
15677
15678 Most mnemonics take this affix as a suffix, and in unified syntax,
15679 'most' is upgraded to 'all'. However, in the divided syntax, some
15680 instructions take the affix as an infix, notably the s-variants of
15681 the arithmetic instructions. Of those instructions, all but six
15682 have the infix appear after the third character of the mnemonic.
15683
15684 Accordingly, the algorithm for looking up primary opcodes given
15685 an identifier is:
15686
15687 1. Look up the identifier in the opcode table.
15688 If we find a match, go to step U.
15689
15690 2. Look up the last two characters of the identifier in the
15691 conditions table. If we find a match, look up the first N-2
15692 characters of the identifier in the opcode table. If we
15693 find a match, go to step CE.
15694
15695 3. Look up the fourth and fifth characters of the identifier in
15696 the conditions table. If we find a match, extract those
15697 characters from the identifier, and look up the remaining
15698 characters in the opcode table. If we find a match, go
15699 to step CM.
15700
15701 4. Fail.
15702
15703 U. Examine the tag field of the opcode structure, in case this is
15704 one of the six instructions with its conditional infix in an
15705 unusual place. If it is, the tag tells us where to find the
15706 infix; look it up in the conditions table and set inst.cond
15707 accordingly. Otherwise, this is an unconditional instruction.
15708 Again set inst.cond accordingly. Return the opcode structure.
15709
15710 CE. Examine the tag field to make sure this is an instruction that
15711 should receive a conditional suffix. If it is not, fail.
15712 Otherwise, set inst.cond from the suffix we already looked up,
15713 and return the opcode structure.
15714
15715 CM. Examine the tag field to make sure this is an instruction that
15716 should receive a conditional infix after the third character.
15717 If it is not, fail. Otherwise, undo the edits to the current
15718 line of input and proceed as for case CE. */
15719
15720static const struct asm_opcode *
15721opcode_lookup (char **str)
15722{
15723 char *end, *base;
15724 char *affix;
15725 const struct asm_opcode *opcode;
15726 const struct asm_cond *cond;
e3cb604e 15727 char save[2];
c19d1205
ZW
15728
15729 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15730 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15731 for (base = end = *str; *end != '\0'; end++)
721a8186 15732 if (*end == ' ' || *end == '.')
c19d1205 15733 break;
b99bd4ef 15734
c19d1205 15735 if (end == base)
c921be7d 15736 return NULL;
b99bd4ef 15737
5287ad62 15738 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15739 if (end[0] == '.')
b99bd4ef 15740 {
5287ad62 15741 int offset = 2;
5f4273c7 15742
267d2029
JB
15743 /* The .w and .n suffixes are only valid if the unified syntax is in
15744 use. */
15745 if (unified_syntax && end[1] == 'w')
c19d1205 15746 inst.size_req = 4;
267d2029 15747 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15748 inst.size_req = 2;
15749 else
5287ad62
JB
15750 offset = 0;
15751
15752 inst.vectype.elems = 0;
15753
15754 *str = end + offset;
b99bd4ef 15755
5f4273c7 15756 if (end[offset] == '.')
5287ad62 15757 {
267d2029
JB
15758 /* See if we have a Neon type suffix (possible in either unified or
15759 non-unified ARM syntax mode). */
dcbf9037 15760 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15761 return NULL;
5287ad62
JB
15762 }
15763 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15764 return NULL;
b99bd4ef 15765 }
c19d1205
ZW
15766 else
15767 *str = end;
b99bd4ef 15768
c19d1205 15769 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15770 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15771 end - base);
c19d1205 15772 if (opcode)
b99bd4ef 15773 {
c19d1205
ZW
15774 /* step U */
15775 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15776 {
c19d1205
ZW
15777 inst.cond = COND_ALWAYS;
15778 return opcode;
b99bd4ef 15779 }
b99bd4ef 15780
278df34e 15781 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15782 as_warn (_("conditional infixes are deprecated in unified syntax"));
15783 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15784 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15785 gas_assert (cond);
b99bd4ef 15786
c19d1205
ZW
15787 inst.cond = cond->value;
15788 return opcode;
15789 }
b99bd4ef 15790
c19d1205
ZW
15791 /* Cannot have a conditional suffix on a mnemonic of less than two
15792 characters. */
15793 if (end - base < 3)
c921be7d 15794 return NULL;
b99bd4ef 15795
c19d1205
ZW
15796 /* Look for suffixed mnemonic. */
15797 affix = end - 2;
21d799b5
NC
15798 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15799 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15800 affix - base);
c19d1205
ZW
15801 if (opcode && cond)
15802 {
15803 /* step CE */
15804 switch (opcode->tag)
15805 {
e3cb604e
PB
15806 case OT_cinfix3_legacy:
15807 /* Ignore conditional suffixes matched on infix only mnemonics. */
15808 break;
15809
c19d1205 15810 case OT_cinfix3:
088fa78e 15811 case OT_cinfix3_deprecated:
c19d1205
ZW
15812 case OT_odd_infix_unc:
15813 if (!unified_syntax)
e3cb604e 15814 return 0;
c19d1205
ZW
15815 /* else fall through */
15816
15817 case OT_csuffix:
037e8744 15818 case OT_csuffixF:
c19d1205
ZW
15819 case OT_csuf_or_in3:
15820 inst.cond = cond->value;
15821 return opcode;
15822
15823 case OT_unconditional:
15824 case OT_unconditionalF:
dfa9f0d5 15825 if (thumb_mode)
c921be7d 15826 inst.cond = cond->value;
dfa9f0d5
PB
15827 else
15828 {
c921be7d 15829 /* Delayed diagnostic. */
dfa9f0d5
PB
15830 inst.error = BAD_COND;
15831 inst.cond = COND_ALWAYS;
15832 }
c19d1205 15833 return opcode;
b99bd4ef 15834
c19d1205 15835 default:
c921be7d 15836 return NULL;
c19d1205
ZW
15837 }
15838 }
b99bd4ef 15839
c19d1205
ZW
15840 /* Cannot have a usual-position infix on a mnemonic of less than
15841 six characters (five would be a suffix). */
15842 if (end - base < 6)
c921be7d 15843 return NULL;
b99bd4ef 15844
c19d1205
ZW
15845 /* Look for infixed mnemonic in the usual position. */
15846 affix = base + 3;
21d799b5 15847 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15848 if (!cond)
c921be7d 15849 return NULL;
e3cb604e
PB
15850
15851 memcpy (save, affix, 2);
15852 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15853 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15854 (end - base) - 2);
e3cb604e
PB
15855 memmove (affix + 2, affix, (end - affix) - 2);
15856 memcpy (affix, save, 2);
15857
088fa78e
KH
15858 if (opcode
15859 && (opcode->tag == OT_cinfix3
15860 || opcode->tag == OT_cinfix3_deprecated
15861 || opcode->tag == OT_csuf_or_in3
15862 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15863 {
c921be7d 15864 /* Step CM. */
278df34e 15865 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15866 && (opcode->tag == OT_cinfix3
15867 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15868 as_warn (_("conditional infixes are deprecated in unified syntax"));
15869
15870 inst.cond = cond->value;
15871 return opcode;
b99bd4ef
NC
15872 }
15873
c921be7d 15874 return NULL;
b99bd4ef
NC
15875}
15876
e07e6e58
NC
15877/* This function generates an initial IT instruction, leaving its block
15878 virtually open for the new instructions. Eventually,
15879 the mask will be updated by now_it_add_mask () each time
15880 a new instruction needs to be included in the IT block.
15881 Finally, the block is closed with close_automatic_it_block ().
15882 The block closure can be requested either from md_assemble (),
15883 a tencode (), or due to a label hook. */
15884
15885static void
15886new_automatic_it_block (int cond)
15887{
15888 now_it.state = AUTOMATIC_IT_BLOCK;
15889 now_it.mask = 0x18;
15890 now_it.cc = cond;
15891 now_it.block_length = 1;
cd000bff 15892 mapping_state (MAP_THUMB);
e07e6e58
NC
15893 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15894}
15895
15896/* Close an automatic IT block.
15897 See comments in new_automatic_it_block (). */
15898
15899static void
15900close_automatic_it_block (void)
15901{
15902 now_it.mask = 0x10;
15903 now_it.block_length = 0;
15904}
15905
15906/* Update the mask of the current automatically-generated IT
15907 instruction. See comments in new_automatic_it_block (). */
15908
15909static void
15910now_it_add_mask (int cond)
15911{
15912#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15913#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15914 | ((bitvalue) << (nbit)))
e07e6e58 15915 const int resulting_bit = (cond & 1);
c921be7d 15916
e07e6e58
NC
15917 now_it.mask &= 0xf;
15918 now_it.mask = SET_BIT_VALUE (now_it.mask,
15919 resulting_bit,
15920 (5 - now_it.block_length));
15921 now_it.mask = SET_BIT_VALUE (now_it.mask,
15922 1,
15923 ((5 - now_it.block_length) - 1) );
15924 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15925
15926#undef CLEAR_BIT
15927#undef SET_BIT_VALUE
e07e6e58
NC
15928}
15929
15930/* The IT blocks handling machinery is accessed through the these functions:
15931 it_fsm_pre_encode () from md_assemble ()
15932 set_it_insn_type () optional, from the tencode functions
15933 set_it_insn_type_last () ditto
15934 in_it_block () ditto
15935 it_fsm_post_encode () from md_assemble ()
15936 force_automatic_it_block_close () from label habdling functions
15937
15938 Rationale:
15939 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15940 initializing the IT insn type with a generic initial value depending
15941 on the inst.condition.
15942 2) During the tencode function, two things may happen:
15943 a) The tencode function overrides the IT insn type by
15944 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15945 b) The tencode function queries the IT block state by
15946 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15947
15948 Both set_it_insn_type and in_it_block run the internal FSM state
15949 handling function (handle_it_state), because: a) setting the IT insn
15950 type may incur in an invalid state (exiting the function),
15951 and b) querying the state requires the FSM to be updated.
15952 Specifically we want to avoid creating an IT block for conditional
15953 branches, so it_fsm_pre_encode is actually a guess and we can't
15954 determine whether an IT block is required until the tencode () routine
15955 has decided what type of instruction this actually it.
15956 Because of this, if set_it_insn_type and in_it_block have to be used,
15957 set_it_insn_type has to be called first.
15958
15959 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15960 determines the insn IT type depending on the inst.cond code.
15961 When a tencode () routine encodes an instruction that can be
15962 either outside an IT block, or, in the case of being inside, has to be
15963 the last one, set_it_insn_type_last () will determine the proper
15964 IT instruction type based on the inst.cond code. Otherwise,
15965 set_it_insn_type can be called for overriding that logic or
15966 for covering other cases.
15967
15968 Calling handle_it_state () may not transition the IT block state to
15969 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15970 still queried. Instead, if the FSM determines that the state should
15971 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15972 after the tencode () function: that's what it_fsm_post_encode () does.
15973
15974 Since in_it_block () calls the state handling function to get an
15975 updated state, an error may occur (due to invalid insns combination).
15976 In that case, inst.error is set.
15977 Therefore, inst.error has to be checked after the execution of
15978 the tencode () routine.
15979
15980 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15981 any pending state change (if any) that didn't take place in
15982 handle_it_state () as explained above. */
15983
15984static void
15985it_fsm_pre_encode (void)
15986{
15987 if (inst.cond != COND_ALWAYS)
15988 inst.it_insn_type = INSIDE_IT_INSN;
15989 else
15990 inst.it_insn_type = OUTSIDE_IT_INSN;
15991
15992 now_it.state_handled = 0;
15993}
15994
15995/* IT state FSM handling function. */
15996
15997static int
15998handle_it_state (void)
15999{
16000 now_it.state_handled = 1;
16001
16002 switch (now_it.state)
16003 {
16004 case OUTSIDE_IT_BLOCK:
16005 switch (inst.it_insn_type)
16006 {
16007 case OUTSIDE_IT_INSN:
16008 break;
16009
16010 case INSIDE_IT_INSN:
16011 case INSIDE_IT_LAST_INSN:
16012 if (thumb_mode == 0)
16013 {
c921be7d 16014 if (unified_syntax
e07e6e58
NC
16015 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16016 as_tsktsk (_("Warning: conditional outside an IT block"\
16017 " for Thumb."));
16018 }
16019 else
16020 {
16021 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16022 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16023 {
16024 /* Automatically generate the IT instruction. */
16025 new_automatic_it_block (inst.cond);
16026 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16027 close_automatic_it_block ();
16028 }
16029 else
16030 {
16031 inst.error = BAD_OUT_IT;
16032 return FAIL;
16033 }
16034 }
16035 break;
16036
16037 case IF_INSIDE_IT_LAST_INSN:
16038 case NEUTRAL_IT_INSN:
16039 break;
16040
16041 case IT_INSN:
16042 now_it.state = MANUAL_IT_BLOCK;
16043 now_it.block_length = 0;
16044 break;
16045 }
16046 break;
16047
16048 case AUTOMATIC_IT_BLOCK:
16049 /* Three things may happen now:
16050 a) We should increment current it block size;
16051 b) We should close current it block (closing insn or 4 insns);
16052 c) We should close current it block and start a new one (due
16053 to incompatible conditions or
16054 4 insns-length block reached). */
16055
16056 switch (inst.it_insn_type)
16057 {
16058 case OUTSIDE_IT_INSN:
16059 /* The closure of the block shall happen immediatelly,
16060 so any in_it_block () call reports the block as closed. */
16061 force_automatic_it_block_close ();
16062 break;
16063
16064 case INSIDE_IT_INSN:
16065 case INSIDE_IT_LAST_INSN:
16066 case IF_INSIDE_IT_LAST_INSN:
16067 now_it.block_length++;
16068
16069 if (now_it.block_length > 4
16070 || !now_it_compatible (inst.cond))
16071 {
16072 force_automatic_it_block_close ();
16073 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16074 new_automatic_it_block (inst.cond);
16075 }
16076 else
16077 {
16078 now_it_add_mask (inst.cond);
16079 }
16080
16081 if (now_it.state == AUTOMATIC_IT_BLOCK
16082 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16083 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16084 close_automatic_it_block ();
16085 break;
16086
16087 case NEUTRAL_IT_INSN:
16088 now_it.block_length++;
16089
16090 if (now_it.block_length > 4)
16091 force_automatic_it_block_close ();
16092 else
16093 now_it_add_mask (now_it.cc & 1);
16094 break;
16095
16096 case IT_INSN:
16097 close_automatic_it_block ();
16098 now_it.state = MANUAL_IT_BLOCK;
16099 break;
16100 }
16101 break;
16102
16103 case MANUAL_IT_BLOCK:
16104 {
16105 /* Check conditional suffixes. */
16106 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16107 int is_last;
16108 now_it.mask <<= 1;
16109 now_it.mask &= 0x1f;
16110 is_last = (now_it.mask == 0x10);
16111
16112 switch (inst.it_insn_type)
16113 {
16114 case OUTSIDE_IT_INSN:
16115 inst.error = BAD_NOT_IT;
16116 return FAIL;
16117
16118 case INSIDE_IT_INSN:
16119 if (cond != inst.cond)
16120 {
16121 inst.error = BAD_IT_COND;
16122 return FAIL;
16123 }
16124 break;
16125
16126 case INSIDE_IT_LAST_INSN:
16127 case IF_INSIDE_IT_LAST_INSN:
16128 if (cond != inst.cond)
16129 {
16130 inst.error = BAD_IT_COND;
16131 return FAIL;
16132 }
16133 if (!is_last)
16134 {
16135 inst.error = BAD_BRANCH;
16136 return FAIL;
16137 }
16138 break;
16139
16140 case NEUTRAL_IT_INSN:
16141 /* The BKPT instruction is unconditional even in an IT block. */
16142 break;
16143
16144 case IT_INSN:
16145 inst.error = BAD_IT_IT;
16146 return FAIL;
16147 }
16148 }
16149 break;
16150 }
16151
16152 return SUCCESS;
16153}
16154
16155static void
16156it_fsm_post_encode (void)
16157{
16158 int is_last;
16159
16160 if (!now_it.state_handled)
16161 handle_it_state ();
16162
16163 is_last = (now_it.mask == 0x10);
16164 if (is_last)
16165 {
16166 now_it.state = OUTSIDE_IT_BLOCK;
16167 now_it.mask = 0;
16168 }
16169}
16170
16171static void
16172force_automatic_it_block_close (void)
16173{
16174 if (now_it.state == AUTOMATIC_IT_BLOCK)
16175 {
16176 close_automatic_it_block ();
16177 now_it.state = OUTSIDE_IT_BLOCK;
16178 now_it.mask = 0;
16179 }
16180}
16181
16182static int
16183in_it_block (void)
16184{
16185 if (!now_it.state_handled)
16186 handle_it_state ();
16187
16188 return now_it.state != OUTSIDE_IT_BLOCK;
16189}
16190
c19d1205
ZW
16191void
16192md_assemble (char *str)
b99bd4ef 16193{
c19d1205
ZW
16194 char *p = str;
16195 const struct asm_opcode * opcode;
b99bd4ef 16196
c19d1205
ZW
16197 /* Align the previous label if needed. */
16198 if (last_label_seen != NULL)
b99bd4ef 16199 {
c19d1205
ZW
16200 symbol_set_frag (last_label_seen, frag_now);
16201 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16202 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16203 }
16204
c19d1205
ZW
16205 memset (&inst, '\0', sizeof (inst));
16206 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16207
c19d1205
ZW
16208 opcode = opcode_lookup (&p);
16209 if (!opcode)
b99bd4ef 16210 {
c19d1205 16211 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16212 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16213 if (! create_register_alias (str, p)
16214 && ! create_neon_reg_alias (str, p))
c19d1205 16215 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16216
b99bd4ef
NC
16217 return;
16218 }
16219
278df34e 16220 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16221 as_warn (_("s suffix on comparison instruction is deprecated"));
16222
037e8744
JB
16223 /* The value which unconditional instructions should have in place of the
16224 condition field. */
16225 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16226
c19d1205 16227 if (thumb_mode)
b99bd4ef 16228 {
e74cfd16 16229 arm_feature_set variant;
8f06b2d8
PB
16230
16231 variant = cpu_variant;
16232 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16233 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16234 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16235 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16236 if (!opcode->tvariant
16237 || (thumb_mode == 1
16238 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16239 {
bf3eeda7 16240 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16241 return;
16242 }
c19d1205
ZW
16243 if (inst.cond != COND_ALWAYS && !unified_syntax
16244 && opcode->tencode != do_t_branch)
b99bd4ef 16245 {
c19d1205 16246 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16247 return;
16248 }
16249
752d5da4 16250 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16251 {
7e806470 16252 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16253 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16254 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16255 {
16256 /* Two things are addressed here.
16257 1) Implicit require narrow instructions on Thumb-1.
16258 This avoids relaxation accidentally introducing Thumb-2
16259 instructions.
16260 2) Reject wide instructions in non Thumb-2 cores. */
16261 if (inst.size_req == 0)
16262 inst.size_req = 2;
16263 else if (inst.size_req == 4)
16264 {
bf3eeda7 16265 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16266 return;
16267 }
16268 }
076d447c
PB
16269 }
16270
c19d1205
ZW
16271 inst.instruction = opcode->tvalue;
16272
5be8be5d 16273 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16274 {
16275 /* Prepare the it_insn_type for those encodings that don't set
16276 it. */
16277 it_fsm_pre_encode ();
c19d1205 16278
e07e6e58
NC
16279 opcode->tencode ();
16280
16281 it_fsm_post_encode ();
16282 }
e27ec89e 16283
0110f2b8 16284 if (!(inst.error || inst.relax))
b99bd4ef 16285 {
9c2799c2 16286 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16287 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16288 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16289 {
c19d1205 16290 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16291 return;
16292 }
16293 }
076d447c
PB
16294
16295 /* Something has gone badly wrong if we try to relax a fixed size
16296 instruction. */
9c2799c2 16297 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16298
e74cfd16
PB
16299 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16300 *opcode->tvariant);
ee065d83 16301 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16302 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16303 anything other than bl/blx and v6-M instructions.
ee065d83 16304 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16305 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16306 || inst.relax)
e07e6e58
NC
16307 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16308 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16309 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16310 arm_ext_v6t2);
cd000bff 16311
88714cb8
DG
16312 check_neon_suffixes;
16313
cd000bff 16314 if (!inst.error)
c877a2f2
NC
16315 {
16316 mapping_state (MAP_THUMB);
16317 }
c19d1205 16318 }
3e9e4fcf 16319 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16320 {
845b51d6
PB
16321 bfd_boolean is_bx;
16322
16323 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16324 is_bx = (opcode->aencode == do_bx);
16325
c19d1205 16326 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16327 if (!(is_bx && fix_v4bx)
16328 && !(opcode->avariant &&
16329 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16330 {
bf3eeda7 16331 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16332 return;
b99bd4ef 16333 }
c19d1205 16334 if (inst.size_req)
b99bd4ef 16335 {
c19d1205
ZW
16336 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16337 return;
b99bd4ef
NC
16338 }
16339
c19d1205
ZW
16340 inst.instruction = opcode->avalue;
16341 if (opcode->tag == OT_unconditionalF)
16342 inst.instruction |= 0xF << 28;
16343 else
16344 inst.instruction |= inst.cond << 28;
16345 inst.size = INSN_SIZE;
5be8be5d 16346 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16347 {
16348 it_fsm_pre_encode ();
16349 opcode->aencode ();
16350 it_fsm_post_encode ();
16351 }
ee065d83
PB
16352 /* Arm mode bx is marked as both v4T and v5 because it's still required
16353 on a hypothetical non-thumb v5 core. */
845b51d6 16354 if (is_bx)
e74cfd16 16355 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16356 else
e74cfd16
PB
16357 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16358 *opcode->avariant);
88714cb8
DG
16359
16360 check_neon_suffixes;
16361
cd000bff 16362 if (!inst.error)
c877a2f2
NC
16363 {
16364 mapping_state (MAP_ARM);
16365 }
b99bd4ef 16366 }
3e9e4fcf
JB
16367 else
16368 {
16369 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16370 "-- `%s'"), str);
16371 return;
16372 }
c19d1205
ZW
16373 output_inst (str);
16374}
b99bd4ef 16375
e07e6e58
NC
16376static void
16377check_it_blocks_finished (void)
16378{
16379#ifdef OBJ_ELF
16380 asection *sect;
16381
16382 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16383 if (seg_info (sect)->tc_segment_info_data.current_it.state
16384 == MANUAL_IT_BLOCK)
16385 {
16386 as_warn (_("section '%s' finished with an open IT block."),
16387 sect->name);
16388 }
16389#else
16390 if (now_it.state == MANUAL_IT_BLOCK)
16391 as_warn (_("file finished with an open IT block."));
16392#endif
16393}
16394
c19d1205
ZW
16395/* Various frobbings of labels and their addresses. */
16396
16397void
16398arm_start_line_hook (void)
16399{
16400 last_label_seen = NULL;
b99bd4ef
NC
16401}
16402
c19d1205
ZW
16403void
16404arm_frob_label (symbolS * sym)
b99bd4ef 16405{
c19d1205 16406 last_label_seen = sym;
b99bd4ef 16407
c19d1205 16408 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16409
c19d1205
ZW
16410#if defined OBJ_COFF || defined OBJ_ELF
16411 ARM_SET_INTERWORK (sym, support_interwork);
16412#endif
b99bd4ef 16413
e07e6e58
NC
16414 force_automatic_it_block_close ();
16415
5f4273c7 16416 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16417 as Thumb functions. This is because these labels, whilst
16418 they exist inside Thumb code, are not the entry points for
16419 possible ARM->Thumb calls. Also, these labels can be used
16420 as part of a computed goto or switch statement. eg gcc
16421 can generate code that looks like this:
b99bd4ef 16422
c19d1205
ZW
16423 ldr r2, [pc, .Laaa]
16424 lsl r3, r3, #2
16425 ldr r2, [r3, r2]
16426 mov pc, r2
b99bd4ef 16427
c19d1205
ZW
16428 .Lbbb: .word .Lxxx
16429 .Lccc: .word .Lyyy
16430 ..etc...
16431 .Laaa: .word Lbbb
b99bd4ef 16432
c19d1205
ZW
16433 The first instruction loads the address of the jump table.
16434 The second instruction converts a table index into a byte offset.
16435 The third instruction gets the jump address out of the table.
16436 The fourth instruction performs the jump.
b99bd4ef 16437
c19d1205
ZW
16438 If the address stored at .Laaa is that of a symbol which has the
16439 Thumb_Func bit set, then the linker will arrange for this address
16440 to have the bottom bit set, which in turn would mean that the
16441 address computation performed by the third instruction would end
16442 up with the bottom bit set. Since the ARM is capable of unaligned
16443 word loads, the instruction would then load the incorrect address
16444 out of the jump table, and chaos would ensue. */
16445 if (label_is_thumb_function_name
16446 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16447 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16448 {
c19d1205
ZW
16449 /* When the address of a Thumb function is taken the bottom
16450 bit of that address should be set. This will allow
16451 interworking between Arm and Thumb functions to work
16452 correctly. */
b99bd4ef 16453
c19d1205 16454 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16455
c19d1205 16456 label_is_thumb_function_name = FALSE;
b99bd4ef 16457 }
07a53e5c 16458
07a53e5c 16459 dwarf2_emit_label (sym);
b99bd4ef
NC
16460}
16461
c921be7d 16462bfd_boolean
c19d1205 16463arm_data_in_code (void)
b99bd4ef 16464{
c19d1205 16465 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16466 {
c19d1205
ZW
16467 *input_line_pointer = '/';
16468 input_line_pointer += 5;
16469 *input_line_pointer = 0;
c921be7d 16470 return TRUE;
b99bd4ef
NC
16471 }
16472
c921be7d 16473 return FALSE;
b99bd4ef
NC
16474}
16475
c19d1205
ZW
16476char *
16477arm_canonicalize_symbol_name (char * name)
b99bd4ef 16478{
c19d1205 16479 int len;
b99bd4ef 16480
c19d1205
ZW
16481 if (thumb_mode && (len = strlen (name)) > 5
16482 && streq (name + len - 5, "/data"))
16483 *(name + len - 5) = 0;
b99bd4ef 16484
c19d1205 16485 return name;
b99bd4ef 16486}
c19d1205
ZW
16487\f
16488/* Table of all register names defined by default. The user can
16489 define additional names with .req. Note that all register names
16490 should appear in both upper and lowercase variants. Some registers
16491 also have mixed-case names. */
b99bd4ef 16492
dcbf9037 16493#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16494#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16495#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16496#define REGSET(p,t) \
16497 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16498 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16499 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16500 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16501#define REGSETH(p,t) \
16502 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16503 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16504 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16505 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16506#define REGSET2(p,t) \
16507 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16508 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16509 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16510 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16511#define SPLRBANK(base,bank,t) \
16512 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16513 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16514 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16515 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16516 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16517 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16518
c19d1205 16519static const struct reg_entry reg_names[] =
7ed4c4c5 16520{
c19d1205
ZW
16521 /* ARM integer registers. */
16522 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16523
c19d1205
ZW
16524 /* ATPCS synonyms. */
16525 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16526 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16527 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16528
c19d1205
ZW
16529 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16530 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16531 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16532
c19d1205
ZW
16533 /* Well-known aliases. */
16534 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16535 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16536
16537 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16538 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16539
16540 /* Coprocessor numbers. */
16541 REGSET(p, CP), REGSET(P, CP),
16542
16543 /* Coprocessor register numbers. The "cr" variants are for backward
16544 compatibility. */
16545 REGSET(c, CN), REGSET(C, CN),
16546 REGSET(cr, CN), REGSET(CR, CN),
16547
90ec0d68
MGD
16548 /* ARM banked registers. */
16549 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16550 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16551 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16552 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16553 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16554 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16555 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16556
16557 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16558 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16559 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16560 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16561 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16562 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16563 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16564 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16565
16566 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16567 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16568 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16569 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16570 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16571 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16572 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16573 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16574 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16575
c19d1205
ZW
16576 /* FPA registers. */
16577 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16578 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16579
16580 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16581 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16582
16583 /* VFP SP registers. */
5287ad62
JB
16584 REGSET(s,VFS), REGSET(S,VFS),
16585 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16586
16587 /* VFP DP Registers. */
5287ad62
JB
16588 REGSET(d,VFD), REGSET(D,VFD),
16589 /* Extra Neon DP registers. */
16590 REGSETH(d,VFD), REGSETH(D,VFD),
16591
16592 /* Neon QP registers. */
16593 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16594
16595 /* VFP control registers. */
16596 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16597 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16598 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16599 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16600 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16601 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16602
16603 /* Maverick DSP coprocessor registers. */
16604 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16605 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16606
16607 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16608 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16609 REGDEF(dspsc,0,DSPSC),
16610
16611 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16612 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16613 REGDEF(DSPSC,0,DSPSC),
16614
16615 /* iWMMXt data registers - p0, c0-15. */
16616 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16617
16618 /* iWMMXt control registers - p1, c0-3. */
16619 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16620 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16621 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16622 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16623
16624 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16625 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16626 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16627 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16628 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16629
16630 /* XScale accumulator registers. */
16631 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16632};
16633#undef REGDEF
16634#undef REGNUM
16635#undef REGSET
7ed4c4c5 16636
c19d1205
ZW
16637/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16638 within psr_required_here. */
16639static const struct asm_psr psrs[] =
16640{
16641 /* Backward compatibility notation. Note that "all" is no longer
16642 truly all possible PSR bits. */
16643 {"all", PSR_c | PSR_f},
16644 {"flg", PSR_f},
16645 {"ctl", PSR_c},
16646
16647 /* Individual flags. */
16648 {"f", PSR_f},
16649 {"c", PSR_c},
16650 {"x", PSR_x},
16651 {"s", PSR_s},
59b42a0d 16652
c19d1205
ZW
16653 /* Combinations of flags. */
16654 {"fs", PSR_f | PSR_s},
16655 {"fx", PSR_f | PSR_x},
16656 {"fc", PSR_f | PSR_c},
16657 {"sf", PSR_s | PSR_f},
16658 {"sx", PSR_s | PSR_x},
16659 {"sc", PSR_s | PSR_c},
16660 {"xf", PSR_x | PSR_f},
16661 {"xs", PSR_x | PSR_s},
16662 {"xc", PSR_x | PSR_c},
16663 {"cf", PSR_c | PSR_f},
16664 {"cs", PSR_c | PSR_s},
16665 {"cx", PSR_c | PSR_x},
16666 {"fsx", PSR_f | PSR_s | PSR_x},
16667 {"fsc", PSR_f | PSR_s | PSR_c},
16668 {"fxs", PSR_f | PSR_x | PSR_s},
16669 {"fxc", PSR_f | PSR_x | PSR_c},
16670 {"fcs", PSR_f | PSR_c | PSR_s},
16671 {"fcx", PSR_f | PSR_c | PSR_x},
16672 {"sfx", PSR_s | PSR_f | PSR_x},
16673 {"sfc", PSR_s | PSR_f | PSR_c},
16674 {"sxf", PSR_s | PSR_x | PSR_f},
16675 {"sxc", PSR_s | PSR_x | PSR_c},
16676 {"scf", PSR_s | PSR_c | PSR_f},
16677 {"scx", PSR_s | PSR_c | PSR_x},
16678 {"xfs", PSR_x | PSR_f | PSR_s},
16679 {"xfc", PSR_x | PSR_f | PSR_c},
16680 {"xsf", PSR_x | PSR_s | PSR_f},
16681 {"xsc", PSR_x | PSR_s | PSR_c},
16682 {"xcf", PSR_x | PSR_c | PSR_f},
16683 {"xcs", PSR_x | PSR_c | PSR_s},
16684 {"cfs", PSR_c | PSR_f | PSR_s},
16685 {"cfx", PSR_c | PSR_f | PSR_x},
16686 {"csf", PSR_c | PSR_s | PSR_f},
16687 {"csx", PSR_c | PSR_s | PSR_x},
16688 {"cxf", PSR_c | PSR_x | PSR_f},
16689 {"cxs", PSR_c | PSR_x | PSR_s},
16690 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16691 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16692 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16693 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16694 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16695 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16696 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16697 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16698 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16699 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16700 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16701 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16702 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16703 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16704 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16705 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16706 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16707 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16708 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16709 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16710 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16711 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16712 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16713 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16714};
16715
62b3e311
PB
16716/* Table of V7M psr names. */
16717static const struct asm_psr v7m_psrs[] =
16718{
2b744c99
PB
16719 {"apsr", 0 }, {"APSR", 0 },
16720 {"iapsr", 1 }, {"IAPSR", 1 },
16721 {"eapsr", 2 }, {"EAPSR", 2 },
16722 {"psr", 3 }, {"PSR", 3 },
16723 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16724 {"ipsr", 5 }, {"IPSR", 5 },
16725 {"epsr", 6 }, {"EPSR", 6 },
16726 {"iepsr", 7 }, {"IEPSR", 7 },
16727 {"msp", 8 }, {"MSP", 8 },
16728 {"psp", 9 }, {"PSP", 9 },
16729 {"primask", 16}, {"PRIMASK", 16},
16730 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16731 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16732 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16733 {"faultmask", 19}, {"FAULTMASK", 19},
16734 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16735};
16736
c19d1205
ZW
16737/* Table of all shift-in-operand names. */
16738static const struct asm_shift_name shift_names [] =
b99bd4ef 16739{
c19d1205
ZW
16740 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16741 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16742 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16743 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16744 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16745 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16746};
b99bd4ef 16747
c19d1205
ZW
16748/* Table of all explicit relocation names. */
16749#ifdef OBJ_ELF
16750static struct reloc_entry reloc_names[] =
16751{
16752 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16753 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16754 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16755 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16756 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16757 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16758 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16759 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16760 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16761 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16762 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16763 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16764 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16765 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16766 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16767 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16768 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16769 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16770};
16771#endif
b99bd4ef 16772
c19d1205
ZW
16773/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16774static const struct asm_cond conds[] =
16775{
16776 {"eq", 0x0},
16777 {"ne", 0x1},
16778 {"cs", 0x2}, {"hs", 0x2},
16779 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16780 {"mi", 0x4},
16781 {"pl", 0x5},
16782 {"vs", 0x6},
16783 {"vc", 0x7},
16784 {"hi", 0x8},
16785 {"ls", 0x9},
16786 {"ge", 0xa},
16787 {"lt", 0xb},
16788 {"gt", 0xc},
16789 {"le", 0xd},
16790 {"al", 0xe}
16791};
bfae80f2 16792
62b3e311
PB
16793static struct asm_barrier_opt barrier_opt_names[] =
16794{
52e7f43d
RE
16795 { "sy", 0xf }, { "SY", 0xf },
16796 { "un", 0x7 }, { "UN", 0x7 },
16797 { "st", 0xe }, { "ST", 0xe },
16798 { "unst", 0x6 }, { "UNST", 0x6 },
16799 { "ish", 0xb }, { "ISH", 0xb },
16800 { "sh", 0xb }, { "SH", 0xb },
16801 { "ishst", 0xa }, { "ISHST", 0xa },
16802 { "shst", 0xa }, { "SHST", 0xa },
16803 { "nsh", 0x7 }, { "NSH", 0x7 },
16804 { "nshst", 0x6 }, { "NSHST", 0x6 },
16805 { "osh", 0x3 }, { "OSH", 0x3 },
16806 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16807};
16808
c19d1205
ZW
16809/* Table of ARM-format instructions. */
16810
16811/* Macros for gluing together operand strings. N.B. In all cases
16812 other than OPS0, the trailing OP_stop comes from default
16813 zero-initialization of the unspecified elements of the array. */
16814#define OPS0() { OP_stop, }
16815#define OPS1(a) { OP_##a, }
16816#define OPS2(a,b) { OP_##a,OP_##b, }
16817#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16818#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16819#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16820#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16821
5be8be5d
DG
16822/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16823 This is useful when mixing operands for ARM and THUMB, i.e. using the
16824 MIX_ARM_THUMB_OPERANDS macro.
16825 In order to use these macros, prefix the number of operands with _
16826 e.g. _3. */
16827#define OPS_1(a) { a, }
16828#define OPS_2(a,b) { a,b, }
16829#define OPS_3(a,b,c) { a,b,c, }
16830#define OPS_4(a,b,c,d) { a,b,c,d, }
16831#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16832#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16833
c19d1205
ZW
16834/* These macros abstract out the exact format of the mnemonic table and
16835 save some repeated characters. */
16836
16837/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16838#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16839 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16840 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16841
16842/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16843 a T_MNEM_xyz enumerator. */
16844#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16845 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16846#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16847 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16848
16849/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16850 infix after the third character. */
16851#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16852 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16853 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16854#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16855 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16856 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16857#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16858 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16859#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16860 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16861#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16862 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16863#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16864 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16865
16866/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16867 appear in the condition table. */
16868#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16869 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16870 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16871
16872#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16873 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16874 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16875 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16876 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16877 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16878 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16879 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16880 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16881 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16882 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16883 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16884 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16885 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16886 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16887 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16888 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16889 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16890 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16891 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16892
16893#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16894 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16895#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16896 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16897
16898/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16899 field is still 0xE. Many of the Thumb variants can be executed
16900 conditionally, so this is checked separately. */
c19d1205 16901#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16902 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16903 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16904
16905/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16906 condition code field. */
16907#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16908 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16909 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16910
16911/* ARM-only variants of all the above. */
6a86118a 16912#define CE(mnem, op, nops, ops, ae) \
21d799b5 16913 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16914
16915#define C3(mnem, op, nops, ops, ae) \
16916 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16917
e3cb604e
PB
16918/* Legacy mnemonics that always have conditional infix after the third
16919 character. */
16920#define CL(mnem, op, nops, ops, ae) \
21d799b5 16921 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16922 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16923
8f06b2d8
PB
16924/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16925#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16926 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16927
e3cb604e
PB
16928/* Legacy coprocessor instructions where conditional infix and conditional
16929 suffix are ambiguous. For consistency this includes all FPA instructions,
16930 not just the potentially ambiguous ones. */
16931#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16932 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16933 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16934
16935/* Coprocessor, takes either a suffix or a position-3 infix
16936 (for an FPA corner case). */
16937#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16938 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16939 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16940
6a86118a 16941#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16942 { m1 #m2 m3, OPS##nops ops, \
16943 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16944 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16945
16946#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16947 xCM_ (m1, , m2, op, nops, ops, ae), \
16948 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16949 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16950 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16951 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16952 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16953 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16954 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16955 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16956 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16957 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16958 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16959 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16960 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16961 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16962 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16963 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16964 xCM_ (m1, le, m2, op, nops, ops, ae), \
16965 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16966
16967#define UE(mnem, op, nops, ops, ae) \
16968 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16969
16970#define UF(mnem, op, nops, ops, ae) \
16971 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16972
5287ad62
JB
16973/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16974 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16975 use the same encoding function for each. */
16976#define NUF(mnem, op, nops, ops, enc) \
16977 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16978 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16979
16980/* Neon data processing, version which indirects through neon_enc_tab for
16981 the various overloaded versions of opcodes. */
16982#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16983 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16984 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16985
16986/* Neon insn with conditional suffix for the ARM version, non-overloaded
16987 version. */
037e8744
JB
16988#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16989 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16990 THUMB_VARIANT, do_##enc, do_##enc }
16991
037e8744 16992#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16993 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16994
16995#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16996 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16997
5287ad62 16998/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16999#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17000 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17001 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17002
037e8744 17003#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17004 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17005
17006#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17007 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17008
c19d1205
ZW
17009#define do_0 0
17010
c19d1205 17011static const struct asm_opcode insns[] =
bfae80f2 17012{
e74cfd16
PB
17013#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17014#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17015 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17016 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17017 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17018 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17019 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17020 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17021 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17022 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17023 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17024 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17025 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17026 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17027 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17028 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17029 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17030 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17031
17032 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17033 for setting PSR flag bits. They are obsolete in V6 and do not
17034 have Thumb equivalents. */
21d799b5
NC
17035 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17036 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17037 CL("tstp", 110f000, 2, (RR, SH), cmp),
17038 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17039 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17040 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17041 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17042 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17043 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17044
17045 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17046 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17047 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17048 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17049
17050 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17051 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17052 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17053 OP_RRnpc),
17054 OP_ADDRGLDR),ldst, t_ldst),
17055 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17056
17057 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17058 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17059 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17060 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17061 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17062 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17063
17064 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17065 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17066 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17067 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17068
c19d1205 17069 /* Pseudo ops. */
21d799b5 17070 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17071 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17072 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17073
17074 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17075 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17076 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17077 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17078 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17079 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17080 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17081 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17082 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17083 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17084 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17085 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17086 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17087
16a4cf17 17088 /* These may simplify to neg. */
21d799b5
NC
17089 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17090 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17091
c921be7d
NC
17092#undef THUMB_VARIANT
17093#define THUMB_VARIANT & arm_ext_v6
17094
21d799b5 17095 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17096
17097 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17098#undef THUMB_VARIANT
17099#define THUMB_VARIANT & arm_ext_v6t2
17100
21d799b5
NC
17101 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17102 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17103 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17104
5be8be5d
DG
17105 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17106 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17107 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17108 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17109
21d799b5
NC
17110 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17111 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17112
21d799b5
NC
17113 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17114 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17115
17116 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17117 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17118 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17119
17120 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17121 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17122 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17123 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17124 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17125 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17126 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17127 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17128
c921be7d
NC
17129#undef ARM_VARIANT
17130#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17131#undef THUMB_VARIANT
17132#define THUMB_VARIANT & arm_ext_v4t
17133
21d799b5
NC
17134 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17135 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17136
c921be7d
NC
17137#undef THUMB_VARIANT
17138#define THUMB_VARIANT & arm_ext_v6t2
17139
21d799b5 17140 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17141 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17142
17143 /* Generic coprocessor instructions. */
21d799b5
NC
17144 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17145 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17146 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17147 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17148 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17149 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17150 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17151
c921be7d
NC
17152#undef ARM_VARIANT
17153#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17154
21d799b5 17155 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17156 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17157
c921be7d
NC
17158#undef ARM_VARIANT
17159#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17160#undef THUMB_VARIANT
17161#define THUMB_VARIANT & arm_ext_msr
17162
d2cd1205
JB
17163 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17164 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17165
c921be7d
NC
17166#undef ARM_VARIANT
17167#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17168#undef THUMB_VARIANT
17169#define THUMB_VARIANT & arm_ext_v6t2
17170
21d799b5
NC
17171 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17172 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17173 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17174 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17175 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17176 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17177 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17178 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17179
c921be7d
NC
17180#undef ARM_VARIANT
17181#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17182#undef THUMB_VARIANT
17183#define THUMB_VARIANT & arm_ext_v4t
17184
5be8be5d
DG
17185 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17186 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17187 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17188 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17189 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17190 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17191
c921be7d
NC
17192#undef ARM_VARIANT
17193#define ARM_VARIANT & arm_ext_v4t_5
17194
c19d1205
ZW
17195 /* ARM Architecture 4T. */
17196 /* Note: bx (and blx) are required on V5, even if the processor does
17197 not support Thumb. */
21d799b5 17198 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17199
c921be7d
NC
17200#undef ARM_VARIANT
17201#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17202#undef THUMB_VARIANT
17203#define THUMB_VARIANT & arm_ext_v5t
17204
c19d1205
ZW
17205 /* Note: blx has 2 variants; the .value coded here is for
17206 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17207 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17208 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17209
c921be7d
NC
17210#undef THUMB_VARIANT
17211#define THUMB_VARIANT & arm_ext_v6t2
17212
21d799b5
NC
17213 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17214 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17215 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17216 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17217 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17218 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17219 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17220 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17221
c921be7d
NC
17222#undef ARM_VARIANT
17223#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17224#undef THUMB_VARIANT
17225#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17226
21d799b5
NC
17227 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17228 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17229 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17230 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17231
21d799b5
NC
17232 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17233 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17234
21d799b5
NC
17235 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17236 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17237 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17238 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17239
21d799b5
NC
17240 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17241 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17242 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17243 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17244
21d799b5
NC
17245 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17246 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17247
03ee1b7f
NC
17248 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17249 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17250 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17251 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17252
c921be7d
NC
17253#undef ARM_VARIANT
17254#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17255#undef THUMB_VARIANT
17256#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17257
21d799b5 17258 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17259 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17260 ldrd, t_ldstd),
17261 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17262 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17263
21d799b5
NC
17264 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17265 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17266
c921be7d
NC
17267#undef ARM_VARIANT
17268#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17269
21d799b5 17270 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17271
c921be7d
NC
17272#undef ARM_VARIANT
17273#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17274#undef THUMB_VARIANT
17275#define THUMB_VARIANT & arm_ext_v6
17276
21d799b5
NC
17277 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17278 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17279 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17280 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17281 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17282 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17283 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17284 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17285 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17286 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17287
c921be7d
NC
17288#undef THUMB_VARIANT
17289#define THUMB_VARIANT & arm_ext_v6t2
17290
5be8be5d
DG
17291 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17292 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17293 strex, t_strex),
21d799b5
NC
17294 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17295 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17296
21d799b5
NC
17297 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17298 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17299
9e3c6df6 17300/* ARM V6 not included in V7M. */
c921be7d
NC
17301#undef THUMB_VARIANT
17302#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17303 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17304 UF(rfeib, 9900a00, 1, (RRw), rfe),
17305 UF(rfeda, 8100a00, 1, (RRw), rfe),
17306 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17307 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17308 UF(rfefa, 9900a00, 1, (RRw), rfe),
17309 UF(rfeea, 8100a00, 1, (RRw), rfe),
17310 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17311 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17312 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17313 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17314 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17315
9e3c6df6
PB
17316/* ARM V6 not included in V7M (eg. integer SIMD). */
17317#undef THUMB_VARIANT
17318#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17319 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17320 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17321 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17322 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17323 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17324 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17325 /* Old name for QASX. */
21d799b5
NC
17326 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17327 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17328 /* Old name for QSAX. */
21d799b5
NC
17329 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17330 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17331 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17332 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17333 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17334 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17335 /* Old name for SASX. */
21d799b5
NC
17336 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17337 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17338 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17339 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17340 /* Old name for SHASX. */
21d799b5
NC
17341 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17342 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17343 /* Old name for SHSAX. */
21d799b5
NC
17344 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17345 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17346 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17347 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17348 /* Old name for SSAX. */
21d799b5
NC
17349 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17350 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17351 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17352 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17353 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17354 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17355 /* Old name for UASX. */
21d799b5
NC
17356 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17357 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17358 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17359 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17360 /* Old name for UHASX. */
21d799b5
NC
17361 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17362 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17363 /* Old name for UHSAX. */
21d799b5
NC
17364 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17365 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17366 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17367 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17368 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17369 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17370 /* Old name for UQASX. */
21d799b5
NC
17371 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17372 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17373 /* Old name for UQSAX. */
21d799b5
NC
17374 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17375 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17376 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17377 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17378 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17379 /* Old name for USAX. */
21d799b5
NC
17380 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17381 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17382 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17383 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17384 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17385 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17386 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17387 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17388 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17389 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17390 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17391 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17392 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17393 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17394 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17395 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17396 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17397 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17398 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17399 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17400 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17401 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17402 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17403 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17404 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17405 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17406 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17407 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17408 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17409 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17410 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17411 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17412 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17413 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17414
c921be7d
NC
17415#undef ARM_VARIANT
17416#define ARM_VARIANT & arm_ext_v6k
17417#undef THUMB_VARIANT
17418#define THUMB_VARIANT & arm_ext_v6k
17419
21d799b5
NC
17420 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17421 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17422 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17423 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17424
c921be7d
NC
17425#undef THUMB_VARIANT
17426#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17427 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17428 ldrexd, t_ldrexd),
17429 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17430 RRnpcb), strexd, t_strexd),
ebdca51a 17431
c921be7d
NC
17432#undef THUMB_VARIANT
17433#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17434 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17435 rd_rn, rd_rn),
17436 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17437 rd_rn, rd_rn),
17438 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17439 strex, rm_rd_rn),
17440 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17441 strex, rm_rd_rn),
21d799b5 17442 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17443
c921be7d 17444#undef ARM_VARIANT
f4c65163
MGD
17445#define ARM_VARIANT & arm_ext_sec
17446#undef THUMB_VARIANT
17447#define THUMB_VARIANT & arm_ext_sec
c921be7d 17448
21d799b5 17449 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17450
90ec0d68
MGD
17451#undef ARM_VARIANT
17452#define ARM_VARIANT & arm_ext_virt
17453#undef THUMB_VARIANT
17454#define THUMB_VARIANT & arm_ext_virt
17455
17456 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17457 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17458
c921be7d
NC
17459#undef ARM_VARIANT
17460#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17461#undef THUMB_VARIANT
17462#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17463
21d799b5
NC
17464 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17465 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17466 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17467 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17468
21d799b5
NC
17469 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17470 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17471 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17472 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17473
5be8be5d
DG
17474 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17475 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17476 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17477 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17478
bf3eeda7
NS
17479 /* Thumb-only instructions. */
17480#undef ARM_VARIANT
17481#define ARM_VARIANT NULL
17482 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17483 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17484
17485 /* ARM does not really have an IT instruction, so always allow it.
17486 The opcode is copied from Thumb in order to allow warnings in
17487 -mimplicit-it=[never | arm] modes. */
17488#undef ARM_VARIANT
17489#define ARM_VARIANT & arm_ext_v1
17490
21d799b5
NC
17491 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17492 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17493 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17494 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17495 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17496 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17497 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17498 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17499 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17500 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17501 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17502 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17503 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17504 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17505 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17506 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17507 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17508 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17509
92e90b6e 17510 /* Thumb2 only instructions. */
c921be7d
NC
17511#undef ARM_VARIANT
17512#define ARM_VARIANT NULL
92e90b6e 17513
21d799b5
NC
17514 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17515 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17516 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17517 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17518 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17519 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17520
eea54501
MGD
17521 /* Hardware division instructions. */
17522#undef ARM_VARIANT
17523#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17524#undef THUMB_VARIANT
17525#define THUMB_VARIANT & arm_ext_div
17526
eea54501
MGD
17527 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17528 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17529
7e806470 17530 /* ARM V6M/V7 instructions. */
c921be7d
NC
17531#undef ARM_VARIANT
17532#define ARM_VARIANT & arm_ext_barrier
17533#undef THUMB_VARIANT
17534#define THUMB_VARIANT & arm_ext_barrier
17535
52e7f43d
RE
17536 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17537 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17538 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17539
62b3e311 17540 /* ARM V7 instructions. */
c921be7d
NC
17541#undef ARM_VARIANT
17542#define ARM_VARIANT & arm_ext_v7
17543#undef THUMB_VARIANT
17544#define THUMB_VARIANT & arm_ext_v7
17545
21d799b5
NC
17546 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17547 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17548
60e5ef9f
MGD
17549#undef ARM_VARIANT
17550#define ARM_VARIANT & arm_ext_mp
17551#undef THUMB_VARIANT
17552#define THUMB_VARIANT & arm_ext_mp
17553
17554 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17555
c921be7d
NC
17556#undef ARM_VARIANT
17557#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17558
21d799b5
NC
17559 cCE("wfs", e200110, 1, (RR), rd),
17560 cCE("rfs", e300110, 1, (RR), rd),
17561 cCE("wfc", e400110, 1, (RR), rd),
17562 cCE("rfc", e500110, 1, (RR), rd),
17563
17564 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17565 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17566 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17567 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17568
17569 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17570 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17571 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17572 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17573
17574 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17575 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17576 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17577 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17578 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17579 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17580 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17581 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17582 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17583 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17584 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17585 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17586
17587 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17588 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17589 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17590 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17591 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17592 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17593 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17594 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17595 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17596 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17597 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17598 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17599
17600 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17601 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17602 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17603 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17604 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17605 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17606 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17607 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17608 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17609 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17610 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17611 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17612
17613 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17614 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17615 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17616 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17617 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17618 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17619 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17620 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17621 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17622 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17623 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17624 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17625
17626 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17627 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17628 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17629 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17630 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17631 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17632 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17633 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17634 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17635 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17636 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17637 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17638
17639 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17640 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17641 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17642 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17643 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17644 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17645 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17646 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17647 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17648 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17649 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17650 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17651
17652 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17653 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17654 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17655 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17656 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17657 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17658 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17659 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17660 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17661 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17662 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17663 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17664
17665 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17666 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17667 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17668 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17669 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17670 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17671 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17672 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17673 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17674 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17675 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17676 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17677
17678 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17679 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17680 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17681 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17682 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17683 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17684 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17685 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17686 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17687 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17688 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17689 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17690
17691 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17692 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17693 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17694 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17695 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17696 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17697 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17698 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17699 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17700 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17701 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17702 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17703
17704 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17705 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17706 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17707 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17708 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17709 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17710 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17711 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17712 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17713 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17714 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17715 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17716
17717 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17718 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17719 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17720 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17721 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17722 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17723 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17724 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17725 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17726 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17727 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17728 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17729
17730 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17731 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17732 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17733 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17734 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17735 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17736 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17737 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17738 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17739 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17740 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17741 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17742
17743 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17744 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17745 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17746 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17747 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17748 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17749 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17750 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17751 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17752 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17753 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17754 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17755
17756 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17757 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17758 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17759 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17760 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17761 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17762 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17763 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17764 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17765 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17766 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17767 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17768
17769 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17770 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17771 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17772 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17773 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17774 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17775 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17776 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17777 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17778 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17779 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17780 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17781
17782 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17783 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17784 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17785 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17786 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17787 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17788 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17789 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17791 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17792 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17794
17795 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17799 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17800 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17801 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17802 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17804 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17805 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17807
17808 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17812 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17813 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17814 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17815 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17817 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17818 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17820
17821 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17825 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17826 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17827 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17828 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17830 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17831 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17833
17834 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17838 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17839 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17840 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17841 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17843 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17844 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17846
17847 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17851 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17852 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17853 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17854 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17856 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17857 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17858 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17859
17860 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17861 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17862 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17863 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17864 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17865 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17866 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17867 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17868 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17869 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17870 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17871 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17872
17873 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17874 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17875 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17876 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17877 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17878 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17879 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17880 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17885
17886 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17889 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17890 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17891 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17892 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17893 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17898
17899 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17903 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17904 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17905 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17906 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17911
17912 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17924
17925 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17937
17938 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17950
17951 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17952 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17953 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17954 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17955
17956 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17957 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17958 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17959 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17960 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17961 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17962 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17963 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17964 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17965 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17966 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17967 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17968
c19d1205
ZW
17969 /* The implementation of the FIX instruction is broken on some
17970 assemblers, in that it accepts a precision specifier as well as a
17971 rounding specifier, despite the fact that this is meaningless.
17972 To be more compatible, we accept it as well, though of course it
17973 does not set any bits. */
21d799b5
NC
17974 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17975 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17976 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17977 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17978 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17979 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17980 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17981 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17982 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17983 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17984 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17985 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17986 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17987
c19d1205 17988 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17989#undef ARM_VARIANT
17990#define ARM_VARIANT & fpu_fpa_ext_v2
17991
21d799b5
NC
17992 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17993 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17994 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17995 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17996 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17997 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17998
c921be7d
NC
17999#undef ARM_VARIANT
18000#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18001
c19d1205 18002 /* Moves and type conversions. */
21d799b5
NC
18003 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18004 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18005 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18006 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
18007 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18008 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18009 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18010 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18011 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18012 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18013 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18014 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18015 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18016 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18017
18018 /* Memory operations. */
21d799b5
NC
18019 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18020 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18021 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18022 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18023 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18024 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18025 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18026 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18027 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18028 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18029 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18030 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18031 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18032 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18033 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18034 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18035 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18036 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18037
c19d1205 18038 /* Monadic operations. */
21d799b5
NC
18039 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18040 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18041 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18042
18043 /* Dyadic operations. */
21d799b5
NC
18044 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18045 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18046 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18047 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18048 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18049 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18050 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18051 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18052 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18053
c19d1205 18054 /* Comparisons. */
21d799b5
NC
18055 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18056 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18057 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18058 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18059
62f3b8c8
PB
18060 /* Double precision load/store are still present on single precision
18061 implementations. */
18062 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18063 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18064 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18065 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18066 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18067 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18068 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18069 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18070 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18071 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18072
c921be7d
NC
18073#undef ARM_VARIANT
18074#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18075
c19d1205 18076 /* Moves and type conversions. */
21d799b5
NC
18077 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18078 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18079 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18080 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18081 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18082 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18083 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18084 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18085 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18086 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18087 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18088 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18089 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18090
c19d1205 18091 /* Monadic operations. */
21d799b5
NC
18092 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18093 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18094 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18095
18096 /* Dyadic operations. */
21d799b5
NC
18097 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18098 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18099 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18100 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18101 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18102 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18103 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18104 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18105 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18106
c19d1205 18107 /* Comparisons. */
21d799b5
NC
18108 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18109 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18110 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18111 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18112
c921be7d
NC
18113#undef ARM_VARIANT
18114#define ARM_VARIANT & fpu_vfp_ext_v2
18115
21d799b5
NC
18116 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18117 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18118 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18119 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18120
037e8744
JB
18121/* Instructions which may belong to either the Neon or VFP instruction sets.
18122 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18123#undef ARM_VARIANT
18124#define ARM_VARIANT & fpu_vfp_ext_v1xd
18125#undef THUMB_VARIANT
18126#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18127
037e8744
JB
18128 /* These mnemonics are unique to VFP. */
18129 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18130 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18131 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18132 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18133 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18134 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18135 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18136 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18137 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18138 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18139
18140 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18141 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18142 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18143 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18144
21d799b5
NC
18145 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18146 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18147
18148 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18149 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18150
55881a11
MGD
18151 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18152 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18153 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18154 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18155 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18156 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18157 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18158 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18159
e3e535bc
NC
18160 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18161 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18162 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18163 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18164
037e8744
JB
18165
18166 /* NOTE: All VMOV encoding is special-cased! */
18167 NCE(vmov, 0, 1, (VMOV), neon_mov),
18168 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18169
c921be7d
NC
18170#undef THUMB_VARIANT
18171#define THUMB_VARIANT & fpu_neon_ext_v1
18172#undef ARM_VARIANT
18173#define ARM_VARIANT & fpu_neon_ext_v1
18174
5287ad62
JB
18175 /* Data processing with three registers of the same length. */
18176 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18177 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18178 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18179 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18180 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18181 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18182 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18183 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18184 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18185 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18186 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18187 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18188 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18189 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18190 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18191 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18192 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18193 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18194 /* If not immediate, fall back to neon_dyadic_i64_su.
18195 shl_imm should accept I8 I16 I32 I64,
18196 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18197 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18198 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18199 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18200 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18201 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18202 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18203 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18204 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18205 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18206 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18207 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18208 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18209 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18210 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18211 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18212 /* Bitfield ops, untyped. */
18213 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18214 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18215 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18216 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18217 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18218 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18219 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18220 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18221 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18222 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18223 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18224 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18225 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18226 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18227 back to neon_dyadic_if_su. */
21d799b5
NC
18228 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18229 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18230 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18231 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18232 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18233 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18234 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18235 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18236 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18237 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18238 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18239 /* As above, D registers only. */
21d799b5
NC
18240 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18241 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18242 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18243 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18244 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18245 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18246 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18247 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18248 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18249 /* vtst takes sizes 8, 16, 32. */
18250 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18251 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18252 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18253 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18254 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18255 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18256 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18257 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18258 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18259 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18260 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18261 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18262 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18263 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18264 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18265 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18266 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18267 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18268 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18269 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18270 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18271
18272 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18273 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18274 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18275
18276 /* Data processing with two registers and a shift amount. */
18277 /* Right shifts, and variants with rounding.
18278 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18279 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18280 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18281 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18282 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18283 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18284 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18285 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18286 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18287 /* Shift and insert. Sizes accepted 8 16 32 64. */
18288 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18289 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18290 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18291 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18292 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18293 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18294 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18295 /* Right shift immediate, saturating & narrowing, with rounding variants.
18296 Types accepted S16 S32 S64 U16 U32 U64. */
18297 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18298 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18299 /* As above, unsigned. Types accepted S16 S32 S64. */
18300 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18301 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18302 /* Right shift narrowing. Types accepted I16 I32 I64. */
18303 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18304 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18305 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18306 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18307 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18308 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18309
4316f0d2
DG
18310 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18311 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18312
18313 /* Data processing, three registers of different lengths. */
18314 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18315 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18316 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18317 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18318 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18319 /* If not scalar, fall back to neon_dyadic_long.
18320 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18321 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18322 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18323 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18324 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18325 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18326 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18327 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18328 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18329 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18330 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18331 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18332 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18333 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18334 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18335 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18336 S16 S32 U16 U32. */
21d799b5 18337 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18338
18339 /* Extract. Size 8. */
3b8d421e
PB
18340 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18341 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18342
18343 /* Two registers, miscellaneous. */
18344 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18345 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18346 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18347 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18348 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18349 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18350 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18351 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18352 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18353 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18354 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18355 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18356 /* VMOVN. Types I16 I32 I64. */
21d799b5 18357 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18358 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18359 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18360 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18361 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18362 /* VZIP / VUZP. Sizes 8 16 32. */
18363 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18364 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18365 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18366 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18367 /* VQABS / VQNEG. Types S8 S16 S32. */
18368 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18369 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18370 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18371 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18372 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18373 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18374 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18375 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18376 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18377 /* Reciprocal estimates. Types U32 F32. */
18378 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18379 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18380 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18381 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18382 /* VCLS. Types S8 S16 S32. */
18383 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18384 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18385 /* VCLZ. Types I8 I16 I32. */
18386 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18387 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18388 /* VCNT. Size 8. */
18389 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18390 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18391 /* Two address, untyped. */
18392 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18393 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18394 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18395 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18396 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18397
18398 /* Table lookup. Size 8. */
18399 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18400 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18401
c921be7d
NC
18402#undef THUMB_VARIANT
18403#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18404#undef ARM_VARIANT
18405#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18406
5287ad62 18407 /* Neon element/structure load/store. */
21d799b5
NC
18408 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18409 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18410 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18411 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18412 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18413 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18414 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18415 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18416
c921be7d 18417#undef THUMB_VARIANT
62f3b8c8
PB
18418#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18419#undef ARM_VARIANT
18420#define ARM_VARIANT &fpu_vfp_ext_v3xd
18421 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18422 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18423 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18424 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18425 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18426 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18427 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18428 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18429 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18430
18431#undef THUMB_VARIANT
c921be7d
NC
18432#define THUMB_VARIANT & fpu_vfp_ext_v3
18433#undef ARM_VARIANT
18434#define ARM_VARIANT & fpu_vfp_ext_v3
18435
21d799b5 18436 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18437 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18438 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18439 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18440 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18441 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18442 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18443 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18444 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18445
62f3b8c8
PB
18446#undef ARM_VARIANT
18447#define ARM_VARIANT &fpu_vfp_ext_fma
18448#undef THUMB_VARIANT
18449#define THUMB_VARIANT &fpu_vfp_ext_fma
18450 /* Mnemonics shared by Neon and VFP. These are included in the
18451 VFP FMA variant; NEON and VFP FMA always includes the NEON
18452 FMA instructions. */
18453 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18454 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18455 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18456 the v form should always be used. */
18457 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18458 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18459 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18460 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18461 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18462 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18463
5287ad62 18464#undef THUMB_VARIANT
c921be7d
NC
18465#undef ARM_VARIANT
18466#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18467
21d799b5
NC
18468 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18469 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18470 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18471 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18472 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18473 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18474 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18475 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18476
c921be7d
NC
18477#undef ARM_VARIANT
18478#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18479
21d799b5
NC
18480 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18481 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18482 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18483 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18484 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18485 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18486 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18487 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18488 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18489 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18490 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18491 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18492 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18493 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18494 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18495 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18496 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18497 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18498 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18499 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18500 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18501 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18502 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18503 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18504 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18505 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18506 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18507 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18508 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18509 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18510 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18511 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18512 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18513 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18514 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18515 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18516 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18517 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18518 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18519 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18520 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18521 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18522 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18523 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18524 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18527 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18529 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18530 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18531 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18532 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18533 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18534 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18535 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18536 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18537 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18538 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18539 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18540 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18541 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18542 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18543 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18546 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18547 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18548 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18549 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18550 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18551 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18552 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18553 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18554 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18555 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18556 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18557 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18558 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18559 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18560 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18561 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18562 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18563 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18564 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18565 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18566 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18567 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18568 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18569 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18573 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18578 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18579 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18580 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18581 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18582 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18583 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18584 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18585 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18586 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18587 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18588 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18589 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18590 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18591 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18592 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18593 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18594 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18595 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18596 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18597 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18598 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18599 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18600 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18601 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18602 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18603 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18604 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18605 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18606 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18607 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18608 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18609 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18610 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18611 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18612 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18613 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18614 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18615 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18616 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18617 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18618 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18619 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18620 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18621 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18622 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18623 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18624 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18625 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18626 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18627 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18628 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18629 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18630 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18631 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18632 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18633 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18634 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18635 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18636 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18637 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18638 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18642
c921be7d
NC
18643#undef ARM_VARIANT
18644#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18645
21d799b5
NC
18646 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18647 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18648 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18649 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18650 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18651 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18652 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18667 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18703
c921be7d
NC
18704#undef ARM_VARIANT
18705#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18706
21d799b5
NC
18707 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18708 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18709 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18710 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18711 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18712 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18713 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18714 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18715 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18716 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18717 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18718 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18719 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18720 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18721 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18722 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18723 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18724 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18725 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18726 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18727 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18728 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18729 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18730 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18731 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18732 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18733 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18734 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18735 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18736 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18737 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18738 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18739 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18740 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18741 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18742 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18743 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18744 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18745 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18746 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18747 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18748 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18749 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18750 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18751 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18752 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18753 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18754 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18755 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18756 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18757 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18758 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18759 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18760 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18761 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18762 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18763 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18764 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18765 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18766 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18767 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18768 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18769 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18770 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18771 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18772 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18773 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18774 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18775 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18776 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18777 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18778 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18779 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18780 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18781 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18782 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18783};
18784#undef ARM_VARIANT
18785#undef THUMB_VARIANT
18786#undef TCE
18787#undef TCM
18788#undef TUE
18789#undef TUF
18790#undef TCC
8f06b2d8 18791#undef cCE
e3cb604e
PB
18792#undef cCL
18793#undef C3E
c19d1205
ZW
18794#undef CE
18795#undef CM
18796#undef UE
18797#undef UF
18798#undef UT
5287ad62
JB
18799#undef NUF
18800#undef nUF
18801#undef NCE
18802#undef nCE
c19d1205
ZW
18803#undef OPS0
18804#undef OPS1
18805#undef OPS2
18806#undef OPS3
18807#undef OPS4
18808#undef OPS5
18809#undef OPS6
18810#undef do_0
18811\f
18812/* MD interface: bits in the object file. */
bfae80f2 18813
c19d1205
ZW
18814/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18815 for use in the a.out file, and stores them in the array pointed to by buf.
18816 This knows about the endian-ness of the target machine and does
18817 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18818 2 (short) and 4 (long) Floating numbers are put out as a series of
18819 LITTLENUMS (shorts, here at least). */
b99bd4ef 18820
c19d1205
ZW
18821void
18822md_number_to_chars (char * buf, valueT val, int n)
18823{
18824 if (target_big_endian)
18825 number_to_chars_bigendian (buf, val, n);
18826 else
18827 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18828}
18829
c19d1205
ZW
18830static valueT
18831md_chars_to_number (char * buf, int n)
bfae80f2 18832{
c19d1205
ZW
18833 valueT result = 0;
18834 unsigned char * where = (unsigned char *) buf;
bfae80f2 18835
c19d1205 18836 if (target_big_endian)
b99bd4ef 18837 {
c19d1205
ZW
18838 while (n--)
18839 {
18840 result <<= 8;
18841 result |= (*where++ & 255);
18842 }
b99bd4ef 18843 }
c19d1205 18844 else
b99bd4ef 18845 {
c19d1205
ZW
18846 while (n--)
18847 {
18848 result <<= 8;
18849 result |= (where[n] & 255);
18850 }
bfae80f2 18851 }
b99bd4ef 18852
c19d1205 18853 return result;
bfae80f2 18854}
b99bd4ef 18855
c19d1205 18856/* MD interface: Sections. */
b99bd4ef 18857
0110f2b8
PB
18858/* Estimate the size of a frag before relaxing. Assume everything fits in
18859 2 bytes. */
18860
c19d1205 18861int
0110f2b8 18862md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18863 segT segtype ATTRIBUTE_UNUSED)
18864{
0110f2b8
PB
18865 fragp->fr_var = 2;
18866 return 2;
18867}
18868
18869/* Convert a machine dependent frag. */
18870
18871void
18872md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18873{
18874 unsigned long insn;
18875 unsigned long old_op;
18876 char *buf;
18877 expressionS exp;
18878 fixS *fixp;
18879 int reloc_type;
18880 int pc_rel;
18881 int opcode;
18882
18883 buf = fragp->fr_literal + fragp->fr_fix;
18884
18885 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18886 if (fragp->fr_symbol)
18887 {
0110f2b8
PB
18888 exp.X_op = O_symbol;
18889 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18890 }
18891 else
18892 {
0110f2b8 18893 exp.X_op = O_constant;
5f4273c7 18894 }
0110f2b8
PB
18895 exp.X_add_number = fragp->fr_offset;
18896 opcode = fragp->fr_subtype;
18897 switch (opcode)
18898 {
18899 case T_MNEM_ldr_pc:
18900 case T_MNEM_ldr_pc2:
18901 case T_MNEM_ldr_sp:
18902 case T_MNEM_str_sp:
18903 case T_MNEM_ldr:
18904 case T_MNEM_ldrb:
18905 case T_MNEM_ldrh:
18906 case T_MNEM_str:
18907 case T_MNEM_strb:
18908 case T_MNEM_strh:
18909 if (fragp->fr_var == 4)
18910 {
5f4273c7 18911 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18912 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18913 {
18914 insn |= (old_op & 0x700) << 4;
18915 }
18916 else
18917 {
18918 insn |= (old_op & 7) << 12;
18919 insn |= (old_op & 0x38) << 13;
18920 }
18921 insn |= 0x00000c00;
18922 put_thumb32_insn (buf, insn);
18923 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18924 }
18925 else
18926 {
18927 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18928 }
18929 pc_rel = (opcode == T_MNEM_ldr_pc2);
18930 break;
18931 case T_MNEM_adr:
18932 if (fragp->fr_var == 4)
18933 {
18934 insn = THUMB_OP32 (opcode);
18935 insn |= (old_op & 0xf0) << 4;
18936 put_thumb32_insn (buf, insn);
18937 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18938 }
18939 else
18940 {
18941 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18942 exp.X_add_number -= 4;
18943 }
18944 pc_rel = 1;
18945 break;
18946 case T_MNEM_mov:
18947 case T_MNEM_movs:
18948 case T_MNEM_cmp:
18949 case T_MNEM_cmn:
18950 if (fragp->fr_var == 4)
18951 {
18952 int r0off = (opcode == T_MNEM_mov
18953 || opcode == T_MNEM_movs) ? 0 : 8;
18954 insn = THUMB_OP32 (opcode);
18955 insn = (insn & 0xe1ffffff) | 0x10000000;
18956 insn |= (old_op & 0x700) << r0off;
18957 put_thumb32_insn (buf, insn);
18958 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18959 }
18960 else
18961 {
18962 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18963 }
18964 pc_rel = 0;
18965 break;
18966 case T_MNEM_b:
18967 if (fragp->fr_var == 4)
18968 {
18969 insn = THUMB_OP32(opcode);
18970 put_thumb32_insn (buf, insn);
18971 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18972 }
18973 else
18974 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18975 pc_rel = 1;
18976 break;
18977 case T_MNEM_bcond:
18978 if (fragp->fr_var == 4)
18979 {
18980 insn = THUMB_OP32(opcode);
18981 insn |= (old_op & 0xf00) << 14;
18982 put_thumb32_insn (buf, insn);
18983 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18984 }
18985 else
18986 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18987 pc_rel = 1;
18988 break;
18989 case T_MNEM_add_sp:
18990 case T_MNEM_add_pc:
18991 case T_MNEM_inc_sp:
18992 case T_MNEM_dec_sp:
18993 if (fragp->fr_var == 4)
18994 {
18995 /* ??? Choose between add and addw. */
18996 insn = THUMB_OP32 (opcode);
18997 insn |= (old_op & 0xf0) << 4;
18998 put_thumb32_insn (buf, insn);
16805f35
PB
18999 if (opcode == T_MNEM_add_pc)
19000 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19001 else
19002 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19003 }
19004 else
19005 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19006 pc_rel = 0;
19007 break;
19008
19009 case T_MNEM_addi:
19010 case T_MNEM_addis:
19011 case T_MNEM_subi:
19012 case T_MNEM_subis:
19013 if (fragp->fr_var == 4)
19014 {
19015 insn = THUMB_OP32 (opcode);
19016 insn |= (old_op & 0xf0) << 4;
19017 insn |= (old_op & 0xf) << 16;
19018 put_thumb32_insn (buf, insn);
16805f35
PB
19019 if (insn & (1 << 20))
19020 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19021 else
19022 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19023 }
19024 else
19025 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19026 pc_rel = 0;
19027 break;
19028 default:
5f4273c7 19029 abort ();
0110f2b8
PB
19030 }
19031 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19032 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19033 fixp->fx_file = fragp->fr_file;
19034 fixp->fx_line = fragp->fr_line;
19035 fragp->fr_fix += fragp->fr_var;
19036}
19037
19038/* Return the size of a relaxable immediate operand instruction.
19039 SHIFT and SIZE specify the form of the allowable immediate. */
19040static int
19041relax_immediate (fragS *fragp, int size, int shift)
19042{
19043 offsetT offset;
19044 offsetT mask;
19045 offsetT low;
19046
19047 /* ??? Should be able to do better than this. */
19048 if (fragp->fr_symbol)
19049 return 4;
19050
19051 low = (1 << shift) - 1;
19052 mask = (1 << (shift + size)) - (1 << shift);
19053 offset = fragp->fr_offset;
19054 /* Force misaligned offsets to 32-bit variant. */
19055 if (offset & low)
5e77afaa 19056 return 4;
0110f2b8
PB
19057 if (offset & ~mask)
19058 return 4;
19059 return 2;
19060}
19061
5e77afaa
PB
19062/* Get the address of a symbol during relaxation. */
19063static addressT
5f4273c7 19064relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19065{
19066 fragS *sym_frag;
19067 addressT addr;
19068 symbolS *sym;
19069
19070 sym = fragp->fr_symbol;
19071 sym_frag = symbol_get_frag (sym);
19072 know (S_GET_SEGMENT (sym) != absolute_section
19073 || sym_frag == &zero_address_frag);
19074 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19075
19076 /* If frag has yet to be reached on this pass, assume it will
19077 move by STRETCH just as we did. If this is not so, it will
19078 be because some frag between grows, and that will force
19079 another pass. */
19080
19081 if (stretch != 0
19082 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19083 {
19084 fragS *f;
19085
19086 /* Adjust stretch for any alignment frag. Note that if have
19087 been expanding the earlier code, the symbol may be
19088 defined in what appears to be an earlier frag. FIXME:
19089 This doesn't handle the fr_subtype field, which specifies
19090 a maximum number of bytes to skip when doing an
19091 alignment. */
19092 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19093 {
19094 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19095 {
19096 if (stretch < 0)
19097 stretch = - ((- stretch)
19098 & ~ ((1 << (int) f->fr_offset) - 1));
19099 else
19100 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19101 if (stretch == 0)
19102 break;
19103 }
19104 }
19105 if (f != NULL)
19106 addr += stretch;
19107 }
5e77afaa
PB
19108
19109 return addr;
19110}
19111
0110f2b8
PB
19112/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19113 load. */
19114static int
5e77afaa 19115relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19116{
19117 addressT addr;
19118 offsetT val;
19119
19120 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19121 if (fragp->fr_symbol == NULL
19122 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19123 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19124 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19125 return 4;
19126
5f4273c7 19127 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19128 addr = fragp->fr_address + fragp->fr_fix;
19129 addr = (addr + 4) & ~3;
5e77afaa 19130 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19131 if (val & 3)
5e77afaa 19132 return 4;
0110f2b8
PB
19133 val -= addr;
19134 if (val < 0 || val > 1020)
19135 return 4;
19136 return 2;
19137}
19138
19139/* Return the size of a relaxable add/sub immediate instruction. */
19140static int
19141relax_addsub (fragS *fragp, asection *sec)
19142{
19143 char *buf;
19144 int op;
19145
19146 buf = fragp->fr_literal + fragp->fr_fix;
19147 op = bfd_get_16(sec->owner, buf);
19148 if ((op & 0xf) == ((op >> 4) & 0xf))
19149 return relax_immediate (fragp, 8, 0);
19150 else
19151 return relax_immediate (fragp, 3, 0);
19152}
19153
19154
19155/* Return the size of a relaxable branch instruction. BITS is the
19156 size of the offset field in the narrow instruction. */
19157
19158static int
5e77afaa 19159relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19160{
19161 addressT addr;
19162 offsetT val;
19163 offsetT limit;
19164
19165 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19166 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19167 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19168 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19169 return 4;
19170
267bf995
RR
19171#ifdef OBJ_ELF
19172 if (S_IS_DEFINED (fragp->fr_symbol)
19173 && ARM_IS_FUNC (fragp->fr_symbol))
19174 return 4;
0d9b4b55
NC
19175
19176 /* PR 12532. Global symbols with default visibility might
19177 be preempted, so do not relax relocations to them. */
19178 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19179 && (! S_IS_LOCAL (fragp->fr_symbol)))
19180 return 4;
267bf995
RR
19181#endif
19182
5f4273c7 19183 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19184 addr = fragp->fr_address + fragp->fr_fix + 4;
19185 val -= addr;
19186
19187 /* Offset is a signed value *2 */
19188 limit = 1 << bits;
19189 if (val >= limit || val < -limit)
19190 return 4;
19191 return 2;
19192}
19193
19194
19195/* Relax a machine dependent frag. This returns the amount by which
19196 the current size of the frag should change. */
19197
19198int
5e77afaa 19199arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19200{
19201 int oldsize;
19202 int newsize;
19203
19204 oldsize = fragp->fr_var;
19205 switch (fragp->fr_subtype)
19206 {
19207 case T_MNEM_ldr_pc2:
5f4273c7 19208 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19209 break;
19210 case T_MNEM_ldr_pc:
19211 case T_MNEM_ldr_sp:
19212 case T_MNEM_str_sp:
5f4273c7 19213 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19214 break;
19215 case T_MNEM_ldr:
19216 case T_MNEM_str:
5f4273c7 19217 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19218 break;
19219 case T_MNEM_ldrh:
19220 case T_MNEM_strh:
5f4273c7 19221 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19222 break;
19223 case T_MNEM_ldrb:
19224 case T_MNEM_strb:
5f4273c7 19225 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19226 break;
19227 case T_MNEM_adr:
5f4273c7 19228 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19229 break;
19230 case T_MNEM_mov:
19231 case T_MNEM_movs:
19232 case T_MNEM_cmp:
19233 case T_MNEM_cmn:
5f4273c7 19234 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19235 break;
19236 case T_MNEM_b:
5f4273c7 19237 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19238 break;
19239 case T_MNEM_bcond:
5f4273c7 19240 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19241 break;
19242 case T_MNEM_add_sp:
19243 case T_MNEM_add_pc:
19244 newsize = relax_immediate (fragp, 8, 2);
19245 break;
19246 case T_MNEM_inc_sp:
19247 case T_MNEM_dec_sp:
19248 newsize = relax_immediate (fragp, 7, 2);
19249 break;
19250 case T_MNEM_addi:
19251 case T_MNEM_addis:
19252 case T_MNEM_subi:
19253 case T_MNEM_subis:
19254 newsize = relax_addsub (fragp, sec);
19255 break;
19256 default:
5f4273c7 19257 abort ();
0110f2b8 19258 }
5e77afaa
PB
19259
19260 fragp->fr_var = newsize;
19261 /* Freeze wide instructions that are at or before the same location as
19262 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19263 Don't freeze them unconditionally because targets may be artificially
19264 misaligned by the expansion of preceding frags. */
5e77afaa 19265 if (stretch <= 0 && newsize > 2)
0110f2b8 19266 {
0110f2b8 19267 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19268 frag_wane (fragp);
0110f2b8 19269 }
5e77afaa 19270
0110f2b8 19271 return newsize - oldsize;
c19d1205 19272}
b99bd4ef 19273
c19d1205 19274/* Round up a section size to the appropriate boundary. */
b99bd4ef 19275
c19d1205
ZW
19276valueT
19277md_section_align (segT segment ATTRIBUTE_UNUSED,
19278 valueT size)
19279{
f0927246
NC
19280#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19281 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19282 {
19283 /* For a.out, force the section size to be aligned. If we don't do
19284 this, BFD will align it for us, but it will not write out the
19285 final bytes of the section. This may be a bug in BFD, but it is
19286 easier to fix it here since that is how the other a.out targets
19287 work. */
19288 int align;
19289
19290 align = bfd_get_section_alignment (stdoutput, segment);
19291 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19292 }
c19d1205 19293#endif
f0927246
NC
19294
19295 return size;
bfae80f2 19296}
b99bd4ef 19297
c19d1205
ZW
19298/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19299 of an rs_align_code fragment. */
19300
19301void
19302arm_handle_align (fragS * fragP)
bfae80f2 19303{
e7495e45
NS
19304 static char const arm_noop[2][2][4] =
19305 {
19306 { /* ARMv1 */
19307 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19308 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19309 },
19310 { /* ARMv6k */
19311 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19312 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19313 },
19314 };
19315 static char const thumb_noop[2][2][2] =
19316 {
19317 { /* Thumb-1 */
19318 {0xc0, 0x46}, /* LE */
19319 {0x46, 0xc0}, /* BE */
19320 },
19321 { /* Thumb-2 */
19322 {0x00, 0xbf}, /* LE */
19323 {0xbf, 0x00} /* BE */
19324 }
19325 };
19326 static char const wide_thumb_noop[2][4] =
19327 { /* Wide Thumb-2 */
19328 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19329 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19330 };
c921be7d 19331
e7495e45 19332 unsigned bytes, fix, noop_size;
c19d1205
ZW
19333 char * p;
19334 const char * noop;
e7495e45 19335 const char *narrow_noop = NULL;
cd000bff
DJ
19336#ifdef OBJ_ELF
19337 enum mstate state;
19338#endif
bfae80f2 19339
c19d1205 19340 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19341 return;
19342
c19d1205
ZW
19343 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19344 p = fragP->fr_literal + fragP->fr_fix;
19345 fix = 0;
bfae80f2 19346
c19d1205
ZW
19347 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19348 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19349
cd000bff 19350 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19351
cd000bff 19352 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19353 {
e7495e45
NS
19354 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19355 {
19356 narrow_noop = thumb_noop[1][target_big_endian];
19357 noop = wide_thumb_noop[target_big_endian];
19358 }
c19d1205 19359 else
e7495e45
NS
19360 noop = thumb_noop[0][target_big_endian];
19361 noop_size = 2;
cd000bff
DJ
19362#ifdef OBJ_ELF
19363 state = MAP_THUMB;
19364#endif
7ed4c4c5
NC
19365 }
19366 else
19367 {
e7495e45
NS
19368 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19369 [target_big_endian];
19370 noop_size = 4;
cd000bff
DJ
19371#ifdef OBJ_ELF
19372 state = MAP_ARM;
19373#endif
7ed4c4c5 19374 }
c921be7d 19375
e7495e45 19376 fragP->fr_var = noop_size;
c921be7d 19377
c19d1205 19378 if (bytes & (noop_size - 1))
7ed4c4c5 19379 {
c19d1205 19380 fix = bytes & (noop_size - 1);
cd000bff
DJ
19381#ifdef OBJ_ELF
19382 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19383#endif
c19d1205
ZW
19384 memset (p, 0, fix);
19385 p += fix;
19386 bytes -= fix;
a737bd4d 19387 }
a737bd4d 19388
e7495e45
NS
19389 if (narrow_noop)
19390 {
19391 if (bytes & noop_size)
19392 {
19393 /* Insert a narrow noop. */
19394 memcpy (p, narrow_noop, noop_size);
19395 p += noop_size;
19396 bytes -= noop_size;
19397 fix += noop_size;
19398 }
19399
19400 /* Use wide noops for the remainder */
19401 noop_size = 4;
19402 }
19403
c19d1205 19404 while (bytes >= noop_size)
a737bd4d 19405 {
c19d1205
ZW
19406 memcpy (p, noop, noop_size);
19407 p += noop_size;
19408 bytes -= noop_size;
19409 fix += noop_size;
a737bd4d
NC
19410 }
19411
c19d1205 19412 fragP->fr_fix += fix;
a737bd4d
NC
19413}
19414
c19d1205
ZW
19415/* Called from md_do_align. Used to create an alignment
19416 frag in a code section. */
19417
19418void
19419arm_frag_align_code (int n, int max)
bfae80f2 19420{
c19d1205 19421 char * p;
7ed4c4c5 19422
c19d1205 19423 /* We assume that there will never be a requirement
6ec8e702 19424 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19425 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19426 {
19427 char err_msg[128];
19428
19429 sprintf (err_msg,
19430 _("alignments greater than %d bytes not supported in .text sections."),
19431 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19432 as_fatal ("%s", err_msg);
6ec8e702 19433 }
bfae80f2 19434
c19d1205
ZW
19435 p = frag_var (rs_align_code,
19436 MAX_MEM_FOR_RS_ALIGN_CODE,
19437 1,
19438 (relax_substateT) max,
19439 (symbolS *) NULL,
19440 (offsetT) n,
19441 (char *) NULL);
19442 *p = 0;
19443}
bfae80f2 19444
8dc2430f
NC
19445/* Perform target specific initialisation of a frag.
19446 Note - despite the name this initialisation is not done when the frag
19447 is created, but only when its type is assigned. A frag can be created
19448 and used a long time before its type is set, so beware of assuming that
19449 this initialisationis performed first. */
bfae80f2 19450
cd000bff
DJ
19451#ifndef OBJ_ELF
19452void
19453arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19454{
19455 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19456 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19457}
19458
19459#else /* OBJ_ELF is defined. */
c19d1205 19460void
cd000bff 19461arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19462{
8dc2430f
NC
19463 /* If the current ARM vs THUMB mode has not already
19464 been recorded into this frag then do so now. */
cd000bff
DJ
19465 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19466 {
19467 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19468
19469 /* Record a mapping symbol for alignment frags. We will delete this
19470 later if the alignment ends up empty. */
19471 switch (fragP->fr_type)
19472 {
19473 case rs_align:
19474 case rs_align_test:
19475 case rs_fill:
19476 mapping_state_2 (MAP_DATA, max_chars);
19477 break;
19478 case rs_align_code:
19479 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19480 break;
19481 default:
19482 break;
19483 }
19484 }
bfae80f2
RE
19485}
19486
c19d1205
ZW
19487/* When we change sections we need to issue a new mapping symbol. */
19488
19489void
19490arm_elf_change_section (void)
bfae80f2 19491{
c19d1205
ZW
19492 /* Link an unlinked unwind index table section to the .text section. */
19493 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19494 && elf_linked_to_section (now_seg) == NULL)
19495 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19496}
19497
c19d1205
ZW
19498int
19499arm_elf_section_type (const char * str, size_t len)
e45d0630 19500{
c19d1205
ZW
19501 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19502 return SHT_ARM_EXIDX;
e45d0630 19503
c19d1205
ZW
19504 return -1;
19505}
19506\f
19507/* Code to deal with unwinding tables. */
e45d0630 19508
c19d1205 19509static void add_unwind_adjustsp (offsetT);
e45d0630 19510
5f4273c7 19511/* Generate any deferred unwind frame offset. */
e45d0630 19512
bfae80f2 19513static void
c19d1205 19514flush_pending_unwind (void)
bfae80f2 19515{
c19d1205 19516 offsetT offset;
bfae80f2 19517
c19d1205
ZW
19518 offset = unwind.pending_offset;
19519 unwind.pending_offset = 0;
19520 if (offset != 0)
19521 add_unwind_adjustsp (offset);
bfae80f2
RE
19522}
19523
c19d1205
ZW
19524/* Add an opcode to this list for this function. Two-byte opcodes should
19525 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19526 order. */
19527
bfae80f2 19528static void
c19d1205 19529add_unwind_opcode (valueT op, int length)
bfae80f2 19530{
c19d1205
ZW
19531 /* Add any deferred stack adjustment. */
19532 if (unwind.pending_offset)
19533 flush_pending_unwind ();
bfae80f2 19534
c19d1205 19535 unwind.sp_restored = 0;
bfae80f2 19536
c19d1205 19537 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19538 {
c19d1205
ZW
19539 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19540 if (unwind.opcodes)
21d799b5
NC
19541 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19542 unwind.opcode_alloc);
c19d1205 19543 else
21d799b5 19544 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19545 }
c19d1205 19546 while (length > 0)
bfae80f2 19547 {
c19d1205
ZW
19548 length--;
19549 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19550 op >>= 8;
19551 unwind.opcode_count++;
bfae80f2 19552 }
bfae80f2
RE
19553}
19554
c19d1205
ZW
19555/* Add unwind opcodes to adjust the stack pointer. */
19556
bfae80f2 19557static void
c19d1205 19558add_unwind_adjustsp (offsetT offset)
bfae80f2 19559{
c19d1205 19560 valueT op;
bfae80f2 19561
c19d1205 19562 if (offset > 0x200)
bfae80f2 19563 {
c19d1205
ZW
19564 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19565 char bytes[5];
19566 int n;
19567 valueT o;
bfae80f2 19568
c19d1205
ZW
19569 /* Long form: 0xb2, uleb128. */
19570 /* This might not fit in a word so add the individual bytes,
19571 remembering the list is built in reverse order. */
19572 o = (valueT) ((offset - 0x204) >> 2);
19573 if (o == 0)
19574 add_unwind_opcode (0, 1);
bfae80f2 19575
c19d1205
ZW
19576 /* Calculate the uleb128 encoding of the offset. */
19577 n = 0;
19578 while (o)
19579 {
19580 bytes[n] = o & 0x7f;
19581 o >>= 7;
19582 if (o)
19583 bytes[n] |= 0x80;
19584 n++;
19585 }
19586 /* Add the insn. */
19587 for (; n; n--)
19588 add_unwind_opcode (bytes[n - 1], 1);
19589 add_unwind_opcode (0xb2, 1);
19590 }
19591 else if (offset > 0x100)
bfae80f2 19592 {
c19d1205
ZW
19593 /* Two short opcodes. */
19594 add_unwind_opcode (0x3f, 1);
19595 op = (offset - 0x104) >> 2;
19596 add_unwind_opcode (op, 1);
bfae80f2 19597 }
c19d1205
ZW
19598 else if (offset > 0)
19599 {
19600 /* Short opcode. */
19601 op = (offset - 4) >> 2;
19602 add_unwind_opcode (op, 1);
19603 }
19604 else if (offset < 0)
bfae80f2 19605 {
c19d1205
ZW
19606 offset = -offset;
19607 while (offset > 0x100)
bfae80f2 19608 {
c19d1205
ZW
19609 add_unwind_opcode (0x7f, 1);
19610 offset -= 0x100;
bfae80f2 19611 }
c19d1205
ZW
19612 op = ((offset - 4) >> 2) | 0x40;
19613 add_unwind_opcode (op, 1);
bfae80f2 19614 }
bfae80f2
RE
19615}
19616
c19d1205
ZW
19617/* Finish the list of unwind opcodes for this function. */
19618static void
19619finish_unwind_opcodes (void)
bfae80f2 19620{
c19d1205 19621 valueT op;
bfae80f2 19622
c19d1205 19623 if (unwind.fp_used)
bfae80f2 19624 {
708587a4 19625 /* Adjust sp as necessary. */
c19d1205
ZW
19626 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19627 flush_pending_unwind ();
bfae80f2 19628
c19d1205
ZW
19629 /* After restoring sp from the frame pointer. */
19630 op = 0x90 | unwind.fp_reg;
19631 add_unwind_opcode (op, 1);
19632 }
19633 else
19634 flush_pending_unwind ();
bfae80f2
RE
19635}
19636
bfae80f2 19637
c19d1205
ZW
19638/* Start an exception table entry. If idx is nonzero this is an index table
19639 entry. */
bfae80f2
RE
19640
19641static void
c19d1205 19642start_unwind_section (const segT text_seg, int idx)
bfae80f2 19643{
c19d1205
ZW
19644 const char * text_name;
19645 const char * prefix;
19646 const char * prefix_once;
19647 const char * group_name;
19648 size_t prefix_len;
19649 size_t text_len;
19650 char * sec_name;
19651 size_t sec_name_len;
19652 int type;
19653 int flags;
19654 int linkonce;
bfae80f2 19655
c19d1205 19656 if (idx)
bfae80f2 19657 {
c19d1205
ZW
19658 prefix = ELF_STRING_ARM_unwind;
19659 prefix_once = ELF_STRING_ARM_unwind_once;
19660 type = SHT_ARM_EXIDX;
bfae80f2 19661 }
c19d1205 19662 else
bfae80f2 19663 {
c19d1205
ZW
19664 prefix = ELF_STRING_ARM_unwind_info;
19665 prefix_once = ELF_STRING_ARM_unwind_info_once;
19666 type = SHT_PROGBITS;
bfae80f2
RE
19667 }
19668
c19d1205
ZW
19669 text_name = segment_name (text_seg);
19670 if (streq (text_name, ".text"))
19671 text_name = "";
19672
19673 if (strncmp (text_name, ".gnu.linkonce.t.",
19674 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19675 {
c19d1205
ZW
19676 prefix = prefix_once;
19677 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19678 }
19679
c19d1205
ZW
19680 prefix_len = strlen (prefix);
19681 text_len = strlen (text_name);
19682 sec_name_len = prefix_len + text_len;
21d799b5 19683 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19684 memcpy (sec_name, prefix, prefix_len);
19685 memcpy (sec_name + prefix_len, text_name, text_len);
19686 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19687
c19d1205
ZW
19688 flags = SHF_ALLOC;
19689 linkonce = 0;
19690 group_name = 0;
bfae80f2 19691
c19d1205
ZW
19692 /* Handle COMDAT group. */
19693 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19694 {
c19d1205
ZW
19695 group_name = elf_group_name (text_seg);
19696 if (group_name == NULL)
19697 {
bd3ba5d1 19698 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19699 segment_name (text_seg));
19700 ignore_rest_of_line ();
19701 return;
19702 }
19703 flags |= SHF_GROUP;
19704 linkonce = 1;
bfae80f2
RE
19705 }
19706
c19d1205 19707 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19708
5f4273c7 19709 /* Set the section link for index tables. */
c19d1205
ZW
19710 if (idx)
19711 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19712}
19713
bfae80f2 19714
c19d1205
ZW
19715/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19716 personality routine data. Returns zero, or the index table value for
19717 and inline entry. */
19718
19719static valueT
19720create_unwind_entry (int have_data)
bfae80f2 19721{
c19d1205
ZW
19722 int size;
19723 addressT where;
19724 char *ptr;
19725 /* The current word of data. */
19726 valueT data;
19727 /* The number of bytes left in this word. */
19728 int n;
bfae80f2 19729
c19d1205 19730 finish_unwind_opcodes ();
bfae80f2 19731
c19d1205
ZW
19732 /* Remember the current text section. */
19733 unwind.saved_seg = now_seg;
19734 unwind.saved_subseg = now_subseg;
bfae80f2 19735
c19d1205 19736 start_unwind_section (now_seg, 0);
bfae80f2 19737
c19d1205 19738 if (unwind.personality_routine == NULL)
bfae80f2 19739 {
c19d1205
ZW
19740 if (unwind.personality_index == -2)
19741 {
19742 if (have_data)
5f4273c7 19743 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19744 return 1; /* EXIDX_CANTUNWIND. */
19745 }
bfae80f2 19746
c19d1205
ZW
19747 /* Use a default personality routine if none is specified. */
19748 if (unwind.personality_index == -1)
19749 {
19750 if (unwind.opcode_count > 3)
19751 unwind.personality_index = 1;
19752 else
19753 unwind.personality_index = 0;
19754 }
bfae80f2 19755
c19d1205
ZW
19756 /* Space for the personality routine entry. */
19757 if (unwind.personality_index == 0)
19758 {
19759 if (unwind.opcode_count > 3)
19760 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19761
c19d1205
ZW
19762 if (!have_data)
19763 {
19764 /* All the data is inline in the index table. */
19765 data = 0x80;
19766 n = 3;
19767 while (unwind.opcode_count > 0)
19768 {
19769 unwind.opcode_count--;
19770 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19771 n--;
19772 }
bfae80f2 19773
c19d1205
ZW
19774 /* Pad with "finish" opcodes. */
19775 while (n--)
19776 data = (data << 8) | 0xb0;
bfae80f2 19777
c19d1205
ZW
19778 return data;
19779 }
19780 size = 0;
19781 }
19782 else
19783 /* We get two opcodes "free" in the first word. */
19784 size = unwind.opcode_count - 2;
19785 }
19786 else
19787 /* An extra byte is required for the opcode count. */
19788 size = unwind.opcode_count + 1;
bfae80f2 19789
c19d1205
ZW
19790 size = (size + 3) >> 2;
19791 if (size > 0xff)
19792 as_bad (_("too many unwind opcodes"));
bfae80f2 19793
c19d1205
ZW
19794 frag_align (2, 0, 0);
19795 record_alignment (now_seg, 2);
19796 unwind.table_entry = expr_build_dot ();
19797
19798 /* Allocate the table entry. */
19799 ptr = frag_more ((size << 2) + 4);
19800 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19801
c19d1205 19802 switch (unwind.personality_index)
bfae80f2 19803 {
c19d1205
ZW
19804 case -1:
19805 /* ??? Should this be a PLT generating relocation? */
19806 /* Custom personality routine. */
19807 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19808 BFD_RELOC_ARM_PREL31);
bfae80f2 19809
c19d1205
ZW
19810 where += 4;
19811 ptr += 4;
bfae80f2 19812
c19d1205
ZW
19813 /* Set the first byte to the number of additional words. */
19814 data = size - 1;
19815 n = 3;
19816 break;
bfae80f2 19817
c19d1205
ZW
19818 /* ABI defined personality routines. */
19819 case 0:
19820 /* Three opcodes bytes are packed into the first word. */
19821 data = 0x80;
19822 n = 3;
19823 break;
bfae80f2 19824
c19d1205
ZW
19825 case 1:
19826 case 2:
19827 /* The size and first two opcode bytes go in the first word. */
19828 data = ((0x80 + unwind.personality_index) << 8) | size;
19829 n = 2;
19830 break;
bfae80f2 19831
c19d1205
ZW
19832 default:
19833 /* Should never happen. */
19834 abort ();
19835 }
bfae80f2 19836
c19d1205
ZW
19837 /* Pack the opcodes into words (MSB first), reversing the list at the same
19838 time. */
19839 while (unwind.opcode_count > 0)
19840 {
19841 if (n == 0)
19842 {
19843 md_number_to_chars (ptr, data, 4);
19844 ptr += 4;
19845 n = 4;
19846 data = 0;
19847 }
19848 unwind.opcode_count--;
19849 n--;
19850 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19851 }
19852
19853 /* Finish off the last word. */
19854 if (n < 4)
19855 {
19856 /* Pad with "finish" opcodes. */
19857 while (n--)
19858 data = (data << 8) | 0xb0;
19859
19860 md_number_to_chars (ptr, data, 4);
19861 }
19862
19863 if (!have_data)
19864 {
19865 /* Add an empty descriptor if there is no user-specified data. */
19866 ptr = frag_more (4);
19867 md_number_to_chars (ptr, 0, 4);
19868 }
19869
19870 return 0;
bfae80f2
RE
19871}
19872
f0927246
NC
19873
19874/* Initialize the DWARF-2 unwind information for this procedure. */
19875
19876void
19877tc_arm_frame_initial_instructions (void)
19878{
19879 cfi_add_CFA_def_cfa (REG_SP, 0);
19880}
19881#endif /* OBJ_ELF */
19882
c19d1205
ZW
19883/* Convert REGNAME to a DWARF-2 register number. */
19884
19885int
1df69f4f 19886tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19887{
1df69f4f 19888 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19889
19890 if (reg == FAIL)
19891 return -1;
19892
19893 return reg;
bfae80f2
RE
19894}
19895
f0927246 19896#ifdef TE_PE
c19d1205 19897void
f0927246 19898tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19899{
91d6fa6a 19900 expressionS exp;
bfae80f2 19901
91d6fa6a
NC
19902 exp.X_op = O_secrel;
19903 exp.X_add_symbol = symbol;
19904 exp.X_add_number = 0;
19905 emit_expr (&exp, size);
f0927246
NC
19906}
19907#endif
bfae80f2 19908
c19d1205 19909/* MD interface: Symbol and relocation handling. */
bfae80f2 19910
2fc8bdac
ZW
19911/* Return the address within the segment that a PC-relative fixup is
19912 relative to. For ARM, PC-relative fixups applied to instructions
19913 are generally relative to the location of the fixup plus 8 bytes.
19914 Thumb branches are offset by 4, and Thumb loads relative to PC
19915 require special handling. */
bfae80f2 19916
c19d1205 19917long
2fc8bdac 19918md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19919{
2fc8bdac
ZW
19920 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19921
19922 /* If this is pc-relative and we are going to emit a relocation
19923 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19924 will need. Otherwise we want to use the calculated base.
19925 For WinCE we skip the bias for externals as well, since this
19926 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19927 if (fixP->fx_pcrel
2fc8bdac 19928 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19929 || (arm_force_relocation (fixP)
19930#ifdef TE_WINCE
19931 && !S_IS_EXTERNAL (fixP->fx_addsy)
19932#endif
19933 )))
2fc8bdac 19934 base = 0;
bfae80f2 19935
267bf995 19936
c19d1205 19937 switch (fixP->fx_r_type)
bfae80f2 19938 {
2fc8bdac
ZW
19939 /* PC relative addressing on the Thumb is slightly odd as the
19940 bottom two bits of the PC are forced to zero for the
19941 calculation. This happens *after* application of the
19942 pipeline offset. However, Thumb adrl already adjusts for
19943 this, so we need not do it again. */
c19d1205 19944 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19945 return base & ~3;
c19d1205
ZW
19946
19947 case BFD_RELOC_ARM_THUMB_OFFSET:
19948 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19949 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19950 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19951 return (base + 4) & ~3;
c19d1205 19952
2fc8bdac
ZW
19953 /* Thumb branches are simply offset by +4. */
19954 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19955 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19956 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19957 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19958 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19959 return base + 4;
bfae80f2 19960
267bf995 19961 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19962 if (fixP->fx_addsy
19963 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19964 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19965 && ARM_IS_FUNC (fixP->fx_addsy)
19966 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19967 base = fixP->fx_where + fixP->fx_frag->fr_address;
19968 return base + 4;
19969
00adf2d4
JB
19970 /* BLX is like branches above, but forces the low two bits of PC to
19971 zero. */
486499d0
CL
19972 case BFD_RELOC_THUMB_PCREL_BLX:
19973 if (fixP->fx_addsy
19974 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19976 && THUMB_IS_FUNC (fixP->fx_addsy)
19977 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19978 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19979 return (base + 4) & ~3;
19980
2fc8bdac
ZW
19981 /* ARM mode branches are offset by +8. However, the Windows CE
19982 loader expects the relocation not to take this into account. */
267bf995 19983 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19984 if (fixP->fx_addsy
19985 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19986 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19987 && ARM_IS_FUNC (fixP->fx_addsy)
19988 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19989 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19990 return base + 8;
267bf995 19991
486499d0
CL
19992 case BFD_RELOC_ARM_PCREL_CALL:
19993 if (fixP->fx_addsy
19994 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19995 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19996 && THUMB_IS_FUNC (fixP->fx_addsy)
19997 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19998 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19999 return base + 8;
267bf995 20000
2fc8bdac 20001 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20002 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20003 case BFD_RELOC_ARM_PLT32:
c19d1205 20004#ifdef TE_WINCE
5f4273c7 20005 /* When handling fixups immediately, because we have already
53baae48
NC
20006 discovered the value of a symbol, or the address of the frag involved
20007 we must account for the offset by +8, as the OS loader will never see the reloc.
20008 see fixup_segment() in write.c
20009 The S_IS_EXTERNAL test handles the case of global symbols.
20010 Those need the calculated base, not just the pipe compensation the linker will need. */
20011 if (fixP->fx_pcrel
20012 && fixP->fx_addsy != NULL
20013 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20014 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20015 return base + 8;
2fc8bdac 20016 return base;
c19d1205 20017#else
2fc8bdac 20018 return base + 8;
c19d1205 20019#endif
2fc8bdac 20020
267bf995 20021
2fc8bdac
ZW
20022 /* ARM mode loads relative to PC are also offset by +8. Unlike
20023 branches, the Windows CE loader *does* expect the relocation
20024 to take this into account. */
20025 case BFD_RELOC_ARM_OFFSET_IMM:
20026 case BFD_RELOC_ARM_OFFSET_IMM8:
20027 case BFD_RELOC_ARM_HWLITERAL:
20028 case BFD_RELOC_ARM_LITERAL:
20029 case BFD_RELOC_ARM_CP_OFF_IMM:
20030 return base + 8;
20031
20032
20033 /* Other PC-relative relocations are un-offset. */
20034 default:
20035 return base;
20036 }
bfae80f2
RE
20037}
20038
c19d1205
ZW
20039/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20040 Otherwise we have no need to default values of symbols. */
20041
20042symbolS *
20043md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20044{
c19d1205
ZW
20045#ifdef OBJ_ELF
20046 if (name[0] == '_' && name[1] == 'G'
20047 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20048 {
20049 if (!GOT_symbol)
20050 {
20051 if (symbol_find (name))
bd3ba5d1 20052 as_bad (_("GOT already in the symbol table"));
bfae80f2 20053
c19d1205
ZW
20054 GOT_symbol = symbol_new (name, undefined_section,
20055 (valueT) 0, & zero_address_frag);
20056 }
bfae80f2 20057
c19d1205 20058 return GOT_symbol;
bfae80f2 20059 }
c19d1205 20060#endif
bfae80f2 20061
c921be7d 20062 return NULL;
bfae80f2
RE
20063}
20064
55cf6793 20065/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20066 computed as two separate immediate values, added together. We
20067 already know that this value cannot be computed by just one ARM
20068 instruction. */
20069
20070static unsigned int
20071validate_immediate_twopart (unsigned int val,
20072 unsigned int * highpart)
bfae80f2 20073{
c19d1205
ZW
20074 unsigned int a;
20075 unsigned int i;
bfae80f2 20076
c19d1205
ZW
20077 for (i = 0; i < 32; i += 2)
20078 if (((a = rotate_left (val, i)) & 0xff) != 0)
20079 {
20080 if (a & 0xff00)
20081 {
20082 if (a & ~ 0xffff)
20083 continue;
20084 * highpart = (a >> 8) | ((i + 24) << 7);
20085 }
20086 else if (a & 0xff0000)
20087 {
20088 if (a & 0xff000000)
20089 continue;
20090 * highpart = (a >> 16) | ((i + 16) << 7);
20091 }
20092 else
20093 {
9c2799c2 20094 gas_assert (a & 0xff000000);
c19d1205
ZW
20095 * highpart = (a >> 24) | ((i + 8) << 7);
20096 }
bfae80f2 20097
c19d1205
ZW
20098 return (a & 0xff) | (i << 7);
20099 }
bfae80f2 20100
c19d1205 20101 return FAIL;
bfae80f2
RE
20102}
20103
c19d1205
ZW
20104static int
20105validate_offset_imm (unsigned int val, int hwse)
20106{
20107 if ((hwse && val > 255) || val > 4095)
20108 return FAIL;
20109 return val;
20110}
bfae80f2 20111
55cf6793 20112/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20113 negative immediate constant by altering the instruction. A bit of
20114 a hack really.
20115 MOV <-> MVN
20116 AND <-> BIC
20117 ADC <-> SBC
20118 by inverting the second operand, and
20119 ADD <-> SUB
20120 CMP <-> CMN
20121 by negating the second operand. */
bfae80f2 20122
c19d1205
ZW
20123static int
20124negate_data_op (unsigned long * instruction,
20125 unsigned long value)
bfae80f2 20126{
c19d1205
ZW
20127 int op, new_inst;
20128 unsigned long negated, inverted;
bfae80f2 20129
c19d1205
ZW
20130 negated = encode_arm_immediate (-value);
20131 inverted = encode_arm_immediate (~value);
bfae80f2 20132
c19d1205
ZW
20133 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20134 switch (op)
bfae80f2 20135 {
c19d1205
ZW
20136 /* First negates. */
20137 case OPCODE_SUB: /* ADD <-> SUB */
20138 new_inst = OPCODE_ADD;
20139 value = negated;
20140 break;
bfae80f2 20141
c19d1205
ZW
20142 case OPCODE_ADD:
20143 new_inst = OPCODE_SUB;
20144 value = negated;
20145 break;
bfae80f2 20146
c19d1205
ZW
20147 case OPCODE_CMP: /* CMP <-> CMN */
20148 new_inst = OPCODE_CMN;
20149 value = negated;
20150 break;
bfae80f2 20151
c19d1205
ZW
20152 case OPCODE_CMN:
20153 new_inst = OPCODE_CMP;
20154 value = negated;
20155 break;
bfae80f2 20156
c19d1205
ZW
20157 /* Now Inverted ops. */
20158 case OPCODE_MOV: /* MOV <-> MVN */
20159 new_inst = OPCODE_MVN;
20160 value = inverted;
20161 break;
bfae80f2 20162
c19d1205
ZW
20163 case OPCODE_MVN:
20164 new_inst = OPCODE_MOV;
20165 value = inverted;
20166 break;
bfae80f2 20167
c19d1205
ZW
20168 case OPCODE_AND: /* AND <-> BIC */
20169 new_inst = OPCODE_BIC;
20170 value = inverted;
20171 break;
bfae80f2 20172
c19d1205
ZW
20173 case OPCODE_BIC:
20174 new_inst = OPCODE_AND;
20175 value = inverted;
20176 break;
bfae80f2 20177
c19d1205
ZW
20178 case OPCODE_ADC: /* ADC <-> SBC */
20179 new_inst = OPCODE_SBC;
20180 value = inverted;
20181 break;
bfae80f2 20182
c19d1205
ZW
20183 case OPCODE_SBC:
20184 new_inst = OPCODE_ADC;
20185 value = inverted;
20186 break;
bfae80f2 20187
c19d1205
ZW
20188 /* We cannot do anything. */
20189 default:
20190 return FAIL;
b99bd4ef
NC
20191 }
20192
c19d1205
ZW
20193 if (value == (unsigned) FAIL)
20194 return FAIL;
20195
20196 *instruction &= OPCODE_MASK;
20197 *instruction |= new_inst << DATA_OP_SHIFT;
20198 return value;
b99bd4ef
NC
20199}
20200
ef8d22e6
PB
20201/* Like negate_data_op, but for Thumb-2. */
20202
20203static unsigned int
16dd5e42 20204thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20205{
20206 int op, new_inst;
20207 int rd;
16dd5e42 20208 unsigned int negated, inverted;
ef8d22e6
PB
20209
20210 negated = encode_thumb32_immediate (-value);
20211 inverted = encode_thumb32_immediate (~value);
20212
20213 rd = (*instruction >> 8) & 0xf;
20214 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20215 switch (op)
20216 {
20217 /* ADD <-> SUB. Includes CMP <-> CMN. */
20218 case T2_OPCODE_SUB:
20219 new_inst = T2_OPCODE_ADD;
20220 value = negated;
20221 break;
20222
20223 case T2_OPCODE_ADD:
20224 new_inst = T2_OPCODE_SUB;
20225 value = negated;
20226 break;
20227
20228 /* ORR <-> ORN. Includes MOV <-> MVN. */
20229 case T2_OPCODE_ORR:
20230 new_inst = T2_OPCODE_ORN;
20231 value = inverted;
20232 break;
20233
20234 case T2_OPCODE_ORN:
20235 new_inst = T2_OPCODE_ORR;
20236 value = inverted;
20237 break;
20238
20239 /* AND <-> BIC. TST has no inverted equivalent. */
20240 case T2_OPCODE_AND:
20241 new_inst = T2_OPCODE_BIC;
20242 if (rd == 15)
20243 value = FAIL;
20244 else
20245 value = inverted;
20246 break;
20247
20248 case T2_OPCODE_BIC:
20249 new_inst = T2_OPCODE_AND;
20250 value = inverted;
20251 break;
20252
20253 /* ADC <-> SBC */
20254 case T2_OPCODE_ADC:
20255 new_inst = T2_OPCODE_SBC;
20256 value = inverted;
20257 break;
20258
20259 case T2_OPCODE_SBC:
20260 new_inst = T2_OPCODE_ADC;
20261 value = inverted;
20262 break;
20263
20264 /* We cannot do anything. */
20265 default:
20266 return FAIL;
20267 }
20268
16dd5e42 20269 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20270 return FAIL;
20271
20272 *instruction &= T2_OPCODE_MASK;
20273 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20274 return value;
20275}
20276
8f06b2d8
PB
20277/* Read a 32-bit thumb instruction from buf. */
20278static unsigned long
20279get_thumb32_insn (char * buf)
20280{
20281 unsigned long insn;
20282 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20283 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20284
20285 return insn;
20286}
20287
a8bc6c78
PB
20288
20289/* We usually want to set the low bit on the address of thumb function
20290 symbols. In particular .word foo - . should have the low bit set.
20291 Generic code tries to fold the difference of two symbols to
20292 a constant. Prevent this and force a relocation when the first symbols
20293 is a thumb function. */
c921be7d
NC
20294
20295bfd_boolean
a8bc6c78
PB
20296arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20297{
20298 if (op == O_subtract
20299 && l->X_op == O_symbol
20300 && r->X_op == O_symbol
20301 && THUMB_IS_FUNC (l->X_add_symbol))
20302 {
20303 l->X_op = O_subtract;
20304 l->X_op_symbol = r->X_add_symbol;
20305 l->X_add_number -= r->X_add_number;
c921be7d 20306 return TRUE;
a8bc6c78 20307 }
c921be7d 20308
a8bc6c78 20309 /* Process as normal. */
c921be7d 20310 return FALSE;
a8bc6c78
PB
20311}
20312
4a42ebbc
RR
20313/* Encode Thumb2 unconditional branches and calls. The encoding
20314 for the 2 are identical for the immediate values. */
20315
20316static void
20317encode_thumb2_b_bl_offset (char * buf, offsetT value)
20318{
20319#define T2I1I2MASK ((1 << 13) | (1 << 11))
20320 offsetT newval;
20321 offsetT newval2;
20322 addressT S, I1, I2, lo, hi;
20323
20324 S = (value >> 24) & 0x01;
20325 I1 = (value >> 23) & 0x01;
20326 I2 = (value >> 22) & 0x01;
20327 hi = (value >> 12) & 0x3ff;
20328 lo = (value >> 1) & 0x7ff;
20329 newval = md_chars_to_number (buf, THUMB_SIZE);
20330 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20331 newval |= (S << 10) | hi;
20332 newval2 &= ~T2I1I2MASK;
20333 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20334 md_number_to_chars (buf, newval, THUMB_SIZE);
20335 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20336}
20337
c19d1205 20338void
55cf6793 20339md_apply_fix (fixS * fixP,
c19d1205
ZW
20340 valueT * valP,
20341 segT seg)
20342{
20343 offsetT value = * valP;
20344 offsetT newval;
20345 unsigned int newimm;
20346 unsigned long temp;
20347 int sign;
20348 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20349
9c2799c2 20350 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20351
c19d1205 20352 /* Note whether this will delete the relocation. */
4962c51a 20353
c19d1205
ZW
20354 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20355 fixP->fx_done = 1;
b99bd4ef 20356
adbaf948 20357 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20358 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20359 for emit_reloc. */
20360 value &= 0xffffffff;
20361 value ^= 0x80000000;
5f4273c7 20362 value -= 0x80000000;
adbaf948
ZW
20363
20364 *valP = value;
c19d1205 20365 fixP->fx_addnumber = value;
b99bd4ef 20366
adbaf948
ZW
20367 /* Same treatment for fixP->fx_offset. */
20368 fixP->fx_offset &= 0xffffffff;
20369 fixP->fx_offset ^= 0x80000000;
20370 fixP->fx_offset -= 0x80000000;
20371
c19d1205 20372 switch (fixP->fx_r_type)
b99bd4ef 20373 {
c19d1205
ZW
20374 case BFD_RELOC_NONE:
20375 /* This will need to go in the object file. */
20376 fixP->fx_done = 0;
20377 break;
b99bd4ef 20378
c19d1205
ZW
20379 case BFD_RELOC_ARM_IMMEDIATE:
20380 /* We claim that this fixup has been processed here,
20381 even if in fact we generate an error because we do
20382 not have a reloc for it, so tc_gen_reloc will reject it. */
20383 fixP->fx_done = 1;
b99bd4ef 20384
77db8e2e 20385 if (fixP->fx_addsy)
b99bd4ef 20386 {
77db8e2e 20387 const char *msg = 0;
b99bd4ef 20388
77db8e2e
NC
20389 if (! S_IS_DEFINED (fixP->fx_addsy))
20390 msg = _("undefined symbol %s used as an immediate value");
20391 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20392 msg = _("symbol %s is in a different section");
20393 else if (S_IS_WEAK (fixP->fx_addsy))
20394 msg = _("symbol %s is weak and may be overridden later");
20395
20396 if (msg)
20397 {
20398 as_bad_where (fixP->fx_file, fixP->fx_line,
20399 msg, S_GET_NAME (fixP->fx_addsy));
20400 break;
20401 }
42e5fcbf
AS
20402 }
20403
c19d1205
ZW
20404 newimm = encode_arm_immediate (value);
20405 temp = md_chars_to_number (buf, INSN_SIZE);
20406
20407 /* If the instruction will fail, see if we can fix things up by
20408 changing the opcode. */
20409 if (newimm == (unsigned int) FAIL
20410 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20411 {
c19d1205
ZW
20412 as_bad_where (fixP->fx_file, fixP->fx_line,
20413 _("invalid constant (%lx) after fixup"),
20414 (unsigned long) value);
20415 break;
b99bd4ef 20416 }
b99bd4ef 20417
c19d1205
ZW
20418 newimm |= (temp & 0xfffff000);
20419 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20420 break;
b99bd4ef 20421
c19d1205
ZW
20422 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20423 {
20424 unsigned int highpart = 0;
20425 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20426
77db8e2e 20427 if (fixP->fx_addsy)
42e5fcbf 20428 {
77db8e2e 20429 const char *msg = 0;
42e5fcbf 20430
77db8e2e
NC
20431 if (! S_IS_DEFINED (fixP->fx_addsy))
20432 msg = _("undefined symbol %s used as an immediate value");
20433 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20434 msg = _("symbol %s is in a different section");
20435 else if (S_IS_WEAK (fixP->fx_addsy))
20436 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20437
77db8e2e
NC
20438 if (msg)
20439 {
20440 as_bad_where (fixP->fx_file, fixP->fx_line,
20441 msg, S_GET_NAME (fixP->fx_addsy));
20442 break;
20443 }
20444 }
20445
c19d1205
ZW
20446 newimm = encode_arm_immediate (value);
20447 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20448
c19d1205
ZW
20449 /* If the instruction will fail, see if we can fix things up by
20450 changing the opcode. */
20451 if (newimm == (unsigned int) FAIL
20452 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20453 {
20454 /* No ? OK - try using two ADD instructions to generate
20455 the value. */
20456 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20457
c19d1205
ZW
20458 /* Yes - then make sure that the second instruction is
20459 also an add. */
20460 if (newimm != (unsigned int) FAIL)
20461 newinsn = temp;
20462 /* Still No ? Try using a negated value. */
20463 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20464 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20465 /* Otherwise - give up. */
20466 else
20467 {
20468 as_bad_where (fixP->fx_file, fixP->fx_line,
20469 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20470 (long) value);
20471 break;
20472 }
b99bd4ef 20473
c19d1205
ZW
20474 /* Replace the first operand in the 2nd instruction (which
20475 is the PC) with the destination register. We have
20476 already added in the PC in the first instruction and we
20477 do not want to do it again. */
20478 newinsn &= ~ 0xf0000;
20479 newinsn |= ((newinsn & 0x0f000) << 4);
20480 }
b99bd4ef 20481
c19d1205
ZW
20482 newimm |= (temp & 0xfffff000);
20483 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20484
c19d1205
ZW
20485 highpart |= (newinsn & 0xfffff000);
20486 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20487 }
20488 break;
b99bd4ef 20489
c19d1205 20490 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20491 if (!fixP->fx_done && seg->use_rela_p)
20492 value = 0;
20493
c19d1205 20494 case BFD_RELOC_ARM_LITERAL:
26d97720 20495 sign = value > 0;
b99bd4ef 20496
c19d1205
ZW
20497 if (value < 0)
20498 value = - value;
b99bd4ef 20499
c19d1205 20500 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20501 {
c19d1205
ZW
20502 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20503 as_bad_where (fixP->fx_file, fixP->fx_line,
20504 _("invalid literal constant: pool needs to be closer"));
20505 else
20506 as_bad_where (fixP->fx_file, fixP->fx_line,
20507 _("bad immediate value for offset (%ld)"),
20508 (long) value);
20509 break;
f03698e6
RE
20510 }
20511
c19d1205 20512 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20513 if (value == 0)
20514 newval &= 0xfffff000;
20515 else
20516 {
20517 newval &= 0xff7ff000;
20518 newval |= value | (sign ? INDEX_UP : 0);
20519 }
c19d1205
ZW
20520 md_number_to_chars (buf, newval, INSN_SIZE);
20521 break;
b99bd4ef 20522
c19d1205
ZW
20523 case BFD_RELOC_ARM_OFFSET_IMM8:
20524 case BFD_RELOC_ARM_HWLITERAL:
26d97720 20525 sign = value > 0;
b99bd4ef 20526
c19d1205
ZW
20527 if (value < 0)
20528 value = - value;
b99bd4ef 20529
c19d1205 20530 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20531 {
c19d1205
ZW
20532 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20533 as_bad_where (fixP->fx_file, fixP->fx_line,
20534 _("invalid literal constant: pool needs to be closer"));
20535 else
f9d4405b 20536 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20537 (long) value);
20538 break;
b99bd4ef
NC
20539 }
20540
c19d1205 20541 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20542 if (value == 0)
20543 newval &= 0xfffff0f0;
20544 else
20545 {
20546 newval &= 0xff7ff0f0;
20547 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20548 }
c19d1205
ZW
20549 md_number_to_chars (buf, newval, INSN_SIZE);
20550 break;
b99bd4ef 20551
c19d1205
ZW
20552 case BFD_RELOC_ARM_T32_OFFSET_U8:
20553 if (value < 0 || value > 1020 || value % 4 != 0)
20554 as_bad_where (fixP->fx_file, fixP->fx_line,
20555 _("bad immediate value for offset (%ld)"), (long) value);
20556 value /= 4;
b99bd4ef 20557
c19d1205 20558 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20559 newval |= value;
20560 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20561 break;
b99bd4ef 20562
c19d1205
ZW
20563 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20564 /* This is a complicated relocation used for all varieties of Thumb32
20565 load/store instruction with immediate offset:
20566
20567 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20568 *4, optional writeback(W)
20569 (doubleword load/store)
20570
20571 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20572 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20573 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20574 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20575 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20576
20577 Uppercase letters indicate bits that are already encoded at
20578 this point. Lowercase letters are our problem. For the
20579 second block of instructions, the secondary opcode nybble
20580 (bits 8..11) is present, and bit 23 is zero, even if this is
20581 a PC-relative operation. */
20582 newval = md_chars_to_number (buf, THUMB_SIZE);
20583 newval <<= 16;
20584 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20585
c19d1205 20586 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20587 {
c19d1205
ZW
20588 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20589 if (value >= 0)
20590 newval |= (1 << 23);
20591 else
20592 value = -value;
20593 if (value % 4 != 0)
20594 {
20595 as_bad_where (fixP->fx_file, fixP->fx_line,
20596 _("offset not a multiple of 4"));
20597 break;
20598 }
20599 value /= 4;
216d22bc 20600 if (value > 0xff)
c19d1205
ZW
20601 {
20602 as_bad_where (fixP->fx_file, fixP->fx_line,
20603 _("offset out of range"));
20604 break;
20605 }
20606 newval &= ~0xff;
b99bd4ef 20607 }
c19d1205 20608 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20609 {
c19d1205
ZW
20610 /* PC-relative, 12-bit offset. */
20611 if (value >= 0)
20612 newval |= (1 << 23);
20613 else
20614 value = -value;
216d22bc 20615 if (value > 0xfff)
c19d1205
ZW
20616 {
20617 as_bad_where (fixP->fx_file, fixP->fx_line,
20618 _("offset out of range"));
20619 break;
20620 }
20621 newval &= ~0xfff;
b99bd4ef 20622 }
c19d1205 20623 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20624 {
c19d1205
ZW
20625 /* Writeback: 8-bit, +/- offset. */
20626 if (value >= 0)
20627 newval |= (1 << 9);
20628 else
20629 value = -value;
216d22bc 20630 if (value > 0xff)
c19d1205
ZW
20631 {
20632 as_bad_where (fixP->fx_file, fixP->fx_line,
20633 _("offset out of range"));
20634 break;
20635 }
20636 newval &= ~0xff;
b99bd4ef 20637 }
c19d1205 20638 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20639 {
c19d1205 20640 /* T-instruction: positive 8-bit offset. */
216d22bc 20641 if (value < 0 || value > 0xff)
b99bd4ef 20642 {
c19d1205
ZW
20643 as_bad_where (fixP->fx_file, fixP->fx_line,
20644 _("offset out of range"));
20645 break;
b99bd4ef 20646 }
c19d1205
ZW
20647 newval &= ~0xff;
20648 newval |= value;
b99bd4ef
NC
20649 }
20650 else
b99bd4ef 20651 {
c19d1205
ZW
20652 /* Positive 12-bit or negative 8-bit offset. */
20653 int limit;
20654 if (value >= 0)
b99bd4ef 20655 {
c19d1205
ZW
20656 newval |= (1 << 23);
20657 limit = 0xfff;
20658 }
20659 else
20660 {
20661 value = -value;
20662 limit = 0xff;
20663 }
20664 if (value > limit)
20665 {
20666 as_bad_where (fixP->fx_file, fixP->fx_line,
20667 _("offset out of range"));
20668 break;
b99bd4ef 20669 }
c19d1205 20670 newval &= ~limit;
b99bd4ef 20671 }
b99bd4ef 20672
c19d1205
ZW
20673 newval |= value;
20674 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20675 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20676 break;
404ff6b5 20677
c19d1205
ZW
20678 case BFD_RELOC_ARM_SHIFT_IMM:
20679 newval = md_chars_to_number (buf, INSN_SIZE);
20680 if (((unsigned long) value) > 32
20681 || (value == 32
20682 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20683 {
20684 as_bad_where (fixP->fx_file, fixP->fx_line,
20685 _("shift expression is too large"));
20686 break;
20687 }
404ff6b5 20688
c19d1205
ZW
20689 if (value == 0)
20690 /* Shifts of zero must be done as lsl. */
20691 newval &= ~0x60;
20692 else if (value == 32)
20693 value = 0;
20694 newval &= 0xfffff07f;
20695 newval |= (value & 0x1f) << 7;
20696 md_number_to_chars (buf, newval, INSN_SIZE);
20697 break;
404ff6b5 20698
c19d1205 20699 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20700 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20701 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20702 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20703 /* We claim that this fixup has been processed here,
20704 even if in fact we generate an error because we do
20705 not have a reloc for it, so tc_gen_reloc will reject it. */
20706 fixP->fx_done = 1;
404ff6b5 20707
c19d1205
ZW
20708 if (fixP->fx_addsy
20709 && ! S_IS_DEFINED (fixP->fx_addsy))
20710 {
20711 as_bad_where (fixP->fx_file, fixP->fx_line,
20712 _("undefined symbol %s used as an immediate value"),
20713 S_GET_NAME (fixP->fx_addsy));
20714 break;
20715 }
404ff6b5 20716
c19d1205
ZW
20717 newval = md_chars_to_number (buf, THUMB_SIZE);
20718 newval <<= 16;
20719 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20720
16805f35
PB
20721 newimm = FAIL;
20722 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20723 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20724 {
20725 newimm = encode_thumb32_immediate (value);
20726 if (newimm == (unsigned int) FAIL)
20727 newimm = thumb32_negate_data_op (&newval, value);
20728 }
16805f35
PB
20729 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20730 && newimm == (unsigned int) FAIL)
92e90b6e 20731 {
16805f35
PB
20732 /* Turn add/sum into addw/subw. */
20733 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20734 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20735 /* No flat 12-bit imm encoding for addsw/subsw. */
20736 if ((newval & 0x00100000) == 0)
e9f89963 20737 {
40f246e3
NC
20738 /* 12 bit immediate for addw/subw. */
20739 if (value < 0)
20740 {
20741 value = -value;
20742 newval ^= 0x00a00000;
20743 }
20744 if (value > 0xfff)
20745 newimm = (unsigned int) FAIL;
20746 else
20747 newimm = value;
e9f89963 20748 }
92e90b6e 20749 }
cc8a6dd0 20750
c19d1205 20751 if (newimm == (unsigned int)FAIL)
3631a3c8 20752 {
c19d1205
ZW
20753 as_bad_where (fixP->fx_file, fixP->fx_line,
20754 _("invalid constant (%lx) after fixup"),
20755 (unsigned long) value);
20756 break;
3631a3c8
NC
20757 }
20758
c19d1205
ZW
20759 newval |= (newimm & 0x800) << 15;
20760 newval |= (newimm & 0x700) << 4;
20761 newval |= (newimm & 0x0ff);
cc8a6dd0 20762
c19d1205
ZW
20763 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20764 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20765 break;
a737bd4d 20766
3eb17e6b 20767 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20768 if (((unsigned long) value) > 0xffff)
20769 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20770 _("invalid smc expression"));
2fc8bdac 20771 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20772 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20773 md_number_to_chars (buf, newval, INSN_SIZE);
20774 break;
a737bd4d 20775
90ec0d68
MGD
20776 case BFD_RELOC_ARM_HVC:
20777 if (((unsigned long) value) > 0xffff)
20778 as_bad_where (fixP->fx_file, fixP->fx_line,
20779 _("invalid hvc expression"));
20780 newval = md_chars_to_number (buf, INSN_SIZE);
20781 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20782 md_number_to_chars (buf, newval, INSN_SIZE);
20783 break;
20784
c19d1205 20785 case BFD_RELOC_ARM_SWI:
adbaf948 20786 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20787 {
20788 if (((unsigned long) value) > 0xff)
20789 as_bad_where (fixP->fx_file, fixP->fx_line,
20790 _("invalid swi expression"));
2fc8bdac 20791 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20792 newval |= value;
20793 md_number_to_chars (buf, newval, THUMB_SIZE);
20794 }
20795 else
20796 {
20797 if (((unsigned long) value) > 0x00ffffff)
20798 as_bad_where (fixP->fx_file, fixP->fx_line,
20799 _("invalid swi expression"));
2fc8bdac 20800 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20801 newval |= value;
20802 md_number_to_chars (buf, newval, INSN_SIZE);
20803 }
20804 break;
a737bd4d 20805
c19d1205
ZW
20806 case BFD_RELOC_ARM_MULTI:
20807 if (((unsigned long) value) > 0xffff)
20808 as_bad_where (fixP->fx_file, fixP->fx_line,
20809 _("invalid expression in load/store multiple"));
20810 newval = value | md_chars_to_number (buf, INSN_SIZE);
20811 md_number_to_chars (buf, newval, INSN_SIZE);
20812 break;
a737bd4d 20813
c19d1205 20814#ifdef OBJ_ELF
39b41c9c 20815 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20816
20817 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20818 && fixP->fx_addsy
34e77a92 20819 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20820 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20821 && THUMB_IS_FUNC (fixP->fx_addsy))
20822 /* Flip the bl to blx. This is a simple flip
20823 bit here because we generate PCREL_CALL for
20824 unconditional bls. */
20825 {
20826 newval = md_chars_to_number (buf, INSN_SIZE);
20827 newval = newval | 0x10000000;
20828 md_number_to_chars (buf, newval, INSN_SIZE);
20829 temp = 1;
20830 fixP->fx_done = 1;
20831 }
39b41c9c
PB
20832 else
20833 temp = 3;
20834 goto arm_branch_common;
20835
20836 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20837 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20838 && fixP->fx_addsy
34e77a92 20839 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20840 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20841 && THUMB_IS_FUNC (fixP->fx_addsy))
20842 {
20843 /* This would map to a bl<cond>, b<cond>,
20844 b<always> to a Thumb function. We
20845 need to force a relocation for this particular
20846 case. */
20847 newval = md_chars_to_number (buf, INSN_SIZE);
20848 fixP->fx_done = 0;
20849 }
20850
2fc8bdac 20851 case BFD_RELOC_ARM_PLT32:
c19d1205 20852#endif
39b41c9c
PB
20853 case BFD_RELOC_ARM_PCREL_BRANCH:
20854 temp = 3;
20855 goto arm_branch_common;
a737bd4d 20856
39b41c9c 20857 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20858
39b41c9c 20859 temp = 1;
267bf995
RR
20860 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20861 && fixP->fx_addsy
34e77a92 20862 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20863 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20864 && ARM_IS_FUNC (fixP->fx_addsy))
20865 {
20866 /* Flip the blx to a bl and warn. */
20867 const char *name = S_GET_NAME (fixP->fx_addsy);
20868 newval = 0xeb000000;
20869 as_warn_where (fixP->fx_file, fixP->fx_line,
20870 _("blx to '%s' an ARM ISA state function changed to bl"),
20871 name);
20872 md_number_to_chars (buf, newval, INSN_SIZE);
20873 temp = 3;
20874 fixP->fx_done = 1;
20875 }
20876
20877#ifdef OBJ_ELF
20878 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20879 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20880#endif
20881
39b41c9c 20882 arm_branch_common:
c19d1205 20883 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20884 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20885 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20886 also be be clear. */
20887 if (value & temp)
c19d1205 20888 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20889 _("misaligned branch destination"));
20890 if ((value & (offsetT)0xfe000000) != (offsetT)0
20891 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20892 as_bad_where (fixP->fx_file, fixP->fx_line,
20893 _("branch out of range"));
a737bd4d 20894
2fc8bdac 20895 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20896 {
2fc8bdac
ZW
20897 newval = md_chars_to_number (buf, INSN_SIZE);
20898 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20899 /* Set the H bit on BLX instructions. */
20900 if (temp == 1)
20901 {
20902 if (value & 2)
20903 newval |= 0x01000000;
20904 else
20905 newval &= ~0x01000000;
20906 }
2fc8bdac 20907 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20908 }
c19d1205 20909 break;
a737bd4d 20910
25fe350b
MS
20911 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20912 /* CBZ can only branch forward. */
a737bd4d 20913
738755b0
MS
20914 /* Attempts to use CBZ to branch to the next instruction
20915 (which, strictly speaking, are prohibited) will be turned into
20916 no-ops.
20917
20918 FIXME: It may be better to remove the instruction completely and
20919 perform relaxation. */
20920 if (value == -2)
2fc8bdac
ZW
20921 {
20922 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20923 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20924 md_number_to_chars (buf, newval, THUMB_SIZE);
20925 }
738755b0
MS
20926 else
20927 {
20928 if (value & ~0x7e)
20929 as_bad_where (fixP->fx_file, fixP->fx_line,
20930 _("branch out of range"));
20931
20932 if (fixP->fx_done || !seg->use_rela_p)
20933 {
20934 newval = md_chars_to_number (buf, THUMB_SIZE);
20935 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20936 md_number_to_chars (buf, newval, THUMB_SIZE);
20937 }
20938 }
c19d1205 20939 break;
a737bd4d 20940
c19d1205 20941 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20942 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20943 as_bad_where (fixP->fx_file, fixP->fx_line,
20944 _("branch out of range"));
a737bd4d 20945
2fc8bdac
ZW
20946 if (fixP->fx_done || !seg->use_rela_p)
20947 {
20948 newval = md_chars_to_number (buf, THUMB_SIZE);
20949 newval |= (value & 0x1ff) >> 1;
20950 md_number_to_chars (buf, newval, THUMB_SIZE);
20951 }
c19d1205 20952 break;
a737bd4d 20953
c19d1205 20954 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20955 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20956 as_bad_where (fixP->fx_file, fixP->fx_line,
20957 _("branch out of range"));
a737bd4d 20958
2fc8bdac
ZW
20959 if (fixP->fx_done || !seg->use_rela_p)
20960 {
20961 newval = md_chars_to_number (buf, THUMB_SIZE);
20962 newval |= (value & 0xfff) >> 1;
20963 md_number_to_chars (buf, newval, THUMB_SIZE);
20964 }
c19d1205 20965 break;
a737bd4d 20966
c19d1205 20967 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20968 if (fixP->fx_addsy
20969 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20970 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20971 && ARM_IS_FUNC (fixP->fx_addsy)
20972 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20973 {
20974 /* Force a relocation for a branch 20 bits wide. */
20975 fixP->fx_done = 0;
20976 }
2fc8bdac
ZW
20977 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20978 as_bad_where (fixP->fx_file, fixP->fx_line,
20979 _("conditional branch out of range"));
404ff6b5 20980
2fc8bdac
ZW
20981 if (fixP->fx_done || !seg->use_rela_p)
20982 {
20983 offsetT newval2;
20984 addressT S, J1, J2, lo, hi;
404ff6b5 20985
2fc8bdac
ZW
20986 S = (value & 0x00100000) >> 20;
20987 J2 = (value & 0x00080000) >> 19;
20988 J1 = (value & 0x00040000) >> 18;
20989 hi = (value & 0x0003f000) >> 12;
20990 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20991
2fc8bdac
ZW
20992 newval = md_chars_to_number (buf, THUMB_SIZE);
20993 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20994 newval |= (S << 10) | hi;
20995 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20996 md_number_to_chars (buf, newval, THUMB_SIZE);
20997 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20998 }
c19d1205 20999 break;
6c43fab6 21000
c19d1205 21001 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21002
21003 /* If there is a blx from a thumb state function to
21004 another thumb function flip this to a bl and warn
21005 about it. */
21006
21007 if (fixP->fx_addsy
34e77a92 21008 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21009 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21010 && THUMB_IS_FUNC (fixP->fx_addsy))
21011 {
21012 const char *name = S_GET_NAME (fixP->fx_addsy);
21013 as_warn_where (fixP->fx_file, fixP->fx_line,
21014 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21015 name);
21016 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21017 newval = newval | 0x1000;
21018 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21019 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21020 fixP->fx_done = 1;
21021 }
21022
21023
21024 goto thumb_bl_common;
21025
c19d1205 21026 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21027
21028 /* A bl from Thumb state ISA to an internal ARM state function
21029 is converted to a blx. */
21030 if (fixP->fx_addsy
21031 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21032 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21033 && ARM_IS_FUNC (fixP->fx_addsy)
21034 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21035 {
21036 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21037 newval = newval & ~0x1000;
21038 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21039 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21040 fixP->fx_done = 1;
21041 }
21042
21043 thumb_bl_common:
21044
21045#ifdef OBJ_ELF
21046 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21047 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21048 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21049#endif
21050
2fc8bdac
ZW
21051 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21052 /* For a BLX instruction, make sure that the relocation is rounded up
21053 to a word boundary. This follows the semantics of the instruction
21054 which specifies that bit 1 of the target address will come from bit
21055 1 of the base address. */
21056 value = (value + 1) & ~ 1;
404ff6b5 21057
2fc8bdac 21058
4a42ebbc
RR
21059 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21060 {
21061 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21062 {
21063 as_bad_where (fixP->fx_file, fixP->fx_line,
21064 _("branch out of range"));
21065 }
21066 else if ((value & ~0x1ffffff)
21067 && ((value & ~0x1ffffff) != ~0x1ffffff))
21068 {
21069 as_bad_where (fixP->fx_file, fixP->fx_line,
21070 _("Thumb2 branch out of range"));
21071 }
c19d1205 21072 }
4a42ebbc
RR
21073
21074 if (fixP->fx_done || !seg->use_rela_p)
21075 encode_thumb2_b_bl_offset (buf, value);
21076
c19d1205 21077 break;
404ff6b5 21078
c19d1205 21079 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
21080 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
21081 as_bad_where (fixP->fx_file, fixP->fx_line,
21082 _("branch out of range"));
6c43fab6 21083
2fc8bdac 21084 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21085 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21086
2fc8bdac 21087 break;
a737bd4d 21088
2fc8bdac
ZW
21089 case BFD_RELOC_8:
21090 if (fixP->fx_done || !seg->use_rela_p)
21091 md_number_to_chars (buf, value, 1);
c19d1205 21092 break;
a737bd4d 21093
c19d1205 21094 case BFD_RELOC_16:
2fc8bdac 21095 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21096 md_number_to_chars (buf, value, 2);
c19d1205 21097 break;
a737bd4d 21098
c19d1205 21099#ifdef OBJ_ELF
0855e32b
NS
21100 case BFD_RELOC_ARM_TLS_CALL:
21101 case BFD_RELOC_ARM_THM_TLS_CALL:
21102 case BFD_RELOC_ARM_TLS_DESCSEQ:
21103 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21104 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21105 break;
21106
21107 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21108 case BFD_RELOC_ARM_TLS_GD32:
21109 case BFD_RELOC_ARM_TLS_LE32:
21110 case BFD_RELOC_ARM_TLS_IE32:
21111 case BFD_RELOC_ARM_TLS_LDM32:
21112 case BFD_RELOC_ARM_TLS_LDO32:
21113 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21114 /* fall through */
6c43fab6 21115
c19d1205
ZW
21116 case BFD_RELOC_ARM_GOT32:
21117 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21118 if (fixP->fx_done || !seg->use_rela_p)
21119 md_number_to_chars (buf, 0, 4);
c19d1205 21120 break;
b43420e6
NC
21121
21122 case BFD_RELOC_ARM_GOT_PREL:
21123 if (fixP->fx_done || !seg->use_rela_p)
21124 md_number_to_chars (buf, value, 4);
21125 break;
21126
9a6f4e97
NS
21127 case BFD_RELOC_ARM_TARGET2:
21128 /* TARGET2 is not partial-inplace, so we need to write the
21129 addend here for REL targets, because it won't be written out
21130 during reloc processing later. */
21131 if (fixP->fx_done || !seg->use_rela_p)
21132 md_number_to_chars (buf, fixP->fx_offset, 4);
21133 break;
c19d1205 21134#endif
6c43fab6 21135
c19d1205
ZW
21136 case BFD_RELOC_RVA:
21137 case BFD_RELOC_32:
21138 case BFD_RELOC_ARM_TARGET1:
21139 case BFD_RELOC_ARM_ROSEGREL32:
21140 case BFD_RELOC_ARM_SBREL32:
21141 case BFD_RELOC_32_PCREL:
f0927246
NC
21142#ifdef TE_PE
21143 case BFD_RELOC_32_SECREL:
21144#endif
2fc8bdac 21145 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21146#ifdef TE_WINCE
21147 /* For WinCE we only do this for pcrel fixups. */
21148 if (fixP->fx_done || fixP->fx_pcrel)
21149#endif
21150 md_number_to_chars (buf, value, 4);
c19d1205 21151 break;
6c43fab6 21152
c19d1205
ZW
21153#ifdef OBJ_ELF
21154 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21155 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21156 {
21157 newval = md_chars_to_number (buf, 4) & 0x80000000;
21158 if ((value ^ (value >> 1)) & 0x40000000)
21159 {
21160 as_bad_where (fixP->fx_file, fixP->fx_line,
21161 _("rel31 relocation overflow"));
21162 }
21163 newval |= value & 0x7fffffff;
21164 md_number_to_chars (buf, newval, 4);
21165 }
21166 break;
c19d1205 21167#endif
a737bd4d 21168
c19d1205 21169 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21170 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21171 if (value < -1023 || value > 1023 || (value & 3))
21172 as_bad_where (fixP->fx_file, fixP->fx_line,
21173 _("co-processor offset out of range"));
21174 cp_off_common:
26d97720 21175 sign = value > 0;
c19d1205
ZW
21176 if (value < 0)
21177 value = -value;
8f06b2d8
PB
21178 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21179 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21180 newval = md_chars_to_number (buf, INSN_SIZE);
21181 else
21182 newval = get_thumb32_insn (buf);
26d97720
NS
21183 if (value == 0)
21184 newval &= 0xffffff00;
21185 else
21186 {
21187 newval &= 0xff7fff00;
21188 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21189 }
8f06b2d8
PB
21190 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21191 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21192 md_number_to_chars (buf, newval, INSN_SIZE);
21193 else
21194 put_thumb32_insn (buf, newval);
c19d1205 21195 break;
a737bd4d 21196
c19d1205 21197 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21198 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21199 if (value < -255 || value > 255)
21200 as_bad_where (fixP->fx_file, fixP->fx_line,
21201 _("co-processor offset out of range"));
df7849c5 21202 value *= 4;
c19d1205 21203 goto cp_off_common;
6c43fab6 21204
c19d1205
ZW
21205 case BFD_RELOC_ARM_THUMB_OFFSET:
21206 newval = md_chars_to_number (buf, THUMB_SIZE);
21207 /* Exactly what ranges, and where the offset is inserted depends
21208 on the type of instruction, we can establish this from the
21209 top 4 bits. */
21210 switch (newval >> 12)
21211 {
21212 case 4: /* PC load. */
21213 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21214 forced to zero for these loads; md_pcrel_from has already
21215 compensated for this. */
21216 if (value & 3)
21217 as_bad_where (fixP->fx_file, fixP->fx_line,
21218 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21219 (((unsigned long) fixP->fx_frag->fr_address
21220 + (unsigned long) fixP->fx_where) & ~3)
21221 + (unsigned long) value);
a737bd4d 21222
c19d1205
ZW
21223 if (value & ~0x3fc)
21224 as_bad_where (fixP->fx_file, fixP->fx_line,
21225 _("invalid offset, value too big (0x%08lX)"),
21226 (long) value);
a737bd4d 21227
c19d1205
ZW
21228 newval |= value >> 2;
21229 break;
a737bd4d 21230
c19d1205
ZW
21231 case 9: /* SP load/store. */
21232 if (value & ~0x3fc)
21233 as_bad_where (fixP->fx_file, fixP->fx_line,
21234 _("invalid offset, value too big (0x%08lX)"),
21235 (long) value);
21236 newval |= value >> 2;
21237 break;
6c43fab6 21238
c19d1205
ZW
21239 case 6: /* Word load/store. */
21240 if (value & ~0x7c)
21241 as_bad_where (fixP->fx_file, fixP->fx_line,
21242 _("invalid offset, value too big (0x%08lX)"),
21243 (long) value);
21244 newval |= value << 4; /* 6 - 2. */
21245 break;
a737bd4d 21246
c19d1205
ZW
21247 case 7: /* Byte load/store. */
21248 if (value & ~0x1f)
21249 as_bad_where (fixP->fx_file, fixP->fx_line,
21250 _("invalid offset, value too big (0x%08lX)"),
21251 (long) value);
21252 newval |= value << 6;
21253 break;
a737bd4d 21254
c19d1205
ZW
21255 case 8: /* Halfword load/store. */
21256 if (value & ~0x3e)
21257 as_bad_where (fixP->fx_file, fixP->fx_line,
21258 _("invalid offset, value too big (0x%08lX)"),
21259 (long) value);
21260 newval |= value << 5; /* 6 - 1. */
21261 break;
a737bd4d 21262
c19d1205
ZW
21263 default:
21264 as_bad_where (fixP->fx_file, fixP->fx_line,
21265 "Unable to process relocation for thumb opcode: %lx",
21266 (unsigned long) newval);
21267 break;
21268 }
21269 md_number_to_chars (buf, newval, THUMB_SIZE);
21270 break;
a737bd4d 21271
c19d1205
ZW
21272 case BFD_RELOC_ARM_THUMB_ADD:
21273 /* This is a complicated relocation, since we use it for all of
21274 the following immediate relocations:
a737bd4d 21275
c19d1205
ZW
21276 3bit ADD/SUB
21277 8bit ADD/SUB
21278 9bit ADD/SUB SP word-aligned
21279 10bit ADD PC/SP word-aligned
a737bd4d 21280
c19d1205
ZW
21281 The type of instruction being processed is encoded in the
21282 instruction field:
a737bd4d 21283
c19d1205
ZW
21284 0x8000 SUB
21285 0x00F0 Rd
21286 0x000F Rs
21287 */
21288 newval = md_chars_to_number (buf, THUMB_SIZE);
21289 {
21290 int rd = (newval >> 4) & 0xf;
21291 int rs = newval & 0xf;
21292 int subtract = !!(newval & 0x8000);
a737bd4d 21293
c19d1205
ZW
21294 /* Check for HI regs, only very restricted cases allowed:
21295 Adjusting SP, and using PC or SP to get an address. */
21296 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21297 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21298 as_bad_where (fixP->fx_file, fixP->fx_line,
21299 _("invalid Hi register with immediate"));
a737bd4d 21300
c19d1205
ZW
21301 /* If value is negative, choose the opposite instruction. */
21302 if (value < 0)
21303 {
21304 value = -value;
21305 subtract = !subtract;
21306 if (value < 0)
21307 as_bad_where (fixP->fx_file, fixP->fx_line,
21308 _("immediate value out of range"));
21309 }
a737bd4d 21310
c19d1205
ZW
21311 if (rd == REG_SP)
21312 {
21313 if (value & ~0x1fc)
21314 as_bad_where (fixP->fx_file, fixP->fx_line,
21315 _("invalid immediate for stack address calculation"));
21316 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21317 newval |= value >> 2;
21318 }
21319 else if (rs == REG_PC || rs == REG_SP)
21320 {
21321 if (subtract || value & ~0x3fc)
21322 as_bad_where (fixP->fx_file, fixP->fx_line,
21323 _("invalid immediate for address calculation (value = 0x%08lX)"),
21324 (unsigned long) value);
21325 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21326 newval |= rd << 8;
21327 newval |= value >> 2;
21328 }
21329 else if (rs == rd)
21330 {
21331 if (value & ~0xff)
21332 as_bad_where (fixP->fx_file, fixP->fx_line,
21333 _("immediate value out of range"));
21334 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21335 newval |= (rd << 8) | value;
21336 }
21337 else
21338 {
21339 if (value & ~0x7)
21340 as_bad_where (fixP->fx_file, fixP->fx_line,
21341 _("immediate value out of range"));
21342 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21343 newval |= rd | (rs << 3) | (value << 6);
21344 }
21345 }
21346 md_number_to_chars (buf, newval, THUMB_SIZE);
21347 break;
a737bd4d 21348
c19d1205
ZW
21349 case BFD_RELOC_ARM_THUMB_IMM:
21350 newval = md_chars_to_number (buf, THUMB_SIZE);
21351 if (value < 0 || value > 255)
21352 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21353 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21354 (long) value);
21355 newval |= value;
21356 md_number_to_chars (buf, newval, THUMB_SIZE);
21357 break;
a737bd4d 21358
c19d1205
ZW
21359 case BFD_RELOC_ARM_THUMB_SHIFT:
21360 /* 5bit shift value (0..32). LSL cannot take 32. */
21361 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21362 temp = newval & 0xf800;
21363 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21364 as_bad_where (fixP->fx_file, fixP->fx_line,
21365 _("invalid shift value: %ld"), (long) value);
21366 /* Shifts of zero must be encoded as LSL. */
21367 if (value == 0)
21368 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21369 /* Shifts of 32 are encoded as zero. */
21370 else if (value == 32)
21371 value = 0;
21372 newval |= value << 6;
21373 md_number_to_chars (buf, newval, THUMB_SIZE);
21374 break;
a737bd4d 21375
c19d1205
ZW
21376 case BFD_RELOC_VTABLE_INHERIT:
21377 case BFD_RELOC_VTABLE_ENTRY:
21378 fixP->fx_done = 0;
21379 return;
6c43fab6 21380
b6895b4f
PB
21381 case BFD_RELOC_ARM_MOVW:
21382 case BFD_RELOC_ARM_MOVT:
21383 case BFD_RELOC_ARM_THUMB_MOVW:
21384 case BFD_RELOC_ARM_THUMB_MOVT:
21385 if (fixP->fx_done || !seg->use_rela_p)
21386 {
21387 /* REL format relocations are limited to a 16-bit addend. */
21388 if (!fixP->fx_done)
21389 {
39623e12 21390 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21391 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21392 _("offset out of range"));
b6895b4f
PB
21393 }
21394 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21395 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21396 {
21397 value >>= 16;
21398 }
21399
21400 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21401 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21402 {
21403 newval = get_thumb32_insn (buf);
21404 newval &= 0xfbf08f00;
21405 newval |= (value & 0xf000) << 4;
21406 newval |= (value & 0x0800) << 15;
21407 newval |= (value & 0x0700) << 4;
21408 newval |= (value & 0x00ff);
21409 put_thumb32_insn (buf, newval);
21410 }
21411 else
21412 {
21413 newval = md_chars_to_number (buf, 4);
21414 newval &= 0xfff0f000;
21415 newval |= value & 0x0fff;
21416 newval |= (value & 0xf000) << 4;
21417 md_number_to_chars (buf, newval, 4);
21418 }
21419 }
21420 return;
21421
4962c51a
MS
21422 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21423 case BFD_RELOC_ARM_ALU_PC_G0:
21424 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21425 case BFD_RELOC_ARM_ALU_PC_G1:
21426 case BFD_RELOC_ARM_ALU_PC_G2:
21427 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21428 case BFD_RELOC_ARM_ALU_SB_G0:
21429 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21430 case BFD_RELOC_ARM_ALU_SB_G1:
21431 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21432 gas_assert (!fixP->fx_done);
4962c51a
MS
21433 if (!seg->use_rela_p)
21434 {
21435 bfd_vma insn;
21436 bfd_vma encoded_addend;
21437 bfd_vma addend_abs = abs (value);
21438
21439 /* Check that the absolute value of the addend can be
21440 expressed as an 8-bit constant plus a rotation. */
21441 encoded_addend = encode_arm_immediate (addend_abs);
21442 if (encoded_addend == (unsigned int) FAIL)
21443 as_bad_where (fixP->fx_file, fixP->fx_line,
21444 _("the offset 0x%08lX is not representable"),
495bde8e 21445 (unsigned long) addend_abs);
4962c51a
MS
21446
21447 /* Extract the instruction. */
21448 insn = md_chars_to_number (buf, INSN_SIZE);
21449
21450 /* If the addend is positive, use an ADD instruction.
21451 Otherwise use a SUB. Take care not to destroy the S bit. */
21452 insn &= 0xff1fffff;
21453 if (value < 0)
21454 insn |= 1 << 22;
21455 else
21456 insn |= 1 << 23;
21457
21458 /* Place the encoded addend into the first 12 bits of the
21459 instruction. */
21460 insn &= 0xfffff000;
21461 insn |= encoded_addend;
5f4273c7
NC
21462
21463 /* Update the instruction. */
4962c51a
MS
21464 md_number_to_chars (buf, insn, INSN_SIZE);
21465 }
21466 break;
21467
21468 case BFD_RELOC_ARM_LDR_PC_G0:
21469 case BFD_RELOC_ARM_LDR_PC_G1:
21470 case BFD_RELOC_ARM_LDR_PC_G2:
21471 case BFD_RELOC_ARM_LDR_SB_G0:
21472 case BFD_RELOC_ARM_LDR_SB_G1:
21473 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21474 gas_assert (!fixP->fx_done);
4962c51a
MS
21475 if (!seg->use_rela_p)
21476 {
21477 bfd_vma insn;
21478 bfd_vma addend_abs = abs (value);
21479
21480 /* Check that the absolute value of the addend can be
21481 encoded in 12 bits. */
21482 if (addend_abs >= 0x1000)
21483 as_bad_where (fixP->fx_file, fixP->fx_line,
21484 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21485 (unsigned long) addend_abs);
4962c51a
MS
21486
21487 /* Extract the instruction. */
21488 insn = md_chars_to_number (buf, INSN_SIZE);
21489
21490 /* If the addend is negative, clear bit 23 of the instruction.
21491 Otherwise set it. */
21492 if (value < 0)
21493 insn &= ~(1 << 23);
21494 else
21495 insn |= 1 << 23;
21496
21497 /* Place the absolute value of the addend into the first 12 bits
21498 of the instruction. */
21499 insn &= 0xfffff000;
21500 insn |= addend_abs;
5f4273c7
NC
21501
21502 /* Update the instruction. */
4962c51a
MS
21503 md_number_to_chars (buf, insn, INSN_SIZE);
21504 }
21505 break;
21506
21507 case BFD_RELOC_ARM_LDRS_PC_G0:
21508 case BFD_RELOC_ARM_LDRS_PC_G1:
21509 case BFD_RELOC_ARM_LDRS_PC_G2:
21510 case BFD_RELOC_ARM_LDRS_SB_G0:
21511 case BFD_RELOC_ARM_LDRS_SB_G1:
21512 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21513 gas_assert (!fixP->fx_done);
4962c51a
MS
21514 if (!seg->use_rela_p)
21515 {
21516 bfd_vma insn;
21517 bfd_vma addend_abs = abs (value);
21518
21519 /* Check that the absolute value of the addend can be
21520 encoded in 8 bits. */
21521 if (addend_abs >= 0x100)
21522 as_bad_where (fixP->fx_file, fixP->fx_line,
21523 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21524 (unsigned long) addend_abs);
4962c51a
MS
21525
21526 /* Extract the instruction. */
21527 insn = md_chars_to_number (buf, INSN_SIZE);
21528
21529 /* If the addend is negative, clear bit 23 of the instruction.
21530 Otherwise set it. */
21531 if (value < 0)
21532 insn &= ~(1 << 23);
21533 else
21534 insn |= 1 << 23;
21535
21536 /* Place the first four bits of the absolute value of the addend
21537 into the first 4 bits of the instruction, and the remaining
21538 four into bits 8 .. 11. */
21539 insn &= 0xfffff0f0;
21540 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21541
21542 /* Update the instruction. */
4962c51a
MS
21543 md_number_to_chars (buf, insn, INSN_SIZE);
21544 }
21545 break;
21546
21547 case BFD_RELOC_ARM_LDC_PC_G0:
21548 case BFD_RELOC_ARM_LDC_PC_G1:
21549 case BFD_RELOC_ARM_LDC_PC_G2:
21550 case BFD_RELOC_ARM_LDC_SB_G0:
21551 case BFD_RELOC_ARM_LDC_SB_G1:
21552 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21553 gas_assert (!fixP->fx_done);
4962c51a
MS
21554 if (!seg->use_rela_p)
21555 {
21556 bfd_vma insn;
21557 bfd_vma addend_abs = abs (value);
21558
21559 /* Check that the absolute value of the addend is a multiple of
21560 four and, when divided by four, fits in 8 bits. */
21561 if (addend_abs & 0x3)
21562 as_bad_where (fixP->fx_file, fixP->fx_line,
21563 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21564 (unsigned long) addend_abs);
4962c51a
MS
21565
21566 if ((addend_abs >> 2) > 0xff)
21567 as_bad_where (fixP->fx_file, fixP->fx_line,
21568 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21569 (unsigned long) addend_abs);
4962c51a
MS
21570
21571 /* Extract the instruction. */
21572 insn = md_chars_to_number (buf, INSN_SIZE);
21573
21574 /* If the addend is negative, clear bit 23 of the instruction.
21575 Otherwise set it. */
21576 if (value < 0)
21577 insn &= ~(1 << 23);
21578 else
21579 insn |= 1 << 23;
21580
21581 /* Place the addend (divided by four) into the first eight
21582 bits of the instruction. */
21583 insn &= 0xfffffff0;
21584 insn |= addend_abs >> 2;
5f4273c7
NC
21585
21586 /* Update the instruction. */
4962c51a
MS
21587 md_number_to_chars (buf, insn, INSN_SIZE);
21588 }
21589 break;
21590
845b51d6
PB
21591 case BFD_RELOC_ARM_V4BX:
21592 /* This will need to go in the object file. */
21593 fixP->fx_done = 0;
21594 break;
21595
c19d1205
ZW
21596 case BFD_RELOC_UNUSED:
21597 default:
21598 as_bad_where (fixP->fx_file, fixP->fx_line,
21599 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21600 }
6c43fab6
RE
21601}
21602
c19d1205
ZW
21603/* Translate internal representation of relocation info to BFD target
21604 format. */
a737bd4d 21605
c19d1205 21606arelent *
00a97672 21607tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21608{
c19d1205
ZW
21609 arelent * reloc;
21610 bfd_reloc_code_real_type code;
a737bd4d 21611
21d799b5 21612 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21613
21d799b5 21614 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21615 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21616 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21617
2fc8bdac 21618 if (fixp->fx_pcrel)
00a97672
RS
21619 {
21620 if (section->use_rela_p)
21621 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21622 else
21623 fixp->fx_offset = reloc->address;
21624 }
c19d1205 21625 reloc->addend = fixp->fx_offset;
a737bd4d 21626
c19d1205 21627 switch (fixp->fx_r_type)
a737bd4d 21628 {
c19d1205
ZW
21629 case BFD_RELOC_8:
21630 if (fixp->fx_pcrel)
21631 {
21632 code = BFD_RELOC_8_PCREL;
21633 break;
21634 }
a737bd4d 21635
c19d1205
ZW
21636 case BFD_RELOC_16:
21637 if (fixp->fx_pcrel)
21638 {
21639 code = BFD_RELOC_16_PCREL;
21640 break;
21641 }
6c43fab6 21642
c19d1205
ZW
21643 case BFD_RELOC_32:
21644 if (fixp->fx_pcrel)
21645 {
21646 code = BFD_RELOC_32_PCREL;
21647 break;
21648 }
a737bd4d 21649
b6895b4f
PB
21650 case BFD_RELOC_ARM_MOVW:
21651 if (fixp->fx_pcrel)
21652 {
21653 code = BFD_RELOC_ARM_MOVW_PCREL;
21654 break;
21655 }
21656
21657 case BFD_RELOC_ARM_MOVT:
21658 if (fixp->fx_pcrel)
21659 {
21660 code = BFD_RELOC_ARM_MOVT_PCREL;
21661 break;
21662 }
21663
21664 case BFD_RELOC_ARM_THUMB_MOVW:
21665 if (fixp->fx_pcrel)
21666 {
21667 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21668 break;
21669 }
21670
21671 case BFD_RELOC_ARM_THUMB_MOVT:
21672 if (fixp->fx_pcrel)
21673 {
21674 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21675 break;
21676 }
21677
c19d1205
ZW
21678 case BFD_RELOC_NONE:
21679 case BFD_RELOC_ARM_PCREL_BRANCH:
21680 case BFD_RELOC_ARM_PCREL_BLX:
21681 case BFD_RELOC_RVA:
21682 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21683 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21684 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21685 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21686 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21687 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21688 case BFD_RELOC_VTABLE_ENTRY:
21689 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21690#ifdef TE_PE
21691 case BFD_RELOC_32_SECREL:
21692#endif
c19d1205
ZW
21693 code = fixp->fx_r_type;
21694 break;
a737bd4d 21695
00adf2d4
JB
21696 case BFD_RELOC_THUMB_PCREL_BLX:
21697#ifdef OBJ_ELF
21698 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21699 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21700 else
21701#endif
21702 code = BFD_RELOC_THUMB_PCREL_BLX;
21703 break;
21704
c19d1205
ZW
21705 case BFD_RELOC_ARM_LITERAL:
21706 case BFD_RELOC_ARM_HWLITERAL:
21707 /* If this is called then the a literal has
21708 been referenced across a section boundary. */
21709 as_bad_where (fixp->fx_file, fixp->fx_line,
21710 _("literal referenced across section boundary"));
21711 return NULL;
a737bd4d 21712
c19d1205 21713#ifdef OBJ_ELF
0855e32b
NS
21714 case BFD_RELOC_ARM_TLS_CALL:
21715 case BFD_RELOC_ARM_THM_TLS_CALL:
21716 case BFD_RELOC_ARM_TLS_DESCSEQ:
21717 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21718 case BFD_RELOC_ARM_GOT32:
21719 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21720 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21721 case BFD_RELOC_ARM_PLT32:
21722 case BFD_RELOC_ARM_TARGET1:
21723 case BFD_RELOC_ARM_ROSEGREL32:
21724 case BFD_RELOC_ARM_SBREL32:
21725 case BFD_RELOC_ARM_PREL31:
21726 case BFD_RELOC_ARM_TARGET2:
21727 case BFD_RELOC_ARM_TLS_LE32:
21728 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21729 case BFD_RELOC_ARM_PCREL_CALL:
21730 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21731 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21732 case BFD_RELOC_ARM_ALU_PC_G0:
21733 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21734 case BFD_RELOC_ARM_ALU_PC_G1:
21735 case BFD_RELOC_ARM_ALU_PC_G2:
21736 case BFD_RELOC_ARM_LDR_PC_G0:
21737 case BFD_RELOC_ARM_LDR_PC_G1:
21738 case BFD_RELOC_ARM_LDR_PC_G2:
21739 case BFD_RELOC_ARM_LDRS_PC_G0:
21740 case BFD_RELOC_ARM_LDRS_PC_G1:
21741 case BFD_RELOC_ARM_LDRS_PC_G2:
21742 case BFD_RELOC_ARM_LDC_PC_G0:
21743 case BFD_RELOC_ARM_LDC_PC_G1:
21744 case BFD_RELOC_ARM_LDC_PC_G2:
21745 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21746 case BFD_RELOC_ARM_ALU_SB_G0:
21747 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21748 case BFD_RELOC_ARM_ALU_SB_G1:
21749 case BFD_RELOC_ARM_ALU_SB_G2:
21750 case BFD_RELOC_ARM_LDR_SB_G0:
21751 case BFD_RELOC_ARM_LDR_SB_G1:
21752 case BFD_RELOC_ARM_LDR_SB_G2:
21753 case BFD_RELOC_ARM_LDRS_SB_G0:
21754 case BFD_RELOC_ARM_LDRS_SB_G1:
21755 case BFD_RELOC_ARM_LDRS_SB_G2:
21756 case BFD_RELOC_ARM_LDC_SB_G0:
21757 case BFD_RELOC_ARM_LDC_SB_G1:
21758 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21759 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21760 code = fixp->fx_r_type;
21761 break;
a737bd4d 21762
0855e32b 21763 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21764 case BFD_RELOC_ARM_TLS_GD32:
21765 case BFD_RELOC_ARM_TLS_IE32:
21766 case BFD_RELOC_ARM_TLS_LDM32:
21767 /* BFD will include the symbol's address in the addend.
21768 But we don't want that, so subtract it out again here. */
21769 if (!S_IS_COMMON (fixp->fx_addsy))
21770 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21771 code = fixp->fx_r_type;
21772 break;
21773#endif
a737bd4d 21774
c19d1205
ZW
21775 case BFD_RELOC_ARM_IMMEDIATE:
21776 as_bad_where (fixp->fx_file, fixp->fx_line,
21777 _("internal relocation (type: IMMEDIATE) not fixed up"));
21778 return NULL;
a737bd4d 21779
c19d1205
ZW
21780 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21781 as_bad_where (fixp->fx_file, fixp->fx_line,
21782 _("ADRL used for a symbol not defined in the same file"));
21783 return NULL;
a737bd4d 21784
c19d1205 21785 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21786 if (section->use_rela_p)
21787 {
21788 code = fixp->fx_r_type;
21789 break;
21790 }
21791
c19d1205
ZW
21792 if (fixp->fx_addsy != NULL
21793 && !S_IS_DEFINED (fixp->fx_addsy)
21794 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21795 {
c19d1205
ZW
21796 as_bad_where (fixp->fx_file, fixp->fx_line,
21797 _("undefined local label `%s'"),
21798 S_GET_NAME (fixp->fx_addsy));
21799 return NULL;
a737bd4d
NC
21800 }
21801
c19d1205
ZW
21802 as_bad_where (fixp->fx_file, fixp->fx_line,
21803 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21804 return NULL;
a737bd4d 21805
c19d1205
ZW
21806 default:
21807 {
21808 char * type;
6c43fab6 21809
c19d1205
ZW
21810 switch (fixp->fx_r_type)
21811 {
21812 case BFD_RELOC_NONE: type = "NONE"; break;
21813 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21814 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21815 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21816 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21817 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21818 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21819 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21820 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21821 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21822 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21823 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21824 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21825 default: type = _("<unknown>"); break;
21826 }
21827 as_bad_where (fixp->fx_file, fixp->fx_line,
21828 _("cannot represent %s relocation in this object file format"),
21829 type);
21830 return NULL;
21831 }
a737bd4d 21832 }
6c43fab6 21833
c19d1205
ZW
21834#ifdef OBJ_ELF
21835 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21836 && GOT_symbol
21837 && fixp->fx_addsy == GOT_symbol)
21838 {
21839 code = BFD_RELOC_ARM_GOTPC;
21840 reloc->addend = fixp->fx_offset = reloc->address;
21841 }
21842#endif
6c43fab6 21843
c19d1205 21844 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21845
c19d1205
ZW
21846 if (reloc->howto == NULL)
21847 {
21848 as_bad_where (fixp->fx_file, fixp->fx_line,
21849 _("cannot represent %s relocation in this object file format"),
21850 bfd_get_reloc_code_name (code));
21851 return NULL;
21852 }
6c43fab6 21853
c19d1205
ZW
21854 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21855 vtable entry to be used in the relocation's section offset. */
21856 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21857 reloc->address = fixp->fx_offset;
6c43fab6 21858
c19d1205 21859 return reloc;
6c43fab6
RE
21860}
21861
c19d1205 21862/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21863
c19d1205
ZW
21864void
21865cons_fix_new_arm (fragS * frag,
21866 int where,
21867 int size,
21868 expressionS * exp)
6c43fab6 21869{
c19d1205
ZW
21870 bfd_reloc_code_real_type type;
21871 int pcrel = 0;
6c43fab6 21872
c19d1205
ZW
21873 /* Pick a reloc.
21874 FIXME: @@ Should look at CPU word size. */
21875 switch (size)
21876 {
21877 case 1:
21878 type = BFD_RELOC_8;
21879 break;
21880 case 2:
21881 type = BFD_RELOC_16;
21882 break;
21883 case 4:
21884 default:
21885 type = BFD_RELOC_32;
21886 break;
21887 case 8:
21888 type = BFD_RELOC_64;
21889 break;
21890 }
6c43fab6 21891
f0927246
NC
21892#ifdef TE_PE
21893 if (exp->X_op == O_secrel)
21894 {
21895 exp->X_op = O_symbol;
21896 type = BFD_RELOC_32_SECREL;
21897 }
21898#endif
21899
c19d1205
ZW
21900 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21901}
6c43fab6 21902
4343666d 21903#if defined (OBJ_COFF)
c19d1205
ZW
21904void
21905arm_validate_fix (fixS * fixP)
6c43fab6 21906{
c19d1205
ZW
21907 /* If the destination of the branch is a defined symbol which does not have
21908 the THUMB_FUNC attribute, then we must be calling a function which has
21909 the (interfacearm) attribute. We look for the Thumb entry point to that
21910 function and change the branch to refer to that function instead. */
21911 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21912 && fixP->fx_addsy != NULL
21913 && S_IS_DEFINED (fixP->fx_addsy)
21914 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21915 {
c19d1205 21916 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21917 }
c19d1205
ZW
21918}
21919#endif
6c43fab6 21920
267bf995 21921
c19d1205
ZW
21922int
21923arm_force_relocation (struct fix * fixp)
21924{
21925#if defined (OBJ_COFF) && defined (TE_PE)
21926 if (fixp->fx_r_type == BFD_RELOC_RVA)
21927 return 1;
21928#endif
6c43fab6 21929
267bf995
RR
21930 /* In case we have a call or a branch to a function in ARM ISA mode from
21931 a thumb function or vice-versa force the relocation. These relocations
21932 are cleared off for some cores that might have blx and simple transformations
21933 are possible. */
21934
21935#ifdef OBJ_ELF
21936 switch (fixp->fx_r_type)
21937 {
21938 case BFD_RELOC_ARM_PCREL_JUMP:
21939 case BFD_RELOC_ARM_PCREL_CALL:
21940 case BFD_RELOC_THUMB_PCREL_BLX:
21941 if (THUMB_IS_FUNC (fixp->fx_addsy))
21942 return 1;
21943 break;
21944
21945 case BFD_RELOC_ARM_PCREL_BLX:
21946 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21947 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21948 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21949 if (ARM_IS_FUNC (fixp->fx_addsy))
21950 return 1;
21951 break;
21952
21953 default:
21954 break;
21955 }
21956#endif
21957
b5884301
PB
21958 /* Resolve these relocations even if the symbol is extern or weak.
21959 Technically this is probably wrong due to symbol preemption.
21960 In practice these relocations do not have enough range to be useful
21961 at dynamic link time, and some code (e.g. in the Linux kernel)
21962 expects these references to be resolved. */
c19d1205
ZW
21963 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21964 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 21965 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 21966 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
21967 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21968 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
21969 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 21970 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21971 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21972 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
21973 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
21974 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
21975 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
21976 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 21977 return 0;
a737bd4d 21978
4962c51a
MS
21979 /* Always leave these relocations for the linker. */
21980 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21981 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21982 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21983 return 1;
21984
f0291e4c
PB
21985 /* Always generate relocations against function symbols. */
21986 if (fixp->fx_r_type == BFD_RELOC_32
21987 && fixp->fx_addsy
21988 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21989 return 1;
21990
c19d1205 21991 return generic_force_reloc (fixp);
404ff6b5
AH
21992}
21993
0ffdc86c 21994#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21995/* Relocations against function names must be left unadjusted,
21996 so that the linker can use this information to generate interworking
21997 stubs. The MIPS version of this function
c19d1205
ZW
21998 also prevents relocations that are mips-16 specific, but I do not
21999 know why it does this.
404ff6b5 22000
c19d1205
ZW
22001 FIXME:
22002 There is one other problem that ought to be addressed here, but
22003 which currently is not: Taking the address of a label (rather
22004 than a function) and then later jumping to that address. Such
22005 addresses also ought to have their bottom bit set (assuming that
22006 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22007
c19d1205
ZW
22008bfd_boolean
22009arm_fix_adjustable (fixS * fixP)
404ff6b5 22010{
c19d1205
ZW
22011 if (fixP->fx_addsy == NULL)
22012 return 1;
404ff6b5 22013
e28387c3
PB
22014 /* Preserve relocations against symbols with function type. */
22015 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22016 return FALSE;
e28387c3 22017
c19d1205
ZW
22018 if (THUMB_IS_FUNC (fixP->fx_addsy)
22019 && fixP->fx_subsy == NULL)
c921be7d 22020 return FALSE;
a737bd4d 22021
c19d1205
ZW
22022 /* We need the symbol name for the VTABLE entries. */
22023 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22024 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22025 return FALSE;
404ff6b5 22026
c19d1205
ZW
22027 /* Don't allow symbols to be discarded on GOT related relocs. */
22028 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22029 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22030 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22031 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22032 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22033 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22034 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22035 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22036 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22037 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22038 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22039 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22040 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22041 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22042 return FALSE;
a737bd4d 22043
4962c51a
MS
22044 /* Similarly for group relocations. */
22045 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22046 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22047 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22048 return FALSE;
4962c51a 22049
79947c54
CD
22050 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22051 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22052 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22053 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22054 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22055 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22056 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22057 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22058 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22059 return FALSE;
79947c54 22060
c921be7d 22061 return TRUE;
a737bd4d 22062}
0ffdc86c
NC
22063#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22064
22065#ifdef OBJ_ELF
404ff6b5 22066
c19d1205
ZW
22067const char *
22068elf32_arm_target_format (void)
404ff6b5 22069{
c19d1205
ZW
22070#ifdef TE_SYMBIAN
22071 return (target_big_endian
22072 ? "elf32-bigarm-symbian"
22073 : "elf32-littlearm-symbian");
22074#elif defined (TE_VXWORKS)
22075 return (target_big_endian
22076 ? "elf32-bigarm-vxworks"
22077 : "elf32-littlearm-vxworks");
22078#else
22079 if (target_big_endian)
22080 return "elf32-bigarm";
22081 else
22082 return "elf32-littlearm";
22083#endif
404ff6b5
AH
22084}
22085
c19d1205
ZW
22086void
22087armelf_frob_symbol (symbolS * symp,
22088 int * puntp)
404ff6b5 22089{
c19d1205
ZW
22090 elf_frob_symbol (symp, puntp);
22091}
22092#endif
404ff6b5 22093
c19d1205 22094/* MD interface: Finalization. */
a737bd4d 22095
c19d1205
ZW
22096void
22097arm_cleanup (void)
22098{
22099 literal_pool * pool;
a737bd4d 22100
e07e6e58
NC
22101 /* Ensure that all the IT blocks are properly closed. */
22102 check_it_blocks_finished ();
22103
c19d1205
ZW
22104 for (pool = list_of_pools; pool; pool = pool->next)
22105 {
5f4273c7 22106 /* Put it at the end of the relevant section. */
c19d1205
ZW
22107 subseg_set (pool->section, pool->sub_section);
22108#ifdef OBJ_ELF
22109 arm_elf_change_section ();
22110#endif
22111 s_ltorg (0);
22112 }
404ff6b5
AH
22113}
22114
cd000bff
DJ
22115#ifdef OBJ_ELF
22116/* Remove any excess mapping symbols generated for alignment frags in
22117 SEC. We may have created a mapping symbol before a zero byte
22118 alignment; remove it if there's a mapping symbol after the
22119 alignment. */
22120static void
22121check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22122 void *dummy ATTRIBUTE_UNUSED)
22123{
22124 segment_info_type *seginfo = seg_info (sec);
22125 fragS *fragp;
22126
22127 if (seginfo == NULL || seginfo->frchainP == NULL)
22128 return;
22129
22130 for (fragp = seginfo->frchainP->frch_root;
22131 fragp != NULL;
22132 fragp = fragp->fr_next)
22133 {
22134 symbolS *sym = fragp->tc_frag_data.last_map;
22135 fragS *next = fragp->fr_next;
22136
22137 /* Variable-sized frags have been converted to fixed size by
22138 this point. But if this was variable-sized to start with,
22139 there will be a fixed-size frag after it. So don't handle
22140 next == NULL. */
22141 if (sym == NULL || next == NULL)
22142 continue;
22143
22144 if (S_GET_VALUE (sym) < next->fr_address)
22145 /* Not at the end of this frag. */
22146 continue;
22147 know (S_GET_VALUE (sym) == next->fr_address);
22148
22149 do
22150 {
22151 if (next->tc_frag_data.first_map != NULL)
22152 {
22153 /* Next frag starts with a mapping symbol. Discard this
22154 one. */
22155 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22156 break;
22157 }
22158
22159 if (next->fr_next == NULL)
22160 {
22161 /* This mapping symbol is at the end of the section. Discard
22162 it. */
22163 know (next->fr_fix == 0 && next->fr_var == 0);
22164 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22165 break;
22166 }
22167
22168 /* As long as we have empty frags without any mapping symbols,
22169 keep looking. */
22170 /* If the next frag is non-empty and does not start with a
22171 mapping symbol, then this mapping symbol is required. */
22172 if (next->fr_address != next->fr_next->fr_address)
22173 break;
22174
22175 next = next->fr_next;
22176 }
22177 while (next != NULL);
22178 }
22179}
22180#endif
22181
c19d1205
ZW
22182/* Adjust the symbol table. This marks Thumb symbols as distinct from
22183 ARM ones. */
404ff6b5 22184
c19d1205
ZW
22185void
22186arm_adjust_symtab (void)
404ff6b5 22187{
c19d1205
ZW
22188#ifdef OBJ_COFF
22189 symbolS * sym;
404ff6b5 22190
c19d1205
ZW
22191 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22192 {
22193 if (ARM_IS_THUMB (sym))
22194 {
22195 if (THUMB_IS_FUNC (sym))
22196 {
22197 /* Mark the symbol as a Thumb function. */
22198 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22199 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22200 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22201
c19d1205
ZW
22202 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22203 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22204 else
22205 as_bad (_("%s: unexpected function type: %d"),
22206 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22207 }
22208 else switch (S_GET_STORAGE_CLASS (sym))
22209 {
22210 case C_EXT:
22211 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22212 break;
22213 case C_STAT:
22214 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22215 break;
22216 case C_LABEL:
22217 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22218 break;
22219 default:
22220 /* Do nothing. */
22221 break;
22222 }
22223 }
a737bd4d 22224
c19d1205
ZW
22225 if (ARM_IS_INTERWORK (sym))
22226 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22227 }
c19d1205
ZW
22228#endif
22229#ifdef OBJ_ELF
22230 symbolS * sym;
22231 char bind;
404ff6b5 22232
c19d1205 22233 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22234 {
c19d1205
ZW
22235 if (ARM_IS_THUMB (sym))
22236 {
22237 elf_symbol_type * elf_sym;
404ff6b5 22238
c19d1205
ZW
22239 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22240 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22241
b0796911
PB
22242 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22243 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22244 {
22245 /* If it's a .thumb_func, declare it as so,
22246 otherwise tag label as .code 16. */
22247 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22248 elf_sym->internal_elf_sym.st_target_internal
22249 = ST_BRANCH_TO_THUMB;
3ba67470 22250 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22251 elf_sym->internal_elf_sym.st_info =
22252 ELF_ST_INFO (bind, STT_ARM_16BIT);
22253 }
22254 }
22255 }
cd000bff
DJ
22256
22257 /* Remove any overlapping mapping symbols generated by alignment frags. */
22258 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22259 /* Now do generic ELF adjustments. */
22260 elf_adjust_symtab ();
c19d1205 22261#endif
404ff6b5
AH
22262}
22263
c19d1205 22264/* MD interface: Initialization. */
404ff6b5 22265
a737bd4d 22266static void
c19d1205 22267set_constant_flonums (void)
a737bd4d 22268{
c19d1205 22269 int i;
404ff6b5 22270
c19d1205
ZW
22271 for (i = 0; i < NUM_FLOAT_VALS; i++)
22272 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22273 abort ();
a737bd4d 22274}
404ff6b5 22275
3e9e4fcf
JB
22276/* Auto-select Thumb mode if it's the only available instruction set for the
22277 given architecture. */
22278
22279static void
22280autoselect_thumb_from_cpu_variant (void)
22281{
22282 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22283 opcode_select (16);
22284}
22285
c19d1205
ZW
22286void
22287md_begin (void)
a737bd4d 22288{
c19d1205
ZW
22289 unsigned mach;
22290 unsigned int i;
404ff6b5 22291
c19d1205
ZW
22292 if ( (arm_ops_hsh = hash_new ()) == NULL
22293 || (arm_cond_hsh = hash_new ()) == NULL
22294 || (arm_shift_hsh = hash_new ()) == NULL
22295 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22296 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22297 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22298 || (arm_reloc_hsh = hash_new ()) == NULL
22299 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22300 as_fatal (_("virtual memory exhausted"));
22301
22302 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22303 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22304 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22305 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22306 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22307 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22308 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22309 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22310 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22311 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22312 (void *) (v7m_psrs + i));
c19d1205 22313 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22314 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22315 for (i = 0;
22316 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22317 i++)
d3ce72d0 22318 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22319 (void *) (barrier_opt_names + i));
c19d1205
ZW
22320#ifdef OBJ_ELF
22321 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22322 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22323#endif
22324
22325 set_constant_flonums ();
404ff6b5 22326
c19d1205
ZW
22327 /* Set the cpu variant based on the command-line options. We prefer
22328 -mcpu= over -march= if both are set (as for GCC); and we prefer
22329 -mfpu= over any other way of setting the floating point unit.
22330 Use of legacy options with new options are faulted. */
e74cfd16 22331 if (legacy_cpu)
404ff6b5 22332 {
e74cfd16 22333 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22334 as_bad (_("use of old and new-style options to set CPU type"));
22335
22336 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22337 }
e74cfd16 22338 else if (!mcpu_cpu_opt)
c19d1205 22339 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22340
e74cfd16 22341 if (legacy_fpu)
c19d1205 22342 {
e74cfd16 22343 if (mfpu_opt)
c19d1205 22344 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22345
22346 mfpu_opt = legacy_fpu;
22347 }
e74cfd16 22348 else if (!mfpu_opt)
03b1477f 22349 {
45eb4c1b
NS
22350#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22351 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22352 /* Some environments specify a default FPU. If they don't, infer it
22353 from the processor. */
e74cfd16 22354 if (mcpu_fpu_opt)
03b1477f
RE
22355 mfpu_opt = mcpu_fpu_opt;
22356 else
22357 mfpu_opt = march_fpu_opt;
39c2da32 22358#else
e74cfd16 22359 mfpu_opt = &fpu_default;
39c2da32 22360#endif
03b1477f
RE
22361 }
22362
e74cfd16 22363 if (!mfpu_opt)
03b1477f 22364 {
493cb6ef 22365 if (mcpu_cpu_opt != NULL)
e74cfd16 22366 mfpu_opt = &fpu_default;
493cb6ef 22367 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22368 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22369 else
e74cfd16 22370 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22371 }
22372
ee065d83 22373#ifdef CPU_DEFAULT
e74cfd16 22374 if (!mcpu_cpu_opt)
ee065d83 22375 {
e74cfd16
PB
22376 mcpu_cpu_opt = &cpu_default;
22377 selected_cpu = cpu_default;
ee065d83 22378 }
e74cfd16
PB
22379#else
22380 if (mcpu_cpu_opt)
22381 selected_cpu = *mcpu_cpu_opt;
ee065d83 22382 else
e74cfd16 22383 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22384#endif
03b1477f 22385
e74cfd16 22386 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22387
3e9e4fcf
JB
22388 autoselect_thumb_from_cpu_variant ();
22389
e74cfd16 22390 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22391
f17c130b 22392#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22393 {
7cc69913
NC
22394 unsigned int flags = 0;
22395
22396#if defined OBJ_ELF
22397 flags = meabi_flags;
d507cf36
PB
22398
22399 switch (meabi_flags)
33a392fb 22400 {
d507cf36 22401 case EF_ARM_EABI_UNKNOWN:
7cc69913 22402#endif
d507cf36
PB
22403 /* Set the flags in the private structure. */
22404 if (uses_apcs_26) flags |= F_APCS26;
22405 if (support_interwork) flags |= F_INTERWORK;
22406 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22407 if (pic_code) flags |= F_PIC;
e74cfd16 22408 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22409 flags |= F_SOFT_FLOAT;
22410
d507cf36
PB
22411 switch (mfloat_abi_opt)
22412 {
22413 case ARM_FLOAT_ABI_SOFT:
22414 case ARM_FLOAT_ABI_SOFTFP:
22415 flags |= F_SOFT_FLOAT;
22416 break;
33a392fb 22417
d507cf36
PB
22418 case ARM_FLOAT_ABI_HARD:
22419 if (flags & F_SOFT_FLOAT)
22420 as_bad (_("hard-float conflicts with specified fpu"));
22421 break;
22422 }
03b1477f 22423
e74cfd16
PB
22424 /* Using pure-endian doubles (even if soft-float). */
22425 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22426 flags |= F_VFP_FLOAT;
f17c130b 22427
fde78edd 22428#if defined OBJ_ELF
e74cfd16 22429 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22430 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22431 break;
22432
8cb51566 22433 case EF_ARM_EABI_VER4:
3a4a14e9 22434 case EF_ARM_EABI_VER5:
c19d1205 22435 /* No additional flags to set. */
d507cf36
PB
22436 break;
22437
22438 default:
22439 abort ();
22440 }
7cc69913 22441#endif
b99bd4ef
NC
22442 bfd_set_private_flags (stdoutput, flags);
22443
22444 /* We have run out flags in the COFF header to encode the
22445 status of ATPCS support, so instead we create a dummy,
c19d1205 22446 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22447 if (atpcs)
22448 {
22449 asection * sec;
22450
22451 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22452
22453 if (sec != NULL)
22454 {
22455 bfd_set_section_flags
22456 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22457 bfd_set_section_size (stdoutput, sec, 0);
22458 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22459 }
22460 }
7cc69913 22461 }
f17c130b 22462#endif
b99bd4ef
NC
22463
22464 /* Record the CPU type as well. */
2d447fca
JM
22465 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22466 mach = bfd_mach_arm_iWMMXt2;
22467 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22468 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22469 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22470 mach = bfd_mach_arm_XScale;
e74cfd16 22471 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22472 mach = bfd_mach_arm_ep9312;
e74cfd16 22473 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22474 mach = bfd_mach_arm_5TE;
e74cfd16 22475 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22476 {
e74cfd16 22477 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22478 mach = bfd_mach_arm_5T;
22479 else
22480 mach = bfd_mach_arm_5;
22481 }
e74cfd16 22482 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22483 {
e74cfd16 22484 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22485 mach = bfd_mach_arm_4T;
22486 else
22487 mach = bfd_mach_arm_4;
22488 }
e74cfd16 22489 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22490 mach = bfd_mach_arm_3M;
e74cfd16
PB
22491 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22492 mach = bfd_mach_arm_3;
22493 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22494 mach = bfd_mach_arm_2a;
22495 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22496 mach = bfd_mach_arm_2;
22497 else
22498 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22499
22500 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22501}
22502
c19d1205 22503/* Command line processing. */
b99bd4ef 22504
c19d1205
ZW
22505/* md_parse_option
22506 Invocation line includes a switch not recognized by the base assembler.
22507 See if it's a processor-specific option.
b99bd4ef 22508
c19d1205
ZW
22509 This routine is somewhat complicated by the need for backwards
22510 compatibility (since older releases of gcc can't be changed).
22511 The new options try to make the interface as compatible as
22512 possible with GCC.
b99bd4ef 22513
c19d1205 22514 New options (supported) are:
b99bd4ef 22515
c19d1205
ZW
22516 -mcpu=<cpu name> Assemble for selected processor
22517 -march=<architecture name> Assemble for selected architecture
22518 -mfpu=<fpu architecture> Assemble for selected FPU.
22519 -EB/-mbig-endian Big-endian
22520 -EL/-mlittle-endian Little-endian
22521 -k Generate PIC code
22522 -mthumb Start in Thumb mode
22523 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22524
278df34e 22525 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22526
c19d1205 22527 For now we will also provide support for:
b99bd4ef 22528
c19d1205
ZW
22529 -mapcs-32 32-bit Program counter
22530 -mapcs-26 26-bit Program counter
22531 -macps-float Floats passed in FP registers
22532 -mapcs-reentrant Reentrant code
22533 -matpcs
22534 (sometime these will probably be replaced with -mapcs=<list of options>
22535 and -matpcs=<list of options>)
b99bd4ef 22536
c19d1205
ZW
22537 The remaining options are only supported for back-wards compatibility.
22538 Cpu variants, the arm part is optional:
22539 -m[arm]1 Currently not supported.
22540 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22541 -m[arm]3 Arm 3 processor
22542 -m[arm]6[xx], Arm 6 processors
22543 -m[arm]7[xx][t][[d]m] Arm 7 processors
22544 -m[arm]8[10] Arm 8 processors
22545 -m[arm]9[20][tdmi] Arm 9 processors
22546 -mstrongarm[110[0]] StrongARM processors
22547 -mxscale XScale processors
22548 -m[arm]v[2345[t[e]]] Arm architectures
22549 -mall All (except the ARM1)
22550 FP variants:
22551 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22552 -mfpe-old (No float load/store multiples)
22553 -mvfpxd VFP Single precision
22554 -mvfp All VFP
22555 -mno-fpu Disable all floating point instructions
b99bd4ef 22556
c19d1205
ZW
22557 The following CPU names are recognized:
22558 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22559 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22560 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22561 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22562 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22563 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22564 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22565
c19d1205 22566 */
b99bd4ef 22567
c19d1205 22568const char * md_shortopts = "m:k";
b99bd4ef 22569
c19d1205
ZW
22570#ifdef ARM_BI_ENDIAN
22571#define OPTION_EB (OPTION_MD_BASE + 0)
22572#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22573#else
c19d1205
ZW
22574#if TARGET_BYTES_BIG_ENDIAN
22575#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22576#else
c19d1205
ZW
22577#define OPTION_EL (OPTION_MD_BASE + 1)
22578#endif
b99bd4ef 22579#endif
845b51d6 22580#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22581
c19d1205 22582struct option md_longopts[] =
b99bd4ef 22583{
c19d1205
ZW
22584#ifdef OPTION_EB
22585 {"EB", no_argument, NULL, OPTION_EB},
22586#endif
22587#ifdef OPTION_EL
22588 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22589#endif
845b51d6 22590 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22591 {NULL, no_argument, NULL, 0}
22592};
b99bd4ef 22593
c19d1205 22594size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22595
c19d1205 22596struct arm_option_table
b99bd4ef 22597{
c19d1205
ZW
22598 char *option; /* Option name to match. */
22599 char *help; /* Help information. */
22600 int *var; /* Variable to change. */
22601 int value; /* What to change it to. */
22602 char *deprecated; /* If non-null, print this message. */
22603};
b99bd4ef 22604
c19d1205
ZW
22605struct arm_option_table arm_opts[] =
22606{
22607 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22608 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22609 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22610 &support_interwork, 1, NULL},
22611 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22612 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22613 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22614 1, NULL},
22615 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22616 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22617 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22618 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22619 NULL},
b99bd4ef 22620
c19d1205
ZW
22621 /* These are recognized by the assembler, but have no affect on code. */
22622 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22623 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22624
22625 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22626 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22627 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22628 {NULL, NULL, NULL, 0, NULL}
22629};
22630
22631struct arm_legacy_option_table
22632{
22633 char *option; /* Option name to match. */
22634 const arm_feature_set **var; /* Variable to change. */
22635 const arm_feature_set value; /* What to change it to. */
22636 char *deprecated; /* If non-null, print this message. */
22637};
b99bd4ef 22638
e74cfd16
PB
22639const struct arm_legacy_option_table arm_legacy_opts[] =
22640{
c19d1205
ZW
22641 /* DON'T add any new processors to this list -- we want the whole list
22642 to go away... Add them to the processors table instead. */
e74cfd16
PB
22643 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22644 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22645 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22646 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22647 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22648 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22649 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22650 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22651 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22652 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22653 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22654 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22655 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22656 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22657 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22658 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22659 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22660 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22661 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22662 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22663 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22664 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22665 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22666 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22667 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22668 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22669 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22670 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22671 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22672 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22673 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22674 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22675 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22676 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22677 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22678 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22679 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22680 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22681 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22682 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22683 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22684 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22685 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22686 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22687 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22688 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22689 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22690 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22691 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22692 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22693 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22694 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22695 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22696 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22697 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22698 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22699 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22700 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22701 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22702 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22703 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22704 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22705 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22706 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22707 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22708 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22709 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22710 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22711 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22712 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22713 N_("use -mcpu=strongarm110")},
e74cfd16 22714 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22715 N_("use -mcpu=strongarm1100")},
e74cfd16 22716 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22717 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22718 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22719 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22720 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22721
c19d1205 22722 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22723 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22724 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22725 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22726 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22727 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22728 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22729 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22730 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22731 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22732 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22733 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22734 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22735 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22736 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22737 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22738 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22739 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22740 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22741
c19d1205 22742 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22743 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22744 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22745 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22746 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22747 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22748
e74cfd16 22749 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22750};
7ed4c4c5 22751
c19d1205 22752struct arm_cpu_option_table
7ed4c4c5 22753{
c19d1205 22754 char *name;
e74cfd16 22755 const arm_feature_set value;
c19d1205
ZW
22756 /* For some CPUs we assume an FPU unless the user explicitly sets
22757 -mfpu=... */
e74cfd16 22758 const arm_feature_set default_fpu;
ee065d83
PB
22759 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22760 case. */
22761 const char *canonical_name;
c19d1205 22762};
7ed4c4c5 22763
c19d1205
ZW
22764/* This list should, at a minimum, contain all the cpu names
22765 recognized by GCC. */
e74cfd16 22766static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22767{
ee065d83
PB
22768 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22769 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22770 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22771 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22772 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22773 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22774 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22775 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22776 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22777 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22778 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22779 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22780 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22781 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22782 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22783 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22784 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22785 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22786 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22787 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22788 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22789 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22790 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22791 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22792 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22793 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22794 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22795 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22796 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22797 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22798 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22799 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22800 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22801 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22802 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22803 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22804 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22805 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22806 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22807 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22808 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22809 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22810 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22811 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22812 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22813 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22814 /* For V5 or later processors we default to using VFP; but the user
22815 should really set the FPU type explicitly. */
ee065d83
PB
22816 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22817 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22818 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22819 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22820 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22821 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22822 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22823 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22824 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22825 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22826 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22827 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22828 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22829 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22830 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22831 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22832 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22833 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22834 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22835 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22836 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
4a58c4bd
NC
22837 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22838 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22839 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22840 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
7fac0536 22841 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22842 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22843 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22844 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22845 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22846 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22847 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22848 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22849 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22850 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22851 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22852 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22853 FPU_NONE, "Cortex-A5"},
22854 {"cortex-a8", ARM_ARCH_V7A_SEC,
22855 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22856 | FPU_NEON_EXT_V1),
4ff9b924 22857 "Cortex-A8"},
f4c65163
MGD
22858 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22859 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22860 | FPU_NEON_EXT_V1),
4ff9b924 22861 "Cortex-A9"},
90ec0d68 22862 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22863 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22864 "Cortex-A15"},
4ff9b924
MGD
22865 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22866 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22867 "Cortex-R4F"},
3b2f0793
PB
22868 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22869 FPU_NONE, "Cortex-R5"},
4ff9b924
MGD
22870 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22871 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22872 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22873 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22874 /* ??? XSCALE is really an architecture. */
ee065d83 22875 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22876 /* ??? iwmmxt is not a processor. */
ee065d83 22877 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22878 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22879 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22880 /* Maverick */
e07e6e58 22881 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22882 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22883};
7ed4c4c5 22884
c19d1205 22885struct arm_arch_option_table
7ed4c4c5 22886{
c19d1205 22887 char *name;
e74cfd16
PB
22888 const arm_feature_set value;
22889 const arm_feature_set default_fpu;
c19d1205 22890};
7ed4c4c5 22891
c19d1205
ZW
22892/* This list should, at a minimum, contain all the architecture names
22893 recognized by GCC. */
e74cfd16 22894static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22895{
22896 {"all", ARM_ANY, FPU_ARCH_FPA},
22897 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22898 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22899 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22900 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22901 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22902 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22903 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22904 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22905 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22906 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22907 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22908 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22909 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22910 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22911 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22912 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22913 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22914 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22915 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22916 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22917 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22918 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22919 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22920 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22921 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22922 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22923 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22924 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22925 /* The official spelling of the ARMv7 profile variants is the dashed form.
22926 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22927 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22928 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22929 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22930 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22931 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22932 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22933 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22934 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22935 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22936 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22937 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22938};
7ed4c4c5 22939
69133863
MGD
22940/* ISA extensions in the co-processor and main instruction set space. */
22941struct arm_option_extension_value_table
c19d1205
ZW
22942{
22943 char *name;
e74cfd16 22944 const arm_feature_set value;
69133863 22945 const arm_feature_set allowed_archs;
c19d1205 22946};
7ed4c4c5 22947
69133863
MGD
22948/* The following table must be in alphabetical order with a NULL last entry.
22949 */
22950static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22951{
eea54501 22952 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
3b2f0793 22953 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
69133863
MGD
22954 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22955 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22956 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22957 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22958 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22959 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22960 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22961 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22962 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22963 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22964 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22965 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22966 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22967};
22968
22969/* ISA floating-point and Advanced SIMD extensions. */
22970struct arm_option_fpu_value_table
22971{
22972 char *name;
22973 const arm_feature_set value;
c19d1205 22974};
7ed4c4c5 22975
c19d1205
ZW
22976/* This list should, at a minimum, contain all the fpu names
22977 recognized by GCC. */
69133863 22978static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22979{
22980 {"softfpa", FPU_NONE},
22981 {"fpe", FPU_ARCH_FPE},
22982 {"fpe2", FPU_ARCH_FPE},
22983 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22984 {"fpa", FPU_ARCH_FPA},
22985 {"fpa10", FPU_ARCH_FPA},
22986 {"fpa11", FPU_ARCH_FPA},
22987 {"arm7500fe", FPU_ARCH_FPA},
22988 {"softvfp", FPU_ARCH_VFP},
22989 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22990 {"vfp", FPU_ARCH_VFP_V2},
22991 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22992 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22993 {"vfp10", FPU_ARCH_VFP_V2},
22994 {"vfp10-r0", FPU_ARCH_VFP_V1},
22995 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22996 {"vfpv2", FPU_ARCH_VFP_V2},
22997 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22998 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22999 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23000 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23001 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23002 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23003 {"arm1020t", FPU_ARCH_VFP_V1},
23004 {"arm1020e", FPU_ARCH_VFP_V2},
23005 {"arm1136jfs", FPU_ARCH_VFP_V2},
23006 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23007 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23008 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23009 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23010 {"vfpv4", FPU_ARCH_VFP_V4},
23011 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23012 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23013 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
23014 {NULL, ARM_ARCH_NONE}
23015};
23016
23017struct arm_option_value_table
23018{
23019 char *name;
23020 long value;
c19d1205 23021};
7ed4c4c5 23022
e74cfd16 23023static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23024{
23025 {"hard", ARM_FLOAT_ABI_HARD},
23026 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23027 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23028 {NULL, 0}
c19d1205 23029};
7ed4c4c5 23030
c19d1205 23031#ifdef OBJ_ELF
3a4a14e9 23032/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23033static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23034{
23035 {"gnu", EF_ARM_EABI_UNKNOWN},
23036 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23037 {"5", EF_ARM_EABI_VER5},
e74cfd16 23038 {NULL, 0}
c19d1205
ZW
23039};
23040#endif
7ed4c4c5 23041
c19d1205
ZW
23042struct arm_long_option_table
23043{
23044 char * option; /* Substring to match. */
23045 char * help; /* Help information. */
23046 int (* func) (char * subopt); /* Function to decode sub-option. */
23047 char * deprecated; /* If non-null, print this message. */
23048};
7ed4c4c5 23049
c921be7d 23050static bfd_boolean
e74cfd16 23051arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 23052{
21d799b5
NC
23053 arm_feature_set *ext_set = (arm_feature_set *)
23054 xmalloc (sizeof (arm_feature_set));
e74cfd16 23055
69133863
MGD
23056 /* We insist on extensions being specified in alphabetical order, and with
23057 extensions being added before being removed. We achieve this by having
23058 the global ARM_EXTENSIONS table in alphabetical order, and using the
23059 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23060 or removing it (0) and only allowing it to change in the order
23061 -1 -> 1 -> 0. */
23062 const struct arm_option_extension_value_table * opt = NULL;
23063 int adding_value = -1;
23064
e74cfd16
PB
23065 /* Copy the feature set, so that we can modify it. */
23066 *ext_set = **opt_p;
23067 *opt_p = ext_set;
23068
c19d1205 23069 while (str != NULL && *str != 0)
7ed4c4c5 23070 {
c19d1205 23071 char * ext;
69133863 23072 size_t optlen;
7ed4c4c5 23073
c19d1205
ZW
23074 if (*str != '+')
23075 {
23076 as_bad (_("invalid architectural extension"));
c921be7d 23077 return FALSE;
c19d1205 23078 }
7ed4c4c5 23079
c19d1205
ZW
23080 str++;
23081 ext = strchr (str, '+');
7ed4c4c5 23082
c19d1205
ZW
23083 if (ext != NULL)
23084 optlen = ext - str;
23085 else
23086 optlen = strlen (str);
7ed4c4c5 23087
69133863
MGD
23088 if (optlen >= 2
23089 && strncmp (str, "no", 2) == 0)
23090 {
23091 if (adding_value != 0)
23092 {
23093 adding_value = 0;
23094 opt = arm_extensions;
23095 }
23096
23097 optlen -= 2;
23098 str += 2;
23099 }
23100 else if (optlen > 0)
23101 {
23102 if (adding_value == -1)
23103 {
23104 adding_value = 1;
23105 opt = arm_extensions;
23106 }
23107 else if (adding_value != 1)
23108 {
23109 as_bad (_("must specify extensions to add before specifying "
23110 "those to remove"));
23111 return FALSE;
23112 }
23113 }
23114
c19d1205
ZW
23115 if (optlen == 0)
23116 {
23117 as_bad (_("missing architectural extension"));
c921be7d 23118 return FALSE;
c19d1205 23119 }
7ed4c4c5 23120
69133863
MGD
23121 gas_assert (adding_value != -1);
23122 gas_assert (opt != NULL);
23123
23124 /* Scan over the options table trying to find an exact match. */
23125 for (; opt->name != NULL; opt++)
23126 if (strncmp (opt->name, str, optlen) == 0
23127 && strlen (opt->name) == optlen)
c19d1205 23128 {
69133863
MGD
23129 /* Check we can apply the extension to this architecture. */
23130 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23131 {
23132 as_bad (_("extension does not apply to the base architecture"));
23133 return FALSE;
23134 }
23135
23136 /* Add or remove the extension. */
23137 if (adding_value)
23138 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23139 else
23140 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23141
c19d1205
ZW
23142 break;
23143 }
7ed4c4c5 23144
c19d1205
ZW
23145 if (opt->name == NULL)
23146 {
69133863
MGD
23147 /* Did we fail to find an extension because it wasn't specified in
23148 alphabetical order, or because it does not exist? */
23149
23150 for (opt = arm_extensions; opt->name != NULL; opt++)
23151 if (strncmp (opt->name, str, optlen) == 0)
23152 break;
23153
23154 if (opt->name == NULL)
23155 as_bad (_("unknown architectural extension `%s'"), str);
23156 else
23157 as_bad (_("architectural extensions must be specified in "
23158 "alphabetical order"));
23159
c921be7d 23160 return FALSE;
c19d1205 23161 }
69133863
MGD
23162 else
23163 {
23164 /* We should skip the extension we've just matched the next time
23165 round. */
23166 opt++;
23167 }
7ed4c4c5 23168
c19d1205
ZW
23169 str = ext;
23170 };
7ed4c4c5 23171
c921be7d 23172 return TRUE;
c19d1205 23173}
7ed4c4c5 23174
c921be7d 23175static bfd_boolean
c19d1205 23176arm_parse_cpu (char * str)
7ed4c4c5 23177{
e74cfd16 23178 const struct arm_cpu_option_table * opt;
c19d1205
ZW
23179 char * ext = strchr (str, '+');
23180 int optlen;
7ed4c4c5 23181
c19d1205
ZW
23182 if (ext != NULL)
23183 optlen = ext - str;
7ed4c4c5 23184 else
c19d1205 23185 optlen = strlen (str);
7ed4c4c5 23186
c19d1205 23187 if (optlen == 0)
7ed4c4c5 23188 {
c19d1205 23189 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23190 return FALSE;
7ed4c4c5
NC
23191 }
23192
c19d1205
ZW
23193 for (opt = arm_cpus; opt->name != NULL; opt++)
23194 if (strncmp (opt->name, str, optlen) == 0)
23195 {
e74cfd16
PB
23196 mcpu_cpu_opt = &opt->value;
23197 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23198 if (opt->canonical_name)
5f4273c7 23199 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23200 else
23201 {
23202 int i;
c921be7d 23203
ee065d83
PB
23204 for (i = 0; i < optlen; i++)
23205 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23206 selected_cpu_name[i] = 0;
23207 }
7ed4c4c5 23208
c19d1205
ZW
23209 if (ext != NULL)
23210 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23211
c921be7d 23212 return TRUE;
c19d1205 23213 }
7ed4c4c5 23214
c19d1205 23215 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23216 return FALSE;
7ed4c4c5
NC
23217}
23218
c921be7d 23219static bfd_boolean
c19d1205 23220arm_parse_arch (char * str)
7ed4c4c5 23221{
e74cfd16 23222 const struct arm_arch_option_table *opt;
c19d1205
ZW
23223 char *ext = strchr (str, '+');
23224 int optlen;
7ed4c4c5 23225
c19d1205
ZW
23226 if (ext != NULL)
23227 optlen = ext - str;
7ed4c4c5 23228 else
c19d1205 23229 optlen = strlen (str);
7ed4c4c5 23230
c19d1205 23231 if (optlen == 0)
7ed4c4c5 23232 {
c19d1205 23233 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23234 return FALSE;
7ed4c4c5
NC
23235 }
23236
c19d1205 23237 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 23238 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 23239 {
e74cfd16
PB
23240 march_cpu_opt = &opt->value;
23241 march_fpu_opt = &opt->default_fpu;
5f4273c7 23242 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23243
c19d1205
ZW
23244 if (ext != NULL)
23245 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23246
c921be7d 23247 return TRUE;
c19d1205
ZW
23248 }
23249
23250 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23251 return FALSE;
7ed4c4c5 23252}
eb043451 23253
c921be7d 23254static bfd_boolean
c19d1205
ZW
23255arm_parse_fpu (char * str)
23256{
69133863 23257 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23258
c19d1205
ZW
23259 for (opt = arm_fpus; opt->name != NULL; opt++)
23260 if (streq (opt->name, str))
23261 {
e74cfd16 23262 mfpu_opt = &opt->value;
c921be7d 23263 return TRUE;
c19d1205 23264 }
b99bd4ef 23265
c19d1205 23266 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23267 return FALSE;
c19d1205
ZW
23268}
23269
c921be7d 23270static bfd_boolean
c19d1205 23271arm_parse_float_abi (char * str)
b99bd4ef 23272{
e74cfd16 23273 const struct arm_option_value_table * opt;
b99bd4ef 23274
c19d1205
ZW
23275 for (opt = arm_float_abis; opt->name != NULL; opt++)
23276 if (streq (opt->name, str))
23277 {
23278 mfloat_abi_opt = opt->value;
c921be7d 23279 return TRUE;
c19d1205 23280 }
cc8a6dd0 23281
c19d1205 23282 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23283 return FALSE;
c19d1205 23284}
b99bd4ef 23285
c19d1205 23286#ifdef OBJ_ELF
c921be7d 23287static bfd_boolean
c19d1205
ZW
23288arm_parse_eabi (char * str)
23289{
e74cfd16 23290 const struct arm_option_value_table *opt;
cc8a6dd0 23291
c19d1205
ZW
23292 for (opt = arm_eabis; opt->name != NULL; opt++)
23293 if (streq (opt->name, str))
23294 {
23295 meabi_flags = opt->value;
c921be7d 23296 return TRUE;
c19d1205
ZW
23297 }
23298 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23299 return FALSE;
c19d1205
ZW
23300}
23301#endif
cc8a6dd0 23302
c921be7d 23303static bfd_boolean
e07e6e58
NC
23304arm_parse_it_mode (char * str)
23305{
c921be7d 23306 bfd_boolean ret = TRUE;
e07e6e58
NC
23307
23308 if (streq ("arm", str))
23309 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23310 else if (streq ("thumb", str))
23311 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23312 else if (streq ("always", str))
23313 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23314 else if (streq ("never", str))
23315 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23316 else
23317 {
23318 as_bad (_("unknown implicit IT mode `%s', should be "\
23319 "arm, thumb, always, or never."), str);
c921be7d 23320 ret = FALSE;
e07e6e58
NC
23321 }
23322
23323 return ret;
23324}
23325
c19d1205
ZW
23326struct arm_long_option_table arm_long_opts[] =
23327{
23328 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23329 arm_parse_cpu, NULL},
23330 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23331 arm_parse_arch, NULL},
23332 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23333 arm_parse_fpu, NULL},
23334 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23335 arm_parse_float_abi, NULL},
23336#ifdef OBJ_ELF
7fac0536 23337 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23338 arm_parse_eabi, NULL},
23339#endif
e07e6e58
NC
23340 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23341 arm_parse_it_mode, NULL},
c19d1205
ZW
23342 {NULL, NULL, 0, NULL}
23343};
cc8a6dd0 23344
c19d1205
ZW
23345int
23346md_parse_option (int c, char * arg)
23347{
23348 struct arm_option_table *opt;
e74cfd16 23349 const struct arm_legacy_option_table *fopt;
c19d1205 23350 struct arm_long_option_table *lopt;
b99bd4ef 23351
c19d1205 23352 switch (c)
b99bd4ef 23353 {
c19d1205
ZW
23354#ifdef OPTION_EB
23355 case OPTION_EB:
23356 target_big_endian = 1;
23357 break;
23358#endif
cc8a6dd0 23359
c19d1205
ZW
23360#ifdef OPTION_EL
23361 case OPTION_EL:
23362 target_big_endian = 0;
23363 break;
23364#endif
b99bd4ef 23365
845b51d6
PB
23366 case OPTION_FIX_V4BX:
23367 fix_v4bx = TRUE;
23368 break;
23369
c19d1205
ZW
23370 case 'a':
23371 /* Listing option. Just ignore these, we don't support additional
23372 ones. */
23373 return 0;
b99bd4ef 23374
c19d1205
ZW
23375 default:
23376 for (opt = arm_opts; opt->option != NULL; opt++)
23377 {
23378 if (c == opt->option[0]
23379 && ((arg == NULL && opt->option[1] == 0)
23380 || streq (arg, opt->option + 1)))
23381 {
c19d1205 23382 /* If the option is deprecated, tell the user. */
278df34e 23383 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23384 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23385 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23386
c19d1205
ZW
23387 if (opt->var != NULL)
23388 *opt->var = opt->value;
cc8a6dd0 23389
c19d1205
ZW
23390 return 1;
23391 }
23392 }
b99bd4ef 23393
e74cfd16
PB
23394 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23395 {
23396 if (c == fopt->option[0]
23397 && ((arg == NULL && fopt->option[1] == 0)
23398 || streq (arg, fopt->option + 1)))
23399 {
e74cfd16 23400 /* If the option is deprecated, tell the user. */
278df34e 23401 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23402 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23403 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23404
23405 if (fopt->var != NULL)
23406 *fopt->var = &fopt->value;
23407
23408 return 1;
23409 }
23410 }
23411
c19d1205
ZW
23412 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23413 {
23414 /* These options are expected to have an argument. */
23415 if (c == lopt->option[0]
23416 && arg != NULL
23417 && strncmp (arg, lopt->option + 1,
23418 strlen (lopt->option + 1)) == 0)
23419 {
c19d1205 23420 /* If the option is deprecated, tell the user. */
278df34e 23421 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23422 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23423 _(lopt->deprecated));
b99bd4ef 23424
c19d1205
ZW
23425 /* Call the sup-option parser. */
23426 return lopt->func (arg + strlen (lopt->option) - 1);
23427 }
23428 }
a737bd4d 23429
c19d1205
ZW
23430 return 0;
23431 }
a394c00f 23432
c19d1205
ZW
23433 return 1;
23434}
a394c00f 23435
c19d1205
ZW
23436void
23437md_show_usage (FILE * fp)
a394c00f 23438{
c19d1205
ZW
23439 struct arm_option_table *opt;
23440 struct arm_long_option_table *lopt;
a394c00f 23441
c19d1205 23442 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23443
c19d1205
ZW
23444 for (opt = arm_opts; opt->option != NULL; opt++)
23445 if (opt->help != NULL)
23446 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23447
c19d1205
ZW
23448 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23449 if (lopt->help != NULL)
23450 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23451
c19d1205
ZW
23452#ifdef OPTION_EB
23453 fprintf (fp, _("\
23454 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23455#endif
23456
c19d1205
ZW
23457#ifdef OPTION_EL
23458 fprintf (fp, _("\
23459 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23460#endif
845b51d6
PB
23461
23462 fprintf (fp, _("\
23463 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23464}
ee065d83
PB
23465
23466
23467#ifdef OBJ_ELF
62b3e311
PB
23468typedef struct
23469{
23470 int val;
23471 arm_feature_set flags;
23472} cpu_arch_ver_table;
23473
23474/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23475 least features first. */
23476static const cpu_arch_ver_table cpu_arch_ver[] =
23477{
23478 {1, ARM_ARCH_V4},
23479 {2, ARM_ARCH_V4T},
23480 {3, ARM_ARCH_V5},
ee3c0378 23481 {3, ARM_ARCH_V5T},
62b3e311
PB
23482 {4, ARM_ARCH_V5TE},
23483 {5, ARM_ARCH_V5TEJ},
23484 {6, ARM_ARCH_V6},
7e806470 23485 {9, ARM_ARCH_V6K},
f4c65163 23486 {7, ARM_ARCH_V6Z},
91e22acd 23487 {11, ARM_ARCH_V6M},
b2a5fbdc 23488 {12, ARM_ARCH_V6SM},
7e806470 23489 {8, ARM_ARCH_V6T2},
62b3e311
PB
23490 {10, ARM_ARCH_V7A},
23491 {10, ARM_ARCH_V7R},
23492 {10, ARM_ARCH_V7M},
23493 {0, ARM_ARCH_NONE}
23494};
23495
ee3c0378
AS
23496/* Set an attribute if it has not already been set by the user. */
23497static void
23498aeabi_set_attribute_int (int tag, int value)
23499{
23500 if (tag < 1
23501 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23502 || !attributes_set_explicitly[tag])
23503 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23504}
23505
23506static void
23507aeabi_set_attribute_string (int tag, const char *value)
23508{
23509 if (tag < 1
23510 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23511 || !attributes_set_explicitly[tag])
23512 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23513}
23514
ee065d83
PB
23515/* Set the public EABI object attributes. */
23516static void
23517aeabi_set_public_attributes (void)
23518{
23519 int arch;
90ec0d68 23520 int virt_sec = 0;
e74cfd16 23521 arm_feature_set flags;
62b3e311
PB
23522 arm_feature_set tmp;
23523 const cpu_arch_ver_table *p;
ee065d83
PB
23524
23525 /* Choose the architecture based on the capabilities of the requested cpu
23526 (if any) and/or the instructions actually used. */
e74cfd16
PB
23527 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23528 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23529 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23530 /*Allow the user to override the reported architecture. */
23531 if (object_arch)
23532 {
23533 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23534 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23535 }
23536
251665fc
MGD
23537 /* We need to make sure that the attributes do not identify us as v6S-M
23538 when the only v6S-M feature in use is the Operating System Extensions. */
23539 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23540 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23541 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23542
62b3e311
PB
23543 tmp = flags;
23544 arch = 0;
23545 for (p = cpu_arch_ver; p->val; p++)
23546 {
23547 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23548 {
23549 arch = p->val;
23550 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23551 }
23552 }
ee065d83 23553
9e3c6df6
PB
23554 /* The table lookup above finds the last architecture to contribute
23555 a new feature. Unfortunately, Tag13 is a subset of the union of
23556 v6T2 and v7-M, so it is never seen as contributing a new feature.
23557 We can not search for the last entry which is entirely used,
23558 because if no CPU is specified we build up only those flags
23559 actually used. Perhaps we should separate out the specified
23560 and implicit cases. Avoid taking this path for -march=all by
23561 checking for contradictory v7-A / v7-M features. */
23562 if (arch == 10
23563 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23564 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23565 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23566 arch = 13;
23567
ee065d83
PB
23568 /* Tag_CPU_name. */
23569 if (selected_cpu_name[0])
23570 {
91d6fa6a 23571 char *q;
ee065d83 23572
91d6fa6a
NC
23573 q = selected_cpu_name;
23574 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23575 {
23576 int i;
5f4273c7 23577
91d6fa6a
NC
23578 q += 4;
23579 for (i = 0; q[i]; i++)
23580 q[i] = TOUPPER (q[i]);
ee065d83 23581 }
91d6fa6a 23582 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23583 }
62f3b8c8 23584
ee065d83 23585 /* Tag_CPU_arch. */
ee3c0378 23586 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23587
62b3e311
PB
23588 /* Tag_CPU_arch_profile. */
23589 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23590 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23591 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23592 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23593 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23594 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23595
ee065d83 23596 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23597 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23598 || arch == 0)
23599 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23600
ee065d83 23601 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23602 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23603 || arch == 0)
23604 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23605 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23606
ee065d83 23607 /* Tag_VFP_arch. */
62f3b8c8
PB
23608 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23609 aeabi_set_attribute_int (Tag_VFP_arch,
23610 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23611 ? 5 : 6);
23612 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23613 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23614 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23615 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23616 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23617 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23618 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23619 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23620 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23621
4547cb56
NC
23622 /* Tag_ABI_HardFP_use. */
23623 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23624 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23625 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23626
ee065d83 23627 /* Tag_WMMX_arch. */
ee3c0378
AS
23628 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23629 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23630 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23631 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23632
ee3c0378 23633 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23634 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23635 aeabi_set_attribute_int
23636 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23637 ? 2 : 1));
23638
ee3c0378 23639 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23640 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23641 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23642
23643 /* Tag_DIV_use. */
eea54501
MGD
23644 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23645 aeabi_set_attribute_int (Tag_DIV_use, 2);
23646 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23647 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23648 else
23649 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23650
23651 /* Tag_MP_extension_use. */
23652 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23653 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23654
23655 /* Tag Virtualization_use. */
23656 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23657 virt_sec |= 1;
23658 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23659 virt_sec |= 2;
23660 if (virt_sec != 0)
23661 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23662}
23663
104d59d1 23664/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23665void
23666arm_md_end (void)
23667{
ee065d83
PB
23668 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23669 return;
23670
23671 aeabi_set_public_attributes ();
ee065d83 23672}
8463be01 23673#endif /* OBJ_ELF */
ee065d83
PB
23674
23675
23676/* Parse a .cpu directive. */
23677
23678static void
23679s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23680{
e74cfd16 23681 const struct arm_cpu_option_table *opt;
ee065d83
PB
23682 char *name;
23683 char saved_char;
23684
23685 name = input_line_pointer;
5f4273c7 23686 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23687 input_line_pointer++;
23688 saved_char = *input_line_pointer;
23689 *input_line_pointer = 0;
23690
23691 /* Skip the first "all" entry. */
23692 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23693 if (streq (opt->name, name))
23694 {
e74cfd16
PB
23695 mcpu_cpu_opt = &opt->value;
23696 selected_cpu = opt->value;
ee065d83 23697 if (opt->canonical_name)
5f4273c7 23698 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23699 else
23700 {
23701 int i;
23702 for (i = 0; opt->name[i]; i++)
23703 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23704 selected_cpu_name[i] = 0;
23705 }
e74cfd16 23706 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23707 *input_line_pointer = saved_char;
23708 demand_empty_rest_of_line ();
23709 return;
23710 }
23711 as_bad (_("unknown cpu `%s'"), name);
23712 *input_line_pointer = saved_char;
23713 ignore_rest_of_line ();
23714}
23715
23716
23717/* Parse a .arch directive. */
23718
23719static void
23720s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23721{
e74cfd16 23722 const struct arm_arch_option_table *opt;
ee065d83
PB
23723 char saved_char;
23724 char *name;
23725
23726 name = input_line_pointer;
5f4273c7 23727 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23728 input_line_pointer++;
23729 saved_char = *input_line_pointer;
23730 *input_line_pointer = 0;
23731
23732 /* Skip the first "all" entry. */
23733 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23734 if (streq (opt->name, name))
23735 {
e74cfd16
PB
23736 mcpu_cpu_opt = &opt->value;
23737 selected_cpu = opt->value;
5f4273c7 23738 strcpy (selected_cpu_name, opt->name);
e74cfd16 23739 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23740 *input_line_pointer = saved_char;
23741 demand_empty_rest_of_line ();
23742 return;
23743 }
23744
23745 as_bad (_("unknown architecture `%s'\n"), name);
23746 *input_line_pointer = saved_char;
23747 ignore_rest_of_line ();
23748}
23749
23750
7a1d4c38
PB
23751/* Parse a .object_arch directive. */
23752
23753static void
23754s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23755{
23756 const struct arm_arch_option_table *opt;
23757 char saved_char;
23758 char *name;
23759
23760 name = input_line_pointer;
5f4273c7 23761 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23762 input_line_pointer++;
23763 saved_char = *input_line_pointer;
23764 *input_line_pointer = 0;
23765
23766 /* Skip the first "all" entry. */
23767 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23768 if (streq (opt->name, name))
23769 {
23770 object_arch = &opt->value;
23771 *input_line_pointer = saved_char;
23772 demand_empty_rest_of_line ();
23773 return;
23774 }
23775
23776 as_bad (_("unknown architecture `%s'\n"), name);
23777 *input_line_pointer = saved_char;
23778 ignore_rest_of_line ();
23779}
23780
69133863
MGD
23781/* Parse a .arch_extension directive. */
23782
23783static void
23784s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23785{
23786 const struct arm_option_extension_value_table *opt;
23787 char saved_char;
23788 char *name;
23789 int adding_value = 1;
23790
23791 name = input_line_pointer;
23792 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23793 input_line_pointer++;
23794 saved_char = *input_line_pointer;
23795 *input_line_pointer = 0;
23796
23797 if (strlen (name) >= 2
23798 && strncmp (name, "no", 2) == 0)
23799 {
23800 adding_value = 0;
23801 name += 2;
23802 }
23803
23804 for (opt = arm_extensions; opt->name != NULL; opt++)
23805 if (streq (opt->name, name))
23806 {
23807 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23808 {
23809 as_bad (_("architectural extension `%s' is not allowed for the "
23810 "current base architecture"), name);
23811 break;
23812 }
23813
23814 if (adding_value)
23815 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23816 else
23817 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23818
23819 mcpu_cpu_opt = &selected_cpu;
23820 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23821 *input_line_pointer = saved_char;
23822 demand_empty_rest_of_line ();
23823 return;
23824 }
23825
23826 if (opt->name == NULL)
23827 as_bad (_("unknown architecture `%s'\n"), name);
23828
23829 *input_line_pointer = saved_char;
23830 ignore_rest_of_line ();
23831}
23832
ee065d83
PB
23833/* Parse a .fpu directive. */
23834
23835static void
23836s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23837{
69133863 23838 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23839 char saved_char;
23840 char *name;
23841
23842 name = input_line_pointer;
5f4273c7 23843 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23844 input_line_pointer++;
23845 saved_char = *input_line_pointer;
23846 *input_line_pointer = 0;
5f4273c7 23847
ee065d83
PB
23848 for (opt = arm_fpus; opt->name != NULL; opt++)
23849 if (streq (opt->name, name))
23850 {
e74cfd16
PB
23851 mfpu_opt = &opt->value;
23852 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23853 *input_line_pointer = saved_char;
23854 demand_empty_rest_of_line ();
23855 return;
23856 }
23857
23858 as_bad (_("unknown floating point format `%s'\n"), name);
23859 *input_line_pointer = saved_char;
23860 ignore_rest_of_line ();
23861}
ee065d83 23862
794ba86a 23863/* Copy symbol information. */
f31fef98 23864
794ba86a
DJ
23865void
23866arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23867{
23868 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23869}
e04befd0 23870
f31fef98 23871#ifdef OBJ_ELF
e04befd0
AS
23872/* Given a symbolic attribute NAME, return the proper integer value.
23873 Returns -1 if the attribute is not known. */
f31fef98 23874
e04befd0
AS
23875int
23876arm_convert_symbolic_attribute (const char *name)
23877{
f31fef98
NC
23878 static const struct
23879 {
23880 const char * name;
23881 const int tag;
23882 }
23883 attribute_table[] =
23884 {
23885 /* When you modify this table you should
23886 also modify the list in doc/c-arm.texi. */
e04befd0 23887#define T(tag) {#tag, tag}
f31fef98
NC
23888 T (Tag_CPU_raw_name),
23889 T (Tag_CPU_name),
23890 T (Tag_CPU_arch),
23891 T (Tag_CPU_arch_profile),
23892 T (Tag_ARM_ISA_use),
23893 T (Tag_THUMB_ISA_use),
75375b3e 23894 T (Tag_FP_arch),
f31fef98
NC
23895 T (Tag_VFP_arch),
23896 T (Tag_WMMX_arch),
23897 T (Tag_Advanced_SIMD_arch),
23898 T (Tag_PCS_config),
23899 T (Tag_ABI_PCS_R9_use),
23900 T (Tag_ABI_PCS_RW_data),
23901 T (Tag_ABI_PCS_RO_data),
23902 T (Tag_ABI_PCS_GOT_use),
23903 T (Tag_ABI_PCS_wchar_t),
23904 T (Tag_ABI_FP_rounding),
23905 T (Tag_ABI_FP_denormal),
23906 T (Tag_ABI_FP_exceptions),
23907 T (Tag_ABI_FP_user_exceptions),
23908 T (Tag_ABI_FP_number_model),
75375b3e 23909 T (Tag_ABI_align_needed),
f31fef98 23910 T (Tag_ABI_align8_needed),
75375b3e 23911 T (Tag_ABI_align_preserved),
f31fef98
NC
23912 T (Tag_ABI_align8_preserved),
23913 T (Tag_ABI_enum_size),
23914 T (Tag_ABI_HardFP_use),
23915 T (Tag_ABI_VFP_args),
23916 T (Tag_ABI_WMMX_args),
23917 T (Tag_ABI_optimization_goals),
23918 T (Tag_ABI_FP_optimization_goals),
23919 T (Tag_compatibility),
23920 T (Tag_CPU_unaligned_access),
75375b3e 23921 T (Tag_FP_HP_extension),
f31fef98
NC
23922 T (Tag_VFP_HP_extension),
23923 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23924 T (Tag_MPextension_use),
23925 T (Tag_DIV_use),
f31fef98
NC
23926 T (Tag_nodefaults),
23927 T (Tag_also_compatible_with),
23928 T (Tag_conformance),
23929 T (Tag_T2EE_use),
23930 T (Tag_Virtualization_use),
cd21e546 23931 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23932#undef T
f31fef98 23933 };
e04befd0
AS
23934 unsigned int i;
23935
23936 if (name == NULL)
23937 return -1;
23938
f31fef98 23939 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23940 if (streq (name, attribute_table[i].name))
e04befd0
AS
23941 return attribute_table[i].tag;
23942
23943 return -1;
23944}
267bf995
RR
23945
23946
23947/* Apply sym value for relocations only in the case that
23948 they are for local symbols and you have the respective
23949 architectural feature for blx and simple switches. */
23950int
23951arm_apply_sym_value (struct fix * fixP)
23952{
23953 if (fixP->fx_addsy
23954 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 23955 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
23956 {
23957 switch (fixP->fx_r_type)
23958 {
23959 case BFD_RELOC_ARM_PCREL_BLX:
23960 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23961 if (ARM_IS_FUNC (fixP->fx_addsy))
23962 return 1;
23963 break;
23964
23965 case BFD_RELOC_ARM_PCREL_CALL:
23966 case BFD_RELOC_THUMB_PCREL_BLX:
23967 if (THUMB_IS_FUNC (fixP->fx_addsy))
23968 return 1;
23969 break;
23970
23971 default:
23972 break;
23973 }
23974
23975 }
23976 return 0;
23977}
f31fef98 23978#endif /* OBJ_ELF */
This page took 2.491036 seconds and 4 git commands to generate.