[PATCH 11/57][Arm][GAS] Add support for MVE instructions: vadc, vsbc and vbrsr
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
037e8744 6905 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6906 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
5ee91343
AV
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
a302e574 6923 OP_RMQ, /* MVE vector register. */
1b883319 6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
a302e574 6925
60f993ce
AV
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
a302e574
AV
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
c19d1205 6932 OP_REGLST, /* ARM register list */
4b5a202f 6933 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
037e8744 6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6942
5287ad62 6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
5287ad62 6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
5287ad62
JB
6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6955 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6956 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6957 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6958 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6959 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6960
6961 OP_I0, /* immediate zero */
c19d1205
ZW
6962 OP_I7, /* immediate value 0 .. 7 */
6963 OP_I15, /* 0 .. 15 */
6964 OP_I16, /* 1 .. 16 */
5287ad62 6965 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6966 OP_I31, /* 0 .. 31 */
6967 OP_I31w, /* 0 .. 31, optional trailing ! */
6968 OP_I32, /* 1 .. 32 */
5287ad62
JB
6969 OP_I32z, /* 0 .. 32 */
6970 OP_I63, /* 0 .. 63 */
c19d1205 6971 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6972 OP_I64, /* 1 .. 64 */
6973 OP_I64z, /* 0 .. 64 */
c19d1205 6974 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6975
6976 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6977 OP_I7b, /* 0 .. 7 */
6978 OP_I15b, /* 0 .. 15 */
6979 OP_I31b, /* 0 .. 31 */
6980
6981 OP_SH, /* shifter operand */
4962c51a 6982 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6983 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6984 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6985 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6986 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6987 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6988 OP_EXP, /* arbitrary expression */
6989 OP_EXPi, /* same, with optional immediate prefix */
6990 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6991 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6992 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6993 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6994 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6995
6996 OP_CPSF, /* CPS flags */
6997 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6998 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6999 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7000 OP_COND, /* conditional code */
92e90b6e 7001 OP_TB, /* Table branch. */
c19d1205 7002
037e8744
JB
7003 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7004
c19d1205 7005 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7006 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7007 OP_RR_EXi, /* ARM register or expression with imm prefix */
7008 OP_RF_IF, /* FPA register or immediate */
7009 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7010 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7011
7012 /* Optional operands. */
7013 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7014 OP_oI31b, /* 0 .. 31 */
5287ad62 7015 OP_oI32b, /* 1 .. 32 */
5f1af56b 7016 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7017 OP_oIffffb, /* 0 .. 65535 */
7018 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7019
7020 OP_oRR, /* ARM register */
60f993ce 7021 OP_oLR, /* ARM LR register */
c19d1205 7022 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7023 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7024 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7025 OP_oRND, /* Optional Neon double precision register */
7026 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7027 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7028 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7029 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7030 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7031 register. */
c19d1205
ZW
7032 OP_oSHll, /* LSL immediate */
7033 OP_oSHar, /* ASR immediate */
7034 OP_oSHllar, /* LSL or ASR immediate */
7035 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7036 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7037
1b883319
AV
7038 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7039
5be8be5d
DG
7040 /* Some pre-defined mixed (ARM/THUMB) operands. */
7041 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7042 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7043 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7044
c19d1205
ZW
7045 OP_FIRST_OPTIONAL = OP_oI7b
7046};
a737bd4d 7047
c19d1205
ZW
7048/* Generic instruction operand parser. This does no encoding and no
7049 semantic validation; it merely squirrels values away in the inst
7050 structure. Returns SUCCESS or FAIL depending on whether the
7051 specified grammar matched. */
7052static int
5be8be5d 7053parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7054{
5be8be5d 7055 unsigned const int *upat = pattern;
c19d1205
ZW
7056 char *backtrack_pos = 0;
7057 const char *backtrack_error = 0;
99aad254 7058 int i, val = 0, backtrack_index = 0;
5287ad62 7059 enum arm_reg_type rtype;
4962c51a 7060 parse_operand_result result;
5be8be5d 7061 unsigned int op_parse_code;
efd6b359 7062 bfd_boolean partial_match;
c19d1205 7063
e07e6e58
NC
7064#define po_char_or_fail(chr) \
7065 do \
7066 { \
7067 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7068 goto bad_args; \
e07e6e58
NC
7069 } \
7070 while (0)
c19d1205 7071
e07e6e58
NC
7072#define po_reg_or_fail(regtype) \
7073 do \
dcbf9037 7074 { \
e07e6e58 7075 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7076 & inst.operands[i].vectype); \
e07e6e58 7077 if (val == FAIL) \
477330fc
RM
7078 { \
7079 first_error (_(reg_expected_msgs[regtype])); \
7080 goto failure; \
7081 } \
e07e6e58
NC
7082 inst.operands[i].reg = val; \
7083 inst.operands[i].isreg = 1; \
7084 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7085 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7086 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7087 || rtype == REG_TYPE_VFD \
7088 || rtype == REG_TYPE_NQ); \
1b883319 7089 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7090 } \
e07e6e58
NC
7091 while (0)
7092
7093#define po_reg_or_goto(regtype, label) \
7094 do \
7095 { \
7096 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7097 & inst.operands[i].vectype); \
7098 if (val == FAIL) \
7099 goto label; \
dcbf9037 7100 \
e07e6e58
NC
7101 inst.operands[i].reg = val; \
7102 inst.operands[i].isreg = 1; \
7103 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7104 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7105 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7106 || rtype == REG_TYPE_VFD \
e07e6e58 7107 || rtype == REG_TYPE_NQ); \
1b883319 7108 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7109 } \
7110 while (0)
7111
7112#define po_imm_or_fail(min, max, popt) \
7113 do \
7114 { \
7115 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7116 goto failure; \
7117 inst.operands[i].imm = val; \
7118 } \
7119 while (0)
7120
57785aa2 7121#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7122 do \
7123 { \
57785aa2
AV
7124 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7125 reg_type); \
e07e6e58
NC
7126 if (val == FAIL) \
7127 goto label; \
7128 inst.operands[i].reg = val; \
7129 inst.operands[i].isscalar = 1; \
7130 } \
7131 while (0)
7132
7133#define po_misc_or_fail(expr) \
7134 do \
7135 { \
7136 if (expr) \
7137 goto failure; \
7138 } \
7139 while (0)
7140
7141#define po_misc_or_fail_no_backtrack(expr) \
7142 do \
7143 { \
7144 result = expr; \
7145 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7146 backtrack_pos = 0; \
7147 if (result != PARSE_OPERAND_SUCCESS) \
7148 goto failure; \
7149 } \
7150 while (0)
4962c51a 7151
52e7f43d
RE
7152#define po_barrier_or_imm(str) \
7153 do \
7154 { \
7155 val = parse_barrier (&str); \
ccb84d65
JB
7156 if (val == FAIL && ! ISALPHA (*str)) \
7157 goto immediate; \
7158 if (val == FAIL \
7159 /* ISB can only take SY as an option. */ \
7160 || ((inst.instruction & 0xf0) == 0x60 \
7161 && val != 0xf)) \
52e7f43d 7162 { \
ccb84d65
JB
7163 inst.error = _("invalid barrier type"); \
7164 backtrack_pos = 0; \
7165 goto failure; \
52e7f43d
RE
7166 } \
7167 } \
7168 while (0)
7169
c19d1205
ZW
7170 skip_whitespace (str);
7171
7172 for (i = 0; upat[i] != OP_stop; i++)
7173 {
5be8be5d
DG
7174 op_parse_code = upat[i];
7175 if (op_parse_code >= 1<<16)
7176 op_parse_code = thumb ? (op_parse_code >> 16)
7177 : (op_parse_code & ((1<<16)-1));
7178
7179 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7180 {
7181 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7182 backtrack_pos = str;
7183 backtrack_error = inst.error;
7184 backtrack_index = i;
7185 }
7186
b6702015 7187 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7188 po_char_or_fail (',');
7189
5be8be5d 7190 switch (op_parse_code)
c19d1205
ZW
7191 {
7192 /* Registers */
7193 case OP_oRRnpc:
5be8be5d 7194 case OP_oRRnpcsp:
c19d1205 7195 case OP_RRnpc:
5be8be5d 7196 case OP_RRnpcsp:
c19d1205 7197 case OP_oRR:
a302e574
AV
7198 case OP_RRe:
7199 case OP_RRo:
60f993ce
AV
7200 case OP_LR:
7201 case OP_oLR:
c19d1205
ZW
7202 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7203 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7204 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7205 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7206 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7207 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7208 case OP_oRND:
5ee91343
AV
7209 case OP_RNDMQR:
7210 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7211 break;
7212 try_rndmq:
7213 case OP_RNDMQ:
7214 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7215 break;
7216 try_rnd:
5287ad62 7217 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7218 case OP_RVC:
7219 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7220 break;
7221 /* Also accept generic coprocessor regs for unknown registers. */
7222 coproc_reg:
7223 po_reg_or_fail (REG_TYPE_CN);
7224 break;
c19d1205
ZW
7225 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7226 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7227 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7228 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7229 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7230 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7231 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7232 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7233 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7234 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7235 case OP_oRNQ:
5ee91343
AV
7236 case OP_RNQMQ:
7237 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7238 break;
7239 try_nq:
5287ad62 7240 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7241 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
5ee91343
AV
7242 case OP_oRNDQMQ:
7243 case OP_RNDQMQ:
7244 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7245 break;
7246 try_rndq:
477330fc 7247 case OP_oRNDQ:
5287ad62 7248 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7249 case OP_RVSDMQ:
7250 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7251 break;
7252 try_rvsd:
477330fc 7253 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7254 case OP_RVSD_COND:
7255 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7256 break;
477330fc
RM
7257 case OP_oRNSDQ:
7258 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7259 case OP_RNSDQMQR:
7260 po_reg_or_goto (REG_TYPE_RN, try_mq);
7261 break;
7262 try_mq:
7263 case OP_oRNSDQMQ:
7264 case OP_RNSDQMQ:
7265 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7266 break;
7267 try_nsdq2:
7268 po_reg_or_fail (REG_TYPE_NSDQ);
7269 inst.error = 0;
7270 break;
a302e574
AV
7271 case OP_RMQ:
7272 po_reg_or_fail (REG_TYPE_MQ);
7273 break;
477330fc
RM
7274 /* Neon scalar. Using an element size of 8 means that some invalid
7275 scalars are accepted here, so deal with those in later code. */
57785aa2 7276 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7277
7278 case OP_RNDQ_I0:
7279 {
7280 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7281 break;
7282 try_imm0:
7283 po_imm_or_fail (0, 0, TRUE);
7284 }
7285 break;
7286
7287 case OP_RVSD_I0:
7288 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7289 break;
7290
1b883319
AV
7291 case OP_RSVDMQ_FI0:
7292 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7293 break;
7294 try_rsvd_fi0:
aacf0b33
KT
7295 case OP_RSVD_FI0:
7296 {
7297 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7298 break;
7299 try_ifimm0:
7300 if (parse_ifimm_zero (&str))
7301 inst.operands[i].imm = 0;
7302 else
7303 {
7304 inst.error
7305 = _("only floating point zero is allowed as immediate value");
7306 goto failure;
7307 }
7308 }
7309 break;
7310
477330fc
RM
7311 case OP_RR_RNSC:
7312 {
57785aa2 7313 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7314 break;
7315 try_rr:
7316 po_reg_or_fail (REG_TYPE_RN);
7317 }
7318 break;
7319
886e1c73
AV
7320 case OP_RNSDQ_RNSC_MQ:
7321 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7322 break;
7323 try_rnsdq_rnsc:
477330fc
RM
7324 case OP_RNSDQ_RNSC:
7325 {
57785aa2
AV
7326 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7327 inst.error = 0;
477330fc
RM
7328 break;
7329 try_nsdq:
7330 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7331 inst.error = 0;
477330fc
RM
7332 }
7333 break;
7334
dec41383
JW
7335 case OP_RNSD_RNSC:
7336 {
57785aa2 7337 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7338 break;
7339 try_s_scalar:
57785aa2 7340 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7341 break;
7342 try_nsd:
7343 po_reg_or_fail (REG_TYPE_NSD);
7344 }
7345 break;
7346
477330fc
RM
7347 case OP_RNDQ_RNSC:
7348 {
57785aa2 7349 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7350 break;
7351 try_ndq:
7352 po_reg_or_fail (REG_TYPE_NDQ);
7353 }
7354 break;
7355
7356 case OP_RND_RNSC:
7357 {
57785aa2 7358 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7359 break;
7360 try_vfd:
7361 po_reg_or_fail (REG_TYPE_VFD);
7362 }
7363 break;
7364
7365 case OP_VMOV:
7366 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7367 not careful then bad things might happen. */
7368 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7369 break;
7370
7371 case OP_RNDQ_Ibig:
7372 {
7373 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7374 break;
7375 try_immbig:
7376 /* There's a possibility of getting a 64-bit immediate here, so
7377 we need special handling. */
8335d6aa
JW
7378 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7379 == FAIL)
477330fc
RM
7380 {
7381 inst.error = _("immediate value is out of range");
7382 goto failure;
7383 }
7384 }
7385 break;
7386
7387 case OP_RNDQ_I63b:
7388 {
7389 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7390 break;
7391 try_shimm:
7392 po_imm_or_fail (0, 63, TRUE);
7393 }
7394 break;
c19d1205
ZW
7395
7396 case OP_RRnpcb:
7397 po_char_or_fail ('[');
7398 po_reg_or_fail (REG_TYPE_RN);
7399 po_char_or_fail (']');
7400 break;
a737bd4d 7401
55881a11 7402 case OP_RRnpctw:
c19d1205 7403 case OP_RRw:
b6702015 7404 case OP_oRRw:
c19d1205
ZW
7405 po_reg_or_fail (REG_TYPE_RN);
7406 if (skip_past_char (&str, '!') == SUCCESS)
7407 inst.operands[i].writeback = 1;
7408 break;
7409
7410 /* Immediates */
7411 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7412 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7413 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7414 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7415 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7416 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7417 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7418 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7419 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7420 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7421 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7422 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7423
7424 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7425 case OP_oI7b:
7426 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7427 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7428 case OP_oI31b:
7429 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7430 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7431 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7432 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7433
7434 /* Immediate variants */
7435 case OP_oI255c:
7436 po_char_or_fail ('{');
7437 po_imm_or_fail (0, 255, TRUE);
7438 po_char_or_fail ('}');
7439 break;
7440
7441 case OP_I31w:
7442 /* The expression parser chokes on a trailing !, so we have
7443 to find it first and zap it. */
7444 {
7445 char *s = str;
7446 while (*s && *s != ',')
7447 s++;
7448 if (s[-1] == '!')
7449 {
7450 s[-1] = '\0';
7451 inst.operands[i].writeback = 1;
7452 }
7453 po_imm_or_fail (0, 31, TRUE);
7454 if (str == s - 1)
7455 str = s;
7456 }
7457 break;
7458
7459 /* Expressions */
7460 case OP_EXPi: EXPi:
e2b0ab59 7461 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7462 GE_OPT_PREFIX));
7463 break;
7464
7465 case OP_EXP:
e2b0ab59 7466 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7467 GE_NO_PREFIX));
7468 break;
7469
7470 case OP_EXPr: EXPr:
e2b0ab59 7471 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7472 GE_NO_PREFIX));
e2b0ab59 7473 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7474 {
c19d1205
ZW
7475 val = parse_reloc (&str);
7476 if (val == -1)
7477 {
7478 inst.error = _("unrecognized relocation suffix");
7479 goto failure;
7480 }
7481 else if (val != BFD_RELOC_UNUSED)
7482 {
7483 inst.operands[i].imm = val;
7484 inst.operands[i].hasreloc = 1;
7485 }
a737bd4d 7486 }
c19d1205 7487 break;
a737bd4d 7488
e2b0ab59
AV
7489 case OP_EXPs:
7490 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7491 GE_NO_PREFIX));
7492 if (inst.relocs[i].exp.X_op == O_symbol)
7493 {
7494 inst.operands[i].hasreloc = 1;
7495 }
7496 else if (inst.relocs[i].exp.X_op == O_constant)
7497 {
7498 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7499 inst.operands[i].hasreloc = 0;
7500 }
7501 break;
7502
b6895b4f
PB
7503 /* Operand for MOVW or MOVT. */
7504 case OP_HALF:
7505 po_misc_or_fail (parse_half (&str));
7506 break;
7507
e07e6e58 7508 /* Register or expression. */
c19d1205
ZW
7509 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7510 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7511
e07e6e58 7512 /* Register or immediate. */
c19d1205
ZW
7513 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7514 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7515
c19d1205
ZW
7516 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7517 IF:
7518 if (!is_immediate_prefix (*str))
7519 goto bad_args;
7520 str++;
7521 val = parse_fpa_immediate (&str);
7522 if (val == FAIL)
7523 goto failure;
7524 /* FPA immediates are encoded as registers 8-15.
7525 parse_fpa_immediate has already applied the offset. */
7526 inst.operands[i].reg = val;
7527 inst.operands[i].isreg = 1;
7528 break;
09d92015 7529
2d447fca
JM
7530 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7531 I32z: po_imm_or_fail (0, 32, FALSE); break;
7532
e07e6e58 7533 /* Two kinds of register. */
c19d1205
ZW
7534 case OP_RIWR_RIWC:
7535 {
7536 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7537 if (!rege
7538 || (rege->type != REG_TYPE_MMXWR
7539 && rege->type != REG_TYPE_MMXWC
7540 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7541 {
7542 inst.error = _("iWMMXt data or control register expected");
7543 goto failure;
7544 }
7545 inst.operands[i].reg = rege->number;
7546 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7547 }
7548 break;
09d92015 7549
41adaa5c
JM
7550 case OP_RIWC_RIWG:
7551 {
7552 struct reg_entry *rege = arm_reg_parse_multi (&str);
7553 if (!rege
7554 || (rege->type != REG_TYPE_MMXWC
7555 && rege->type != REG_TYPE_MMXWCG))
7556 {
7557 inst.error = _("iWMMXt control register expected");
7558 goto failure;
7559 }
7560 inst.operands[i].reg = rege->number;
7561 inst.operands[i].isreg = 1;
7562 }
7563 break;
7564
c19d1205
ZW
7565 /* Misc */
7566 case OP_CPSF: val = parse_cps_flags (&str); break;
7567 case OP_ENDI: val = parse_endian_specifier (&str); break;
7568 case OP_oROR: val = parse_ror (&str); break;
1b883319 7569 try_cond:
c19d1205 7570 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7571 case OP_oBARRIER_I15:
7572 po_barrier_or_imm (str); break;
7573 immediate:
7574 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7575 goto failure;
52e7f43d 7576 break;
c19d1205 7577
fa94de6b 7578 case OP_wPSR:
d2cd1205 7579 case OP_rPSR:
90ec0d68
MGD
7580 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7582 {
7583 inst.error = _("Banked registers are not available with this "
7584 "architecture.");
7585 goto failure;
7586 }
7587 break;
d2cd1205
JB
7588 try_psr:
7589 val = parse_psr (&str, op_parse_code == OP_wPSR);
7590 break;
037e8744 7591
32c36c3c
AV
7592 case OP_VLDR:
7593 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7594 break;
7595 try_sysreg:
7596 val = parse_sys_vldr_vstr (&str);
7597 break;
7598
477330fc
RM
7599 case OP_APSR_RR:
7600 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7601 break;
7602 try_apsr:
7603 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7604 instruction). */
7605 if (strncasecmp (str, "APSR_", 5) == 0)
7606 {
7607 unsigned found = 0;
7608 str += 5;
7609 while (found < 15)
7610 switch (*str++)
7611 {
7612 case 'c': found = (found & 1) ? 16 : found | 1; break;
7613 case 'n': found = (found & 2) ? 16 : found | 2; break;
7614 case 'z': found = (found & 4) ? 16 : found | 4; break;
7615 case 'v': found = (found & 8) ? 16 : found | 8; break;
7616 default: found = 16;
7617 }
7618 if (found != 15)
7619 goto failure;
7620 inst.operands[i].isvec = 1;
f7c21dc7
NC
7621 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7622 inst.operands[i].reg = REG_PC;
477330fc
RM
7623 }
7624 else
7625 goto failure;
7626 break;
037e8744 7627
92e90b6e
PB
7628 case OP_TB:
7629 po_misc_or_fail (parse_tb (&str));
7630 break;
7631
e07e6e58 7632 /* Register lists. */
c19d1205 7633 case OP_REGLST:
4b5a202f 7634 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7635 if (*str == '^')
7636 {
5e0d7f77 7637 inst.operands[i].writeback = 1;
c19d1205
ZW
7638 str++;
7639 }
7640 break;
09d92015 7641
4b5a202f
AV
7642 case OP_CLRMLST:
7643 val = parse_reg_list (&str, REGLIST_CLRM);
7644 break;
7645
c19d1205 7646 case OP_VRSLST:
efd6b359
AV
7647 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7648 &partial_match);
c19d1205 7649 break;
09d92015 7650
c19d1205 7651 case OP_VRDLST:
efd6b359
AV
7652 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7653 &partial_match);
c19d1205 7654 break;
a737bd4d 7655
477330fc
RM
7656 case OP_VRSDLST:
7657 /* Allow Q registers too. */
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7659 REGLIST_NEON_D, &partial_match);
477330fc
RM
7660 if (val == FAIL)
7661 {
7662 inst.error = NULL;
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7664 REGLIST_VFP_S, &partial_match);
7665 inst.operands[i].issingle = 1;
7666 }
7667 break;
7668
7669 case OP_VRSDVLST:
7670 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7671 REGLIST_VFP_D_VPR, &partial_match);
7672 if (val == FAIL && !partial_match)
7673 {
7674 inst.error = NULL;
7675 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7676 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7677 inst.operands[i].issingle = 1;
7678 }
7679 break;
7680
7681 case OP_NRDLST:
7682 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7683 REGLIST_NEON_D, &partial_match);
477330fc 7684 break;
5287ad62 7685
35c228db
AV
7686 case OP_MSTRLST4:
7687 case OP_MSTRLST2:
7688 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7689 1, &inst.operands[i].vectype);
7690 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7691 goto failure;
7692 break;
5287ad62 7693 case OP_NSTRLST:
477330fc 7694 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7695 0, &inst.operands[i].vectype);
477330fc 7696 break;
5287ad62 7697
c19d1205 7698 /* Addressing modes */
35c228db
AV
7699 case OP_ADDRMVE:
7700 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7701 break;
7702
c19d1205
ZW
7703 case OP_ADDR:
7704 po_misc_or_fail (parse_address (&str, i));
7705 break;
09d92015 7706
4962c51a
MS
7707 case OP_ADDRGLDR:
7708 po_misc_or_fail_no_backtrack (
477330fc 7709 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7710 break;
7711
7712 case OP_ADDRGLDRS:
7713 po_misc_or_fail_no_backtrack (
477330fc 7714 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7715 break;
7716
7717 case OP_ADDRGLDC:
7718 po_misc_or_fail_no_backtrack (
477330fc 7719 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7720 break;
7721
c19d1205
ZW
7722 case OP_SH:
7723 po_misc_or_fail (parse_shifter_operand (&str, i));
7724 break;
09d92015 7725
4962c51a
MS
7726 case OP_SHG:
7727 po_misc_or_fail_no_backtrack (
477330fc 7728 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7729 break;
7730
c19d1205
ZW
7731 case OP_oSHll:
7732 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7733 break;
09d92015 7734
c19d1205
ZW
7735 case OP_oSHar:
7736 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7737 break;
09d92015 7738
c19d1205
ZW
7739 case OP_oSHllar:
7740 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7741 break;
09d92015 7742
1b883319
AV
7743 case OP_RMQRZ:
7744 case OP_oRMQRZ:
7745 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7746 break;
7747 try_rr_zr:
7748 po_reg_or_goto (REG_TYPE_RN, ZR);
7749 break;
7750 ZR:
7751 po_reg_or_fail (REG_TYPE_ZR);
7752 break;
7753
c19d1205 7754 default:
5be8be5d 7755 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7756 }
09d92015 7757
c19d1205
ZW
7758 /* Various value-based sanity checks and shared operations. We
7759 do not signal immediate failures for the register constraints;
7760 this allows a syntax error to take precedence. */
5be8be5d 7761 switch (op_parse_code)
c19d1205
ZW
7762 {
7763 case OP_oRRnpc:
7764 case OP_RRnpc:
7765 case OP_RRnpcb:
7766 case OP_RRw:
b6702015 7767 case OP_oRRw:
c19d1205
ZW
7768 case OP_RRnpc_I0:
7769 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7770 inst.error = BAD_PC;
7771 break;
09d92015 7772
5be8be5d
DG
7773 case OP_oRRnpcsp:
7774 case OP_RRnpcsp:
7775 if (inst.operands[i].isreg)
7776 {
7777 if (inst.operands[i].reg == REG_PC)
7778 inst.error = BAD_PC;
5c8ed6a4
JW
7779 else if (inst.operands[i].reg == REG_SP
7780 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7781 relaxed since ARMv8-A. */
7782 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7783 {
7784 gas_assert (thumb);
7785 inst.error = BAD_SP;
7786 }
5be8be5d
DG
7787 }
7788 break;
7789
55881a11 7790 case OP_RRnpctw:
fa94de6b
RM
7791 if (inst.operands[i].isreg
7792 && inst.operands[i].reg == REG_PC
55881a11
MGD
7793 && (inst.operands[i].writeback || thumb))
7794 inst.error = BAD_PC;
7795 break;
7796
1b883319 7797 case OP_RVSD_COND:
32c36c3c
AV
7798 case OP_VLDR:
7799 if (inst.operands[i].isreg)
7800 break;
7801 /* fall through. */
1b883319 7802
c19d1205
ZW
7803 case OP_CPSF:
7804 case OP_ENDI:
7805 case OP_oROR:
d2cd1205
JB
7806 case OP_wPSR:
7807 case OP_rPSR:
c19d1205 7808 case OP_COND:
52e7f43d 7809 case OP_oBARRIER_I15:
c19d1205 7810 case OP_REGLST:
4b5a202f 7811 case OP_CLRMLST:
c19d1205
ZW
7812 case OP_VRSLST:
7813 case OP_VRDLST:
477330fc 7814 case OP_VRSDLST:
efd6b359 7815 case OP_VRSDVLST:
477330fc
RM
7816 case OP_NRDLST:
7817 case OP_NSTRLST:
35c228db
AV
7818 case OP_MSTRLST2:
7819 case OP_MSTRLST4:
c19d1205
ZW
7820 if (val == FAIL)
7821 goto failure;
7822 inst.operands[i].imm = val;
7823 break;
a737bd4d 7824
60f993ce
AV
7825 case OP_LR:
7826 case OP_oLR:
7827 if (inst.operands[i].reg != REG_LR)
7828 inst.error = _("operand must be LR register");
7829 break;
7830
1b883319
AV
7831 case OP_RMQRZ:
7832 case OP_oRMQRZ:
7833 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7834 inst.error = BAD_PC;
7835 break;
7836
a302e574
AV
7837 case OP_RRe:
7838 if (inst.operands[i].isreg
7839 && (inst.operands[i].reg & 0x00000001) != 0)
7840 inst.error = BAD_ODD;
7841 break;
7842
7843 case OP_RRo:
7844 if (inst.operands[i].isreg)
7845 {
7846 if ((inst.operands[i].reg & 0x00000001) != 1)
7847 inst.error = BAD_EVEN;
7848 else if (inst.operands[i].reg == REG_SP)
7849 as_tsktsk (MVE_BAD_SP);
7850 else if (inst.operands[i].reg == REG_PC)
7851 inst.error = BAD_PC;
7852 }
7853 break;
7854
c19d1205
ZW
7855 default:
7856 break;
7857 }
09d92015 7858
c19d1205
ZW
7859 /* If we get here, this operand was successfully parsed. */
7860 inst.operands[i].present = 1;
7861 continue;
09d92015 7862
c19d1205 7863 bad_args:
09d92015 7864 inst.error = BAD_ARGS;
c19d1205
ZW
7865
7866 failure:
7867 if (!backtrack_pos)
d252fdde
PB
7868 {
7869 /* The parse routine should already have set inst.error, but set a
5f4273c7 7870 default here just in case. */
d252fdde 7871 if (!inst.error)
5ee91343 7872 inst.error = BAD_SYNTAX;
d252fdde
PB
7873 return FAIL;
7874 }
c19d1205
ZW
7875
7876 /* Do not backtrack over a trailing optional argument that
7877 absorbed some text. We will only fail again, with the
7878 'garbage following instruction' error message, which is
7879 probably less helpful than the current one. */
7880 if (backtrack_index == i && backtrack_pos != str
7881 && upat[i+1] == OP_stop)
d252fdde
PB
7882 {
7883 if (!inst.error)
5ee91343 7884 inst.error = BAD_SYNTAX;
d252fdde
PB
7885 return FAIL;
7886 }
c19d1205
ZW
7887
7888 /* Try again, skipping the optional argument at backtrack_pos. */
7889 str = backtrack_pos;
7890 inst.error = backtrack_error;
7891 inst.operands[backtrack_index].present = 0;
7892 i = backtrack_index;
7893 backtrack_pos = 0;
09d92015 7894 }
09d92015 7895
c19d1205
ZW
7896 /* Check that we have parsed all the arguments. */
7897 if (*str != '\0' && !inst.error)
7898 inst.error = _("garbage following instruction");
09d92015 7899
c19d1205 7900 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7901}
7902
c19d1205
ZW
7903#undef po_char_or_fail
7904#undef po_reg_or_fail
7905#undef po_reg_or_goto
7906#undef po_imm_or_fail
5287ad62 7907#undef po_scalar_or_fail
52e7f43d 7908#undef po_barrier_or_imm
e07e6e58 7909
c19d1205 7910/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7911#define constraint(expr, err) \
7912 do \
c19d1205 7913 { \
e07e6e58
NC
7914 if (expr) \
7915 { \
7916 inst.error = err; \
7917 return; \
7918 } \
c19d1205 7919 } \
e07e6e58 7920 while (0)
c19d1205 7921
fdfde340
JM
7922/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7923 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7924 is the BadReg predicate in ARM's Thumb-2 documentation.
7925
7926 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7927 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7928#define reject_bad_reg(reg) \
7929 do \
7930 if (reg == REG_PC) \
7931 { \
7932 inst.error = BAD_PC; \
7933 return; \
7934 } \
7935 else if (reg == REG_SP \
7936 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7937 { \
7938 inst.error = BAD_SP; \
7939 return; \
7940 } \
fdfde340
JM
7941 while (0)
7942
94206790
MM
7943/* If REG is R13 (the stack pointer), warn that its use is
7944 deprecated. */
7945#define warn_deprecated_sp(reg) \
7946 do \
7947 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7948 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7949 while (0)
7950
c19d1205
ZW
7951/* Functions for operand encoding. ARM, then Thumb. */
7952
d840c081 7953#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7954
9db2f6b4
RL
7955/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7956
7957 The only binary encoding difference is the Coprocessor number. Coprocessor
7958 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7959 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7960 exists for Single-Precision operation. */
7961
7962static void
7963do_scalar_fp16_v82_encode (void)
7964{
5ee91343 7965 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
7966 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7967 " the behaviour is UNPREDICTABLE"));
7968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7969 _(BAD_FP16));
7970
7971 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7972 mark_feature_used (&arm_ext_fp16);
7973}
7974
c19d1205
ZW
7975/* If VAL can be encoded in the immediate field of an ARM instruction,
7976 return the encoded form. Otherwise, return FAIL. */
7977
7978static unsigned int
7979encode_arm_immediate (unsigned int val)
09d92015 7980{
c19d1205
ZW
7981 unsigned int a, i;
7982
4f1d6205
L
7983 if (val <= 0xff)
7984 return val;
7985
7986 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7987 if ((a = rotate_left (val, i)) <= 0xff)
7988 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7989
7990 return FAIL;
09d92015
MM
7991}
7992
c19d1205
ZW
7993/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7994 return the encoded form. Otherwise, return FAIL. */
7995static unsigned int
7996encode_thumb32_immediate (unsigned int val)
09d92015 7997{
c19d1205 7998 unsigned int a, i;
09d92015 7999
9c3c69f2 8000 if (val <= 0xff)
c19d1205 8001 return val;
a737bd4d 8002
9c3c69f2 8003 for (i = 1; i <= 24; i++)
09d92015 8004 {
9c3c69f2
PB
8005 a = val >> i;
8006 if ((val & ~(0xff << i)) == 0)
8007 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8008 }
a737bd4d 8009
c19d1205
ZW
8010 a = val & 0xff;
8011 if (val == ((a << 16) | a))
8012 return 0x100 | a;
8013 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8014 return 0x300 | a;
09d92015 8015
c19d1205
ZW
8016 a = val & 0xff00;
8017 if (val == ((a << 16) | a))
8018 return 0x200 | (a >> 8);
a737bd4d 8019
c19d1205 8020 return FAIL;
09d92015 8021}
5287ad62 8022/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8023
8024static void
5287ad62
JB
8025encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8026{
8027 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8028 && reg > 15)
8029 {
b1cc4aeb 8030 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8031 {
8032 if (thumb_mode)
8033 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8034 fpu_vfp_ext_d32);
8035 else
8036 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8037 fpu_vfp_ext_d32);
8038 }
5287ad62 8039 else
477330fc
RM
8040 {
8041 first_error (_("D register out of range for selected VFP version"));
8042 return;
8043 }
5287ad62
JB
8044 }
8045
c19d1205 8046 switch (pos)
09d92015 8047 {
c19d1205
ZW
8048 case VFP_REG_Sd:
8049 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8050 break;
8051
8052 case VFP_REG_Sn:
8053 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8054 break;
8055
8056 case VFP_REG_Sm:
8057 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8058 break;
8059
5287ad62
JB
8060 case VFP_REG_Dd:
8061 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8062 break;
5f4273c7 8063
5287ad62
JB
8064 case VFP_REG_Dn:
8065 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8066 break;
5f4273c7 8067
5287ad62
JB
8068 case VFP_REG_Dm:
8069 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8070 break;
8071
c19d1205
ZW
8072 default:
8073 abort ();
09d92015 8074 }
09d92015
MM
8075}
8076
c19d1205 8077/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8078 if any, is handled by md_apply_fix. */
09d92015 8079static void
c19d1205 8080encode_arm_shift (int i)
09d92015 8081{
008a97ef
RL
8082 /* register-shifted register. */
8083 if (inst.operands[i].immisreg)
8084 {
bf355b69
MR
8085 int op_index;
8086 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8087 {
5689c942
RL
8088 /* Check the operand only when it's presented. In pre-UAL syntax,
8089 if the destination register is the same as the first operand, two
8090 register form of the instruction can be used. */
bf355b69
MR
8091 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8092 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8093 as_warn (UNPRED_REG ("r15"));
8094 }
8095
8096 if (inst.operands[i].imm == REG_PC)
8097 as_warn (UNPRED_REG ("r15"));
8098 }
8099
c19d1205
ZW
8100 if (inst.operands[i].shift_kind == SHIFT_RRX)
8101 inst.instruction |= SHIFT_ROR << 5;
8102 else
09d92015 8103 {
c19d1205
ZW
8104 inst.instruction |= inst.operands[i].shift_kind << 5;
8105 if (inst.operands[i].immisreg)
8106 {
8107 inst.instruction |= SHIFT_BY_REG;
8108 inst.instruction |= inst.operands[i].imm << 8;
8109 }
8110 else
e2b0ab59 8111 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8112 }
c19d1205 8113}
09d92015 8114
c19d1205
ZW
8115static void
8116encode_arm_shifter_operand (int i)
8117{
8118 if (inst.operands[i].isreg)
09d92015 8119 {
c19d1205
ZW
8120 inst.instruction |= inst.operands[i].reg;
8121 encode_arm_shift (i);
09d92015 8122 }
c19d1205 8123 else
a415b1cd
JB
8124 {
8125 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8126 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8127 inst.instruction |= inst.operands[i].imm;
8128 }
09d92015
MM
8129}
8130
c19d1205 8131/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8132static void
c19d1205 8133encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8134{
2b2f5df9
NC
8135 /* PR 14260:
8136 Generate an error if the operand is not a register. */
8137 constraint (!inst.operands[i].isreg,
8138 _("Instruction does not support =N addresses"));
8139
c19d1205 8140 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8141
c19d1205 8142 if (inst.operands[i].preind)
09d92015 8143 {
c19d1205
ZW
8144 if (is_t)
8145 {
8146 inst.error = _("instruction does not accept preindexed addressing");
8147 return;
8148 }
8149 inst.instruction |= PRE_INDEX;
8150 if (inst.operands[i].writeback)
8151 inst.instruction |= WRITE_BACK;
09d92015 8152
c19d1205
ZW
8153 }
8154 else if (inst.operands[i].postind)
8155 {
9c2799c2 8156 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8157 if (is_t)
8158 inst.instruction |= WRITE_BACK;
8159 }
8160 else /* unindexed - only for coprocessor */
09d92015 8161 {
c19d1205 8162 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8163 return;
8164 }
8165
c19d1205
ZW
8166 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8167 && (((inst.instruction & 0x000f0000) >> 16)
8168 == ((inst.instruction & 0x0000f000) >> 12)))
8169 as_warn ((inst.instruction & LOAD_BIT)
8170 ? _("destination register same as write-back base")
8171 : _("source register same as write-back base"));
09d92015
MM
8172}
8173
c19d1205
ZW
8174/* inst.operands[i] was set up by parse_address. Encode it into an
8175 ARM-format mode 2 load or store instruction. If is_t is true,
8176 reject forms that cannot be used with a T instruction (i.e. not
8177 post-indexed). */
a737bd4d 8178static void
c19d1205 8179encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8180{
5be8be5d
DG
8181 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8182
c19d1205 8183 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8184
c19d1205 8185 if (inst.operands[i].immisreg)
09d92015 8186 {
5be8be5d
DG
8187 constraint ((inst.operands[i].imm == REG_PC
8188 || (is_pc && inst.operands[i].writeback)),
8189 BAD_PC_ADDRESSING);
c19d1205
ZW
8190 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8191 inst.instruction |= inst.operands[i].imm;
8192 if (!inst.operands[i].negative)
8193 inst.instruction |= INDEX_UP;
8194 if (inst.operands[i].shifted)
8195 {
8196 if (inst.operands[i].shift_kind == SHIFT_RRX)
8197 inst.instruction |= SHIFT_ROR << 5;
8198 else
8199 {
8200 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8201 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8202 }
8203 }
09d92015 8204 }
e2b0ab59 8205 else /* immediate offset in inst.relocs[0] */
09d92015 8206 {
e2b0ab59 8207 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8208 {
8209 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8210
8211 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8212 cannot use PC in addressing.
8213 PC cannot be used in writeback addressing, either. */
8214 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8215 BAD_PC_ADDRESSING);
23a10334 8216
dc5ec521 8217 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8218 if (warn_on_deprecated
8219 && !is_load
8220 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8221 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8222 }
8223
e2b0ab59 8224 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8225 {
8226 /* Prefer + for zero encoded value. */
8227 if (!inst.operands[i].negative)
8228 inst.instruction |= INDEX_UP;
e2b0ab59 8229 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8230 }
09d92015 8231 }
09d92015
MM
8232}
8233
c19d1205
ZW
8234/* inst.operands[i] was set up by parse_address. Encode it into an
8235 ARM-format mode 3 load or store instruction. Reject forms that
8236 cannot be used with such instructions. If is_t is true, reject
8237 forms that cannot be used with a T instruction (i.e. not
8238 post-indexed). */
8239static void
8240encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8241{
c19d1205 8242 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8243 {
c19d1205
ZW
8244 inst.error = _("instruction does not accept scaled register index");
8245 return;
09d92015 8246 }
a737bd4d 8247
c19d1205 8248 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8249
c19d1205
ZW
8250 if (inst.operands[i].immisreg)
8251 {
5be8be5d 8252 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8253 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8254 BAD_PC_ADDRESSING);
eb9f3f00
JB
8255 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8256 BAD_PC_WRITEBACK);
c19d1205
ZW
8257 inst.instruction |= inst.operands[i].imm;
8258 if (!inst.operands[i].negative)
8259 inst.instruction |= INDEX_UP;
8260 }
e2b0ab59 8261 else /* immediate offset in inst.relocs[0] */
c19d1205 8262 {
e2b0ab59 8263 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8264 && inst.operands[i].writeback),
8265 BAD_PC_WRITEBACK);
c19d1205 8266 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8267 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8268 {
8269 /* Prefer + for zero encoded value. */
8270 if (!inst.operands[i].negative)
8271 inst.instruction |= INDEX_UP;
8272
e2b0ab59 8273 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8274 }
c19d1205 8275 }
a737bd4d
NC
8276}
8277
8335d6aa
JW
8278/* Write immediate bits [7:0] to the following locations:
8279
8280 |28/24|23 19|18 16|15 4|3 0|
8281 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8282
8283 This function is used by VMOV/VMVN/VORR/VBIC. */
8284
8285static void
8286neon_write_immbits (unsigned immbits)
8287{
8288 inst.instruction |= immbits & 0xf;
8289 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8290 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8291}
8292
8293/* Invert low-order SIZE bits of XHI:XLO. */
8294
8295static void
8296neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8297{
8298 unsigned immlo = xlo ? *xlo : 0;
8299 unsigned immhi = xhi ? *xhi : 0;
8300
8301 switch (size)
8302 {
8303 case 8:
8304 immlo = (~immlo) & 0xff;
8305 break;
8306
8307 case 16:
8308 immlo = (~immlo) & 0xffff;
8309 break;
8310
8311 case 64:
8312 immhi = (~immhi) & 0xffffffff;
8313 /* fall through. */
8314
8315 case 32:
8316 immlo = (~immlo) & 0xffffffff;
8317 break;
8318
8319 default:
8320 abort ();
8321 }
8322
8323 if (xlo)
8324 *xlo = immlo;
8325
8326 if (xhi)
8327 *xhi = immhi;
8328}
8329
8330/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8331 A, B, C, D. */
09d92015 8332
c19d1205 8333static int
8335d6aa 8334neon_bits_same_in_bytes (unsigned imm)
09d92015 8335{
8335d6aa
JW
8336 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8337 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8338 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8339 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8340}
a737bd4d 8341
8335d6aa 8342/* For immediate of above form, return 0bABCD. */
09d92015 8343
8335d6aa
JW
8344static unsigned
8345neon_squash_bits (unsigned imm)
8346{
8347 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8348 | ((imm & 0x01000000) >> 21);
8349}
8350
8351/* Compress quarter-float representation to 0b...000 abcdefgh. */
8352
8353static unsigned
8354neon_qfloat_bits (unsigned imm)
8355{
8356 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8357}
8358
8359/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8360 the instruction. *OP is passed as the initial value of the op field, and
8361 may be set to a different value depending on the constant (i.e.
8362 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8363 MVN). If the immediate looks like a repeated pattern then also
8364 try smaller element sizes. */
8365
8366static int
8367neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8368 unsigned *immbits, int *op, int size,
8369 enum neon_el_type type)
8370{
8371 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8372 float. */
8373 if (type == NT_float && !float_p)
8374 return FAIL;
8375
8376 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8377 {
8335d6aa
JW
8378 if (size != 32 || *op == 1)
8379 return FAIL;
8380 *immbits = neon_qfloat_bits (immlo);
8381 return 0xf;
8382 }
8383
8384 if (size == 64)
8385 {
8386 if (neon_bits_same_in_bytes (immhi)
8387 && neon_bits_same_in_bytes (immlo))
c19d1205 8388 {
8335d6aa
JW
8389 if (*op == 1)
8390 return FAIL;
8391 *immbits = (neon_squash_bits (immhi) << 4)
8392 | neon_squash_bits (immlo);
8393 *op = 1;
8394 return 0xe;
c19d1205 8395 }
a737bd4d 8396
8335d6aa
JW
8397 if (immhi != immlo)
8398 return FAIL;
8399 }
a737bd4d 8400
8335d6aa 8401 if (size >= 32)
09d92015 8402 {
8335d6aa 8403 if (immlo == (immlo & 0x000000ff))
c19d1205 8404 {
8335d6aa
JW
8405 *immbits = immlo;
8406 return 0x0;
c19d1205 8407 }
8335d6aa 8408 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8409 {
8335d6aa
JW
8410 *immbits = immlo >> 8;
8411 return 0x2;
c19d1205 8412 }
8335d6aa
JW
8413 else if (immlo == (immlo & 0x00ff0000))
8414 {
8415 *immbits = immlo >> 16;
8416 return 0x4;
8417 }
8418 else if (immlo == (immlo & 0xff000000))
8419 {
8420 *immbits = immlo >> 24;
8421 return 0x6;
8422 }
8423 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8424 {
8425 *immbits = (immlo >> 8) & 0xff;
8426 return 0xc;
8427 }
8428 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8429 {
8430 *immbits = (immlo >> 16) & 0xff;
8431 return 0xd;
8432 }
8433
8434 if ((immlo & 0xffff) != (immlo >> 16))
8435 return FAIL;
8436 immlo &= 0xffff;
09d92015 8437 }
a737bd4d 8438
8335d6aa 8439 if (size >= 16)
4962c51a 8440 {
8335d6aa
JW
8441 if (immlo == (immlo & 0x000000ff))
8442 {
8443 *immbits = immlo;
8444 return 0x8;
8445 }
8446 else if (immlo == (immlo & 0x0000ff00))
8447 {
8448 *immbits = immlo >> 8;
8449 return 0xa;
8450 }
8451
8452 if ((immlo & 0xff) != (immlo >> 8))
8453 return FAIL;
8454 immlo &= 0xff;
4962c51a
MS
8455 }
8456
8335d6aa
JW
8457 if (immlo == (immlo & 0x000000ff))
8458 {
8459 /* Don't allow MVN with 8-bit immediate. */
8460 if (*op == 1)
8461 return FAIL;
8462 *immbits = immlo;
8463 return 0xe;
8464 }
26d97720 8465
8335d6aa 8466 return FAIL;
c19d1205 8467}
a737bd4d 8468
5fc177c8 8469#if defined BFD_HOST_64_BIT
ba592044
AM
8470/* Returns TRUE if double precision value V may be cast
8471 to single precision without loss of accuracy. */
8472
8473static bfd_boolean
5fc177c8 8474is_double_a_single (bfd_int64_t v)
ba592044 8475{
5fc177c8 8476 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8477 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8478
8479 return (exp == 0 || exp == 0x7FF
8480 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8481 && (mantissa & 0x1FFFFFFFl) == 0;
8482}
8483
3739860c 8484/* Returns a double precision value casted to single precision
ba592044
AM
8485 (ignoring the least significant bits in exponent and mantissa). */
8486
8487static int
5fc177c8 8488double_to_single (bfd_int64_t v)
ba592044
AM
8489{
8490 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8491 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8492 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8493
8494 if (exp == 0x7FF)
8495 exp = 0xFF;
8496 else
8497 {
8498 exp = exp - 1023 + 127;
8499 if (exp >= 0xFF)
8500 {
8501 /* Infinity. */
8502 exp = 0x7F;
8503 mantissa = 0;
8504 }
8505 else if (exp < 0)
8506 {
8507 /* No denormalized numbers. */
8508 exp = 0;
8509 mantissa = 0;
8510 }
8511 }
8512 mantissa >>= 29;
8513 return (sign << 31) | (exp << 23) | mantissa;
8514}
5fc177c8 8515#endif /* BFD_HOST_64_BIT */
ba592044 8516
8335d6aa
JW
8517enum lit_type
8518{
8519 CONST_THUMB,
8520 CONST_ARM,
8521 CONST_VEC
8522};
8523
ba592044
AM
8524static void do_vfp_nsyn_opcode (const char *);
8525
e2b0ab59 8526/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8527 Determine whether it can be performed with a move instruction; if
8528 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8529 return TRUE; if it can't, convert inst.instruction to a literal-pool
8530 load and return FALSE. If this is not a valid thing to do in the
8531 current context, set inst.error and return TRUE.
a737bd4d 8532
c19d1205
ZW
8533 inst.operands[i] describes the destination register. */
8534
c921be7d 8535static bfd_boolean
8335d6aa 8536move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8537{
53365c0d 8538 unsigned long tbit;
8335d6aa
JW
8539 bfd_boolean thumb_p = (t == CONST_THUMB);
8540 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8541
8542 if (thumb_p)
8543 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8544 else
8545 tbit = LOAD_BIT;
8546
8547 if ((inst.instruction & tbit) == 0)
09d92015 8548 {
c19d1205 8549 inst.error = _("invalid pseudo operation");
c921be7d 8550 return TRUE;
09d92015 8551 }
ba592044 8552
e2b0ab59
AV
8553 if (inst.relocs[0].exp.X_op != O_constant
8554 && inst.relocs[0].exp.X_op != O_symbol
8555 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8556 {
8557 inst.error = _("constant expression expected");
c921be7d 8558 return TRUE;
09d92015 8559 }
ba592044 8560
e2b0ab59
AV
8561 if (inst.relocs[0].exp.X_op == O_constant
8562 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8563 {
5fc177c8
NC
8564#if defined BFD_HOST_64_BIT
8565 bfd_int64_t v;
8566#else
ba592044 8567 offsetT v;
5fc177c8 8568#endif
e2b0ab59 8569 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8570 {
ba592044
AM
8571 LITTLENUM_TYPE w[X_PRECISION];
8572 LITTLENUM_TYPE * l;
8573
e2b0ab59 8574 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8575 {
ba592044
AM
8576 gen_to_words (w, X_PRECISION, E_PRECISION);
8577 l = w;
8578 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8579 }
ba592044
AM
8580 else
8581 l = generic_bignum;
3739860c 8582
5fc177c8
NC
8583#if defined BFD_HOST_64_BIT
8584 v =
8585 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8586 << LITTLENUM_NUMBER_OF_BITS)
8587 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8588 << LITTLENUM_NUMBER_OF_BITS)
8589 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8590 << LITTLENUM_NUMBER_OF_BITS)
8591 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8592#else
ba592044
AM
8593 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8594 | (l[0] & LITTLENUM_MASK);
5fc177c8 8595#endif
8335d6aa 8596 }
ba592044 8597 else
e2b0ab59 8598 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8599
8600 if (!inst.operands[i].issingle)
8335d6aa 8601 {
12569877 8602 if (thumb_p)
8335d6aa 8603 {
53445554
TP
8604 /* LDR should not use lead in a flag-setting instruction being
8605 chosen so we do not check whether movs can be used. */
12569877 8606
53445554 8607 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8608 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8609 && inst.operands[i].reg != 13
8610 && inst.operands[i].reg != 15)
12569877 8611 {
fc289b0a
TP
8612 /* Check if on thumb2 it can be done with a mov.w, mvn or
8613 movw instruction. */
12569877
AM
8614 unsigned int newimm;
8615 bfd_boolean isNegated;
8616
8617 newimm = encode_thumb32_immediate (v);
8618 if (newimm != (unsigned int) FAIL)
8619 isNegated = FALSE;
8620 else
8621 {
582cfe03 8622 newimm = encode_thumb32_immediate (~v);
12569877
AM
8623 if (newimm != (unsigned int) FAIL)
8624 isNegated = TRUE;
8625 }
8626
fc289b0a
TP
8627 /* The number can be loaded with a mov.w or mvn
8628 instruction. */
ff8646ee
TP
8629 if (newimm != (unsigned int) FAIL
8630 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8631 {
fc289b0a 8632 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8633 | (inst.operands[i].reg << 8));
fc289b0a 8634 /* Change to MOVN. */
582cfe03 8635 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8636 inst.instruction |= (newimm & 0x800) << 15;
8637 inst.instruction |= (newimm & 0x700) << 4;
8638 inst.instruction |= (newimm & 0x0ff);
8639 return TRUE;
8640 }
fc289b0a 8641 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8642 else if ((v & ~0xFFFF) == 0
8643 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8644 {
582cfe03 8645 int imm = v & 0xFFFF;
12569877 8646
582cfe03 8647 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8648 inst.instruction |= (inst.operands[i].reg << 8);
8649 inst.instruction |= (imm & 0xf000) << 4;
8650 inst.instruction |= (imm & 0x0800) << 15;
8651 inst.instruction |= (imm & 0x0700) << 4;
8652 inst.instruction |= (imm & 0x00ff);
8653 return TRUE;
8654 }
8655 }
8335d6aa 8656 }
12569877 8657 else if (arm_p)
ba592044
AM
8658 {
8659 int value = encode_arm_immediate (v);
12569877 8660
ba592044
AM
8661 if (value != FAIL)
8662 {
8663 /* This can be done with a mov instruction. */
8664 inst.instruction &= LITERAL_MASK;
8665 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8666 inst.instruction |= value & 0xfff;
8667 return TRUE;
8668 }
8335d6aa 8669
ba592044
AM
8670 value = encode_arm_immediate (~ v);
8671 if (value != FAIL)
8672 {
8673 /* This can be done with a mvn instruction. */
8674 inst.instruction &= LITERAL_MASK;
8675 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8676 inst.instruction |= value & 0xfff;
8677 return TRUE;
8678 }
8679 }
934c2632 8680 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8681 {
ba592044
AM
8682 int op = 0;
8683 unsigned immbits = 0;
8684 unsigned immlo = inst.operands[1].imm;
8685 unsigned immhi = inst.operands[1].regisimm
8686 ? inst.operands[1].reg
e2b0ab59 8687 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8688 ? 0
8689 : ((bfd_int64_t)((int) immlo)) >> 32;
8690 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8691 &op, 64, NT_invtype);
8692
8693 if (cmode == FAIL)
8694 {
8695 neon_invert_size (&immlo, &immhi, 64);
8696 op = !op;
8697 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8698 &op, 64, NT_invtype);
8699 }
8700
8701 if (cmode != FAIL)
8702 {
8703 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8704 | (1 << 23)
8705 | (cmode << 8)
8706 | (op << 5)
8707 | (1 << 4);
8708
8709 /* Fill other bits in vmov encoding for both thumb and arm. */
8710 if (thumb_mode)
eff0bc54 8711 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8712 else
eff0bc54 8713 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8714 neon_write_immbits (immbits);
8715 return TRUE;
8716 }
8335d6aa
JW
8717 }
8718 }
8335d6aa 8719
ba592044
AM
8720 if (t == CONST_VEC)
8721 {
8722 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8723 if (inst.operands[i].issingle
8724 && is_quarter_float (inst.operands[1].imm)
8725 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8726 {
ba592044
AM
8727 inst.operands[1].imm =
8728 neon_qfloat_bits (v);
8729 do_vfp_nsyn_opcode ("fconsts");
8730 return TRUE;
8335d6aa 8731 }
5fc177c8
NC
8732
8733 /* If our host does not support a 64-bit type then we cannot perform
8734 the following optimization. This mean that there will be a
8735 discrepancy between the output produced by an assembler built for
8736 a 32-bit-only host and the output produced from a 64-bit host, but
8737 this cannot be helped. */
8738#if defined BFD_HOST_64_BIT
ba592044
AM
8739 else if (!inst.operands[1].issingle
8740 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8741 {
ba592044
AM
8742 if (is_double_a_single (v)
8743 && is_quarter_float (double_to_single (v)))
8744 {
8745 inst.operands[1].imm =
8746 neon_qfloat_bits (double_to_single (v));
8747 do_vfp_nsyn_opcode ("fconstd");
8748 return TRUE;
8749 }
8335d6aa 8750 }
5fc177c8 8751#endif
8335d6aa
JW
8752 }
8753 }
8754
8755 if (add_to_lit_pool ((!inst.operands[i].isvec
8756 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8757 return TRUE;
8758
8759 inst.operands[1].reg = REG_PC;
8760 inst.operands[1].isreg = 1;
8761 inst.operands[1].preind = 1;
e2b0ab59
AV
8762 inst.relocs[0].pc_rel = 1;
8763 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8764 ? BFD_RELOC_ARM_THUMB_OFFSET
8765 : (mode_3
8766 ? BFD_RELOC_ARM_HWLITERAL
8767 : BFD_RELOC_ARM_LITERAL));
8768 return FALSE;
8769}
8770
8771/* inst.operands[i] was set up by parse_address. Encode it into an
8772 ARM-format instruction. Reject all forms which cannot be encoded
8773 into a coprocessor load/store instruction. If wb_ok is false,
8774 reject use of writeback; if unind_ok is false, reject use of
8775 unindexed addressing. If reloc_override is not 0, use it instead
8776 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8777 (in which case it is preserved). */
8778
8779static int
8780encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8781{
8782 if (!inst.operands[i].isreg)
8783 {
99b2a2dd
NC
8784 /* PR 18256 */
8785 if (! inst.operands[0].isvec)
8786 {
8787 inst.error = _("invalid co-processor operand");
8788 return FAIL;
8789 }
8335d6aa
JW
8790 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8791 return SUCCESS;
8792 }
8793
8794 inst.instruction |= inst.operands[i].reg << 16;
8795
8796 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8797
8798 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8799 {
8800 gas_assert (!inst.operands[i].writeback);
8801 if (!unind_ok)
8802 {
8803 inst.error = _("instruction does not support unindexed addressing");
8804 return FAIL;
8805 }
8806 inst.instruction |= inst.operands[i].imm;
8807 inst.instruction |= INDEX_UP;
8808 return SUCCESS;
8809 }
8810
8811 if (inst.operands[i].preind)
8812 inst.instruction |= PRE_INDEX;
8813
8814 if (inst.operands[i].writeback)
09d92015 8815 {
8335d6aa 8816 if (inst.operands[i].reg == REG_PC)
c19d1205 8817 {
8335d6aa
JW
8818 inst.error = _("pc may not be used with write-back");
8819 return FAIL;
c19d1205 8820 }
8335d6aa 8821 if (!wb_ok)
c19d1205 8822 {
8335d6aa
JW
8823 inst.error = _("instruction does not support writeback");
8824 return FAIL;
c19d1205 8825 }
8335d6aa 8826 inst.instruction |= WRITE_BACK;
09d92015
MM
8827 }
8828
8335d6aa 8829 if (reloc_override)
e2b0ab59
AV
8830 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8831 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8832 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8833 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8834 {
8335d6aa 8835 if (thumb_mode)
e2b0ab59 8836 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8837 else
e2b0ab59 8838 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8839 }
8335d6aa
JW
8840
8841 /* Prefer + for zero encoded value. */
8842 if (!inst.operands[i].negative)
8843 inst.instruction |= INDEX_UP;
8844
8845 return SUCCESS;
09d92015
MM
8846}
8847
5f4273c7 8848/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8849 First some generics; their names are taken from the conventional
8850 bit positions for register arguments in ARM format instructions. */
09d92015 8851
a737bd4d 8852static void
c19d1205 8853do_noargs (void)
09d92015 8854{
c19d1205 8855}
a737bd4d 8856
c19d1205
ZW
8857static void
8858do_rd (void)
8859{
8860 inst.instruction |= inst.operands[0].reg << 12;
8861}
a737bd4d 8862
16a1fa25
TP
8863static void
8864do_rn (void)
8865{
8866 inst.instruction |= inst.operands[0].reg << 16;
8867}
8868
c19d1205
ZW
8869static void
8870do_rd_rm (void)
8871{
8872 inst.instruction |= inst.operands[0].reg << 12;
8873 inst.instruction |= inst.operands[1].reg;
8874}
09d92015 8875
9eb6c0f1
MGD
8876static void
8877do_rm_rn (void)
8878{
8879 inst.instruction |= inst.operands[0].reg;
8880 inst.instruction |= inst.operands[1].reg << 16;
8881}
8882
c19d1205
ZW
8883static void
8884do_rd_rn (void)
8885{
8886 inst.instruction |= inst.operands[0].reg << 12;
8887 inst.instruction |= inst.operands[1].reg << 16;
8888}
a737bd4d 8889
c19d1205
ZW
8890static void
8891do_rn_rd (void)
8892{
8893 inst.instruction |= inst.operands[0].reg << 16;
8894 inst.instruction |= inst.operands[1].reg << 12;
8895}
09d92015 8896
4ed7ed8d
TP
8897static void
8898do_tt (void)
8899{
8900 inst.instruction |= inst.operands[0].reg << 8;
8901 inst.instruction |= inst.operands[1].reg << 16;
8902}
8903
59d09be6
MGD
8904static bfd_boolean
8905check_obsolete (const arm_feature_set *feature, const char *msg)
8906{
8907 if (ARM_CPU_IS_ANY (cpu_variant))
8908 {
5c3696f8 8909 as_tsktsk ("%s", msg);
59d09be6
MGD
8910 return TRUE;
8911 }
8912 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8913 {
8914 as_bad ("%s", msg);
8915 return TRUE;
8916 }
8917
8918 return FALSE;
8919}
8920
c19d1205
ZW
8921static void
8922do_rd_rm_rn (void)
8923{
9a64e435 8924 unsigned Rn = inst.operands[2].reg;
708587a4 8925 /* Enforce restrictions on SWP instruction. */
9a64e435 8926 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8927 {
8928 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8929 _("Rn must not overlap other operands"));
8930
59d09be6
MGD
8931 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8932 */
8933 if (!check_obsolete (&arm_ext_v8,
8934 _("swp{b} use is obsoleted for ARMv8 and later"))
8935 && warn_on_deprecated
8936 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8937 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8938 }
59d09be6 8939
c19d1205
ZW
8940 inst.instruction |= inst.operands[0].reg << 12;
8941 inst.instruction |= inst.operands[1].reg;
9a64e435 8942 inst.instruction |= Rn << 16;
c19d1205 8943}
09d92015 8944
c19d1205
ZW
8945static void
8946do_rd_rn_rm (void)
8947{
8948 inst.instruction |= inst.operands[0].reg << 12;
8949 inst.instruction |= inst.operands[1].reg << 16;
8950 inst.instruction |= inst.operands[2].reg;
8951}
a737bd4d 8952
c19d1205
ZW
8953static void
8954do_rm_rd_rn (void)
8955{
5be8be5d 8956 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8957 constraint (((inst.relocs[0].exp.X_op != O_constant
8958 && inst.relocs[0].exp.X_op != O_illegal)
8959 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8960 BAD_ADDR_MODE);
c19d1205
ZW
8961 inst.instruction |= inst.operands[0].reg;
8962 inst.instruction |= inst.operands[1].reg << 12;
8963 inst.instruction |= inst.operands[2].reg << 16;
8964}
09d92015 8965
c19d1205
ZW
8966static void
8967do_imm0 (void)
8968{
8969 inst.instruction |= inst.operands[0].imm;
8970}
09d92015 8971
c19d1205
ZW
8972static void
8973do_rd_cpaddr (void)
8974{
8975 inst.instruction |= inst.operands[0].reg << 12;
8976 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8977}
a737bd4d 8978
c19d1205
ZW
8979/* ARM instructions, in alphabetical order by function name (except
8980 that wrapper functions appear immediately after the function they
8981 wrap). */
09d92015 8982
c19d1205
ZW
8983/* This is a pseudo-op of the form "adr rd, label" to be converted
8984 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8985
8986static void
c19d1205 8987do_adr (void)
09d92015 8988{
c19d1205 8989 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8990
c19d1205
ZW
8991 /* Frag hacking will turn this into a sub instruction if the offset turns
8992 out to be negative. */
e2b0ab59
AV
8993 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8994 inst.relocs[0].pc_rel = 1;
8995 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8996
fc6141f0 8997 if (support_interwork
e2b0ab59
AV
8998 && inst.relocs[0].exp.X_op == O_symbol
8999 && inst.relocs[0].exp.X_add_symbol != NULL
9000 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9001 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9002 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9003}
b99bd4ef 9004
c19d1205
ZW
9005/* This is a pseudo-op of the form "adrl rd, label" to be converted
9006 into a relative address of the form:
9007 add rd, pc, #low(label-.-8)"
9008 add rd, rd, #high(label-.-8)" */
b99bd4ef 9009
c19d1205
ZW
9010static void
9011do_adrl (void)
9012{
9013 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9014
c19d1205
ZW
9015 /* Frag hacking will turn this into a sub instruction if the offset turns
9016 out to be negative. */
e2b0ab59
AV
9017 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9018 inst.relocs[0].pc_rel = 1;
c19d1205 9019 inst.size = INSN_SIZE * 2;
e2b0ab59 9020 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9021
fc6141f0 9022 if (support_interwork
e2b0ab59
AV
9023 && inst.relocs[0].exp.X_op == O_symbol
9024 && inst.relocs[0].exp.X_add_symbol != NULL
9025 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9026 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9027 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9028}
9029
b99bd4ef 9030static void
c19d1205 9031do_arit (void)
b99bd4ef 9032{
e2b0ab59
AV
9033 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9034 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9035 THUMB1_RELOC_ONLY);
c19d1205
ZW
9036 if (!inst.operands[1].present)
9037 inst.operands[1].reg = inst.operands[0].reg;
9038 inst.instruction |= inst.operands[0].reg << 12;
9039 inst.instruction |= inst.operands[1].reg << 16;
9040 encode_arm_shifter_operand (2);
9041}
b99bd4ef 9042
62b3e311
PB
9043static void
9044do_barrier (void)
9045{
9046 if (inst.operands[0].present)
ccb84d65 9047 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9048 else
9049 inst.instruction |= 0xf;
9050}
9051
c19d1205
ZW
9052static void
9053do_bfc (void)
9054{
9055 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9056 constraint (msb > 32, _("bit-field extends past end of register"));
9057 /* The instruction encoding stores the LSB and MSB,
9058 not the LSB and width. */
9059 inst.instruction |= inst.operands[0].reg << 12;
9060 inst.instruction |= inst.operands[1].imm << 7;
9061 inst.instruction |= (msb - 1) << 16;
9062}
b99bd4ef 9063
c19d1205
ZW
9064static void
9065do_bfi (void)
9066{
9067 unsigned int msb;
b99bd4ef 9068
c19d1205
ZW
9069 /* #0 in second position is alternative syntax for bfc, which is
9070 the same instruction but with REG_PC in the Rm field. */
9071 if (!inst.operands[1].isreg)
9072 inst.operands[1].reg = REG_PC;
b99bd4ef 9073
c19d1205
ZW
9074 msb = inst.operands[2].imm + inst.operands[3].imm;
9075 constraint (msb > 32, _("bit-field extends past end of register"));
9076 /* The instruction encoding stores the LSB and MSB,
9077 not the LSB and width. */
9078 inst.instruction |= inst.operands[0].reg << 12;
9079 inst.instruction |= inst.operands[1].reg;
9080 inst.instruction |= inst.operands[2].imm << 7;
9081 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9082}
9083
b99bd4ef 9084static void
c19d1205 9085do_bfx (void)
b99bd4ef 9086{
c19d1205
ZW
9087 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9088 _("bit-field extends past end of register"));
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg;
9091 inst.instruction |= inst.operands[2].imm << 7;
9092 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9093}
09d92015 9094
c19d1205
ZW
9095/* ARM V5 breakpoint instruction (argument parse)
9096 BKPT <16 bit unsigned immediate>
9097 Instruction is not conditional.
9098 The bit pattern given in insns[] has the COND_ALWAYS condition,
9099 and it is an error if the caller tried to override that. */
b99bd4ef 9100
c19d1205
ZW
9101static void
9102do_bkpt (void)
9103{
9104 /* Top 12 of 16 bits to bits 19:8. */
9105 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9106
c19d1205
ZW
9107 /* Bottom 4 of 16 bits to bits 3:0. */
9108 inst.instruction |= inst.operands[0].imm & 0xf;
9109}
09d92015 9110
c19d1205
ZW
9111static void
9112encode_branch (int default_reloc)
9113{
9114 if (inst.operands[0].hasreloc)
9115 {
0855e32b
NS
9116 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9117 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9118 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9119 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9120 ? BFD_RELOC_ARM_PLT32
9121 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9122 }
b99bd4ef 9123 else
e2b0ab59
AV
9124 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9125 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9126}
9127
b99bd4ef 9128static void
c19d1205 9129do_branch (void)
b99bd4ef 9130{
39b41c9c
PB
9131#ifdef OBJ_ELF
9132 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9133 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9134 else
9135#endif
9136 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9137}
9138
9139static void
9140do_bl (void)
9141{
9142#ifdef OBJ_ELF
9143 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9144 {
9145 if (inst.cond == COND_ALWAYS)
9146 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9147 else
9148 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9149 }
9150 else
9151#endif
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9153}
b99bd4ef 9154
c19d1205
ZW
9155/* ARM V5 branch-link-exchange instruction (argument parse)
9156 BLX <target_addr> ie BLX(1)
9157 BLX{<condition>} <Rm> ie BLX(2)
9158 Unfortunately, there are two different opcodes for this mnemonic.
9159 So, the insns[].value is not used, and the code here zaps values
9160 into inst.instruction.
9161 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9162
c19d1205
ZW
9163static void
9164do_blx (void)
9165{
9166 if (inst.operands[0].isreg)
b99bd4ef 9167 {
c19d1205
ZW
9168 /* Arg is a register; the opcode provided by insns[] is correct.
9169 It is not illegal to do "blx pc", just useless. */
9170 if (inst.operands[0].reg == REG_PC)
9171 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9172
c19d1205
ZW
9173 inst.instruction |= inst.operands[0].reg;
9174 }
9175 else
b99bd4ef 9176 {
c19d1205 9177 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9178 conditionally, and the opcode must be adjusted.
9179 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9180 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9182 inst.instruction = 0xfa000000;
267bf995 9183 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9184 }
c19d1205
ZW
9185}
9186
9187static void
9188do_bx (void)
9189{
845b51d6
PB
9190 bfd_boolean want_reloc;
9191
c19d1205
ZW
9192 if (inst.operands[0].reg == REG_PC)
9193 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9194
c19d1205 9195 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9196 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9197 it is for ARMv4t or earlier. */
9198 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9199 if (!ARM_FEATURE_ZERO (selected_object_arch)
9200 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9201 want_reloc = TRUE;
9202
5ad34203 9203#ifdef OBJ_ELF
845b51d6 9204 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9205#endif
584206db 9206 want_reloc = FALSE;
845b51d6
PB
9207
9208 if (want_reloc)
e2b0ab59 9209 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9210}
9211
c19d1205
ZW
9212
9213/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9214
9215static void
c19d1205 9216do_bxj (void)
a737bd4d 9217{
c19d1205
ZW
9218 if (inst.operands[0].reg == REG_PC)
9219 as_tsktsk (_("use of r15 in bxj is not really useful"));
9220
9221 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9222}
9223
c19d1205
ZW
9224/* Co-processor data operation:
9225 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9226 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9227static void
9228do_cdp (void)
9229{
9230 inst.instruction |= inst.operands[0].reg << 8;
9231 inst.instruction |= inst.operands[1].imm << 20;
9232 inst.instruction |= inst.operands[2].reg << 12;
9233 inst.instruction |= inst.operands[3].reg << 16;
9234 inst.instruction |= inst.operands[4].reg;
9235 inst.instruction |= inst.operands[5].imm << 5;
9236}
a737bd4d
NC
9237
9238static void
c19d1205 9239do_cmp (void)
a737bd4d 9240{
c19d1205
ZW
9241 inst.instruction |= inst.operands[0].reg << 16;
9242 encode_arm_shifter_operand (1);
a737bd4d
NC
9243}
9244
c19d1205
ZW
9245/* Transfer between coprocessor and ARM registers.
9246 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9247 MRC2
9248 MCR{cond}
9249 MCR2
9250
9251 No special properties. */
09d92015 9252
dcbd0d71
MGD
9253struct deprecated_coproc_regs_s
9254{
9255 unsigned cp;
9256 int opc1;
9257 unsigned crn;
9258 unsigned crm;
9259 int opc2;
9260 arm_feature_set deprecated;
9261 arm_feature_set obsoleted;
9262 const char *dep_msg;
9263 const char *obs_msg;
9264};
9265
9266#define DEPR_ACCESS_V8 \
9267 N_("This coprocessor register access is deprecated in ARMv8")
9268
9269/* Table of all deprecated coprocessor registers. */
9270static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9271{
9272 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9273 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9274 DEPR_ACCESS_V8, NULL},
9275 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9276 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9277 DEPR_ACCESS_V8, NULL},
9278 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9279 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9280 DEPR_ACCESS_V8, NULL},
9281 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9282 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9283 DEPR_ACCESS_V8, NULL},
9284 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9285 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9286 DEPR_ACCESS_V8, NULL},
9287};
9288
9289#undef DEPR_ACCESS_V8
9290
9291static const size_t deprecated_coproc_reg_count =
9292 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9293
09d92015 9294static void
c19d1205 9295do_co_reg (void)
09d92015 9296{
fdfde340 9297 unsigned Rd;
dcbd0d71 9298 size_t i;
fdfde340
JM
9299
9300 Rd = inst.operands[2].reg;
9301 if (thumb_mode)
9302 {
9303 if (inst.instruction == 0xee000010
9304 || inst.instruction == 0xfe000010)
9305 /* MCR, MCR2 */
9306 reject_bad_reg (Rd);
5c8ed6a4 9307 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9308 /* MRC, MRC2 */
9309 constraint (Rd == REG_SP, BAD_SP);
9310 }
9311 else
9312 {
9313 /* MCR */
9314 if (inst.instruction == 0xe000010)
9315 constraint (Rd == REG_PC, BAD_PC);
9316 }
9317
dcbd0d71
MGD
9318 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9319 {
9320 const struct deprecated_coproc_regs_s *r =
9321 deprecated_coproc_regs + i;
9322
9323 if (inst.operands[0].reg == r->cp
9324 && inst.operands[1].imm == r->opc1
9325 && inst.operands[3].reg == r->crn
9326 && inst.operands[4].reg == r->crm
9327 && inst.operands[5].imm == r->opc2)
9328 {
b10bf8c5 9329 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9330 && warn_on_deprecated
dcbd0d71 9331 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9332 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9333 }
9334 }
fdfde340 9335
c19d1205
ZW
9336 inst.instruction |= inst.operands[0].reg << 8;
9337 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9338 inst.instruction |= Rd << 12;
c19d1205
ZW
9339 inst.instruction |= inst.operands[3].reg << 16;
9340 inst.instruction |= inst.operands[4].reg;
9341 inst.instruction |= inst.operands[5].imm << 5;
9342}
09d92015 9343
c19d1205
ZW
9344/* Transfer between coprocessor register and pair of ARM registers.
9345 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9346 MCRR2
9347 MRRC{cond}
9348 MRRC2
b99bd4ef 9349
c19d1205 9350 Two XScale instructions are special cases of these:
09d92015 9351
c19d1205
ZW
9352 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9353 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9354
5f4273c7 9355 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9356
c19d1205
ZW
9357static void
9358do_co_reg2c (void)
9359{
fdfde340
JM
9360 unsigned Rd, Rn;
9361
9362 Rd = inst.operands[2].reg;
9363 Rn = inst.operands[3].reg;
9364
9365 if (thumb_mode)
9366 {
9367 reject_bad_reg (Rd);
9368 reject_bad_reg (Rn);
9369 }
9370 else
9371 {
9372 constraint (Rd == REG_PC, BAD_PC);
9373 constraint (Rn == REG_PC, BAD_PC);
9374 }
9375
873f10f0
TC
9376 /* Only check the MRRC{2} variants. */
9377 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9378 {
9379 /* If Rd == Rn, error that the operation is
9380 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9381 constraint (Rd == Rn, BAD_OVERLAP);
9382 }
9383
c19d1205
ZW
9384 inst.instruction |= inst.operands[0].reg << 8;
9385 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9386 inst.instruction |= Rd << 12;
9387 inst.instruction |= Rn << 16;
c19d1205 9388 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9389}
9390
c19d1205
ZW
9391static void
9392do_cpsi (void)
9393{
9394 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9395 if (inst.operands[1].present)
9396 {
9397 inst.instruction |= CPSI_MMOD;
9398 inst.instruction |= inst.operands[1].imm;
9399 }
c19d1205 9400}
b99bd4ef 9401
62b3e311
PB
9402static void
9403do_dbg (void)
9404{
9405 inst.instruction |= inst.operands[0].imm;
9406}
9407
eea54501
MGD
9408static void
9409do_div (void)
9410{
9411 unsigned Rd, Rn, Rm;
9412
9413 Rd = inst.operands[0].reg;
9414 Rn = (inst.operands[1].present
9415 ? inst.operands[1].reg : Rd);
9416 Rm = inst.operands[2].reg;
9417
9418 constraint ((Rd == REG_PC), BAD_PC);
9419 constraint ((Rn == REG_PC), BAD_PC);
9420 constraint ((Rm == REG_PC), BAD_PC);
9421
9422 inst.instruction |= Rd << 16;
9423 inst.instruction |= Rn << 0;
9424 inst.instruction |= Rm << 8;
9425}
9426
b99bd4ef 9427static void
c19d1205 9428do_it (void)
b99bd4ef 9429{
c19d1205 9430 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9431 process it to do the validation as if in
9432 thumb mode, just in case the code gets
9433 assembled for thumb using the unified syntax. */
9434
c19d1205 9435 inst.size = 0;
e07e6e58
NC
9436 if (unified_syntax)
9437 {
5ee91343
AV
9438 set_pred_insn_type (IT_INSN);
9439 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9440 now_pred.cc = inst.operands[0].imm;
e07e6e58 9441 }
09d92015 9442}
b99bd4ef 9443
6530b175
NC
9444/* If there is only one register in the register list,
9445 then return its register number. Otherwise return -1. */
9446static int
9447only_one_reg_in_list (int range)
9448{
9449 int i = ffs (range) - 1;
9450 return (i > 15 || range != (1 << i)) ? -1 : i;
9451}
9452
09d92015 9453static void
6530b175 9454encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9455{
c19d1205
ZW
9456 int base_reg = inst.operands[0].reg;
9457 int range = inst.operands[1].imm;
6530b175 9458 int one_reg;
ea6ef066 9459
c19d1205
ZW
9460 inst.instruction |= base_reg << 16;
9461 inst.instruction |= range;
ea6ef066 9462
c19d1205
ZW
9463 if (inst.operands[1].writeback)
9464 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9465
c19d1205 9466 if (inst.operands[0].writeback)
ea6ef066 9467 {
c19d1205
ZW
9468 inst.instruction |= WRITE_BACK;
9469 /* Check for unpredictable uses of writeback. */
9470 if (inst.instruction & LOAD_BIT)
09d92015 9471 {
c19d1205
ZW
9472 /* Not allowed in LDM type 2. */
9473 if ((inst.instruction & LDM_TYPE_2_OR_3)
9474 && ((range & (1 << REG_PC)) == 0))
9475 as_warn (_("writeback of base register is UNPREDICTABLE"));
9476 /* Only allowed if base reg not in list for other types. */
9477 else if (range & (1 << base_reg))
9478 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9479 }
9480 else /* STM. */
9481 {
9482 /* Not allowed for type 2. */
9483 if (inst.instruction & LDM_TYPE_2_OR_3)
9484 as_warn (_("writeback of base register is UNPREDICTABLE"));
9485 /* Only allowed if base reg not in list, or first in list. */
9486 else if ((range & (1 << base_reg))
9487 && (range & ((1 << base_reg) - 1)))
9488 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9489 }
ea6ef066 9490 }
6530b175
NC
9491
9492 /* If PUSH/POP has only one register, then use the A2 encoding. */
9493 one_reg = only_one_reg_in_list (range);
9494 if (from_push_pop_mnem && one_reg >= 0)
9495 {
9496 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9497
4f588891
NC
9498 if (is_push && one_reg == 13 /* SP */)
9499 /* PR 22483: The A2 encoding cannot be used when
9500 pushing the stack pointer as this is UNPREDICTABLE. */
9501 return;
9502
6530b175
NC
9503 inst.instruction &= A_COND_MASK;
9504 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9505 inst.instruction |= one_reg << 12;
9506 }
9507}
9508
9509static void
9510do_ldmstm (void)
9511{
9512 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9513}
9514
c19d1205
ZW
9515/* ARMv5TE load-consecutive (argument parse)
9516 Mode is like LDRH.
9517
9518 LDRccD R, mode
9519 STRccD R, mode. */
9520
a737bd4d 9521static void
c19d1205 9522do_ldrd (void)
a737bd4d 9523{
c19d1205 9524 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9525 _("first transfer register must be even"));
c19d1205
ZW
9526 constraint (inst.operands[1].present
9527 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9528 _("can only transfer two consecutive registers"));
c19d1205
ZW
9529 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9530 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9531
c19d1205
ZW
9532 if (!inst.operands[1].present)
9533 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9534
c56791bb
RE
9535 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9536 register and the first register written; we have to diagnose
9537 overlap between the base and the second register written here. */
ea6ef066 9538
c56791bb
RE
9539 if (inst.operands[2].reg == inst.operands[1].reg
9540 && (inst.operands[2].writeback || inst.operands[2].postind))
9541 as_warn (_("base register written back, and overlaps "
9542 "second transfer register"));
b05fe5cf 9543
c56791bb
RE
9544 if (!(inst.instruction & V4_STR_BIT))
9545 {
c19d1205 9546 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9547 destination (even if not write-back). */
9548 if (inst.operands[2].immisreg
9549 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9550 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9551 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9552 }
c19d1205
ZW
9553 inst.instruction |= inst.operands[0].reg << 12;
9554 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9555}
9556
9557static void
c19d1205 9558do_ldrex (void)
b05fe5cf 9559{
c19d1205
ZW
9560 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9561 || inst.operands[1].postind || inst.operands[1].writeback
9562 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9563 || inst.operands[1].negative
9564 /* This can arise if the programmer has written
9565 strex rN, rM, foo
9566 or if they have mistakenly used a register name as the last
9567 operand, eg:
9568 strex rN, rM, rX
9569 It is very difficult to distinguish between these two cases
9570 because "rX" might actually be a label. ie the register
9571 name has been occluded by a symbol of the same name. So we
9572 just generate a general 'bad addressing mode' type error
9573 message and leave it up to the programmer to discover the
9574 true cause and fix their mistake. */
9575 || (inst.operands[1].reg == REG_PC),
9576 BAD_ADDR_MODE);
b05fe5cf 9577
e2b0ab59
AV
9578 constraint (inst.relocs[0].exp.X_op != O_constant
9579 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9580 _("offset must be zero in ARM encoding"));
b05fe5cf 9581
5be8be5d
DG
9582 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9583
c19d1205
ZW
9584 inst.instruction |= inst.operands[0].reg << 12;
9585 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9586 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9587}
9588
9589static void
c19d1205 9590do_ldrexd (void)
b05fe5cf 9591{
c19d1205
ZW
9592 constraint (inst.operands[0].reg % 2 != 0,
9593 _("even register required"));
9594 constraint (inst.operands[1].present
9595 && inst.operands[1].reg != inst.operands[0].reg + 1,
9596 _("can only load two consecutive registers"));
9597 /* If op 1 were present and equal to PC, this function wouldn't
9598 have been called in the first place. */
9599 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9600
c19d1205
ZW
9601 inst.instruction |= inst.operands[0].reg << 12;
9602 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9603}
9604
1be5fd2e
NC
9605/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9606 which is not a multiple of four is UNPREDICTABLE. */
9607static void
9608check_ldr_r15_aligned (void)
9609{
9610 constraint (!(inst.operands[1].immisreg)
9611 && (inst.operands[0].reg == REG_PC
9612 && inst.operands[1].reg == REG_PC
e2b0ab59 9613 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9614 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9615}
9616
b05fe5cf 9617static void
c19d1205 9618do_ldst (void)
b05fe5cf 9619{
c19d1205
ZW
9620 inst.instruction |= inst.operands[0].reg << 12;
9621 if (!inst.operands[1].isreg)
8335d6aa 9622 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9623 return;
c19d1205 9624 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9625 check_ldr_r15_aligned ();
b05fe5cf
ZW
9626}
9627
9628static void
c19d1205 9629do_ldstt (void)
b05fe5cf 9630{
c19d1205
ZW
9631 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9632 reject [Rn,...]. */
9633 if (inst.operands[1].preind)
b05fe5cf 9634 {
e2b0ab59
AV
9635 constraint (inst.relocs[0].exp.X_op != O_constant
9636 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9637 _("this instruction requires a post-indexed address"));
b05fe5cf 9638
c19d1205
ZW
9639 inst.operands[1].preind = 0;
9640 inst.operands[1].postind = 1;
9641 inst.operands[1].writeback = 1;
b05fe5cf 9642 }
c19d1205
ZW
9643 inst.instruction |= inst.operands[0].reg << 12;
9644 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9645}
b05fe5cf 9646
c19d1205 9647/* Halfword and signed-byte load/store operations. */
b05fe5cf 9648
c19d1205
ZW
9649static void
9650do_ldstv4 (void)
9651{
ff4a8d2b 9652 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9653 inst.instruction |= inst.operands[0].reg << 12;
9654 if (!inst.operands[1].isreg)
8335d6aa 9655 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9656 return;
c19d1205 9657 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9658}
9659
9660static void
c19d1205 9661do_ldsttv4 (void)
b05fe5cf 9662{
c19d1205
ZW
9663 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9664 reject [Rn,...]. */
9665 if (inst.operands[1].preind)
b05fe5cf 9666 {
e2b0ab59
AV
9667 constraint (inst.relocs[0].exp.X_op != O_constant
9668 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9669 _("this instruction requires a post-indexed address"));
b05fe5cf 9670
c19d1205
ZW
9671 inst.operands[1].preind = 0;
9672 inst.operands[1].postind = 1;
9673 inst.operands[1].writeback = 1;
b05fe5cf 9674 }
c19d1205
ZW
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9677}
b05fe5cf 9678
c19d1205
ZW
9679/* Co-processor register load/store.
9680 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9681static void
9682do_lstc (void)
9683{
9684 inst.instruction |= inst.operands[0].reg << 8;
9685 inst.instruction |= inst.operands[1].reg << 12;
9686 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9687}
9688
b05fe5cf 9689static void
c19d1205 9690do_mlas (void)
b05fe5cf 9691{
8fb9d7b9 9692 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9693 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9694 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9695 && !(inst.instruction & 0x00400000))
8fb9d7b9 9696 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9697
c19d1205
ZW
9698 inst.instruction |= inst.operands[0].reg << 16;
9699 inst.instruction |= inst.operands[1].reg;
9700 inst.instruction |= inst.operands[2].reg << 8;
9701 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9702}
b05fe5cf 9703
c19d1205
ZW
9704static void
9705do_mov (void)
9706{
e2b0ab59
AV
9707 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9708 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9709 THUMB1_RELOC_ONLY);
c19d1205
ZW
9710 inst.instruction |= inst.operands[0].reg << 12;
9711 encode_arm_shifter_operand (1);
9712}
b05fe5cf 9713
c19d1205
ZW
9714/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9715static void
9716do_mov16 (void)
9717{
b6895b4f
PB
9718 bfd_vma imm;
9719 bfd_boolean top;
9720
9721 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9722 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9723 _(":lower16: not allowed in this instruction"));
e2b0ab59 9724 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9725 _(":upper16: not allowed in this instruction"));
c19d1205 9726 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9727 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9728 {
e2b0ab59 9729 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9730 /* The value is in two pieces: 0:11, 16:19. */
9731 inst.instruction |= (imm & 0x00000fff);
9732 inst.instruction |= (imm & 0x0000f000) << 4;
9733 }
b05fe5cf 9734}
b99bd4ef 9735
037e8744
JB
9736static int
9737do_vfp_nsyn_mrs (void)
9738{
9739 if (inst.operands[0].isvec)
9740 {
9741 if (inst.operands[1].reg != 1)
477330fc 9742 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9743 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9744 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9745 do_vfp_nsyn_opcode ("fmstat");
9746 }
9747 else if (inst.operands[1].isvec)
9748 do_vfp_nsyn_opcode ("fmrx");
9749 else
9750 return FAIL;
5f4273c7 9751
037e8744
JB
9752 return SUCCESS;
9753}
9754
9755static int
9756do_vfp_nsyn_msr (void)
9757{
9758 if (inst.operands[0].isvec)
9759 do_vfp_nsyn_opcode ("fmxr");
9760 else
9761 return FAIL;
9762
9763 return SUCCESS;
9764}
9765
f7c21dc7
NC
9766static void
9767do_vmrs (void)
9768{
9769 unsigned Rt = inst.operands[0].reg;
fa94de6b 9770
16d02dc9 9771 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9772 {
9773 inst.error = BAD_SP;
9774 return;
9775 }
9776
40c7d507
RR
9777 /* MVFR2 is only valid at ARMv8-A. */
9778 if (inst.operands[1].reg == 5)
9779 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9780 _(BAD_FPU));
9781
f7c21dc7 9782 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9783 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9784 {
9785 inst.error = BAD_PC;
9786 return;
9787 }
9788
16d02dc9
JB
9789 /* If we get through parsing the register name, we just insert the number
9790 generated into the instruction without further validation. */
9791 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9792 inst.instruction |= (Rt << 12);
9793}
9794
9795static void
9796do_vmsr (void)
9797{
9798 unsigned Rt = inst.operands[1].reg;
fa94de6b 9799
f7c21dc7
NC
9800 if (thumb_mode)
9801 reject_bad_reg (Rt);
9802 else if (Rt == REG_PC)
9803 {
9804 inst.error = BAD_PC;
9805 return;
9806 }
9807
40c7d507
RR
9808 /* MVFR2 is only valid for ARMv8-A. */
9809 if (inst.operands[0].reg == 5)
9810 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9811 _(BAD_FPU));
9812
16d02dc9
JB
9813 /* If we get through parsing the register name, we just insert the number
9814 generated into the instruction without further validation. */
9815 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9816 inst.instruction |= (Rt << 12);
9817}
9818
b99bd4ef 9819static void
c19d1205 9820do_mrs (void)
b99bd4ef 9821{
90ec0d68
MGD
9822 unsigned br;
9823
037e8744
JB
9824 if (do_vfp_nsyn_mrs () == SUCCESS)
9825 return;
9826
ff4a8d2b 9827 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9828 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9829
9830 if (inst.operands[1].isreg)
9831 {
9832 br = inst.operands[1].reg;
806ab1c0 9833 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9834 as_bad (_("bad register for mrs"));
9835 }
9836 else
9837 {
9838 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9839 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9840 != (PSR_c|PSR_f),
d2cd1205 9841 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9842 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9843 }
9844
9845 inst.instruction |= br;
c19d1205 9846}
b99bd4ef 9847
c19d1205
ZW
9848/* Two possible forms:
9849 "{C|S}PSR_<field>, Rm",
9850 "{C|S}PSR_f, #expression". */
b99bd4ef 9851
c19d1205
ZW
9852static void
9853do_msr (void)
9854{
037e8744
JB
9855 if (do_vfp_nsyn_msr () == SUCCESS)
9856 return;
9857
c19d1205
ZW
9858 inst.instruction |= inst.operands[0].imm;
9859 if (inst.operands[1].isreg)
9860 inst.instruction |= inst.operands[1].reg;
9861 else
b99bd4ef 9862 {
c19d1205 9863 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9864 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9865 inst.relocs[0].pc_rel = 0;
b99bd4ef 9866 }
b99bd4ef
NC
9867}
9868
c19d1205
ZW
9869static void
9870do_mul (void)
a737bd4d 9871{
ff4a8d2b
NC
9872 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9873
c19d1205
ZW
9874 if (!inst.operands[2].present)
9875 inst.operands[2].reg = inst.operands[0].reg;
9876 inst.instruction |= inst.operands[0].reg << 16;
9877 inst.instruction |= inst.operands[1].reg;
9878 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9879
8fb9d7b9
MS
9880 if (inst.operands[0].reg == inst.operands[1].reg
9881 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9882 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9883}
9884
c19d1205
ZW
9885/* Long Multiply Parser
9886 UMULL RdLo, RdHi, Rm, Rs
9887 SMULL RdLo, RdHi, Rm, Rs
9888 UMLAL RdLo, RdHi, Rm, Rs
9889 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9890
9891static void
c19d1205 9892do_mull (void)
b99bd4ef 9893{
c19d1205
ZW
9894 inst.instruction |= inst.operands[0].reg << 12;
9895 inst.instruction |= inst.operands[1].reg << 16;
9896 inst.instruction |= inst.operands[2].reg;
9897 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9898
682b27ad
PB
9899 /* rdhi and rdlo must be different. */
9900 if (inst.operands[0].reg == inst.operands[1].reg)
9901 as_tsktsk (_("rdhi and rdlo must be different"));
9902
9903 /* rdhi, rdlo and rm must all be different before armv6. */
9904 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9905 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9906 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9907 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9908}
b99bd4ef 9909
c19d1205
ZW
9910static void
9911do_nop (void)
9912{
e7495e45
NS
9913 if (inst.operands[0].present
9914 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9915 {
9916 /* Architectural NOP hints are CPSR sets with no bits selected. */
9917 inst.instruction &= 0xf0000000;
e7495e45
NS
9918 inst.instruction |= 0x0320f000;
9919 if (inst.operands[0].present)
9920 inst.instruction |= inst.operands[0].imm;
c19d1205 9921 }
b99bd4ef
NC
9922}
9923
c19d1205
ZW
9924/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9925 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9926 Condition defaults to COND_ALWAYS.
9927 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9928
9929static void
c19d1205 9930do_pkhbt (void)
b99bd4ef 9931{
c19d1205
ZW
9932 inst.instruction |= inst.operands[0].reg << 12;
9933 inst.instruction |= inst.operands[1].reg << 16;
9934 inst.instruction |= inst.operands[2].reg;
9935 if (inst.operands[3].present)
9936 encode_arm_shift (3);
9937}
b99bd4ef 9938
c19d1205 9939/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9940
c19d1205
ZW
9941static void
9942do_pkhtb (void)
9943{
9944 if (!inst.operands[3].present)
b99bd4ef 9945 {
c19d1205
ZW
9946 /* If the shift specifier is omitted, turn the instruction
9947 into pkhbt rd, rm, rn. */
9948 inst.instruction &= 0xfff00010;
9949 inst.instruction |= inst.operands[0].reg << 12;
9950 inst.instruction |= inst.operands[1].reg;
9951 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9952 }
9953 else
9954 {
c19d1205
ZW
9955 inst.instruction |= inst.operands[0].reg << 12;
9956 inst.instruction |= inst.operands[1].reg << 16;
9957 inst.instruction |= inst.operands[2].reg;
9958 encode_arm_shift (3);
b99bd4ef
NC
9959 }
9960}
9961
c19d1205 9962/* ARMv5TE: Preload-Cache
60e5ef9f 9963 MP Extensions: Preload for write
c19d1205 9964
60e5ef9f 9965 PLD(W) <addr_mode>
c19d1205
ZW
9966
9967 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9968
9969static void
c19d1205 9970do_pld (void)
b99bd4ef 9971{
c19d1205
ZW
9972 constraint (!inst.operands[0].isreg,
9973 _("'[' expected after PLD mnemonic"));
9974 constraint (inst.operands[0].postind,
9975 _("post-indexed expression used in preload instruction"));
9976 constraint (inst.operands[0].writeback,
9977 _("writeback used in preload instruction"));
9978 constraint (!inst.operands[0].preind,
9979 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9980 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9981}
b99bd4ef 9982
62b3e311
PB
9983/* ARMv7: PLI <addr_mode> */
9984static void
9985do_pli (void)
9986{
9987 constraint (!inst.operands[0].isreg,
9988 _("'[' expected after PLI mnemonic"));
9989 constraint (inst.operands[0].postind,
9990 _("post-indexed expression used in preload instruction"));
9991 constraint (inst.operands[0].writeback,
9992 _("writeback used in preload instruction"));
9993 constraint (!inst.operands[0].preind,
9994 _("unindexed addressing used in preload instruction"));
9995 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9996 inst.instruction &= ~PRE_INDEX;
9997}
9998
c19d1205
ZW
9999static void
10000do_push_pop (void)
10001{
5e0d7f77
MP
10002 constraint (inst.operands[0].writeback,
10003 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10004 inst.operands[1] = inst.operands[0];
10005 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10006 inst.operands[0].isreg = 1;
10007 inst.operands[0].writeback = 1;
10008 inst.operands[0].reg = REG_SP;
6530b175 10009 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10010}
b99bd4ef 10011
c19d1205
ZW
10012/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10013 word at the specified address and the following word
10014 respectively.
10015 Unconditionally executed.
10016 Error if Rn is R15. */
b99bd4ef 10017
c19d1205
ZW
10018static void
10019do_rfe (void)
10020{
10021 inst.instruction |= inst.operands[0].reg << 16;
10022 if (inst.operands[0].writeback)
10023 inst.instruction |= WRITE_BACK;
10024}
b99bd4ef 10025
c19d1205 10026/* ARM V6 ssat (argument parse). */
b99bd4ef 10027
c19d1205
ZW
10028static void
10029do_ssat (void)
10030{
10031 inst.instruction |= inst.operands[0].reg << 12;
10032 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10033 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10034
c19d1205
ZW
10035 if (inst.operands[3].present)
10036 encode_arm_shift (3);
b99bd4ef
NC
10037}
10038
c19d1205 10039/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10040
10041static void
c19d1205 10042do_usat (void)
b99bd4ef 10043{
c19d1205
ZW
10044 inst.instruction |= inst.operands[0].reg << 12;
10045 inst.instruction |= inst.operands[1].imm << 16;
10046 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10047
c19d1205
ZW
10048 if (inst.operands[3].present)
10049 encode_arm_shift (3);
b99bd4ef
NC
10050}
10051
c19d1205 10052/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10053
10054static void
c19d1205 10055do_ssat16 (void)
09d92015 10056{
c19d1205
ZW
10057 inst.instruction |= inst.operands[0].reg << 12;
10058 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10059 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10060}
10061
c19d1205
ZW
10062static void
10063do_usat16 (void)
a737bd4d 10064{
c19d1205
ZW
10065 inst.instruction |= inst.operands[0].reg << 12;
10066 inst.instruction |= inst.operands[1].imm << 16;
10067 inst.instruction |= inst.operands[2].reg;
10068}
a737bd4d 10069
c19d1205
ZW
10070/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10071 preserving the other bits.
a737bd4d 10072
c19d1205
ZW
10073 setend <endian_specifier>, where <endian_specifier> is either
10074 BE or LE. */
a737bd4d 10075
c19d1205
ZW
10076static void
10077do_setend (void)
10078{
12e37cbc
MGD
10079 if (warn_on_deprecated
10080 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10081 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10082
c19d1205
ZW
10083 if (inst.operands[0].imm)
10084 inst.instruction |= 0x200;
a737bd4d
NC
10085}
10086
10087static void
c19d1205 10088do_shift (void)
a737bd4d 10089{
c19d1205
ZW
10090 unsigned int Rm = (inst.operands[1].present
10091 ? inst.operands[1].reg
10092 : inst.operands[0].reg);
a737bd4d 10093
c19d1205
ZW
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= Rm;
10096 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10097 {
c19d1205
ZW
10098 inst.instruction |= inst.operands[2].reg << 8;
10099 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10100 /* PR 12854: Error on extraneous shifts. */
10101 constraint (inst.operands[2].shifted,
10102 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10103 }
10104 else
e2b0ab59 10105 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10106}
10107
09d92015 10108static void
3eb17e6b 10109do_smc (void)
09d92015 10110{
e2b0ab59
AV
10111 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10112 inst.relocs[0].pc_rel = 0;
09d92015
MM
10113}
10114
90ec0d68
MGD
10115static void
10116do_hvc (void)
10117{
e2b0ab59
AV
10118 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10119 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10120}
10121
09d92015 10122static void
c19d1205 10123do_swi (void)
09d92015 10124{
e2b0ab59
AV
10125 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10126 inst.relocs[0].pc_rel = 0;
09d92015
MM
10127}
10128
ddfded2f
MW
10129static void
10130do_setpan (void)
10131{
10132 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10133 _("selected processor does not support SETPAN instruction"));
10134
10135 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10136}
10137
10138static void
10139do_t_setpan (void)
10140{
10141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10142 _("selected processor does not support SETPAN instruction"));
10143
10144 inst.instruction |= (inst.operands[0].imm << 3);
10145}
10146
c19d1205
ZW
10147/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10148 SMLAxy{cond} Rd,Rm,Rs,Rn
10149 SMLAWy{cond} Rd,Rm,Rs,Rn
10150 Error if any register is R15. */
e16bb312 10151
c19d1205
ZW
10152static void
10153do_smla (void)
e16bb312 10154{
c19d1205
ZW
10155 inst.instruction |= inst.operands[0].reg << 16;
10156 inst.instruction |= inst.operands[1].reg;
10157 inst.instruction |= inst.operands[2].reg << 8;
10158 inst.instruction |= inst.operands[3].reg << 12;
10159}
a737bd4d 10160
c19d1205
ZW
10161/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10162 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10163 Error if any register is R15.
10164 Warning if Rdlo == Rdhi. */
a737bd4d 10165
c19d1205
ZW
10166static void
10167do_smlal (void)
10168{
10169 inst.instruction |= inst.operands[0].reg << 12;
10170 inst.instruction |= inst.operands[1].reg << 16;
10171 inst.instruction |= inst.operands[2].reg;
10172 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10173
c19d1205
ZW
10174 if (inst.operands[0].reg == inst.operands[1].reg)
10175 as_tsktsk (_("rdhi and rdlo must be different"));
10176}
a737bd4d 10177
c19d1205
ZW
10178/* ARM V5E (El Segundo) signed-multiply (argument parse)
10179 SMULxy{cond} Rd,Rm,Rs
10180 Error if any register is R15. */
a737bd4d 10181
c19d1205
ZW
10182static void
10183do_smul (void)
10184{
10185 inst.instruction |= inst.operands[0].reg << 16;
10186 inst.instruction |= inst.operands[1].reg;
10187 inst.instruction |= inst.operands[2].reg << 8;
10188}
a737bd4d 10189
b6702015
PB
10190/* ARM V6 srs (argument parse). The variable fields in the encoding are
10191 the same for both ARM and Thumb-2. */
a737bd4d 10192
c19d1205
ZW
10193static void
10194do_srs (void)
10195{
b6702015
PB
10196 int reg;
10197
10198 if (inst.operands[0].present)
10199 {
10200 reg = inst.operands[0].reg;
fdfde340 10201 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10202 }
10203 else
fdfde340 10204 reg = REG_SP;
b6702015
PB
10205
10206 inst.instruction |= reg << 16;
10207 inst.instruction |= inst.operands[1].imm;
10208 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10209 inst.instruction |= WRITE_BACK;
10210}
a737bd4d 10211
c19d1205 10212/* ARM V6 strex (argument parse). */
a737bd4d 10213
c19d1205
ZW
10214static void
10215do_strex (void)
10216{
10217 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10218 || inst.operands[2].postind || inst.operands[2].writeback
10219 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10220 || inst.operands[2].negative
10221 /* See comment in do_ldrex(). */
10222 || (inst.operands[2].reg == REG_PC),
10223 BAD_ADDR_MODE);
a737bd4d 10224
c19d1205
ZW
10225 constraint (inst.operands[0].reg == inst.operands[1].reg
10226 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10227
e2b0ab59
AV
10228 constraint (inst.relocs[0].exp.X_op != O_constant
10229 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10230 _("offset must be zero in ARM encoding"));
a737bd4d 10231
c19d1205
ZW
10232 inst.instruction |= inst.operands[0].reg << 12;
10233 inst.instruction |= inst.operands[1].reg;
10234 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10235 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10236}
10237
877807f8
NC
10238static void
10239do_t_strexbh (void)
10240{
10241 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10242 || inst.operands[2].postind || inst.operands[2].writeback
10243 || inst.operands[2].immisreg || inst.operands[2].shifted
10244 || inst.operands[2].negative,
10245 BAD_ADDR_MODE);
10246
10247 constraint (inst.operands[0].reg == inst.operands[1].reg
10248 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10249
10250 do_rm_rd_rn ();
10251}
10252
e16bb312 10253static void
c19d1205 10254do_strexd (void)
e16bb312 10255{
c19d1205
ZW
10256 constraint (inst.operands[1].reg % 2 != 0,
10257 _("even register required"));
10258 constraint (inst.operands[2].present
10259 && inst.operands[2].reg != inst.operands[1].reg + 1,
10260 _("can only store two consecutive registers"));
10261 /* If op 2 were present and equal to PC, this function wouldn't
10262 have been called in the first place. */
10263 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10264
c19d1205
ZW
10265 constraint (inst.operands[0].reg == inst.operands[1].reg
10266 || inst.operands[0].reg == inst.operands[1].reg + 1
10267 || inst.operands[0].reg == inst.operands[3].reg,
10268 BAD_OVERLAP);
e16bb312 10269
c19d1205
ZW
10270 inst.instruction |= inst.operands[0].reg << 12;
10271 inst.instruction |= inst.operands[1].reg;
10272 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10273}
10274
9eb6c0f1
MGD
10275/* ARM V8 STRL. */
10276static void
4b8c8c02 10277do_stlex (void)
9eb6c0f1
MGD
10278{
10279 constraint (inst.operands[0].reg == inst.operands[1].reg
10280 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10281
10282 do_rd_rm_rn ();
10283}
10284
10285static void
4b8c8c02 10286do_t_stlex (void)
9eb6c0f1
MGD
10287{
10288 constraint (inst.operands[0].reg == inst.operands[1].reg
10289 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10290
10291 do_rm_rd_rn ();
10292}
10293
c19d1205
ZW
10294/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10295 extends it to 32-bits, and adds the result to a value in another
10296 register. You can specify a rotation by 0, 8, 16, or 24 bits
10297 before extracting the 16-bit value.
10298 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10299 Condition defaults to COND_ALWAYS.
10300 Error if any register uses R15. */
10301
e16bb312 10302static void
c19d1205 10303do_sxtah (void)
e16bb312 10304{
c19d1205
ZW
10305 inst.instruction |= inst.operands[0].reg << 12;
10306 inst.instruction |= inst.operands[1].reg << 16;
10307 inst.instruction |= inst.operands[2].reg;
10308 inst.instruction |= inst.operands[3].imm << 10;
10309}
e16bb312 10310
c19d1205 10311/* ARM V6 SXTH.
e16bb312 10312
c19d1205
ZW
10313 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10314 Condition defaults to COND_ALWAYS.
10315 Error if any register uses R15. */
e16bb312
NC
10316
10317static void
c19d1205 10318do_sxth (void)
e16bb312 10319{
c19d1205
ZW
10320 inst.instruction |= inst.operands[0].reg << 12;
10321 inst.instruction |= inst.operands[1].reg;
10322 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10323}
c19d1205
ZW
10324\f
10325/* VFP instructions. In a logical order: SP variant first, monad
10326 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10327
10328static void
c19d1205 10329do_vfp_sp_monadic (void)
e16bb312 10330{
57785aa2
AV
10331 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10332 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10333 _(BAD_FPU));
10334
5287ad62
JB
10335 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10336 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10337}
10338
10339static void
c19d1205 10340do_vfp_sp_dyadic (void)
e16bb312 10341{
5287ad62
JB
10342 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10343 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10344 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10345}
10346
10347static void
c19d1205 10348do_vfp_sp_compare_z (void)
e16bb312 10349{
5287ad62 10350 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10351}
10352
10353static void
c19d1205 10354do_vfp_dp_sp_cvt (void)
e16bb312 10355{
5287ad62
JB
10356 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10357 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10358}
10359
10360static void
c19d1205 10361do_vfp_sp_dp_cvt (void)
e16bb312 10362{
5287ad62
JB
10363 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10364 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10365}
10366
10367static void
c19d1205 10368do_vfp_reg_from_sp (void)
e16bb312 10369{
57785aa2
AV
10370 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10371 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10372 _(BAD_FPU));
10373
c19d1205 10374 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10376}
10377
10378static void
c19d1205 10379do_vfp_reg2_from_sp2 (void)
e16bb312 10380{
c19d1205
ZW
10381 constraint (inst.operands[2].imm != 2,
10382 _("only two consecutive VFP SP registers allowed here"));
10383 inst.instruction |= inst.operands[0].reg << 12;
10384 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10385 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10386}
10387
10388static void
c19d1205 10389do_vfp_sp_from_reg (void)
e16bb312 10390{
57785aa2
AV
10391 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10392 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10393 _(BAD_FPU));
10394
5287ad62 10395 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10396 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10397}
10398
10399static void
c19d1205 10400do_vfp_sp2_from_reg2 (void)
e16bb312 10401{
c19d1205
ZW
10402 constraint (inst.operands[0].imm != 2,
10403 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10404 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10405 inst.instruction |= inst.operands[1].reg << 12;
10406 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10407}
10408
10409static void
c19d1205 10410do_vfp_sp_ldst (void)
e16bb312 10411{
5287ad62 10412 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10413 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10414}
10415
10416static void
c19d1205 10417do_vfp_dp_ldst (void)
e16bb312 10418{
5287ad62 10419 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10420 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10421}
10422
c19d1205 10423
e16bb312 10424static void
c19d1205 10425vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10426{
c19d1205
ZW
10427 if (inst.operands[0].writeback)
10428 inst.instruction |= WRITE_BACK;
10429 else
10430 constraint (ldstm_type != VFP_LDSTMIA,
10431 _("this addressing mode requires base-register writeback"));
10432 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10433 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10434 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10435}
10436
10437static void
c19d1205 10438vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10439{
c19d1205 10440 int count;
e16bb312 10441
c19d1205
ZW
10442 if (inst.operands[0].writeback)
10443 inst.instruction |= WRITE_BACK;
10444 else
10445 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10446 _("this addressing mode requires base-register writeback"));
e16bb312 10447
c19d1205 10448 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10449 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10450
c19d1205
ZW
10451 count = inst.operands[1].imm << 1;
10452 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10453 count += 1;
e16bb312 10454
c19d1205 10455 inst.instruction |= count;
e16bb312
NC
10456}
10457
10458static void
c19d1205 10459do_vfp_sp_ldstmia (void)
e16bb312 10460{
c19d1205 10461 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10462}
10463
10464static void
c19d1205 10465do_vfp_sp_ldstmdb (void)
e16bb312 10466{
c19d1205 10467 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10468}
10469
10470static void
c19d1205 10471do_vfp_dp_ldstmia (void)
e16bb312 10472{
c19d1205 10473 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10474}
10475
10476static void
c19d1205 10477do_vfp_dp_ldstmdb (void)
e16bb312 10478{
c19d1205 10479 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10480}
10481
10482static void
c19d1205 10483do_vfp_xp_ldstmia (void)
e16bb312 10484{
c19d1205
ZW
10485 vfp_dp_ldstm (VFP_LDSTMIAX);
10486}
e16bb312 10487
c19d1205
ZW
10488static void
10489do_vfp_xp_ldstmdb (void)
10490{
10491 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10492}
5287ad62
JB
10493
10494static void
10495do_vfp_dp_rd_rm (void)
10496{
57785aa2
AV
10497 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10498 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10499 _(BAD_FPU));
10500
5287ad62
JB
10501 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10502 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10503}
10504
10505static void
10506do_vfp_dp_rn_rd (void)
10507{
10508 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10509 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10510}
10511
10512static void
10513do_vfp_dp_rd_rn (void)
10514{
10515 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10516 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10517}
10518
10519static void
10520do_vfp_dp_rd_rn_rm (void)
10521{
57785aa2
AV
10522 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10523 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10524 _(BAD_FPU));
10525
5287ad62
JB
10526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10527 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10528 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10529}
10530
10531static void
10532do_vfp_dp_rd (void)
10533{
10534 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10535}
10536
10537static void
10538do_vfp_dp_rm_rd_rn (void)
10539{
57785aa2
AV
10540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10541 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10542 _(BAD_FPU));
10543
5287ad62
JB
10544 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10545 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10546 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10547}
10548
10549/* VFPv3 instructions. */
10550static void
10551do_vfp_sp_const (void)
10552{
10553 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10554 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10555 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10556}
10557
10558static void
10559do_vfp_dp_const (void)
10560{
10561 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10562 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10563 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10564}
10565
10566static void
10567vfp_conv (int srcsize)
10568{
5f1af56b
MGD
10569 int immbits = srcsize - inst.operands[1].imm;
10570
fa94de6b
RM
10571 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10572 {
5f1af56b 10573 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10574 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10575 inst.error = _("immediate value out of range, expected range [0, 16]");
10576 return;
10577 }
fa94de6b 10578 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10579 {
10580 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10581 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10582 inst.error = _("immediate value out of range, expected range [1, 32]");
10583 return;
10584 }
10585
5287ad62
JB
10586 inst.instruction |= (immbits & 1) << 5;
10587 inst.instruction |= (immbits >> 1);
10588}
10589
10590static void
10591do_vfp_sp_conv_16 (void)
10592{
10593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10594 vfp_conv (16);
10595}
10596
10597static void
10598do_vfp_dp_conv_16 (void)
10599{
10600 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10601 vfp_conv (16);
10602}
10603
10604static void
10605do_vfp_sp_conv_32 (void)
10606{
10607 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10608 vfp_conv (32);
10609}
10610
10611static void
10612do_vfp_dp_conv_32 (void)
10613{
10614 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10615 vfp_conv (32);
10616}
c19d1205
ZW
10617\f
10618/* FPA instructions. Also in a logical order. */
e16bb312 10619
c19d1205
ZW
10620static void
10621do_fpa_cmp (void)
10622{
10623 inst.instruction |= inst.operands[0].reg << 16;
10624 inst.instruction |= inst.operands[1].reg;
10625}
b99bd4ef
NC
10626
10627static void
c19d1205 10628do_fpa_ldmstm (void)
b99bd4ef 10629{
c19d1205
ZW
10630 inst.instruction |= inst.operands[0].reg << 12;
10631 switch (inst.operands[1].imm)
10632 {
10633 case 1: inst.instruction |= CP_T_X; break;
10634 case 2: inst.instruction |= CP_T_Y; break;
10635 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10636 case 4: break;
10637 default: abort ();
10638 }
b99bd4ef 10639
c19d1205
ZW
10640 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10641 {
10642 /* The instruction specified "ea" or "fd", so we can only accept
10643 [Rn]{!}. The instruction does not really support stacking or
10644 unstacking, so we have to emulate these by setting appropriate
10645 bits and offsets. */
e2b0ab59
AV
10646 constraint (inst.relocs[0].exp.X_op != O_constant
10647 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10648 _("this instruction does not support indexing"));
b99bd4ef 10649
c19d1205 10650 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10651 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10652
c19d1205 10653 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10654 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10655
c19d1205
ZW
10656 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10657 {
10658 inst.operands[2].preind = 0;
10659 inst.operands[2].postind = 1;
10660 }
10661 }
b99bd4ef 10662
c19d1205 10663 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10664}
c19d1205
ZW
10665\f
10666/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10667
c19d1205
ZW
10668static void
10669do_iwmmxt_tandorc (void)
10670{
10671 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10672}
b99bd4ef 10673
c19d1205
ZW
10674static void
10675do_iwmmxt_textrc (void)
10676{
10677 inst.instruction |= inst.operands[0].reg << 12;
10678 inst.instruction |= inst.operands[1].imm;
10679}
b99bd4ef
NC
10680
10681static void
c19d1205 10682do_iwmmxt_textrm (void)
b99bd4ef 10683{
c19d1205
ZW
10684 inst.instruction |= inst.operands[0].reg << 12;
10685 inst.instruction |= inst.operands[1].reg << 16;
10686 inst.instruction |= inst.operands[2].imm;
10687}
b99bd4ef 10688
c19d1205
ZW
10689static void
10690do_iwmmxt_tinsr (void)
10691{
10692 inst.instruction |= inst.operands[0].reg << 16;
10693 inst.instruction |= inst.operands[1].reg << 12;
10694 inst.instruction |= inst.operands[2].imm;
10695}
b99bd4ef 10696
c19d1205
ZW
10697static void
10698do_iwmmxt_tmia (void)
10699{
10700 inst.instruction |= inst.operands[0].reg << 5;
10701 inst.instruction |= inst.operands[1].reg;
10702 inst.instruction |= inst.operands[2].reg << 12;
10703}
b99bd4ef 10704
c19d1205
ZW
10705static void
10706do_iwmmxt_waligni (void)
10707{
10708 inst.instruction |= inst.operands[0].reg << 12;
10709 inst.instruction |= inst.operands[1].reg << 16;
10710 inst.instruction |= inst.operands[2].reg;
10711 inst.instruction |= inst.operands[3].imm << 20;
10712}
b99bd4ef 10713
2d447fca
JM
10714static void
10715do_iwmmxt_wmerge (void)
10716{
10717 inst.instruction |= inst.operands[0].reg << 12;
10718 inst.instruction |= inst.operands[1].reg << 16;
10719 inst.instruction |= inst.operands[2].reg;
10720 inst.instruction |= inst.operands[3].imm << 21;
10721}
10722
c19d1205
ZW
10723static void
10724do_iwmmxt_wmov (void)
10725{
10726 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10727 inst.instruction |= inst.operands[0].reg << 12;
10728 inst.instruction |= inst.operands[1].reg << 16;
10729 inst.instruction |= inst.operands[1].reg;
10730}
b99bd4ef 10731
c19d1205
ZW
10732static void
10733do_iwmmxt_wldstbh (void)
10734{
8f06b2d8 10735 int reloc;
c19d1205 10736 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10737 if (thumb_mode)
10738 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10739 else
10740 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10741 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10742}
10743
c19d1205
ZW
10744static void
10745do_iwmmxt_wldstw (void)
10746{
10747 /* RIWR_RIWC clears .isreg for a control register. */
10748 if (!inst.operands[0].isreg)
10749 {
10750 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10751 inst.instruction |= 0xf0000000;
10752 }
b99bd4ef 10753
c19d1205
ZW
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 encode_arm_cp_address (1, TRUE, TRUE, 0);
10756}
b99bd4ef
NC
10757
10758static void
c19d1205 10759do_iwmmxt_wldstd (void)
b99bd4ef 10760{
c19d1205 10761 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10762 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10763 && inst.operands[1].immisreg)
10764 {
10765 inst.instruction &= ~0x1a000ff;
eff0bc54 10766 inst.instruction |= (0xfU << 28);
2d447fca
JM
10767 if (inst.operands[1].preind)
10768 inst.instruction |= PRE_INDEX;
10769 if (!inst.operands[1].negative)
10770 inst.instruction |= INDEX_UP;
10771 if (inst.operands[1].writeback)
10772 inst.instruction |= WRITE_BACK;
10773 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10774 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10775 inst.instruction |= inst.operands[1].imm;
10776 }
10777 else
10778 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10779}
b99bd4ef 10780
c19d1205
ZW
10781static void
10782do_iwmmxt_wshufh (void)
10783{
10784 inst.instruction |= inst.operands[0].reg << 12;
10785 inst.instruction |= inst.operands[1].reg << 16;
10786 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10787 inst.instruction |= (inst.operands[2].imm & 0x0f);
10788}
b99bd4ef 10789
c19d1205
ZW
10790static void
10791do_iwmmxt_wzero (void)
10792{
10793 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10794 inst.instruction |= inst.operands[0].reg;
10795 inst.instruction |= inst.operands[0].reg << 12;
10796 inst.instruction |= inst.operands[0].reg << 16;
10797}
2d447fca
JM
10798
10799static void
10800do_iwmmxt_wrwrwr_or_imm5 (void)
10801{
10802 if (inst.operands[2].isreg)
10803 do_rd_rn_rm ();
10804 else {
10805 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10806 _("immediate operand requires iWMMXt2"));
10807 do_rd_rn ();
10808 if (inst.operands[2].imm == 0)
10809 {
10810 switch ((inst.instruction >> 20) & 0xf)
10811 {
10812 case 4:
10813 case 5:
10814 case 6:
5f4273c7 10815 case 7:
2d447fca
JM
10816 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10817 inst.operands[2].imm = 16;
10818 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10819 break;
10820 case 8:
10821 case 9:
10822 case 10:
10823 case 11:
10824 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10825 inst.operands[2].imm = 32;
10826 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10827 break;
10828 case 12:
10829 case 13:
10830 case 14:
10831 case 15:
10832 {
10833 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10834 unsigned long wrn;
10835 wrn = (inst.instruction >> 16) & 0xf;
10836 inst.instruction &= 0xff0fff0f;
10837 inst.instruction |= wrn;
10838 /* Bail out here; the instruction is now assembled. */
10839 return;
10840 }
10841 }
10842 }
10843 /* Map 32 -> 0, etc. */
10844 inst.operands[2].imm &= 0x1f;
eff0bc54 10845 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10846 }
10847}
c19d1205
ZW
10848\f
10849/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10850 operations first, then control, shift, and load/store. */
b99bd4ef 10851
c19d1205 10852/* Insns like "foo X,Y,Z". */
b99bd4ef 10853
c19d1205
ZW
10854static void
10855do_mav_triple (void)
10856{
10857 inst.instruction |= inst.operands[0].reg << 16;
10858 inst.instruction |= inst.operands[1].reg;
10859 inst.instruction |= inst.operands[2].reg << 12;
10860}
b99bd4ef 10861
c19d1205
ZW
10862/* Insns like "foo W,X,Y,Z".
10863 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10864
c19d1205
ZW
10865static void
10866do_mav_quad (void)
10867{
10868 inst.instruction |= inst.operands[0].reg << 5;
10869 inst.instruction |= inst.operands[1].reg << 12;
10870 inst.instruction |= inst.operands[2].reg << 16;
10871 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10872}
10873
c19d1205
ZW
10874/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10875static void
10876do_mav_dspsc (void)
a737bd4d 10877{
c19d1205
ZW
10878 inst.instruction |= inst.operands[1].reg << 12;
10879}
a737bd4d 10880
c19d1205
ZW
10881/* Maverick shift immediate instructions.
10882 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10883 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10884
c19d1205
ZW
10885static void
10886do_mav_shift (void)
10887{
10888 int imm = inst.operands[2].imm;
a737bd4d 10889
c19d1205
ZW
10890 inst.instruction |= inst.operands[0].reg << 12;
10891 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10892
c19d1205
ZW
10893 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10894 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10895 Bit 4 should be 0. */
10896 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10897
c19d1205
ZW
10898 inst.instruction |= imm;
10899}
10900\f
10901/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10902
c19d1205
ZW
10903/* Xscale multiply-accumulate (argument parse)
10904 MIAcc acc0,Rm,Rs
10905 MIAPHcc acc0,Rm,Rs
10906 MIAxycc acc0,Rm,Rs. */
a737bd4d 10907
c19d1205
ZW
10908static void
10909do_xsc_mia (void)
10910{
10911 inst.instruction |= inst.operands[1].reg;
10912 inst.instruction |= inst.operands[2].reg << 12;
10913}
a737bd4d 10914
c19d1205 10915/* Xscale move-accumulator-register (argument parse)
a737bd4d 10916
c19d1205 10917 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10918
c19d1205
ZW
10919static void
10920do_xsc_mar (void)
10921{
10922 inst.instruction |= inst.operands[1].reg << 12;
10923 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10924}
10925
c19d1205 10926/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10927
c19d1205 10928 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10929
10930static void
c19d1205 10931do_xsc_mra (void)
b99bd4ef 10932{
c19d1205
ZW
10933 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10934 inst.instruction |= inst.operands[0].reg << 12;
10935 inst.instruction |= inst.operands[1].reg << 16;
10936}
10937\f
10938/* Encoding functions relevant only to Thumb. */
b99bd4ef 10939
c19d1205
ZW
10940/* inst.operands[i] is a shifted-register operand; encode
10941 it into inst.instruction in the format used by Thumb32. */
10942
10943static void
10944encode_thumb32_shifted_operand (int i)
10945{
e2b0ab59 10946 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10947 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10948
9c3c69f2
PB
10949 constraint (inst.operands[i].immisreg,
10950 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10951 inst.instruction |= inst.operands[i].reg;
10952 if (shift == SHIFT_RRX)
10953 inst.instruction |= SHIFT_ROR << 4;
10954 else
b99bd4ef 10955 {
e2b0ab59 10956 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10957 _("expression too complex"));
10958
10959 constraint (value > 32
10960 || (value == 32 && (shift == SHIFT_LSL
10961 || shift == SHIFT_ROR)),
10962 _("shift expression is too large"));
10963
10964 if (value == 0)
10965 shift = SHIFT_LSL;
10966 else if (value == 32)
10967 value = 0;
10968
10969 inst.instruction |= shift << 4;
10970 inst.instruction |= (value & 0x1c) << 10;
10971 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10972 }
c19d1205 10973}
b99bd4ef 10974
b99bd4ef 10975
c19d1205
ZW
10976/* inst.operands[i] was set up by parse_address. Encode it into a
10977 Thumb32 format load or store instruction. Reject forms that cannot
10978 be used with such instructions. If is_t is true, reject forms that
10979 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10980 that cannot be used with a D instruction. If it is a store insn,
10981 reject PC in Rn. */
b99bd4ef 10982
c19d1205
ZW
10983static void
10984encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10985{
5be8be5d 10986 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10987
10988 constraint (!inst.operands[i].isreg,
53365c0d 10989 _("Instruction does not support =N addresses"));
b99bd4ef 10990
c19d1205
ZW
10991 inst.instruction |= inst.operands[i].reg << 16;
10992 if (inst.operands[i].immisreg)
b99bd4ef 10993 {
5be8be5d 10994 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10995 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10996 constraint (inst.operands[i].negative,
10997 _("Thumb does not support negative register indexing"));
10998 constraint (inst.operands[i].postind,
10999 _("Thumb does not support register post-indexing"));
11000 constraint (inst.operands[i].writeback,
11001 _("Thumb does not support register indexing with writeback"));
11002 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11003 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11004
f40d1643 11005 inst.instruction |= inst.operands[i].imm;
c19d1205 11006 if (inst.operands[i].shifted)
b99bd4ef 11007 {
e2b0ab59 11008 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11009 _("expression too complex"));
e2b0ab59
AV
11010 constraint (inst.relocs[0].exp.X_add_number < 0
11011 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11012 _("shift out of range"));
e2b0ab59 11013 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11014 }
e2b0ab59 11015 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11016 }
11017 else if (inst.operands[i].preind)
11018 {
5be8be5d 11019 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11020 constraint (is_t && inst.operands[i].writeback,
c19d1205 11021 _("cannot use writeback with this instruction"));
4755303e
WN
11022 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11023 BAD_PC_ADDRESSING);
c19d1205
ZW
11024
11025 if (is_d)
11026 {
11027 inst.instruction |= 0x01000000;
11028 if (inst.operands[i].writeback)
11029 inst.instruction |= 0x00200000;
b99bd4ef 11030 }
c19d1205 11031 else
b99bd4ef 11032 {
c19d1205
ZW
11033 inst.instruction |= 0x00000c00;
11034 if (inst.operands[i].writeback)
11035 inst.instruction |= 0x00000100;
b99bd4ef 11036 }
e2b0ab59 11037 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11038 }
c19d1205 11039 else if (inst.operands[i].postind)
b99bd4ef 11040 {
9c2799c2 11041 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11042 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11043 constraint (is_t, _("cannot use post-indexing with this instruction"));
11044
11045 if (is_d)
11046 inst.instruction |= 0x00200000;
11047 else
11048 inst.instruction |= 0x00000900;
e2b0ab59 11049 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11050 }
11051 else /* unindexed - only for coprocessor */
11052 inst.error = _("instruction does not accept unindexed addressing");
11053}
11054
11055/* Table of Thumb instructions which exist in both 16- and 32-bit
11056 encodings (the latter only in post-V6T2 cores). The index is the
11057 value used in the insns table below. When there is more than one
11058 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11059 holds variant (1).
11060 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11061#define T16_32_TAB \
21d799b5
NC
11062 X(_adc, 4140, eb400000), \
11063 X(_adcs, 4140, eb500000), \
11064 X(_add, 1c00, eb000000), \
11065 X(_adds, 1c00, eb100000), \
11066 X(_addi, 0000, f1000000), \
11067 X(_addis, 0000, f1100000), \
11068 X(_add_pc,000f, f20f0000), \
11069 X(_add_sp,000d, f10d0000), \
11070 X(_adr, 000f, f20f0000), \
11071 X(_and, 4000, ea000000), \
11072 X(_ands, 4000, ea100000), \
11073 X(_asr, 1000, fa40f000), \
11074 X(_asrs, 1000, fa50f000), \
11075 X(_b, e000, f000b000), \
11076 X(_bcond, d000, f0008000), \
4389b29a 11077 X(_bf, 0000, f040e001), \
f6b2b12d 11078 X(_bfcsel,0000, f000e001), \
f1c7f421 11079 X(_bfx, 0000, f060e001), \
65d1bc05 11080 X(_bfl, 0000, f000c001), \
f1c7f421 11081 X(_bflx, 0000, f070e001), \
21d799b5
NC
11082 X(_bic, 4380, ea200000), \
11083 X(_bics, 4380, ea300000), \
11084 X(_cmn, 42c0, eb100f00), \
11085 X(_cmp, 2800, ebb00f00), \
11086 X(_cpsie, b660, f3af8400), \
11087 X(_cpsid, b670, f3af8600), \
11088 X(_cpy, 4600, ea4f0000), \
11089 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11090 X(_dls, 0000, f040e001), \
21d799b5
NC
11091 X(_eor, 4040, ea800000), \
11092 X(_eors, 4040, ea900000), \
11093 X(_inc_sp,00dd, f10d0d00), \
11094 X(_ldmia, c800, e8900000), \
11095 X(_ldr, 6800, f8500000), \
11096 X(_ldrb, 7800, f8100000), \
11097 X(_ldrh, 8800, f8300000), \
11098 X(_ldrsb, 5600, f9100000), \
11099 X(_ldrsh, 5e00, f9300000), \
11100 X(_ldr_pc,4800, f85f0000), \
11101 X(_ldr_pc2,4800, f85f0000), \
11102 X(_ldr_sp,9800, f85d0000), \
60f993ce 11103 X(_le, 0000, f00fc001), \
21d799b5
NC
11104 X(_lsl, 0000, fa00f000), \
11105 X(_lsls, 0000, fa10f000), \
11106 X(_lsr, 0800, fa20f000), \
11107 X(_lsrs, 0800, fa30f000), \
11108 X(_mov, 2000, ea4f0000), \
11109 X(_movs, 2000, ea5f0000), \
11110 X(_mul, 4340, fb00f000), \
11111 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11112 X(_mvn, 43c0, ea6f0000), \
11113 X(_mvns, 43c0, ea7f0000), \
11114 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11115 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11116 X(_orr, 4300, ea400000), \
11117 X(_orrs, 4300, ea500000), \
11118 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11119 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11120 X(_rev, ba00, fa90f080), \
11121 X(_rev16, ba40, fa90f090), \
11122 X(_revsh, bac0, fa90f0b0), \
11123 X(_ror, 41c0, fa60f000), \
11124 X(_rors, 41c0, fa70f000), \
11125 X(_sbc, 4180, eb600000), \
11126 X(_sbcs, 4180, eb700000), \
11127 X(_stmia, c000, e8800000), \
11128 X(_str, 6000, f8400000), \
11129 X(_strb, 7000, f8000000), \
11130 X(_strh, 8000, f8200000), \
11131 X(_str_sp,9000, f84d0000), \
11132 X(_sub, 1e00, eba00000), \
11133 X(_subs, 1e00, ebb00000), \
11134 X(_subi, 8000, f1a00000), \
11135 X(_subis, 8000, f1b00000), \
11136 X(_sxtb, b240, fa4ff080), \
11137 X(_sxth, b200, fa0ff080), \
11138 X(_tst, 4200, ea100f00), \
11139 X(_uxtb, b2c0, fa5ff080), \
11140 X(_uxth, b280, fa1ff080), \
11141 X(_nop, bf00, f3af8000), \
11142 X(_yield, bf10, f3af8001), \
11143 X(_wfe, bf20, f3af8002), \
11144 X(_wfi, bf30, f3af8003), \
60f993ce 11145 X(_wls, 0000, f040c001), \
53c4b28b 11146 X(_sev, bf40, f3af8004), \
74db7efb
NC
11147 X(_sevl, bf50, f3af8005), \
11148 X(_udf, de00, f7f0a000)
c19d1205
ZW
11149
11150/* To catch errors in encoding functions, the codes are all offset by
11151 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11152 as 16-bit instructions. */
21d799b5 11153#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11154enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11155#undef X
11156
11157#define X(a,b,c) 0x##b
11158static const unsigned short thumb_op16[] = { T16_32_TAB };
11159#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11160#undef X
11161
11162#define X(a,b,c) 0x##c
11163static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11164#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11165#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11166#undef X
11167#undef T16_32_TAB
11168
11169/* Thumb instruction encoders, in alphabetical order. */
11170
92e90b6e 11171/* ADDW or SUBW. */
c921be7d 11172
92e90b6e
PB
11173static void
11174do_t_add_sub_w (void)
11175{
11176 int Rd, Rn;
11177
11178 Rd = inst.operands[0].reg;
11179 Rn = inst.operands[1].reg;
11180
539d4391
NC
11181 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11182 is the SP-{plus,minus}-immediate form of the instruction. */
11183 if (Rn == REG_SP)
11184 constraint (Rd == REG_PC, BAD_PC);
11185 else
11186 reject_bad_reg (Rd);
fdfde340 11187
92e90b6e 11188 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11189 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11190}
11191
c19d1205 11192/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11193 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11194
11195static void
11196do_t_add_sub (void)
11197{
11198 int Rd, Rs, Rn;
11199
11200 Rd = inst.operands[0].reg;
11201 Rs = (inst.operands[1].present
11202 ? inst.operands[1].reg /* Rd, Rs, foo */
11203 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11204
e07e6e58 11205 if (Rd == REG_PC)
5ee91343 11206 set_pred_insn_type_last ();
e07e6e58 11207
c19d1205
ZW
11208 if (unified_syntax)
11209 {
0110f2b8
PB
11210 bfd_boolean flags;
11211 bfd_boolean narrow;
11212 int opcode;
11213
11214 flags = (inst.instruction == T_MNEM_adds
11215 || inst.instruction == T_MNEM_subs);
11216 if (flags)
5ee91343 11217 narrow = !in_pred_block ();
0110f2b8 11218 else
5ee91343 11219 narrow = in_pred_block ();
c19d1205 11220 if (!inst.operands[2].isreg)
b99bd4ef 11221 {
16805f35
PB
11222 int add;
11223
5c8ed6a4
JW
11224 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11225 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11226
16805f35
PB
11227 add = (inst.instruction == T_MNEM_add
11228 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11229 opcode = 0;
11230 if (inst.size_req != 4)
11231 {
0110f2b8 11232 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11233 appropriate. */
0110f2b8
PB
11234 if (Rd == REG_SP && Rs == REG_SP && !flags)
11235 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11236 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11237 opcode = T_MNEM_add_sp;
11238 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11239 opcode = T_MNEM_add_pc;
11240 else if (Rd <= 7 && Rs <= 7 && narrow)
11241 {
11242 if (flags)
11243 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11244 else
11245 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11246 }
11247 if (opcode)
11248 {
11249 inst.instruction = THUMB_OP16(opcode);
11250 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11251 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11252 || (inst.relocs[0].type
11253 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11254 {
11255 if (inst.size_req == 2)
e2b0ab59 11256 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11257 else
11258 inst.relax = opcode;
11259 }
0110f2b8
PB
11260 }
11261 else
11262 constraint (inst.size_req == 2, BAD_HIREG);
11263 }
11264 if (inst.size_req == 4
11265 || (inst.size_req != 2 && !opcode))
11266 {
e2b0ab59
AV
11267 constraint ((inst.relocs[0].type
11268 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11269 && (inst.relocs[0].type
11270 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11271 THUMB1_RELOC_ONLY);
efd81785
PB
11272 if (Rd == REG_PC)
11273 {
fdfde340 11274 constraint (add, BAD_PC);
efd81785
PB
11275 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11276 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11277 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11278 _("expression too complex"));
e2b0ab59
AV
11279 constraint (inst.relocs[0].exp.X_add_number < 0
11280 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11281 _("immediate value out of range"));
11282 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11283 | inst.relocs[0].exp.X_add_number;
11284 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11285 return;
11286 }
11287 else if (Rs == REG_PC)
16805f35
PB
11288 {
11289 /* Always use addw/subw. */
11290 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11291 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11292 }
11293 else
11294 {
11295 inst.instruction = THUMB_OP32 (inst.instruction);
11296 inst.instruction = (inst.instruction & 0xe1ffffff)
11297 | 0x10000000;
11298 if (flags)
e2b0ab59 11299 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11300 else
e2b0ab59 11301 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11302 }
dc4503c6
PB
11303 inst.instruction |= Rd << 8;
11304 inst.instruction |= Rs << 16;
0110f2b8 11305 }
b99bd4ef 11306 }
c19d1205
ZW
11307 else
11308 {
e2b0ab59 11309 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11310 unsigned int shift = inst.operands[2].shift_kind;
11311
c19d1205
ZW
11312 Rn = inst.operands[2].reg;
11313 /* See if we can do this with a 16-bit instruction. */
11314 if (!inst.operands[2].shifted && inst.size_req != 4)
11315 {
e27ec89e
PB
11316 if (Rd > 7 || Rs > 7 || Rn > 7)
11317 narrow = FALSE;
11318
11319 if (narrow)
c19d1205 11320 {
e27ec89e
PB
11321 inst.instruction = ((inst.instruction == T_MNEM_adds
11322 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11323 ? T_OPCODE_ADD_R3
11324 : T_OPCODE_SUB_R3);
11325 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11326 return;
11327 }
b99bd4ef 11328
7e806470 11329 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11330 {
7e806470
PB
11331 /* Thumb-1 cores (except v6-M) require at least one high
11332 register in a narrow non flag setting add. */
11333 if (Rd > 7 || Rn > 7
11334 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11335 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11336 {
7e806470
PB
11337 if (Rd == Rn)
11338 {
11339 Rn = Rs;
11340 Rs = Rd;
11341 }
c19d1205
ZW
11342 inst.instruction = T_OPCODE_ADD_HI;
11343 inst.instruction |= (Rd & 8) << 4;
11344 inst.instruction |= (Rd & 7);
11345 inst.instruction |= Rn << 3;
11346 return;
11347 }
c19d1205
ZW
11348 }
11349 }
c921be7d 11350
fdfde340 11351 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11352 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11353 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11354 constraint (Rs == REG_PC, BAD_PC);
11355 reject_bad_reg (Rn);
11356
c19d1205
ZW
11357 /* If we get here, it can't be done in 16 bits. */
11358 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11359 _("shift must be constant"));
11360 inst.instruction = THUMB_OP32 (inst.instruction);
11361 inst.instruction |= Rd << 8;
11362 inst.instruction |= Rs << 16;
5f4cb198
NC
11363 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11364 _("shift value over 3 not allowed in thumb mode"));
11365 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11366 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11367 encode_thumb32_shifted_operand (2);
11368 }
11369 }
11370 else
11371 {
11372 constraint (inst.instruction == T_MNEM_adds
11373 || inst.instruction == T_MNEM_subs,
11374 BAD_THUMB32);
b99bd4ef 11375
c19d1205 11376 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11377 {
c19d1205
ZW
11378 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11379 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11380 BAD_HIREG);
11381
11382 inst.instruction = (inst.instruction == T_MNEM_add
11383 ? 0x0000 : 0x8000);
11384 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11386 return;
11387 }
11388
c19d1205
ZW
11389 Rn = inst.operands[2].reg;
11390 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11391
c19d1205
ZW
11392 /* We now have Rd, Rs, and Rn set to registers. */
11393 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11394 {
c19d1205
ZW
11395 /* Can't do this for SUB. */
11396 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11397 inst.instruction = T_OPCODE_ADD_HI;
11398 inst.instruction |= (Rd & 8) << 4;
11399 inst.instruction |= (Rd & 7);
11400 if (Rs == Rd)
11401 inst.instruction |= Rn << 3;
11402 else if (Rn == Rd)
11403 inst.instruction |= Rs << 3;
11404 else
11405 constraint (1, _("dest must overlap one source register"));
11406 }
11407 else
11408 {
11409 inst.instruction = (inst.instruction == T_MNEM_add
11410 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11411 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11412 }
b99bd4ef 11413 }
b99bd4ef
NC
11414}
11415
c19d1205
ZW
11416static void
11417do_t_adr (void)
11418{
fdfde340
JM
11419 unsigned Rd;
11420
11421 Rd = inst.operands[0].reg;
11422 reject_bad_reg (Rd);
11423
11424 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11425 {
11426 /* Defer to section relaxation. */
11427 inst.relax = inst.instruction;
11428 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11429 inst.instruction |= Rd << 4;
0110f2b8
PB
11430 }
11431 else if (unified_syntax && inst.size_req != 2)
e9f89963 11432 {
0110f2b8 11433 /* Generate a 32-bit opcode. */
e9f89963 11434 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11435 inst.instruction |= Rd << 8;
e2b0ab59
AV
11436 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11437 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11438 }
11439 else
11440 {
0110f2b8 11441 /* Generate a 16-bit opcode. */
e9f89963 11442 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11444 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11445 inst.relocs[0].pc_rel = 1;
fdfde340 11446 inst.instruction |= Rd << 4;
e9f89963 11447 }
52a86f84 11448
e2b0ab59
AV
11449 if (inst.relocs[0].exp.X_op == O_symbol
11450 && inst.relocs[0].exp.X_add_symbol != NULL
11451 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11452 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11453 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11454}
b99bd4ef 11455
c19d1205
ZW
11456/* Arithmetic instructions for which there is just one 16-bit
11457 instruction encoding, and it allows only two low registers.
11458 For maximal compatibility with ARM syntax, we allow three register
11459 operands even when Thumb-32 instructions are not available, as long
11460 as the first two are identical. For instance, both "sbc r0,r1" and
11461 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11462static void
c19d1205 11463do_t_arit3 (void)
b99bd4ef 11464{
c19d1205 11465 int Rd, Rs, Rn;
b99bd4ef 11466
c19d1205
ZW
11467 Rd = inst.operands[0].reg;
11468 Rs = (inst.operands[1].present
11469 ? inst.operands[1].reg /* Rd, Rs, foo */
11470 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11471 Rn = inst.operands[2].reg;
b99bd4ef 11472
fdfde340
JM
11473 reject_bad_reg (Rd);
11474 reject_bad_reg (Rs);
11475 if (inst.operands[2].isreg)
11476 reject_bad_reg (Rn);
11477
c19d1205 11478 if (unified_syntax)
b99bd4ef 11479 {
c19d1205
ZW
11480 if (!inst.operands[2].isreg)
11481 {
11482 /* For an immediate, we always generate a 32-bit opcode;
11483 section relaxation will shrink it later if possible. */
11484 inst.instruction = THUMB_OP32 (inst.instruction);
11485 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11486 inst.instruction |= Rd << 8;
11487 inst.instruction |= Rs << 16;
e2b0ab59 11488 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11489 }
11490 else
11491 {
e27ec89e
PB
11492 bfd_boolean narrow;
11493
c19d1205 11494 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11495 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11496 narrow = !in_pred_block ();
e27ec89e 11497 else
5ee91343 11498 narrow = in_pred_block ();
e27ec89e
PB
11499
11500 if (Rd > 7 || Rn > 7 || Rs > 7)
11501 narrow = FALSE;
11502 if (inst.operands[2].shifted)
11503 narrow = FALSE;
11504 if (inst.size_req == 4)
11505 narrow = FALSE;
11506
11507 if (narrow
c19d1205
ZW
11508 && Rd == Rs)
11509 {
11510 inst.instruction = THUMB_OP16 (inst.instruction);
11511 inst.instruction |= Rd;
11512 inst.instruction |= Rn << 3;
11513 return;
11514 }
b99bd4ef 11515
c19d1205
ZW
11516 /* If we get here, it can't be done in 16 bits. */
11517 constraint (inst.operands[2].shifted
11518 && inst.operands[2].immisreg,
11519 _("shift must be constant"));
11520 inst.instruction = THUMB_OP32 (inst.instruction);
11521 inst.instruction |= Rd << 8;
11522 inst.instruction |= Rs << 16;
11523 encode_thumb32_shifted_operand (2);
11524 }
a737bd4d 11525 }
c19d1205 11526 else
b99bd4ef 11527 {
c19d1205
ZW
11528 /* On its face this is a lie - the instruction does set the
11529 flags. However, the only supported mnemonic in this mode
11530 says it doesn't. */
11531 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11532
c19d1205
ZW
11533 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11534 _("unshifted register required"));
11535 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11536 constraint (Rd != Rs,
11537 _("dest and source1 must be the same register"));
a737bd4d 11538
c19d1205
ZW
11539 inst.instruction = THUMB_OP16 (inst.instruction);
11540 inst.instruction |= Rd;
11541 inst.instruction |= Rn << 3;
b99bd4ef 11542 }
a737bd4d 11543}
b99bd4ef 11544
c19d1205
ZW
11545/* Similarly, but for instructions where the arithmetic operation is
11546 commutative, so we can allow either of them to be different from
11547 the destination operand in a 16-bit instruction. For instance, all
11548 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11549 accepted. */
11550static void
11551do_t_arit3c (void)
a737bd4d 11552{
c19d1205 11553 int Rd, Rs, Rn;
b99bd4ef 11554
c19d1205
ZW
11555 Rd = inst.operands[0].reg;
11556 Rs = (inst.operands[1].present
11557 ? inst.operands[1].reg /* Rd, Rs, foo */
11558 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11559 Rn = inst.operands[2].reg;
c921be7d 11560
fdfde340
JM
11561 reject_bad_reg (Rd);
11562 reject_bad_reg (Rs);
11563 if (inst.operands[2].isreg)
11564 reject_bad_reg (Rn);
a737bd4d 11565
c19d1205 11566 if (unified_syntax)
a737bd4d 11567 {
c19d1205 11568 if (!inst.operands[2].isreg)
b99bd4ef 11569 {
c19d1205
ZW
11570 /* For an immediate, we always generate a 32-bit opcode;
11571 section relaxation will shrink it later if possible. */
11572 inst.instruction = THUMB_OP32 (inst.instruction);
11573 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11574 inst.instruction |= Rd << 8;
11575 inst.instruction |= Rs << 16;
e2b0ab59 11576 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11577 }
c19d1205 11578 else
a737bd4d 11579 {
e27ec89e
PB
11580 bfd_boolean narrow;
11581
c19d1205 11582 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11583 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11584 narrow = !in_pred_block ();
e27ec89e 11585 else
5ee91343 11586 narrow = in_pred_block ();
e27ec89e
PB
11587
11588 if (Rd > 7 || Rn > 7 || Rs > 7)
11589 narrow = FALSE;
11590 if (inst.operands[2].shifted)
11591 narrow = FALSE;
11592 if (inst.size_req == 4)
11593 narrow = FALSE;
11594
11595 if (narrow)
a737bd4d 11596 {
c19d1205 11597 if (Rd == Rs)
a737bd4d 11598 {
c19d1205
ZW
11599 inst.instruction = THUMB_OP16 (inst.instruction);
11600 inst.instruction |= Rd;
11601 inst.instruction |= Rn << 3;
11602 return;
a737bd4d 11603 }
c19d1205 11604 if (Rd == Rn)
a737bd4d 11605 {
c19d1205
ZW
11606 inst.instruction = THUMB_OP16 (inst.instruction);
11607 inst.instruction |= Rd;
11608 inst.instruction |= Rs << 3;
11609 return;
a737bd4d
NC
11610 }
11611 }
c19d1205
ZW
11612
11613 /* If we get here, it can't be done in 16 bits. */
11614 constraint (inst.operands[2].shifted
11615 && inst.operands[2].immisreg,
11616 _("shift must be constant"));
11617 inst.instruction = THUMB_OP32 (inst.instruction);
11618 inst.instruction |= Rd << 8;
11619 inst.instruction |= Rs << 16;
11620 encode_thumb32_shifted_operand (2);
a737bd4d 11621 }
b99bd4ef 11622 }
c19d1205
ZW
11623 else
11624 {
11625 /* On its face this is a lie - the instruction does set the
11626 flags. However, the only supported mnemonic in this mode
11627 says it doesn't. */
11628 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11629
c19d1205
ZW
11630 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11631 _("unshifted register required"));
11632 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11633
11634 inst.instruction = THUMB_OP16 (inst.instruction);
11635 inst.instruction |= Rd;
11636
11637 if (Rd == Rs)
11638 inst.instruction |= Rn << 3;
11639 else if (Rd == Rn)
11640 inst.instruction |= Rs << 3;
11641 else
11642 constraint (1, _("dest must overlap one source register"));
11643 }
a737bd4d
NC
11644}
11645
c19d1205
ZW
11646static void
11647do_t_bfc (void)
a737bd4d 11648{
fdfde340 11649 unsigned Rd;
c19d1205
ZW
11650 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11651 constraint (msb > 32, _("bit-field extends past end of register"));
11652 /* The instruction encoding stores the LSB and MSB,
11653 not the LSB and width. */
fdfde340
JM
11654 Rd = inst.operands[0].reg;
11655 reject_bad_reg (Rd);
11656 inst.instruction |= Rd << 8;
c19d1205
ZW
11657 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11658 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11659 inst.instruction |= msb - 1;
b99bd4ef
NC
11660}
11661
c19d1205
ZW
11662static void
11663do_t_bfi (void)
b99bd4ef 11664{
fdfde340 11665 int Rd, Rn;
c19d1205 11666 unsigned int msb;
b99bd4ef 11667
fdfde340
JM
11668 Rd = inst.operands[0].reg;
11669 reject_bad_reg (Rd);
11670
c19d1205
ZW
11671 /* #0 in second position is alternative syntax for bfc, which is
11672 the same instruction but with REG_PC in the Rm field. */
11673 if (!inst.operands[1].isreg)
fdfde340
JM
11674 Rn = REG_PC;
11675 else
11676 {
11677 Rn = inst.operands[1].reg;
11678 reject_bad_reg (Rn);
11679 }
b99bd4ef 11680
c19d1205
ZW
11681 msb = inst.operands[2].imm + inst.operands[3].imm;
11682 constraint (msb > 32, _("bit-field extends past end of register"));
11683 /* The instruction encoding stores the LSB and MSB,
11684 not the LSB and width. */
fdfde340
JM
11685 inst.instruction |= Rd << 8;
11686 inst.instruction |= Rn << 16;
c19d1205
ZW
11687 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11688 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11689 inst.instruction |= msb - 1;
b99bd4ef
NC
11690}
11691
c19d1205
ZW
11692static void
11693do_t_bfx (void)
b99bd4ef 11694{
fdfde340
JM
11695 unsigned Rd, Rn;
11696
11697 Rd = inst.operands[0].reg;
11698 Rn = inst.operands[1].reg;
11699
11700 reject_bad_reg (Rd);
11701 reject_bad_reg (Rn);
11702
c19d1205
ZW
11703 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11704 _("bit-field extends past end of register"));
fdfde340
JM
11705 inst.instruction |= Rd << 8;
11706 inst.instruction |= Rn << 16;
c19d1205
ZW
11707 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11708 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11709 inst.instruction |= inst.operands[3].imm - 1;
11710}
b99bd4ef 11711
c19d1205
ZW
11712/* ARM V5 Thumb BLX (argument parse)
11713 BLX <target_addr> which is BLX(1)
11714 BLX <Rm> which is BLX(2)
11715 Unfortunately, there are two different opcodes for this mnemonic.
11716 So, the insns[].value is not used, and the code here zaps values
11717 into inst.instruction.
b99bd4ef 11718
c19d1205
ZW
11719 ??? How to take advantage of the additional two bits of displacement
11720 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11721
c19d1205
ZW
11722static void
11723do_t_blx (void)
11724{
5ee91343 11725 set_pred_insn_type_last ();
e07e6e58 11726
c19d1205 11727 if (inst.operands[0].isreg)
fdfde340
JM
11728 {
11729 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11730 /* We have a register, so this is BLX(2). */
11731 inst.instruction |= inst.operands[0].reg << 3;
11732 }
b99bd4ef
NC
11733 else
11734 {
c19d1205 11735 /* No register. This must be BLX(1). */
2fc8bdac 11736 inst.instruction = 0xf000e800;
0855e32b 11737 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11738 }
11739}
11740
c19d1205
ZW
11741static void
11742do_t_branch (void)
b99bd4ef 11743{
0110f2b8 11744 int opcode;
dfa9f0d5 11745 int cond;
2fe88214 11746 bfd_reloc_code_real_type reloc;
dfa9f0d5 11747
e07e6e58 11748 cond = inst.cond;
5ee91343 11749 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11750
5ee91343 11751 if (in_pred_block ())
dfa9f0d5
PB
11752 {
11753 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11754 branches. */
dfa9f0d5 11755 cond = COND_ALWAYS;
dfa9f0d5
PB
11756 }
11757 else
11758 cond = inst.cond;
11759
11760 if (cond != COND_ALWAYS)
0110f2b8
PB
11761 opcode = T_MNEM_bcond;
11762 else
11763 opcode = inst.instruction;
11764
12d6b0b7
RS
11765 if (unified_syntax
11766 && (inst.size_req == 4
10960bfb
PB
11767 || (inst.size_req != 2
11768 && (inst.operands[0].hasreloc
e2b0ab59 11769 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11770 {
0110f2b8 11771 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11772 if (cond == COND_ALWAYS)
9ae92b05 11773 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11774 else
11775 {
ff8646ee
TP
11776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11777 _("selected architecture does not support "
11778 "wide conditional branch instruction"));
11779
9c2799c2 11780 gas_assert (cond != 0xF);
dfa9f0d5 11781 inst.instruction |= cond << 22;
9ae92b05 11782 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11783 }
11784 }
b99bd4ef
NC
11785 else
11786 {
0110f2b8 11787 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11788 if (cond == COND_ALWAYS)
9ae92b05 11789 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11790 else
b99bd4ef 11791 {
dfa9f0d5 11792 inst.instruction |= cond << 8;
9ae92b05 11793 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11794 }
0110f2b8
PB
11795 /* Allow section relaxation. */
11796 if (unified_syntax && inst.size_req != 2)
11797 inst.relax = opcode;
b99bd4ef 11798 }
e2b0ab59
AV
11799 inst.relocs[0].type = reloc;
11800 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11801}
11802
8884b720 11803/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11804 between the two is the maximum immediate allowed - which is passed in
8884b720 11805 RANGE. */
b99bd4ef 11806static void
8884b720 11807do_t_bkpt_hlt1 (int range)
b99bd4ef 11808{
dfa9f0d5
PB
11809 constraint (inst.cond != COND_ALWAYS,
11810 _("instruction is always unconditional"));
c19d1205 11811 if (inst.operands[0].present)
b99bd4ef 11812 {
8884b720 11813 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11814 _("immediate value out of range"));
11815 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11816 }
8884b720 11817
5ee91343 11818 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11819}
11820
11821static void
11822do_t_hlt (void)
11823{
11824 do_t_bkpt_hlt1 (63);
11825}
11826
11827static void
11828do_t_bkpt (void)
11829{
11830 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11831}
11832
11833static void
c19d1205 11834do_t_branch23 (void)
b99bd4ef 11835{
5ee91343 11836 set_pred_insn_type_last ();
0855e32b 11837 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11838
0855e32b
NS
11839 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11840 this file. We used to simply ignore the PLT reloc type here --
11841 the branch encoding is now needed to deal with TLSCALL relocs.
11842 So if we see a PLT reloc now, put it back to how it used to be to
11843 keep the preexisting behaviour. */
e2b0ab59
AV
11844 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11845 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11846
4343666d 11847#if defined(OBJ_COFF)
c19d1205
ZW
11848 /* If the destination of the branch is a defined symbol which does not have
11849 the THUMB_FUNC attribute, then we must be calling a function which has
11850 the (interfacearm) attribute. We look for the Thumb entry point to that
11851 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11852 if ( inst.relocs[0].exp.X_op == O_symbol
11853 && inst.relocs[0].exp.X_add_symbol != NULL
11854 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11855 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11856 inst.relocs[0].exp.X_add_symbol
11857 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11858#endif
90e4755a
RE
11859}
11860
11861static void
c19d1205 11862do_t_bx (void)
90e4755a 11863{
5ee91343 11864 set_pred_insn_type_last ();
c19d1205
ZW
11865 inst.instruction |= inst.operands[0].reg << 3;
11866 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11867 should cause the alignment to be checked once it is known. This is
11868 because BX PC only works if the instruction is word aligned. */
11869}
90e4755a 11870
c19d1205
ZW
11871static void
11872do_t_bxj (void)
11873{
fdfde340 11874 int Rm;
90e4755a 11875
5ee91343 11876 set_pred_insn_type_last ();
fdfde340
JM
11877 Rm = inst.operands[0].reg;
11878 reject_bad_reg (Rm);
11879 inst.instruction |= Rm << 16;
90e4755a
RE
11880}
11881
11882static void
c19d1205 11883do_t_clz (void)
90e4755a 11884{
fdfde340
JM
11885 unsigned Rd;
11886 unsigned Rm;
11887
11888 Rd = inst.operands[0].reg;
11889 Rm = inst.operands[1].reg;
11890
11891 reject_bad_reg (Rd);
11892 reject_bad_reg (Rm);
11893
11894 inst.instruction |= Rd << 8;
11895 inst.instruction |= Rm << 16;
11896 inst.instruction |= Rm;
c19d1205 11897}
90e4755a 11898
91d8b670
JG
11899static void
11900do_t_csdb (void)
11901{
5ee91343 11902 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11903}
11904
dfa9f0d5
PB
11905static void
11906do_t_cps (void)
11907{
5ee91343 11908 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11909 inst.instruction |= inst.operands[0].imm;
11910}
11911
c19d1205
ZW
11912static void
11913do_t_cpsi (void)
11914{
5ee91343 11915 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11916 if (unified_syntax
62b3e311
PB
11917 && (inst.operands[1].present || inst.size_req == 4)
11918 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11919 {
c19d1205
ZW
11920 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11921 inst.instruction = 0xf3af8000;
11922 inst.instruction |= imod << 9;
11923 inst.instruction |= inst.operands[0].imm << 5;
11924 if (inst.operands[1].present)
11925 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11926 }
c19d1205 11927 else
90e4755a 11928 {
62b3e311
PB
11929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11930 && (inst.operands[0].imm & 4),
11931 _("selected processor does not support 'A' form "
11932 "of this instruction"));
11933 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11934 _("Thumb does not support the 2-argument "
11935 "form of this instruction"));
11936 inst.instruction |= inst.operands[0].imm;
90e4755a 11937 }
90e4755a
RE
11938}
11939
c19d1205
ZW
11940/* THUMB CPY instruction (argument parse). */
11941
90e4755a 11942static void
c19d1205 11943do_t_cpy (void)
90e4755a 11944{
c19d1205 11945 if (inst.size_req == 4)
90e4755a 11946 {
c19d1205
ZW
11947 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11948 inst.instruction |= inst.operands[0].reg << 8;
11949 inst.instruction |= inst.operands[1].reg;
90e4755a 11950 }
c19d1205 11951 else
90e4755a 11952 {
c19d1205
ZW
11953 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11954 inst.instruction |= (inst.operands[0].reg & 0x7);
11955 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11956 }
90e4755a
RE
11957}
11958
90e4755a 11959static void
25fe350b 11960do_t_cbz (void)
90e4755a 11961{
5ee91343 11962 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
11963 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11964 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11965 inst.relocs[0].pc_rel = 1;
11966 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11967}
90e4755a 11968
62b3e311
PB
11969static void
11970do_t_dbg (void)
11971{
11972 inst.instruction |= inst.operands[0].imm;
11973}
11974
11975static void
11976do_t_div (void)
11977{
fdfde340
JM
11978 unsigned Rd, Rn, Rm;
11979
11980 Rd = inst.operands[0].reg;
11981 Rn = (inst.operands[1].present
11982 ? inst.operands[1].reg : Rd);
11983 Rm = inst.operands[2].reg;
11984
11985 reject_bad_reg (Rd);
11986 reject_bad_reg (Rn);
11987 reject_bad_reg (Rm);
11988
11989 inst.instruction |= Rd << 8;
11990 inst.instruction |= Rn << 16;
11991 inst.instruction |= Rm;
62b3e311
PB
11992}
11993
c19d1205
ZW
11994static void
11995do_t_hint (void)
11996{
11997 if (unified_syntax && inst.size_req == 4)
11998 inst.instruction = THUMB_OP32 (inst.instruction);
11999 else
12000 inst.instruction = THUMB_OP16 (inst.instruction);
12001}
90e4755a 12002
c19d1205
ZW
12003static void
12004do_t_it (void)
12005{
12006 unsigned int cond = inst.operands[0].imm;
e27ec89e 12007
5ee91343
AV
12008 set_pred_insn_type (IT_INSN);
12009 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12010 now_pred.cc = cond;
12011 now_pred.warn_deprecated = FALSE;
12012 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12013
12014 /* If the condition is a negative condition, invert the mask. */
c19d1205 12015 if ((cond & 0x1) == 0x0)
90e4755a 12016 {
c19d1205 12017 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12018
c19d1205 12019 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12020 {
12021 /* No conversion needed. */
5ee91343 12022 now_pred.block_length = 1;
5a01bb1d 12023 }
c19d1205 12024 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12025 {
12026 mask ^= 0x8;
5ee91343 12027 now_pred.block_length = 2;
5a01bb1d 12028 }
e27ec89e 12029 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12030 {
12031 mask ^= 0xC;
5ee91343 12032 now_pred.block_length = 3;
5a01bb1d 12033 }
c19d1205 12034 else
5a01bb1d
MGD
12035 {
12036 mask ^= 0xE;
5ee91343 12037 now_pred.block_length = 4;
5a01bb1d 12038 }
90e4755a 12039
e27ec89e
PB
12040 inst.instruction &= 0xfff0;
12041 inst.instruction |= mask;
c19d1205 12042 }
90e4755a 12043
c19d1205
ZW
12044 inst.instruction |= cond << 4;
12045}
90e4755a 12046
3c707909
PB
12047/* Helper function used for both push/pop and ldm/stm. */
12048static void
4b5a202f
AV
12049encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12050 bfd_boolean writeback)
3c707909 12051{
4b5a202f 12052 bfd_boolean load, store;
3c707909 12053
4b5a202f
AV
12054 gas_assert (base != -1 || !do_io);
12055 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12056 store = do_io && !load;
3c707909
PB
12057
12058 if (mask & (1 << 13))
12059 inst.error = _("SP not allowed in register list");
1e5b0379 12060
4b5a202f 12061 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12062 && writeback)
12063 inst.error = _("having the base register in the register list when "
12064 "using write back is UNPREDICTABLE");
12065
3c707909
PB
12066 if (load)
12067 {
e07e6e58 12068 if (mask & (1 << 15))
477330fc
RM
12069 {
12070 if (mask & (1 << 14))
12071 inst.error = _("LR and PC should not both be in register list");
12072 else
5ee91343 12073 set_pred_insn_type_last ();
477330fc 12074 }
3c707909 12075 }
4b5a202f 12076 else if (store)
3c707909
PB
12077 {
12078 if (mask & (1 << 15))
12079 inst.error = _("PC not allowed in register list");
3c707909
PB
12080 }
12081
4b5a202f 12082 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12083 {
12084 /* Single register transfers implemented as str/ldr. */
12085 if (writeback)
12086 {
12087 if (inst.instruction & (1 << 23))
12088 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12089 else
12090 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12091 }
12092 else
12093 {
12094 if (inst.instruction & (1 << 23))
12095 inst.instruction = 0x00800000; /* ia -> [base] */
12096 else
12097 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12098 }
12099
12100 inst.instruction |= 0xf8400000;
12101 if (load)
12102 inst.instruction |= 0x00100000;
12103
5f4273c7 12104 mask = ffs (mask) - 1;
3c707909
PB
12105 mask <<= 12;
12106 }
12107 else if (writeback)
12108 inst.instruction |= WRITE_BACK;
12109
12110 inst.instruction |= mask;
4b5a202f
AV
12111 if (do_io)
12112 inst.instruction |= base << 16;
3c707909
PB
12113}
12114
c19d1205
ZW
12115static void
12116do_t_ldmstm (void)
12117{
12118 /* This really doesn't seem worth it. */
e2b0ab59 12119 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12120 _("expression too complex"));
12121 constraint (inst.operands[1].writeback,
12122 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12123
c19d1205
ZW
12124 if (unified_syntax)
12125 {
3c707909
PB
12126 bfd_boolean narrow;
12127 unsigned mask;
12128
12129 narrow = FALSE;
c19d1205
ZW
12130 /* See if we can use a 16-bit instruction. */
12131 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12132 && inst.size_req != 4
3c707909 12133 && !(inst.operands[1].imm & ~0xff))
90e4755a 12134 {
3c707909 12135 mask = 1 << inst.operands[0].reg;
90e4755a 12136
eab4f823 12137 if (inst.operands[0].reg <= 7)
90e4755a 12138 {
3c707909 12139 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12140 ? inst.operands[0].writeback
12141 : (inst.operands[0].writeback
12142 == !(inst.operands[1].imm & mask)))
477330fc 12143 {
eab4f823
MGD
12144 if (inst.instruction == T_MNEM_stmia
12145 && (inst.operands[1].imm & mask)
12146 && (inst.operands[1].imm & (mask - 1)))
12147 as_warn (_("value stored for r%d is UNKNOWN"),
12148 inst.operands[0].reg);
3c707909 12149
eab4f823
MGD
12150 inst.instruction = THUMB_OP16 (inst.instruction);
12151 inst.instruction |= inst.operands[0].reg << 8;
12152 inst.instruction |= inst.operands[1].imm;
12153 narrow = TRUE;
12154 }
12155 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12156 {
12157 /* This means 1 register in reg list one of 3 situations:
12158 1. Instruction is stmia, but without writeback.
12159 2. lmdia without writeback, but with Rn not in
477330fc 12160 reglist.
eab4f823
MGD
12161 3. ldmia with writeback, but with Rn in reglist.
12162 Case 3 is UNPREDICTABLE behaviour, so we handle
12163 case 1 and 2 which can be converted into a 16-bit
12164 str or ldr. The SP cases are handled below. */
12165 unsigned long opcode;
12166 /* First, record an error for Case 3. */
12167 if (inst.operands[1].imm & mask
12168 && inst.operands[0].writeback)
fa94de6b 12169 inst.error =
eab4f823
MGD
12170 _("having the base register in the register list when "
12171 "using write back is UNPREDICTABLE");
fa94de6b
RM
12172
12173 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12174 : T_MNEM_ldr);
12175 inst.instruction = THUMB_OP16 (opcode);
12176 inst.instruction |= inst.operands[0].reg << 3;
12177 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12178 narrow = TRUE;
12179 }
90e4755a 12180 }
eab4f823 12181 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12182 {
eab4f823
MGD
12183 if (inst.operands[0].writeback)
12184 {
fa94de6b 12185 inst.instruction =
eab4f823 12186 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12187 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12188 inst.instruction |= inst.operands[1].imm;
477330fc 12189 narrow = TRUE;
eab4f823
MGD
12190 }
12191 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12192 {
fa94de6b 12193 inst.instruction =
eab4f823 12194 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12195 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12196 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12197 narrow = TRUE;
eab4f823 12198 }
90e4755a 12199 }
3c707909
PB
12200 }
12201
12202 if (!narrow)
12203 {
c19d1205
ZW
12204 if (inst.instruction < 0xffff)
12205 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12206
4b5a202f
AV
12207 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12208 inst.operands[1].imm,
12209 inst.operands[0].writeback);
90e4755a
RE
12210 }
12211 }
c19d1205 12212 else
90e4755a 12213 {
c19d1205
ZW
12214 constraint (inst.operands[0].reg > 7
12215 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12216 constraint (inst.instruction != T_MNEM_ldmia
12217 && inst.instruction != T_MNEM_stmia,
12218 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12219 if (inst.instruction == T_MNEM_stmia)
f03698e6 12220 {
c19d1205
ZW
12221 if (!inst.operands[0].writeback)
12222 as_warn (_("this instruction will write back the base register"));
12223 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12224 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12225 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12226 inst.operands[0].reg);
f03698e6 12227 }
c19d1205 12228 else
90e4755a 12229 {
c19d1205
ZW
12230 if (!inst.operands[0].writeback
12231 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12232 as_warn (_("this instruction will write back the base register"));
12233 else if (inst.operands[0].writeback
12234 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12235 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12236 }
12237
c19d1205
ZW
12238 inst.instruction = THUMB_OP16 (inst.instruction);
12239 inst.instruction |= inst.operands[0].reg << 8;
12240 inst.instruction |= inst.operands[1].imm;
12241 }
12242}
e28cd48c 12243
c19d1205
ZW
12244static void
12245do_t_ldrex (void)
12246{
12247 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12248 || inst.operands[1].postind || inst.operands[1].writeback
12249 || inst.operands[1].immisreg || inst.operands[1].shifted
12250 || inst.operands[1].negative,
01cfc07f 12251 BAD_ADDR_MODE);
e28cd48c 12252
5be8be5d
DG
12253 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12254
c19d1205
ZW
12255 inst.instruction |= inst.operands[0].reg << 12;
12256 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12257 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12258}
e28cd48c 12259
c19d1205
ZW
12260static void
12261do_t_ldrexd (void)
12262{
12263 if (!inst.operands[1].present)
1cac9012 12264 {
c19d1205
ZW
12265 constraint (inst.operands[0].reg == REG_LR,
12266 _("r14 not allowed as first register "
12267 "when second register is omitted"));
12268 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12269 }
c19d1205
ZW
12270 constraint (inst.operands[0].reg == inst.operands[1].reg,
12271 BAD_OVERLAP);
b99bd4ef 12272
c19d1205
ZW
12273 inst.instruction |= inst.operands[0].reg << 12;
12274 inst.instruction |= inst.operands[1].reg << 8;
12275 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12276}
12277
12278static void
c19d1205 12279do_t_ldst (void)
b99bd4ef 12280{
0110f2b8
PB
12281 unsigned long opcode;
12282 int Rn;
12283
e07e6e58
NC
12284 if (inst.operands[0].isreg
12285 && !inst.operands[0].preind
12286 && inst.operands[0].reg == REG_PC)
5ee91343 12287 set_pred_insn_type_last ();
e07e6e58 12288
0110f2b8 12289 opcode = inst.instruction;
c19d1205 12290 if (unified_syntax)
b99bd4ef 12291 {
53365c0d
PB
12292 if (!inst.operands[1].isreg)
12293 {
12294 if (opcode <= 0xffff)
12295 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12296 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12297 return;
12298 }
0110f2b8
PB
12299 if (inst.operands[1].isreg
12300 && !inst.operands[1].writeback
c19d1205
ZW
12301 && !inst.operands[1].shifted && !inst.operands[1].postind
12302 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12303 && opcode <= 0xffff
12304 && inst.size_req != 4)
c19d1205 12305 {
0110f2b8
PB
12306 /* Insn may have a 16-bit form. */
12307 Rn = inst.operands[1].reg;
12308 if (inst.operands[1].immisreg)
12309 {
12310 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12311 /* [Rn, Rik] */
0110f2b8
PB
12312 if (Rn <= 7 && inst.operands[1].imm <= 7)
12313 goto op16;
5be8be5d
DG
12314 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12315 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12316 }
12317 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12318 && opcode != T_MNEM_ldrsb)
12319 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12320 || (Rn == REG_SP && opcode == T_MNEM_str))
12321 {
12322 /* [Rn, #const] */
12323 if (Rn > 7)
12324 {
12325 if (Rn == REG_PC)
12326 {
e2b0ab59 12327 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12328 opcode = T_MNEM_ldr_pc2;
12329 else
12330 opcode = T_MNEM_ldr_pc;
12331 }
12332 else
12333 {
12334 if (opcode == T_MNEM_ldr)
12335 opcode = T_MNEM_ldr_sp;
12336 else
12337 opcode = T_MNEM_str_sp;
12338 }
12339 inst.instruction = inst.operands[0].reg << 8;
12340 }
12341 else
12342 {
12343 inst.instruction = inst.operands[0].reg;
12344 inst.instruction |= inst.operands[1].reg << 3;
12345 }
12346 inst.instruction |= THUMB_OP16 (opcode);
12347 if (inst.size_req == 2)
e2b0ab59 12348 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12349 else
12350 inst.relax = opcode;
12351 return;
12352 }
c19d1205 12353 }
0110f2b8 12354 /* Definitely a 32-bit variant. */
5be8be5d 12355
8d67f500
NC
12356 /* Warning for Erratum 752419. */
12357 if (opcode == T_MNEM_ldr
12358 && inst.operands[0].reg == REG_SP
12359 && inst.operands[1].writeback == 1
12360 && !inst.operands[1].immisreg)
12361 {
12362 if (no_cpu_selected ()
12363 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12364 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12365 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12366 as_warn (_("This instruction may be unpredictable "
12367 "if executed on M-profile cores "
12368 "with interrupts enabled."));
12369 }
12370
5be8be5d 12371 /* Do some validations regarding addressing modes. */
1be5fd2e 12372 if (inst.operands[1].immisreg)
5be8be5d
DG
12373 reject_bad_reg (inst.operands[1].imm);
12374
1be5fd2e
NC
12375 constraint (inst.operands[1].writeback == 1
12376 && inst.operands[0].reg == inst.operands[1].reg,
12377 BAD_OVERLAP);
12378
0110f2b8 12379 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12380 inst.instruction |= inst.operands[0].reg << 12;
12381 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12382 check_ldr_r15_aligned ();
b99bd4ef
NC
12383 return;
12384 }
12385
c19d1205
ZW
12386 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12387
12388 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12389 {
c19d1205
ZW
12390 /* Only [Rn,Rm] is acceptable. */
12391 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12392 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12393 || inst.operands[1].postind || inst.operands[1].shifted
12394 || inst.operands[1].negative,
12395 _("Thumb does not support this addressing mode"));
12396 inst.instruction = THUMB_OP16 (inst.instruction);
12397 goto op16;
b99bd4ef 12398 }
5f4273c7 12399
c19d1205
ZW
12400 inst.instruction = THUMB_OP16 (inst.instruction);
12401 if (!inst.operands[1].isreg)
8335d6aa 12402 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12403 return;
b99bd4ef 12404
c19d1205
ZW
12405 constraint (!inst.operands[1].preind
12406 || inst.operands[1].shifted
12407 || inst.operands[1].writeback,
12408 _("Thumb does not support this addressing mode"));
12409 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12410 {
c19d1205
ZW
12411 constraint (inst.instruction & 0x0600,
12412 _("byte or halfword not valid for base register"));
12413 constraint (inst.operands[1].reg == REG_PC
12414 && !(inst.instruction & THUMB_LOAD_BIT),
12415 _("r15 based store not allowed"));
12416 constraint (inst.operands[1].immisreg,
12417 _("invalid base register for register offset"));
b99bd4ef 12418
c19d1205
ZW
12419 if (inst.operands[1].reg == REG_PC)
12420 inst.instruction = T_OPCODE_LDR_PC;
12421 else if (inst.instruction & THUMB_LOAD_BIT)
12422 inst.instruction = T_OPCODE_LDR_SP;
12423 else
12424 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12425
c19d1205 12426 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12427 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12428 return;
12429 }
90e4755a 12430
c19d1205
ZW
12431 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12432 if (!inst.operands[1].immisreg)
12433 {
12434 /* Immediate offset. */
12435 inst.instruction |= inst.operands[0].reg;
12436 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12437 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12438 return;
12439 }
90e4755a 12440
c19d1205
ZW
12441 /* Register offset. */
12442 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12443 constraint (inst.operands[1].negative,
12444 _("Thumb does not support this addressing mode"));
90e4755a 12445
c19d1205
ZW
12446 op16:
12447 switch (inst.instruction)
12448 {
12449 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12450 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12451 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12452 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12453 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12454 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12455 case 0x5600 /* ldrsb */:
12456 case 0x5e00 /* ldrsh */: break;
12457 default: abort ();
12458 }
90e4755a 12459
c19d1205
ZW
12460 inst.instruction |= inst.operands[0].reg;
12461 inst.instruction |= inst.operands[1].reg << 3;
12462 inst.instruction |= inst.operands[1].imm << 6;
12463}
90e4755a 12464
c19d1205
ZW
12465static void
12466do_t_ldstd (void)
12467{
12468 if (!inst.operands[1].present)
b99bd4ef 12469 {
c19d1205
ZW
12470 inst.operands[1].reg = inst.operands[0].reg + 1;
12471 constraint (inst.operands[0].reg == REG_LR,
12472 _("r14 not allowed here"));
bd340a04 12473 constraint (inst.operands[0].reg == REG_R12,
477330fc 12474 _("r12 not allowed here"));
b99bd4ef 12475 }
bd340a04
MGD
12476
12477 if (inst.operands[2].writeback
12478 && (inst.operands[0].reg == inst.operands[2].reg
12479 || inst.operands[1].reg == inst.operands[2].reg))
12480 as_warn (_("base register written back, and overlaps "
477330fc 12481 "one of transfer registers"));
bd340a04 12482
c19d1205
ZW
12483 inst.instruction |= inst.operands[0].reg << 12;
12484 inst.instruction |= inst.operands[1].reg << 8;
12485 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12486}
12487
c19d1205
ZW
12488static void
12489do_t_ldstt (void)
12490{
12491 inst.instruction |= inst.operands[0].reg << 12;
12492 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12493}
a737bd4d 12494
b99bd4ef 12495static void
c19d1205 12496do_t_mla (void)
b99bd4ef 12497{
fdfde340 12498 unsigned Rd, Rn, Rm, Ra;
c921be7d 12499
fdfde340
JM
12500 Rd = inst.operands[0].reg;
12501 Rn = inst.operands[1].reg;
12502 Rm = inst.operands[2].reg;
12503 Ra = inst.operands[3].reg;
12504
12505 reject_bad_reg (Rd);
12506 reject_bad_reg (Rn);
12507 reject_bad_reg (Rm);
12508 reject_bad_reg (Ra);
12509
12510 inst.instruction |= Rd << 8;
12511 inst.instruction |= Rn << 16;
12512 inst.instruction |= Rm;
12513 inst.instruction |= Ra << 12;
c19d1205 12514}
b99bd4ef 12515
c19d1205
ZW
12516static void
12517do_t_mlal (void)
12518{
fdfde340
JM
12519 unsigned RdLo, RdHi, Rn, Rm;
12520
12521 RdLo = inst.operands[0].reg;
12522 RdHi = inst.operands[1].reg;
12523 Rn = inst.operands[2].reg;
12524 Rm = inst.operands[3].reg;
12525
12526 reject_bad_reg (RdLo);
12527 reject_bad_reg (RdHi);
12528 reject_bad_reg (Rn);
12529 reject_bad_reg (Rm);
12530
12531 inst.instruction |= RdLo << 12;
12532 inst.instruction |= RdHi << 8;
12533 inst.instruction |= Rn << 16;
12534 inst.instruction |= Rm;
c19d1205 12535}
b99bd4ef 12536
c19d1205
ZW
12537static void
12538do_t_mov_cmp (void)
12539{
fdfde340
JM
12540 unsigned Rn, Rm;
12541
12542 Rn = inst.operands[0].reg;
12543 Rm = inst.operands[1].reg;
12544
e07e6e58 12545 if (Rn == REG_PC)
5ee91343 12546 set_pred_insn_type_last ();
e07e6e58 12547
c19d1205 12548 if (unified_syntax)
b99bd4ef 12549 {
c19d1205
ZW
12550 int r0off = (inst.instruction == T_MNEM_mov
12551 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12552 unsigned long opcode;
3d388997
PB
12553 bfd_boolean narrow;
12554 bfd_boolean low_regs;
12555
fdfde340 12556 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12557 opcode = inst.instruction;
5ee91343 12558 if (in_pred_block ())
0110f2b8 12559 narrow = opcode != T_MNEM_movs;
3d388997 12560 else
0110f2b8 12561 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12562 if (inst.size_req == 4
12563 || inst.operands[1].shifted)
12564 narrow = FALSE;
12565
efd81785
PB
12566 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12567 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12568 && !inst.operands[1].shifted
fdfde340
JM
12569 && Rn == REG_PC
12570 && Rm == REG_LR)
efd81785
PB
12571 {
12572 inst.instruction = T2_SUBS_PC_LR;
12573 return;
12574 }
12575
fdfde340
JM
12576 if (opcode == T_MNEM_cmp)
12577 {
12578 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12579 if (narrow)
12580 {
12581 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12582 but valid. */
12583 warn_deprecated_sp (Rm);
12584 /* R15 was documented as a valid choice for Rm in ARMv6,
12585 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12586 tools reject R15, so we do too. */
12587 constraint (Rm == REG_PC, BAD_PC);
12588 }
12589 else
12590 reject_bad_reg (Rm);
fdfde340
JM
12591 }
12592 else if (opcode == T_MNEM_mov
12593 || opcode == T_MNEM_movs)
12594 {
12595 if (inst.operands[1].isreg)
12596 {
12597 if (opcode == T_MNEM_movs)
12598 {
12599 reject_bad_reg (Rn);
12600 reject_bad_reg (Rm);
12601 }
76fa04a4
MGD
12602 else if (narrow)
12603 {
12604 /* This is mov.n. */
12605 if ((Rn == REG_SP || Rn == REG_PC)
12606 && (Rm == REG_SP || Rm == REG_PC))
12607 {
5c3696f8 12608 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12609 "deprecated when r%u is the destination "
12610 "register."), Rm, Rn);
12611 }
12612 }
12613 else
12614 {
12615 /* This is mov.w. */
12616 constraint (Rn == REG_PC, BAD_PC);
12617 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12619 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12620 }
fdfde340
JM
12621 }
12622 else
12623 reject_bad_reg (Rn);
12624 }
12625
c19d1205
ZW
12626 if (!inst.operands[1].isreg)
12627 {
0110f2b8 12628 /* Immediate operand. */
5ee91343 12629 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12630 narrow = 0;
12631 if (low_regs && narrow)
12632 {
12633 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12634 inst.instruction |= Rn << 8;
e2b0ab59
AV
12635 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12636 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12637 {
a9f02af8 12638 if (inst.size_req == 2)
e2b0ab59 12639 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12640 else
12641 inst.relax = opcode;
72d98d16 12642 }
0110f2b8
PB
12643 }
12644 else
12645 {
e2b0ab59
AV
12646 constraint ((inst.relocs[0].type
12647 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12648 && (inst.relocs[0].type
12649 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12650 THUMB1_RELOC_ONLY);
12651
0110f2b8
PB
12652 inst.instruction = THUMB_OP32 (inst.instruction);
12653 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12654 inst.instruction |= Rn << r0off;
e2b0ab59 12655 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12656 }
c19d1205 12657 }
728ca7c9
PB
12658 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12659 && (inst.instruction == T_MNEM_mov
12660 || inst.instruction == T_MNEM_movs))
12661 {
12662 /* Register shifts are encoded as separate shift instructions. */
12663 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12664
5ee91343 12665 if (in_pred_block ())
728ca7c9
PB
12666 narrow = !flags;
12667 else
12668 narrow = flags;
12669
12670 if (inst.size_req == 4)
12671 narrow = FALSE;
12672
12673 if (!low_regs || inst.operands[1].imm > 7)
12674 narrow = FALSE;
12675
fdfde340 12676 if (Rn != Rm)
728ca7c9
PB
12677 narrow = FALSE;
12678
12679 switch (inst.operands[1].shift_kind)
12680 {
12681 case SHIFT_LSL:
12682 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12683 break;
12684 case SHIFT_ASR:
12685 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12686 break;
12687 case SHIFT_LSR:
12688 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12689 break;
12690 case SHIFT_ROR:
12691 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12692 break;
12693 default:
5f4273c7 12694 abort ();
728ca7c9
PB
12695 }
12696
12697 inst.instruction = opcode;
12698 if (narrow)
12699 {
fdfde340 12700 inst.instruction |= Rn;
728ca7c9
PB
12701 inst.instruction |= inst.operands[1].imm << 3;
12702 }
12703 else
12704 {
12705 if (flags)
12706 inst.instruction |= CONDS_BIT;
12707
fdfde340
JM
12708 inst.instruction |= Rn << 8;
12709 inst.instruction |= Rm << 16;
728ca7c9
PB
12710 inst.instruction |= inst.operands[1].imm;
12711 }
12712 }
3d388997 12713 else if (!narrow)
c19d1205 12714 {
728ca7c9
PB
12715 /* Some mov with immediate shift have narrow variants.
12716 Register shifts are handled above. */
12717 if (low_regs && inst.operands[1].shifted
12718 && (inst.instruction == T_MNEM_mov
12719 || inst.instruction == T_MNEM_movs))
12720 {
5ee91343 12721 if (in_pred_block ())
728ca7c9
PB
12722 narrow = (inst.instruction == T_MNEM_mov);
12723 else
12724 narrow = (inst.instruction == T_MNEM_movs);
12725 }
12726
12727 if (narrow)
12728 {
12729 switch (inst.operands[1].shift_kind)
12730 {
12731 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12732 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12733 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12734 default: narrow = FALSE; break;
12735 }
12736 }
12737
12738 if (narrow)
12739 {
fdfde340
JM
12740 inst.instruction |= Rn;
12741 inst.instruction |= Rm << 3;
e2b0ab59 12742 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12743 }
12744 else
12745 {
12746 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12747 inst.instruction |= Rn << r0off;
728ca7c9
PB
12748 encode_thumb32_shifted_operand (1);
12749 }
c19d1205
ZW
12750 }
12751 else
12752 switch (inst.instruction)
12753 {
12754 case T_MNEM_mov:
837b3435 12755 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12756 results. Don't allow this. */
12757 if (low_regs)
12758 {
12759 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12760 "MOV Rd, Rs with two low registers is not "
12761 "permitted on this architecture");
fa94de6b 12762 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12763 arm_ext_v6);
12764 }
12765
c19d1205 12766 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12767 inst.instruction |= (Rn & 0x8) << 4;
12768 inst.instruction |= (Rn & 0x7);
12769 inst.instruction |= Rm << 3;
c19d1205 12770 break;
b99bd4ef 12771
c19d1205
ZW
12772 case T_MNEM_movs:
12773 /* We know we have low registers at this point.
941a8a52
MGD
12774 Generate LSLS Rd, Rs, #0. */
12775 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12776 inst.instruction |= Rn;
12777 inst.instruction |= Rm << 3;
c19d1205
ZW
12778 break;
12779
12780 case T_MNEM_cmp:
3d388997 12781 if (low_regs)
c19d1205
ZW
12782 {
12783 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12784 inst.instruction |= Rn;
12785 inst.instruction |= Rm << 3;
c19d1205
ZW
12786 }
12787 else
12788 {
12789 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12790 inst.instruction |= (Rn & 0x8) << 4;
12791 inst.instruction |= (Rn & 0x7);
12792 inst.instruction |= Rm << 3;
c19d1205
ZW
12793 }
12794 break;
12795 }
b99bd4ef
NC
12796 return;
12797 }
12798
c19d1205 12799 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12800
12801 /* PR 10443: Do not silently ignore shifted operands. */
12802 constraint (inst.operands[1].shifted,
12803 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12804
c19d1205 12805 if (inst.operands[1].isreg)
b99bd4ef 12806 {
fdfde340 12807 if (Rn < 8 && Rm < 8)
b99bd4ef 12808 {
c19d1205
ZW
12809 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12810 since a MOV instruction produces unpredictable results. */
12811 if (inst.instruction == T_OPCODE_MOV_I8)
12812 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12813 else
c19d1205 12814 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12815
fdfde340
JM
12816 inst.instruction |= Rn;
12817 inst.instruction |= Rm << 3;
b99bd4ef
NC
12818 }
12819 else
12820 {
c19d1205
ZW
12821 if (inst.instruction == T_OPCODE_MOV_I8)
12822 inst.instruction = T_OPCODE_MOV_HR;
12823 else
12824 inst.instruction = T_OPCODE_CMP_HR;
12825 do_t_cpy ();
b99bd4ef
NC
12826 }
12827 }
c19d1205 12828 else
b99bd4ef 12829 {
fdfde340 12830 constraint (Rn > 7,
c19d1205 12831 _("only lo regs allowed with immediate"));
fdfde340 12832 inst.instruction |= Rn << 8;
e2b0ab59 12833 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12834 }
12835}
b99bd4ef 12836
c19d1205
ZW
12837static void
12838do_t_mov16 (void)
12839{
fdfde340 12840 unsigned Rd;
b6895b4f
PB
12841 bfd_vma imm;
12842 bfd_boolean top;
12843
12844 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12845 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12846 {
33eaf5de 12847 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12848 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12849 }
e2b0ab59 12850 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12851 {
33eaf5de 12852 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12853 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12854 }
12855
fdfde340
JM
12856 Rd = inst.operands[0].reg;
12857 reject_bad_reg (Rd);
12858
12859 inst.instruction |= Rd << 8;
e2b0ab59 12860 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12861 {
e2b0ab59 12862 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12863 inst.instruction |= (imm & 0xf000) << 4;
12864 inst.instruction |= (imm & 0x0800) << 15;
12865 inst.instruction |= (imm & 0x0700) << 4;
12866 inst.instruction |= (imm & 0x00ff);
12867 }
c19d1205 12868}
b99bd4ef 12869
c19d1205
ZW
12870static void
12871do_t_mvn_tst (void)
12872{
fdfde340 12873 unsigned Rn, Rm;
c921be7d 12874
fdfde340
JM
12875 Rn = inst.operands[0].reg;
12876 Rm = inst.operands[1].reg;
12877
12878 if (inst.instruction == T_MNEM_cmp
12879 || inst.instruction == T_MNEM_cmn)
12880 constraint (Rn == REG_PC, BAD_PC);
12881 else
12882 reject_bad_reg (Rn);
12883 reject_bad_reg (Rm);
12884
c19d1205
ZW
12885 if (unified_syntax)
12886 {
12887 int r0off = (inst.instruction == T_MNEM_mvn
12888 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12889 bfd_boolean narrow;
12890
12891 if (inst.size_req == 4
12892 || inst.instruction > 0xffff
12893 || inst.operands[1].shifted
fdfde340 12894 || Rn > 7 || Rm > 7)
3d388997 12895 narrow = FALSE;
fe8b4cc3
KT
12896 else if (inst.instruction == T_MNEM_cmn
12897 || inst.instruction == T_MNEM_tst)
3d388997
PB
12898 narrow = TRUE;
12899 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12900 narrow = !in_pred_block ();
3d388997 12901 else
5ee91343 12902 narrow = in_pred_block ();
3d388997 12903
c19d1205 12904 if (!inst.operands[1].isreg)
b99bd4ef 12905 {
c19d1205
ZW
12906 /* For an immediate, we always generate a 32-bit opcode;
12907 section relaxation will shrink it later if possible. */
12908 if (inst.instruction < 0xffff)
12909 inst.instruction = THUMB_OP32 (inst.instruction);
12910 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12911 inst.instruction |= Rn << r0off;
e2b0ab59 12912 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12913 }
c19d1205 12914 else
b99bd4ef 12915 {
c19d1205 12916 /* See if we can do this with a 16-bit instruction. */
3d388997 12917 if (narrow)
b99bd4ef 12918 {
c19d1205 12919 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12920 inst.instruction |= Rn;
12921 inst.instruction |= Rm << 3;
b99bd4ef 12922 }
c19d1205 12923 else
b99bd4ef 12924 {
c19d1205
ZW
12925 constraint (inst.operands[1].shifted
12926 && inst.operands[1].immisreg,
12927 _("shift must be constant"));
12928 if (inst.instruction < 0xffff)
12929 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12930 inst.instruction |= Rn << r0off;
c19d1205 12931 encode_thumb32_shifted_operand (1);
b99bd4ef 12932 }
b99bd4ef
NC
12933 }
12934 }
12935 else
12936 {
c19d1205
ZW
12937 constraint (inst.instruction > 0xffff
12938 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12939 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12940 _("unshifted register required"));
fdfde340 12941 constraint (Rn > 7 || Rm > 7,
c19d1205 12942 BAD_HIREG);
b99bd4ef 12943
c19d1205 12944 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12945 inst.instruction |= Rn;
12946 inst.instruction |= Rm << 3;
b99bd4ef 12947 }
b99bd4ef
NC
12948}
12949
b05fe5cf 12950static void
c19d1205 12951do_t_mrs (void)
b05fe5cf 12952{
fdfde340 12953 unsigned Rd;
037e8744
JB
12954
12955 if (do_vfp_nsyn_mrs () == SUCCESS)
12956 return;
12957
90ec0d68
MGD
12958 Rd = inst.operands[0].reg;
12959 reject_bad_reg (Rd);
12960 inst.instruction |= Rd << 8;
12961
12962 if (inst.operands[1].isreg)
62b3e311 12963 {
90ec0d68
MGD
12964 unsigned br = inst.operands[1].reg;
12965 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12966 as_bad (_("bad register for mrs"));
12967
12968 inst.instruction |= br & (0xf << 16);
12969 inst.instruction |= (br & 0x300) >> 4;
12970 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12971 }
12972 else
12973 {
90ec0d68 12974 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12975
d2cd1205 12976 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12977 {
12978 /* PR gas/12698: The constraint is only applied for m_profile.
12979 If the user has specified -march=all, we want to ignore it as
12980 we are building for any CPU type, including non-m variants. */
823d2571
TG
12981 bfd_boolean m_profile =
12982 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12983 constraint ((flags != 0) && m_profile, _("selected processor does "
12984 "not support requested special purpose register"));
12985 }
90ec0d68 12986 else
d2cd1205
JB
12987 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12988 devices). */
12989 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12990 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12991
90ec0d68
MGD
12992 inst.instruction |= (flags & SPSR_BIT) >> 2;
12993 inst.instruction |= inst.operands[1].imm & 0xff;
12994 inst.instruction |= 0xf0000;
12995 }
c19d1205 12996}
b05fe5cf 12997
c19d1205
ZW
12998static void
12999do_t_msr (void)
13000{
62b3e311 13001 int flags;
fdfde340 13002 unsigned Rn;
62b3e311 13003
037e8744
JB
13004 if (do_vfp_nsyn_msr () == SUCCESS)
13005 return;
13006
c19d1205
ZW
13007 constraint (!inst.operands[1].isreg,
13008 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13009
13010 if (inst.operands[0].isreg)
13011 flags = (int)(inst.operands[0].reg);
13012 else
13013 flags = inst.operands[0].imm;
13014
d2cd1205 13015 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13016 {
d2cd1205
JB
13017 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13018
1a43faaf 13019 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13020 If the user has specified -march=all, we want to ignore it as
13021 we are building for any CPU type, including non-m variants. */
823d2571
TG
13022 bfd_boolean m_profile =
13023 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13024 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13025 && (bits & ~(PSR_s | PSR_f)) != 0)
13026 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13027 && bits != PSR_f)) && m_profile,
13028 _("selected processor does not support requested special "
13029 "purpose register"));
62b3e311
PB
13030 }
13031 else
d2cd1205
JB
13032 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13033 "requested special purpose register"));
c921be7d 13034
fdfde340
JM
13035 Rn = inst.operands[1].reg;
13036 reject_bad_reg (Rn);
13037
62b3e311 13038 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13039 inst.instruction |= (flags & 0xf0000) >> 8;
13040 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13041 inst.instruction |= (flags & 0xff);
fdfde340 13042 inst.instruction |= Rn << 16;
c19d1205 13043}
b05fe5cf 13044
c19d1205
ZW
13045static void
13046do_t_mul (void)
13047{
17828f45 13048 bfd_boolean narrow;
fdfde340 13049 unsigned Rd, Rn, Rm;
17828f45 13050
c19d1205
ZW
13051 if (!inst.operands[2].present)
13052 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13053
fdfde340
JM
13054 Rd = inst.operands[0].reg;
13055 Rn = inst.operands[1].reg;
13056 Rm = inst.operands[2].reg;
13057
17828f45 13058 if (unified_syntax)
b05fe5cf 13059 {
17828f45 13060 if (inst.size_req == 4
fdfde340
JM
13061 || (Rd != Rn
13062 && Rd != Rm)
13063 || Rn > 7
13064 || Rm > 7)
17828f45
JM
13065 narrow = FALSE;
13066 else if (inst.instruction == T_MNEM_muls)
5ee91343 13067 narrow = !in_pred_block ();
17828f45 13068 else
5ee91343 13069 narrow = in_pred_block ();
b05fe5cf 13070 }
c19d1205 13071 else
b05fe5cf 13072 {
17828f45 13073 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13074 constraint (Rn > 7 || Rm > 7,
c19d1205 13075 BAD_HIREG);
17828f45
JM
13076 narrow = TRUE;
13077 }
b05fe5cf 13078
17828f45
JM
13079 if (narrow)
13080 {
13081 /* 16-bit MULS/Conditional MUL. */
c19d1205 13082 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13083 inst.instruction |= Rd;
b05fe5cf 13084
fdfde340
JM
13085 if (Rd == Rn)
13086 inst.instruction |= Rm << 3;
13087 else if (Rd == Rm)
13088 inst.instruction |= Rn << 3;
c19d1205
ZW
13089 else
13090 constraint (1, _("dest must overlap one source register"));
13091 }
17828f45
JM
13092 else
13093 {
e07e6e58
NC
13094 constraint (inst.instruction != T_MNEM_mul,
13095 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13096 /* 32-bit MUL. */
13097 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13098 inst.instruction |= Rd << 8;
13099 inst.instruction |= Rn << 16;
13100 inst.instruction |= Rm << 0;
13101
13102 reject_bad_reg (Rd);
13103 reject_bad_reg (Rn);
13104 reject_bad_reg (Rm);
17828f45 13105 }
c19d1205 13106}
b05fe5cf 13107
c19d1205
ZW
13108static void
13109do_t_mull (void)
13110{
fdfde340 13111 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13112
fdfde340
JM
13113 RdLo = inst.operands[0].reg;
13114 RdHi = inst.operands[1].reg;
13115 Rn = inst.operands[2].reg;
13116 Rm = inst.operands[3].reg;
13117
13118 reject_bad_reg (RdLo);
13119 reject_bad_reg (RdHi);
13120 reject_bad_reg (Rn);
13121 reject_bad_reg (Rm);
13122
13123 inst.instruction |= RdLo << 12;
13124 inst.instruction |= RdHi << 8;
13125 inst.instruction |= Rn << 16;
13126 inst.instruction |= Rm;
13127
13128 if (RdLo == RdHi)
c19d1205
ZW
13129 as_tsktsk (_("rdhi and rdlo must be different"));
13130}
b05fe5cf 13131
c19d1205
ZW
13132static void
13133do_t_nop (void)
13134{
5ee91343 13135 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13136
c19d1205
ZW
13137 if (unified_syntax)
13138 {
13139 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13140 {
c19d1205
ZW
13141 inst.instruction = THUMB_OP32 (inst.instruction);
13142 inst.instruction |= inst.operands[0].imm;
13143 }
13144 else
13145 {
bc2d1808
NC
13146 /* PR9722: Check for Thumb2 availability before
13147 generating a thumb2 nop instruction. */
afa62d5e 13148 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13149 {
13150 inst.instruction = THUMB_OP16 (inst.instruction);
13151 inst.instruction |= inst.operands[0].imm << 4;
13152 }
13153 else
13154 inst.instruction = 0x46c0;
c19d1205
ZW
13155 }
13156 }
13157 else
13158 {
13159 constraint (inst.operands[0].present,
13160 _("Thumb does not support NOP with hints"));
13161 inst.instruction = 0x46c0;
13162 }
13163}
b05fe5cf 13164
c19d1205
ZW
13165static void
13166do_t_neg (void)
13167{
13168 if (unified_syntax)
13169 {
3d388997
PB
13170 bfd_boolean narrow;
13171
13172 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13173 narrow = !in_pred_block ();
3d388997 13174 else
5ee91343 13175 narrow = in_pred_block ();
3d388997
PB
13176 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13177 narrow = FALSE;
13178 if (inst.size_req == 4)
13179 narrow = FALSE;
13180
13181 if (!narrow)
c19d1205
ZW
13182 {
13183 inst.instruction = THUMB_OP32 (inst.instruction);
13184 inst.instruction |= inst.operands[0].reg << 8;
13185 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13186 }
13187 else
13188 {
c19d1205
ZW
13189 inst.instruction = THUMB_OP16 (inst.instruction);
13190 inst.instruction |= inst.operands[0].reg;
13191 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13192 }
13193 }
13194 else
13195 {
c19d1205
ZW
13196 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13197 BAD_HIREG);
13198 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13199
13200 inst.instruction = THUMB_OP16 (inst.instruction);
13201 inst.instruction |= inst.operands[0].reg;
13202 inst.instruction |= inst.operands[1].reg << 3;
13203 }
13204}
13205
1c444d06
JM
13206static void
13207do_t_orn (void)
13208{
13209 unsigned Rd, Rn;
13210
13211 Rd = inst.operands[0].reg;
13212 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13213
fdfde340
JM
13214 reject_bad_reg (Rd);
13215 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13216 reject_bad_reg (Rn);
13217
1c444d06
JM
13218 inst.instruction |= Rd << 8;
13219 inst.instruction |= Rn << 16;
13220
13221 if (!inst.operands[2].isreg)
13222 {
13223 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13224 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13225 }
13226 else
13227 {
13228 unsigned Rm;
13229
13230 Rm = inst.operands[2].reg;
fdfde340 13231 reject_bad_reg (Rm);
1c444d06
JM
13232
13233 constraint (inst.operands[2].shifted
13234 && inst.operands[2].immisreg,
13235 _("shift must be constant"));
13236 encode_thumb32_shifted_operand (2);
13237 }
13238}
13239
c19d1205
ZW
13240static void
13241do_t_pkhbt (void)
13242{
fdfde340
JM
13243 unsigned Rd, Rn, Rm;
13244
13245 Rd = inst.operands[0].reg;
13246 Rn = inst.operands[1].reg;
13247 Rm = inst.operands[2].reg;
13248
13249 reject_bad_reg (Rd);
13250 reject_bad_reg (Rn);
13251 reject_bad_reg (Rm);
13252
13253 inst.instruction |= Rd << 8;
13254 inst.instruction |= Rn << 16;
13255 inst.instruction |= Rm;
c19d1205
ZW
13256 if (inst.operands[3].present)
13257 {
e2b0ab59
AV
13258 unsigned int val = inst.relocs[0].exp.X_add_number;
13259 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13260 _("expression too complex"));
13261 inst.instruction |= (val & 0x1c) << 10;
13262 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13263 }
c19d1205 13264}
b05fe5cf 13265
c19d1205
ZW
13266static void
13267do_t_pkhtb (void)
13268{
13269 if (!inst.operands[3].present)
1ef52f49
NC
13270 {
13271 unsigned Rtmp;
13272
13273 inst.instruction &= ~0x00000020;
13274
13275 /* PR 10168. Swap the Rm and Rn registers. */
13276 Rtmp = inst.operands[1].reg;
13277 inst.operands[1].reg = inst.operands[2].reg;
13278 inst.operands[2].reg = Rtmp;
13279 }
c19d1205 13280 do_t_pkhbt ();
b05fe5cf
ZW
13281}
13282
c19d1205
ZW
13283static void
13284do_t_pld (void)
13285{
fdfde340
JM
13286 if (inst.operands[0].immisreg)
13287 reject_bad_reg (inst.operands[0].imm);
13288
c19d1205
ZW
13289 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13290}
b05fe5cf 13291
c19d1205
ZW
13292static void
13293do_t_push_pop (void)
b99bd4ef 13294{
e9f89963 13295 unsigned mask;
5f4273c7 13296
c19d1205
ZW
13297 constraint (inst.operands[0].writeback,
13298 _("push/pop do not support {reglist}^"));
e2b0ab59 13299 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13300 _("expression too complex"));
b99bd4ef 13301
e9f89963 13302 mask = inst.operands[0].imm;
d3bfe16e 13303 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13304 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13305 else if (inst.size_req != 4
c6025a80 13306 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13307 ? REG_LR : REG_PC)))
b99bd4ef 13308 {
c19d1205
ZW
13309 inst.instruction = THUMB_OP16 (inst.instruction);
13310 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13311 inst.instruction |= mask & 0xff;
c19d1205
ZW
13312 }
13313 else if (unified_syntax)
13314 {
3c707909 13315 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13316 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13317 }
13318 else
13319 {
13320 inst.error = _("invalid register list to push/pop instruction");
13321 return;
c19d1205 13322 }
4b5a202f
AV
13323}
13324
13325static void
13326do_t_clrm (void)
13327{
13328 if (unified_syntax)
13329 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13330 else
13331 {
13332 inst.error = _("invalid register list to push/pop instruction");
13333 return;
13334 }
c19d1205 13335}
b99bd4ef 13336
efd6b359
AV
13337static void
13338do_t_vscclrm (void)
13339{
13340 if (inst.operands[0].issingle)
13341 {
13342 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13343 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13344 inst.instruction |= inst.operands[0].imm;
13345 }
13346 else
13347 {
13348 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13349 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13350 inst.instruction |= 1 << 8;
13351 inst.instruction |= inst.operands[0].imm << 1;
13352 }
13353}
13354
c19d1205
ZW
13355static void
13356do_t_rbit (void)
13357{
fdfde340
JM
13358 unsigned Rd, Rm;
13359
13360 Rd = inst.operands[0].reg;
13361 Rm = inst.operands[1].reg;
13362
13363 reject_bad_reg (Rd);
13364 reject_bad_reg (Rm);
13365
13366 inst.instruction |= Rd << 8;
13367 inst.instruction |= Rm << 16;
13368 inst.instruction |= Rm;
c19d1205 13369}
b99bd4ef 13370
c19d1205
ZW
13371static void
13372do_t_rev (void)
13373{
fdfde340
JM
13374 unsigned Rd, Rm;
13375
13376 Rd = inst.operands[0].reg;
13377 Rm = inst.operands[1].reg;
13378
13379 reject_bad_reg (Rd);
13380 reject_bad_reg (Rm);
13381
13382 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13383 && inst.size_req != 4)
13384 {
13385 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13386 inst.instruction |= Rd;
13387 inst.instruction |= Rm << 3;
c19d1205
ZW
13388 }
13389 else if (unified_syntax)
13390 {
13391 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13392 inst.instruction |= Rd << 8;
13393 inst.instruction |= Rm << 16;
13394 inst.instruction |= Rm;
c19d1205
ZW
13395 }
13396 else
13397 inst.error = BAD_HIREG;
13398}
b99bd4ef 13399
1c444d06
JM
13400static void
13401do_t_rrx (void)
13402{
13403 unsigned Rd, Rm;
13404
13405 Rd = inst.operands[0].reg;
13406 Rm = inst.operands[1].reg;
13407
fdfde340
JM
13408 reject_bad_reg (Rd);
13409 reject_bad_reg (Rm);
c921be7d 13410
1c444d06
JM
13411 inst.instruction |= Rd << 8;
13412 inst.instruction |= Rm;
13413}
13414
c19d1205
ZW
13415static void
13416do_t_rsb (void)
13417{
fdfde340 13418 unsigned Rd, Rs;
b99bd4ef 13419
c19d1205
ZW
13420 Rd = inst.operands[0].reg;
13421 Rs = (inst.operands[1].present
13422 ? inst.operands[1].reg /* Rd, Rs, foo */
13423 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13424
fdfde340
JM
13425 reject_bad_reg (Rd);
13426 reject_bad_reg (Rs);
13427 if (inst.operands[2].isreg)
13428 reject_bad_reg (inst.operands[2].reg);
13429
c19d1205
ZW
13430 inst.instruction |= Rd << 8;
13431 inst.instruction |= Rs << 16;
13432 if (!inst.operands[2].isreg)
13433 {
026d3abb
PB
13434 bfd_boolean narrow;
13435
13436 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13437 narrow = !in_pred_block ();
026d3abb 13438 else
5ee91343 13439 narrow = in_pred_block ();
026d3abb
PB
13440
13441 if (Rd > 7 || Rs > 7)
13442 narrow = FALSE;
13443
13444 if (inst.size_req == 4 || !unified_syntax)
13445 narrow = FALSE;
13446
e2b0ab59
AV
13447 if (inst.relocs[0].exp.X_op != O_constant
13448 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13449 narrow = FALSE;
13450
13451 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13452 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13453 if (narrow)
13454 {
e2b0ab59 13455 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13456 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13457 inst.instruction |= Rs << 3;
13458 inst.instruction |= Rd;
13459 }
13460 else
13461 {
13462 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13463 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13464 }
c19d1205
ZW
13465 }
13466 else
13467 encode_thumb32_shifted_operand (2);
13468}
b99bd4ef 13469
c19d1205
ZW
13470static void
13471do_t_setend (void)
13472{
12e37cbc
MGD
13473 if (warn_on_deprecated
13474 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13475 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13476
5ee91343 13477 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13478 if (inst.operands[0].imm)
13479 inst.instruction |= 0x8;
13480}
b99bd4ef 13481
c19d1205
ZW
13482static void
13483do_t_shift (void)
13484{
13485 if (!inst.operands[1].present)
13486 inst.operands[1].reg = inst.operands[0].reg;
13487
13488 if (unified_syntax)
13489 {
3d388997
PB
13490 bfd_boolean narrow;
13491 int shift_kind;
13492
13493 switch (inst.instruction)
13494 {
13495 case T_MNEM_asr:
13496 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13497 case T_MNEM_lsl:
13498 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13499 case T_MNEM_lsr:
13500 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13501 case T_MNEM_ror:
13502 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13503 default: abort ();
13504 }
13505
13506 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13507 narrow = !in_pred_block ();
3d388997 13508 else
5ee91343 13509 narrow = in_pred_block ();
3d388997
PB
13510 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13511 narrow = FALSE;
13512 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13513 narrow = FALSE;
13514 if (inst.operands[2].isreg
13515 && (inst.operands[1].reg != inst.operands[0].reg
13516 || inst.operands[2].reg > 7))
13517 narrow = FALSE;
13518 if (inst.size_req == 4)
13519 narrow = FALSE;
13520
fdfde340
JM
13521 reject_bad_reg (inst.operands[0].reg);
13522 reject_bad_reg (inst.operands[1].reg);
c921be7d 13523
3d388997 13524 if (!narrow)
c19d1205
ZW
13525 {
13526 if (inst.operands[2].isreg)
b99bd4ef 13527 {
fdfde340 13528 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13529 inst.instruction = THUMB_OP32 (inst.instruction);
13530 inst.instruction |= inst.operands[0].reg << 8;
13531 inst.instruction |= inst.operands[1].reg << 16;
13532 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13533
13534 /* PR 12854: Error on extraneous shifts. */
13535 constraint (inst.operands[2].shifted,
13536 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13537 }
13538 else
13539 {
13540 inst.operands[1].shifted = 1;
3d388997 13541 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13542 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13543 ? T_MNEM_movs : T_MNEM_mov);
13544 inst.instruction |= inst.operands[0].reg << 8;
13545 encode_thumb32_shifted_operand (1);
13546 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13547 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13548 }
13549 }
13550 else
13551 {
c19d1205 13552 if (inst.operands[2].isreg)
b99bd4ef 13553 {
3d388997 13554 switch (shift_kind)
b99bd4ef 13555 {
3d388997
PB
13556 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13557 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13558 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13559 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13560 default: abort ();
b99bd4ef 13561 }
5f4273c7 13562
c19d1205
ZW
13563 inst.instruction |= inst.operands[0].reg;
13564 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13565
13566 /* PR 12854: Error on extraneous shifts. */
13567 constraint (inst.operands[2].shifted,
13568 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13569 }
13570 else
13571 {
3d388997 13572 switch (shift_kind)
b99bd4ef 13573 {
3d388997
PB
13574 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13575 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13576 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13577 default: abort ();
b99bd4ef 13578 }
e2b0ab59 13579 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13580 inst.instruction |= inst.operands[0].reg;
13581 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13582 }
13583 }
c19d1205
ZW
13584 }
13585 else
13586 {
13587 constraint (inst.operands[0].reg > 7
13588 || inst.operands[1].reg > 7, BAD_HIREG);
13589 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13590
c19d1205
ZW
13591 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13592 {
13593 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13594 constraint (inst.operands[0].reg != inst.operands[1].reg,
13595 _("source1 and dest must be same register"));
b99bd4ef 13596
c19d1205
ZW
13597 switch (inst.instruction)
13598 {
13599 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13600 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13601 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13602 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13603 default: abort ();
13604 }
5f4273c7 13605
c19d1205
ZW
13606 inst.instruction |= inst.operands[0].reg;
13607 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13608
13609 /* PR 12854: Error on extraneous shifts. */
13610 constraint (inst.operands[2].shifted,
13611 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13612 }
13613 else
b99bd4ef 13614 {
c19d1205
ZW
13615 switch (inst.instruction)
13616 {
13617 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13618 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13619 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13620 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13621 default: abort ();
13622 }
e2b0ab59 13623 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13624 inst.instruction |= inst.operands[0].reg;
13625 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13626 }
13627 }
b99bd4ef
NC
13628}
13629
13630static void
c19d1205 13631do_t_simd (void)
b99bd4ef 13632{
fdfde340
JM
13633 unsigned Rd, Rn, Rm;
13634
13635 Rd = inst.operands[0].reg;
13636 Rn = inst.operands[1].reg;
13637 Rm = inst.operands[2].reg;
13638
13639 reject_bad_reg (Rd);
13640 reject_bad_reg (Rn);
13641 reject_bad_reg (Rm);
13642
13643 inst.instruction |= Rd << 8;
13644 inst.instruction |= Rn << 16;
13645 inst.instruction |= Rm;
c19d1205 13646}
b99bd4ef 13647
03ee1b7f
NC
13648static void
13649do_t_simd2 (void)
13650{
13651 unsigned Rd, Rn, Rm;
13652
13653 Rd = inst.operands[0].reg;
13654 Rm = inst.operands[1].reg;
13655 Rn = inst.operands[2].reg;
13656
13657 reject_bad_reg (Rd);
13658 reject_bad_reg (Rn);
13659 reject_bad_reg (Rm);
13660
13661 inst.instruction |= Rd << 8;
13662 inst.instruction |= Rn << 16;
13663 inst.instruction |= Rm;
13664}
13665
c19d1205 13666static void
3eb17e6b 13667do_t_smc (void)
c19d1205 13668{
e2b0ab59 13669 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13670 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13671 _("SMC is not permitted on this architecture"));
e2b0ab59 13672 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13673 _("expression too complex"));
e2b0ab59 13674 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13675 inst.instruction |= (value & 0xf000) >> 12;
13676 inst.instruction |= (value & 0x0ff0);
13677 inst.instruction |= (value & 0x000f) << 16;
24382199 13678 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13679 set_pred_insn_type_last ();
c19d1205 13680}
b99bd4ef 13681
90ec0d68
MGD
13682static void
13683do_t_hvc (void)
13684{
e2b0ab59 13685 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13686
e2b0ab59 13687 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13688 inst.instruction |= (value & 0x0fff);
13689 inst.instruction |= (value & 0xf000) << 4;
13690}
13691
c19d1205 13692static void
3a21c15a 13693do_t_ssat_usat (int bias)
c19d1205 13694{
fdfde340
JM
13695 unsigned Rd, Rn;
13696
13697 Rd = inst.operands[0].reg;
13698 Rn = inst.operands[2].reg;
13699
13700 reject_bad_reg (Rd);
13701 reject_bad_reg (Rn);
13702
13703 inst.instruction |= Rd << 8;
3a21c15a 13704 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13705 inst.instruction |= Rn << 16;
b99bd4ef 13706
c19d1205 13707 if (inst.operands[3].present)
b99bd4ef 13708 {
e2b0ab59 13709 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13710
e2b0ab59 13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13712
e2b0ab59 13713 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13714 _("expression too complex"));
b99bd4ef 13715
3a21c15a 13716 if (shift_amount != 0)
6189168b 13717 {
3a21c15a
NC
13718 constraint (shift_amount > 31,
13719 _("shift expression is too large"));
13720
c19d1205 13721 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13722 inst.instruction |= 0x00200000; /* sh bit. */
13723
13724 inst.instruction |= (shift_amount & 0x1c) << 10;
13725 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13726 }
13727 }
b99bd4ef 13728}
c921be7d 13729
3a21c15a
NC
13730static void
13731do_t_ssat (void)
13732{
13733 do_t_ssat_usat (1);
13734}
b99bd4ef 13735
0dd132b6 13736static void
c19d1205 13737do_t_ssat16 (void)
0dd132b6 13738{
fdfde340
JM
13739 unsigned Rd, Rn;
13740
13741 Rd = inst.operands[0].reg;
13742 Rn = inst.operands[2].reg;
13743
13744 reject_bad_reg (Rd);
13745 reject_bad_reg (Rn);
13746
13747 inst.instruction |= Rd << 8;
c19d1205 13748 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13749 inst.instruction |= Rn << 16;
c19d1205 13750}
0dd132b6 13751
c19d1205
ZW
13752static void
13753do_t_strex (void)
13754{
13755 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13756 || inst.operands[2].postind || inst.operands[2].writeback
13757 || inst.operands[2].immisreg || inst.operands[2].shifted
13758 || inst.operands[2].negative,
01cfc07f 13759 BAD_ADDR_MODE);
0dd132b6 13760
5be8be5d
DG
13761 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13762
c19d1205
ZW
13763 inst.instruction |= inst.operands[0].reg << 8;
13764 inst.instruction |= inst.operands[1].reg << 12;
13765 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13766 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13767}
13768
b99bd4ef 13769static void
c19d1205 13770do_t_strexd (void)
b99bd4ef 13771{
c19d1205
ZW
13772 if (!inst.operands[2].present)
13773 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13774
c19d1205
ZW
13775 constraint (inst.operands[0].reg == inst.operands[1].reg
13776 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13777 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13778 BAD_OVERLAP);
b99bd4ef 13779
c19d1205
ZW
13780 inst.instruction |= inst.operands[0].reg;
13781 inst.instruction |= inst.operands[1].reg << 12;
13782 inst.instruction |= inst.operands[2].reg << 8;
13783 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13784}
13785
13786static void
c19d1205 13787do_t_sxtah (void)
b99bd4ef 13788{
fdfde340
JM
13789 unsigned Rd, Rn, Rm;
13790
13791 Rd = inst.operands[0].reg;
13792 Rn = inst.operands[1].reg;
13793 Rm = inst.operands[2].reg;
13794
13795 reject_bad_reg (Rd);
13796 reject_bad_reg (Rn);
13797 reject_bad_reg (Rm);
13798
13799 inst.instruction |= Rd << 8;
13800 inst.instruction |= Rn << 16;
13801 inst.instruction |= Rm;
c19d1205
ZW
13802 inst.instruction |= inst.operands[3].imm << 4;
13803}
b99bd4ef 13804
c19d1205
ZW
13805static void
13806do_t_sxth (void)
13807{
fdfde340
JM
13808 unsigned Rd, Rm;
13809
13810 Rd = inst.operands[0].reg;
13811 Rm = inst.operands[1].reg;
13812
13813 reject_bad_reg (Rd);
13814 reject_bad_reg (Rm);
c921be7d
NC
13815
13816 if (inst.instruction <= 0xffff
13817 && inst.size_req != 4
fdfde340 13818 && Rd <= 7 && Rm <= 7
c19d1205 13819 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13820 {
c19d1205 13821 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13822 inst.instruction |= Rd;
13823 inst.instruction |= Rm << 3;
b99bd4ef 13824 }
c19d1205 13825 else if (unified_syntax)
b99bd4ef 13826 {
c19d1205
ZW
13827 if (inst.instruction <= 0xffff)
13828 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13829 inst.instruction |= Rd << 8;
13830 inst.instruction |= Rm;
c19d1205 13831 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13832 }
c19d1205 13833 else
b99bd4ef 13834 {
c19d1205
ZW
13835 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13836 _("Thumb encoding does not support rotation"));
13837 constraint (1, BAD_HIREG);
b99bd4ef 13838 }
c19d1205 13839}
b99bd4ef 13840
c19d1205
ZW
13841static void
13842do_t_swi (void)
13843{
e2b0ab59 13844 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13845}
b99bd4ef 13846
92e90b6e
PB
13847static void
13848do_t_tb (void)
13849{
fdfde340 13850 unsigned Rn, Rm;
92e90b6e
PB
13851 int half;
13852
13853 half = (inst.instruction & 0x10) != 0;
5ee91343 13854 set_pred_insn_type_last ();
dfa9f0d5
PB
13855 constraint (inst.operands[0].immisreg,
13856 _("instruction requires register index"));
fdfde340
JM
13857
13858 Rn = inst.operands[0].reg;
13859 Rm = inst.operands[0].imm;
c921be7d 13860
5c8ed6a4
JW
13861 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13862 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13863 reject_bad_reg (Rm);
13864
92e90b6e
PB
13865 constraint (!half && inst.operands[0].shifted,
13866 _("instruction does not allow shifted index"));
fdfde340 13867 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13868}
13869
74db7efb
NC
13870static void
13871do_t_udf (void)
13872{
13873 if (!inst.operands[0].present)
13874 inst.operands[0].imm = 0;
13875
13876 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13877 {
13878 constraint (inst.size_req == 2,
13879 _("immediate value out of range"));
13880 inst.instruction = THUMB_OP32 (inst.instruction);
13881 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13882 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13883 }
13884 else
13885 {
13886 inst.instruction = THUMB_OP16 (inst.instruction);
13887 inst.instruction |= inst.operands[0].imm;
13888 }
13889
5ee91343 13890 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13891}
13892
13893
c19d1205
ZW
13894static void
13895do_t_usat (void)
13896{
3a21c15a 13897 do_t_ssat_usat (0);
b99bd4ef
NC
13898}
13899
13900static void
c19d1205 13901do_t_usat16 (void)
b99bd4ef 13902{
fdfde340
JM
13903 unsigned Rd, Rn;
13904
13905 Rd = inst.operands[0].reg;
13906 Rn = inst.operands[2].reg;
13907
13908 reject_bad_reg (Rd);
13909 reject_bad_reg (Rn);
13910
13911 inst.instruction |= Rd << 8;
c19d1205 13912 inst.instruction |= inst.operands[1].imm;
fdfde340 13913 inst.instruction |= Rn << 16;
b99bd4ef 13914}
c19d1205 13915
e12437dc
AV
13916/* Checking the range of the branch offset (VAL) with NBITS bits
13917 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13918static int
13919v8_1_branch_value_check (int val, int nbits, int is_signed)
13920{
13921 gas_assert (nbits > 0 && nbits <= 32);
13922 if (is_signed)
13923 {
13924 int cmp = (1 << (nbits - 1));
13925 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13926 return FAIL;
13927 }
13928 else
13929 {
13930 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13931 return FAIL;
13932 }
13933 return SUCCESS;
13934}
13935
4389b29a
AV
13936/* For branches in Armv8.1-M Mainline. */
13937static void
13938do_t_branch_future (void)
13939{
13940 unsigned long insn = inst.instruction;
13941
13942 inst.instruction = THUMB_OP32 (inst.instruction);
13943 if (inst.operands[0].hasreloc == 0)
13944 {
13945 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13946 as_bad (BAD_BRANCH_OFF);
13947
13948 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13949 }
13950 else
13951 {
13952 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13953 inst.relocs[0].pc_rel = 1;
13954 }
13955
13956 switch (insn)
13957 {
13958 case T_MNEM_bf:
13959 if (inst.operands[1].hasreloc == 0)
13960 {
13961 int val = inst.operands[1].imm;
13962 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13963 as_bad (BAD_BRANCH_OFF);
13964
13965 int immA = (val & 0x0001f000) >> 12;
13966 int immB = (val & 0x00000ffc) >> 2;
13967 int immC = (val & 0x00000002) >> 1;
13968 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13969 }
13970 else
13971 {
13972 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13973 inst.relocs[1].pc_rel = 1;
13974 }
13975 break;
13976
65d1bc05
AV
13977 case T_MNEM_bfl:
13978 if (inst.operands[1].hasreloc == 0)
13979 {
13980 int val = inst.operands[1].imm;
13981 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13982 as_bad (BAD_BRANCH_OFF);
13983
13984 int immA = (val & 0x0007f000) >> 12;
13985 int immB = (val & 0x00000ffc) >> 2;
13986 int immC = (val & 0x00000002) >> 1;
13987 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13988 }
13989 else
13990 {
13991 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
13992 inst.relocs[1].pc_rel = 1;
13993 }
13994 break;
13995
f6b2b12d
AV
13996 case T_MNEM_bfcsel:
13997 /* Operand 1. */
13998 if (inst.operands[1].hasreloc == 0)
13999 {
14000 int val = inst.operands[1].imm;
14001 int immA = (val & 0x00001000) >> 12;
14002 int immB = (val & 0x00000ffc) >> 2;
14003 int immC = (val & 0x00000002) >> 1;
14004 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14005 }
14006 else
14007 {
14008 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14009 inst.relocs[1].pc_rel = 1;
14010 }
14011
14012 /* Operand 2. */
14013 if (inst.operands[2].hasreloc == 0)
14014 {
14015 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14016 int val2 = inst.operands[2].imm;
14017 int val0 = inst.operands[0].imm & 0x1f;
14018 int diff = val2 - val0;
14019 if (diff == 4)
14020 inst.instruction |= 1 << 17; /* T bit. */
14021 else if (diff != 2)
14022 as_bad (_("out of range label-relative fixup value"));
14023 }
14024 else
14025 {
14026 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14027 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14028 inst.relocs[2].pc_rel = 1;
14029 }
14030
14031 /* Operand 3. */
14032 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14033 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14034 break;
14035
f1c7f421
AV
14036 case T_MNEM_bfx:
14037 case T_MNEM_bflx:
14038 inst.instruction |= inst.operands[1].reg << 16;
14039 break;
14040
4389b29a
AV
14041 default: abort ();
14042 }
14043}
14044
60f993ce
AV
14045/* Helper function for do_t_loloop to handle relocations. */
14046static void
14047v8_1_loop_reloc (int is_le)
14048{
14049 if (inst.relocs[0].exp.X_op == O_constant)
14050 {
14051 int value = inst.relocs[0].exp.X_add_number;
14052 value = (is_le) ? -value : value;
14053
14054 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14055 as_bad (BAD_BRANCH_OFF);
14056
14057 int imml, immh;
14058
14059 immh = (value & 0x00000ffc) >> 2;
14060 imml = (value & 0x00000002) >> 1;
14061
14062 inst.instruction |= (imml << 11) | (immh << 1);
14063 }
14064 else
14065 {
14066 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14067 inst.relocs[0].pc_rel = 1;
14068 }
14069}
14070
14071/* To handle the Scalar Low Overhead Loop instructions
14072 in Armv8.1-M Mainline. */
14073static void
14074do_t_loloop (void)
14075{
14076 unsigned long insn = inst.instruction;
14077
5ee91343 14078 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14079 inst.instruction = THUMB_OP32 (inst.instruction);
14080
14081 switch (insn)
14082 {
14083 case T_MNEM_le:
14084 /* le <label>. */
14085 if (!inst.operands[0].present)
14086 inst.instruction |= 1 << 21;
14087
14088 v8_1_loop_reloc (TRUE);
14089 break;
14090
14091 case T_MNEM_wls:
14092 v8_1_loop_reloc (FALSE);
14093 /* Fall through. */
14094 case T_MNEM_dls:
14095 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14096 inst.instruction |= (inst.operands[1].reg << 16);
14097 break;
14098
14099 default: abort();
14100 }
14101}
14102
a302e574
AV
14103/* MVE instruction encoder helpers. */
14104#define M_MNEM_vabav 0xee800f01
14105#define M_MNEM_vmladav 0xeef00e00
14106#define M_MNEM_vmladava 0xeef00e20
14107#define M_MNEM_vmladavx 0xeef01e00
14108#define M_MNEM_vmladavax 0xeef01e20
14109#define M_MNEM_vmlsdav 0xeef00e01
14110#define M_MNEM_vmlsdava 0xeef00e21
14111#define M_MNEM_vmlsdavx 0xeef01e01
14112#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14113#define M_MNEM_vmullt 0xee011e00
14114#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14115#define M_MNEM_vst20 0xfc801e00
14116#define M_MNEM_vst21 0xfc801e20
14117#define M_MNEM_vst40 0xfc801e01
14118#define M_MNEM_vst41 0xfc801e21
14119#define M_MNEM_vst42 0xfc801e41
14120#define M_MNEM_vst43 0xfc801e61
14121#define M_MNEM_vld20 0xfc901e00
14122#define M_MNEM_vld21 0xfc901e20
14123#define M_MNEM_vld40 0xfc901e01
14124#define M_MNEM_vld41 0xfc901e21
14125#define M_MNEM_vld42 0xfc901e41
14126#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14127#define M_MNEM_vstrb 0xec000e00
14128#define M_MNEM_vstrh 0xec000e10
14129#define M_MNEM_vstrw 0xec000e40
14130#define M_MNEM_vstrd 0xec000e50
14131#define M_MNEM_vldrb 0xec100e00
14132#define M_MNEM_vldrh 0xec100e10
14133#define M_MNEM_vldrw 0xec100e40
14134#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14135#define M_MNEM_vmovlt 0xeea01f40
14136#define M_MNEM_vmovlb 0xeea00f40
14137#define M_MNEM_vmovnt 0xfe311e81
14138#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14139#define M_MNEM_vadc 0xee300f00
14140#define M_MNEM_vadci 0xee301f00
14141#define M_MNEM_vbrsr 0xfe011e60
a302e574 14142
5287ad62 14143/* Neon instruction encoder helpers. */
5f4273c7 14144
5287ad62 14145/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14146
5287ad62
JB
14147/* An "invalid" code for the following tables. */
14148#define N_INV -1u
14149
14150struct neon_tab_entry
b99bd4ef 14151{
5287ad62
JB
14152 unsigned integer;
14153 unsigned float_or_poly;
14154 unsigned scalar_or_imm;
14155};
5f4273c7 14156
5287ad62
JB
14157/* Map overloaded Neon opcodes to their respective encodings. */
14158#define NEON_ENC_TAB \
14159 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14160 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14161 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14162 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14163 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14164 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14165 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14166 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14167 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14168 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14169 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14170 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14171 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14172 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14173 /* Register variants of the following two instructions are encoded as
e07e6e58 14174 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14175 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14176 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14177 X(vfma, N_INV, 0x0000c10, N_INV), \
14178 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14179 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14180 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14181 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14182 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14183 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14184 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14185 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14186 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14187 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14188 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14189 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14190 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14191 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14192 X(vshl, 0x0000400, N_INV, 0x0800510), \
14193 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14194 X(vand, 0x0000110, N_INV, 0x0800030), \
14195 X(vbic, 0x0100110, N_INV, 0x0800030), \
14196 X(veor, 0x1000110, N_INV, N_INV), \
14197 X(vorn, 0x0300110, N_INV, 0x0800010), \
14198 X(vorr, 0x0200110, N_INV, 0x0800010), \
14199 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14200 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14201 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14202 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14203 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14204 X(vst1, 0x0000000, 0x0800000, N_INV), \
14205 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14206 X(vst2, 0x0000100, 0x0800100, N_INV), \
14207 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14208 X(vst3, 0x0000200, 0x0800200, N_INV), \
14209 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14210 X(vst4, 0x0000300, 0x0800300, N_INV), \
14211 X(vmovn, 0x1b20200, N_INV, N_INV), \
14212 X(vtrn, 0x1b20080, N_INV, N_INV), \
14213 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14214 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14215 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14216 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14217 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14218 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14219 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14220 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14221 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14222 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14223 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14224 X(vseleq, 0xe000a00, N_INV, N_INV), \
14225 X(vselvs, 0xe100a00, N_INV, N_INV), \
14226 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14227 X(vselgt, 0xe300a00, N_INV, N_INV), \
14228 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14229 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14230 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14231 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14232 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14233 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14234 X(sha3op, 0x2000c00, N_INV, N_INV), \
14235 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14236 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14237
14238enum neon_opc
14239{
14240#define X(OPC,I,F,S) N_MNEM_##OPC
14241NEON_ENC_TAB
14242#undef X
14243};
b99bd4ef 14244
5287ad62
JB
14245static const struct neon_tab_entry neon_enc_tab[] =
14246{
14247#define X(OPC,I,F,S) { (I), (F), (S) }
14248NEON_ENC_TAB
14249#undef X
14250};
b99bd4ef 14251
88714cb8
DG
14252/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14253#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14254#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14255#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14256#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14257#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14258#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14259#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14260#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14261#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14262#define NEON_ENC_SINGLE_(X) \
037e8744 14263 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14264#define NEON_ENC_DOUBLE_(X) \
037e8744 14265 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14266#define NEON_ENC_FPV8_(X) \
14267 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14268
88714cb8
DG
14269#define NEON_ENCODE(type, inst) \
14270 do \
14271 { \
14272 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14273 inst.is_neon = 1; \
14274 } \
14275 while (0)
14276
14277#define check_neon_suffixes \
14278 do \
14279 { \
14280 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14281 { \
14282 as_bad (_("invalid neon suffix for non neon instruction")); \
14283 return; \
14284 } \
14285 } \
14286 while (0)
14287
037e8744
JB
14288/* Define shapes for instruction operands. The following mnemonic characters
14289 are used in this table:
5287ad62 14290
037e8744 14291 F - VFP S<n> register
5287ad62
JB
14292 D - Neon D<n> register
14293 Q - Neon Q<n> register
14294 I - Immediate
14295 S - Scalar
14296 R - ARM register
14297 L - D<n> register list
5f4273c7 14298
037e8744
JB
14299 This table is used to generate various data:
14300 - enumerations of the form NS_DDR to be used as arguments to
14301 neon_select_shape.
14302 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14303 - a table used to drive neon_select_shape. */
b99bd4ef 14304
037e8744 14305#define NEON_SHAPE_DEF \
57785aa2
AV
14306 X(4, (R, R, S, S), QUAD), \
14307 X(4, (S, S, R, R), QUAD), \
1b883319
AV
14308 X(3, (I, Q, Q), QUAD), \
14309 X(3, (I, Q, R), QUAD), \
a302e574 14310 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14311 X(3, (D, D, D), DOUBLE), \
14312 X(3, (Q, Q, Q), QUAD), \
14313 X(3, (D, D, I), DOUBLE), \
14314 X(3, (Q, Q, I), QUAD), \
14315 X(3, (D, D, S), DOUBLE), \
14316 X(3, (Q, Q, S), QUAD), \
5ee91343 14317 X(3, (Q, Q, R), QUAD), \
037e8744
JB
14318 X(2, (D, D), DOUBLE), \
14319 X(2, (Q, Q), QUAD), \
14320 X(2, (D, S), DOUBLE), \
14321 X(2, (Q, S), QUAD), \
14322 X(2, (D, R), DOUBLE), \
14323 X(2, (Q, R), QUAD), \
14324 X(2, (D, I), DOUBLE), \
14325 X(2, (Q, I), QUAD), \
14326 X(3, (D, L, D), DOUBLE), \
14327 X(2, (D, Q), MIXED), \
14328 X(2, (Q, D), MIXED), \
14329 X(3, (D, Q, I), MIXED), \
14330 X(3, (Q, D, I), MIXED), \
14331 X(3, (Q, D, D), MIXED), \
14332 X(3, (D, Q, Q), MIXED), \
14333 X(3, (Q, Q, D), MIXED), \
14334 X(3, (Q, D, S), MIXED), \
14335 X(3, (D, Q, S), MIXED), \
14336 X(4, (D, D, D, I), DOUBLE), \
14337 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14338 X(4, (D, D, S, I), DOUBLE), \
14339 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14340 X(2, (F, F), SINGLE), \
14341 X(3, (F, F, F), SINGLE), \
14342 X(2, (F, I), SINGLE), \
14343 X(2, (F, D), MIXED), \
14344 X(2, (D, F), MIXED), \
14345 X(3, (F, F, I), MIXED), \
14346 X(4, (R, R, F, F), SINGLE), \
14347 X(4, (F, F, R, R), SINGLE), \
14348 X(3, (D, R, R), DOUBLE), \
14349 X(3, (R, R, D), DOUBLE), \
14350 X(2, (S, R), SINGLE), \
14351 X(2, (R, S), SINGLE), \
14352 X(2, (F, R), SINGLE), \
d54af2d0
RL
14353 X(2, (R, F), SINGLE), \
14354/* Half float shape supported so far. */\
14355 X (2, (H, D), MIXED), \
14356 X (2, (D, H), MIXED), \
14357 X (2, (H, F), MIXED), \
14358 X (2, (F, H), MIXED), \
14359 X (2, (H, H), HALF), \
14360 X (2, (H, R), HALF), \
14361 X (2, (R, H), HALF), \
14362 X (2, (H, I), HALF), \
14363 X (3, (H, H, H), HALF), \
14364 X (3, (H, F, I), MIXED), \
dec41383
JW
14365 X (3, (F, H, I), MIXED), \
14366 X (3, (D, H, H), MIXED), \
14367 X (3, (D, H, S), MIXED)
037e8744
JB
14368
14369#define S2(A,B) NS_##A##B
14370#define S3(A,B,C) NS_##A##B##C
14371#define S4(A,B,C,D) NS_##A##B##C##D
14372
14373#define X(N, L, C) S##N L
14374
5287ad62
JB
14375enum neon_shape
14376{
037e8744
JB
14377 NEON_SHAPE_DEF,
14378 NS_NULL
5287ad62 14379};
b99bd4ef 14380
037e8744
JB
14381#undef X
14382#undef S2
14383#undef S3
14384#undef S4
14385
14386enum neon_shape_class
14387{
d54af2d0 14388 SC_HALF,
037e8744
JB
14389 SC_SINGLE,
14390 SC_DOUBLE,
14391 SC_QUAD,
14392 SC_MIXED
14393};
14394
14395#define X(N, L, C) SC_##C
14396
14397static enum neon_shape_class neon_shape_class[] =
14398{
14399 NEON_SHAPE_DEF
14400};
14401
14402#undef X
14403
14404enum neon_shape_el
14405{
d54af2d0 14406 SE_H,
037e8744
JB
14407 SE_F,
14408 SE_D,
14409 SE_Q,
14410 SE_I,
14411 SE_S,
14412 SE_R,
14413 SE_L
14414};
14415
14416/* Register widths of above. */
14417static unsigned neon_shape_el_size[] =
14418{
d54af2d0 14419 16,
037e8744
JB
14420 32,
14421 64,
14422 128,
14423 0,
14424 32,
14425 32,
14426 0
14427};
14428
14429struct neon_shape_info
14430{
14431 unsigned els;
14432 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14433};
14434
14435#define S2(A,B) { SE_##A, SE_##B }
14436#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14437#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14438
14439#define X(N, L, C) { N, S##N L }
14440
14441static struct neon_shape_info neon_shape_tab[] =
14442{
14443 NEON_SHAPE_DEF
14444};
14445
14446#undef X
14447#undef S2
14448#undef S3
14449#undef S4
14450
5287ad62
JB
14451/* Bit masks used in type checking given instructions.
14452 'N_EQK' means the type must be the same as (or based on in some way) the key
14453 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14454 set, various other bits can be set as well in order to modify the meaning of
14455 the type constraint. */
14456
14457enum neon_type_mask
14458{
8e79c3df
CM
14459 N_S8 = 0x0000001,
14460 N_S16 = 0x0000002,
14461 N_S32 = 0x0000004,
14462 N_S64 = 0x0000008,
14463 N_U8 = 0x0000010,
14464 N_U16 = 0x0000020,
14465 N_U32 = 0x0000040,
14466 N_U64 = 0x0000080,
14467 N_I8 = 0x0000100,
14468 N_I16 = 0x0000200,
14469 N_I32 = 0x0000400,
14470 N_I64 = 0x0000800,
14471 N_8 = 0x0001000,
14472 N_16 = 0x0002000,
14473 N_32 = 0x0004000,
14474 N_64 = 0x0008000,
14475 N_P8 = 0x0010000,
14476 N_P16 = 0x0020000,
14477 N_F16 = 0x0040000,
14478 N_F32 = 0x0080000,
14479 N_F64 = 0x0100000,
4f51b4bd 14480 N_P64 = 0x0200000,
c921be7d
NC
14481 N_KEY = 0x1000000, /* Key element (main type specifier). */
14482 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14483 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14484 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14485 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14486 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14487 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14488 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14489 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14490 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14491 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14492 N_UTYP = 0,
4f51b4bd 14493 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14494};
14495
dcbf9037
JB
14496#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14497
5287ad62
JB
14498#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14499#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14500#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14501#define N_S_32 (N_S8 | N_S16 | N_S32)
14502#define N_F_16_32 (N_F16 | N_F32)
14503#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14504#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14505#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14506#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14507#define N_I_MVE (N_I8 | N_I16 | N_I32)
14508#define N_F_MVE (N_F16 | N_F32)
14509#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14510
14511/* Pass this as the first type argument to neon_check_type to ignore types
14512 altogether. */
14513#define N_IGNORE_TYPE (N_KEY | N_EQK)
14514
037e8744
JB
14515/* Select a "shape" for the current instruction (describing register types or
14516 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14517 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14518 function of operand parsing, so this function doesn't need to be called.
14519 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14520
14521static enum neon_shape
037e8744 14522neon_select_shape (enum neon_shape shape, ...)
5287ad62 14523{
037e8744
JB
14524 va_list ap;
14525 enum neon_shape first_shape = shape;
5287ad62
JB
14526
14527 /* Fix missing optional operands. FIXME: we don't know at this point how
14528 many arguments we should have, so this makes the assumption that we have
14529 > 1. This is true of all current Neon opcodes, I think, but may not be
14530 true in the future. */
14531 if (!inst.operands[1].present)
14532 inst.operands[1] = inst.operands[0];
14533
037e8744 14534 va_start (ap, shape);
5f4273c7 14535
21d799b5 14536 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14537 {
14538 unsigned j;
14539 int matches = 1;
14540
14541 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14542 {
14543 if (!inst.operands[j].present)
14544 {
14545 matches = 0;
14546 break;
14547 }
14548
14549 switch (neon_shape_tab[shape].el[j])
14550 {
d54af2d0
RL
14551 /* If a .f16, .16, .u16, .s16 type specifier is given over
14552 a VFP single precision register operand, it's essentially
14553 means only half of the register is used.
14554
14555 If the type specifier is given after the mnemonics, the
14556 information is stored in inst.vectype. If the type specifier
14557 is given after register operand, the information is stored
14558 in inst.operands[].vectype.
14559
14560 When there is only one type specifier, and all the register
14561 operands are the same type of hardware register, the type
14562 specifier applies to all register operands.
14563
14564 If no type specifier is given, the shape is inferred from
14565 operand information.
14566
14567 for example:
14568 vadd.f16 s0, s1, s2: NS_HHH
14569 vabs.f16 s0, s1: NS_HH
14570 vmov.f16 s0, r1: NS_HR
14571 vmov.f16 r0, s1: NS_RH
14572 vcvt.f16 r0, s1: NS_RH
14573 vcvt.f16.s32 s2, s2, #29: NS_HFI
14574 vcvt.f16.s32 s2, s2: NS_HF
14575 */
14576 case SE_H:
14577 if (!(inst.operands[j].isreg
14578 && inst.operands[j].isvec
14579 && inst.operands[j].issingle
14580 && !inst.operands[j].isquad
14581 && ((inst.vectype.elems == 1
14582 && inst.vectype.el[0].size == 16)
14583 || (inst.vectype.elems > 1
14584 && inst.vectype.el[j].size == 16)
14585 || (inst.vectype.elems == 0
14586 && inst.operands[j].vectype.type != NT_invtype
14587 && inst.operands[j].vectype.size == 16))))
14588 matches = 0;
14589 break;
14590
477330fc
RM
14591 case SE_F:
14592 if (!(inst.operands[j].isreg
14593 && inst.operands[j].isvec
14594 && inst.operands[j].issingle
d54af2d0
RL
14595 && !inst.operands[j].isquad
14596 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14597 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14598 || (inst.vectype.elems == 0
14599 && (inst.operands[j].vectype.size == 32
14600 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14601 matches = 0;
14602 break;
14603
14604 case SE_D:
14605 if (!(inst.operands[j].isreg
14606 && inst.operands[j].isvec
14607 && !inst.operands[j].isquad
14608 && !inst.operands[j].issingle))
14609 matches = 0;
14610 break;
14611
14612 case SE_R:
14613 if (!(inst.operands[j].isreg
14614 && !inst.operands[j].isvec))
14615 matches = 0;
14616 break;
14617
14618 case SE_Q:
14619 if (!(inst.operands[j].isreg
14620 && inst.operands[j].isvec
14621 && inst.operands[j].isquad
14622 && !inst.operands[j].issingle))
14623 matches = 0;
14624 break;
14625
14626 case SE_I:
14627 if (!(!inst.operands[j].isreg
14628 && !inst.operands[j].isscalar))
14629 matches = 0;
14630 break;
14631
14632 case SE_S:
14633 if (!(!inst.operands[j].isreg
14634 && inst.operands[j].isscalar))
14635 matches = 0;
14636 break;
14637
14638 case SE_L:
14639 break;
14640 }
3fde54a2
JZ
14641 if (!matches)
14642 break;
477330fc 14643 }
ad6cec43
MGD
14644 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14645 /* We've matched all the entries in the shape table, and we don't
14646 have any left over operands which have not been matched. */
477330fc 14647 break;
037e8744 14648 }
5f4273c7 14649
037e8744 14650 va_end (ap);
5287ad62 14651
037e8744
JB
14652 if (shape == NS_NULL && first_shape != NS_NULL)
14653 first_error (_("invalid instruction shape"));
5287ad62 14654
037e8744
JB
14655 return shape;
14656}
5287ad62 14657
037e8744
JB
14658/* True if SHAPE is predominantly a quadword operation (most of the time, this
14659 means the Q bit should be set). */
14660
14661static int
14662neon_quad (enum neon_shape shape)
14663{
14664 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14665}
037e8744 14666
5287ad62
JB
14667static void
14668neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14669 unsigned *g_size)
5287ad62
JB
14670{
14671 /* Allow modification to be made to types which are constrained to be
14672 based on the key element, based on bits set alongside N_EQK. */
14673 if ((typebits & N_EQK) != 0)
14674 {
14675 if ((typebits & N_HLF) != 0)
14676 *g_size /= 2;
14677 else if ((typebits & N_DBL) != 0)
14678 *g_size *= 2;
14679 if ((typebits & N_SGN) != 0)
14680 *g_type = NT_signed;
14681 else if ((typebits & N_UNS) != 0)
477330fc 14682 *g_type = NT_unsigned;
5287ad62 14683 else if ((typebits & N_INT) != 0)
477330fc 14684 *g_type = NT_integer;
5287ad62 14685 else if ((typebits & N_FLT) != 0)
477330fc 14686 *g_type = NT_float;
dcbf9037 14687 else if ((typebits & N_SIZ) != 0)
477330fc 14688 *g_type = NT_untyped;
5287ad62
JB
14689 }
14690}
5f4273c7 14691
5287ad62
JB
14692/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14693 operand type, i.e. the single type specified in a Neon instruction when it
14694 is the only one given. */
14695
14696static struct neon_type_el
14697neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14698{
14699 struct neon_type_el dest = *key;
5f4273c7 14700
9c2799c2 14701 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14702
5287ad62
JB
14703 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14704
14705 return dest;
14706}
14707
14708/* Convert Neon type and size into compact bitmask representation. */
14709
14710static enum neon_type_mask
14711type_chk_of_el_type (enum neon_el_type type, unsigned size)
14712{
14713 switch (type)
14714 {
14715 case NT_untyped:
14716 switch (size)
477330fc
RM
14717 {
14718 case 8: return N_8;
14719 case 16: return N_16;
14720 case 32: return N_32;
14721 case 64: return N_64;
14722 default: ;
14723 }
5287ad62
JB
14724 break;
14725
14726 case NT_integer:
14727 switch (size)
477330fc
RM
14728 {
14729 case 8: return N_I8;
14730 case 16: return N_I16;
14731 case 32: return N_I32;
14732 case 64: return N_I64;
14733 default: ;
14734 }
5287ad62
JB
14735 break;
14736
14737 case NT_float:
037e8744 14738 switch (size)
477330fc 14739 {
8e79c3df 14740 case 16: return N_F16;
477330fc
RM
14741 case 32: return N_F32;
14742 case 64: return N_F64;
14743 default: ;
14744 }
5287ad62
JB
14745 break;
14746
14747 case NT_poly:
14748 switch (size)
477330fc
RM
14749 {
14750 case 8: return N_P8;
14751 case 16: return N_P16;
4f51b4bd 14752 case 64: return N_P64;
477330fc
RM
14753 default: ;
14754 }
5287ad62
JB
14755 break;
14756
14757 case NT_signed:
14758 switch (size)
477330fc
RM
14759 {
14760 case 8: return N_S8;
14761 case 16: return N_S16;
14762 case 32: return N_S32;
14763 case 64: return N_S64;
14764 default: ;
14765 }
5287ad62
JB
14766 break;
14767
14768 case NT_unsigned:
14769 switch (size)
477330fc
RM
14770 {
14771 case 8: return N_U8;
14772 case 16: return N_U16;
14773 case 32: return N_U32;
14774 case 64: return N_U64;
14775 default: ;
14776 }
5287ad62
JB
14777 break;
14778
14779 default: ;
14780 }
5f4273c7 14781
5287ad62
JB
14782 return N_UTYP;
14783}
14784
14785/* Convert compact Neon bitmask type representation to a type and size. Only
14786 handles the case where a single bit is set in the mask. */
14787
dcbf9037 14788static int
5287ad62 14789el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14790 enum neon_type_mask mask)
5287ad62 14791{
dcbf9037
JB
14792 if ((mask & N_EQK) != 0)
14793 return FAIL;
14794
5287ad62
JB
14795 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14796 *size = 8;
c70a8987 14797 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14798 *size = 16;
dcbf9037 14799 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14800 *size = 32;
4f51b4bd 14801 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14802 *size = 64;
dcbf9037
JB
14803 else
14804 return FAIL;
14805
5287ad62
JB
14806 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14807 *type = NT_signed;
dcbf9037 14808 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14809 *type = NT_unsigned;
dcbf9037 14810 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14811 *type = NT_integer;
dcbf9037 14812 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14813 *type = NT_untyped;
4f51b4bd 14814 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14815 *type = NT_poly;
d54af2d0 14816 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14817 *type = NT_float;
dcbf9037
JB
14818 else
14819 return FAIL;
5f4273c7 14820
dcbf9037 14821 return SUCCESS;
5287ad62
JB
14822}
14823
14824/* Modify a bitmask of allowed types. This is only needed for type
14825 relaxation. */
14826
14827static unsigned
14828modify_types_allowed (unsigned allowed, unsigned mods)
14829{
14830 unsigned size;
14831 enum neon_el_type type;
14832 unsigned destmask;
14833 int i;
5f4273c7 14834
5287ad62 14835 destmask = 0;
5f4273c7 14836
5287ad62
JB
14837 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14838 {
21d799b5 14839 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14840 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14841 {
14842 neon_modify_type_size (mods, &type, &size);
14843 destmask |= type_chk_of_el_type (type, size);
14844 }
5287ad62 14845 }
5f4273c7 14846
5287ad62
JB
14847 return destmask;
14848}
14849
14850/* Check type and return type classification.
14851 The manual states (paraphrase): If one datatype is given, it indicates the
14852 type given in:
14853 - the second operand, if there is one
14854 - the operand, if there is no second operand
14855 - the result, if there are no operands.
14856 This isn't quite good enough though, so we use a concept of a "key" datatype
14857 which is set on a per-instruction basis, which is the one which matters when
14858 only one data type is written.
14859 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14860 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14861
14862static struct neon_type_el
14863neon_check_type (unsigned els, enum neon_shape ns, ...)
14864{
14865 va_list ap;
14866 unsigned i, pass, key_el = 0;
14867 unsigned types[NEON_MAX_TYPE_ELS];
14868 enum neon_el_type k_type = NT_invtype;
14869 unsigned k_size = -1u;
14870 struct neon_type_el badtype = {NT_invtype, -1};
14871 unsigned key_allowed = 0;
14872
14873 /* Optional registers in Neon instructions are always (not) in operand 1.
14874 Fill in the missing operand here, if it was omitted. */
14875 if (els > 1 && !inst.operands[1].present)
14876 inst.operands[1] = inst.operands[0];
14877
14878 /* Suck up all the varargs. */
14879 va_start (ap, ns);
14880 for (i = 0; i < els; i++)
14881 {
14882 unsigned thisarg = va_arg (ap, unsigned);
14883 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14884 {
14885 va_end (ap);
14886 return badtype;
14887 }
5287ad62
JB
14888 types[i] = thisarg;
14889 if ((thisarg & N_KEY) != 0)
477330fc 14890 key_el = i;
5287ad62
JB
14891 }
14892 va_end (ap);
14893
dcbf9037
JB
14894 if (inst.vectype.elems > 0)
14895 for (i = 0; i < els; i++)
14896 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14897 {
14898 first_error (_("types specified in both the mnemonic and operands"));
14899 return badtype;
14900 }
dcbf9037 14901
5287ad62
JB
14902 /* Duplicate inst.vectype elements here as necessary.
14903 FIXME: No idea if this is exactly the same as the ARM assembler,
14904 particularly when an insn takes one register and one non-register
14905 operand. */
14906 if (inst.vectype.elems == 1 && els > 1)
14907 {
14908 unsigned j;
14909 inst.vectype.elems = els;
14910 inst.vectype.el[key_el] = inst.vectype.el[0];
14911 for (j = 0; j < els; j++)
477330fc
RM
14912 if (j != key_el)
14913 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14914 types[j]);
dcbf9037
JB
14915 }
14916 else if (inst.vectype.elems == 0 && els > 0)
14917 {
14918 unsigned j;
14919 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14920 after each operand. We allow some flexibility here; as long as the
14921 "key" operand has a type, we can infer the others. */
dcbf9037 14922 for (j = 0; j < els; j++)
477330fc
RM
14923 if (inst.operands[j].vectype.type != NT_invtype)
14924 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14925
14926 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14927 {
14928 for (j = 0; j < els; j++)
14929 if (inst.operands[j].vectype.type == NT_invtype)
14930 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14931 types[j]);
14932 }
dcbf9037 14933 else
477330fc
RM
14934 {
14935 first_error (_("operand types can't be inferred"));
14936 return badtype;
14937 }
5287ad62
JB
14938 }
14939 else if (inst.vectype.elems != els)
14940 {
dcbf9037 14941 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14942 return badtype;
14943 }
14944
14945 for (pass = 0; pass < 2; pass++)
14946 {
14947 for (i = 0; i < els; i++)
477330fc
RM
14948 {
14949 unsigned thisarg = types[i];
14950 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14951 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14952 enum neon_el_type g_type = inst.vectype.el[i].type;
14953 unsigned g_size = inst.vectype.el[i].size;
14954
14955 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14956 integer types if sign-specific variants are unavailable. */
477330fc 14957 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14958 && (types_allowed & N_SU_ALL) == 0)
14959 g_type = NT_integer;
14960
477330fc 14961 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14962 them. Some instructions only care about signs for some element
14963 sizes, so handle that properly. */
477330fc 14964 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14965 && ((g_size == 8 && (types_allowed & N_8) != 0)
14966 || (g_size == 16 && (types_allowed & N_16) != 0)
14967 || (g_size == 32 && (types_allowed & N_32) != 0)
14968 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14969 g_type = NT_untyped;
14970
477330fc
RM
14971 if (pass == 0)
14972 {
14973 if ((thisarg & N_KEY) != 0)
14974 {
14975 k_type = g_type;
14976 k_size = g_size;
14977 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14978
14979 /* Check architecture constraint on FP16 extension. */
14980 if (k_size == 16
14981 && k_type == NT_float
14982 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14983 {
14984 inst.error = _(BAD_FP16);
14985 return badtype;
14986 }
477330fc
RM
14987 }
14988 }
14989 else
14990 {
14991 if ((thisarg & N_VFP) != 0)
14992 {
14993 enum neon_shape_el regshape;
14994 unsigned regwidth, match;
99b253c5
NC
14995
14996 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14997 if (ns == NS_NULL)
14998 {
14999 first_error (_("invalid instruction shape"));
15000 return badtype;
15001 }
477330fc
RM
15002 regshape = neon_shape_tab[ns].el[i];
15003 regwidth = neon_shape_el_size[regshape];
15004
15005 /* In VFP mode, operands must match register widths. If we
15006 have a key operand, use its width, else use the width of
15007 the current operand. */
15008 if (k_size != -1u)
15009 match = k_size;
15010 else
15011 match = g_size;
15012
9db2f6b4
RL
15013 /* FP16 will use a single precision register. */
15014 if (regwidth == 32 && match == 16)
15015 {
15016 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15017 match = regwidth;
15018 else
15019 {
15020 inst.error = _(BAD_FP16);
15021 return badtype;
15022 }
15023 }
15024
477330fc
RM
15025 if (regwidth != match)
15026 {
15027 first_error (_("operand size must match register width"));
15028 return badtype;
15029 }
15030 }
15031
15032 if ((thisarg & N_EQK) == 0)
15033 {
15034 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15035
15036 if ((given_type & types_allowed) == 0)
15037 {
a302e574 15038 first_error (BAD_SIMD_TYPE);
477330fc
RM
15039 return badtype;
15040 }
15041 }
15042 else
15043 {
15044 enum neon_el_type mod_k_type = k_type;
15045 unsigned mod_k_size = k_size;
15046 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15047 if (g_type != mod_k_type || g_size != mod_k_size)
15048 {
15049 first_error (_("inconsistent types in Neon instruction"));
15050 return badtype;
15051 }
15052 }
15053 }
15054 }
5287ad62
JB
15055 }
15056
15057 return inst.vectype.el[key_el];
15058}
15059
037e8744 15060/* Neon-style VFP instruction forwarding. */
5287ad62 15061
037e8744
JB
15062/* Thumb VFP instructions have 0xE in the condition field. */
15063
15064static void
15065do_vfp_cond_or_thumb (void)
5287ad62 15066{
88714cb8
DG
15067 inst.is_neon = 1;
15068
5287ad62 15069 if (thumb_mode)
037e8744 15070 inst.instruction |= 0xe0000000;
5287ad62 15071 else
037e8744 15072 inst.instruction |= inst.cond << 28;
5287ad62
JB
15073}
15074
037e8744
JB
15075/* Look up and encode a simple mnemonic, for use as a helper function for the
15076 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15077 etc. It is assumed that operand parsing has already been done, and that the
15078 operands are in the form expected by the given opcode (this isn't necessarily
15079 the same as the form in which they were parsed, hence some massaging must
15080 take place before this function is called).
15081 Checks current arch version against that in the looked-up opcode. */
5287ad62 15082
037e8744
JB
15083static void
15084do_vfp_nsyn_opcode (const char *opname)
5287ad62 15085{
037e8744 15086 const struct asm_opcode *opcode;
5f4273c7 15087
21d799b5 15088 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15089
037e8744
JB
15090 if (!opcode)
15091 abort ();
5287ad62 15092
037e8744 15093 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15094 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15095 _(BAD_FPU));
5287ad62 15096
88714cb8
DG
15097 inst.is_neon = 1;
15098
037e8744
JB
15099 if (thumb_mode)
15100 {
15101 inst.instruction = opcode->tvalue;
15102 opcode->tencode ();
15103 }
15104 else
15105 {
15106 inst.instruction = (inst.cond << 28) | opcode->avalue;
15107 opcode->aencode ();
15108 }
15109}
5287ad62
JB
15110
15111static void
037e8744 15112do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15113{
037e8744
JB
15114 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15115
9db2f6b4 15116 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15117 {
15118 if (is_add)
477330fc 15119 do_vfp_nsyn_opcode ("fadds");
037e8744 15120 else
477330fc 15121 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15122
15123 /* ARMv8.2 fp16 instruction. */
15124 if (rs == NS_HHH)
15125 do_scalar_fp16_v82_encode ();
037e8744
JB
15126 }
15127 else
15128 {
15129 if (is_add)
477330fc 15130 do_vfp_nsyn_opcode ("faddd");
037e8744 15131 else
477330fc 15132 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15133 }
15134}
15135
15136/* Check operand types to see if this is a VFP instruction, and if so call
15137 PFN (). */
15138
15139static int
15140try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15141{
15142 enum neon_shape rs;
15143 struct neon_type_el et;
15144
15145 switch (args)
15146 {
15147 case 2:
9db2f6b4
RL
15148 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15149 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15150 break;
5f4273c7 15151
037e8744 15152 case 3:
9db2f6b4
RL
15153 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15154 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15155 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15156 break;
15157
15158 default:
15159 abort ();
15160 }
15161
15162 if (et.type != NT_invtype)
15163 {
15164 pfn (rs);
15165 return SUCCESS;
15166 }
037e8744 15167
99b253c5 15168 inst.error = NULL;
037e8744
JB
15169 return FAIL;
15170}
15171
15172static void
15173do_vfp_nsyn_mla_mls (enum neon_shape rs)
15174{
15175 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15176
9db2f6b4 15177 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15178 {
15179 if (is_mla)
477330fc 15180 do_vfp_nsyn_opcode ("fmacs");
037e8744 15181 else
477330fc 15182 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15183
15184 /* ARMv8.2 fp16 instruction. */
15185 if (rs == NS_HHH)
15186 do_scalar_fp16_v82_encode ();
037e8744
JB
15187 }
15188 else
15189 {
15190 if (is_mla)
477330fc 15191 do_vfp_nsyn_opcode ("fmacd");
037e8744 15192 else
477330fc 15193 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15194 }
15195}
15196
62f3b8c8
PB
15197static void
15198do_vfp_nsyn_fma_fms (enum neon_shape rs)
15199{
15200 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15201
9db2f6b4 15202 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15203 {
15204 if (is_fma)
477330fc 15205 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15206 else
477330fc 15207 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15208
15209 /* ARMv8.2 fp16 instruction. */
15210 if (rs == NS_HHH)
15211 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15212 }
15213 else
15214 {
15215 if (is_fma)
477330fc 15216 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15217 else
477330fc 15218 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15219 }
15220}
15221
037e8744
JB
15222static void
15223do_vfp_nsyn_mul (enum neon_shape rs)
15224{
9db2f6b4
RL
15225 if (rs == NS_FFF || rs == NS_HHH)
15226 {
15227 do_vfp_nsyn_opcode ("fmuls");
15228
15229 /* ARMv8.2 fp16 instruction. */
15230 if (rs == NS_HHH)
15231 do_scalar_fp16_v82_encode ();
15232 }
037e8744
JB
15233 else
15234 do_vfp_nsyn_opcode ("fmuld");
15235}
15236
15237static void
15238do_vfp_nsyn_abs_neg (enum neon_shape rs)
15239{
15240 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15241 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15242
9db2f6b4 15243 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15244 {
15245 if (is_neg)
477330fc 15246 do_vfp_nsyn_opcode ("fnegs");
037e8744 15247 else
477330fc 15248 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15249
15250 /* ARMv8.2 fp16 instruction. */
15251 if (rs == NS_HH)
15252 do_scalar_fp16_v82_encode ();
037e8744
JB
15253 }
15254 else
15255 {
15256 if (is_neg)
477330fc 15257 do_vfp_nsyn_opcode ("fnegd");
037e8744 15258 else
477330fc 15259 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15260 }
15261}
15262
15263/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15264 insns belong to Neon, and are handled elsewhere. */
15265
15266static void
15267do_vfp_nsyn_ldm_stm (int is_dbmode)
15268{
15269 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15270 if (is_ldm)
15271 {
15272 if (is_dbmode)
477330fc 15273 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15274 else
477330fc 15275 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15276 }
15277 else
15278 {
15279 if (is_dbmode)
477330fc 15280 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15281 else
477330fc 15282 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15283 }
15284}
15285
037e8744
JB
15286static void
15287do_vfp_nsyn_sqrt (void)
15288{
9db2f6b4
RL
15289 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15290 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15291
9db2f6b4
RL
15292 if (rs == NS_FF || rs == NS_HH)
15293 {
15294 do_vfp_nsyn_opcode ("fsqrts");
15295
15296 /* ARMv8.2 fp16 instruction. */
15297 if (rs == NS_HH)
15298 do_scalar_fp16_v82_encode ();
15299 }
037e8744
JB
15300 else
15301 do_vfp_nsyn_opcode ("fsqrtd");
15302}
15303
15304static void
15305do_vfp_nsyn_div (void)
15306{
9db2f6b4 15307 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15308 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15309 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15310
9db2f6b4
RL
15311 if (rs == NS_FFF || rs == NS_HHH)
15312 {
15313 do_vfp_nsyn_opcode ("fdivs");
15314
15315 /* ARMv8.2 fp16 instruction. */
15316 if (rs == NS_HHH)
15317 do_scalar_fp16_v82_encode ();
15318 }
037e8744
JB
15319 else
15320 do_vfp_nsyn_opcode ("fdivd");
15321}
15322
15323static void
15324do_vfp_nsyn_nmul (void)
15325{
9db2f6b4 15326 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15327 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15328 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15329
9db2f6b4 15330 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15331 {
88714cb8 15332 NEON_ENCODE (SINGLE, inst);
037e8744 15333 do_vfp_sp_dyadic ();
9db2f6b4
RL
15334
15335 /* ARMv8.2 fp16 instruction. */
15336 if (rs == NS_HHH)
15337 do_scalar_fp16_v82_encode ();
037e8744
JB
15338 }
15339 else
15340 {
88714cb8 15341 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15342 do_vfp_dp_rd_rn_rm ();
15343 }
15344 do_vfp_cond_or_thumb ();
9db2f6b4 15345
037e8744
JB
15346}
15347
1b883319
AV
15348/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15349 (0, 1, 2, 3). */
15350
15351static unsigned
15352neon_logbits (unsigned x)
15353{
15354 return ffs (x) - 4;
15355}
15356
15357#define LOW4(R) ((R) & 0xf)
15358#define HI1(R) (((R) >> 4) & 1)
15359
15360static unsigned
15361mve_get_vcmp_vpt_cond (struct neon_type_el et)
15362{
15363 switch (et.type)
15364 {
15365 default:
15366 first_error (BAD_EL_TYPE);
15367 return 0;
15368 case NT_float:
15369 switch (inst.operands[0].imm)
15370 {
15371 default:
15372 first_error (_("invalid condition"));
15373 return 0;
15374 case 0x0:
15375 /* eq. */
15376 return 0;
15377 case 0x1:
15378 /* ne. */
15379 return 1;
15380 case 0xa:
15381 /* ge/ */
15382 return 4;
15383 case 0xb:
15384 /* lt. */
15385 return 5;
15386 case 0xc:
15387 /* gt. */
15388 return 6;
15389 case 0xd:
15390 /* le. */
15391 return 7;
15392 }
15393 case NT_integer:
15394 /* only accept eq and ne. */
15395 if (inst.operands[0].imm > 1)
15396 {
15397 first_error (_("invalid condition"));
15398 return 0;
15399 }
15400 return inst.operands[0].imm;
15401 case NT_unsigned:
15402 if (inst.operands[0].imm == 0x2)
15403 return 2;
15404 else if (inst.operands[0].imm == 0x8)
15405 return 3;
15406 else
15407 {
15408 first_error (_("invalid condition"));
15409 return 0;
15410 }
15411 case NT_signed:
15412 switch (inst.operands[0].imm)
15413 {
15414 default:
15415 first_error (_("invalid condition"));
15416 return 0;
15417 case 0xa:
15418 /* ge. */
15419 return 4;
15420 case 0xb:
15421 /* lt. */
15422 return 5;
15423 case 0xc:
15424 /* gt. */
15425 return 6;
15426 case 0xd:
15427 /* le. */
15428 return 7;
15429 }
15430 }
15431 /* Should be unreachable. */
15432 abort ();
15433}
15434
15435static void
15436do_mve_vpt (void)
15437{
15438 /* We are dealing with a vector predicated block. */
15439 if (inst.operands[0].present)
15440 {
15441 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15442 struct neon_type_el et
15443 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15444 N_EQK);
15445
15446 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15447
15448 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15449
15450 if (et.type == NT_invtype)
15451 return;
15452
15453 if (et.type == NT_float)
15454 {
15455 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15456 BAD_FPU);
15457 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15458 inst.instruction |= (et.size == 16) << 28;
15459 inst.instruction |= 0x3 << 20;
15460 }
15461 else
15462 {
15463 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15464 BAD_EL_TYPE);
15465 inst.instruction |= 1 << 28;
15466 inst.instruction |= neon_logbits (et.size) << 20;
15467 }
15468
15469 if (inst.operands[2].isquad)
15470 {
15471 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15472 inst.instruction |= LOW4 (inst.operands[2].reg);
15473 inst.instruction |= (fcond & 0x2) >> 1;
15474 }
15475 else
15476 {
15477 if (inst.operands[2].reg == REG_SP)
15478 as_tsktsk (MVE_BAD_SP);
15479 inst.instruction |= 1 << 6;
15480 inst.instruction |= (fcond & 0x2) << 4;
15481 inst.instruction |= inst.operands[2].reg;
15482 }
15483 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15484 inst.instruction |= (fcond & 0x4) << 10;
15485 inst.instruction |= (fcond & 0x1) << 7;
15486
15487 }
15488 set_pred_insn_type (VPT_INSN);
15489 now_pred.cc = 0;
15490 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15491 | ((inst.instruction & 0xe000) >> 13);
15492 now_pred.warn_deprecated = FALSE;
15493 now_pred.type = VECTOR_PRED;
15494 inst.is_neon = 1;
15495}
15496
15497static void
15498do_mve_vcmp (void)
15499{
15500 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15501 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15502 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15503 if (!inst.operands[2].present)
15504 first_error (_("MVE vector or ARM register expected"));
15505 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15506
15507 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15508 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15509 && inst.operands[1].isquad)
15510 {
15511 inst.instruction = N_MNEM_vcmp;
15512 inst.cond = 0x10;
15513 }
15514
15515 if (inst.cond > COND_ALWAYS)
15516 inst.pred_insn_type = INSIDE_VPT_INSN;
15517 else
15518 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15519
15520 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15521 struct neon_type_el et
15522 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15523 N_EQK);
15524
15525 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15526 && !inst.operands[2].iszr, BAD_PC);
15527
15528 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15529
15530 inst.instruction = 0xee010f00;
15531 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15532 inst.instruction |= (fcond & 0x4) << 10;
15533 inst.instruction |= (fcond & 0x1) << 7;
15534 if (et.type == NT_float)
15535 {
15536 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15537 BAD_FPU);
15538 inst.instruction |= (et.size == 16) << 28;
15539 inst.instruction |= 0x3 << 20;
15540 }
15541 else
15542 {
15543 inst.instruction |= 1 << 28;
15544 inst.instruction |= neon_logbits (et.size) << 20;
15545 }
15546 if (inst.operands[2].isquad)
15547 {
15548 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15549 inst.instruction |= (fcond & 0x2) >> 1;
15550 inst.instruction |= LOW4 (inst.operands[2].reg);
15551 }
15552 else
15553 {
15554 if (inst.operands[2].reg == REG_SP)
15555 as_tsktsk (MVE_BAD_SP);
15556 inst.instruction |= 1 << 6;
15557 inst.instruction |= (fcond & 0x2) << 4;
15558 inst.instruction |= inst.operands[2].reg;
15559 }
15560
15561 inst.is_neon = 1;
15562 return;
15563}
15564
037e8744
JB
15565static void
15566do_vfp_nsyn_cmp (void)
15567{
9db2f6b4 15568 enum neon_shape rs;
1b883319
AV
15569 if (!inst.operands[0].isreg)
15570 {
15571 do_mve_vcmp ();
15572 return;
15573 }
15574 else
15575 {
15576 constraint (inst.operands[2].present, BAD_SYNTAX);
15577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15578 BAD_FPU);
15579 }
15580
037e8744
JB
15581 if (inst.operands[1].isreg)
15582 {
9db2f6b4
RL
15583 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15584 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15585
9db2f6b4 15586 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15587 {
15588 NEON_ENCODE (SINGLE, inst);
15589 do_vfp_sp_monadic ();
15590 }
037e8744 15591 else
477330fc
RM
15592 {
15593 NEON_ENCODE (DOUBLE, inst);
15594 do_vfp_dp_rd_rm ();
15595 }
037e8744
JB
15596 }
15597 else
15598 {
9db2f6b4
RL
15599 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15600 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15601
15602 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15603 {
15604 case N_MNEM_vcmp:
15605 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15606 break;
15607 case N_MNEM_vcmpe:
15608 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15609 break;
15610 default:
15611 abort ();
15612 }
5f4273c7 15613
9db2f6b4 15614 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15615 {
15616 NEON_ENCODE (SINGLE, inst);
15617 do_vfp_sp_compare_z ();
15618 }
037e8744 15619 else
477330fc
RM
15620 {
15621 NEON_ENCODE (DOUBLE, inst);
15622 do_vfp_dp_rd ();
15623 }
037e8744
JB
15624 }
15625 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15626
15627 /* ARMv8.2 fp16 instruction. */
15628 if (rs == NS_HI || rs == NS_HH)
15629 do_scalar_fp16_v82_encode ();
037e8744
JB
15630}
15631
15632static void
15633nsyn_insert_sp (void)
15634{
15635 inst.operands[1] = inst.operands[0];
15636 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 15637 inst.operands[0].reg = REG_SP;
037e8744
JB
15638 inst.operands[0].isreg = 1;
15639 inst.operands[0].writeback = 1;
15640 inst.operands[0].present = 1;
15641}
15642
15643static void
15644do_vfp_nsyn_push (void)
15645{
15646 nsyn_insert_sp ();
b126985e
NC
15647
15648 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15649 _("register list must contain at least 1 and at most 16 "
15650 "registers"));
15651
037e8744
JB
15652 if (inst.operands[1].issingle)
15653 do_vfp_nsyn_opcode ("fstmdbs");
15654 else
15655 do_vfp_nsyn_opcode ("fstmdbd");
15656}
15657
15658static void
15659do_vfp_nsyn_pop (void)
15660{
15661 nsyn_insert_sp ();
b126985e
NC
15662
15663 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15664 _("register list must contain at least 1 and at most 16 "
15665 "registers"));
15666
037e8744 15667 if (inst.operands[1].issingle)
22b5b651 15668 do_vfp_nsyn_opcode ("fldmias");
037e8744 15669 else
22b5b651 15670 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
15671}
15672
15673/* Fix up Neon data-processing instructions, ORing in the correct bits for
15674 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15675
88714cb8
DG
15676static void
15677neon_dp_fixup (struct arm_it* insn)
037e8744 15678{
88714cb8
DG
15679 unsigned int i = insn->instruction;
15680 insn->is_neon = 1;
15681
037e8744
JB
15682 if (thumb_mode)
15683 {
15684 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15685 if (i & (1 << 24))
477330fc 15686 i |= 1 << 28;
5f4273c7 15687
037e8744 15688 i &= ~(1 << 24);
5f4273c7 15689
037e8744
JB
15690 i |= 0xef000000;
15691 }
15692 else
15693 i |= 0xf2000000;
5f4273c7 15694
88714cb8 15695 insn->instruction = i;
037e8744
JB
15696}
15697
5ee91343
AV
15698static void
15699mve_encode_qqr (int size, int fp)
15700{
15701 if (inst.operands[2].reg == REG_SP)
15702 as_tsktsk (MVE_BAD_SP);
15703 else if (inst.operands[2].reg == REG_PC)
15704 as_tsktsk (MVE_BAD_PC);
15705
15706 if (fp)
15707 {
15708 /* vadd. */
15709 if (((unsigned)inst.instruction) == 0xd00)
15710 inst.instruction = 0xee300f40;
15711 /* vsub. */
15712 else if (((unsigned)inst.instruction) == 0x200d00)
15713 inst.instruction = 0xee301f40;
15714
15715 /* Setting size which is 1 for F16 and 0 for F32. */
15716 inst.instruction |= (size == 16) << 28;
15717 }
15718 else
15719 {
15720 /* vadd. */
15721 if (((unsigned)inst.instruction) == 0x800)
15722 inst.instruction = 0xee010f40;
15723 /* vsub. */
15724 else if (((unsigned)inst.instruction) == 0x1000800)
15725 inst.instruction = 0xee011f40;
15726 /* Setting bits for size. */
15727 inst.instruction |= neon_logbits (size) << 20;
15728 }
15729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15730 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15731 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15732 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15733 inst.instruction |= inst.operands[2].reg;
15734 inst.is_neon = 1;
15735}
15736
a302e574
AV
15737static void
15738mve_encode_rqq (unsigned bit28, unsigned size)
15739{
15740 inst.instruction |= bit28 << 28;
15741 inst.instruction |= neon_logbits (size) << 20;
15742 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15743 inst.instruction |= inst.operands[0].reg << 12;
15744 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15745 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15746 inst.instruction |= LOW4 (inst.operands[2].reg);
15747 inst.is_neon = 1;
15748}
15749
886e1c73
AV
15750static void
15751mve_encode_qqq (int ubit, int size)
15752{
15753
15754 inst.instruction |= (ubit != 0) << 28;
15755 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15756 inst.instruction |= neon_logbits (size) << 20;
15757 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15758 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15759 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15760 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15761 inst.instruction |= LOW4 (inst.operands[2].reg);
15762
15763 inst.is_neon = 1;
15764}
15765
15766
037e8744
JB
15767/* Encode insns with bit pattern:
15768
15769 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15770 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 15771
037e8744
JB
15772 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15773 different meaning for some instruction. */
15774
15775static void
15776neon_three_same (int isquad, int ubit, int size)
15777{
15778 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15779 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15780 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15781 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15782 inst.instruction |= LOW4 (inst.operands[2].reg);
15783 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15784 inst.instruction |= (isquad != 0) << 6;
15785 inst.instruction |= (ubit != 0) << 24;
15786 if (size != -1)
15787 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15788
88714cb8 15789 neon_dp_fixup (&inst);
037e8744
JB
15790}
15791
15792/* Encode instructions of the form:
15793
15794 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15795 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
15796
15797 Don't write size if SIZE == -1. */
15798
15799static void
15800neon_two_same (int qbit, int ubit, int size)
15801{
15802 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15803 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15804 inst.instruction |= LOW4 (inst.operands[1].reg);
15805 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15806 inst.instruction |= (qbit != 0) << 6;
15807 inst.instruction |= (ubit != 0) << 24;
15808
15809 if (size != -1)
15810 inst.instruction |= neon_logbits (size) << 18;
15811
88714cb8 15812 neon_dp_fixup (&inst);
5287ad62
JB
15813}
15814
15815/* Neon instruction encoders, in approximate order of appearance. */
15816
15817static void
15818do_neon_dyadic_i_su (void)
15819{
037e8744 15820 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15821 struct neon_type_el et = neon_check_type (3, rs,
15822 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 15823 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15824}
15825
15826static void
15827do_neon_dyadic_i64_su (void)
15828{
037e8744 15829 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15830 struct neon_type_el et = neon_check_type (3, rs,
15831 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 15832 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15833}
15834
15835static void
15836neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 15837 unsigned immbits)
5287ad62
JB
15838{
15839 unsigned size = et.size >> 3;
15840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15841 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15842 inst.instruction |= LOW4 (inst.operands[1].reg);
15843 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15844 inst.instruction |= (isquad != 0) << 6;
15845 inst.instruction |= immbits << 16;
15846 inst.instruction |= (size >> 3) << 7;
15847 inst.instruction |= (size & 0x7) << 19;
15848 if (write_ubit)
15849 inst.instruction |= (uval != 0) << 24;
15850
88714cb8 15851 neon_dp_fixup (&inst);
5287ad62
JB
15852}
15853
15854static void
15855do_neon_shl_imm (void)
15856{
15857 if (!inst.operands[2].isreg)
15858 {
037e8744 15859 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 15860 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
15861 int imm = inst.operands[2].imm;
15862
15863 constraint (imm < 0 || (unsigned)imm >= et.size,
15864 _("immediate out of range for shift"));
88714cb8 15865 NEON_ENCODE (IMMED, inst);
cb3b1e65 15866 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15867 }
15868 else
15869 {
037e8744 15870 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15871 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15872 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
15873 unsigned int tmp;
15874
15875 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
15876 vshl.xx Dd, Dm, Dn
15877 whereas other 3-register operations encoded by neon_three_same have
15878 syntax like:
15879 vadd.xx Dd, Dn, Dm
15880 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15881 here. */
627907b7
JB
15882 tmp = inst.operands[2].reg;
15883 inst.operands[2].reg = inst.operands[1].reg;
15884 inst.operands[1].reg = tmp;
88714cb8 15885 NEON_ENCODE (INTEGER, inst);
037e8744 15886 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15887 }
15888}
15889
15890static void
15891do_neon_qshl_imm (void)
15892{
15893 if (!inst.operands[2].isreg)
15894 {
037e8744 15895 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 15896 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 15897 int imm = inst.operands[2].imm;
627907b7 15898
cb3b1e65
JB
15899 constraint (imm < 0 || (unsigned)imm >= et.size,
15900 _("immediate out of range for shift"));
88714cb8 15901 NEON_ENCODE (IMMED, inst);
cb3b1e65 15902 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
15903 }
15904 else
15905 {
037e8744 15906 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15907 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15908 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
15909 unsigned int tmp;
15910
15911 /* See note in do_neon_shl_imm. */
15912 tmp = inst.operands[2].reg;
15913 inst.operands[2].reg = inst.operands[1].reg;
15914 inst.operands[1].reg = tmp;
88714cb8 15915 NEON_ENCODE (INTEGER, inst);
037e8744 15916 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
15917 }
15918}
15919
627907b7
JB
15920static void
15921do_neon_rshl (void)
15922{
15923 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15924 struct neon_type_el et = neon_check_type (3, rs,
15925 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15926 unsigned int tmp;
15927
15928 tmp = inst.operands[2].reg;
15929 inst.operands[2].reg = inst.operands[1].reg;
15930 inst.operands[1].reg = tmp;
15931 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15932}
15933
5287ad62
JB
15934static int
15935neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
15936{
036dc3f7
PB
15937 /* Handle .I8 pseudo-instructions. */
15938 if (size == 8)
5287ad62 15939 {
5287ad62 15940 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
15941 FIXME is this the intended semantics? There doesn't seem much point in
15942 accepting .I8 if so. */
5287ad62
JB
15943 immediate |= immediate << 8;
15944 size = 16;
036dc3f7
PB
15945 }
15946
15947 if (size >= 32)
15948 {
15949 if (immediate == (immediate & 0x000000ff))
15950 {
15951 *immbits = immediate;
15952 return 0x1;
15953 }
15954 else if (immediate == (immediate & 0x0000ff00))
15955 {
15956 *immbits = immediate >> 8;
15957 return 0x3;
15958 }
15959 else if (immediate == (immediate & 0x00ff0000))
15960 {
15961 *immbits = immediate >> 16;
15962 return 0x5;
15963 }
15964 else if (immediate == (immediate & 0xff000000))
15965 {
15966 *immbits = immediate >> 24;
15967 return 0x7;
15968 }
15969 if ((immediate & 0xffff) != (immediate >> 16))
15970 goto bad_immediate;
15971 immediate &= 0xffff;
5287ad62
JB
15972 }
15973
15974 if (immediate == (immediate & 0x000000ff))
15975 {
15976 *immbits = immediate;
036dc3f7 15977 return 0x9;
5287ad62
JB
15978 }
15979 else if (immediate == (immediate & 0x0000ff00))
15980 {
15981 *immbits = immediate >> 8;
036dc3f7 15982 return 0xb;
5287ad62
JB
15983 }
15984
15985 bad_immediate:
dcbf9037 15986 first_error (_("immediate value out of range"));
5287ad62
JB
15987 return FAIL;
15988}
15989
5287ad62
JB
15990static void
15991do_neon_logic (void)
15992{
15993 if (inst.operands[2].present && inst.operands[2].isreg)
15994 {
037e8744 15995 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15996 neon_check_type (3, rs, N_IGNORE_TYPE);
15997 /* U bit and size field were set as part of the bitmask. */
88714cb8 15998 NEON_ENCODE (INTEGER, inst);
037e8744 15999 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16000 }
16001 else
16002 {
4316f0d2
DG
16003 const int three_ops_form = (inst.operands[2].present
16004 && !inst.operands[2].isreg);
16005 const int immoperand = (three_ops_form ? 2 : 1);
16006 enum neon_shape rs = (three_ops_form
16007 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16008 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 16009 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16010 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 16011 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16012 unsigned immbits;
16013 int cmode;
5f4273c7 16014
5287ad62 16015 if (et.type == NT_invtype)
477330fc 16016 return;
5f4273c7 16017
4316f0d2
DG
16018 if (three_ops_form)
16019 constraint (inst.operands[0].reg != inst.operands[1].reg,
16020 _("first and second operands shall be the same register"));
16021
88714cb8 16022 NEON_ENCODE (IMMED, inst);
5287ad62 16023
4316f0d2 16024 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16025 if (et.size == 64)
16026 {
16027 /* .i64 is a pseudo-op, so the immediate must be a repeating
16028 pattern. */
4316f0d2
DG
16029 if (immbits != (inst.operands[immoperand].regisimm ?
16030 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16031 {
16032 /* Set immbits to an invalid constant. */
16033 immbits = 0xdeadbeef;
16034 }
16035 }
16036
5287ad62 16037 switch (opcode)
477330fc
RM
16038 {
16039 case N_MNEM_vbic:
16040 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16041 break;
16042
16043 case N_MNEM_vorr:
16044 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16045 break;
16046
16047 case N_MNEM_vand:
16048 /* Pseudo-instruction for VBIC. */
16049 neon_invert_size (&immbits, 0, et.size);
16050 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16051 break;
16052
16053 case N_MNEM_vorn:
16054 /* Pseudo-instruction for VORR. */
16055 neon_invert_size (&immbits, 0, et.size);
16056 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16057 break;
16058
16059 default:
16060 abort ();
16061 }
5287ad62
JB
16062
16063 if (cmode == FAIL)
477330fc 16064 return;
5287ad62 16065
037e8744 16066 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16067 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16068 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16069 inst.instruction |= cmode << 8;
16070 neon_write_immbits (immbits);
5f4273c7 16071
88714cb8 16072 neon_dp_fixup (&inst);
5287ad62
JB
16073 }
16074}
16075
16076static void
16077do_neon_bitfield (void)
16078{
037e8744 16079 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16080 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16081 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16082}
16083
16084static void
dcbf9037 16085neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16086 unsigned destbits)
5287ad62 16087{
5ee91343 16088 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16089 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16090 types | N_KEY);
5287ad62
JB
16091 if (et.type == NT_float)
16092 {
88714cb8 16093 NEON_ENCODE (FLOAT, inst);
5ee91343
AV
16094 if (rs == NS_QQR)
16095 mve_encode_qqr (et.size, 1);
16096 else
16097 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16098 }
16099 else
16100 {
88714cb8 16101 NEON_ENCODE (INTEGER, inst);
5ee91343
AV
16102 if (rs == NS_QQR)
16103 mve_encode_qqr (et.size, 0);
16104 else
16105 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16106 }
16107}
16108
5287ad62
JB
16109
16110static void
16111do_neon_dyadic_if_su_d (void)
16112{
16113 /* This version only allow D registers, but that constraint is enforced during
16114 operand parsing so we don't need to do anything extra here. */
dcbf9037 16115 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16116}
16117
5287ad62
JB
16118static void
16119do_neon_dyadic_if_i_d (void)
16120{
428e3f1f
PB
16121 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16122 affected if we specify unsigned args. */
16123 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16124}
16125
037e8744
JB
16126enum vfp_or_neon_is_neon_bits
16127{
16128 NEON_CHECK_CC = 1,
73924fbc
MGD
16129 NEON_CHECK_ARCH = 2,
16130 NEON_CHECK_ARCH8 = 4
037e8744
JB
16131};
16132
16133/* Call this function if an instruction which may have belonged to the VFP or
16134 Neon instruction sets, but turned out to be a Neon instruction (due to the
16135 operand types involved, etc.). We have to check and/or fix-up a couple of
16136 things:
16137
16138 - Make sure the user hasn't attempted to make a Neon instruction
16139 conditional.
16140 - Alter the value in the condition code field if necessary.
16141 - Make sure that the arch supports Neon instructions.
16142
16143 Which of these operations take place depends on bits from enum
16144 vfp_or_neon_is_neon_bits.
16145
16146 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16147 current instruction's condition is COND_ALWAYS, the condition field is
16148 changed to inst.uncond_value. This is necessary because instructions shared
16149 between VFP and Neon may be conditional for the VFP variants only, and the
16150 unconditional Neon version must have, e.g., 0xF in the condition field. */
16151
16152static int
16153vfp_or_neon_is_neon (unsigned check)
16154{
16155 /* Conditions are always legal in Thumb mode (IT blocks). */
16156 if (!thumb_mode && (check & NEON_CHECK_CC))
16157 {
16158 if (inst.cond != COND_ALWAYS)
477330fc
RM
16159 {
16160 first_error (_(BAD_COND));
16161 return FAIL;
16162 }
037e8744 16163 if (inst.uncond_value != -1)
477330fc 16164 inst.instruction |= inst.uncond_value << 28;
037e8744 16165 }
5f4273c7 16166
5ee91343
AV
16167
16168 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16169 || ((check & NEON_CHECK_ARCH8)
16170 && !mark_feature_used (&fpu_neon_ext_armv8)))
16171 {
16172 first_error (_(BAD_FPU));
16173 return FAIL;
16174 }
16175
16176 return SUCCESS;
16177}
16178
16179static int
16180check_simd_pred_availability (int fp, unsigned check)
16181{
16182 if (inst.cond > COND_ALWAYS)
73924fbc 16183 {
5ee91343
AV
16184 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16185 {
16186 inst.error = BAD_FPU;
16187 return 1;
16188 }
16189 inst.pred_insn_type = INSIDE_VPT_INSN;
73924fbc 16190 }
5ee91343 16191 else if (inst.cond < COND_ALWAYS)
037e8744 16192 {
5ee91343
AV
16193 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16194 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16195 else if (vfp_or_neon_is_neon (check) == FAIL)
16196 return 2;
037e8744 16197 }
5ee91343
AV
16198 else
16199 {
16200 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16201 && vfp_or_neon_is_neon (check) == FAIL)
16202 return 3;
5f4273c7 16203
5ee91343
AV
16204 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16205 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16206 }
16207 return 0;
037e8744
JB
16208}
16209
f5f10c66
AV
16210static void
16211do_mve_vstr_vldr_QI (int size, int elsize, int load)
16212{
16213 constraint (size < 32, BAD_ADDR_MODE);
16214 constraint (size != elsize, BAD_EL_TYPE);
16215 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16216 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16217 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16218 _("destination register and offset register may not be the"
16219 " same"));
16220
16221 int imm = inst.relocs[0].exp.X_add_number;
16222 int add = 1;
16223 if (imm < 0)
16224 {
16225 add = 0;
16226 imm = -imm;
16227 }
16228 constraint ((imm % (size / 8) != 0)
16229 || imm > (0x7f << neon_logbits (size)),
16230 (size == 32) ? _("immediate must be a multiple of 4 in the"
16231 " range of +/-[0,508]")
16232 : _("immediate must be a multiple of 8 in the"
16233 " range of +/-[0,1016]"));
16234 inst.instruction |= 0x11 << 24;
16235 inst.instruction |= add << 23;
16236 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16237 inst.instruction |= inst.operands[1].writeback << 21;
16238 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16239 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16240 inst.instruction |= 1 << 12;
16241 inst.instruction |= (size == 64) << 8;
16242 inst.instruction &= 0xffffff00;
16243 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16244 inst.instruction |= imm >> neon_logbits (size);
16245}
16246
16247static void
16248do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16249{
16250 unsigned os = inst.operands[1].imm >> 5;
16251 constraint (os != 0 && size == 8,
16252 _("can not shift offsets when accessing less than half-word"));
16253 constraint (os && os != neon_logbits (size),
16254 _("shift immediate must be 1, 2 or 3 for half-word, word"
16255 " or double-word accesses respectively"));
16256 if (inst.operands[1].reg == REG_PC)
16257 as_tsktsk (MVE_BAD_PC);
16258
16259 switch (size)
16260 {
16261 case 8:
16262 constraint (elsize >= 64, BAD_EL_TYPE);
16263 break;
16264 case 16:
16265 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16266 break;
16267 case 32:
16268 case 64:
16269 constraint (elsize != size, BAD_EL_TYPE);
16270 break;
16271 default:
16272 break;
16273 }
16274 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16275 BAD_ADDR_MODE);
16276 if (load)
16277 {
16278 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16279 _("destination register and offset register may not be"
16280 " the same"));
16281 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16282 BAD_EL_TYPE);
16283 constraint (inst.vectype.el[0].type != NT_unsigned
16284 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16285 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16286 }
16287 else
16288 {
16289 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16290 }
16291
16292 inst.instruction |= 1 << 23;
16293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16294 inst.instruction |= inst.operands[1].reg << 16;
16295 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16296 inst.instruction |= neon_logbits (elsize) << 7;
16297 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16298 inst.instruction |= LOW4 (inst.operands[1].imm);
16299 inst.instruction |= !!os;
16300}
16301
16302static void
16303do_mve_vstr_vldr_RI (int size, int elsize, int load)
16304{
16305 enum neon_el_type type = inst.vectype.el[0].type;
16306
16307 constraint (size >= 64, BAD_ADDR_MODE);
16308 switch (size)
16309 {
16310 case 16:
16311 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16312 break;
16313 case 32:
16314 constraint (elsize != size, BAD_EL_TYPE);
16315 break;
16316 default:
16317 break;
16318 }
16319 if (load)
16320 {
16321 constraint (elsize != size && type != NT_unsigned
16322 && type != NT_signed, BAD_EL_TYPE);
16323 }
16324 else
16325 {
16326 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16327 }
16328
16329 int imm = inst.relocs[0].exp.X_add_number;
16330 int add = 1;
16331 if (imm < 0)
16332 {
16333 add = 0;
16334 imm = -imm;
16335 }
16336
16337 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16338 {
16339 switch (size)
16340 {
16341 case 8:
16342 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16343 break;
16344 case 16:
16345 constraint (1, _("immediate must be a multiple of 2 in the"
16346 " range of +/-[0,254]"));
16347 break;
16348 case 32:
16349 constraint (1, _("immediate must be a multiple of 4 in the"
16350 " range of +/-[0,508]"));
16351 break;
16352 }
16353 }
16354
16355 if (size != elsize)
16356 {
16357 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16358 constraint (inst.operands[0].reg > 14,
16359 _("MVE vector register in the range [Q0..Q7] expected"));
16360 inst.instruction |= (load && type == NT_unsigned) << 28;
16361 inst.instruction |= (size == 16) << 19;
16362 inst.instruction |= neon_logbits (elsize) << 7;
16363 }
16364 else
16365 {
16366 if (inst.operands[1].reg == REG_PC)
16367 as_tsktsk (MVE_BAD_PC);
16368 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16369 as_tsktsk (MVE_BAD_SP);
16370 inst.instruction |= 1 << 12;
16371 inst.instruction |= neon_logbits (size) << 7;
16372 }
16373 inst.instruction |= inst.operands[1].preind << 24;
16374 inst.instruction |= add << 23;
16375 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16376 inst.instruction |= inst.operands[1].writeback << 21;
16377 inst.instruction |= inst.operands[1].reg << 16;
16378 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16379 inst.instruction &= 0xffffff80;
16380 inst.instruction |= imm >> neon_logbits (size);
16381
16382}
16383
16384static void
16385do_mve_vstr_vldr (void)
16386{
16387 unsigned size;
16388 int load = 0;
16389
16390 if (inst.cond > COND_ALWAYS)
16391 inst.pred_insn_type = INSIDE_VPT_INSN;
16392 else
16393 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16394
16395 switch (inst.instruction)
16396 {
16397 default:
16398 gas_assert (0);
16399 break;
16400 case M_MNEM_vldrb:
16401 load = 1;
16402 /* fall through. */
16403 case M_MNEM_vstrb:
16404 size = 8;
16405 break;
16406 case M_MNEM_vldrh:
16407 load = 1;
16408 /* fall through. */
16409 case M_MNEM_vstrh:
16410 size = 16;
16411 break;
16412 case M_MNEM_vldrw:
16413 load = 1;
16414 /* fall through. */
16415 case M_MNEM_vstrw:
16416 size = 32;
16417 break;
16418 case M_MNEM_vldrd:
16419 load = 1;
16420 /* fall through. */
16421 case M_MNEM_vstrd:
16422 size = 64;
16423 break;
16424 }
16425 unsigned elsize = inst.vectype.el[0].size;
16426
16427 if (inst.operands[1].isquad)
16428 {
16429 /* We are dealing with [Q, imm]{!} cases. */
16430 do_mve_vstr_vldr_QI (size, elsize, load);
16431 }
16432 else
16433 {
16434 if (inst.operands[1].immisreg == 2)
16435 {
16436 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16437 do_mve_vstr_vldr_RQ (size, elsize, load);
16438 }
16439 else if (!inst.operands[1].immisreg)
16440 {
16441 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16442 do_mve_vstr_vldr_RI (size, elsize, load);
16443 }
16444 else
16445 constraint (1, BAD_ADDR_MODE);
16446 }
16447
16448 inst.is_neon = 1;
16449}
16450
35c228db
AV
16451static void
16452do_mve_vst_vld (void)
16453{
16454 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16455 return;
16456
16457 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16458 || inst.relocs[0].exp.X_add_number != 0
16459 || inst.operands[1].immisreg != 0,
16460 BAD_ADDR_MODE);
16461 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16462 if (inst.operands[1].reg == REG_PC)
16463 as_tsktsk (MVE_BAD_PC);
16464 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16465 as_tsktsk (MVE_BAD_SP);
16466
16467
16468 /* These instructions are one of the "exceptions" mentioned in
16469 handle_pred_state. They are MVE instructions that are not VPT compatible
16470 and do not accept a VPT code, thus appending such a code is a syntax
16471 error. */
16472 if (inst.cond > COND_ALWAYS)
16473 first_error (BAD_SYNTAX);
16474 /* If we append a scalar condition code we can set this to
16475 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16476 else if (inst.cond < COND_ALWAYS)
16477 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16478 else
16479 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16480
16481 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16482 inst.instruction |= inst.operands[1].writeback << 21;
16483 inst.instruction |= inst.operands[1].reg << 16;
16484 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16485 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16486 inst.is_neon = 1;
16487}
16488
5287ad62 16489static void
5ee91343 16490do_neon_dyadic_if_su (void)
5287ad62 16491{
5ee91343
AV
16492 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16493 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16494 N_SUF_32 | N_KEY);
16495
16496 if (check_simd_pred_availability (et.type == NT_float,
16497 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
16498 return;
16499
5ee91343
AV
16500 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16501}
16502
16503static void
16504do_neon_addsub_if_i (void)
16505{
16506 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16507 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
16508 return;
16509
5ee91343
AV
16510 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16511 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16512 N_EQK, N_IF_32 | N_I64 | N_KEY);
16513
16514 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16515 /* If we are parsing Q registers and the element types match MVE, which NEON
16516 also supports, then we must check whether this is an instruction that can
16517 be used by both MVE/NEON. This distinction can be made based on whether
16518 they are predicated or not. */
16519 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16520 {
16521 if (check_simd_pred_availability (et.type == NT_float,
16522 NEON_CHECK_ARCH | NEON_CHECK_CC))
16523 return;
16524 }
16525 else
16526 {
16527 /* If they are either in a D register or are using an unsupported. */
16528 if (rs != NS_QQR
16529 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16530 return;
16531 }
16532
5287ad62
JB
16533 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16534 affected if we specify unsigned args. */
dcbf9037 16535 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
16536}
16537
16538/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16539 result to be:
16540 V<op> A,B (A is operand 0, B is operand 2)
16541 to mean:
16542 V<op> A,B,A
16543 not:
16544 V<op> A,B,B
16545 so handle that case specially. */
16546
16547static void
16548neon_exchange_operands (void)
16549{
5287ad62
JB
16550 if (inst.operands[1].present)
16551 {
e1fa0163
NC
16552 void *scratch = xmalloc (sizeof (inst.operands[0]));
16553
5287ad62
JB
16554 /* Swap operands[1] and operands[2]. */
16555 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16556 inst.operands[1] = inst.operands[2];
16557 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 16558 free (scratch);
5287ad62
JB
16559 }
16560 else
16561 {
16562 inst.operands[1] = inst.operands[2];
16563 inst.operands[2] = inst.operands[0];
16564 }
16565}
16566
16567static void
16568neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16569{
16570 if (inst.operands[2].isreg)
16571 {
16572 if (invert)
477330fc 16573 neon_exchange_operands ();
dcbf9037 16574 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
16575 }
16576 else
16577 {
037e8744 16578 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 16579 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16580 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 16581
88714cb8 16582 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16583 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16584 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16585 inst.instruction |= LOW4 (inst.operands[1].reg);
16586 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16587 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16588 inst.instruction |= (et.type == NT_float) << 10;
16589 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 16590
88714cb8 16591 neon_dp_fixup (&inst);
5287ad62
JB
16592 }
16593}
16594
16595static void
16596do_neon_cmp (void)
16597{
cc933301 16598 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
16599}
16600
16601static void
16602do_neon_cmp_inv (void)
16603{
cc933301 16604 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
16605}
16606
16607static void
16608do_neon_ceq (void)
16609{
16610 neon_compare (N_IF_32, N_IF_32, FALSE);
16611}
16612
16613/* For multiply instructions, we have the possibility of 16-bit or 32-bit
16614 scalars, which are encoded in 5 bits, M : Rm.
16615 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16616 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
16617 index in M.
16618
16619 Dot Product instructions are similar to multiply instructions except elsize
16620 should always be 32.
16621
16622 This function translates SCALAR, which is GAS's internal encoding of indexed
16623 scalar register, to raw encoding. There is also register and index range
16624 check based on ELSIZE. */
5287ad62
JB
16625
16626static unsigned
16627neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16628{
dcbf9037
JB
16629 unsigned regno = NEON_SCALAR_REG (scalar);
16630 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
16631
16632 switch (elsize)
16633 {
16634 case 16:
16635 if (regno > 7 || elno > 3)
477330fc 16636 goto bad_scalar;
5287ad62 16637 return regno | (elno << 3);
5f4273c7 16638
5287ad62
JB
16639 case 32:
16640 if (regno > 15 || elno > 1)
477330fc 16641 goto bad_scalar;
5287ad62
JB
16642 return regno | (elno << 4);
16643
16644 default:
16645 bad_scalar:
dcbf9037 16646 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
16647 }
16648
16649 return 0;
16650}
16651
16652/* Encode multiply / multiply-accumulate scalar instructions. */
16653
16654static void
16655neon_mul_mac (struct neon_type_el et, int ubit)
16656{
dcbf9037
JB
16657 unsigned scalar;
16658
16659 /* Give a more helpful error message if we have an invalid type. */
16660 if (et.type == NT_invtype)
16661 return;
5f4273c7 16662
dcbf9037 16663 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
16664 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16665 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16666 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16667 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16668 inst.instruction |= LOW4 (scalar);
16669 inst.instruction |= HI1 (scalar) << 5;
16670 inst.instruction |= (et.type == NT_float) << 8;
16671 inst.instruction |= neon_logbits (et.size) << 20;
16672 inst.instruction |= (ubit != 0) << 24;
16673
88714cb8 16674 neon_dp_fixup (&inst);
5287ad62
JB
16675}
16676
16677static void
16678do_neon_mac_maybe_scalar (void)
16679{
037e8744
JB
16680 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16681 return;
16682
16683 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16684 return;
16685
5287ad62
JB
16686 if (inst.operands[2].isscalar)
16687 {
037e8744 16688 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16689 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 16690 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 16691 NEON_ENCODE (SCALAR, inst);
037e8744 16692 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16693 }
16694 else
428e3f1f
PB
16695 {
16696 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16697 affected if we specify unsigned args. */
16698 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16699 }
5287ad62
JB
16700}
16701
62f3b8c8
PB
16702static void
16703do_neon_fmac (void)
16704{
16705 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16706 return;
16707
16708 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16709 return;
16710
16711 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16712}
16713
5287ad62
JB
16714static void
16715do_neon_tst (void)
16716{
037e8744 16717 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
16718 struct neon_type_el et = neon_check_type (3, rs,
16719 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 16720 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16721}
16722
16723/* VMUL with 3 registers allows the P8 type. The scalar version supports the
16724 same types as the MAC equivalents. The polynomial type for this instruction
16725 is encoded the same as the integer type. */
16726
16727static void
16728do_neon_mul (void)
16729{
037e8744
JB
16730 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16731 return;
16732
16733 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16734 return;
16735
5287ad62
JB
16736 if (inst.operands[2].isscalar)
16737 do_neon_mac_maybe_scalar ();
16738 else
cc933301 16739 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
16740}
16741
16742static void
16743do_neon_qdmulh (void)
16744{
16745 if (inst.operands[2].isscalar)
16746 {
037e8744 16747 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 16748 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16749 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16750 NEON_ENCODE (SCALAR, inst);
037e8744 16751 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
16752 }
16753 else
16754 {
037e8744 16755 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 16756 struct neon_type_el et = neon_check_type (3, rs,
477330fc 16757 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 16758 NEON_ENCODE (INTEGER, inst);
5287ad62 16759 /* The U bit (rounding) comes from bit mask. */
037e8744 16760 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
16761 }
16762}
16763
c2dafc2a
AV
16764static void
16765do_mve_vadc (void)
16766{
16767 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
16768 struct neon_type_el et
16769 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
16770
16771 if (et.type == NT_invtype)
16772 first_error (BAD_EL_TYPE);
16773
16774 if (inst.cond > COND_ALWAYS)
16775 inst.pred_insn_type = INSIDE_VPT_INSN;
16776 else
16777 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16778
16779 mve_encode_qqq (0, 64);
16780}
16781
16782static void
16783do_mve_vbrsr (void)
16784{
16785 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16786 struct neon_type_el et
16787 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16788
16789 if (inst.cond > COND_ALWAYS)
16790 inst.pred_insn_type = INSIDE_VPT_INSN;
16791 else
16792 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16793
16794 mve_encode_qqr (et.size, 0);
16795}
16796
16797static void
16798do_mve_vsbc (void)
16799{
16800 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
16801
16802 if (inst.cond > COND_ALWAYS)
16803 inst.pred_insn_type = INSIDE_VPT_INSN;
16804 else
16805 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16806
16807 mve_encode_qqq (1, 64);
16808}
16809
886e1c73
AV
16810static void
16811do_mve_vmull (void)
16812{
16813
16814 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
16815 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
16816 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
16817 && inst.cond == COND_ALWAYS
16818 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
16819 {
16820 if (rs == NS_QQQ)
16821 {
16822
16823 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16824 N_SUF_32 | N_F64 | N_P8
16825 | N_P16 | N_I_MVE | N_KEY);
16826 if (((et.type == NT_poly) && et.size == 8
16827 && ARM_CPU_IS_ANY (cpu_variant))
16828 || (et.type == NT_integer) || (et.type == NT_float))
16829 goto neon_vmul;
16830 }
16831 else
16832 goto neon_vmul;
16833 }
16834
16835 constraint (rs != NS_QQQ, BAD_FPU);
16836 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16837 N_SU_32 | N_P8 | N_P16 | N_KEY);
16838
16839 /* We are dealing with MVE's vmullt. */
16840 if (et.size == 32
16841 && (inst.operands[0].reg == inst.operands[1].reg
16842 || inst.operands[0].reg == inst.operands[2].reg))
16843 as_tsktsk (BAD_MVE_SRCDEST);
16844
16845 if (inst.cond > COND_ALWAYS)
16846 inst.pred_insn_type = INSIDE_VPT_INSN;
16847 else
16848 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16849
16850 if (et.type == NT_poly)
16851 mve_encode_qqq (neon_logbits (et.size), 64);
16852 else
16853 mve_encode_qqq (et.type == NT_unsigned, et.size);
16854
16855 return;
16856
16857neon_vmul:
16858 inst.instruction = N_MNEM_vmul;
16859 inst.cond = 0xb;
16860 if (thumb_mode)
16861 inst.pred_insn_type = INSIDE_IT_INSN;
16862 do_neon_mul ();
16863}
16864
a302e574
AV
16865static void
16866do_mve_vabav (void)
16867{
16868 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16869
16870 if (rs == NS_NULL)
16871 return;
16872
16873 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16874 return;
16875
16876 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
16877 | N_S16 | N_S32 | N_U8 | N_U16
16878 | N_U32);
16879
16880 if (inst.cond > COND_ALWAYS)
16881 inst.pred_insn_type = INSIDE_VPT_INSN;
16882 else
16883 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16884
16885 mve_encode_rqq (et.type == NT_unsigned, et.size);
16886}
16887
16888static void
16889do_mve_vmladav (void)
16890{
16891 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16892 struct neon_type_el et = neon_check_type (3, rs,
16893 N_EQK, N_EQK, N_SU_MVE | N_KEY);
16894
16895 if (et.type == NT_unsigned
16896 && (inst.instruction == M_MNEM_vmladavx
16897 || inst.instruction == M_MNEM_vmladavax
16898 || inst.instruction == M_MNEM_vmlsdav
16899 || inst.instruction == M_MNEM_vmlsdava
16900 || inst.instruction == M_MNEM_vmlsdavx
16901 || inst.instruction == M_MNEM_vmlsdavax))
16902 first_error (BAD_SIMD_TYPE);
16903
16904 constraint (inst.operands[2].reg > 14,
16905 _("MVE vector register in the range [Q0..Q7] expected"));
16906
16907 if (inst.cond > COND_ALWAYS)
16908 inst.pred_insn_type = INSIDE_VPT_INSN;
16909 else
16910 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16911
16912 if (inst.instruction == M_MNEM_vmlsdav
16913 || inst.instruction == M_MNEM_vmlsdava
16914 || inst.instruction == M_MNEM_vmlsdavx
16915 || inst.instruction == M_MNEM_vmlsdavax)
16916 inst.instruction |= (et.size == 8) << 28;
16917 else
16918 inst.instruction |= (et.size == 8) << 8;
16919
16920 mve_encode_rqq (et.type == NT_unsigned, 64);
16921 inst.instruction |= (et.size == 32) << 16;
16922}
16923
643afb90
MW
16924static void
16925do_neon_qrdmlah (void)
16926{
16927 /* Check we're on the correct architecture. */
16928 if (!mark_feature_used (&fpu_neon_ext_armv8))
16929 inst.error =
16930 _("instruction form not available on this architecture.");
16931 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
16932 {
16933 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
16934 record_feature_use (&fpu_neon_ext_v8_1);
16935 }
16936
16937 if (inst.operands[2].isscalar)
16938 {
16939 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16940 struct neon_type_el et = neon_check_type (3, rs,
16941 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16942 NEON_ENCODE (SCALAR, inst);
16943 neon_mul_mac (et, neon_quad (rs));
16944 }
16945 else
16946 {
16947 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16948 struct neon_type_el et = neon_check_type (3, rs,
16949 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16950 NEON_ENCODE (INTEGER, inst);
16951 /* The U bit (rounding) comes from bit mask. */
16952 neon_three_same (neon_quad (rs), 0, et.size);
16953 }
16954}
16955
5287ad62
JB
16956static void
16957do_neon_fcmp_absolute (void)
16958{
037e8744 16959 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
16960 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
16961 N_F_16_32 | N_KEY);
5287ad62 16962 /* Size field comes from bit mask. */
cc933301 16963 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16964}
16965
16966static void
16967do_neon_fcmp_absolute_inv (void)
16968{
16969 neon_exchange_operands ();
16970 do_neon_fcmp_absolute ();
16971}
16972
16973static void
16974do_neon_step (void)
16975{
037e8744 16976 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
16977 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
16978 N_F_16_32 | N_KEY);
16979 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16980}
16981
16982static void
16983do_neon_abs_neg (void)
16984{
037e8744
JB
16985 enum neon_shape rs;
16986 struct neon_type_el et;
5f4273c7 16987
037e8744
JB
16988 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
16989 return;
16990
037e8744 16991 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 16992 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 16993
485dee97
AV
16994 if (check_simd_pred_availability (et.type == NT_float,
16995 NEON_CHECK_ARCH | NEON_CHECK_CC))
16996 return;
16997
5287ad62
JB
16998 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16999 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17000 inst.instruction |= LOW4 (inst.operands[1].reg);
17001 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17002 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17003 inst.instruction |= (et.type == NT_float) << 10;
17004 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17005
88714cb8 17006 neon_dp_fixup (&inst);
5287ad62
JB
17007}
17008
17009static void
17010do_neon_sli (void)
17011{
037e8744 17012 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17013 struct neon_type_el et = neon_check_type (2, rs,
17014 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17015 int imm = inst.operands[2].imm;
17016 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17017 _("immediate out of range for insert"));
037e8744 17018 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17019}
17020
17021static void
17022do_neon_sri (void)
17023{
037e8744 17024 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17025 struct neon_type_el et = neon_check_type (2, rs,
17026 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17027 int imm = inst.operands[2].imm;
17028 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17029 _("immediate out of range for insert"));
037e8744 17030 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
17031}
17032
17033static void
17034do_neon_qshlu_imm (void)
17035{
037e8744 17036 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
17037 struct neon_type_el et = neon_check_type (2, rs,
17038 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17039 int imm = inst.operands[2].imm;
17040 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17041 _("immediate out of range for shift"));
5287ad62
JB
17042 /* Only encodes the 'U present' variant of the instruction.
17043 In this case, signed types have OP (bit 8) set to 0.
17044 Unsigned types have OP set to 1. */
17045 inst.instruction |= (et.type == NT_unsigned) << 8;
17046 /* The rest of the bits are the same as other immediate shifts. */
037e8744 17047 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17048}
17049
17050static void
17051do_neon_qmovn (void)
17052{
17053 struct neon_type_el et = neon_check_type (2, NS_DQ,
17054 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17055 /* Saturating move where operands can be signed or unsigned, and the
17056 destination has the same signedness. */
88714cb8 17057 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17058 if (et.type == NT_unsigned)
17059 inst.instruction |= 0xc0;
17060 else
17061 inst.instruction |= 0x80;
17062 neon_two_same (0, 1, et.size / 2);
17063}
17064
17065static void
17066do_neon_qmovun (void)
17067{
17068 struct neon_type_el et = neon_check_type (2, NS_DQ,
17069 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17070 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 17071 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17072 neon_two_same (0, 1, et.size / 2);
17073}
17074
17075static void
17076do_neon_rshift_sat_narrow (void)
17077{
17078 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17079 or unsigned. If operands are unsigned, results must also be unsigned. */
17080 struct neon_type_el et = neon_check_type (2, NS_DQI,
17081 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17082 int imm = inst.operands[2].imm;
17083 /* This gets the bounds check, size encoding and immediate bits calculation
17084 right. */
17085 et.size /= 2;
5f4273c7 17086
5287ad62
JB
17087 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17088 VQMOVN.I<size> <Dd>, <Qm>. */
17089 if (imm == 0)
17090 {
17091 inst.operands[2].present = 0;
17092 inst.instruction = N_MNEM_vqmovn;
17093 do_neon_qmovn ();
17094 return;
17095 }
5f4273c7 17096
5287ad62 17097 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17098 _("immediate out of range"));
5287ad62
JB
17099 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17100}
17101
17102static void
17103do_neon_rshift_sat_narrow_u (void)
17104{
17105 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17106 or unsigned. If operands are unsigned, results must also be unsigned. */
17107 struct neon_type_el et = neon_check_type (2, NS_DQI,
17108 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17109 int imm = inst.operands[2].imm;
17110 /* This gets the bounds check, size encoding and immediate bits calculation
17111 right. */
17112 et.size /= 2;
17113
17114 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17115 VQMOVUN.I<size> <Dd>, <Qm>. */
17116 if (imm == 0)
17117 {
17118 inst.operands[2].present = 0;
17119 inst.instruction = N_MNEM_vqmovun;
17120 do_neon_qmovun ();
17121 return;
17122 }
17123
17124 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17125 _("immediate out of range"));
5287ad62
JB
17126 /* FIXME: The manual is kind of unclear about what value U should have in
17127 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17128 must be 1. */
17129 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17130}
17131
17132static void
17133do_neon_movn (void)
17134{
17135 struct neon_type_el et = neon_check_type (2, NS_DQ,
17136 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 17137 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17138 neon_two_same (0, 1, et.size / 2);
17139}
17140
17141static void
17142do_neon_rshift_narrow (void)
17143{
17144 struct neon_type_el et = neon_check_type (2, NS_DQI,
17145 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17146 int imm = inst.operands[2].imm;
17147 /* This gets the bounds check, size encoding and immediate bits calculation
17148 right. */
17149 et.size /= 2;
5f4273c7 17150
5287ad62
JB
17151 /* If immediate is zero then we are a pseudo-instruction for
17152 VMOVN.I<size> <Dd>, <Qm> */
17153 if (imm == 0)
17154 {
17155 inst.operands[2].present = 0;
17156 inst.instruction = N_MNEM_vmovn;
17157 do_neon_movn ();
17158 return;
17159 }
5f4273c7 17160
5287ad62 17161 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 17162 _("immediate out of range for narrowing operation"));
5287ad62
JB
17163 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17164}
17165
17166static void
17167do_neon_shll (void)
17168{
17169 /* FIXME: Type checking when lengthening. */
17170 struct neon_type_el et = neon_check_type (2, NS_QDI,
17171 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17172 unsigned imm = inst.operands[2].imm;
17173
17174 if (imm == et.size)
17175 {
17176 /* Maximum shift variant. */
88714cb8 17177 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17178 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17179 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17180 inst.instruction |= LOW4 (inst.operands[1].reg);
17181 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17182 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17183
88714cb8 17184 neon_dp_fixup (&inst);
5287ad62
JB
17185 }
17186 else
17187 {
17188 /* A more-specific type check for non-max versions. */
17189 et = neon_check_type (2, NS_QDI,
477330fc 17190 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 17191 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17192 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17193 }
17194}
17195
037e8744 17196/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
17197 the current instruction is. */
17198
6b9a8b67
MGD
17199#define CVT_FLAVOUR_VAR \
17200 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17201 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17202 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17203 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17204 /* Half-precision conversions. */ \
cc933301
JW
17205 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17206 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17207 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17208 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
17209 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17210 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
17211 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17212 Compared with single/double precision variants, only the co-processor \
17213 field is different, so the encoding flow is reused here. */ \
17214 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17215 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17216 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17217 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
17218 /* VFP instructions. */ \
17219 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17220 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17221 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17222 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17223 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17224 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17225 /* VFP instructions with bitshift. */ \
17226 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17227 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17228 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17229 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17230 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17231 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17232 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17233 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17234
17235#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17236 neon_cvt_flavour_##C,
17237
17238/* The different types of conversions we can do. */
17239enum neon_cvt_flavour
17240{
17241 CVT_FLAVOUR_VAR
17242 neon_cvt_flavour_invalid,
17243 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17244};
17245
17246#undef CVT_VAR
17247
17248static enum neon_cvt_flavour
17249get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 17250{
6b9a8b67
MGD
17251#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17252 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17253 if (et.type != NT_invtype) \
17254 { \
17255 inst.error = NULL; \
17256 return (neon_cvt_flavour_##C); \
5287ad62 17257 }
6b9a8b67 17258
5287ad62 17259 struct neon_type_el et;
037e8744 17260 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 17261 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
17262 /* The instruction versions which take an immediate take one register
17263 argument, which is extended to the width of the full register. Thus the
17264 "source" and "destination" registers must have the same width. Hack that
17265 here by making the size equal to the key (wider, in this case) operand. */
17266 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 17267
6b9a8b67
MGD
17268 CVT_FLAVOUR_VAR;
17269
17270 return neon_cvt_flavour_invalid;
5287ad62
JB
17271#undef CVT_VAR
17272}
17273
7e8e6784
MGD
17274enum neon_cvt_mode
17275{
17276 neon_cvt_mode_a,
17277 neon_cvt_mode_n,
17278 neon_cvt_mode_p,
17279 neon_cvt_mode_m,
17280 neon_cvt_mode_z,
30bdf752
MGD
17281 neon_cvt_mode_x,
17282 neon_cvt_mode_r
7e8e6784
MGD
17283};
17284
037e8744
JB
17285/* Neon-syntax VFP conversions. */
17286
5287ad62 17287static void
6b9a8b67 17288do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 17289{
037e8744 17290 const char *opname = 0;
5f4273c7 17291
d54af2d0
RL
17292 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17293 || rs == NS_FHI || rs == NS_HFI)
5287ad62 17294 {
037e8744
JB
17295 /* Conversions with immediate bitshift. */
17296 const char *enc[] =
477330fc 17297 {
6b9a8b67
MGD
17298#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17299 CVT_FLAVOUR_VAR
17300 NULL
17301#undef CVT_VAR
477330fc 17302 };
037e8744 17303
6b9a8b67 17304 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
17305 {
17306 opname = enc[flavour];
17307 constraint (inst.operands[0].reg != inst.operands[1].reg,
17308 _("operands 0 and 1 must be the same register"));
17309 inst.operands[1] = inst.operands[2];
17310 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17311 }
5287ad62
JB
17312 }
17313 else
17314 {
037e8744
JB
17315 /* Conversions without bitshift. */
17316 const char *enc[] =
477330fc 17317 {
6b9a8b67
MGD
17318#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17319 CVT_FLAVOUR_VAR
17320 NULL
17321#undef CVT_VAR
477330fc 17322 };
037e8744 17323
6b9a8b67 17324 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 17325 opname = enc[flavour];
037e8744
JB
17326 }
17327
17328 if (opname)
17329 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
17330
17331 /* ARMv8.2 fp16 VCVT instruction. */
17332 if (flavour == neon_cvt_flavour_s32_f16
17333 || flavour == neon_cvt_flavour_u32_f16
17334 || flavour == neon_cvt_flavour_f16_u32
17335 || flavour == neon_cvt_flavour_f16_s32)
17336 do_scalar_fp16_v82_encode ();
037e8744
JB
17337}
17338
17339static void
17340do_vfp_nsyn_cvtz (void)
17341{
d54af2d0 17342 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 17343 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
17344 const char *enc[] =
17345 {
6b9a8b67
MGD
17346#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17347 CVT_FLAVOUR_VAR
17348 NULL
17349#undef CVT_VAR
037e8744
JB
17350 };
17351
6b9a8b67 17352 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
17353 do_vfp_nsyn_opcode (enc[flavour]);
17354}
f31fef98 17355
037e8744 17356static void
bacebabc 17357do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
17358 enum neon_cvt_mode mode)
17359{
17360 int sz, op;
17361 int rm;
17362
a715796b
TG
17363 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17364 D register operands. */
17365 if (flavour == neon_cvt_flavour_s32_f64
17366 || flavour == neon_cvt_flavour_u32_f64)
17367 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17368 _(BAD_FPU));
17369
9db2f6b4
RL
17370 if (flavour == neon_cvt_flavour_s32_f16
17371 || flavour == neon_cvt_flavour_u32_f16)
17372 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17373 _(BAD_FP16));
17374
5ee91343 17375 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
17376
17377 switch (flavour)
17378 {
17379 case neon_cvt_flavour_s32_f64:
17380 sz = 1;
827f64ff 17381 op = 1;
7e8e6784
MGD
17382 break;
17383 case neon_cvt_flavour_s32_f32:
17384 sz = 0;
17385 op = 1;
17386 break;
9db2f6b4
RL
17387 case neon_cvt_flavour_s32_f16:
17388 sz = 0;
17389 op = 1;
17390 break;
7e8e6784
MGD
17391 case neon_cvt_flavour_u32_f64:
17392 sz = 1;
17393 op = 0;
17394 break;
17395 case neon_cvt_flavour_u32_f32:
17396 sz = 0;
17397 op = 0;
17398 break;
9db2f6b4
RL
17399 case neon_cvt_flavour_u32_f16:
17400 sz = 0;
17401 op = 0;
17402 break;
7e8e6784
MGD
17403 default:
17404 first_error (_("invalid instruction shape"));
17405 return;
17406 }
17407
17408 switch (mode)
17409 {
17410 case neon_cvt_mode_a: rm = 0; break;
17411 case neon_cvt_mode_n: rm = 1; break;
17412 case neon_cvt_mode_p: rm = 2; break;
17413 case neon_cvt_mode_m: rm = 3; break;
17414 default: first_error (_("invalid rounding mode")); return;
17415 }
17416
17417 NEON_ENCODE (FPV8, inst);
17418 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17419 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17420 inst.instruction |= sz << 8;
9db2f6b4
RL
17421
17422 /* ARMv8.2 fp16 VCVT instruction. */
17423 if (flavour == neon_cvt_flavour_s32_f16
17424 ||flavour == neon_cvt_flavour_u32_f16)
17425 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
17426 inst.instruction |= op << 7;
17427 inst.instruction |= rm << 16;
17428 inst.instruction |= 0xf0000000;
17429 inst.is_neon = TRUE;
17430}
17431
17432static void
17433do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
17434{
17435 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
17436 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17437 NS_FH, NS_HF, NS_FHI, NS_HFI,
17438 NS_NULL);
6b9a8b67 17439 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 17440
cc933301
JW
17441 if (flavour == neon_cvt_flavour_invalid)
17442 return;
17443
e3e535bc 17444 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 17445 if (mode == neon_cvt_mode_z
e3e535bc 17446 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
17447 && (flavour == neon_cvt_flavour_s16_f16
17448 || flavour == neon_cvt_flavour_u16_f16
17449 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
17450 || flavour == neon_cvt_flavour_u32_f32
17451 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 17452 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
17453 && (rs == NS_FD || rs == NS_FF))
17454 {
17455 do_vfp_nsyn_cvtz ();
17456 return;
17457 }
17458
9db2f6b4
RL
17459 /* ARMv8.2 fp16 VCVT conversions. */
17460 if (mode == neon_cvt_mode_z
17461 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17462 && (flavour == neon_cvt_flavour_s32_f16
17463 || flavour == neon_cvt_flavour_u32_f16)
17464 && (rs == NS_FH))
17465 {
17466 do_vfp_nsyn_cvtz ();
17467 do_scalar_fp16_v82_encode ();
17468 return;
17469 }
17470
037e8744 17471 /* VFP rather than Neon conversions. */
6b9a8b67 17472 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 17473 {
7e8e6784
MGD
17474 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17475 do_vfp_nsyn_cvt (rs, flavour);
17476 else
17477 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17478
037e8744
JB
17479 return;
17480 }
17481
17482 switch (rs)
17483 {
037e8744 17484 case NS_QQI:
dd9634d9
AV
17485 if (mode == neon_cvt_mode_z
17486 && (flavour == neon_cvt_flavour_f16_s16
17487 || flavour == neon_cvt_flavour_f16_u16
17488 || flavour == neon_cvt_flavour_s16_f16
17489 || flavour == neon_cvt_flavour_u16_f16
17490 || flavour == neon_cvt_flavour_f32_u32
17491 || flavour == neon_cvt_flavour_f32_s32
17492 || flavour == neon_cvt_flavour_s32_f32
17493 || flavour == neon_cvt_flavour_u32_f32))
17494 {
17495 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17496 return;
17497 }
17498 else if (mode == neon_cvt_mode_n)
17499 {
17500 /* We are dealing with vcvt with the 'ne' condition. */
17501 inst.cond = 0x1;
17502 inst.instruction = N_MNEM_vcvt;
17503 do_neon_cvt_1 (neon_cvt_mode_z);
17504 return;
17505 }
17506 /* fall through. */
17507 case NS_DDI:
037e8744 17508 {
477330fc 17509 unsigned immbits;
cc933301
JW
17510 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17511 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 17512
dd9634d9
AV
17513 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17514 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17515 return;
17516
17517 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17518 {
17519 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17520 _("immediate value out of range"));
17521 switch (flavour)
17522 {
17523 case neon_cvt_flavour_f16_s16:
17524 case neon_cvt_flavour_f16_u16:
17525 case neon_cvt_flavour_s16_f16:
17526 case neon_cvt_flavour_u16_f16:
17527 constraint (inst.operands[2].imm > 16,
17528 _("immediate value out of range"));
17529 break;
17530 case neon_cvt_flavour_f32_u32:
17531 case neon_cvt_flavour_f32_s32:
17532 case neon_cvt_flavour_s32_f32:
17533 case neon_cvt_flavour_u32_f32:
17534 constraint (inst.operands[2].imm > 32,
17535 _("immediate value out of range"));
17536 break;
17537 default:
17538 inst.error = BAD_FPU;
17539 return;
17540 }
17541 }
037e8744 17542
477330fc
RM
17543 /* Fixed-point conversion with #0 immediate is encoded as an
17544 integer conversion. */
17545 if (inst.operands[2].present && inst.operands[2].imm == 0)
17546 goto int_encode;
477330fc
RM
17547 NEON_ENCODE (IMMED, inst);
17548 if (flavour != neon_cvt_flavour_invalid)
17549 inst.instruction |= enctab[flavour];
17550 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17551 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17552 inst.instruction |= LOW4 (inst.operands[1].reg);
17553 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17554 inst.instruction |= neon_quad (rs) << 6;
17555 inst.instruction |= 1 << 21;
cc933301
JW
17556 if (flavour < neon_cvt_flavour_s16_f16)
17557 {
17558 inst.instruction |= 1 << 21;
17559 immbits = 32 - inst.operands[2].imm;
17560 inst.instruction |= immbits << 16;
17561 }
17562 else
17563 {
17564 inst.instruction |= 3 << 20;
17565 immbits = 16 - inst.operands[2].imm;
17566 inst.instruction |= immbits << 16;
17567 inst.instruction &= ~(1 << 9);
17568 }
477330fc
RM
17569
17570 neon_dp_fixup (&inst);
037e8744
JB
17571 }
17572 break;
17573
037e8744 17574 case NS_QQ:
dd9634d9
AV
17575 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17576 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17577 && (flavour == neon_cvt_flavour_s16_f16
17578 || flavour == neon_cvt_flavour_u16_f16
17579 || flavour == neon_cvt_flavour_s32_f32
17580 || flavour == neon_cvt_flavour_u32_f32))
17581 {
17582 if (check_simd_pred_availability (1,
17583 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17584 return;
17585 }
17586 else if (mode == neon_cvt_mode_z
17587 && (flavour == neon_cvt_flavour_f16_s16
17588 || flavour == neon_cvt_flavour_f16_u16
17589 || flavour == neon_cvt_flavour_s16_f16
17590 || flavour == neon_cvt_flavour_u16_f16
17591 || flavour == neon_cvt_flavour_f32_u32
17592 || flavour == neon_cvt_flavour_f32_s32
17593 || flavour == neon_cvt_flavour_s32_f32
17594 || flavour == neon_cvt_flavour_u32_f32))
17595 {
17596 if (check_simd_pred_availability (1,
17597 NEON_CHECK_CC | NEON_CHECK_ARCH))
17598 return;
17599 }
17600 /* fall through. */
17601 case NS_DD:
7e8e6784
MGD
17602 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17603 {
7e8e6784 17604
dd9634d9
AV
17605 NEON_ENCODE (FLOAT, inst);
17606 if (check_simd_pred_availability (1,
17607 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
17608 return;
17609
17610 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17611 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17612 inst.instruction |= LOW4 (inst.operands[1].reg);
17613 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17614 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17615 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17616 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 17617 inst.instruction |= mode << 8;
cc933301
JW
17618 if (flavour == neon_cvt_flavour_u16_f16
17619 || flavour == neon_cvt_flavour_s16_f16)
17620 /* Mask off the original size bits and reencode them. */
17621 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17622
7e8e6784
MGD
17623 if (thumb_mode)
17624 inst.instruction |= 0xfc000000;
17625 else
17626 inst.instruction |= 0xf0000000;
17627 }
17628 else
17629 {
037e8744 17630 int_encode:
7e8e6784 17631 {
cc933301
JW
17632 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17633 0x100, 0x180, 0x0, 0x080};
037e8744 17634
7e8e6784 17635 NEON_ENCODE (INTEGER, inst);
037e8744 17636
dd9634d9
AV
17637 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17638 {
17639 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17640 return;
17641 }
037e8744 17642
7e8e6784
MGD
17643 if (flavour != neon_cvt_flavour_invalid)
17644 inst.instruction |= enctab[flavour];
037e8744 17645
7e8e6784
MGD
17646 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17647 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17648 inst.instruction |= LOW4 (inst.operands[1].reg);
17649 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17650 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17651 if (flavour >= neon_cvt_flavour_s16_f16
17652 && flavour <= neon_cvt_flavour_f16_u16)
17653 /* Half precision. */
17654 inst.instruction |= 1 << 18;
17655 else
17656 inst.instruction |= 2 << 18;
037e8744 17657
7e8e6784
MGD
17658 neon_dp_fixup (&inst);
17659 }
17660 }
17661 break;
037e8744 17662
8e79c3df
CM
17663 /* Half-precision conversions for Advanced SIMD -- neon. */
17664 case NS_QD:
17665 case NS_DQ:
bc52d49c
MM
17666 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17667 return;
8e79c3df
CM
17668
17669 if ((rs == NS_DQ)
17670 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17671 {
17672 as_bad (_("operand size must match register width"));
17673 break;
17674 }
17675
17676 if ((rs == NS_QD)
17677 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17678 {
17679 as_bad (_("operand size must match register width"));
17680 break;
17681 }
17682
17683 if (rs == NS_DQ)
477330fc 17684 inst.instruction = 0x3b60600;
8e79c3df
CM
17685 else
17686 inst.instruction = 0x3b60700;
17687
17688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17690 inst.instruction |= LOW4 (inst.operands[1].reg);
17691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 17692 neon_dp_fixup (&inst);
8e79c3df
CM
17693 break;
17694
037e8744
JB
17695 default:
17696 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
17697 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17698 do_vfp_nsyn_cvt (rs, flavour);
17699 else
17700 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 17701 }
5287ad62
JB
17702}
17703
e3e535bc
NC
17704static void
17705do_neon_cvtr (void)
17706{
7e8e6784 17707 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
17708}
17709
17710static void
17711do_neon_cvt (void)
17712{
7e8e6784
MGD
17713 do_neon_cvt_1 (neon_cvt_mode_z);
17714}
17715
17716static void
17717do_neon_cvta (void)
17718{
17719 do_neon_cvt_1 (neon_cvt_mode_a);
17720}
17721
17722static void
17723do_neon_cvtn (void)
17724{
17725 do_neon_cvt_1 (neon_cvt_mode_n);
17726}
17727
17728static void
17729do_neon_cvtp (void)
17730{
17731 do_neon_cvt_1 (neon_cvt_mode_p);
17732}
17733
17734static void
17735do_neon_cvtm (void)
17736{
17737 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
17738}
17739
8e79c3df 17740static void
c70a8987 17741do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 17742{
c70a8987
MGD
17743 if (is_double)
17744 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 17745
c70a8987
MGD
17746 encode_arm_vfp_reg (inst.operands[0].reg,
17747 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17748 encode_arm_vfp_reg (inst.operands[1].reg,
17749 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17750 inst.instruction |= to ? 0x10000 : 0;
17751 inst.instruction |= t ? 0x80 : 0;
17752 inst.instruction |= is_double ? 0x100 : 0;
17753 do_vfp_cond_or_thumb ();
17754}
8e79c3df 17755
c70a8987
MGD
17756static void
17757do_neon_cvttb_1 (bfd_boolean t)
17758{
d54af2d0 17759 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 17760 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 17761
c70a8987
MGD
17762 if (rs == NS_NULL)
17763 return;
dd9634d9
AV
17764 else if (rs == NS_QQ || rs == NS_QQI)
17765 {
17766 int single_to_half = 0;
17767 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17768 return;
17769
17770 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17771
17772 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17773 && (flavour == neon_cvt_flavour_u16_f16
17774 || flavour == neon_cvt_flavour_s16_f16
17775 || flavour == neon_cvt_flavour_f16_s16
17776 || flavour == neon_cvt_flavour_f16_u16
17777 || flavour == neon_cvt_flavour_u32_f32
17778 || flavour == neon_cvt_flavour_s32_f32
17779 || flavour == neon_cvt_flavour_f32_s32
17780 || flavour == neon_cvt_flavour_f32_u32))
17781 {
17782 inst.cond = 0xf;
17783 inst.instruction = N_MNEM_vcvt;
17784 set_pred_insn_type (INSIDE_VPT_INSN);
17785 do_neon_cvt_1 (neon_cvt_mode_z);
17786 return;
17787 }
17788 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
17789 single_to_half = 1;
17790 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
17791 {
17792 first_error (BAD_FPU);
17793 return;
17794 }
17795
17796 inst.instruction = 0xee3f0e01;
17797 inst.instruction |= single_to_half << 28;
17798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17799 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
17800 inst.instruction |= t << 12;
17801 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17802 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
17803 inst.is_neon = 1;
17804 }
c70a8987
MGD
17805 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
17806 {
17807 inst.error = NULL;
17808 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
17809 }
17810 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
17811 {
17812 inst.error = NULL;
17813 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
17814 }
17815 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
17816 {
a715796b
TG
17817 /* The VCVTB and VCVTT instructions with D-register operands
17818 don't work for SP only targets. */
17819 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17820 _(BAD_FPU));
17821
c70a8987
MGD
17822 inst.error = NULL;
17823 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
17824 }
17825 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
17826 {
a715796b
TG
17827 /* The VCVTB and VCVTT instructions with D-register operands
17828 don't work for SP only targets. */
17829 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17830 _(BAD_FPU));
17831
c70a8987
MGD
17832 inst.error = NULL;
17833 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
17834 }
17835 else
17836 return;
17837}
17838
17839static void
17840do_neon_cvtb (void)
17841{
17842 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
17843}
17844
17845
17846static void
17847do_neon_cvtt (void)
17848{
c70a8987 17849 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
17850}
17851
5287ad62
JB
17852static void
17853neon_move_immediate (void)
17854{
037e8744
JB
17855 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
17856 struct neon_type_el et = neon_check_type (2, rs,
17857 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 17858 unsigned immlo, immhi = 0, immbits;
c96612cc 17859 int op, cmode, float_p;
5287ad62 17860
037e8744 17861 constraint (et.type == NT_invtype,
477330fc 17862 _("operand size must be specified for immediate VMOV"));
037e8744 17863
5287ad62
JB
17864 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17865 op = (inst.instruction & (1 << 5)) != 0;
17866
17867 immlo = inst.operands[1].imm;
17868 if (inst.operands[1].regisimm)
17869 immhi = inst.operands[1].reg;
17870
17871 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 17872 _("immediate has bits set outside the operand size"));
5287ad62 17873
c96612cc
JB
17874 float_p = inst.operands[1].immisfloat;
17875
17876 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 17877 et.size, et.type)) == FAIL)
5287ad62
JB
17878 {
17879 /* Invert relevant bits only. */
17880 neon_invert_size (&immlo, &immhi, et.size);
17881 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
17882 with one or the other; those cases are caught by
17883 neon_cmode_for_move_imm. */
5287ad62 17884 op = !op;
c96612cc
JB
17885 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
17886 &op, et.size, et.type)) == FAIL)
477330fc
RM
17887 {
17888 first_error (_("immediate out of range"));
17889 return;
17890 }
5287ad62
JB
17891 }
17892
17893 inst.instruction &= ~(1 << 5);
17894 inst.instruction |= op << 5;
17895
17896 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17897 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 17898 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17899 inst.instruction |= cmode << 8;
17900
17901 neon_write_immbits (immbits);
17902}
17903
17904static void
17905do_neon_mvn (void)
17906{
17907 if (inst.operands[1].isreg)
17908 {
037e8744 17909 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 17910
88714cb8 17911 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
17912 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17913 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17914 inst.instruction |= LOW4 (inst.operands[1].reg);
17915 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17916 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17917 }
17918 else
17919 {
88714cb8 17920 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17921 neon_move_immediate ();
17922 }
17923
88714cb8 17924 neon_dp_fixup (&inst);
5287ad62
JB
17925}
17926
17927/* Encode instructions of form:
17928
17929 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 17930 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
17931
17932static void
17933neon_mixed_length (struct neon_type_el et, unsigned size)
17934{
17935 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17936 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17937 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17938 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17939 inst.instruction |= LOW4 (inst.operands[2].reg);
17940 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
17941 inst.instruction |= (et.type == NT_unsigned) << 24;
17942 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 17943
88714cb8 17944 neon_dp_fixup (&inst);
5287ad62
JB
17945}
17946
17947static void
17948do_neon_dyadic_long (void)
17949{
5ee91343
AV
17950 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
17951 if (rs == NS_QDD)
17952 {
17953 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
17954 return;
17955
17956 NEON_ENCODE (INTEGER, inst);
17957 /* FIXME: Type checking for lengthening op. */
17958 struct neon_type_el et = neon_check_type (3, NS_QDD,
17959 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
17960 neon_mixed_length (et, et.size);
17961 }
17962 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17963 && (inst.cond == 0xf || inst.cond == 0x10))
17964 {
17965 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
17966 in an IT block with le/lt conditions. */
17967
17968 if (inst.cond == 0xf)
17969 inst.cond = 0xb;
17970 else if (inst.cond == 0x10)
17971 inst.cond = 0xd;
17972
17973 inst.pred_insn_type = INSIDE_IT_INSN;
17974
17975 if (inst.instruction == N_MNEM_vaddl)
17976 {
17977 inst.instruction = N_MNEM_vadd;
17978 do_neon_addsub_if_i ();
17979 }
17980 else if (inst.instruction == N_MNEM_vsubl)
17981 {
17982 inst.instruction = N_MNEM_vsub;
17983 do_neon_addsub_if_i ();
17984 }
17985 else if (inst.instruction == N_MNEM_vabdl)
17986 {
17987 inst.instruction = N_MNEM_vabd;
17988 do_neon_dyadic_if_su ();
17989 }
17990 }
17991 else
17992 first_error (BAD_FPU);
5287ad62
JB
17993}
17994
17995static void
17996do_neon_abal (void)
17997{
17998 struct neon_type_el et = neon_check_type (3, NS_QDD,
17999 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18000 neon_mixed_length (et, et.size);
18001}
18002
18003static void
18004neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18005{
18006 if (inst.operands[2].isscalar)
18007 {
dcbf9037 18008 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 18009 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 18010 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18011 neon_mul_mac (et, et.type == NT_unsigned);
18012 }
18013 else
18014 {
18015 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18016 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 18017 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18018 neon_mixed_length (et, et.size);
18019 }
18020}
18021
18022static void
18023do_neon_mac_maybe_scalar_long (void)
18024{
18025 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18026}
18027
dec41383
JW
18028/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18029 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18030
18031static unsigned
18032neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18033{
18034 unsigned regno = NEON_SCALAR_REG (scalar);
18035 unsigned elno = NEON_SCALAR_INDEX (scalar);
18036
18037 if (quad_p)
18038 {
18039 if (regno > 7 || elno > 3)
18040 goto bad_scalar;
18041
18042 return ((regno & 0x7)
18043 | ((elno & 0x1) << 3)
18044 | (((elno >> 1) & 0x1) << 5));
18045 }
18046 else
18047 {
18048 if (regno > 15 || elno > 1)
18049 goto bad_scalar;
18050
18051 return (((regno & 0x1) << 5)
18052 | ((regno >> 1) & 0x7)
18053 | ((elno & 0x1) << 3));
18054 }
18055
18056bad_scalar:
18057 first_error (_("scalar out of range for multiply instruction"));
18058 return 0;
18059}
18060
18061static void
18062do_neon_fmac_maybe_scalar_long (int subtype)
18063{
18064 enum neon_shape rs;
18065 int high8;
18066 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18067 field (bits[21:20]) has different meaning. For scalar index variant, it's
18068 used to differentiate add and subtract, otherwise it's with fixed value
18069 0x2. */
18070 int size = -1;
18071
18072 if (inst.cond != COND_ALWAYS)
18073 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18074 "behaviour is UNPREDICTABLE"));
18075
01f48020 18076 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
18077 _(BAD_FP16));
18078
18079 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18080 _(BAD_FPU));
18081
18082 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18083 be a scalar index register. */
18084 if (inst.operands[2].isscalar)
18085 {
18086 high8 = 0xfe000000;
18087 if (subtype)
18088 size = 16;
18089 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18090 }
18091 else
18092 {
18093 high8 = 0xfc000000;
18094 size = 32;
18095 if (subtype)
18096 inst.instruction |= (0x1 << 23);
18097 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18098 }
18099
18100 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18101
18102 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18103 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18104 so we simply pass -1 as size. */
18105 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18106 neon_three_same (quad_p, 0, size);
18107
18108 /* Undo neon_dp_fixup. Redo the high eight bits. */
18109 inst.instruction &= 0x00ffffff;
18110 inst.instruction |= high8;
18111
18112#define LOW1(R) ((R) & 0x1)
18113#define HI4(R) (((R) >> 1) & 0xf)
18114 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18115 whether the instruction is in Q form and whether Vm is a scalar indexed
18116 operand. */
18117 if (inst.operands[2].isscalar)
18118 {
18119 unsigned rm
18120 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18121 inst.instruction &= 0xffffffd0;
18122 inst.instruction |= rm;
18123
18124 if (!quad_p)
18125 {
18126 /* Redo Rn as well. */
18127 inst.instruction &= 0xfff0ff7f;
18128 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18129 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18130 }
18131 }
18132 else if (!quad_p)
18133 {
18134 /* Redo Rn and Rm. */
18135 inst.instruction &= 0xfff0ff50;
18136 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18137 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18138 inst.instruction |= HI4 (inst.operands[2].reg);
18139 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18140 }
18141}
18142
18143static void
18144do_neon_vfmal (void)
18145{
18146 return do_neon_fmac_maybe_scalar_long (0);
18147}
18148
18149static void
18150do_neon_vfmsl (void)
18151{
18152 return do_neon_fmac_maybe_scalar_long (1);
18153}
18154
5287ad62
JB
18155static void
18156do_neon_dyadic_wide (void)
18157{
18158 struct neon_type_el et = neon_check_type (3, NS_QQD,
18159 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18160 neon_mixed_length (et, et.size);
18161}
18162
18163static void
18164do_neon_dyadic_narrow (void)
18165{
18166 struct neon_type_el et = neon_check_type (3, NS_QDD,
18167 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
18168 /* Operand sign is unimportant, and the U bit is part of the opcode,
18169 so force the operand type to integer. */
18170 et.type = NT_integer;
5287ad62
JB
18171 neon_mixed_length (et, et.size / 2);
18172}
18173
18174static void
18175do_neon_mul_sat_scalar_long (void)
18176{
18177 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18178}
18179
18180static void
18181do_neon_vmull (void)
18182{
18183 if (inst.operands[2].isscalar)
18184 do_neon_mac_maybe_scalar_long ();
18185 else
18186 {
18187 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 18188 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 18189
5287ad62 18190 if (et.type == NT_poly)
477330fc 18191 NEON_ENCODE (POLY, inst);
5287ad62 18192 else
477330fc 18193 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
18194
18195 /* For polynomial encoding the U bit must be zero, and the size must
18196 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18197 obviously, as 0b10). */
18198 if (et.size == 64)
18199 {
18200 /* Check we're on the correct architecture. */
18201 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18202 inst.error =
18203 _("Instruction form not available on this architecture.");
18204
18205 et.size = 32;
18206 }
18207
5287ad62
JB
18208 neon_mixed_length (et, et.size);
18209 }
18210}
18211
18212static void
18213do_neon_ext (void)
18214{
037e8744 18215 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
18216 struct neon_type_el et = neon_check_type (3, rs,
18217 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18218 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
18219
18220 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18221 _("shift out of range"));
5287ad62
JB
18222 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18223 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18224 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18225 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18226 inst.instruction |= LOW4 (inst.operands[2].reg);
18227 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 18228 inst.instruction |= neon_quad (rs) << 6;
5287ad62 18229 inst.instruction |= imm << 8;
5f4273c7 18230
88714cb8 18231 neon_dp_fixup (&inst);
5287ad62
JB
18232}
18233
18234static void
18235do_neon_rev (void)
18236{
037e8744 18237 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18238 struct neon_type_el et = neon_check_type (2, rs,
18239 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18240 unsigned op = (inst.instruction >> 7) & 3;
18241 /* N (width of reversed regions) is encoded as part of the bitmask. We
18242 extract it here to check the elements to be reversed are smaller.
18243 Otherwise we'd get a reserved instruction. */
18244 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 18245 gas_assert (elsize != 0);
5287ad62 18246 constraint (et.size >= elsize,
477330fc 18247 _("elements must be smaller than reversal region"));
037e8744 18248 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18249}
18250
18251static void
18252do_neon_dup (void)
18253{
18254 if (inst.operands[1].isscalar)
18255 {
037e8744 18256 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 18257 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18258 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 18259 unsigned sizebits = et.size >> 3;
dcbf9037 18260 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 18261 int logsize = neon_logbits (et.size);
dcbf9037 18262 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
18263
18264 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 18265 return;
037e8744 18266
88714cb8 18267 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
18268 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18269 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18270 inst.instruction |= LOW4 (dm);
18271 inst.instruction |= HI1 (dm) << 5;
037e8744 18272 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18273 inst.instruction |= x << 17;
18274 inst.instruction |= sizebits << 16;
5f4273c7 18275
88714cb8 18276 neon_dp_fixup (&inst);
5287ad62
JB
18277 }
18278 else
18279 {
037e8744
JB
18280 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18281 struct neon_type_el et = neon_check_type (2, rs,
477330fc 18282 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 18283 /* Duplicate ARM register to lanes of vector. */
88714cb8 18284 NEON_ENCODE (ARMREG, inst);
5287ad62 18285 switch (et.size)
477330fc
RM
18286 {
18287 case 8: inst.instruction |= 0x400000; break;
18288 case 16: inst.instruction |= 0x000020; break;
18289 case 32: inst.instruction |= 0x000000; break;
18290 default: break;
18291 }
5287ad62
JB
18292 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18293 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18294 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 18295 inst.instruction |= neon_quad (rs) << 21;
5287ad62 18296 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 18297 variants, except for the condition field. */
037e8744 18298 do_vfp_cond_or_thumb ();
5287ad62
JB
18299 }
18300}
18301
57785aa2
AV
18302static void
18303do_mve_mov (int toQ)
18304{
18305 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18306 return;
18307 if (inst.cond > COND_ALWAYS)
18308 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18309
18310 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18311 if (toQ)
18312 {
18313 Q0 = 0;
18314 Q1 = 1;
18315 Rt = 2;
18316 Rt2 = 3;
18317 }
18318
18319 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18320 _("Index one must be [2,3] and index two must be two less than"
18321 " index one."));
18322 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18323 _("General purpose registers may not be the same"));
18324 constraint (inst.operands[Rt].reg == REG_SP
18325 || inst.operands[Rt2].reg == REG_SP,
18326 BAD_SP);
18327 constraint (inst.operands[Rt].reg == REG_PC
18328 || inst.operands[Rt2].reg == REG_PC,
18329 BAD_PC);
18330
18331 inst.instruction = 0xec000f00;
18332 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18333 inst.instruction |= !!toQ << 20;
18334 inst.instruction |= inst.operands[Rt2].reg << 16;
18335 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18336 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18337 inst.instruction |= inst.operands[Rt].reg;
18338}
18339
18340static void
18341do_mve_movn (void)
18342{
18343 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18344 return;
18345
18346 if (inst.cond > COND_ALWAYS)
18347 inst.pred_insn_type = INSIDE_VPT_INSN;
18348 else
18349 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18350
18351 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18352 | N_KEY);
18353
18354 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18355 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18356 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18357 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18358 inst.instruction |= LOW4 (inst.operands[1].reg);
18359 inst.is_neon = 1;
18360
18361}
18362
5287ad62
JB
18363/* VMOV has particularly many variations. It can be one of:
18364 0. VMOV<c><q> <Qd>, <Qm>
18365 1. VMOV<c><q> <Dd>, <Dm>
18366 (Register operations, which are VORR with Rm = Rn.)
18367 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18368 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18369 (Immediate loads.)
18370 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18371 (ARM register to scalar.)
18372 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18373 (Two ARM registers to vector.)
18374 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18375 (Scalar to ARM register.)
18376 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18377 (Vector to two ARM registers.)
037e8744
JB
18378 8. VMOV.F32 <Sd>, <Sm>
18379 9. VMOV.F64 <Dd>, <Dm>
18380 (VFP register moves.)
18381 10. VMOV.F32 <Sd>, #imm
18382 11. VMOV.F64 <Dd>, #imm
18383 (VFP float immediate load.)
18384 12. VMOV <Rd>, <Sm>
18385 (VFP single to ARM reg.)
18386 13. VMOV <Sd>, <Rm>
18387 (ARM reg to VFP single.)
18388 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18389 (Two ARM regs to two VFP singles.)
18390 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18391 (Two VFP singles to two ARM regs.)
57785aa2
AV
18392 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18393 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18394 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18395 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 18396
037e8744
JB
18397 These cases can be disambiguated using neon_select_shape, except cases 1/9
18398 and 3/11 which depend on the operand type too.
5f4273c7 18399
5287ad62 18400 All the encoded bits are hardcoded by this function.
5f4273c7 18401
b7fc2769
JB
18402 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18403 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 18404
5287ad62 18405 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 18406 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
18407
18408static void
18409do_neon_mov (void)
18410{
57785aa2
AV
18411 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18412 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18413 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18414 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18415 NS_NULL);
037e8744
JB
18416 struct neon_type_el et;
18417 const char *ldconst = 0;
5287ad62 18418
037e8744 18419 switch (rs)
5287ad62 18420 {
037e8744
JB
18421 case NS_DD: /* case 1/9. */
18422 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18423 /* It is not an error here if no type is given. */
18424 inst.error = NULL;
18425 if (et.type == NT_float && et.size == 64)
477330fc
RM
18426 {
18427 do_vfp_nsyn_opcode ("fcpyd");
18428 break;
18429 }
037e8744 18430 /* fall through. */
5287ad62 18431
037e8744
JB
18432 case NS_QQ: /* case 0/1. */
18433 {
57785aa2 18434 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
18435 return;
18436 /* The architecture manual I have doesn't explicitly state which
18437 value the U bit should have for register->register moves, but
18438 the equivalent VORR instruction has U = 0, so do that. */
18439 inst.instruction = 0x0200110;
18440 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18441 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18442 inst.instruction |= LOW4 (inst.operands[1].reg);
18443 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18444 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18445 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18446 inst.instruction |= neon_quad (rs) << 6;
18447
18448 neon_dp_fixup (&inst);
037e8744
JB
18449 }
18450 break;
5f4273c7 18451
037e8744
JB
18452 case NS_DI: /* case 3/11. */
18453 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18454 inst.error = NULL;
18455 if (et.type == NT_float && et.size == 64)
477330fc
RM
18456 {
18457 /* case 11 (fconstd). */
18458 ldconst = "fconstd";
18459 goto encode_fconstd;
18460 }
037e8744
JB
18461 /* fall through. */
18462
18463 case NS_QI: /* case 2/3. */
57785aa2 18464 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 18465 return;
037e8744
JB
18466 inst.instruction = 0x0800010;
18467 neon_move_immediate ();
88714cb8 18468 neon_dp_fixup (&inst);
5287ad62 18469 break;
5f4273c7 18470
037e8744
JB
18471 case NS_SR: /* case 4. */
18472 {
477330fc
RM
18473 unsigned bcdebits = 0;
18474 int logsize;
18475 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18476 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 18477
05ac0ffb
JB
18478 /* .<size> is optional here, defaulting to .32. */
18479 if (inst.vectype.elems == 0
18480 && inst.operands[0].vectype.type == NT_invtype
18481 && inst.operands[1].vectype.type == NT_invtype)
18482 {
18483 inst.vectype.el[0].type = NT_untyped;
18484 inst.vectype.el[0].size = 32;
18485 inst.vectype.elems = 1;
18486 }
18487
477330fc
RM
18488 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18489 logsize = neon_logbits (et.size);
18490
57785aa2
AV
18491 if (et.size != 32)
18492 {
18493 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18494 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18495 return;
18496 }
18497 else
18498 {
18499 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18500 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18501 _(BAD_FPU));
18502 }
18503
18504 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18505 {
18506 if (inst.operands[1].reg == REG_SP)
18507 as_tsktsk (MVE_BAD_SP);
18508 else if (inst.operands[1].reg == REG_PC)
18509 as_tsktsk (MVE_BAD_PC);
18510 }
18511 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18512
477330fc 18513 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
18514 constraint (x >= size / et.size, _("scalar index out of range"));
18515
477330fc
RM
18516
18517 switch (et.size)
18518 {
18519 case 8: bcdebits = 0x8; break;
18520 case 16: bcdebits = 0x1; break;
18521 case 32: bcdebits = 0x0; break;
18522 default: ;
18523 }
18524
57785aa2 18525 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18526
18527 inst.instruction = 0xe000b10;
18528 do_vfp_cond_or_thumb ();
18529 inst.instruction |= LOW4 (dn) << 16;
18530 inst.instruction |= HI1 (dn) << 7;
18531 inst.instruction |= inst.operands[1].reg << 12;
18532 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
18533 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18534 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18535 }
18536 break;
5f4273c7 18537
037e8744 18538 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
18539 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18540 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18541 _(BAD_FPU));
b7fc2769 18542
037e8744
JB
18543 inst.instruction = 0xc400b10;
18544 do_vfp_cond_or_thumb ();
18545 inst.instruction |= LOW4 (inst.operands[0].reg);
18546 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18547 inst.instruction |= inst.operands[1].reg << 12;
18548 inst.instruction |= inst.operands[2].reg << 16;
18549 break;
5f4273c7 18550
037e8744
JB
18551 case NS_RS: /* case 6. */
18552 {
477330fc
RM
18553 unsigned logsize;
18554 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18555 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18556 unsigned abcdebits = 0;
037e8744 18557
05ac0ffb
JB
18558 /* .<dt> is optional here, defaulting to .32. */
18559 if (inst.vectype.elems == 0
18560 && inst.operands[0].vectype.type == NT_invtype
18561 && inst.operands[1].vectype.type == NT_invtype)
18562 {
18563 inst.vectype.el[0].type = NT_untyped;
18564 inst.vectype.el[0].size = 32;
18565 inst.vectype.elems = 1;
18566 }
18567
91d6fa6a
NC
18568 et = neon_check_type (2, NS_NULL,
18569 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
18570 logsize = neon_logbits (et.size);
18571
57785aa2
AV
18572 if (et.size != 32)
18573 {
18574 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18575 && vfp_or_neon_is_neon (NEON_CHECK_CC
18576 | NEON_CHECK_ARCH) == FAIL)
18577 return;
18578 }
18579 else
18580 {
18581 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18582 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18583 _(BAD_FPU));
18584 }
18585
18586 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18587 {
18588 if (inst.operands[0].reg == REG_SP)
18589 as_tsktsk (MVE_BAD_SP);
18590 else if (inst.operands[0].reg == REG_PC)
18591 as_tsktsk (MVE_BAD_PC);
18592 }
18593
18594 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18595
477330fc 18596 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 18597 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
18598
18599 switch (et.size)
18600 {
18601 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18602 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18603 case 32: abcdebits = 0x00; break;
18604 default: ;
18605 }
18606
57785aa2 18607 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
18608 inst.instruction = 0xe100b10;
18609 do_vfp_cond_or_thumb ();
18610 inst.instruction |= LOW4 (dn) << 16;
18611 inst.instruction |= HI1 (dn) << 7;
18612 inst.instruction |= inst.operands[0].reg << 12;
18613 inst.instruction |= (abcdebits & 3) << 5;
18614 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 18615 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
18616 }
18617 break;
5f4273c7 18618
037e8744 18619 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
18620 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18621 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 18622 _(BAD_FPU));
037e8744
JB
18623
18624 inst.instruction = 0xc500b10;
18625 do_vfp_cond_or_thumb ();
18626 inst.instruction |= inst.operands[0].reg << 12;
18627 inst.instruction |= inst.operands[1].reg << 16;
18628 inst.instruction |= LOW4 (inst.operands[2].reg);
18629 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18630 break;
5f4273c7 18631
037e8744
JB
18632 case NS_FF: /* case 8 (fcpys). */
18633 do_vfp_nsyn_opcode ("fcpys");
18634 break;
5f4273c7 18635
9db2f6b4 18636 case NS_HI:
037e8744
JB
18637 case NS_FI: /* case 10 (fconsts). */
18638 ldconst = "fconsts";
4ef4710f 18639 encode_fconstd:
58ed5c38
TC
18640 if (!inst.operands[1].immisfloat)
18641 {
4ef4710f 18642 unsigned new_imm;
58ed5c38 18643 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
18644 float imm = (float) inst.operands[1].imm;
18645 memcpy (&new_imm, &imm, sizeof (float));
18646 /* But the assembly may have been written to provide an integer
18647 bit pattern that equates to a float, so check that the
18648 conversion has worked. */
18649 if (is_quarter_float (new_imm))
18650 {
18651 if (is_quarter_float (inst.operands[1].imm))
18652 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18653
18654 inst.operands[1].imm = new_imm;
18655 inst.operands[1].immisfloat = 1;
18656 }
58ed5c38
TC
18657 }
18658
037e8744 18659 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
18660 {
18661 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18662 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
18663
18664 /* ARMv8.2 fp16 vmov.f16 instruction. */
18665 if (rs == NS_HI)
18666 do_scalar_fp16_v82_encode ();
477330fc 18667 }
5287ad62 18668 else
477330fc 18669 first_error (_("immediate out of range"));
037e8744 18670 break;
5f4273c7 18671
9db2f6b4 18672 case NS_RH:
037e8744
JB
18673 case NS_RF: /* case 12 (fmrs). */
18674 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
18675 /* ARMv8.2 fp16 vmov.f16 instruction. */
18676 if (rs == NS_RH)
18677 do_scalar_fp16_v82_encode ();
037e8744 18678 break;
5f4273c7 18679
9db2f6b4 18680 case NS_HR:
037e8744
JB
18681 case NS_FR: /* case 13 (fmsr). */
18682 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
18683 /* ARMv8.2 fp16 vmov.f16 instruction. */
18684 if (rs == NS_HR)
18685 do_scalar_fp16_v82_encode ();
037e8744 18686 break;
5f4273c7 18687
57785aa2
AV
18688 case NS_RRSS:
18689 do_mve_mov (0);
18690 break;
18691 case NS_SSRR:
18692 do_mve_mov (1);
18693 break;
18694
037e8744
JB
18695 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18696 (one of which is a list), but we have parsed four. Do some fiddling to
18697 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18698 expect. */
18699 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
18700 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18701 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18702 _(BAD_FPU));
037e8744 18703 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 18704 _("VFP registers must be adjacent"));
037e8744
JB
18705 inst.operands[2].imm = 2;
18706 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18707 do_vfp_nsyn_opcode ("fmrrs");
18708 break;
5f4273c7 18709
037e8744 18710 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
18711 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18712 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18713 _(BAD_FPU));
037e8744 18714 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 18715 _("VFP registers must be adjacent"));
037e8744
JB
18716 inst.operands[1] = inst.operands[2];
18717 inst.operands[2] = inst.operands[3];
18718 inst.operands[0].imm = 2;
18719 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18720 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 18721 break;
5f4273c7 18722
4c261dff
NC
18723 case NS_NULL:
18724 /* neon_select_shape has determined that the instruction
18725 shape is wrong and has already set the error message. */
18726 break;
18727
5287ad62
JB
18728 default:
18729 abort ();
18730 }
18731}
18732
57785aa2
AV
18733static void
18734do_mve_movl (void)
18735{
18736 if (!(inst.operands[0].present && inst.operands[0].isquad
18737 && inst.operands[1].present && inst.operands[1].isquad
18738 && !inst.operands[2].present))
18739 {
18740 inst.instruction = 0;
18741 inst.cond = 0xb;
18742 if (thumb_mode)
18743 set_pred_insn_type (INSIDE_IT_INSN);
18744 do_neon_mov ();
18745 return;
18746 }
18747
18748 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18749 return;
18750
18751 if (inst.cond != COND_ALWAYS)
18752 inst.pred_insn_type = INSIDE_VPT_INSN;
18753
18754 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
18755 | N_S16 | N_U16 | N_KEY);
18756
18757 inst.instruction |= (et.type == NT_unsigned) << 28;
18758 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18759 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
18760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18761 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18762 inst.instruction |= LOW4 (inst.operands[1].reg);
18763 inst.is_neon = 1;
18764}
18765
5287ad62
JB
18766static void
18767do_neon_rshift_round_imm (void)
18768{
037e8744 18769 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
18770 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
18771 int imm = inst.operands[2].imm;
18772
18773 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18774 if (imm == 0)
18775 {
18776 inst.operands[2].present = 0;
18777 do_neon_mov ();
18778 return;
18779 }
18780
18781 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18782 _("immediate out of range for shift"));
037e8744 18783 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 18784 et.size - imm);
5287ad62
JB
18785}
18786
9db2f6b4
RL
18787static void
18788do_neon_movhf (void)
18789{
18790 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
18791 constraint (rs != NS_HH, _("invalid suffix"));
18792
7bdf778b
ASDV
18793 if (inst.cond != COND_ALWAYS)
18794 {
18795 if (thumb_mode)
18796 {
18797 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18798 " the behaviour is UNPREDICTABLE"));
18799 }
18800 else
18801 {
18802 inst.error = BAD_COND;
18803 return;
18804 }
18805 }
18806
9db2f6b4
RL
18807 do_vfp_sp_monadic ();
18808
18809 inst.is_neon = 1;
18810 inst.instruction |= 0xf0000000;
18811}
18812
5287ad62
JB
18813static void
18814do_neon_movl (void)
18815{
18816 struct neon_type_el et = neon_check_type (2, NS_QD,
18817 N_EQK | N_DBL, N_SU_32 | N_KEY);
18818 unsigned sizebits = et.size >> 3;
18819 inst.instruction |= sizebits << 19;
18820 neon_two_same (0, et.type == NT_unsigned, -1);
18821}
18822
18823static void
18824do_neon_trn (void)
18825{
037e8744 18826 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18827 struct neon_type_el et = neon_check_type (2, rs,
18828 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 18829 NEON_ENCODE (INTEGER, inst);
037e8744 18830 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18831}
18832
18833static void
18834do_neon_zip_uzp (void)
18835{
037e8744 18836 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18837 struct neon_type_el et = neon_check_type (2, rs,
18838 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18839 if (rs == NS_DD && et.size == 32)
18840 {
18841 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18842 inst.instruction = N_MNEM_vtrn;
18843 do_neon_trn ();
18844 return;
18845 }
037e8744 18846 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18847}
18848
18849static void
18850do_neon_sat_abs_neg (void)
18851{
037e8744 18852 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18853 struct neon_type_el et = neon_check_type (2, rs,
18854 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 18855 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18856}
18857
18858static void
18859do_neon_pair_long (void)
18860{
037e8744 18861 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18862 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18863 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18864 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 18865 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18866}
18867
18868static void
18869do_neon_recip_est (void)
18870{
037e8744 18871 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 18872 struct neon_type_el et = neon_check_type (2, rs,
cc933301 18873 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 18874 inst.instruction |= (et.type == NT_float) << 8;
037e8744 18875 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18876}
18877
18878static void
18879do_neon_cls (void)
18880{
037e8744 18881 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18882 struct neon_type_el et = neon_check_type (2, rs,
18883 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 18884 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18885}
18886
18887static void
18888do_neon_clz (void)
18889{
037e8744 18890 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18891 struct neon_type_el et = neon_check_type (2, rs,
18892 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 18893 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18894}
18895
18896static void
18897do_neon_cnt (void)
18898{
037e8744 18899 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
18900 struct neon_type_el et = neon_check_type (2, rs,
18901 N_EQK | N_INT, N_8 | N_KEY);
037e8744 18902 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
18903}
18904
18905static void
18906do_neon_swp (void)
18907{
037e8744
JB
18908 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18909 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
18910}
18911
18912static void
18913do_neon_tbl_tbx (void)
18914{
18915 unsigned listlenbits;
dcbf9037 18916 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 18917
5287ad62
JB
18918 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
18919 {
dcbf9037 18920 first_error (_("bad list length for table lookup"));
5287ad62
JB
18921 return;
18922 }
5f4273c7 18923
5287ad62
JB
18924 listlenbits = inst.operands[1].imm - 1;
18925 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18926 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18927 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18928 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18929 inst.instruction |= LOW4 (inst.operands[2].reg);
18930 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18931 inst.instruction |= listlenbits << 8;
5f4273c7 18932
88714cb8 18933 neon_dp_fixup (&inst);
5287ad62
JB
18934}
18935
18936static void
18937do_neon_ldm_stm (void)
18938{
18939 /* P, U and L bits are part of bitmask. */
18940 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
18941 unsigned offsetbits = inst.operands[1].imm * 2;
18942
037e8744
JB
18943 if (inst.operands[1].issingle)
18944 {
18945 do_vfp_nsyn_ldm_stm (is_dbmode);
18946 return;
18947 }
18948
5287ad62 18949 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 18950 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
18951
18952 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
18953 _("register list must contain at least 1 and at most 16 "
18954 "registers"));
5287ad62
JB
18955
18956 inst.instruction |= inst.operands[0].reg << 16;
18957 inst.instruction |= inst.operands[0].writeback << 21;
18958 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18959 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
18960
18961 inst.instruction |= offsetbits;
5f4273c7 18962
037e8744 18963 do_vfp_cond_or_thumb ();
5287ad62
JB
18964}
18965
18966static void
18967do_neon_ldr_str (void)
18968{
5287ad62 18969 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 18970
6844b2c2
MGD
18971 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
18972 And is UNPREDICTABLE in thumb mode. */
fa94de6b 18973 if (!is_ldr
6844b2c2 18974 && inst.operands[1].reg == REG_PC
ba86b375 18975 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 18976 {
94dcf8bf 18977 if (thumb_mode)
6844b2c2 18978 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 18979 else if (warn_on_deprecated)
5c3696f8 18980 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
18981 }
18982
037e8744
JB
18983 if (inst.operands[0].issingle)
18984 {
cd2f129f 18985 if (is_ldr)
477330fc 18986 do_vfp_nsyn_opcode ("flds");
cd2f129f 18987 else
477330fc 18988 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
18989
18990 /* ARMv8.2 vldr.16/vstr.16 instruction. */
18991 if (inst.vectype.el[0].size == 16)
18992 do_scalar_fp16_v82_encode ();
5287ad62
JB
18993 }
18994 else
5287ad62 18995 {
cd2f129f 18996 if (is_ldr)
477330fc 18997 do_vfp_nsyn_opcode ("fldd");
5287ad62 18998 else
477330fc 18999 do_vfp_nsyn_opcode ("fstd");
5287ad62 19000 }
5287ad62
JB
19001}
19002
32c36c3c
AV
19003static void
19004do_t_vldr_vstr_sysreg (void)
19005{
19006 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19007 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19008
19009 /* Use of PC is UNPREDICTABLE. */
19010 if (inst.operands[1].reg == REG_PC)
19011 inst.error = _("Use of PC here is UNPREDICTABLE");
19012
19013 if (inst.operands[1].immisreg)
19014 inst.error = _("instruction does not accept register index");
19015
19016 if (!inst.operands[1].isreg)
19017 inst.error = _("instruction does not accept PC-relative addressing");
19018
19019 if (abs (inst.operands[1].imm) >= (1 << 7))
19020 inst.error = _("immediate value out of range");
19021
19022 inst.instruction = 0xec000f80;
19023 if (is_vldr)
19024 inst.instruction |= 1 << sysreg_vldr_bitno;
19025 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19026 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19027 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19028}
19029
19030static void
19031do_vldr_vstr (void)
19032{
19033 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19034
19035 /* VLDR/VSTR (System Register). */
19036 if (sysreg_op)
19037 {
19038 if (!mark_feature_used (&arm_ext_v8_1m_main))
19039 as_bad (_("Instruction not permitted on this architecture"));
19040
19041 do_t_vldr_vstr_sysreg ();
19042 }
19043 /* VLDR/VSTR. */
19044 else
19045 {
19046 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19047 as_bad (_("Instruction not permitted on this architecture"));
19048 do_neon_ldr_str ();
19049 }
19050}
19051
5287ad62
JB
19052/* "interleave" version also handles non-interleaving register VLD1/VST1
19053 instructions. */
19054
19055static void
19056do_neon_ld_st_interleave (void)
19057{
037e8744 19058 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 19059 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
19060 unsigned alignbits = 0;
19061 unsigned idx;
19062 /* The bits in this table go:
19063 0: register stride of one (0) or two (1)
19064 1,2: register list length, minus one (1, 2, 3, 4).
19065 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19066 We use -1 for invalid entries. */
19067 const int typetable[] =
19068 {
19069 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19070 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19071 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19072 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19073 };
19074 int typebits;
19075
dcbf9037
JB
19076 if (et.type == NT_invtype)
19077 return;
19078
5287ad62
JB
19079 if (inst.operands[1].immisalign)
19080 switch (inst.operands[1].imm >> 8)
19081 {
19082 case 64: alignbits = 1; break;
19083 case 128:
477330fc 19084 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 19085 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
19086 goto bad_alignment;
19087 alignbits = 2;
19088 break;
5287ad62 19089 case 256:
477330fc
RM
19090 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19091 goto bad_alignment;
19092 alignbits = 3;
19093 break;
5287ad62
JB
19094 default:
19095 bad_alignment:
477330fc
RM
19096 first_error (_("bad alignment"));
19097 return;
5287ad62
JB
19098 }
19099
19100 inst.instruction |= alignbits << 4;
19101 inst.instruction |= neon_logbits (et.size) << 6;
19102
19103 /* Bits [4:6] of the immediate in a list specifier encode register stride
19104 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19105 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19106 up the right value for "type" in a table based on this value and the given
19107 list style, then stick it back. */
19108 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 19109 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
19110
19111 typebits = typetable[idx];
5f4273c7 19112
5287ad62 19113 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 19114 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 19115 BAD_EL_TYPE);
5287ad62
JB
19116
19117 inst.instruction &= ~0xf00;
19118 inst.instruction |= typebits << 8;
19119}
19120
19121/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19122 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19123 otherwise. The variable arguments are a list of pairs of legal (size, align)
19124 values, terminated with -1. */
19125
19126static int
aa8a0863 19127neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
19128{
19129 va_list ap;
19130 int result = FAIL, thissize, thisalign;
5f4273c7 19131
5287ad62
JB
19132 if (!inst.operands[1].immisalign)
19133 {
aa8a0863 19134 *do_alignment = 0;
5287ad62
JB
19135 return SUCCESS;
19136 }
5f4273c7 19137
aa8a0863 19138 va_start (ap, do_alignment);
5287ad62
JB
19139
19140 do
19141 {
19142 thissize = va_arg (ap, int);
19143 if (thissize == -1)
477330fc 19144 break;
5287ad62
JB
19145 thisalign = va_arg (ap, int);
19146
19147 if (size == thissize && align == thisalign)
477330fc 19148 result = SUCCESS;
5287ad62
JB
19149 }
19150 while (result != SUCCESS);
19151
19152 va_end (ap);
19153
19154 if (result == SUCCESS)
aa8a0863 19155 *do_alignment = 1;
5287ad62 19156 else
dcbf9037 19157 first_error (_("unsupported alignment for instruction"));
5f4273c7 19158
5287ad62
JB
19159 return result;
19160}
19161
19162static void
19163do_neon_ld_st_lane (void)
19164{
037e8744 19165 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19166 int align_good, do_alignment = 0;
5287ad62
JB
19167 int logsize = neon_logbits (et.size);
19168 int align = inst.operands[1].imm >> 8;
19169 int n = (inst.instruction >> 8) & 3;
19170 int max_el = 64 / et.size;
5f4273c7 19171
dcbf9037
JB
19172 if (et.type == NT_invtype)
19173 return;
5f4273c7 19174
5287ad62 19175 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 19176 _("bad list length"));
5287ad62 19177 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 19178 _("scalar index out of range"));
5287ad62 19179 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
19180 && et.size == 8,
19181 _("stride of 2 unavailable when element size is 8"));
5f4273c7 19182
5287ad62
JB
19183 switch (n)
19184 {
19185 case 0: /* VLD1 / VST1. */
aa8a0863 19186 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 19187 32, 32, -1);
5287ad62 19188 if (align_good == FAIL)
477330fc 19189 return;
aa8a0863 19190 if (do_alignment)
477330fc
RM
19191 {
19192 unsigned alignbits = 0;
19193 switch (et.size)
19194 {
19195 case 16: alignbits = 0x1; break;
19196 case 32: alignbits = 0x3; break;
19197 default: ;
19198 }
19199 inst.instruction |= alignbits << 4;
19200 }
5287ad62
JB
19201 break;
19202
19203 case 1: /* VLD2 / VST2. */
aa8a0863
TS
19204 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19205 16, 32, 32, 64, -1);
5287ad62 19206 if (align_good == FAIL)
477330fc 19207 return;
aa8a0863 19208 if (do_alignment)
477330fc 19209 inst.instruction |= 1 << 4;
5287ad62
JB
19210 break;
19211
19212 case 2: /* VLD3 / VST3. */
19213 constraint (inst.operands[1].immisalign,
477330fc 19214 _("can't use alignment with this instruction"));
5287ad62
JB
19215 break;
19216
19217 case 3: /* VLD4 / VST4. */
aa8a0863 19218 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 19219 16, 64, 32, 64, 32, 128, -1);
5287ad62 19220 if (align_good == FAIL)
477330fc 19221 return;
aa8a0863 19222 if (do_alignment)
477330fc
RM
19223 {
19224 unsigned alignbits = 0;
19225 switch (et.size)
19226 {
19227 case 8: alignbits = 0x1; break;
19228 case 16: alignbits = 0x1; break;
19229 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19230 default: ;
19231 }
19232 inst.instruction |= alignbits << 4;
19233 }
5287ad62
JB
19234 break;
19235
19236 default: ;
19237 }
19238
19239 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19240 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19241 inst.instruction |= 1 << (4 + logsize);
5f4273c7 19242
5287ad62
JB
19243 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19244 inst.instruction |= logsize << 10;
19245}
19246
19247/* Encode single n-element structure to all lanes VLD<n> instructions. */
19248
19249static void
19250do_neon_ld_dup (void)
19251{
037e8744 19252 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 19253 int align_good, do_alignment = 0;
5287ad62 19254
dcbf9037
JB
19255 if (et.type == NT_invtype)
19256 return;
19257
5287ad62
JB
19258 switch ((inst.instruction >> 8) & 3)
19259 {
19260 case 0: /* VLD1. */
9c2799c2 19261 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 19262 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 19263 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 19264 if (align_good == FAIL)
477330fc 19265 return;
5287ad62 19266 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
19267 {
19268 case 1: break;
19269 case 2: inst.instruction |= 1 << 5; break;
19270 default: first_error (_("bad list length")); return;
19271 }
5287ad62
JB
19272 inst.instruction |= neon_logbits (et.size) << 6;
19273 break;
19274
19275 case 1: /* VLD2. */
19276 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
19277 &do_alignment, 8, 16, 16, 32, 32, 64,
19278 -1);
5287ad62 19279 if (align_good == FAIL)
477330fc 19280 return;
5287ad62 19281 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 19282 _("bad list length"));
5287ad62 19283 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19284 inst.instruction |= 1 << 5;
5287ad62
JB
19285 inst.instruction |= neon_logbits (et.size) << 6;
19286 break;
19287
19288 case 2: /* VLD3. */
19289 constraint (inst.operands[1].immisalign,
477330fc 19290 _("can't use alignment with this instruction"));
5287ad62 19291 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 19292 _("bad list length"));
5287ad62 19293 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 19294 inst.instruction |= 1 << 5;
5287ad62
JB
19295 inst.instruction |= neon_logbits (et.size) << 6;
19296 break;
19297
19298 case 3: /* VLD4. */
19299 {
477330fc 19300 int align = inst.operands[1].imm >> 8;
aa8a0863 19301 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
19302 16, 64, 32, 64, 32, 128, -1);
19303 if (align_good == FAIL)
19304 return;
19305 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19306 _("bad list length"));
19307 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19308 inst.instruction |= 1 << 5;
19309 if (et.size == 32 && align == 128)
19310 inst.instruction |= 0x3 << 6;
19311 else
19312 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
19313 }
19314 break;
19315
19316 default: ;
19317 }
19318
aa8a0863 19319 inst.instruction |= do_alignment << 4;
5287ad62
JB
19320}
19321
19322/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19323 apart from bits [11:4]. */
19324
19325static void
19326do_neon_ldx_stx (void)
19327{
b1a769ed
DG
19328 if (inst.operands[1].isreg)
19329 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19330
5287ad62
JB
19331 switch (NEON_LANE (inst.operands[0].imm))
19332 {
19333 case NEON_INTERLEAVE_LANES:
88714cb8 19334 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
19335 do_neon_ld_st_interleave ();
19336 break;
5f4273c7 19337
5287ad62 19338 case NEON_ALL_LANES:
88714cb8 19339 NEON_ENCODE (DUP, inst);
2d51fb74
JB
19340 if (inst.instruction == N_INV)
19341 {
19342 first_error ("only loads support such operands");
19343 break;
19344 }
5287ad62
JB
19345 do_neon_ld_dup ();
19346 break;
5f4273c7 19347
5287ad62 19348 default:
88714cb8 19349 NEON_ENCODE (LANE, inst);
5287ad62
JB
19350 do_neon_ld_st_lane ();
19351 }
19352
19353 /* L bit comes from bit mask. */
19354 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19355 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19356 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 19357
5287ad62
JB
19358 if (inst.operands[1].postind)
19359 {
19360 int postreg = inst.operands[1].imm & 0xf;
19361 constraint (!inst.operands[1].immisreg,
477330fc 19362 _("post-index must be a register"));
5287ad62 19363 constraint (postreg == 0xd || postreg == 0xf,
477330fc 19364 _("bad register for post-index"));
5287ad62
JB
19365 inst.instruction |= postreg;
19366 }
4f2374c7 19367 else
5287ad62 19368 {
4f2374c7 19369 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
19370 constraint (inst.relocs[0].exp.X_op != O_constant
19371 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
19372 BAD_ADDR_MODE);
19373
19374 if (inst.operands[1].writeback)
19375 {
19376 inst.instruction |= 0xd;
19377 }
19378 else
19379 inst.instruction |= 0xf;
5287ad62 19380 }
5f4273c7 19381
5287ad62
JB
19382 if (thumb_mode)
19383 inst.instruction |= 0xf9000000;
19384 else
19385 inst.instruction |= 0xf4000000;
19386}
33399f07
MGD
19387
19388/* FP v8. */
19389static void
19390do_vfp_nsyn_fpv8 (enum neon_shape rs)
19391{
a715796b
TG
19392 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19393 D register operands. */
19394 if (neon_shape_class[rs] == SC_DOUBLE)
19395 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19396 _(BAD_FPU));
19397
33399f07
MGD
19398 NEON_ENCODE (FPV8, inst);
19399
9db2f6b4
RL
19400 if (rs == NS_FFF || rs == NS_HHH)
19401 {
19402 do_vfp_sp_dyadic ();
19403
19404 /* ARMv8.2 fp16 instruction. */
19405 if (rs == NS_HHH)
19406 do_scalar_fp16_v82_encode ();
19407 }
33399f07
MGD
19408 else
19409 do_vfp_dp_rd_rn_rm ();
19410
19411 if (rs == NS_DDD)
19412 inst.instruction |= 0x100;
19413
19414 inst.instruction |= 0xf0000000;
19415}
19416
19417static void
19418do_vsel (void)
19419{
5ee91343 19420 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
19421
19422 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19423 first_error (_("invalid instruction shape"));
19424}
19425
73924fbc
MGD
19426static void
19427do_vmaxnm (void)
19428{
5ee91343 19429 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
19430
19431 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19432 return;
19433
19434 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19435 return;
19436
cc933301 19437 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
19438}
19439
30bdf752
MGD
19440static void
19441do_vrint_1 (enum neon_cvt_mode mode)
19442{
9db2f6b4 19443 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
19444 struct neon_type_el et;
19445
19446 if (rs == NS_NULL)
19447 return;
19448
a715796b
TG
19449 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19450 D register operands. */
19451 if (neon_shape_class[rs] == SC_DOUBLE)
19452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19453 _(BAD_FPU));
19454
9db2f6b4
RL
19455 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19456 | N_VFP);
30bdf752
MGD
19457 if (et.type != NT_invtype)
19458 {
19459 /* VFP encodings. */
19460 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19461 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 19462 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19463
19464 NEON_ENCODE (FPV8, inst);
9db2f6b4 19465 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
19466 do_vfp_sp_monadic ();
19467 else
19468 do_vfp_dp_rd_rm ();
19469
19470 switch (mode)
19471 {
19472 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19473 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19474 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19475 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19476 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19477 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19478 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19479 default: abort ();
19480 }
19481
19482 inst.instruction |= (rs == NS_DD) << 8;
19483 do_vfp_cond_or_thumb ();
9db2f6b4
RL
19484
19485 /* ARMv8.2 fp16 vrint instruction. */
19486 if (rs == NS_HH)
19487 do_scalar_fp16_v82_encode ();
30bdf752
MGD
19488 }
19489 else
19490 {
19491 /* Neon encodings (or something broken...). */
19492 inst.error = NULL;
cc933301 19493 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
19494
19495 if (et.type == NT_invtype)
19496 return;
19497
5ee91343 19498 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
19499 NEON_ENCODE (FLOAT, inst);
19500
19501 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19502 return;
19503
19504 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19505 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19506 inst.instruction |= LOW4 (inst.operands[1].reg);
19507 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19508 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19509 /* Mask off the original size bits and reencode them. */
19510 inst.instruction = ((inst.instruction & 0xfff3ffff)
19511 | neon_logbits (et.size) << 18);
19512
30bdf752
MGD
19513 switch (mode)
19514 {
19515 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19516 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19517 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19518 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19519 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19520 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19521 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19522 default: abort ();
19523 }
19524
19525 if (thumb_mode)
19526 inst.instruction |= 0xfc000000;
19527 else
19528 inst.instruction |= 0xf0000000;
19529 }
19530}
19531
19532static void
19533do_vrintx (void)
19534{
19535 do_vrint_1 (neon_cvt_mode_x);
19536}
19537
19538static void
19539do_vrintz (void)
19540{
19541 do_vrint_1 (neon_cvt_mode_z);
19542}
19543
19544static void
19545do_vrintr (void)
19546{
19547 do_vrint_1 (neon_cvt_mode_r);
19548}
19549
19550static void
19551do_vrinta (void)
19552{
19553 do_vrint_1 (neon_cvt_mode_a);
19554}
19555
19556static void
19557do_vrintn (void)
19558{
19559 do_vrint_1 (neon_cvt_mode_n);
19560}
19561
19562static void
19563do_vrintp (void)
19564{
19565 do_vrint_1 (neon_cvt_mode_p);
19566}
19567
19568static void
19569do_vrintm (void)
19570{
19571 do_vrint_1 (neon_cvt_mode_m);
19572}
19573
c28eeff2
SN
19574static unsigned
19575neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19576{
19577 unsigned regno = NEON_SCALAR_REG (opnd);
19578 unsigned elno = NEON_SCALAR_INDEX (opnd);
19579
19580 if (elsize == 16 && elno < 2 && regno < 16)
19581 return regno | (elno << 4);
19582 else if (elsize == 32 && elno == 0)
19583 return regno;
19584
19585 first_error (_("scalar out of range"));
19586 return 0;
19587}
19588
19589static void
19590do_vcmla (void)
19591{
19592 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19593 _(BAD_FPU));
e2b0ab59
AV
19594 constraint (inst.relocs[0].exp.X_op != O_constant,
19595 _("expression too complex"));
19596 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
19597 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19598 _("immediate out of range"));
19599 rot /= 90;
19600 if (inst.operands[2].isscalar)
19601 {
19602 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19603 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19604 N_KEY | N_F16 | N_F32).size;
19605 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19606 inst.is_neon = 1;
19607 inst.instruction = 0xfe000800;
19608 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19609 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19610 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19611 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19612 inst.instruction |= LOW4 (m);
19613 inst.instruction |= HI1 (m) << 5;
19614 inst.instruction |= neon_quad (rs) << 6;
19615 inst.instruction |= rot << 20;
19616 inst.instruction |= (size == 32) << 23;
19617 }
19618 else
19619 {
19620 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19621 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19622 N_KEY | N_F16 | N_F32).size;
19623 neon_three_same (neon_quad (rs), 0, -1);
19624 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19625 inst.instruction |= 0xfc200800;
19626 inst.instruction |= rot << 23;
19627 inst.instruction |= (size == 32) << 20;
19628 }
19629}
19630
19631static void
19632do_vcadd (void)
19633{
19634 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19635 _(BAD_FPU));
e2b0ab59
AV
19636 constraint (inst.relocs[0].exp.X_op != O_constant,
19637 _("expression too complex"));
19638 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
19639 constraint (rot != 90 && rot != 270, _("immediate out of range"));
19640 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19641 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19642 N_KEY | N_F16 | N_F32).size;
19643 neon_three_same (neon_quad (rs), 0, -1);
19644 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19645 inst.instruction |= 0xfc800800;
19646 inst.instruction |= (rot == 270) << 24;
19647 inst.instruction |= (size == 32) << 20;
19648}
19649
c604a79a
JW
19650/* Dot Product instructions encoding support. */
19651
19652static void
19653do_neon_dotproduct (int unsigned_p)
19654{
19655 enum neon_shape rs;
19656 unsigned scalar_oprd2 = 0;
19657 int high8;
19658
19659 if (inst.cond != COND_ALWAYS)
19660 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19661 "is UNPREDICTABLE"));
19662
19663 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19664 _(BAD_FPU));
19665
19666 /* Dot Product instructions are in three-same D/Q register format or the third
19667 operand can be a scalar index register. */
19668 if (inst.operands[2].isscalar)
19669 {
19670 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19671 high8 = 0xfe000000;
19672 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19673 }
19674 else
19675 {
19676 high8 = 0xfc000000;
19677 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
19678 }
19679
19680 if (unsigned_p)
19681 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
19682 else
19683 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
19684
19685 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19686 Product instruction, so we pass 0 as the "ubit" parameter. And the
19687 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19688 neon_three_same (neon_quad (rs), 0, 32);
19689
19690 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19691 different NEON three-same encoding. */
19692 inst.instruction &= 0x00ffffff;
19693 inst.instruction |= high8;
19694 /* Encode 'U' bit which indicates signedness. */
19695 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
19696 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19697 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19698 the instruction encoding. */
19699 if (inst.operands[2].isscalar)
19700 {
19701 inst.instruction &= 0xffffffd0;
19702 inst.instruction |= LOW4 (scalar_oprd2);
19703 inst.instruction |= HI1 (scalar_oprd2) << 5;
19704 }
19705}
19706
19707/* Dot Product instructions for signed integer. */
19708
19709static void
19710do_neon_dotproduct_s (void)
19711{
19712 return do_neon_dotproduct (0);
19713}
19714
19715/* Dot Product instructions for unsigned integer. */
19716
19717static void
19718do_neon_dotproduct_u (void)
19719{
19720 return do_neon_dotproduct (1);
19721}
19722
91ff7894
MGD
19723/* Crypto v1 instructions. */
19724static void
19725do_crypto_2op_1 (unsigned elttype, int op)
19726{
5ee91343 19727 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
19728
19729 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
19730 == NT_invtype)
19731 return;
19732
19733 inst.error = NULL;
19734
19735 NEON_ENCODE (INTEGER, inst);
19736 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19737 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19738 inst.instruction |= LOW4 (inst.operands[1].reg);
19739 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19740 if (op != -1)
19741 inst.instruction |= op << 6;
19742
19743 if (thumb_mode)
19744 inst.instruction |= 0xfc000000;
19745 else
19746 inst.instruction |= 0xf0000000;
19747}
19748
48adcd8e
MGD
19749static void
19750do_crypto_3op_1 (int u, int op)
19751{
5ee91343 19752 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
19753
19754 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
19755 N_32 | N_UNT | N_KEY).type == NT_invtype)
19756 return;
19757
19758 inst.error = NULL;
19759
19760 NEON_ENCODE (INTEGER, inst);
19761 neon_three_same (1, u, 8 << op);
19762}
19763
91ff7894
MGD
19764static void
19765do_aese (void)
19766{
19767 do_crypto_2op_1 (N_8, 0);
19768}
19769
19770static void
19771do_aesd (void)
19772{
19773 do_crypto_2op_1 (N_8, 1);
19774}
19775
19776static void
19777do_aesmc (void)
19778{
19779 do_crypto_2op_1 (N_8, 2);
19780}
19781
19782static void
19783do_aesimc (void)
19784{
19785 do_crypto_2op_1 (N_8, 3);
19786}
19787
48adcd8e
MGD
19788static void
19789do_sha1c (void)
19790{
19791 do_crypto_3op_1 (0, 0);
19792}
19793
19794static void
19795do_sha1p (void)
19796{
19797 do_crypto_3op_1 (0, 1);
19798}
19799
19800static void
19801do_sha1m (void)
19802{
19803 do_crypto_3op_1 (0, 2);
19804}
19805
19806static void
19807do_sha1su0 (void)
19808{
19809 do_crypto_3op_1 (0, 3);
19810}
91ff7894 19811
48adcd8e
MGD
19812static void
19813do_sha256h (void)
19814{
19815 do_crypto_3op_1 (1, 0);
19816}
19817
19818static void
19819do_sha256h2 (void)
19820{
19821 do_crypto_3op_1 (1, 1);
19822}
19823
19824static void
19825do_sha256su1 (void)
19826{
19827 do_crypto_3op_1 (1, 2);
19828}
3c9017d2
MGD
19829
19830static void
19831do_sha1h (void)
19832{
19833 do_crypto_2op_1 (N_32, -1);
19834}
19835
19836static void
19837do_sha1su1 (void)
19838{
19839 do_crypto_2op_1 (N_32, 0);
19840}
19841
19842static void
19843do_sha256su0 (void)
19844{
19845 do_crypto_2op_1 (N_32, 1);
19846}
dd5181d5
KT
19847
19848static void
19849do_crc32_1 (unsigned int poly, unsigned int sz)
19850{
19851 unsigned int Rd = inst.operands[0].reg;
19852 unsigned int Rn = inst.operands[1].reg;
19853 unsigned int Rm = inst.operands[2].reg;
19854
5ee91343 19855 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
19856 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
19857 inst.instruction |= LOW4 (Rn) << 16;
19858 inst.instruction |= LOW4 (Rm);
19859 inst.instruction |= sz << (thumb_mode ? 4 : 21);
19860 inst.instruction |= poly << (thumb_mode ? 20 : 9);
19861
19862 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
19863 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
19864}
19865
19866static void
19867do_crc32b (void)
19868{
19869 do_crc32_1 (0, 0);
19870}
19871
19872static void
19873do_crc32h (void)
19874{
19875 do_crc32_1 (0, 1);
19876}
19877
19878static void
19879do_crc32w (void)
19880{
19881 do_crc32_1 (0, 2);
19882}
19883
19884static void
19885do_crc32cb (void)
19886{
19887 do_crc32_1 (1, 0);
19888}
19889
19890static void
19891do_crc32ch (void)
19892{
19893 do_crc32_1 (1, 1);
19894}
19895
19896static void
19897do_crc32cw (void)
19898{
19899 do_crc32_1 (1, 2);
19900}
19901
49e8a725
SN
19902static void
19903do_vjcvt (void)
19904{
19905 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19906 _(BAD_FPU));
19907 neon_check_type (2, NS_FD, N_S32, N_F64);
19908 do_vfp_sp_dp_cvt ();
19909 do_vfp_cond_or_thumb ();
19910}
19911
5287ad62
JB
19912\f
19913/* Overall per-instruction processing. */
19914
19915/* We need to be able to fix up arbitrary expressions in some statements.
19916 This is so that we can handle symbols that are an arbitrary distance from
19917 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
19918 which returns part of an address in a form which will be valid for
19919 a data instruction. We do this by pushing the expression into a symbol
19920 in the expr_section, and creating a fix for that. */
19921
19922static void
19923fix_new_arm (fragS * frag,
19924 int where,
19925 short int size,
19926 expressionS * exp,
19927 int pc_rel,
19928 int reloc)
19929{
19930 fixS * new_fix;
19931
19932 switch (exp->X_op)
19933 {
19934 case O_constant:
6e7ce2cd
PB
19935 if (pc_rel)
19936 {
19937 /* Create an absolute valued symbol, so we have something to
477330fc
RM
19938 refer to in the object file. Unfortunately for us, gas's
19939 generic expression parsing will already have folded out
19940 any use of .set foo/.type foo %function that may have
19941 been used to set type information of the target location,
19942 that's being specified symbolically. We have to presume
19943 the user knows what they are doing. */
6e7ce2cd
PB
19944 char name[16 + 8];
19945 symbolS *symbol;
19946
19947 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
19948
19949 symbol = symbol_find_or_make (name);
19950 S_SET_SEGMENT (symbol, absolute_section);
19951 symbol_set_frag (symbol, &zero_address_frag);
19952 S_SET_VALUE (symbol, exp->X_add_number);
19953 exp->X_op = O_symbol;
19954 exp->X_add_symbol = symbol;
19955 exp->X_add_number = 0;
19956 }
19957 /* FALLTHROUGH */
5287ad62
JB
19958 case O_symbol:
19959 case O_add:
19960 case O_subtract:
21d799b5 19961 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 19962 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
19963 break;
19964
19965 default:
21d799b5 19966 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 19967 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
19968 break;
19969 }
19970
19971 /* Mark whether the fix is to a THUMB instruction, or an ARM
19972 instruction. */
19973 new_fix->tc_fix_data = thumb_mode;
19974}
19975
19976/* Create a frg for an instruction requiring relaxation. */
19977static void
19978output_relax_insn (void)
19979{
19980 char * to;
19981 symbolS *sym;
0110f2b8
PB
19982 int offset;
19983
6e1cb1a6
PB
19984 /* The size of the instruction is unknown, so tie the debug info to the
19985 start of the instruction. */
19986 dwarf2_emit_insn (0);
6e1cb1a6 19987
e2b0ab59 19988 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
19989 {
19990 case O_symbol:
e2b0ab59
AV
19991 sym = inst.relocs[0].exp.X_add_symbol;
19992 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
19993 break;
19994 case O_constant:
19995 sym = NULL;
e2b0ab59 19996 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
19997 break;
19998 default:
e2b0ab59 19999 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
20000 offset = 0;
20001 break;
20002 }
20003 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20004 inst.relax, sym, offset, NULL/*offset, opcode*/);
20005 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
20006}
20007
20008/* Write a 32-bit thumb instruction to buf. */
20009static void
20010put_thumb32_insn (char * buf, unsigned long insn)
20011{
20012 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20013 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20014}
20015
b99bd4ef 20016static void
c19d1205 20017output_inst (const char * str)
b99bd4ef 20018{
c19d1205 20019 char * to = NULL;
b99bd4ef 20020
c19d1205 20021 if (inst.error)
b99bd4ef 20022 {
c19d1205 20023 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
20024 return;
20025 }
5f4273c7
NC
20026 if (inst.relax)
20027 {
20028 output_relax_insn ();
0110f2b8 20029 return;
5f4273c7 20030 }
c19d1205
ZW
20031 if (inst.size == 0)
20032 return;
b99bd4ef 20033
c19d1205 20034 to = frag_more (inst.size);
8dc2430f
NC
20035 /* PR 9814: Record the thumb mode into the current frag so that we know
20036 what type of NOP padding to use, if necessary. We override any previous
20037 setting so that if the mode has changed then the NOPS that we use will
20038 match the encoding of the last instruction in the frag. */
cd000bff 20039 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
20040
20041 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 20042 {
9c2799c2 20043 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 20044 put_thumb32_insn (to, inst.instruction);
b99bd4ef 20045 }
c19d1205 20046 else if (inst.size > INSN_SIZE)
b99bd4ef 20047 {
9c2799c2 20048 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
20049 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20050 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 20051 }
c19d1205
ZW
20052 else
20053 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 20054
e2b0ab59
AV
20055 int r;
20056 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20057 {
20058 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20059 fix_new_arm (frag_now, to - frag_now->fr_literal,
20060 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20061 inst.relocs[r].type);
20062 }
b99bd4ef 20063
c19d1205 20064 dwarf2_emit_insn (inst.size);
c19d1205 20065}
b99bd4ef 20066
e07e6e58
NC
20067static char *
20068output_it_inst (int cond, int mask, char * to)
20069{
20070 unsigned long instruction = 0xbf00;
20071
20072 mask &= 0xf;
20073 instruction |= mask;
20074 instruction |= cond << 4;
20075
20076 if (to == NULL)
20077 {
20078 to = frag_more (2);
20079#ifdef OBJ_ELF
20080 dwarf2_emit_insn (2);
20081#endif
20082 }
20083
20084 md_number_to_chars (to, instruction, 2);
20085
20086 return to;
20087}
20088
c19d1205
ZW
20089/* Tag values used in struct asm_opcode's tag field. */
20090enum opcode_tag
20091{
20092 OT_unconditional, /* Instruction cannot be conditionalized.
20093 The ARM condition field is still 0xE. */
20094 OT_unconditionalF, /* Instruction cannot be conditionalized
20095 and carries 0xF in its ARM condition field. */
20096 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
20097 OT_csuffixF, /* Some forms of the instruction take a scalar
20098 conditional suffix, others place 0xF where the
20099 condition field would be, others take a vector
20100 conditional suffix. */
c19d1205
ZW
20101 OT_cinfix3, /* Instruction takes a conditional infix,
20102 beginning at character index 3. (In
20103 unified mode, it becomes a suffix.) */
088fa78e
KH
20104 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20105 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
20106 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20107 character index 3, even in unified mode. Used for
20108 legacy instructions where suffix and infix forms
20109 may be ambiguous. */
c19d1205 20110 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 20111 suffix or an infix at character index 3. */
c19d1205
ZW
20112 OT_odd_infix_unc, /* This is the unconditional variant of an
20113 instruction that takes a conditional infix
20114 at an unusual position. In unified mode,
20115 this variant will accept a suffix. */
20116 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20117 are the conditional variants of instructions that
20118 take conditional infixes in unusual positions.
20119 The infix appears at character index
20120 (tag - OT_odd_infix_0). These are not accepted
20121 in unified mode. */
20122};
b99bd4ef 20123
c19d1205
ZW
20124/* Subroutine of md_assemble, responsible for looking up the primary
20125 opcode from the mnemonic the user wrote. STR points to the
20126 beginning of the mnemonic.
20127
20128 This is not simply a hash table lookup, because of conditional
20129 variants. Most instructions have conditional variants, which are
20130 expressed with a _conditional affix_ to the mnemonic. If we were
20131 to encode each conditional variant as a literal string in the opcode
20132 table, it would have approximately 20,000 entries.
20133
20134 Most mnemonics take this affix as a suffix, and in unified syntax,
20135 'most' is upgraded to 'all'. However, in the divided syntax, some
20136 instructions take the affix as an infix, notably the s-variants of
20137 the arithmetic instructions. Of those instructions, all but six
20138 have the infix appear after the third character of the mnemonic.
20139
20140 Accordingly, the algorithm for looking up primary opcodes given
20141 an identifier is:
20142
20143 1. Look up the identifier in the opcode table.
20144 If we find a match, go to step U.
20145
20146 2. Look up the last two characters of the identifier in the
20147 conditions table. If we find a match, look up the first N-2
20148 characters of the identifier in the opcode table. If we
20149 find a match, go to step CE.
20150
20151 3. Look up the fourth and fifth characters of the identifier in
20152 the conditions table. If we find a match, extract those
20153 characters from the identifier, and look up the remaining
20154 characters in the opcode table. If we find a match, go
20155 to step CM.
20156
20157 4. Fail.
20158
20159 U. Examine the tag field of the opcode structure, in case this is
20160 one of the six instructions with its conditional infix in an
20161 unusual place. If it is, the tag tells us where to find the
20162 infix; look it up in the conditions table and set inst.cond
20163 accordingly. Otherwise, this is an unconditional instruction.
20164 Again set inst.cond accordingly. Return the opcode structure.
20165
20166 CE. Examine the tag field to make sure this is an instruction that
20167 should receive a conditional suffix. If it is not, fail.
20168 Otherwise, set inst.cond from the suffix we already looked up,
20169 and return the opcode structure.
20170
20171 CM. Examine the tag field to make sure this is an instruction that
20172 should receive a conditional infix after the third character.
20173 If it is not, fail. Otherwise, undo the edits to the current
20174 line of input and proceed as for case CE. */
20175
20176static const struct asm_opcode *
20177opcode_lookup (char **str)
20178{
20179 char *end, *base;
20180 char *affix;
20181 const struct asm_opcode *opcode;
20182 const struct asm_cond *cond;
e3cb604e 20183 char save[2];
c19d1205
ZW
20184
20185 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 20186 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 20187 for (base = end = *str; *end != '\0'; end++)
721a8186 20188 if (*end == ' ' || *end == '.')
c19d1205 20189 break;
b99bd4ef 20190
c19d1205 20191 if (end == base)
c921be7d 20192 return NULL;
b99bd4ef 20193
5287ad62 20194 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 20195 if (end[0] == '.')
b99bd4ef 20196 {
5287ad62 20197 int offset = 2;
5f4273c7 20198
267d2029 20199 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 20200 use. */
267d2029 20201 if (unified_syntax && end[1] == 'w')
c19d1205 20202 inst.size_req = 4;
267d2029 20203 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
20204 inst.size_req = 2;
20205 else
477330fc 20206 offset = 0;
5287ad62
JB
20207
20208 inst.vectype.elems = 0;
20209
20210 *str = end + offset;
b99bd4ef 20211
5f4273c7 20212 if (end[offset] == '.')
5287ad62 20213 {
267d2029 20214 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
20215 non-unified ARM syntax mode). */
20216 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 20217 return NULL;
477330fc 20218 }
5287ad62 20219 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 20220 return NULL;
b99bd4ef 20221 }
c19d1205
ZW
20222 else
20223 *str = end;
b99bd4ef 20224
c19d1205 20225 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 20226 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20227 end - base);
c19d1205 20228 if (opcode)
b99bd4ef 20229 {
c19d1205
ZW
20230 /* step U */
20231 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 20232 {
c19d1205
ZW
20233 inst.cond = COND_ALWAYS;
20234 return opcode;
b99bd4ef 20235 }
b99bd4ef 20236
278df34e 20237 if (warn_on_deprecated && unified_syntax)
5c3696f8 20238 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 20239 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 20240 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 20241 gas_assert (cond);
b99bd4ef 20242
c19d1205
ZW
20243 inst.cond = cond->value;
20244 return opcode;
20245 }
5ee91343
AV
20246 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20247 {
20248 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20249 */
20250 if (end - base < 2)
20251 return NULL;
20252 affix = end - 1;
20253 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20254 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20255 affix - base);
20256 /* If this opcode can not be vector predicated then don't accept it with a
20257 vector predication code. */
20258 if (opcode && !opcode->mayBeVecPred)
20259 opcode = NULL;
20260 }
20261 if (!opcode || !cond)
20262 {
20263 /* Cannot have a conditional suffix on a mnemonic of less than two
20264 characters. */
20265 if (end - base < 3)
20266 return NULL;
b99bd4ef 20267
5ee91343
AV
20268 /* Look for suffixed mnemonic. */
20269 affix = end - 2;
20270 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20271 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20272 affix - base);
20273 }
b99bd4ef 20274
c19d1205
ZW
20275 if (opcode && cond)
20276 {
20277 /* step CE */
20278 switch (opcode->tag)
20279 {
e3cb604e
PB
20280 case OT_cinfix3_legacy:
20281 /* Ignore conditional suffixes matched on infix only mnemonics. */
20282 break;
20283
c19d1205 20284 case OT_cinfix3:
088fa78e 20285 case OT_cinfix3_deprecated:
c19d1205
ZW
20286 case OT_odd_infix_unc:
20287 if (!unified_syntax)
0198d5e6 20288 return NULL;
1a0670f3 20289 /* Fall through. */
c19d1205
ZW
20290
20291 case OT_csuffix:
477330fc 20292 case OT_csuffixF:
c19d1205
ZW
20293 case OT_csuf_or_in3:
20294 inst.cond = cond->value;
20295 return opcode;
20296
20297 case OT_unconditional:
20298 case OT_unconditionalF:
dfa9f0d5 20299 if (thumb_mode)
c921be7d 20300 inst.cond = cond->value;
dfa9f0d5
PB
20301 else
20302 {
c921be7d 20303 /* Delayed diagnostic. */
dfa9f0d5
PB
20304 inst.error = BAD_COND;
20305 inst.cond = COND_ALWAYS;
20306 }
c19d1205 20307 return opcode;
b99bd4ef 20308
c19d1205 20309 default:
c921be7d 20310 return NULL;
c19d1205
ZW
20311 }
20312 }
b99bd4ef 20313
c19d1205
ZW
20314 /* Cannot have a usual-position infix on a mnemonic of less than
20315 six characters (five would be a suffix). */
20316 if (end - base < 6)
c921be7d 20317 return NULL;
b99bd4ef 20318
c19d1205
ZW
20319 /* Look for infixed mnemonic in the usual position. */
20320 affix = base + 3;
21d799b5 20321 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 20322 if (!cond)
c921be7d 20323 return NULL;
e3cb604e
PB
20324
20325 memcpy (save, affix, 2);
20326 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 20327 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 20328 (end - base) - 2);
e3cb604e
PB
20329 memmove (affix + 2, affix, (end - affix) - 2);
20330 memcpy (affix, save, 2);
20331
088fa78e
KH
20332 if (opcode
20333 && (opcode->tag == OT_cinfix3
20334 || opcode->tag == OT_cinfix3_deprecated
20335 || opcode->tag == OT_csuf_or_in3
20336 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 20337 {
c921be7d 20338 /* Step CM. */
278df34e 20339 if (warn_on_deprecated && unified_syntax
088fa78e
KH
20340 && (opcode->tag == OT_cinfix3
20341 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 20342 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
20343
20344 inst.cond = cond->value;
20345 return opcode;
b99bd4ef
NC
20346 }
20347
c921be7d 20348 return NULL;
b99bd4ef
NC
20349}
20350
e07e6e58
NC
20351/* This function generates an initial IT instruction, leaving its block
20352 virtually open for the new instructions. Eventually,
5ee91343 20353 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
20354 a new instruction needs to be included in the IT block.
20355 Finally, the block is closed with close_automatic_it_block ().
20356 The block closure can be requested either from md_assemble (),
20357 a tencode (), or due to a label hook. */
20358
20359static void
20360new_automatic_it_block (int cond)
20361{
5ee91343
AV
20362 now_pred.state = AUTOMATIC_PRED_BLOCK;
20363 now_pred.mask = 0x18;
20364 now_pred.cc = cond;
20365 now_pred.block_length = 1;
cd000bff 20366 mapping_state (MAP_THUMB);
5ee91343
AV
20367 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20368 now_pred.warn_deprecated = FALSE;
20369 now_pred.insn_cond = TRUE;
e07e6e58
NC
20370}
20371
20372/* Close an automatic IT block.
20373 See comments in new_automatic_it_block (). */
20374
20375static void
20376close_automatic_it_block (void)
20377{
5ee91343
AV
20378 now_pred.mask = 0x10;
20379 now_pred.block_length = 0;
e07e6e58
NC
20380}
20381
20382/* Update the mask of the current automatically-generated IT
20383 instruction. See comments in new_automatic_it_block (). */
20384
20385static void
5ee91343 20386now_pred_add_mask (int cond)
e07e6e58
NC
20387{
20388#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20389#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 20390 | ((bitvalue) << (nbit)))
e07e6e58 20391 const int resulting_bit = (cond & 1);
c921be7d 20392
5ee91343
AV
20393 now_pred.mask &= 0xf;
20394 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20395 resulting_bit,
5ee91343
AV
20396 (5 - now_pred.block_length));
20397 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 20398 1,
5ee91343
AV
20399 ((5 - now_pred.block_length) - 1));
20400 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
20401
20402#undef CLEAR_BIT
20403#undef SET_BIT_VALUE
e07e6e58
NC
20404}
20405
20406/* The IT blocks handling machinery is accessed through the these functions:
20407 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
20408 set_pred_insn_type () optional, from the tencode functions
20409 set_pred_insn_type_last () ditto
20410 in_pred_block () ditto
e07e6e58 20411 it_fsm_post_encode () from md_assemble ()
33eaf5de 20412 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
20413
20414 Rationale:
20415 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
20416 initializing the IT insn type with a generic initial value depending
20417 on the inst.condition.
e07e6e58 20418 2) During the tencode function, two things may happen:
477330fc 20419 a) The tencode function overrides the IT insn type by
5ee91343
AV
20420 calling either set_pred_insn_type (type) or
20421 set_pred_insn_type_last ().
477330fc 20422 b) The tencode function queries the IT block state by
5ee91343 20423 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 20424
5ee91343
AV
20425 Both set_pred_insn_type and in_pred_block run the internal FSM state
20426 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
20427 type may incur in an invalid state (exiting the function),
20428 and b) querying the state requires the FSM to be updated.
20429 Specifically we want to avoid creating an IT block for conditional
20430 branches, so it_fsm_pre_encode is actually a guess and we can't
20431 determine whether an IT block is required until the tencode () routine
20432 has decided what type of instruction this actually it.
5ee91343
AV
20433 Because of this, if set_pred_insn_type and in_pred_block have to be
20434 used, set_pred_insn_type has to be called first.
477330fc 20435
5ee91343
AV
20436 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20437 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
20438 When a tencode () routine encodes an instruction that can be
20439 either outside an IT block, or, in the case of being inside, has to be
5ee91343 20440 the last one, set_pred_insn_type_last () will determine the proper
477330fc 20441 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 20442 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
20443 for covering other cases.
20444
5ee91343
AV
20445 Calling handle_pred_state () may not transition the IT block state to
20446 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 20447 still queried. Instead, if the FSM determines that the state should
5ee91343 20448 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
20449 after the tencode () function: that's what it_fsm_post_encode () does.
20450
5ee91343 20451 Since in_pred_block () calls the state handling function to get an
477330fc
RM
20452 updated state, an error may occur (due to invalid insns combination).
20453 In that case, inst.error is set.
20454 Therefore, inst.error has to be checked after the execution of
20455 the tencode () routine.
e07e6e58
NC
20456
20457 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 20458 any pending state change (if any) that didn't take place in
5ee91343 20459 handle_pred_state () as explained above. */
e07e6e58
NC
20460
20461static void
20462it_fsm_pre_encode (void)
20463{
20464 if (inst.cond != COND_ALWAYS)
5ee91343 20465 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 20466 else
5ee91343 20467 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 20468
5ee91343 20469 now_pred.state_handled = 0;
e07e6e58
NC
20470}
20471
20472/* IT state FSM handling function. */
5ee91343
AV
20473/* MVE instructions and non-MVE instructions are handled differently because of
20474 the introduction of VPT blocks.
20475 Specifications say that any non-MVE instruction inside a VPT block is
20476 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20477 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 20478 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
20479 The error messages provided depending on the different combinations possible
20480 are described in the cases below:
20481 For 'most' MVE instructions:
20482 1) In an IT block, with an IT code: syntax error
20483 2) In an IT block, with a VPT code: error: must be in a VPT block
20484 3) In an IT block, with no code: warning: UNPREDICTABLE
20485 4) In a VPT block, with an IT code: syntax error
20486 5) In a VPT block, with a VPT code: OK!
20487 6) In a VPT block, with no code: error: missing code
20488 7) Outside a pred block, with an IT code: error: syntax error
20489 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20490 9) Outside a pred block, with no code: OK!
20491 For non-MVE instructions:
20492 10) In an IT block, with an IT code: OK!
20493 11) In an IT block, with a VPT code: syntax error
20494 12) In an IT block, with no code: error: missing code
20495 13) In a VPT block, with an IT code: error: should be in an IT block
20496 14) In a VPT block, with a VPT code: syntax error
20497 15) In a VPT block, with no code: UNPREDICTABLE
20498 16) Outside a pred block, with an IT code: error: should be in an IT block
20499 17) Outside a pred block, with a VPT code: syntax error
20500 18) Outside a pred block, with no code: OK!
20501 */
20502
e07e6e58
NC
20503
20504static int
5ee91343 20505handle_pred_state (void)
e07e6e58 20506{
5ee91343
AV
20507 now_pred.state_handled = 1;
20508 now_pred.insn_cond = FALSE;
e07e6e58 20509
5ee91343 20510 switch (now_pred.state)
e07e6e58 20511 {
5ee91343
AV
20512 case OUTSIDE_PRED_BLOCK:
20513 switch (inst.pred_insn_type)
e07e6e58 20514 {
35c228db 20515 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20516 case MVE_OUTSIDE_PRED_INSN:
20517 if (inst.cond < COND_ALWAYS)
20518 {
20519 /* Case 7: Outside a pred block, with an IT code: error: syntax
20520 error. */
20521 inst.error = BAD_SYNTAX;
20522 return FAIL;
20523 }
20524 /* Case 9: Outside a pred block, with no code: OK! */
20525 break;
20526 case OUTSIDE_PRED_INSN:
20527 if (inst.cond > COND_ALWAYS)
20528 {
20529 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20530 */
20531 inst.error = BAD_SYNTAX;
20532 return FAIL;
20533 }
20534 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
20535 break;
20536
5ee91343
AV
20537 case INSIDE_VPT_INSN:
20538 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20539 a VPT block. */
20540 inst.error = BAD_OUT_VPT;
20541 return FAIL;
20542
e07e6e58
NC
20543 case INSIDE_IT_INSN:
20544 case INSIDE_IT_LAST_INSN:
5ee91343 20545 if (inst.cond < COND_ALWAYS)
e07e6e58 20546 {
5ee91343
AV
20547 /* Case 16: Outside a pred block, with an IT code: error: should
20548 be in an IT block. */
20549 if (thumb_mode == 0)
e07e6e58 20550 {
5ee91343
AV
20551 if (unified_syntax
20552 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20553 as_tsktsk (_("Warning: conditional outside an IT block"\
20554 " for Thumb."));
e07e6e58
NC
20555 }
20556 else
20557 {
5ee91343
AV
20558 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20559 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20560 {
20561 /* Automatically generate the IT instruction. */
20562 new_automatic_it_block (inst.cond);
20563 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20564 close_automatic_it_block ();
20565 }
20566 else
20567 {
20568 inst.error = BAD_OUT_IT;
20569 return FAIL;
20570 }
e07e6e58 20571 }
5ee91343 20572 break;
e07e6e58 20573 }
5ee91343
AV
20574 else if (inst.cond > COND_ALWAYS)
20575 {
20576 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20577 */
20578 inst.error = BAD_SYNTAX;
20579 return FAIL;
20580 }
20581 else
20582 gas_assert (0);
e07e6e58
NC
20583 case IF_INSIDE_IT_LAST_INSN:
20584 case NEUTRAL_IT_INSN:
20585 break;
20586
5ee91343
AV
20587 case VPT_INSN:
20588 if (inst.cond != COND_ALWAYS)
20589 first_error (BAD_SYNTAX);
20590 now_pred.state = MANUAL_PRED_BLOCK;
20591 now_pred.block_length = 0;
20592 now_pred.type = VECTOR_PRED;
20593 now_pred.cc = 0;
20594 break;
e07e6e58 20595 case IT_INSN:
5ee91343
AV
20596 now_pred.state = MANUAL_PRED_BLOCK;
20597 now_pred.block_length = 0;
20598 now_pred.type = SCALAR_PRED;
e07e6e58
NC
20599 break;
20600 }
20601 break;
20602
5ee91343 20603 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
20604 /* Three things may happen now:
20605 a) We should increment current it block size;
20606 b) We should close current it block (closing insn or 4 insns);
20607 c) We should close current it block and start a new one (due
20608 to incompatible conditions or
20609 4 insns-length block reached). */
20610
5ee91343 20611 switch (inst.pred_insn_type)
e07e6e58 20612 {
5ee91343
AV
20613 case INSIDE_VPT_INSN:
20614 case VPT_INSN:
35c228db 20615 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
20616 case MVE_OUTSIDE_PRED_INSN:
20617 gas_assert (0);
20618 case OUTSIDE_PRED_INSN:
2b0f3761 20619 /* The closure of the block shall happen immediately,
5ee91343 20620 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
20621 force_automatic_it_block_close ();
20622 break;
20623
20624 case INSIDE_IT_INSN:
20625 case INSIDE_IT_LAST_INSN:
20626 case IF_INSIDE_IT_LAST_INSN:
5ee91343 20627 now_pred.block_length++;
e07e6e58 20628
5ee91343
AV
20629 if (now_pred.block_length > 4
20630 || !now_pred_compatible (inst.cond))
e07e6e58
NC
20631 {
20632 force_automatic_it_block_close ();
5ee91343 20633 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
20634 new_automatic_it_block (inst.cond);
20635 }
20636 else
20637 {
5ee91343
AV
20638 now_pred.insn_cond = TRUE;
20639 now_pred_add_mask (inst.cond);
e07e6e58
NC
20640 }
20641
5ee91343
AV
20642 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20643 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20644 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
20645 close_automatic_it_block ();
20646 break;
20647
20648 case NEUTRAL_IT_INSN:
5ee91343
AV
20649 now_pred.block_length++;
20650 now_pred.insn_cond = TRUE;
e07e6e58 20651
5ee91343 20652 if (now_pred.block_length > 4)
e07e6e58
NC
20653 force_automatic_it_block_close ();
20654 else
5ee91343 20655 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
20656 break;
20657
20658 case IT_INSN:
20659 close_automatic_it_block ();
5ee91343 20660 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
20661 break;
20662 }
20663 break;
20664
5ee91343 20665 case MANUAL_PRED_BLOCK:
e07e6e58 20666 {
5ee91343
AV
20667 int cond, is_last;
20668 if (now_pred.type == SCALAR_PRED)
e07e6e58 20669 {
5ee91343
AV
20670 /* Check conditional suffixes. */
20671 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20672 now_pred.mask <<= 1;
20673 now_pred.mask &= 0x1f;
20674 is_last = (now_pred.mask == 0x10);
20675 }
20676 else
20677 {
20678 now_pred.cc ^= (now_pred.mask >> 4);
20679 cond = now_pred.cc + 0xf;
20680 now_pred.mask <<= 1;
20681 now_pred.mask &= 0x1f;
20682 is_last = now_pred.mask == 0x10;
20683 }
20684 now_pred.insn_cond = TRUE;
e07e6e58 20685
5ee91343
AV
20686 switch (inst.pred_insn_type)
20687 {
20688 case OUTSIDE_PRED_INSN:
20689 if (now_pred.type == SCALAR_PRED)
20690 {
20691 if (inst.cond == COND_ALWAYS)
20692 {
20693 /* Case 12: In an IT block, with no code: error: missing
20694 code. */
20695 inst.error = BAD_NOT_IT;
20696 return FAIL;
20697 }
20698 else if (inst.cond > COND_ALWAYS)
20699 {
20700 /* Case 11: In an IT block, with a VPT code: syntax error.
20701 */
20702 inst.error = BAD_SYNTAX;
20703 return FAIL;
20704 }
20705 else if (thumb_mode)
20706 {
20707 /* This is for some special cases where a non-MVE
20708 instruction is not allowed in an IT block, such as cbz,
20709 but are put into one with a condition code.
20710 You could argue this should be a syntax error, but we
20711 gave the 'not allowed in IT block' diagnostic in the
20712 past so we will keep doing so. */
20713 inst.error = BAD_NOT_IT;
20714 return FAIL;
20715 }
20716 break;
20717 }
20718 else
20719 {
20720 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20721 as_tsktsk (MVE_NOT_VPT);
20722 return SUCCESS;
20723 }
20724 case MVE_OUTSIDE_PRED_INSN:
20725 if (now_pred.type == SCALAR_PRED)
20726 {
20727 if (inst.cond == COND_ALWAYS)
20728 {
20729 /* Case 3: In an IT block, with no code: warning:
20730 UNPREDICTABLE. */
20731 as_tsktsk (MVE_NOT_IT);
20732 return SUCCESS;
20733 }
20734 else if (inst.cond < COND_ALWAYS)
20735 {
20736 /* Case 1: In an IT block, with an IT code: syntax error.
20737 */
20738 inst.error = BAD_SYNTAX;
20739 return FAIL;
20740 }
20741 else
20742 gas_assert (0);
20743 }
20744 else
20745 {
20746 if (inst.cond < COND_ALWAYS)
20747 {
20748 /* Case 4: In a VPT block, with an IT code: syntax error.
20749 */
20750 inst.error = BAD_SYNTAX;
20751 return FAIL;
20752 }
20753 else if (inst.cond == COND_ALWAYS)
20754 {
20755 /* Case 6: In a VPT block, with no code: error: missing
20756 code. */
20757 inst.error = BAD_NOT_VPT;
20758 return FAIL;
20759 }
20760 else
20761 {
20762 gas_assert (0);
20763 }
20764 }
35c228db
AV
20765 case MVE_UNPREDICABLE_INSN:
20766 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
20767 return SUCCESS;
e07e6e58 20768 case INSIDE_IT_INSN:
5ee91343 20769 if (inst.cond > COND_ALWAYS)
e07e6e58 20770 {
5ee91343
AV
20771 /* Case 11: In an IT block, with a VPT code: syntax error. */
20772 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20773 inst.error = BAD_SYNTAX;
20774 return FAIL;
20775 }
20776 else if (now_pred.type == SCALAR_PRED)
20777 {
20778 /* Case 10: In an IT block, with an IT code: OK! */
20779 if (cond != inst.cond)
20780 {
20781 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
20782 BAD_VPT_COND;
20783 return FAIL;
20784 }
20785 }
20786 else
20787 {
20788 /* Case 13: In a VPT block, with an IT code: error: should be
20789 in an IT block. */
20790 inst.error = BAD_OUT_IT;
e07e6e58
NC
20791 return FAIL;
20792 }
20793 break;
20794
5ee91343
AV
20795 case INSIDE_VPT_INSN:
20796 if (now_pred.type == SCALAR_PRED)
20797 {
20798 /* Case 2: In an IT block, with a VPT code: error: must be in a
20799 VPT block. */
20800 inst.error = BAD_OUT_VPT;
20801 return FAIL;
20802 }
20803 /* Case 5: In a VPT block, with a VPT code: OK! */
20804 else if (cond != inst.cond)
20805 {
20806 inst.error = BAD_VPT_COND;
20807 return FAIL;
20808 }
20809 break;
e07e6e58
NC
20810 case INSIDE_IT_LAST_INSN:
20811 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
20812 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
20813 {
20814 /* Case 4: In a VPT block, with an IT code: syntax error. */
20815 /* Case 11: In an IT block, with a VPT code: syntax error. */
20816 inst.error = BAD_SYNTAX;
20817 return FAIL;
20818 }
20819 else if (cond != inst.cond)
e07e6e58
NC
20820 {
20821 inst.error = BAD_IT_COND;
20822 return FAIL;
20823 }
20824 if (!is_last)
20825 {
20826 inst.error = BAD_BRANCH;
20827 return FAIL;
20828 }
20829 break;
20830
20831 case NEUTRAL_IT_INSN:
5ee91343
AV
20832 /* The BKPT instruction is unconditional even in a IT or VPT
20833 block. */
e07e6e58
NC
20834 break;
20835
20836 case IT_INSN:
5ee91343
AV
20837 if (now_pred.type == SCALAR_PRED)
20838 {
20839 inst.error = BAD_IT_IT;
20840 return FAIL;
20841 }
20842 /* fall through. */
20843 case VPT_INSN:
20844 if (inst.cond == COND_ALWAYS)
20845 {
20846 /* Executing a VPT/VPST instruction inside an IT block or a
20847 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
20848 */
20849 if (now_pred.type == SCALAR_PRED)
20850 as_tsktsk (MVE_NOT_IT);
20851 else
20852 as_tsktsk (MVE_NOT_VPT);
20853 return SUCCESS;
20854 }
20855 else
20856 {
20857 /* VPT/VPST do not accept condition codes. */
20858 inst.error = BAD_SYNTAX;
20859 return FAIL;
20860 }
e07e6e58 20861 }
5ee91343 20862 }
e07e6e58
NC
20863 break;
20864 }
20865
20866 return SUCCESS;
20867}
20868
5a01bb1d
MGD
20869struct depr_insn_mask
20870{
20871 unsigned long pattern;
20872 unsigned long mask;
20873 const char* description;
20874};
20875
20876/* List of 16-bit instruction patterns deprecated in an IT block in
20877 ARMv8. */
20878static const struct depr_insn_mask depr_it_insns[] = {
20879 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
20880 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
20881 { 0xa000, 0xb800, N_("ADR") },
20882 { 0x4800, 0xf800, N_("Literal loads") },
20883 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
20884 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
20885 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
20886 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
20887 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
20888 { 0, 0, NULL }
20889};
20890
e07e6e58
NC
20891static void
20892it_fsm_post_encode (void)
20893{
20894 int is_last;
20895
5ee91343
AV
20896 if (!now_pred.state_handled)
20897 handle_pred_state ();
e07e6e58 20898
5ee91343
AV
20899 if (now_pred.insn_cond
20900 && !now_pred.warn_deprecated
5a01bb1d 20901 && warn_on_deprecated
df9909b8
TP
20902 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
20903 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
20904 {
20905 if (inst.instruction >= 0x10000)
20906 {
5c3696f8 20907 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 20908 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 20909 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
20910 }
20911 else
20912 {
20913 const struct depr_insn_mask *p = depr_it_insns;
20914
20915 while (p->mask != 0)
20916 {
20917 if ((inst.instruction & p->mask) == p->pattern)
20918 {
df9909b8
TP
20919 as_tsktsk (_("IT blocks containing 16-bit Thumb "
20920 "instructions of the following class are "
20921 "performance deprecated in ARMv8-A and "
20922 "ARMv8-R: %s"), p->description);
5ee91343 20923 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
20924 break;
20925 }
20926
20927 ++p;
20928 }
20929 }
20930
5ee91343 20931 if (now_pred.block_length > 1)
5a01bb1d 20932 {
5c3696f8 20933 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
20934 "instruction are performance deprecated in ARMv8-A and "
20935 "ARMv8-R"));
5ee91343 20936 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
20937 }
20938 }
20939
5ee91343
AV
20940 is_last = (now_pred.mask == 0x10);
20941 if (is_last)
20942 {
20943 now_pred.state = OUTSIDE_PRED_BLOCK;
20944 now_pred.mask = 0;
20945 }
e07e6e58
NC
20946}
20947
20948static void
20949force_automatic_it_block_close (void)
20950{
5ee91343 20951 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
20952 {
20953 close_automatic_it_block ();
5ee91343
AV
20954 now_pred.state = OUTSIDE_PRED_BLOCK;
20955 now_pred.mask = 0;
e07e6e58
NC
20956 }
20957}
20958
20959static int
5ee91343 20960in_pred_block (void)
e07e6e58 20961{
5ee91343
AV
20962 if (!now_pred.state_handled)
20963 handle_pred_state ();
e07e6e58 20964
5ee91343 20965 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
20966}
20967
ff8646ee
TP
20968/* Whether OPCODE only has T32 encoding. Since this function is only used by
20969 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
20970 here, hence the "known" in the function name. */
fc289b0a
TP
20971
20972static bfd_boolean
ff8646ee 20973known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
20974{
20975 /* Original Thumb-1 wide instruction. */
20976 if (opcode->tencode == do_t_blx
20977 || opcode->tencode == do_t_branch23
20978 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
20979 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
20980 return TRUE;
20981
16a1fa25
TP
20982 /* Wide-only instruction added to ARMv8-M Baseline. */
20983 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
20984 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
20985 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
20986 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
20987 return TRUE;
20988
20989 return FALSE;
20990}
20991
20992/* Whether wide instruction variant can be used if available for a valid OPCODE
20993 in ARCH. */
20994
20995static bfd_boolean
20996t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
20997{
20998 if (known_t32_only_insn (opcode))
20999 return TRUE;
21000
21001 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21002 of variant T3 of B.W is checked in do_t_branch. */
21003 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21004 && opcode->tencode == do_t_branch)
21005 return TRUE;
21006
bada4342
JW
21007 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21008 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21009 && opcode->tencode == do_t_mov_cmp
21010 /* Make sure CMP instruction is not affected. */
21011 && opcode->aencode == do_mov)
21012 return TRUE;
21013
ff8646ee
TP
21014 /* Wide instruction variants of all instructions with narrow *and* wide
21015 variants become available with ARMv6t2. Other opcodes are either
21016 narrow-only or wide-only and are thus available if OPCODE is valid. */
21017 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21018 return TRUE;
21019
21020 /* OPCODE with narrow only instruction variant or wide variant not
21021 available. */
fc289b0a
TP
21022 return FALSE;
21023}
21024
c19d1205
ZW
21025void
21026md_assemble (char *str)
b99bd4ef 21027{
c19d1205
ZW
21028 char *p = str;
21029 const struct asm_opcode * opcode;
b99bd4ef 21030
c19d1205
ZW
21031 /* Align the previous label if needed. */
21032 if (last_label_seen != NULL)
b99bd4ef 21033 {
c19d1205
ZW
21034 symbol_set_frag (last_label_seen, frag_now);
21035 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21036 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
21037 }
21038
c19d1205 21039 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
21040 int r;
21041 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21042 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 21043
c19d1205
ZW
21044 opcode = opcode_lookup (&p);
21045 if (!opcode)
b99bd4ef 21046 {
c19d1205 21047 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 21048 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 21049 if (! create_register_alias (str, p)
477330fc 21050 && ! create_neon_reg_alias (str, p))
c19d1205 21051 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 21052
b99bd4ef
NC
21053 return;
21054 }
21055
278df34e 21056 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 21057 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 21058
037e8744
JB
21059 /* The value which unconditional instructions should have in place of the
21060 condition field. */
21061 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21062
c19d1205 21063 if (thumb_mode)
b99bd4ef 21064 {
e74cfd16 21065 arm_feature_set variant;
8f06b2d8
PB
21066
21067 variant = cpu_variant;
21068 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
21069 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21070 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 21071 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
21072 if (!opcode->tvariant
21073 || (thumb_mode == 1
21074 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 21075 {
173205ca
TP
21076 if (opcode->tencode == do_t_swi)
21077 as_bad (_("SVC is not permitted on this architecture"));
21078 else
21079 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
21080 return;
21081 }
c19d1205
ZW
21082 if (inst.cond != COND_ALWAYS && !unified_syntax
21083 && opcode->tencode != do_t_branch)
b99bd4ef 21084 {
c19d1205 21085 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
21086 return;
21087 }
21088
fc289b0a
TP
21089 /* Two things are addressed here:
21090 1) Implicit require narrow instructions on Thumb-1.
21091 This avoids relaxation accidentally introducing Thumb-2
21092 instructions.
21093 2) Reject wide instructions in non Thumb-2 cores.
21094
21095 Only instructions with narrow and wide variants need to be handled
21096 but selecting all non wide-only instructions is easier. */
21097 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 21098 && !t32_insn_ok (variant, opcode))
076d447c 21099 {
fc289b0a
TP
21100 if (inst.size_req == 0)
21101 inst.size_req = 2;
21102 else if (inst.size_req == 4)
752d5da4 21103 {
ff8646ee
TP
21104 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21105 as_bad (_("selected processor does not support 32bit wide "
21106 "variant of instruction `%s'"), str);
21107 else
21108 as_bad (_("selected processor does not support `%s' in "
21109 "Thumb-2 mode"), str);
fc289b0a 21110 return;
752d5da4 21111 }
076d447c
PB
21112 }
21113
c19d1205
ZW
21114 inst.instruction = opcode->tvalue;
21115
5be8be5d 21116 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 21117 {
5ee91343 21118 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
21119 it. */
21120 it_fsm_pre_encode ();
c19d1205 21121
477330fc 21122 opcode->tencode ();
e07e6e58 21123
477330fc
RM
21124 it_fsm_post_encode ();
21125 }
e27ec89e 21126
0110f2b8 21127 if (!(inst.error || inst.relax))
b99bd4ef 21128 {
9c2799c2 21129 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
21130 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21131 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 21132 {
c19d1205 21133 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
21134 return;
21135 }
21136 }
076d447c
PB
21137
21138 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 21139 instruction. */
9c2799c2 21140 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 21141
e74cfd16
PB
21142 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21143 *opcode->tvariant);
ee065d83 21144 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
21145 set those bits when Thumb-2 32-bit instructions are seen. The impact
21146 of relaxable instructions will be considered later after we finish all
21147 relaxation. */
ff8646ee
TP
21148 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21149 variant = arm_arch_none;
21150 else
21151 variant = cpu_variant;
21152 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
21153 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21154 arm_ext_v6t2);
cd000bff 21155
88714cb8
DG
21156 check_neon_suffixes;
21157
cd000bff 21158 if (!inst.error)
c877a2f2
NC
21159 {
21160 mapping_state (MAP_THUMB);
21161 }
c19d1205 21162 }
3e9e4fcf 21163 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 21164 {
845b51d6
PB
21165 bfd_boolean is_bx;
21166
21167 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21168 is_bx = (opcode->aencode == do_bx);
21169
c19d1205 21170 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
21171 if (!(is_bx && fix_v4bx)
21172 && !(opcode->avariant &&
21173 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 21174 {
84b52b66 21175 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 21176 return;
b99bd4ef 21177 }
c19d1205 21178 if (inst.size_req)
b99bd4ef 21179 {
c19d1205
ZW
21180 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21181 return;
b99bd4ef
NC
21182 }
21183
c19d1205
ZW
21184 inst.instruction = opcode->avalue;
21185 if (opcode->tag == OT_unconditionalF)
eff0bc54 21186 inst.instruction |= 0xFU << 28;
c19d1205
ZW
21187 else
21188 inst.instruction |= inst.cond << 28;
21189 inst.size = INSN_SIZE;
5be8be5d 21190 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
21191 {
21192 it_fsm_pre_encode ();
21193 opcode->aencode ();
21194 it_fsm_post_encode ();
21195 }
ee065d83 21196 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 21197 on a hypothetical non-thumb v5 core. */
845b51d6 21198 if (is_bx)
e74cfd16 21199 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 21200 else
e74cfd16
PB
21201 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21202 *opcode->avariant);
88714cb8
DG
21203
21204 check_neon_suffixes;
21205
cd000bff 21206 if (!inst.error)
c877a2f2
NC
21207 {
21208 mapping_state (MAP_ARM);
21209 }
b99bd4ef 21210 }
3e9e4fcf
JB
21211 else
21212 {
21213 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21214 "-- `%s'"), str);
21215 return;
21216 }
c19d1205
ZW
21217 output_inst (str);
21218}
b99bd4ef 21219
e07e6e58 21220static void
5ee91343 21221check_pred_blocks_finished (void)
e07e6e58
NC
21222{
21223#ifdef OBJ_ELF
21224 asection *sect;
21225
21226 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
21227 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21228 == MANUAL_PRED_BLOCK)
e07e6e58 21229 {
5ee91343
AV
21230 if (now_pred.type == SCALAR_PRED)
21231 as_warn (_("section '%s' finished with an open IT block."),
21232 sect->name);
21233 else
21234 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21235 sect->name);
e07e6e58
NC
21236 }
21237#else
5ee91343
AV
21238 if (now_pred.state == MANUAL_PRED_BLOCK)
21239 {
21240 if (now_pred.type == SCALAR_PRED)
21241 as_warn (_("file finished with an open IT block."));
21242 else
21243 as_warn (_("file finished with an open VPT/VPST block."));
21244 }
e07e6e58
NC
21245#endif
21246}
21247
c19d1205
ZW
21248/* Various frobbings of labels and their addresses. */
21249
21250void
21251arm_start_line_hook (void)
21252{
21253 last_label_seen = NULL;
b99bd4ef
NC
21254}
21255
c19d1205
ZW
21256void
21257arm_frob_label (symbolS * sym)
b99bd4ef 21258{
c19d1205 21259 last_label_seen = sym;
b99bd4ef 21260
c19d1205 21261 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 21262
c19d1205
ZW
21263#if defined OBJ_COFF || defined OBJ_ELF
21264 ARM_SET_INTERWORK (sym, support_interwork);
21265#endif
b99bd4ef 21266
e07e6e58
NC
21267 force_automatic_it_block_close ();
21268
5f4273c7 21269 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
21270 as Thumb functions. This is because these labels, whilst
21271 they exist inside Thumb code, are not the entry points for
21272 possible ARM->Thumb calls. Also, these labels can be used
21273 as part of a computed goto or switch statement. eg gcc
21274 can generate code that looks like this:
b99bd4ef 21275
c19d1205
ZW
21276 ldr r2, [pc, .Laaa]
21277 lsl r3, r3, #2
21278 ldr r2, [r3, r2]
21279 mov pc, r2
b99bd4ef 21280
c19d1205
ZW
21281 .Lbbb: .word .Lxxx
21282 .Lccc: .word .Lyyy
21283 ..etc...
21284 .Laaa: .word Lbbb
b99bd4ef 21285
c19d1205
ZW
21286 The first instruction loads the address of the jump table.
21287 The second instruction converts a table index into a byte offset.
21288 The third instruction gets the jump address out of the table.
21289 The fourth instruction performs the jump.
b99bd4ef 21290
c19d1205
ZW
21291 If the address stored at .Laaa is that of a symbol which has the
21292 Thumb_Func bit set, then the linker will arrange for this address
21293 to have the bottom bit set, which in turn would mean that the
21294 address computation performed by the third instruction would end
21295 up with the bottom bit set. Since the ARM is capable of unaligned
21296 word loads, the instruction would then load the incorrect address
21297 out of the jump table, and chaos would ensue. */
21298 if (label_is_thumb_function_name
21299 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21300 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 21301 {
c19d1205
ZW
21302 /* When the address of a Thumb function is taken the bottom
21303 bit of that address should be set. This will allow
21304 interworking between Arm and Thumb functions to work
21305 correctly. */
b99bd4ef 21306
c19d1205 21307 THUMB_SET_FUNC (sym, 1);
b99bd4ef 21308
c19d1205 21309 label_is_thumb_function_name = FALSE;
b99bd4ef 21310 }
07a53e5c 21311
07a53e5c 21312 dwarf2_emit_label (sym);
b99bd4ef
NC
21313}
21314
c921be7d 21315bfd_boolean
c19d1205 21316arm_data_in_code (void)
b99bd4ef 21317{
c19d1205 21318 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 21319 {
c19d1205
ZW
21320 *input_line_pointer = '/';
21321 input_line_pointer += 5;
21322 *input_line_pointer = 0;
c921be7d 21323 return TRUE;
b99bd4ef
NC
21324 }
21325
c921be7d 21326 return FALSE;
b99bd4ef
NC
21327}
21328
c19d1205
ZW
21329char *
21330arm_canonicalize_symbol_name (char * name)
b99bd4ef 21331{
c19d1205 21332 int len;
b99bd4ef 21333
c19d1205
ZW
21334 if (thumb_mode && (len = strlen (name)) > 5
21335 && streq (name + len - 5, "/data"))
21336 *(name + len - 5) = 0;
b99bd4ef 21337
c19d1205 21338 return name;
b99bd4ef 21339}
c19d1205
ZW
21340\f
21341/* Table of all register names defined by default. The user can
21342 define additional names with .req. Note that all register names
21343 should appear in both upper and lowercase variants. Some registers
21344 also have mixed-case names. */
b99bd4ef 21345
dcbf9037 21346#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 21347#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 21348#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
21349#define REGSET(p,t) \
21350 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21351 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21352 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21353 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
21354#define REGSETH(p,t) \
21355 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21356 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21357 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21358 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21359#define REGSET2(p,t) \
21360 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21361 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21362 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21363 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
21364#define SPLRBANK(base,bank,t) \
21365 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21366 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21367 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21368 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21369 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21370 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 21371
c19d1205 21372static const struct reg_entry reg_names[] =
7ed4c4c5 21373{
c19d1205
ZW
21374 /* ARM integer registers. */
21375 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 21376
c19d1205
ZW
21377 /* ATPCS synonyms. */
21378 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21379 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21380 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 21381
c19d1205
ZW
21382 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21383 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21384 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 21385
c19d1205
ZW
21386 /* Well-known aliases. */
21387 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21388 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21389
21390 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21391 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21392
1b883319
AV
21393 /* Defining the new Zero register from ARMv8.1-M. */
21394 REGDEF(zr,15,ZR),
21395 REGDEF(ZR,15,ZR),
21396
c19d1205
ZW
21397 /* Coprocessor numbers. */
21398 REGSET(p, CP), REGSET(P, CP),
21399
21400 /* Coprocessor register numbers. The "cr" variants are for backward
21401 compatibility. */
21402 REGSET(c, CN), REGSET(C, CN),
21403 REGSET(cr, CN), REGSET(CR, CN),
21404
90ec0d68
MGD
21405 /* ARM banked registers. */
21406 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21407 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21408 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21409 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21410 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21411 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21412 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21413
21414 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21415 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21416 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21417 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21418 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 21419 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
21420 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21421 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21422
21423 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21424 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21425 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21426 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21427 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21428 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21429 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 21430 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
21431 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21432
c19d1205
ZW
21433 /* FPA registers. */
21434 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21435 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21436
21437 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21438 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21439
21440 /* VFP SP registers. */
5287ad62
JB
21441 REGSET(s,VFS), REGSET(S,VFS),
21442 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
21443
21444 /* VFP DP Registers. */
5287ad62
JB
21445 REGSET(d,VFD), REGSET(D,VFD),
21446 /* Extra Neon DP registers. */
21447 REGSETH(d,VFD), REGSETH(D,VFD),
21448
21449 /* Neon QP registers. */
21450 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
21451
21452 /* VFP control registers. */
21453 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21454 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
21455 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21456 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21457 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21458 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 21459 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
21460
21461 /* Maverick DSP coprocessor registers. */
21462 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21463 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21464
21465 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21466 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21467 REGDEF(dspsc,0,DSPSC),
21468
21469 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21470 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21471 REGDEF(DSPSC,0,DSPSC),
21472
21473 /* iWMMXt data registers - p0, c0-15. */
21474 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21475
21476 /* iWMMXt control registers - p1, c0-3. */
21477 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21478 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21479 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21480 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21481
21482 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21483 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21484 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21485 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21486 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21487
21488 /* XScale accumulator registers. */
21489 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21490};
21491#undef REGDEF
21492#undef REGNUM
21493#undef REGSET
7ed4c4c5 21494
c19d1205
ZW
21495/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21496 within psr_required_here. */
21497static const struct asm_psr psrs[] =
21498{
21499 /* Backward compatibility notation. Note that "all" is no longer
21500 truly all possible PSR bits. */
21501 {"all", PSR_c | PSR_f},
21502 {"flg", PSR_f},
21503 {"ctl", PSR_c},
21504
21505 /* Individual flags. */
21506 {"f", PSR_f},
21507 {"c", PSR_c},
21508 {"x", PSR_x},
21509 {"s", PSR_s},
59b42a0d 21510
c19d1205
ZW
21511 /* Combinations of flags. */
21512 {"fs", PSR_f | PSR_s},
21513 {"fx", PSR_f | PSR_x},
21514 {"fc", PSR_f | PSR_c},
21515 {"sf", PSR_s | PSR_f},
21516 {"sx", PSR_s | PSR_x},
21517 {"sc", PSR_s | PSR_c},
21518 {"xf", PSR_x | PSR_f},
21519 {"xs", PSR_x | PSR_s},
21520 {"xc", PSR_x | PSR_c},
21521 {"cf", PSR_c | PSR_f},
21522 {"cs", PSR_c | PSR_s},
21523 {"cx", PSR_c | PSR_x},
21524 {"fsx", PSR_f | PSR_s | PSR_x},
21525 {"fsc", PSR_f | PSR_s | PSR_c},
21526 {"fxs", PSR_f | PSR_x | PSR_s},
21527 {"fxc", PSR_f | PSR_x | PSR_c},
21528 {"fcs", PSR_f | PSR_c | PSR_s},
21529 {"fcx", PSR_f | PSR_c | PSR_x},
21530 {"sfx", PSR_s | PSR_f | PSR_x},
21531 {"sfc", PSR_s | PSR_f | PSR_c},
21532 {"sxf", PSR_s | PSR_x | PSR_f},
21533 {"sxc", PSR_s | PSR_x | PSR_c},
21534 {"scf", PSR_s | PSR_c | PSR_f},
21535 {"scx", PSR_s | PSR_c | PSR_x},
21536 {"xfs", PSR_x | PSR_f | PSR_s},
21537 {"xfc", PSR_x | PSR_f | PSR_c},
21538 {"xsf", PSR_x | PSR_s | PSR_f},
21539 {"xsc", PSR_x | PSR_s | PSR_c},
21540 {"xcf", PSR_x | PSR_c | PSR_f},
21541 {"xcs", PSR_x | PSR_c | PSR_s},
21542 {"cfs", PSR_c | PSR_f | PSR_s},
21543 {"cfx", PSR_c | PSR_f | PSR_x},
21544 {"csf", PSR_c | PSR_s | PSR_f},
21545 {"csx", PSR_c | PSR_s | PSR_x},
21546 {"cxf", PSR_c | PSR_x | PSR_f},
21547 {"cxs", PSR_c | PSR_x | PSR_s},
21548 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21549 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21550 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21551 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21552 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21553 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21554 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21555 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21556 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21557 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21558 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21559 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21560 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21561 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21562 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21563 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21564 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21565 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21566 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21567 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21568 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21569 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21570 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21571 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21572};
21573
62b3e311
PB
21574/* Table of V7M psr names. */
21575static const struct asm_psr v7m_psrs[] =
21576{
1a336194
TP
21577 {"apsr", 0x0 }, {"APSR", 0x0 },
21578 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21579 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21580 {"psr", 0x3 }, {"PSR", 0x3 },
21581 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21582 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21583 {"epsr", 0x6 }, {"EPSR", 0x6 },
21584 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21585 {"msp", 0x8 }, {"MSP", 0x8 },
21586 {"psp", 0x9 }, {"PSP", 0x9 },
21587 {"msplim", 0xa }, {"MSPLIM", 0xa },
21588 {"psplim", 0xb }, {"PSPLIM", 0xb },
21589 {"primask", 0x10}, {"PRIMASK", 0x10},
21590 {"basepri", 0x11}, {"BASEPRI", 0x11},
21591 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
21592 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21593 {"control", 0x14}, {"CONTROL", 0x14},
21594 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21595 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21596 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21597 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21598 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21599 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21600 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21601 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21602 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
21603};
21604
c19d1205
ZW
21605/* Table of all shift-in-operand names. */
21606static const struct asm_shift_name shift_names [] =
b99bd4ef 21607{
c19d1205
ZW
21608 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21609 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21610 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21611 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21612 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
21613 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21614 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 21615};
b99bd4ef 21616
c19d1205
ZW
21617/* Table of all explicit relocation names. */
21618#ifdef OBJ_ELF
21619static struct reloc_entry reloc_names[] =
21620{
21621 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21622 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21623 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21624 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21625 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21626 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21627 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21628 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21629 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21630 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 21631 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
21632 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21633 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 21634 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 21635 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 21636 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 21637 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
21638 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21639 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21640 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21641 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21642 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21643 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
21644 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21645 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21646 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21647 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
21648};
21649#endif
b99bd4ef 21650
5ee91343 21651/* Table of all conditional affixes. */
c19d1205
ZW
21652static const struct asm_cond conds[] =
21653{
21654 {"eq", 0x0},
21655 {"ne", 0x1},
21656 {"cs", 0x2}, {"hs", 0x2},
21657 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21658 {"mi", 0x4},
21659 {"pl", 0x5},
21660 {"vs", 0x6},
21661 {"vc", 0x7},
21662 {"hi", 0x8},
21663 {"ls", 0x9},
21664 {"ge", 0xa},
21665 {"lt", 0xb},
21666 {"gt", 0xc},
21667 {"le", 0xd},
21668 {"al", 0xe}
21669};
5ee91343
AV
21670static const struct asm_cond vconds[] =
21671{
21672 {"t", 0xf},
21673 {"e", 0x10}
21674};
bfae80f2 21675
e797f7e0 21676#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
21677 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21678 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 21679
62b3e311
PB
21680static struct asm_barrier_opt barrier_opt_names[] =
21681{
e797f7e0
MGD
21682 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
21683 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
21684 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
21685 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
21686 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
21687 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
21688 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
21689 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
21690 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
21691 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
21692 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
21693 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
21694 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
21695 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
21696 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
21697 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
21698};
21699
e797f7e0
MGD
21700#undef UL_BARRIER
21701
c19d1205
ZW
21702/* Table of ARM-format instructions. */
21703
21704/* Macros for gluing together operand strings. N.B. In all cases
21705 other than OPS0, the trailing OP_stop comes from default
21706 zero-initialization of the unspecified elements of the array. */
21707#define OPS0() { OP_stop, }
21708#define OPS1(a) { OP_##a, }
21709#define OPS2(a,b) { OP_##a,OP_##b, }
21710#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21711#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21712#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21713#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21714
5be8be5d
DG
21715/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21716 This is useful when mixing operands for ARM and THUMB, i.e. using the
21717 MIX_ARM_THUMB_OPERANDS macro.
21718 In order to use these macros, prefix the number of operands with _
21719 e.g. _3. */
21720#define OPS_1(a) { a, }
21721#define OPS_2(a,b) { a,b, }
21722#define OPS_3(a,b,c) { a,b,c, }
21723#define OPS_4(a,b,c,d) { a,b,c,d, }
21724#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21725#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21726
c19d1205
ZW
21727/* These macros abstract out the exact format of the mnemonic table and
21728 save some repeated characters. */
21729
21730/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21731#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 21732 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 21733 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
21734
21735/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21736 a T_MNEM_xyz enumerator. */
21737#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21738 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 21739#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21740 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
21741
21742/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21743 infix after the third character. */
21744#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 21745 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 21746 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 21747#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 21748 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 21749 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 21750#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21751 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 21752#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 21753 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 21754#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21755 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 21756#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 21757 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 21758
c19d1205 21759/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
21760 field is still 0xE. Many of the Thumb variants can be executed
21761 conditionally, so this is checked separately. */
c19d1205 21762#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 21763 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21764 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 21765
dd5181d5
KT
21766/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21767 Used by mnemonics that have very minimal differences in the encoding for
21768 ARM and Thumb variants and can be handled in a common function. */
21769#define TUEc(mnem, op, top, nops, ops, en) \
21770 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21771 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 21772
c19d1205
ZW
21773/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21774 condition code field. */
21775#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 21776 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 21777 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
21778
21779/* ARM-only variants of all the above. */
6a86118a 21780#define CE(mnem, op, nops, ops, ae) \
5ee91343 21781 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
21782
21783#define C3(mnem, op, nops, ops, ae) \
5ee91343 21784 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 21785
cf3cf39d
TP
21786/* Thumb-only variants of TCE and TUE. */
21787#define ToC(mnem, top, nops, ops, te) \
21788 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 21789 do_##te, 0 }
cf3cf39d
TP
21790
21791#define ToU(mnem, top, nops, ops, te) \
21792 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 21793 NULL, do_##te, 0 }
cf3cf39d 21794
4389b29a
AV
21795/* T_MNEM_xyz enumerator variants of ToC. */
21796#define toC(mnem, top, nops, ops, te) \
21797 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 21798 do_##te, 0 }
4389b29a 21799
f6b2b12d
AV
21800/* T_MNEM_xyz enumerator variants of ToU. */
21801#define toU(mnem, top, nops, ops, te) \
21802 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 21803 NULL, do_##te, 0 }
f6b2b12d 21804
e3cb604e
PB
21805/* Legacy mnemonics that always have conditional infix after the third
21806 character. */
21807#define CL(mnem, op, nops, ops, ae) \
21d799b5 21808 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 21809 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 21810
8f06b2d8
PB
21811/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21812#define cCE(mnem, op, nops, ops, ae) \
5ee91343 21813 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 21814
57785aa2
AV
21815/* mov instructions that are shared between coprocessor and MVE. */
21816#define mcCE(mnem, op, nops, ops, ae) \
21817 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
21818
e3cb604e
PB
21819/* Legacy coprocessor instructions where conditional infix and conditional
21820 suffix are ambiguous. For consistency this includes all FPA instructions,
21821 not just the potentially ambiguous ones. */
21822#define cCL(mnem, op, nops, ops, ae) \
21d799b5 21823 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 21824 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
21825
21826/* Coprocessor, takes either a suffix or a position-3 infix
21827 (for an FPA corner case). */
21828#define C3E(mnem, op, nops, ops, ae) \
21d799b5 21829 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 21830 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 21831
6a86118a 21832#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
21833 { m1 #m2 m3, OPS##nops ops, \
21834 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 21835 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
21836
21837#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
21838 xCM_ (m1, , m2, op, nops, ops, ae), \
21839 xCM_ (m1, eq, m2, op, nops, ops, ae), \
21840 xCM_ (m1, ne, m2, op, nops, ops, ae), \
21841 xCM_ (m1, cs, m2, op, nops, ops, ae), \
21842 xCM_ (m1, hs, m2, op, nops, ops, ae), \
21843 xCM_ (m1, cc, m2, op, nops, ops, ae), \
21844 xCM_ (m1, ul, m2, op, nops, ops, ae), \
21845 xCM_ (m1, lo, m2, op, nops, ops, ae), \
21846 xCM_ (m1, mi, m2, op, nops, ops, ae), \
21847 xCM_ (m1, pl, m2, op, nops, ops, ae), \
21848 xCM_ (m1, vs, m2, op, nops, ops, ae), \
21849 xCM_ (m1, vc, m2, op, nops, ops, ae), \
21850 xCM_ (m1, hi, m2, op, nops, ops, ae), \
21851 xCM_ (m1, ls, m2, op, nops, ops, ae), \
21852 xCM_ (m1, ge, m2, op, nops, ops, ae), \
21853 xCM_ (m1, lt, m2, op, nops, ops, ae), \
21854 xCM_ (m1, gt, m2, op, nops, ops, ae), \
21855 xCM_ (m1, le, m2, op, nops, ops, ae), \
21856 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
21857
21858#define UE(mnem, op, nops, ops, ae) \
5ee91343 21859 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
21860
21861#define UF(mnem, op, nops, ops, ae) \
5ee91343 21862 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 21863
5287ad62
JB
21864/* Neon data-processing. ARM versions are unconditional with cond=0xf.
21865 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
21866 use the same encoding function for each. */
21867#define NUF(mnem, op, nops, ops, enc) \
21868 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 21869 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
21870
21871/* Neon data processing, version which indirects through neon_enc_tab for
21872 the various overloaded versions of opcodes. */
21873#define nUF(mnem, op, nops, ops, enc) \
21d799b5 21874 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 21875 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
21876
21877/* Neon insn with conditional suffix for the ARM version, non-overloaded
21878 version. */
5ee91343 21879#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 21880 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 21881 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 21882
037e8744 21883#define NCE(mnem, op, nops, ops, enc) \
5ee91343 21884 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
21885
21886#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 21887 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 21888
5287ad62 21889/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 21890#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 21891 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 21892 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 21893
037e8744 21894#define nCE(mnem, op, nops, ops, enc) \
5ee91343 21895 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
21896
21897#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
21898 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21899
21900/* */
21901#define mCEF(mnem, op, nops, ops, enc) \
a302e574 21902 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
21903 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21904
21905
21906/* nCEF but for MVE predicated instructions. */
21907#define mnCEF(mnem, op, nops, ops, enc) \
21908 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21909
21910/* nCE but for MVE predicated instructions. */
21911#define mnCE(mnem, op, nops, ops, enc) \
21912 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 21913
5ee91343
AV
21914/* NUF but for potentially MVE predicated instructions. */
21915#define MNUF(mnem, op, nops, ops, enc) \
21916 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21917 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21918
21919/* nUF but for potentially MVE predicated instructions. */
21920#define mnUF(mnem, op, nops, ops, enc) \
21921 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21922 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21923
21924/* ToC but for potentially MVE predicated instructions. */
21925#define mToC(mnem, top, nops, ops, te) \
21926 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21927 do_##te, 1 }
21928
21929/* NCE but for MVE predicated instructions. */
21930#define MNCE(mnem, op, nops, ops, enc) \
21931 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
21932
21933/* NCEF but for MVE predicated instructions. */
21934#define MNCEF(mnem, op, nops, ops, enc) \
21935 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
21936#define do_0 0
21937
c19d1205 21938static const struct asm_opcode insns[] =
bfae80f2 21939{
74db7efb
NC
21940#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
21941#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
21942 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
21943 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
21944 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
21945 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
21946 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
21947 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
21948 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
21949 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
21950 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
21951 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
21952 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
21953 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
21954 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
21955 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
21956 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
21957 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
21958
21959 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
21960 for setting PSR flag bits. They are obsolete in V6 and do not
21961 have Thumb equivalents. */
21d799b5
NC
21962 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
21963 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
21964 CL("tstp", 110f000, 2, (RR, SH), cmp),
21965 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
21966 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
21967 CL("cmpp", 150f000, 2, (RR, SH), cmp),
21968 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
21969 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
21970 CL("cmnp", 170f000, 2, (RR, SH), cmp),
21971
21972 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 21973 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
21974 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
21975 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
21976
21977 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
21978 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21979 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
21980 OP_RRnpc),
21981 OP_ADDRGLDR),ldst, t_ldst),
21982 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
21983
21984 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21985 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21986 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21987 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21988 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21989 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21990
21d799b5
NC
21991 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
21992 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 21993
c19d1205 21994 /* Pseudo ops. */
21d799b5 21995 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 21996 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 21997 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 21998 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
21999
22000 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
22001 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22002 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22003 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22004 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22005 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22006 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22007 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22008 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22009 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22010 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22011 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22012 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 22013
16a4cf17 22014 /* These may simplify to neg. */
21d799b5
NC
22015 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22016 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 22017
173205ca
TP
22018#undef THUMB_VARIANT
22019#define THUMB_VARIANT & arm_ext_os
22020
22021 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22022 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22023
c921be7d
NC
22024#undef THUMB_VARIANT
22025#define THUMB_VARIANT & arm_ext_v6
22026
21d799b5 22027 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
22028
22029 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
22030#undef THUMB_VARIANT
22031#define THUMB_VARIANT & arm_ext_v6t2
22032
21d799b5
NC
22033 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22034 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22035 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 22036
5be8be5d
DG
22037 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22038 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22039 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22040 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 22041
21d799b5
NC
22042 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22043 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 22044
21d799b5
NC
22045 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22046 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
22047
22048 /* V1 instructions with no Thumb analogue at all. */
21d799b5 22049 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
22050 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22051
22052 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22053 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22054 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22055 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22056 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22057 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22058 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22059 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22060
c921be7d
NC
22061#undef ARM_VARIANT
22062#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22063#undef THUMB_VARIANT
22064#define THUMB_VARIANT & arm_ext_v4t
22065
21d799b5
NC
22066 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22067 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 22068
c921be7d
NC
22069#undef THUMB_VARIANT
22070#define THUMB_VARIANT & arm_ext_v6t2
22071
21d799b5 22072 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
22073 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22074
22075 /* Generic coprocessor instructions. */
21d799b5
NC
22076 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22077 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22078 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22079 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22080 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22081 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 22082 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22083
c921be7d
NC
22084#undef ARM_VARIANT
22085#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22086
21d799b5 22087 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
22088 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22089
c921be7d
NC
22090#undef ARM_VARIANT
22091#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22092#undef THUMB_VARIANT
22093#define THUMB_VARIANT & arm_ext_msr
22094
d2cd1205
JB
22095 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22096 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 22097
c921be7d
NC
22098#undef ARM_VARIANT
22099#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22100#undef THUMB_VARIANT
22101#define THUMB_VARIANT & arm_ext_v6t2
22102
21d799b5
NC
22103 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22104 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22105 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22106 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22107 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22108 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22109 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22110 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 22111
c921be7d
NC
22112#undef ARM_VARIANT
22113#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22114#undef THUMB_VARIANT
22115#define THUMB_VARIANT & arm_ext_v4t
22116
5be8be5d
DG
22117 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22118 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22119 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22120 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
22121 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22122 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 22123
c921be7d
NC
22124#undef ARM_VARIANT
22125#define ARM_VARIANT & arm_ext_v4t_5
22126
c19d1205
ZW
22127 /* ARM Architecture 4T. */
22128 /* Note: bx (and blx) are required on V5, even if the processor does
22129 not support Thumb. */
21d799b5 22130 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 22131
c921be7d
NC
22132#undef ARM_VARIANT
22133#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22134#undef THUMB_VARIANT
22135#define THUMB_VARIANT & arm_ext_v5t
22136
c19d1205
ZW
22137 /* Note: blx has 2 variants; the .value coded here is for
22138 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
22139 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22140 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 22141
c921be7d
NC
22142#undef THUMB_VARIANT
22143#define THUMB_VARIANT & arm_ext_v6t2
22144
21d799b5
NC
22145 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22146 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22147 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22148 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22149 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22150 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22151 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22152 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 22153
c921be7d 22154#undef ARM_VARIANT
74db7efb
NC
22155#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22156#undef THUMB_VARIANT
22157#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 22158
21d799b5
NC
22159 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22160 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22161 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22162 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22163
21d799b5
NC
22164 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22165 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 22166
21d799b5
NC
22167 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22168 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22169 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22170 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 22171
21d799b5
NC
22172 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22173 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22174 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22175 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22176
21d799b5
NC
22177 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22178 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 22179
03ee1b7f
NC
22180 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22181 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22182 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22183 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 22184
c921be7d 22185#undef ARM_VARIANT
74db7efb
NC
22186#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22187#undef THUMB_VARIANT
22188#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22189
21d799b5 22190 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
22191 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22192 ldrd, t_ldstd),
22193 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22194 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 22195
21d799b5
NC
22196 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22197 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 22198
c921be7d
NC
22199#undef ARM_VARIANT
22200#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22201
21d799b5 22202 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 22203
c921be7d
NC
22204#undef ARM_VARIANT
22205#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22206#undef THUMB_VARIANT
22207#define THUMB_VARIANT & arm_ext_v6
22208
21d799b5
NC
22209 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22210 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22211 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22212 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22213 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22214 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22215 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22216 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22217 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22218 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 22219
c921be7d 22220#undef THUMB_VARIANT
ff8646ee 22221#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 22222
5be8be5d
DG
22223 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22224 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22225 strex, t_strex),
ff8646ee
TP
22226#undef THUMB_VARIANT
22227#define THUMB_VARIANT & arm_ext_v6t2
22228
21d799b5
NC
22229 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22230 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 22231
21d799b5
NC
22232 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22233 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 22234
9e3c6df6 22235/* ARM V6 not included in V7M. */
c921be7d
NC
22236#undef THUMB_VARIANT
22237#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 22238 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 22239 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
22240 UF(rfeib, 9900a00, 1, (RRw), rfe),
22241 UF(rfeda, 8100a00, 1, (RRw), rfe),
22242 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22243 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
22244 UF(rfefa, 8100a00, 1, (RRw), rfe),
22245 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22246 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 22247 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
22248 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22249 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 22250 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 22251 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 22252 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 22253 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 22254 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 22255 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 22256 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 22257
9e3c6df6
PB
22258/* ARM V6 not included in V7M (eg. integer SIMD). */
22259#undef THUMB_VARIANT
22260#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
22261 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22262 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22263 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22264 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22265 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22266 /* Old name for QASX. */
74db7efb 22267 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22268 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22269 /* Old name for QSAX. */
74db7efb 22270 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22271 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22272 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22273 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22274 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22275 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22276 /* Old name for SASX. */
74db7efb 22277 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22278 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22279 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22280 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22281 /* Old name for SHASX. */
21d799b5 22282 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22283 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22284 /* Old name for SHSAX. */
21d799b5
NC
22285 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22286 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22287 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22288 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22289 /* Old name for SSAX. */
74db7efb 22290 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22291 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22292 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22293 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22294 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22295 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22296 /* Old name for UASX. */
74db7efb 22297 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22298 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22299 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22300 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22301 /* Old name for UHASX. */
21d799b5
NC
22302 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22303 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22304 /* Old name for UHSAX. */
21d799b5
NC
22305 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22306 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22307 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22308 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22309 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 22310 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22311 /* Old name for UQASX. */
21d799b5
NC
22312 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22313 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22314 /* Old name for UQSAX. */
21d799b5
NC
22315 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22316 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22317 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22318 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22319 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 22320 /* Old name for USAX. */
74db7efb 22321 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 22322 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
22323 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22324 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22325 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22326 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22327 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22328 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22329 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22330 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22331 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22332 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22333 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22334 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22335 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22336 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22337 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22338 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22339 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22340 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22341 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22342 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22343 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22344 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22345 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22346 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22347 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22348 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22349 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
22350 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22351 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22352 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22353 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22354 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 22355
c921be7d 22356#undef ARM_VARIANT
55e8aae7 22357#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 22358#undef THUMB_VARIANT
55e8aae7 22359#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 22360
21d799b5
NC
22361 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22362 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22363 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22364 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 22365
c921be7d
NC
22366#undef THUMB_VARIANT
22367#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
22368 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22369 ldrexd, t_ldrexd),
22370 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22371 RRnpcb), strexd, t_strexd),
ebdca51a 22372
c921be7d 22373#undef THUMB_VARIANT
ff8646ee 22374#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
22375 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22376 rd_rn, rd_rn),
22377 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22378 rd_rn, rd_rn),
22379 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22380 strex, t_strexbh),
5be8be5d 22381 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 22382 strex, t_strexbh),
21d799b5 22383 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 22384
c921be7d 22385#undef ARM_VARIANT
f4c65163 22386#define ARM_VARIANT & arm_ext_sec
74db7efb 22387#undef THUMB_VARIANT
f4c65163 22388#define THUMB_VARIANT & arm_ext_sec
c921be7d 22389
21d799b5 22390 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 22391
90ec0d68
MGD
22392#undef ARM_VARIANT
22393#define ARM_VARIANT & arm_ext_virt
22394#undef THUMB_VARIANT
22395#define THUMB_VARIANT & arm_ext_virt
22396
22397 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22398 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22399
ddfded2f
MW
22400#undef ARM_VARIANT
22401#define ARM_VARIANT & arm_ext_pan
22402#undef THUMB_VARIANT
22403#define THUMB_VARIANT & arm_ext_pan
22404
22405 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22406
c921be7d 22407#undef ARM_VARIANT
74db7efb 22408#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
22409#undef THUMB_VARIANT
22410#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22411
21d799b5
NC
22412 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22413 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22414 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22415 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 22416
21d799b5 22417 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 22418 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 22419
5be8be5d
DG
22420 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22421 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22422 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22423 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 22424
91d8b670
JG
22425#undef ARM_VARIANT
22426#define ARM_VARIANT & arm_ext_v3
22427#undef THUMB_VARIANT
22428#define THUMB_VARIANT & arm_ext_v6t2
22429
22430 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
22431 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22432 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
22433
22434#undef ARM_VARIANT
22435#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
22436#undef THUMB_VARIANT
22437#define THUMB_VARIANT & arm_ext_v6t2_v8m
22438 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22439 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22440
bf3eeda7 22441 /* Thumb-only instructions. */
74db7efb 22442#undef ARM_VARIANT
bf3eeda7
NS
22443#define ARM_VARIANT NULL
22444 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22445 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
22446
22447 /* ARM does not really have an IT instruction, so always allow it.
22448 The opcode is copied from Thumb in order to allow warnings in
22449 -mimplicit-it=[never | arm] modes. */
22450#undef ARM_VARIANT
22451#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
22452#undef THUMB_VARIANT
22453#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 22454
21d799b5
NC
22455 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22456 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22457 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22458 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22459 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22460 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22461 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22462 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22463 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22464 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22465 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22466 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22467 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22468 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22469 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 22470 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
22471 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22472 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 22473
92e90b6e 22474 /* Thumb2 only instructions. */
c921be7d
NC
22475#undef ARM_VARIANT
22476#define ARM_VARIANT NULL
92e90b6e 22477
21d799b5
NC
22478 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22479 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22480 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22481 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22482 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22483 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 22484
eea54501
MGD
22485 /* Hardware division instructions. */
22486#undef ARM_VARIANT
22487#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
22488#undef THUMB_VARIANT
22489#define THUMB_VARIANT & arm_ext_div
22490
eea54501
MGD
22491 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22492 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 22493
7e806470 22494 /* ARM V6M/V7 instructions. */
c921be7d
NC
22495#undef ARM_VARIANT
22496#define ARM_VARIANT & arm_ext_barrier
22497#undef THUMB_VARIANT
22498#define THUMB_VARIANT & arm_ext_barrier
22499
ccb84d65
JB
22500 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22501 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22502 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 22503
62b3e311 22504 /* ARM V7 instructions. */
c921be7d
NC
22505#undef ARM_VARIANT
22506#define ARM_VARIANT & arm_ext_v7
22507#undef THUMB_VARIANT
22508#define THUMB_VARIANT & arm_ext_v7
22509
21d799b5
NC
22510 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22511 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 22512
74db7efb 22513#undef ARM_VARIANT
60e5ef9f 22514#define ARM_VARIANT & arm_ext_mp
74db7efb 22515#undef THUMB_VARIANT
60e5ef9f
MGD
22516#define THUMB_VARIANT & arm_ext_mp
22517
22518 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22519
53c4b28b
MGD
22520 /* AArchv8 instructions. */
22521#undef ARM_VARIANT
22522#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
22523
22524/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 22525#undef THUMB_VARIANT
4ed7ed8d 22526#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 22527
4ed7ed8d
TP
22528 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22529 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22530 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22531 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22532 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22533 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 22534 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
22535 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22536 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22537 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22538 stlex, t_stlex),
4b8c8c02
RE
22539 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22540 stlex, t_stlex),
22541 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22542 stlex, t_stlex),
4ed7ed8d
TP
22543#undef THUMB_VARIANT
22544#define THUMB_VARIANT & arm_ext_v8
53c4b28b 22545
4ed7ed8d 22546 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
22547 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22548 ldrexd, t_ldrexd),
22549 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22550 strexd, t_strexd),
f7dd2fb2
TC
22551
22552/* Defined in V8 but is in undefined encoding space for earlier
22553 architectures. However earlier architectures are required to treat
22554 this instuction as a semihosting trap as well. Hence while not explicitly
22555 defined as such, it is in fact correct to define the instruction for all
22556 architectures. */
22557#undef THUMB_VARIANT
22558#define THUMB_VARIANT & arm_ext_v1
22559#undef ARM_VARIANT
22560#define ARM_VARIANT & arm_ext_v1
22561 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22562
8884b720 22563 /* ARMv8 T32 only. */
74db7efb 22564#undef ARM_VARIANT
b79f7053
MGD
22565#define ARM_VARIANT NULL
22566 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22567 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22568 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22569
33399f07
MGD
22570 /* FP for ARMv8. */
22571#undef ARM_VARIANT
a715796b 22572#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 22573#undef THUMB_VARIANT
a715796b 22574#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
22575
22576 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22577 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22578 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22579 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
22580 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22581 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
30bdf752
MGD
22582 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22583 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22584 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22585 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22586 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22587 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22588 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 22589
91ff7894
MGD
22590 /* Crypto v1 extensions. */
22591#undef ARM_VARIANT
22592#define ARM_VARIANT & fpu_crypto_ext_armv8
22593#undef THUMB_VARIANT
22594#define THUMB_VARIANT & fpu_crypto_ext_armv8
22595
22596 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22597 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22598 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22599 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
22600 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22601 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22602 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22603 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22604 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22605 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22606 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
22607 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22608 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22609 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 22610
dd5181d5 22611#undef ARM_VARIANT
74db7efb 22612#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
22613#undef THUMB_VARIANT
22614#define THUMB_VARIANT & crc_ext_armv8
22615 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22616 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22617 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22618 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22619 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22620 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22621
105bde57
MW
22622 /* ARMv8.2 RAS extension. */
22623#undef ARM_VARIANT
4d1464f2 22624#define ARM_VARIANT & arm_ext_ras
105bde57 22625#undef THUMB_VARIANT
4d1464f2 22626#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
22627 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22628
49e8a725
SN
22629#undef ARM_VARIANT
22630#define ARM_VARIANT & arm_ext_v8_3
22631#undef THUMB_VARIANT
22632#define THUMB_VARIANT & arm_ext_v8_3
22633 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
22634 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
22635 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 22636
c604a79a
JW
22637#undef ARM_VARIANT
22638#define ARM_VARIANT & fpu_neon_ext_dotprod
22639#undef THUMB_VARIANT
22640#define THUMB_VARIANT & fpu_neon_ext_dotprod
22641 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22642 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22643
c921be7d
NC
22644#undef ARM_VARIANT
22645#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
22646#undef THUMB_VARIANT
22647#define THUMB_VARIANT NULL
c921be7d 22648
21d799b5
NC
22649 cCE("wfs", e200110, 1, (RR), rd),
22650 cCE("rfs", e300110, 1, (RR), rd),
22651 cCE("wfc", e400110, 1, (RR), rd),
22652 cCE("rfc", e500110, 1, (RR), rd),
22653
22654 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22655 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22656 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22657 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22658
22659 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22660 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22661 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22662 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22663
22664 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22665 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22666 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22667 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22668 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22669 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22670 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22671 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22672 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22673 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22674 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22675 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22676
22677 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22678 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22679 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
22680 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
22681 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
22682 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
22683 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
22684 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
22685 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
22686 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
22687 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
22688 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
22689
22690 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
22691 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
22692 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
22693 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
22694 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
22695 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
22696 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
22697 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
22698 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
22699 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
22700 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
22701 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
22702
22703 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
22704 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
22705 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
22706 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
22707 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
22708 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
22709 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
22710 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
22711 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
22712 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
22713 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
22714 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
22715
22716 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
22717 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
22718 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
22719 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
22720 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
22721 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
22722 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
22723 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
22724 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
22725 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
22726 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
22727 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
22728
22729 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
22730 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
22731 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
22732 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
22733 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
22734 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
22735 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
22736 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
22737 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
22738 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
22739 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
22740 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
22741
22742 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
22743 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
22744 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
22745 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
22746 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
22747 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
22748 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
22749 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
22750 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
22751 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
22752 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
22753 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
22754
22755 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
22756 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
22757 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
22758 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
22759 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
22760 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
22761 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
22762 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
22763 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
22764 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
22765 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
22766 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
22767
22768 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
22769 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
22770 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
22771 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
22772 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
22773 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
22774 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
22775 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
22776 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
22777 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
22778 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
22779 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
22780
22781 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
22782 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
22783 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
22784 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
22785 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
22786 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
22787 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
22788 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
22789 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
22790 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
22791 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
22792 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
22793
22794 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
22795 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
22796 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
22797 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
22798 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
22799 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
22800 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
22801 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
22802 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
22803 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
22804 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
22805 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
22806
22807 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
22808 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
22809 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
22810 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
22811 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
22812 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
22813 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
22814 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
22815 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
22816 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
22817 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
22818 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
22819
22820 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
22821 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
22822 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
22823 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
22824 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
22825 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
22826 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
22827 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
22828 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
22829 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
22830 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
22831 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
22832
22833 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
22834 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
22835 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
22836 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
22837 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
22838 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
22839 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
22840 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
22841 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
22842 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
22843 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
22844 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
22845
22846 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
22847 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
22848 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
22849 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
22850 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
22851 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
22852 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
22853 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
22854 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
22855 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
22856 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
22857 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
22858
22859 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
22860 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
22861 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
22862 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
22863 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
22864 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
22865 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
22866 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
22867 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
22868 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
22869 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
22870 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
22871
22872 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
22873 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
22874 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
22875 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
22876 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
22877 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22878 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22879 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22880 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
22881 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
22882 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
22883 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
22884
22885 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
22886 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
22887 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
22888 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
22889 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
22890 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22891 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22892 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22893 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
22894 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
22895 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
22896 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
22897
22898 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
22899 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
22900 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
22901 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
22902 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
22903 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22904 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22905 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22906 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
22907 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
22908 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
22909 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
22910
22911 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
22912 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
22913 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
22914 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
22915 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
22916 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22917 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22918 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22919 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
22920 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
22921 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
22922 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
22923
22924 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
22925 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
22926 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
22927 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
22928 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
22929 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22930 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22931 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22932 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
22933 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
22934 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
22935 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
22936
22937 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
22938 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
22939 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
22940 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
22941 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
22942 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22943 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22944 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22945 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
22946 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
22947 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
22948 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
22949
22950 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
22951 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
22952 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
22953 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
22954 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
22955 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22956 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22957 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22958 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
22959 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
22960 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
22961 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
22962
22963 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
22964 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
22965 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
22966 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
22967 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
22968 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22969 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22970 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22971 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
22972 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
22973 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
22974 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
22975
22976 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
22977 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
22978 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
22979 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
22980 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
22981 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22982 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22983 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22984 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
22985 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
22986 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
22987 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
22988
22989 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
22990 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
22991 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
22992 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
22993 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
22994 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22995 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22996 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22997 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
22998 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
22999 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23000 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23001
23002 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23003 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23004 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23005 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23006 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23007 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23008 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23009 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23010 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23011 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23012 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23013 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23014
23015 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23016 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23017 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23018 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23019 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23020 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23021 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23022 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23023 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23024 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23025 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23026 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23027
23028 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23029 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23030 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23031 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23032 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23033 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23034 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23035 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23036 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23037 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23038 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23039 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23040
23041 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23042 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23043 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23044 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23045
23046 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23047 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23048 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23049 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23050 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23051 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23052 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23053 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23054 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23055 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23056 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23057 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 23058
c19d1205
ZW
23059 /* The implementation of the FIX instruction is broken on some
23060 assemblers, in that it accepts a precision specifier as well as a
23061 rounding specifier, despite the fact that this is meaningless.
23062 To be more compatible, we accept it as well, though of course it
23063 does not set any bits. */
21d799b5
NC
23064 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23065 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23066 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23067 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23068 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23069 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23070 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23071 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23072 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23073 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23074 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23075 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23076 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 23077
c19d1205 23078 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
23079#undef ARM_VARIANT
23080#define ARM_VARIANT & fpu_fpa_ext_v2
23081
21d799b5
NC
23082 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23083 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23084 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23085 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23086 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23087 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 23088
c921be7d
NC
23089#undef ARM_VARIANT
23090#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23091
c19d1205 23092 /* Moves and type conversions. */
21d799b5 23093 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
23094 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23095 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
23096 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23097 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23098 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23099 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23100 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23101 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23102 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23103 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
23104
23105 /* Memory operations. */
21d799b5
NC
23106 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23107 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
23108 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23109 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23110 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23111 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23112 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23113 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23114 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23115 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23116 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23117 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23118 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23119 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23120 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23121 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23122 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23123 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 23124
c19d1205 23125 /* Monadic operations. */
21d799b5
NC
23126 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23127 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23128 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
23129
23130 /* Dyadic operations. */
21d799b5
NC
23131 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23132 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23133 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23134 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23135 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23136 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23137 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23138 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23139 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 23140
c19d1205 23141 /* Comparisons. */
21d799b5
NC
23142 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23143 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23144 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23145 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 23146
62f3b8c8
PB
23147 /* Double precision load/store are still present on single precision
23148 implementations. */
23149 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23150 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
23151 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23152 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23153 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23154 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23155 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23156 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23157 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23158 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 23159
c921be7d
NC
23160#undef ARM_VARIANT
23161#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23162
c19d1205 23163 /* Moves and type conversions. */
21d799b5
NC
23164 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23165 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23166 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23167 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23168 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23169 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23170 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23171 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23172 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23173 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23174 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23175 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 23176
c19d1205 23177 /* Monadic operations. */
21d799b5
NC
23178 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23179 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23180 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
23181
23182 /* Dyadic operations. */
21d799b5
NC
23183 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23184 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23185 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23186 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23187 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23188 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23189 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23190 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23191 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 23192
c19d1205 23193 /* Comparisons. */
21d799b5
NC
23194 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23195 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23196 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23197 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 23198
037e8744
JB
23199/* Instructions which may belong to either the Neon or VFP instruction sets.
23200 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
23201#undef ARM_VARIANT
23202#define ARM_VARIANT & fpu_vfp_ext_v1xd
23203#undef THUMB_VARIANT
23204#define THUMB_VARIANT & fpu_vfp_ext_v1xd
23205
037e8744
JB
23206 /* These mnemonics are unique to VFP. */
23207 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23208 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
23209 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23210 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23211 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
23212 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23213 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23214 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23215
23216 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
23217 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23218 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23219 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 23220
55881a11
MGD
23221 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23222 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23223 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23224 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23225 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23226 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 23227
dd9634d9 23228 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 23229 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
23230 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23231 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 23232
037e8744
JB
23233
23234 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
23235 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23236
32c36c3c
AV
23237#undef THUMB_VARIANT
23238/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23239 by different feature bits. Since we are setting the Thumb guard, we can
23240 require Thumb-1 which makes it a nop guard and set the right feature bit in
23241 do_vldr_vstr (). */
23242#define THUMB_VARIANT & arm_ext_v4t
23243 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23244 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23245
9db2f6b4
RL
23246#undef ARM_VARIANT
23247#define ARM_VARIANT & arm_ext_fp16
23248#undef THUMB_VARIANT
23249#define THUMB_VARIANT & arm_ext_fp16
23250 /* New instructions added from v8.2, allowing the extraction and insertion of
23251 the upper 16 bits of a 32-bit vector register. */
23252 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23253 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23254
dec41383
JW
23255 /* New backported fma/fms instructions optional in v8.2. */
23256 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23257 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23258
c921be7d
NC
23259#undef THUMB_VARIANT
23260#define THUMB_VARIANT & fpu_neon_ext_v1
23261#undef ARM_VARIANT
23262#define ARM_VARIANT & fpu_neon_ext_v1
23263
5287ad62
JB
23264 /* Data processing with three registers of the same length. */
23265 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23266 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23267 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23268 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23269 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23270 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23271 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23272 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23273 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23274 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23275 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23276 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23277 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23278 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
23279 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23280 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23281 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23282 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
23283 /* If not immediate, fall back to neon_dyadic_i64_su.
23284 shl_imm should accept I8 I16 I32 I64,
23285 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
23286 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23287 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23288 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23289 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 23290 /* Logic ops, types optional & ignored. */
4316f0d2
DG
23291 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23292 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23293 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23294 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23295 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23296 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23297 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23298 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23299 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
23300 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
23301 /* Bitfield ops, untyped. */
23302 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23303 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23304 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23305 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23306 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23307 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 23308 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
23309 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23310 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23311 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23312 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23313 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
23314 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23315 back to neon_dyadic_if_su. */
21d799b5
NC
23316 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23317 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23318 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23319 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23320 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23321 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23322 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23323 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 23324 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
23325 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23326 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 23327 /* As above, D registers only. */
21d799b5
NC
23328 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23329 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 23330 /* Int and float variants, signedness unimportant. */
21d799b5
NC
23331 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23332 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23333 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 23334 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
23335 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23336 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
23337 /* vtst takes sizes 8, 16, 32. */
23338 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23339 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23340 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 23341 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 23342 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
23343 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23344 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23345 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23346 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
23347 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23348 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23349 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23350 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
23351 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23352 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23353 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23354 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
23355 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23356 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23357 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23358 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 23359 /* ARM v8.1 extension. */
643afb90
MW
23360 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23361 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23362 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23363 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
23364
23365 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 23366 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
23367 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23368
23369 /* Data processing with two registers and a shift amount. */
23370 /* Right shifts, and variants with rounding.
23371 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23372 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23373 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23374 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23375 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23376 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23377 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23378 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23379 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23380 /* Shift and insert. Sizes accepted 8 16 32 64. */
23381 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23382 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23383 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23384 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23385 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23386 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23387 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23388 /* Right shift immediate, saturating & narrowing, with rounding variants.
23389 Types accepted S16 S32 S64 U16 U32 U64. */
23390 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23391 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23392 /* As above, unsigned. Types accepted S16 S32 S64. */
23393 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23394 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23395 /* Right shift narrowing. Types accepted I16 I32 I64. */
23396 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23397 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23398 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 23399 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 23400 /* CVT with optional immediate for fixed-point variant. */
21d799b5 23401 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 23402
4316f0d2
DG
23403 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23404 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
23405
23406 /* Data processing, three registers of different lengths. */
23407 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23408 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
23409 /* If not scalar, fall back to neon_dyadic_long.
23410 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
23411 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23412 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
23413 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23414 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23415 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23416 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23417 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23418 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23419 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23420 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23421 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
23422 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23423 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23424 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
23425 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23426 S16 S32 U16 U32. */
21d799b5 23427 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
23428
23429 /* Extract. Size 8. */
3b8d421e
PB
23430 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23431 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
23432
23433 /* Two registers, miscellaneous. */
23434 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23435 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23436 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23437 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23438 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23439 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23440 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23441 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
23442 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
23443 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
23444 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23445 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23446 /* VMOVN. Types I16 I32 I64. */
21d799b5 23447 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 23448 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 23449 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 23450 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 23451 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
23452 /* VZIP / VUZP. Sizes 8 16 32. */
23453 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23454 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23455 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23456 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23457 /* VQABS / VQNEG. Types S8 S16 S32. */
23458 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23459 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23460 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23461 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23462 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23463 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23464 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23465 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23466 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 23467 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
23468 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23469 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23470 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23471 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23472 /* VCLS. Types S8 S16 S32. */
23473 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
23474 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23475 /* VCLZ. Types I8 I16 I32. */
23476 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
23477 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23478 /* VCNT. Size 8. */
23479 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23480 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23481 /* Two address, untyped. */
23482 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23483 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23484 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
23485 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23486 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
23487
23488 /* Table lookup. Size 8. */
23489 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23490 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23491
c921be7d
NC
23492#undef THUMB_VARIANT
23493#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23494#undef ARM_VARIANT
23495#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23496
5287ad62 23497 /* Neon element/structure load/store. */
21d799b5
NC
23498 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23499 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23500 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23501 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23502 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23503 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23504 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23505 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 23506
c921be7d 23507#undef THUMB_VARIANT
74db7efb
NC
23508#define THUMB_VARIANT & fpu_vfp_ext_v3xd
23509#undef ARM_VARIANT
23510#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
23511 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23512 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23513 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23514 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23515 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23516 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23517 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23518 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23519 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23520
74db7efb 23521#undef THUMB_VARIANT
c921be7d
NC
23522#define THUMB_VARIANT & fpu_vfp_ext_v3
23523#undef ARM_VARIANT
23524#define ARM_VARIANT & fpu_vfp_ext_v3
23525
21d799b5 23526 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 23527 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23528 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23529 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23530 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23531 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23532 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 23533 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 23534 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 23535
74db7efb
NC
23536#undef ARM_VARIANT
23537#define ARM_VARIANT & fpu_vfp_ext_fma
23538#undef THUMB_VARIANT
23539#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
23540 /* Mnemonics shared by Neon and VFP. These are included in the
23541 VFP FMA variant; NEON and VFP FMA always includes the NEON
23542 FMA instructions. */
23543 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23544 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23545 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23546 the v form should always be used. */
23547 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23548 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23549 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23550 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23551 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23552 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23553
5287ad62 23554#undef THUMB_VARIANT
c921be7d
NC
23555#undef ARM_VARIANT
23556#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23557
21d799b5
NC
23558 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23559 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23560 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23561 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23562 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23563 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23564 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23565 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 23566
c921be7d
NC
23567#undef ARM_VARIANT
23568#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23569
21d799b5
NC
23570 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23571 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23572 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23573 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23574 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23575 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23576 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23577 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23578 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
23579 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23580 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23581 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23582 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23583 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23584 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
23585 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23586 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23587 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23588 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23589 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23590 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23591 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23592 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23593 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23594 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23595 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
23596 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23597 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23598 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
23599 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23600 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23601 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23602 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23603 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23604 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23605 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23606 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23607 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23608 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23609 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23610 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23611 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23612 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23613 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23614 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23615 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23616 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
23617 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23618 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23619 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23620 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23621 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23622 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23623 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23624 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23625 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23626 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23627 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23628 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23629 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23630 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23631 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23632 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23633 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23634 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23635 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23636 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23637 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23638 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23639 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23640 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23641 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23642 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23643 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23644 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23645 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23646 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23647 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23648 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23649 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23650 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23651 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23652 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23653 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23654 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23655 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23656 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23657 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23658 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23659 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23660 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23661 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23662 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23663 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
23664 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23665 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23666 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23667 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23668 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23669 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
23670 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23671 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23672 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23673 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23674 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23675 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23676 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23677 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23678 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23679 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23680 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23681 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23682 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23683 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23684 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23685 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23686 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23687 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23688 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23689 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23690 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23691 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23692 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23693 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23694 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23695 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23696 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23697 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23698 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23699 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23700 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23701 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23702 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23703 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23704 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23705 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23706 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23707 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23708 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23709 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23710 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23711 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23712 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
23713 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
23714 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
23715 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
23716 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
23717 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
23718 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23719 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23720 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23721 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
23722 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
23723 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
23724 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
23725 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
23726 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
23727 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23728 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23729 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23730 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23731 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 23732
c921be7d
NC
23733#undef ARM_VARIANT
23734#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23735
21d799b5
NC
23736 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
23737 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
23738 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
23739 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
23740 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
23741 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
23742 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23743 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23744 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23745 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23746 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23747 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23748 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23749 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23750 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23751 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23752 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23753 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23754 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23755 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23756 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
23757 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23758 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23759 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23760 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23761 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23762 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23763 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23764 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23765 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23766 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23767 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23768 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23769 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23770 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23771 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23772 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23773 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23774 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23775 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23776 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23777 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23778 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23779 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23780 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23781 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23782 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23783 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23784 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23785 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23786 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23787 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23788 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23789 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23790 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23791 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23792 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 23793
c921be7d
NC
23794#undef ARM_VARIANT
23795#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23796
21d799b5
NC
23797 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23798 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23799 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23800 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23801 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23802 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23803 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23804 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23805 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
23806 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
23807 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
23808 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
23809 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
23810 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
23811 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
23812 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
23813 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
23814 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
23815 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
23816 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
23817 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
23818 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
23819 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
23820 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
23821 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
23822 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
23823 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
23824 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
23825 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
23826 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
23827 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
23828 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
23829 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
23830 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
23831 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
23832 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
23833 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
23834 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
23835 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
23836 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
23837 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
23838 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
23839 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
23840 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
23841 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
23842 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
23843 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
23844 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
23845 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
23846 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
23847 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
23848 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
23849 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
23850 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
23851 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
23852 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
23853 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
23854 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
23855 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
23856 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
23857 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
23858 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
23859 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
23860 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
23861 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23862 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23863 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23864 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23865 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23866 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23867 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23868 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
23869 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
23870 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
23871 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
23872 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 23873
7fadb25d
SD
23874 /* ARMv8.5-A instructions. */
23875#undef ARM_VARIANT
23876#define ARM_VARIANT & arm_ext_sb
23877#undef THUMB_VARIANT
23878#define THUMB_VARIANT & arm_ext_sb
23879 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
23880
dad0c3bf
SD
23881#undef ARM_VARIANT
23882#define ARM_VARIANT & arm_ext_predres
23883#undef THUMB_VARIANT
23884#define THUMB_VARIANT & arm_ext_predres
23885 CE("cfprctx", e070f93, 1, (RRnpc), rd),
23886 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
23887 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
23888
16a1fa25 23889 /* ARMv8-M instructions. */
4ed7ed8d
TP
23890#undef ARM_VARIANT
23891#define ARM_VARIANT NULL
23892#undef THUMB_VARIANT
23893#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
23894 ToU("sg", e97fe97f, 0, (), noargs),
23895 ToC("blxns", 4784, 1, (RRnpc), t_blx),
23896 ToC("bxns", 4704, 1, (RRnpc), t_bx),
23897 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
23898 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
23899 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
23900 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
23901
23902 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
23903 instructions behave as nop if no VFP is present. */
23904#undef THUMB_VARIANT
23905#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
23906 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
23907 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
23908
23909 /* Armv8.1-M Mainline instructions. */
23910#undef THUMB_VARIANT
23911#define THUMB_VARIANT & arm_ext_v8_1m_main
23912 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 23913 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 23914 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 23915 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 23916 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
23917
23918 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
23919 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
23920 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 23921
efd6b359 23922 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
23923 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
23924
23925#undef THUMB_VARIANT
23926#define THUMB_VARIANT & mve_ext
1b883319
AV
23927
23928 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23929 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23930 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23931 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23932 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23933 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23934 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23935 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23936 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23937 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23938 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23939 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23940 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23941 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23942 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23943
5ee91343
AV
23944 ToC("vpst", fe710f4d, 0, (), mve_vpt),
23945 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
23946 ToC("vpste", fe718f4d, 0, (), mve_vpt),
23947 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
23948 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
23949 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
23950 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
23951 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
23952 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
23953 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
23954 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
23955 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
23956 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
23957 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
23958 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
23959
a302e574 23960 /* MVE and MVE FP only. */
c2dafc2a
AV
23961 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
23962 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
23963 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
23964 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 23965 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
23966 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
23967 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
23968 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
23969 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
23970 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
23971 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
23972 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
23973 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
23974 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
23975 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
23976 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
23977
35c228db
AV
23978 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23979 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23980 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23981 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23982 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23983 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23984 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23985 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23986 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23987 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23988 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23989 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
23990 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23991 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23992 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23993 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23994 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23995 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23996 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23997 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 23998
57785aa2
AV
23999 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24000 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 24001 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
57785aa2 24002
5ee91343 24003#undef ARM_VARIANT
57785aa2 24004#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
24005#undef THUMB_VARIANT
24006#define THUMB_VARIANT & arm_ext_v6t2
24007
57785aa2
AV
24008 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24009
24010#undef ARM_VARIANT
24011#define ARM_VARIANT & fpu_vfp_ext_v1xd
24012
24013 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24014 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24015 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24016 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24017
886e1c73
AV
24018 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24019 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24020 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 24021
485dee97
AV
24022 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24023 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24024
57785aa2
AV
24025 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24026 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24027
1b883319
AV
24028 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24029 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24030
57785aa2
AV
24031#undef ARM_VARIANT
24032#define ARM_VARIANT & fpu_vfp_ext_v2
24033
24034 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24035 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24036 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24037 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24038
dd9634d9
AV
24039#undef ARM_VARIANT
24040#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24041 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24042 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24043 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24044 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24045
24046#undef ARM_VARIANT
5ee91343
AV
24047#define ARM_VARIANT & fpu_neon_ext_v1
24048 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24049 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24050 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24051 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
c19d1205
ZW
24052};
24053#undef ARM_VARIANT
24054#undef THUMB_VARIANT
24055#undef TCE
c19d1205
ZW
24056#undef TUE
24057#undef TUF
24058#undef TCC
8f06b2d8 24059#undef cCE
e3cb604e
PB
24060#undef cCL
24061#undef C3E
4389b29a 24062#undef C3
c19d1205
ZW
24063#undef CE
24064#undef CM
4389b29a 24065#undef CL
c19d1205
ZW
24066#undef UE
24067#undef UF
24068#undef UT
5287ad62
JB
24069#undef NUF
24070#undef nUF
24071#undef NCE
24072#undef nCE
c19d1205
ZW
24073#undef OPS0
24074#undef OPS1
24075#undef OPS2
24076#undef OPS3
24077#undef OPS4
24078#undef OPS5
24079#undef OPS6
24080#undef do_0
4389b29a
AV
24081#undef ToC
24082#undef toC
24083#undef ToU
f6b2b12d 24084#undef toU
c19d1205
ZW
24085\f
24086/* MD interface: bits in the object file. */
bfae80f2 24087
c19d1205
ZW
24088/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24089 for use in the a.out file, and stores them in the array pointed to by buf.
24090 This knows about the endian-ness of the target machine and does
24091 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24092 2 (short) and 4 (long) Floating numbers are put out as a series of
24093 LITTLENUMS (shorts, here at least). */
b99bd4ef 24094
c19d1205
ZW
24095void
24096md_number_to_chars (char * buf, valueT val, int n)
24097{
24098 if (target_big_endian)
24099 number_to_chars_bigendian (buf, val, n);
24100 else
24101 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
24102}
24103
c19d1205
ZW
24104static valueT
24105md_chars_to_number (char * buf, int n)
bfae80f2 24106{
c19d1205
ZW
24107 valueT result = 0;
24108 unsigned char * where = (unsigned char *) buf;
bfae80f2 24109
c19d1205 24110 if (target_big_endian)
b99bd4ef 24111 {
c19d1205
ZW
24112 while (n--)
24113 {
24114 result <<= 8;
24115 result |= (*where++ & 255);
24116 }
b99bd4ef 24117 }
c19d1205 24118 else
b99bd4ef 24119 {
c19d1205
ZW
24120 while (n--)
24121 {
24122 result <<= 8;
24123 result |= (where[n] & 255);
24124 }
bfae80f2 24125 }
b99bd4ef 24126
c19d1205 24127 return result;
bfae80f2 24128}
b99bd4ef 24129
c19d1205 24130/* MD interface: Sections. */
b99bd4ef 24131
fa94de6b
RM
24132/* Calculate the maximum variable size (i.e., excluding fr_fix)
24133 that an rs_machine_dependent frag may reach. */
24134
24135unsigned int
24136arm_frag_max_var (fragS *fragp)
24137{
24138 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24139 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24140
24141 Note that we generate relaxable instructions even for cases that don't
24142 really need it, like an immediate that's a trivial constant. So we're
24143 overestimating the instruction size for some of those cases. Rather
24144 than putting more intelligence here, it would probably be better to
24145 avoid generating a relaxation frag in the first place when it can be
24146 determined up front that a short instruction will suffice. */
24147
24148 gas_assert (fragp->fr_type == rs_machine_dependent);
24149 return INSN_SIZE;
24150}
24151
0110f2b8
PB
24152/* Estimate the size of a frag before relaxing. Assume everything fits in
24153 2 bytes. */
24154
c19d1205 24155int
0110f2b8 24156md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
24157 segT segtype ATTRIBUTE_UNUSED)
24158{
0110f2b8
PB
24159 fragp->fr_var = 2;
24160 return 2;
24161}
24162
24163/* Convert a machine dependent frag. */
24164
24165void
24166md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24167{
24168 unsigned long insn;
24169 unsigned long old_op;
24170 char *buf;
24171 expressionS exp;
24172 fixS *fixp;
24173 int reloc_type;
24174 int pc_rel;
24175 int opcode;
24176
24177 buf = fragp->fr_literal + fragp->fr_fix;
24178
24179 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
24180 if (fragp->fr_symbol)
24181 {
0110f2b8
PB
24182 exp.X_op = O_symbol;
24183 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
24184 }
24185 else
24186 {
0110f2b8 24187 exp.X_op = O_constant;
5f4273c7 24188 }
0110f2b8
PB
24189 exp.X_add_number = fragp->fr_offset;
24190 opcode = fragp->fr_subtype;
24191 switch (opcode)
24192 {
24193 case T_MNEM_ldr_pc:
24194 case T_MNEM_ldr_pc2:
24195 case T_MNEM_ldr_sp:
24196 case T_MNEM_str_sp:
24197 case T_MNEM_ldr:
24198 case T_MNEM_ldrb:
24199 case T_MNEM_ldrh:
24200 case T_MNEM_str:
24201 case T_MNEM_strb:
24202 case T_MNEM_strh:
24203 if (fragp->fr_var == 4)
24204 {
5f4273c7 24205 insn = THUMB_OP32 (opcode);
0110f2b8
PB
24206 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24207 {
24208 insn |= (old_op & 0x700) << 4;
24209 }
24210 else
24211 {
24212 insn |= (old_op & 7) << 12;
24213 insn |= (old_op & 0x38) << 13;
24214 }
24215 insn |= 0x00000c00;
24216 put_thumb32_insn (buf, insn);
24217 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24218 }
24219 else
24220 {
24221 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24222 }
24223 pc_rel = (opcode == T_MNEM_ldr_pc2);
24224 break;
24225 case T_MNEM_adr:
24226 if (fragp->fr_var == 4)
24227 {
24228 insn = THUMB_OP32 (opcode);
24229 insn |= (old_op & 0xf0) << 4;
24230 put_thumb32_insn (buf, insn);
24231 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24232 }
24233 else
24234 {
24235 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24236 exp.X_add_number -= 4;
24237 }
24238 pc_rel = 1;
24239 break;
24240 case T_MNEM_mov:
24241 case T_MNEM_movs:
24242 case T_MNEM_cmp:
24243 case T_MNEM_cmn:
24244 if (fragp->fr_var == 4)
24245 {
24246 int r0off = (opcode == T_MNEM_mov
24247 || opcode == T_MNEM_movs) ? 0 : 8;
24248 insn = THUMB_OP32 (opcode);
24249 insn = (insn & 0xe1ffffff) | 0x10000000;
24250 insn |= (old_op & 0x700) << r0off;
24251 put_thumb32_insn (buf, insn);
24252 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24253 }
24254 else
24255 {
24256 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24257 }
24258 pc_rel = 0;
24259 break;
24260 case T_MNEM_b:
24261 if (fragp->fr_var == 4)
24262 {
24263 insn = THUMB_OP32(opcode);
24264 put_thumb32_insn (buf, insn);
24265 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24266 }
24267 else
24268 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24269 pc_rel = 1;
24270 break;
24271 case T_MNEM_bcond:
24272 if (fragp->fr_var == 4)
24273 {
24274 insn = THUMB_OP32(opcode);
24275 insn |= (old_op & 0xf00) << 14;
24276 put_thumb32_insn (buf, insn);
24277 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24278 }
24279 else
24280 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24281 pc_rel = 1;
24282 break;
24283 case T_MNEM_add_sp:
24284 case T_MNEM_add_pc:
24285 case T_MNEM_inc_sp:
24286 case T_MNEM_dec_sp:
24287 if (fragp->fr_var == 4)
24288 {
24289 /* ??? Choose between add and addw. */
24290 insn = THUMB_OP32 (opcode);
24291 insn |= (old_op & 0xf0) << 4;
24292 put_thumb32_insn (buf, insn);
16805f35
PB
24293 if (opcode == T_MNEM_add_pc)
24294 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24295 else
24296 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
24297 }
24298 else
24299 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24300 pc_rel = 0;
24301 break;
24302
24303 case T_MNEM_addi:
24304 case T_MNEM_addis:
24305 case T_MNEM_subi:
24306 case T_MNEM_subis:
24307 if (fragp->fr_var == 4)
24308 {
24309 insn = THUMB_OP32 (opcode);
24310 insn |= (old_op & 0xf0) << 4;
24311 insn |= (old_op & 0xf) << 16;
24312 put_thumb32_insn (buf, insn);
16805f35
PB
24313 if (insn & (1 << 20))
24314 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24315 else
24316 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
24317 }
24318 else
24319 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24320 pc_rel = 0;
24321 break;
24322 default:
5f4273c7 24323 abort ();
0110f2b8
PB
24324 }
24325 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 24326 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
24327 fixp->fx_file = fragp->fr_file;
24328 fixp->fx_line = fragp->fr_line;
24329 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
24330
24331 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24332 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24333 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24334 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
24335}
24336
24337/* Return the size of a relaxable immediate operand instruction.
24338 SHIFT and SIZE specify the form of the allowable immediate. */
24339static int
24340relax_immediate (fragS *fragp, int size, int shift)
24341{
24342 offsetT offset;
24343 offsetT mask;
24344 offsetT low;
24345
24346 /* ??? Should be able to do better than this. */
24347 if (fragp->fr_symbol)
24348 return 4;
24349
24350 low = (1 << shift) - 1;
24351 mask = (1 << (shift + size)) - (1 << shift);
24352 offset = fragp->fr_offset;
24353 /* Force misaligned offsets to 32-bit variant. */
24354 if (offset & low)
5e77afaa 24355 return 4;
0110f2b8
PB
24356 if (offset & ~mask)
24357 return 4;
24358 return 2;
24359}
24360
5e77afaa
PB
24361/* Get the address of a symbol during relaxation. */
24362static addressT
5f4273c7 24363relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
24364{
24365 fragS *sym_frag;
24366 addressT addr;
24367 symbolS *sym;
24368
24369 sym = fragp->fr_symbol;
24370 sym_frag = symbol_get_frag (sym);
24371 know (S_GET_SEGMENT (sym) != absolute_section
24372 || sym_frag == &zero_address_frag);
24373 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24374
24375 /* If frag has yet to be reached on this pass, assume it will
24376 move by STRETCH just as we did. If this is not so, it will
24377 be because some frag between grows, and that will force
24378 another pass. */
24379
24380 if (stretch != 0
24381 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
24382 {
24383 fragS *f;
24384
24385 /* Adjust stretch for any alignment frag. Note that if have
24386 been expanding the earlier code, the symbol may be
24387 defined in what appears to be an earlier frag. FIXME:
24388 This doesn't handle the fr_subtype field, which specifies
24389 a maximum number of bytes to skip when doing an
24390 alignment. */
24391 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24392 {
24393 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24394 {
24395 if (stretch < 0)
24396 stretch = - ((- stretch)
24397 & ~ ((1 << (int) f->fr_offset) - 1));
24398 else
24399 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24400 if (stretch == 0)
24401 break;
24402 }
24403 }
24404 if (f != NULL)
24405 addr += stretch;
24406 }
5e77afaa
PB
24407
24408 return addr;
24409}
24410
0110f2b8
PB
24411/* Return the size of a relaxable adr pseudo-instruction or PC-relative
24412 load. */
24413static int
5e77afaa 24414relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
24415{
24416 addressT addr;
24417 offsetT val;
24418
24419 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
24420 if (fragp->fr_symbol == NULL
24421 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24422 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24423 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24424 return 4;
24425
5f4273c7 24426 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24427 addr = fragp->fr_address + fragp->fr_fix;
24428 addr = (addr + 4) & ~3;
5e77afaa 24429 /* Force misaligned targets to 32-bit variant. */
0110f2b8 24430 if (val & 3)
5e77afaa 24431 return 4;
0110f2b8
PB
24432 val -= addr;
24433 if (val < 0 || val > 1020)
24434 return 4;
24435 return 2;
24436}
24437
24438/* Return the size of a relaxable add/sub immediate instruction. */
24439static int
24440relax_addsub (fragS *fragp, asection *sec)
24441{
24442 char *buf;
24443 int op;
24444
24445 buf = fragp->fr_literal + fragp->fr_fix;
24446 op = bfd_get_16(sec->owner, buf);
24447 if ((op & 0xf) == ((op >> 4) & 0xf))
24448 return relax_immediate (fragp, 8, 0);
24449 else
24450 return relax_immediate (fragp, 3, 0);
24451}
24452
e83a675f
RE
24453/* Return TRUE iff the definition of symbol S could be pre-empted
24454 (overridden) at link or load time. */
24455static bfd_boolean
24456symbol_preemptible (symbolS *s)
24457{
24458 /* Weak symbols can always be pre-empted. */
24459 if (S_IS_WEAK (s))
24460 return TRUE;
24461
24462 /* Non-global symbols cannot be pre-empted. */
24463 if (! S_IS_EXTERNAL (s))
24464 return FALSE;
24465
24466#ifdef OBJ_ELF
24467 /* In ELF, a global symbol can be marked protected, or private. In that
24468 case it can't be pre-empted (other definitions in the same link unit
24469 would violate the ODR). */
24470 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24471 return FALSE;
24472#endif
24473
24474 /* Other global symbols might be pre-empted. */
24475 return TRUE;
24476}
0110f2b8
PB
24477
24478/* Return the size of a relaxable branch instruction. BITS is the
24479 size of the offset field in the narrow instruction. */
24480
24481static int
5e77afaa 24482relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
24483{
24484 addressT addr;
24485 offsetT val;
24486 offsetT limit;
24487
24488 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 24489 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
24490 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24491 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
24492 return 4;
24493
267bf995 24494#ifdef OBJ_ELF
e83a675f 24495 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
24496 if (S_IS_DEFINED (fragp->fr_symbol)
24497 && ARM_IS_FUNC (fragp->fr_symbol))
24498 return 4;
e83a675f 24499#endif
0d9b4b55 24500
e83a675f 24501 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 24502 return 4;
267bf995 24503
5f4273c7 24504 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
24505 addr = fragp->fr_address + fragp->fr_fix + 4;
24506 val -= addr;
24507
24508 /* Offset is a signed value *2 */
24509 limit = 1 << bits;
24510 if (val >= limit || val < -limit)
24511 return 4;
24512 return 2;
24513}
24514
24515
24516/* Relax a machine dependent frag. This returns the amount by which
24517 the current size of the frag should change. */
24518
24519int
5e77afaa 24520arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
24521{
24522 int oldsize;
24523 int newsize;
24524
24525 oldsize = fragp->fr_var;
24526 switch (fragp->fr_subtype)
24527 {
24528 case T_MNEM_ldr_pc2:
5f4273c7 24529 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24530 break;
24531 case T_MNEM_ldr_pc:
24532 case T_MNEM_ldr_sp:
24533 case T_MNEM_str_sp:
5f4273c7 24534 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
24535 break;
24536 case T_MNEM_ldr:
24537 case T_MNEM_str:
5f4273c7 24538 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
24539 break;
24540 case T_MNEM_ldrh:
24541 case T_MNEM_strh:
5f4273c7 24542 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
24543 break;
24544 case T_MNEM_ldrb:
24545 case T_MNEM_strb:
5f4273c7 24546 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
24547 break;
24548 case T_MNEM_adr:
5f4273c7 24549 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
24550 break;
24551 case T_MNEM_mov:
24552 case T_MNEM_movs:
24553 case T_MNEM_cmp:
24554 case T_MNEM_cmn:
5f4273c7 24555 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
24556 break;
24557 case T_MNEM_b:
5f4273c7 24558 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
24559 break;
24560 case T_MNEM_bcond:
5f4273c7 24561 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
24562 break;
24563 case T_MNEM_add_sp:
24564 case T_MNEM_add_pc:
24565 newsize = relax_immediate (fragp, 8, 2);
24566 break;
24567 case T_MNEM_inc_sp:
24568 case T_MNEM_dec_sp:
24569 newsize = relax_immediate (fragp, 7, 2);
24570 break;
24571 case T_MNEM_addi:
24572 case T_MNEM_addis:
24573 case T_MNEM_subi:
24574 case T_MNEM_subis:
24575 newsize = relax_addsub (fragp, sec);
24576 break;
24577 default:
5f4273c7 24578 abort ();
0110f2b8 24579 }
5e77afaa
PB
24580
24581 fragp->fr_var = newsize;
24582 /* Freeze wide instructions that are at or before the same location as
24583 in the previous pass. This avoids infinite loops.
5f4273c7
NC
24584 Don't freeze them unconditionally because targets may be artificially
24585 misaligned by the expansion of preceding frags. */
5e77afaa 24586 if (stretch <= 0 && newsize > 2)
0110f2b8 24587 {
0110f2b8 24588 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 24589 frag_wane (fragp);
0110f2b8 24590 }
5e77afaa 24591
0110f2b8 24592 return newsize - oldsize;
c19d1205 24593}
b99bd4ef 24594
c19d1205 24595/* Round up a section size to the appropriate boundary. */
b99bd4ef 24596
c19d1205
ZW
24597valueT
24598md_section_align (segT segment ATTRIBUTE_UNUSED,
24599 valueT size)
24600{
6844c0cc 24601 return size;
bfae80f2 24602}
b99bd4ef 24603
c19d1205
ZW
24604/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24605 of an rs_align_code fragment. */
24606
24607void
24608arm_handle_align (fragS * fragP)
bfae80f2 24609{
d9235011 24610 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
24611 {
24612 { /* ARMv1 */
24613 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24614 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24615 },
24616 { /* ARMv6k */
24617 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24618 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24619 },
24620 };
d9235011 24621 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
24622 {
24623 { /* Thumb-1 */
24624 {0xc0, 0x46}, /* LE */
24625 {0x46, 0xc0}, /* BE */
24626 },
24627 { /* Thumb-2 */
24628 {0x00, 0xbf}, /* LE */
24629 {0xbf, 0x00} /* BE */
24630 }
24631 };
d9235011 24632 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
24633 { /* Wide Thumb-2 */
24634 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24635 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24636 };
c921be7d 24637
e7495e45 24638 unsigned bytes, fix, noop_size;
c19d1205 24639 char * p;
d9235011
TS
24640 const unsigned char * noop;
24641 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
24642#ifdef OBJ_ELF
24643 enum mstate state;
24644#endif
bfae80f2 24645
c19d1205 24646 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
24647 return;
24648
c19d1205
ZW
24649 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24650 p = fragP->fr_literal + fragP->fr_fix;
24651 fix = 0;
bfae80f2 24652
c19d1205
ZW
24653 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24654 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 24655
cd000bff 24656 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 24657
cd000bff 24658 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 24659 {
7f78eb34
JW
24660 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24661 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
24662 {
24663 narrow_noop = thumb_noop[1][target_big_endian];
24664 noop = wide_thumb_noop[target_big_endian];
24665 }
c19d1205 24666 else
e7495e45
NS
24667 noop = thumb_noop[0][target_big_endian];
24668 noop_size = 2;
cd000bff
DJ
24669#ifdef OBJ_ELF
24670 state = MAP_THUMB;
24671#endif
7ed4c4c5
NC
24672 }
24673 else
24674 {
7f78eb34
JW
24675 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24676 ? selected_cpu : arm_arch_none,
24677 arm_ext_v6k) != 0]
e7495e45
NS
24678 [target_big_endian];
24679 noop_size = 4;
cd000bff
DJ
24680#ifdef OBJ_ELF
24681 state = MAP_ARM;
24682#endif
7ed4c4c5 24683 }
c921be7d 24684
e7495e45 24685 fragP->fr_var = noop_size;
c921be7d 24686
c19d1205 24687 if (bytes & (noop_size - 1))
7ed4c4c5 24688 {
c19d1205 24689 fix = bytes & (noop_size - 1);
cd000bff
DJ
24690#ifdef OBJ_ELF
24691 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
24692#endif
c19d1205
ZW
24693 memset (p, 0, fix);
24694 p += fix;
24695 bytes -= fix;
a737bd4d 24696 }
a737bd4d 24697
e7495e45
NS
24698 if (narrow_noop)
24699 {
24700 if (bytes & noop_size)
24701 {
24702 /* Insert a narrow noop. */
24703 memcpy (p, narrow_noop, noop_size);
24704 p += noop_size;
24705 bytes -= noop_size;
24706 fix += noop_size;
24707 }
24708
24709 /* Use wide noops for the remainder */
24710 noop_size = 4;
24711 }
24712
c19d1205 24713 while (bytes >= noop_size)
a737bd4d 24714 {
c19d1205
ZW
24715 memcpy (p, noop, noop_size);
24716 p += noop_size;
24717 bytes -= noop_size;
24718 fix += noop_size;
a737bd4d
NC
24719 }
24720
c19d1205 24721 fragP->fr_fix += fix;
a737bd4d
NC
24722}
24723
c19d1205
ZW
24724/* Called from md_do_align. Used to create an alignment
24725 frag in a code section. */
24726
24727void
24728arm_frag_align_code (int n, int max)
bfae80f2 24729{
c19d1205 24730 char * p;
7ed4c4c5 24731
c19d1205 24732 /* We assume that there will never be a requirement
6ec8e702 24733 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 24734 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
24735 {
24736 char err_msg[128];
24737
fa94de6b 24738 sprintf (err_msg,
477330fc
RM
24739 _("alignments greater than %d bytes not supported in .text sections."),
24740 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 24741 as_fatal ("%s", err_msg);
6ec8e702 24742 }
bfae80f2 24743
c19d1205
ZW
24744 p = frag_var (rs_align_code,
24745 MAX_MEM_FOR_RS_ALIGN_CODE,
24746 1,
24747 (relax_substateT) max,
24748 (symbolS *) NULL,
24749 (offsetT) n,
24750 (char *) NULL);
24751 *p = 0;
24752}
bfae80f2 24753
8dc2430f
NC
24754/* Perform target specific initialisation of a frag.
24755 Note - despite the name this initialisation is not done when the frag
24756 is created, but only when its type is assigned. A frag can be created
24757 and used a long time before its type is set, so beware of assuming that
33eaf5de 24758 this initialisation is performed first. */
bfae80f2 24759
cd000bff
DJ
24760#ifndef OBJ_ELF
24761void
24762arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
24763{
24764 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 24765 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
24766}
24767
24768#else /* OBJ_ELF is defined. */
c19d1205 24769void
cd000bff 24770arm_init_frag (fragS * fragP, int max_chars)
c19d1205 24771{
e8d84ca1 24772 bfd_boolean frag_thumb_mode;
b968d18a 24773
8dc2430f
NC
24774 /* If the current ARM vs THUMB mode has not already
24775 been recorded into this frag then do so now. */
cd000bff 24776 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
24777 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24778
e8d84ca1
NC
24779 /* PR 21809: Do not set a mapping state for debug sections
24780 - it just confuses other tools. */
24781 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
24782 return;
24783
b968d18a 24784 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 24785
f9c1b181
RL
24786 /* Record a mapping symbol for alignment frags. We will delete this
24787 later if the alignment ends up empty. */
24788 switch (fragP->fr_type)
24789 {
24790 case rs_align:
24791 case rs_align_test:
24792 case rs_fill:
24793 mapping_state_2 (MAP_DATA, max_chars);
24794 break;
24795 case rs_align_code:
b968d18a 24796 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
24797 break;
24798 default:
24799 break;
cd000bff 24800 }
bfae80f2
RE
24801}
24802
c19d1205
ZW
24803/* When we change sections we need to issue a new mapping symbol. */
24804
24805void
24806arm_elf_change_section (void)
bfae80f2 24807{
c19d1205
ZW
24808 /* Link an unlinked unwind index table section to the .text section. */
24809 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
24810 && elf_linked_to_section (now_seg) == NULL)
24811 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
24812}
24813
c19d1205
ZW
24814int
24815arm_elf_section_type (const char * str, size_t len)
e45d0630 24816{
c19d1205
ZW
24817 if (len == 5 && strncmp (str, "exidx", 5) == 0)
24818 return SHT_ARM_EXIDX;
e45d0630 24819
c19d1205
ZW
24820 return -1;
24821}
24822\f
24823/* Code to deal with unwinding tables. */
e45d0630 24824
c19d1205 24825static void add_unwind_adjustsp (offsetT);
e45d0630 24826
5f4273c7 24827/* Generate any deferred unwind frame offset. */
e45d0630 24828
bfae80f2 24829static void
c19d1205 24830flush_pending_unwind (void)
bfae80f2 24831{
c19d1205 24832 offsetT offset;
bfae80f2 24833
c19d1205
ZW
24834 offset = unwind.pending_offset;
24835 unwind.pending_offset = 0;
24836 if (offset != 0)
24837 add_unwind_adjustsp (offset);
bfae80f2
RE
24838}
24839
c19d1205
ZW
24840/* Add an opcode to this list for this function. Two-byte opcodes should
24841 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
24842 order. */
24843
bfae80f2 24844static void
c19d1205 24845add_unwind_opcode (valueT op, int length)
bfae80f2 24846{
c19d1205
ZW
24847 /* Add any deferred stack adjustment. */
24848 if (unwind.pending_offset)
24849 flush_pending_unwind ();
bfae80f2 24850
c19d1205 24851 unwind.sp_restored = 0;
bfae80f2 24852
c19d1205 24853 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 24854 {
c19d1205
ZW
24855 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
24856 if (unwind.opcodes)
325801bd
TS
24857 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
24858 unwind.opcode_alloc);
c19d1205 24859 else
325801bd 24860 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 24861 }
c19d1205 24862 while (length > 0)
bfae80f2 24863 {
c19d1205
ZW
24864 length--;
24865 unwind.opcodes[unwind.opcode_count] = op & 0xff;
24866 op >>= 8;
24867 unwind.opcode_count++;
bfae80f2 24868 }
bfae80f2
RE
24869}
24870
c19d1205
ZW
24871/* Add unwind opcodes to adjust the stack pointer. */
24872
bfae80f2 24873static void
c19d1205 24874add_unwind_adjustsp (offsetT offset)
bfae80f2 24875{
c19d1205 24876 valueT op;
bfae80f2 24877
c19d1205 24878 if (offset > 0x200)
bfae80f2 24879 {
c19d1205
ZW
24880 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
24881 char bytes[5];
24882 int n;
24883 valueT o;
bfae80f2 24884
c19d1205
ZW
24885 /* Long form: 0xb2, uleb128. */
24886 /* This might not fit in a word so add the individual bytes,
24887 remembering the list is built in reverse order. */
24888 o = (valueT) ((offset - 0x204) >> 2);
24889 if (o == 0)
24890 add_unwind_opcode (0, 1);
bfae80f2 24891
c19d1205
ZW
24892 /* Calculate the uleb128 encoding of the offset. */
24893 n = 0;
24894 while (o)
24895 {
24896 bytes[n] = o & 0x7f;
24897 o >>= 7;
24898 if (o)
24899 bytes[n] |= 0x80;
24900 n++;
24901 }
24902 /* Add the insn. */
24903 for (; n; n--)
24904 add_unwind_opcode (bytes[n - 1], 1);
24905 add_unwind_opcode (0xb2, 1);
24906 }
24907 else if (offset > 0x100)
bfae80f2 24908 {
c19d1205
ZW
24909 /* Two short opcodes. */
24910 add_unwind_opcode (0x3f, 1);
24911 op = (offset - 0x104) >> 2;
24912 add_unwind_opcode (op, 1);
bfae80f2 24913 }
c19d1205
ZW
24914 else if (offset > 0)
24915 {
24916 /* Short opcode. */
24917 op = (offset - 4) >> 2;
24918 add_unwind_opcode (op, 1);
24919 }
24920 else if (offset < 0)
bfae80f2 24921 {
c19d1205
ZW
24922 offset = -offset;
24923 while (offset > 0x100)
bfae80f2 24924 {
c19d1205
ZW
24925 add_unwind_opcode (0x7f, 1);
24926 offset -= 0x100;
bfae80f2 24927 }
c19d1205
ZW
24928 op = ((offset - 4) >> 2) | 0x40;
24929 add_unwind_opcode (op, 1);
bfae80f2 24930 }
bfae80f2
RE
24931}
24932
c19d1205 24933/* Finish the list of unwind opcodes for this function. */
0198d5e6 24934
c19d1205
ZW
24935static void
24936finish_unwind_opcodes (void)
bfae80f2 24937{
c19d1205 24938 valueT op;
bfae80f2 24939
c19d1205 24940 if (unwind.fp_used)
bfae80f2 24941 {
708587a4 24942 /* Adjust sp as necessary. */
c19d1205
ZW
24943 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
24944 flush_pending_unwind ();
bfae80f2 24945
c19d1205
ZW
24946 /* After restoring sp from the frame pointer. */
24947 op = 0x90 | unwind.fp_reg;
24948 add_unwind_opcode (op, 1);
24949 }
24950 else
24951 flush_pending_unwind ();
bfae80f2
RE
24952}
24953
bfae80f2 24954
c19d1205
ZW
24955/* Start an exception table entry. If idx is nonzero this is an index table
24956 entry. */
bfae80f2
RE
24957
24958static void
c19d1205 24959start_unwind_section (const segT text_seg, int idx)
bfae80f2 24960{
c19d1205
ZW
24961 const char * text_name;
24962 const char * prefix;
24963 const char * prefix_once;
24964 const char * group_name;
c19d1205 24965 char * sec_name;
c19d1205
ZW
24966 int type;
24967 int flags;
24968 int linkonce;
bfae80f2 24969
c19d1205 24970 if (idx)
bfae80f2 24971 {
c19d1205
ZW
24972 prefix = ELF_STRING_ARM_unwind;
24973 prefix_once = ELF_STRING_ARM_unwind_once;
24974 type = SHT_ARM_EXIDX;
bfae80f2 24975 }
c19d1205 24976 else
bfae80f2 24977 {
c19d1205
ZW
24978 prefix = ELF_STRING_ARM_unwind_info;
24979 prefix_once = ELF_STRING_ARM_unwind_info_once;
24980 type = SHT_PROGBITS;
bfae80f2
RE
24981 }
24982
c19d1205
ZW
24983 text_name = segment_name (text_seg);
24984 if (streq (text_name, ".text"))
24985 text_name = "";
24986
24987 if (strncmp (text_name, ".gnu.linkonce.t.",
24988 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 24989 {
c19d1205
ZW
24990 prefix = prefix_once;
24991 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
24992 }
24993
29a2809e 24994 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 24995
c19d1205
ZW
24996 flags = SHF_ALLOC;
24997 linkonce = 0;
24998 group_name = 0;
bfae80f2 24999
c19d1205
ZW
25000 /* Handle COMDAT group. */
25001 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 25002 {
c19d1205
ZW
25003 group_name = elf_group_name (text_seg);
25004 if (group_name == NULL)
25005 {
bd3ba5d1 25006 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
25007 segment_name (text_seg));
25008 ignore_rest_of_line ();
25009 return;
25010 }
25011 flags |= SHF_GROUP;
25012 linkonce = 1;
bfae80f2
RE
25013 }
25014
a91e1603
L
25015 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25016 linkonce, 0);
bfae80f2 25017
5f4273c7 25018 /* Set the section link for index tables. */
c19d1205
ZW
25019 if (idx)
25020 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
25021}
25022
bfae80f2 25023
c19d1205
ZW
25024/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25025 personality routine data. Returns zero, or the index table value for
cad0da33 25026 an inline entry. */
c19d1205
ZW
25027
25028static valueT
25029create_unwind_entry (int have_data)
bfae80f2 25030{
c19d1205
ZW
25031 int size;
25032 addressT where;
25033 char *ptr;
25034 /* The current word of data. */
25035 valueT data;
25036 /* The number of bytes left in this word. */
25037 int n;
bfae80f2 25038
c19d1205 25039 finish_unwind_opcodes ();
bfae80f2 25040
c19d1205
ZW
25041 /* Remember the current text section. */
25042 unwind.saved_seg = now_seg;
25043 unwind.saved_subseg = now_subseg;
bfae80f2 25044
c19d1205 25045 start_unwind_section (now_seg, 0);
bfae80f2 25046
c19d1205 25047 if (unwind.personality_routine == NULL)
bfae80f2 25048 {
c19d1205
ZW
25049 if (unwind.personality_index == -2)
25050 {
25051 if (have_data)
5f4273c7 25052 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
25053 return 1; /* EXIDX_CANTUNWIND. */
25054 }
bfae80f2 25055
c19d1205
ZW
25056 /* Use a default personality routine if none is specified. */
25057 if (unwind.personality_index == -1)
25058 {
25059 if (unwind.opcode_count > 3)
25060 unwind.personality_index = 1;
25061 else
25062 unwind.personality_index = 0;
25063 }
bfae80f2 25064
c19d1205
ZW
25065 /* Space for the personality routine entry. */
25066 if (unwind.personality_index == 0)
25067 {
25068 if (unwind.opcode_count > 3)
25069 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 25070
c19d1205
ZW
25071 if (!have_data)
25072 {
25073 /* All the data is inline in the index table. */
25074 data = 0x80;
25075 n = 3;
25076 while (unwind.opcode_count > 0)
25077 {
25078 unwind.opcode_count--;
25079 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25080 n--;
25081 }
bfae80f2 25082
c19d1205
ZW
25083 /* Pad with "finish" opcodes. */
25084 while (n--)
25085 data = (data << 8) | 0xb0;
bfae80f2 25086
c19d1205
ZW
25087 return data;
25088 }
25089 size = 0;
25090 }
25091 else
25092 /* We get two opcodes "free" in the first word. */
25093 size = unwind.opcode_count - 2;
25094 }
25095 else
5011093d 25096 {
cad0da33
NC
25097 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25098 if (unwind.personality_index != -1)
25099 {
25100 as_bad (_("attempt to recreate an unwind entry"));
25101 return 1;
25102 }
5011093d
NC
25103
25104 /* An extra byte is required for the opcode count. */
25105 size = unwind.opcode_count + 1;
25106 }
bfae80f2 25107
c19d1205
ZW
25108 size = (size + 3) >> 2;
25109 if (size > 0xff)
25110 as_bad (_("too many unwind opcodes"));
bfae80f2 25111
c19d1205
ZW
25112 frag_align (2, 0, 0);
25113 record_alignment (now_seg, 2);
25114 unwind.table_entry = expr_build_dot ();
25115
25116 /* Allocate the table entry. */
25117 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
25118 /* PR 13449: Zero the table entries in case some of them are not used. */
25119 memset (ptr, 0, (size << 2) + 4);
c19d1205 25120 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 25121
c19d1205 25122 switch (unwind.personality_index)
bfae80f2 25123 {
c19d1205
ZW
25124 case -1:
25125 /* ??? Should this be a PLT generating relocation? */
25126 /* Custom personality routine. */
25127 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25128 BFD_RELOC_ARM_PREL31);
bfae80f2 25129
c19d1205
ZW
25130 where += 4;
25131 ptr += 4;
bfae80f2 25132
c19d1205 25133 /* Set the first byte to the number of additional words. */
5011093d 25134 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
25135 n = 3;
25136 break;
bfae80f2 25137
c19d1205
ZW
25138 /* ABI defined personality routines. */
25139 case 0:
25140 /* Three opcodes bytes are packed into the first word. */
25141 data = 0x80;
25142 n = 3;
25143 break;
bfae80f2 25144
c19d1205
ZW
25145 case 1:
25146 case 2:
25147 /* The size and first two opcode bytes go in the first word. */
25148 data = ((0x80 + unwind.personality_index) << 8) | size;
25149 n = 2;
25150 break;
bfae80f2 25151
c19d1205
ZW
25152 default:
25153 /* Should never happen. */
25154 abort ();
25155 }
bfae80f2 25156
c19d1205
ZW
25157 /* Pack the opcodes into words (MSB first), reversing the list at the same
25158 time. */
25159 while (unwind.opcode_count > 0)
25160 {
25161 if (n == 0)
25162 {
25163 md_number_to_chars (ptr, data, 4);
25164 ptr += 4;
25165 n = 4;
25166 data = 0;
25167 }
25168 unwind.opcode_count--;
25169 n--;
25170 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25171 }
25172
25173 /* Finish off the last word. */
25174 if (n < 4)
25175 {
25176 /* Pad with "finish" opcodes. */
25177 while (n--)
25178 data = (data << 8) | 0xb0;
25179
25180 md_number_to_chars (ptr, data, 4);
25181 }
25182
25183 if (!have_data)
25184 {
25185 /* Add an empty descriptor if there is no user-specified data. */
25186 ptr = frag_more (4);
25187 md_number_to_chars (ptr, 0, 4);
25188 }
25189
25190 return 0;
bfae80f2
RE
25191}
25192
f0927246
NC
25193
25194/* Initialize the DWARF-2 unwind information for this procedure. */
25195
25196void
25197tc_arm_frame_initial_instructions (void)
25198{
25199 cfi_add_CFA_def_cfa (REG_SP, 0);
25200}
25201#endif /* OBJ_ELF */
25202
c19d1205
ZW
25203/* Convert REGNAME to a DWARF-2 register number. */
25204
25205int
1df69f4f 25206tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 25207{
1df69f4f 25208 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
25209 if (reg != FAIL)
25210 return reg;
c19d1205 25211
1f5afe1c
NC
25212 /* PR 16694: Allow VFP registers as well. */
25213 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25214 if (reg != FAIL)
25215 return 64 + reg;
c19d1205 25216
1f5afe1c
NC
25217 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25218 if (reg != FAIL)
25219 return reg + 256;
25220
0198d5e6 25221 return FAIL;
bfae80f2
RE
25222}
25223
f0927246 25224#ifdef TE_PE
c19d1205 25225void
f0927246 25226tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 25227{
91d6fa6a 25228 expressionS exp;
bfae80f2 25229
91d6fa6a
NC
25230 exp.X_op = O_secrel;
25231 exp.X_add_symbol = symbol;
25232 exp.X_add_number = 0;
25233 emit_expr (&exp, size);
f0927246
NC
25234}
25235#endif
bfae80f2 25236
c19d1205 25237/* MD interface: Symbol and relocation handling. */
bfae80f2 25238
2fc8bdac
ZW
25239/* Return the address within the segment that a PC-relative fixup is
25240 relative to. For ARM, PC-relative fixups applied to instructions
25241 are generally relative to the location of the fixup plus 8 bytes.
25242 Thumb branches are offset by 4, and Thumb loads relative to PC
25243 require special handling. */
bfae80f2 25244
c19d1205 25245long
2fc8bdac 25246md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 25247{
2fc8bdac
ZW
25248 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25249
25250 /* If this is pc-relative and we are going to emit a relocation
25251 then we just want to put out any pipeline compensation that the linker
53baae48
NC
25252 will need. Otherwise we want to use the calculated base.
25253 For WinCE we skip the bias for externals as well, since this
25254 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 25255 if (fixP->fx_pcrel
2fc8bdac 25256 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
25257 || (arm_force_relocation (fixP)
25258#ifdef TE_WINCE
25259 && !S_IS_EXTERNAL (fixP->fx_addsy)
25260#endif
25261 )))
2fc8bdac 25262 base = 0;
bfae80f2 25263
267bf995 25264
c19d1205 25265 switch (fixP->fx_r_type)
bfae80f2 25266 {
2fc8bdac
ZW
25267 /* PC relative addressing on the Thumb is slightly odd as the
25268 bottom two bits of the PC are forced to zero for the
25269 calculation. This happens *after* application of the
25270 pipeline offset. However, Thumb adrl already adjusts for
25271 this, so we need not do it again. */
c19d1205 25272 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 25273 return base & ~3;
c19d1205
ZW
25274
25275 case BFD_RELOC_ARM_THUMB_OFFSET:
25276 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 25277 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 25278 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 25279 return (base + 4) & ~3;
c19d1205 25280
2fc8bdac 25281 /* Thumb branches are simply offset by +4. */
e12437dc 25282 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
25283 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25284 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25285 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25286 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 25287 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 25288 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 25289 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 25290 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 25291 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 25292 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 25293 return base + 4;
bfae80f2 25294
267bf995 25295 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
25296 if (fixP->fx_addsy
25297 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25298 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 25299 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
25300 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25301 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
25302 return base + 4;
25303
00adf2d4
JB
25304 /* BLX is like branches above, but forces the low two bits of PC to
25305 zero. */
486499d0
CL
25306 case BFD_RELOC_THUMB_PCREL_BLX:
25307 if (fixP->fx_addsy
25308 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25309 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25310 && THUMB_IS_FUNC (fixP->fx_addsy)
25311 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25312 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
25313 return (base + 4) & ~3;
25314
2fc8bdac
ZW
25315 /* ARM mode branches are offset by +8. However, the Windows CE
25316 loader expects the relocation not to take this into account. */
267bf995 25317 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
25318 if (fixP->fx_addsy
25319 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25320 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25321 && ARM_IS_FUNC (fixP->fx_addsy)
25322 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25323 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25324 return base + 8;
267bf995 25325
486499d0
CL
25326 case BFD_RELOC_ARM_PCREL_CALL:
25327 if (fixP->fx_addsy
25328 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 25329 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
25330 && THUMB_IS_FUNC (fixP->fx_addsy)
25331 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25332 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 25333 return base + 8;
267bf995 25334
2fc8bdac 25335 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 25336 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 25337 case BFD_RELOC_ARM_PLT32:
c19d1205 25338#ifdef TE_WINCE
5f4273c7 25339 /* When handling fixups immediately, because we have already
477330fc 25340 discovered the value of a symbol, or the address of the frag involved
53baae48 25341 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
25342 see fixup_segment() in write.c
25343 The S_IS_EXTERNAL test handles the case of global symbols.
25344 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
25345 if (fixP->fx_pcrel
25346 && fixP->fx_addsy != NULL
25347 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25348 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25349 return base + 8;
2fc8bdac 25350 return base;
c19d1205 25351#else
2fc8bdac 25352 return base + 8;
c19d1205 25353#endif
2fc8bdac 25354
267bf995 25355
2fc8bdac
ZW
25356 /* ARM mode loads relative to PC are also offset by +8. Unlike
25357 branches, the Windows CE loader *does* expect the relocation
25358 to take this into account. */
25359 case BFD_RELOC_ARM_OFFSET_IMM:
25360 case BFD_RELOC_ARM_OFFSET_IMM8:
25361 case BFD_RELOC_ARM_HWLITERAL:
25362 case BFD_RELOC_ARM_LITERAL:
25363 case BFD_RELOC_ARM_CP_OFF_IMM:
25364 return base + 8;
25365
25366
25367 /* Other PC-relative relocations are un-offset. */
25368 default:
25369 return base;
25370 }
bfae80f2
RE
25371}
25372
8b2d793c
NC
25373static bfd_boolean flag_warn_syms = TRUE;
25374
ae8714c2
NC
25375bfd_boolean
25376arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 25377{
8b2d793c
NC
25378 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25379 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25380 does mean that the resulting code might be very confusing to the reader.
25381 Also this warning can be triggered if the user omits an operand before
25382 an immediate address, eg:
25383
25384 LDR =foo
25385
25386 GAS treats this as an assignment of the value of the symbol foo to a
25387 symbol LDR, and so (without this code) it will not issue any kind of
25388 warning or error message.
25389
25390 Note - ARM instructions are case-insensitive but the strings in the hash
25391 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
25392 lower case too. */
25393 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
25394 {
25395 char * nbuf = strdup (name);
25396 char * p;
25397
25398 for (p = nbuf; *p; p++)
25399 *p = TOLOWER (*p);
25400 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25401 {
25402 static struct hash_control * already_warned = NULL;
25403
25404 if (already_warned == NULL)
25405 already_warned = hash_new ();
25406 /* Only warn about the symbol once. To keep the code
25407 simple we let hash_insert do the lookup for us. */
3076e594 25408 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 25409 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
25410 }
25411 else
25412 free (nbuf);
25413 }
3739860c 25414
ae8714c2
NC
25415 return FALSE;
25416}
25417
25418/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25419 Otherwise we have no need to default values of symbols. */
25420
25421symbolS *
25422md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25423{
25424#ifdef OBJ_ELF
25425 if (name[0] == '_' && name[1] == 'G'
25426 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25427 {
25428 if (!GOT_symbol)
25429 {
25430 if (symbol_find (name))
25431 as_bad (_("GOT already in the symbol table"));
25432
25433 GOT_symbol = symbol_new (name, undefined_section,
25434 (valueT) 0, & zero_address_frag);
25435 }
25436
25437 return GOT_symbol;
25438 }
25439#endif
25440
c921be7d 25441 return NULL;
bfae80f2
RE
25442}
25443
55cf6793 25444/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
25445 computed as two separate immediate values, added together. We
25446 already know that this value cannot be computed by just one ARM
25447 instruction. */
25448
25449static unsigned int
25450validate_immediate_twopart (unsigned int val,
25451 unsigned int * highpart)
bfae80f2 25452{
c19d1205
ZW
25453 unsigned int a;
25454 unsigned int i;
bfae80f2 25455
c19d1205
ZW
25456 for (i = 0; i < 32; i += 2)
25457 if (((a = rotate_left (val, i)) & 0xff) != 0)
25458 {
25459 if (a & 0xff00)
25460 {
25461 if (a & ~ 0xffff)
25462 continue;
25463 * highpart = (a >> 8) | ((i + 24) << 7);
25464 }
25465 else if (a & 0xff0000)
25466 {
25467 if (a & 0xff000000)
25468 continue;
25469 * highpart = (a >> 16) | ((i + 16) << 7);
25470 }
25471 else
25472 {
9c2799c2 25473 gas_assert (a & 0xff000000);
c19d1205
ZW
25474 * highpart = (a >> 24) | ((i + 8) << 7);
25475 }
bfae80f2 25476
c19d1205
ZW
25477 return (a & 0xff) | (i << 7);
25478 }
bfae80f2 25479
c19d1205 25480 return FAIL;
bfae80f2
RE
25481}
25482
c19d1205
ZW
25483static int
25484validate_offset_imm (unsigned int val, int hwse)
25485{
25486 if ((hwse && val > 255) || val > 4095)
25487 return FAIL;
25488 return val;
25489}
bfae80f2 25490
55cf6793 25491/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
25492 negative immediate constant by altering the instruction. A bit of
25493 a hack really.
25494 MOV <-> MVN
25495 AND <-> BIC
25496 ADC <-> SBC
25497 by inverting the second operand, and
25498 ADD <-> SUB
25499 CMP <-> CMN
25500 by negating the second operand. */
bfae80f2 25501
c19d1205
ZW
25502static int
25503negate_data_op (unsigned long * instruction,
25504 unsigned long value)
bfae80f2 25505{
c19d1205
ZW
25506 int op, new_inst;
25507 unsigned long negated, inverted;
bfae80f2 25508
c19d1205
ZW
25509 negated = encode_arm_immediate (-value);
25510 inverted = encode_arm_immediate (~value);
bfae80f2 25511
c19d1205
ZW
25512 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25513 switch (op)
bfae80f2 25514 {
c19d1205
ZW
25515 /* First negates. */
25516 case OPCODE_SUB: /* ADD <-> SUB */
25517 new_inst = OPCODE_ADD;
25518 value = negated;
25519 break;
bfae80f2 25520
c19d1205
ZW
25521 case OPCODE_ADD:
25522 new_inst = OPCODE_SUB;
25523 value = negated;
25524 break;
bfae80f2 25525
c19d1205
ZW
25526 case OPCODE_CMP: /* CMP <-> CMN */
25527 new_inst = OPCODE_CMN;
25528 value = negated;
25529 break;
bfae80f2 25530
c19d1205
ZW
25531 case OPCODE_CMN:
25532 new_inst = OPCODE_CMP;
25533 value = negated;
25534 break;
bfae80f2 25535
c19d1205
ZW
25536 /* Now Inverted ops. */
25537 case OPCODE_MOV: /* MOV <-> MVN */
25538 new_inst = OPCODE_MVN;
25539 value = inverted;
25540 break;
bfae80f2 25541
c19d1205
ZW
25542 case OPCODE_MVN:
25543 new_inst = OPCODE_MOV;
25544 value = inverted;
25545 break;
bfae80f2 25546
c19d1205
ZW
25547 case OPCODE_AND: /* AND <-> BIC */
25548 new_inst = OPCODE_BIC;
25549 value = inverted;
25550 break;
bfae80f2 25551
c19d1205
ZW
25552 case OPCODE_BIC:
25553 new_inst = OPCODE_AND;
25554 value = inverted;
25555 break;
bfae80f2 25556
c19d1205
ZW
25557 case OPCODE_ADC: /* ADC <-> SBC */
25558 new_inst = OPCODE_SBC;
25559 value = inverted;
25560 break;
bfae80f2 25561
c19d1205
ZW
25562 case OPCODE_SBC:
25563 new_inst = OPCODE_ADC;
25564 value = inverted;
25565 break;
bfae80f2 25566
c19d1205
ZW
25567 /* We cannot do anything. */
25568 default:
25569 return FAIL;
b99bd4ef
NC
25570 }
25571
c19d1205
ZW
25572 if (value == (unsigned) FAIL)
25573 return FAIL;
25574
25575 *instruction &= OPCODE_MASK;
25576 *instruction |= new_inst << DATA_OP_SHIFT;
25577 return value;
b99bd4ef
NC
25578}
25579
ef8d22e6
PB
25580/* Like negate_data_op, but for Thumb-2. */
25581
25582static unsigned int
16dd5e42 25583thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
25584{
25585 int op, new_inst;
25586 int rd;
16dd5e42 25587 unsigned int negated, inverted;
ef8d22e6
PB
25588
25589 negated = encode_thumb32_immediate (-value);
25590 inverted = encode_thumb32_immediate (~value);
25591
25592 rd = (*instruction >> 8) & 0xf;
25593 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25594 switch (op)
25595 {
25596 /* ADD <-> SUB. Includes CMP <-> CMN. */
25597 case T2_OPCODE_SUB:
25598 new_inst = T2_OPCODE_ADD;
25599 value = negated;
25600 break;
25601
25602 case T2_OPCODE_ADD:
25603 new_inst = T2_OPCODE_SUB;
25604 value = negated;
25605 break;
25606
25607 /* ORR <-> ORN. Includes MOV <-> MVN. */
25608 case T2_OPCODE_ORR:
25609 new_inst = T2_OPCODE_ORN;
25610 value = inverted;
25611 break;
25612
25613 case T2_OPCODE_ORN:
25614 new_inst = T2_OPCODE_ORR;
25615 value = inverted;
25616 break;
25617
25618 /* AND <-> BIC. TST has no inverted equivalent. */
25619 case T2_OPCODE_AND:
25620 new_inst = T2_OPCODE_BIC;
25621 if (rd == 15)
25622 value = FAIL;
25623 else
25624 value = inverted;
25625 break;
25626
25627 case T2_OPCODE_BIC:
25628 new_inst = T2_OPCODE_AND;
25629 value = inverted;
25630 break;
25631
25632 /* ADC <-> SBC */
25633 case T2_OPCODE_ADC:
25634 new_inst = T2_OPCODE_SBC;
25635 value = inverted;
25636 break;
25637
25638 case T2_OPCODE_SBC:
25639 new_inst = T2_OPCODE_ADC;
25640 value = inverted;
25641 break;
25642
25643 /* We cannot do anything. */
25644 default:
25645 return FAIL;
25646 }
25647
16dd5e42 25648 if (value == (unsigned int)FAIL)
ef8d22e6
PB
25649 return FAIL;
25650
25651 *instruction &= T2_OPCODE_MASK;
25652 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25653 return value;
25654}
25655
8f06b2d8 25656/* Read a 32-bit thumb instruction from buf. */
0198d5e6 25657
8f06b2d8
PB
25658static unsigned long
25659get_thumb32_insn (char * buf)
25660{
25661 unsigned long insn;
25662 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
25663 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25664
25665 return insn;
25666}
25667
a8bc6c78
PB
25668/* We usually want to set the low bit on the address of thumb function
25669 symbols. In particular .word foo - . should have the low bit set.
25670 Generic code tries to fold the difference of two symbols to
25671 a constant. Prevent this and force a relocation when the first symbols
25672 is a thumb function. */
c921be7d
NC
25673
25674bfd_boolean
a8bc6c78
PB
25675arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
25676{
25677 if (op == O_subtract
25678 && l->X_op == O_symbol
25679 && r->X_op == O_symbol
25680 && THUMB_IS_FUNC (l->X_add_symbol))
25681 {
25682 l->X_op = O_subtract;
25683 l->X_op_symbol = r->X_add_symbol;
25684 l->X_add_number -= r->X_add_number;
c921be7d 25685 return TRUE;
a8bc6c78 25686 }
c921be7d 25687
a8bc6c78 25688 /* Process as normal. */
c921be7d 25689 return FALSE;
a8bc6c78
PB
25690}
25691
4a42ebbc
RR
25692/* Encode Thumb2 unconditional branches and calls. The encoding
25693 for the 2 are identical for the immediate values. */
25694
25695static void
25696encode_thumb2_b_bl_offset (char * buf, offsetT value)
25697{
25698#define T2I1I2MASK ((1 << 13) | (1 << 11))
25699 offsetT newval;
25700 offsetT newval2;
25701 addressT S, I1, I2, lo, hi;
25702
25703 S = (value >> 24) & 0x01;
25704 I1 = (value >> 23) & 0x01;
25705 I2 = (value >> 22) & 0x01;
25706 hi = (value >> 12) & 0x3ff;
fa94de6b 25707 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
25708 newval = md_chars_to_number (buf, THUMB_SIZE);
25709 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25710 newval |= (S << 10) | hi;
25711 newval2 &= ~T2I1I2MASK;
25712 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
25713 md_number_to_chars (buf, newval, THUMB_SIZE);
25714 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25715}
25716
c19d1205 25717void
55cf6793 25718md_apply_fix (fixS * fixP,
c19d1205
ZW
25719 valueT * valP,
25720 segT seg)
25721{
25722 offsetT value = * valP;
25723 offsetT newval;
25724 unsigned int newimm;
25725 unsigned long temp;
25726 int sign;
25727 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 25728
9c2799c2 25729 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 25730
c19d1205 25731 /* Note whether this will delete the relocation. */
4962c51a 25732
c19d1205
ZW
25733 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
25734 fixP->fx_done = 1;
b99bd4ef 25735
adbaf948 25736 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 25737 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
25738 for emit_reloc. */
25739 value &= 0xffffffff;
25740 value ^= 0x80000000;
5f4273c7 25741 value -= 0x80000000;
adbaf948
ZW
25742
25743 *valP = value;
c19d1205 25744 fixP->fx_addnumber = value;
b99bd4ef 25745
adbaf948
ZW
25746 /* Same treatment for fixP->fx_offset. */
25747 fixP->fx_offset &= 0xffffffff;
25748 fixP->fx_offset ^= 0x80000000;
25749 fixP->fx_offset -= 0x80000000;
25750
c19d1205 25751 switch (fixP->fx_r_type)
b99bd4ef 25752 {
c19d1205
ZW
25753 case BFD_RELOC_NONE:
25754 /* This will need to go in the object file. */
25755 fixP->fx_done = 0;
25756 break;
b99bd4ef 25757
c19d1205
ZW
25758 case BFD_RELOC_ARM_IMMEDIATE:
25759 /* We claim that this fixup has been processed here,
25760 even if in fact we generate an error because we do
25761 not have a reloc for it, so tc_gen_reloc will reject it. */
25762 fixP->fx_done = 1;
b99bd4ef 25763
77db8e2e 25764 if (fixP->fx_addsy)
b99bd4ef 25765 {
77db8e2e 25766 const char *msg = 0;
b99bd4ef 25767
77db8e2e
NC
25768 if (! S_IS_DEFINED (fixP->fx_addsy))
25769 msg = _("undefined symbol %s used as an immediate value");
25770 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25771 msg = _("symbol %s is in a different section");
25772 else if (S_IS_WEAK (fixP->fx_addsy))
25773 msg = _("symbol %s is weak and may be overridden later");
25774
25775 if (msg)
25776 {
25777 as_bad_where (fixP->fx_file, fixP->fx_line,
25778 msg, S_GET_NAME (fixP->fx_addsy));
25779 break;
25780 }
42e5fcbf
AS
25781 }
25782
c19d1205
ZW
25783 temp = md_chars_to_number (buf, INSN_SIZE);
25784
5e73442d
SL
25785 /* If the offset is negative, we should use encoding A2 for ADR. */
25786 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
25787 newimm = negate_data_op (&temp, value);
25788 else
25789 {
25790 newimm = encode_arm_immediate (value);
25791
25792 /* If the instruction will fail, see if we can fix things up by
25793 changing the opcode. */
25794 if (newimm == (unsigned int) FAIL)
25795 newimm = negate_data_op (&temp, value);
bada4342
JW
25796 /* MOV accepts both ARM modified immediate (A1 encoding) and
25797 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25798 When disassembling, MOV is preferred when there is no encoding
25799 overlap. */
25800 if (newimm == (unsigned int) FAIL
25801 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
25802 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
25803 && !((temp >> SBIT_SHIFT) & 0x1)
25804 && value >= 0 && value <= 0xffff)
25805 {
25806 /* Clear bits[23:20] to change encoding from A1 to A2. */
25807 temp &= 0xff0fffff;
25808 /* Encoding high 4bits imm. Code below will encode the remaining
25809 low 12bits. */
25810 temp |= (value & 0x0000f000) << 4;
25811 newimm = value & 0x00000fff;
25812 }
5e73442d
SL
25813 }
25814
25815 if (newimm == (unsigned int) FAIL)
b99bd4ef 25816 {
c19d1205
ZW
25817 as_bad_where (fixP->fx_file, fixP->fx_line,
25818 _("invalid constant (%lx) after fixup"),
25819 (unsigned long) value);
25820 break;
b99bd4ef 25821 }
b99bd4ef 25822
c19d1205
ZW
25823 newimm |= (temp & 0xfffff000);
25824 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
25825 break;
b99bd4ef 25826
c19d1205
ZW
25827 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25828 {
25829 unsigned int highpart = 0;
25830 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 25831
77db8e2e 25832 if (fixP->fx_addsy)
42e5fcbf 25833 {
77db8e2e 25834 const char *msg = 0;
42e5fcbf 25835
77db8e2e
NC
25836 if (! S_IS_DEFINED (fixP->fx_addsy))
25837 msg = _("undefined symbol %s used as an immediate value");
25838 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25839 msg = _("symbol %s is in a different section");
25840 else if (S_IS_WEAK (fixP->fx_addsy))
25841 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 25842
77db8e2e
NC
25843 if (msg)
25844 {
25845 as_bad_where (fixP->fx_file, fixP->fx_line,
25846 msg, S_GET_NAME (fixP->fx_addsy));
25847 break;
25848 }
25849 }
fa94de6b 25850
c19d1205
ZW
25851 newimm = encode_arm_immediate (value);
25852 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 25853
c19d1205
ZW
25854 /* If the instruction will fail, see if we can fix things up by
25855 changing the opcode. */
25856 if (newimm == (unsigned int) FAIL
25857 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
25858 {
25859 /* No ? OK - try using two ADD instructions to generate
25860 the value. */
25861 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 25862
c19d1205
ZW
25863 /* Yes - then make sure that the second instruction is
25864 also an add. */
25865 if (newimm != (unsigned int) FAIL)
25866 newinsn = temp;
25867 /* Still No ? Try using a negated value. */
25868 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
25869 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
25870 /* Otherwise - give up. */
25871 else
25872 {
25873 as_bad_where (fixP->fx_file, fixP->fx_line,
25874 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
25875 (long) value);
25876 break;
25877 }
b99bd4ef 25878
c19d1205
ZW
25879 /* Replace the first operand in the 2nd instruction (which
25880 is the PC) with the destination register. We have
25881 already added in the PC in the first instruction and we
25882 do not want to do it again. */
25883 newinsn &= ~ 0xf0000;
25884 newinsn |= ((newinsn & 0x0f000) << 4);
25885 }
b99bd4ef 25886
c19d1205
ZW
25887 newimm |= (temp & 0xfffff000);
25888 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 25889
c19d1205
ZW
25890 highpart |= (newinsn & 0xfffff000);
25891 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
25892 }
25893 break;
b99bd4ef 25894
c19d1205 25895 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
25896 if (!fixP->fx_done && seg->use_rela_p)
25897 value = 0;
1a0670f3 25898 /* Fall through. */
00a97672 25899
c19d1205 25900 case BFD_RELOC_ARM_LITERAL:
26d97720 25901 sign = value > 0;
b99bd4ef 25902
c19d1205
ZW
25903 if (value < 0)
25904 value = - value;
b99bd4ef 25905
c19d1205 25906 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 25907 {
c19d1205
ZW
25908 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
25909 as_bad_where (fixP->fx_file, fixP->fx_line,
25910 _("invalid literal constant: pool needs to be closer"));
25911 else
25912 as_bad_where (fixP->fx_file, fixP->fx_line,
25913 _("bad immediate value for offset (%ld)"),
25914 (long) value);
25915 break;
f03698e6
RE
25916 }
25917
c19d1205 25918 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
25919 if (value == 0)
25920 newval &= 0xfffff000;
25921 else
25922 {
25923 newval &= 0xff7ff000;
25924 newval |= value | (sign ? INDEX_UP : 0);
25925 }
c19d1205
ZW
25926 md_number_to_chars (buf, newval, INSN_SIZE);
25927 break;
b99bd4ef 25928
c19d1205
ZW
25929 case BFD_RELOC_ARM_OFFSET_IMM8:
25930 case BFD_RELOC_ARM_HWLITERAL:
26d97720 25931 sign = value > 0;
b99bd4ef 25932
c19d1205
ZW
25933 if (value < 0)
25934 value = - value;
b99bd4ef 25935
c19d1205 25936 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 25937 {
c19d1205
ZW
25938 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
25939 as_bad_where (fixP->fx_file, fixP->fx_line,
25940 _("invalid literal constant: pool needs to be closer"));
25941 else
427d0db6
RM
25942 as_bad_where (fixP->fx_file, fixP->fx_line,
25943 _("bad immediate value for 8-bit offset (%ld)"),
25944 (long) value);
c19d1205 25945 break;
b99bd4ef
NC
25946 }
25947
c19d1205 25948 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
25949 if (value == 0)
25950 newval &= 0xfffff0f0;
25951 else
25952 {
25953 newval &= 0xff7ff0f0;
25954 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
25955 }
c19d1205
ZW
25956 md_number_to_chars (buf, newval, INSN_SIZE);
25957 break;
b99bd4ef 25958
c19d1205
ZW
25959 case BFD_RELOC_ARM_T32_OFFSET_U8:
25960 if (value < 0 || value > 1020 || value % 4 != 0)
25961 as_bad_where (fixP->fx_file, fixP->fx_line,
25962 _("bad immediate value for offset (%ld)"), (long) value);
25963 value /= 4;
b99bd4ef 25964
c19d1205 25965 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
25966 newval |= value;
25967 md_number_to_chars (buf+2, newval, THUMB_SIZE);
25968 break;
b99bd4ef 25969
c19d1205
ZW
25970 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25971 /* This is a complicated relocation used for all varieties of Thumb32
25972 load/store instruction with immediate offset:
25973
25974 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 25975 *4, optional writeback(W)
c19d1205
ZW
25976 (doubleword load/store)
25977
25978 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
25979 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
25980 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
25981 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
25982 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
25983
25984 Uppercase letters indicate bits that are already encoded at
25985 this point. Lowercase letters are our problem. For the
25986 second block of instructions, the secondary opcode nybble
25987 (bits 8..11) is present, and bit 23 is zero, even if this is
25988 a PC-relative operation. */
25989 newval = md_chars_to_number (buf, THUMB_SIZE);
25990 newval <<= 16;
25991 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 25992
c19d1205 25993 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 25994 {
c19d1205
ZW
25995 /* Doubleword load/store: 8-bit offset, scaled by 4. */
25996 if (value >= 0)
25997 newval |= (1 << 23);
25998 else
25999 value = -value;
26000 if (value % 4 != 0)
26001 {
26002 as_bad_where (fixP->fx_file, fixP->fx_line,
26003 _("offset not a multiple of 4"));
26004 break;
26005 }
26006 value /= 4;
216d22bc 26007 if (value > 0xff)
c19d1205
ZW
26008 {
26009 as_bad_where (fixP->fx_file, fixP->fx_line,
26010 _("offset out of range"));
26011 break;
26012 }
26013 newval &= ~0xff;
b99bd4ef 26014 }
c19d1205 26015 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 26016 {
c19d1205
ZW
26017 /* PC-relative, 12-bit offset. */
26018 if (value >= 0)
26019 newval |= (1 << 23);
26020 else
26021 value = -value;
216d22bc 26022 if (value > 0xfff)
c19d1205
ZW
26023 {
26024 as_bad_where (fixP->fx_file, fixP->fx_line,
26025 _("offset out of range"));
26026 break;
26027 }
26028 newval &= ~0xfff;
b99bd4ef 26029 }
c19d1205 26030 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 26031 {
c19d1205
ZW
26032 /* Writeback: 8-bit, +/- offset. */
26033 if (value >= 0)
26034 newval |= (1 << 9);
26035 else
26036 value = -value;
216d22bc 26037 if (value > 0xff)
c19d1205
ZW
26038 {
26039 as_bad_where (fixP->fx_file, fixP->fx_line,
26040 _("offset out of range"));
26041 break;
26042 }
26043 newval &= ~0xff;
b99bd4ef 26044 }
c19d1205 26045 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 26046 {
c19d1205 26047 /* T-instruction: positive 8-bit offset. */
216d22bc 26048 if (value < 0 || value > 0xff)
b99bd4ef 26049 {
c19d1205
ZW
26050 as_bad_where (fixP->fx_file, fixP->fx_line,
26051 _("offset out of range"));
26052 break;
b99bd4ef 26053 }
c19d1205
ZW
26054 newval &= ~0xff;
26055 newval |= value;
b99bd4ef
NC
26056 }
26057 else
b99bd4ef 26058 {
c19d1205
ZW
26059 /* Positive 12-bit or negative 8-bit offset. */
26060 int limit;
26061 if (value >= 0)
b99bd4ef 26062 {
c19d1205
ZW
26063 newval |= (1 << 23);
26064 limit = 0xfff;
26065 }
26066 else
26067 {
26068 value = -value;
26069 limit = 0xff;
26070 }
26071 if (value > limit)
26072 {
26073 as_bad_where (fixP->fx_file, fixP->fx_line,
26074 _("offset out of range"));
26075 break;
b99bd4ef 26076 }
c19d1205 26077 newval &= ~limit;
b99bd4ef 26078 }
b99bd4ef 26079
c19d1205
ZW
26080 newval |= value;
26081 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26082 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26083 break;
404ff6b5 26084
c19d1205
ZW
26085 case BFD_RELOC_ARM_SHIFT_IMM:
26086 newval = md_chars_to_number (buf, INSN_SIZE);
26087 if (((unsigned long) value) > 32
26088 || (value == 32
26089 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26090 {
26091 as_bad_where (fixP->fx_file, fixP->fx_line,
26092 _("shift expression is too large"));
26093 break;
26094 }
404ff6b5 26095
c19d1205
ZW
26096 if (value == 0)
26097 /* Shifts of zero must be done as lsl. */
26098 newval &= ~0x60;
26099 else if (value == 32)
26100 value = 0;
26101 newval &= 0xfffff07f;
26102 newval |= (value & 0x1f) << 7;
26103 md_number_to_chars (buf, newval, INSN_SIZE);
26104 break;
404ff6b5 26105
c19d1205 26106 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 26107 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 26108 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 26109 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
26110 /* We claim that this fixup has been processed here,
26111 even if in fact we generate an error because we do
26112 not have a reloc for it, so tc_gen_reloc will reject it. */
26113 fixP->fx_done = 1;
404ff6b5 26114
c19d1205
ZW
26115 if (fixP->fx_addsy
26116 && ! S_IS_DEFINED (fixP->fx_addsy))
26117 {
26118 as_bad_where (fixP->fx_file, fixP->fx_line,
26119 _("undefined symbol %s used as an immediate value"),
26120 S_GET_NAME (fixP->fx_addsy));
26121 break;
26122 }
404ff6b5 26123
c19d1205
ZW
26124 newval = md_chars_to_number (buf, THUMB_SIZE);
26125 newval <<= 16;
26126 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 26127
16805f35 26128 newimm = FAIL;
bada4342
JW
26129 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26130 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26131 Thumb2 modified immediate encoding (T2). */
26132 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 26133 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
26134 {
26135 newimm = encode_thumb32_immediate (value);
26136 if (newimm == (unsigned int) FAIL)
26137 newimm = thumb32_negate_data_op (&newval, value);
26138 }
bada4342 26139 if (newimm == (unsigned int) FAIL)
92e90b6e 26140 {
bada4342 26141 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 26142 {
bada4342
JW
26143 /* Turn add/sum into addw/subw. */
26144 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26145 newval = (newval & 0xfeffffff) | 0x02000000;
26146 /* No flat 12-bit imm encoding for addsw/subsw. */
26147 if ((newval & 0x00100000) == 0)
40f246e3 26148 {
bada4342
JW
26149 /* 12 bit immediate for addw/subw. */
26150 if (value < 0)
26151 {
26152 value = -value;
26153 newval ^= 0x00a00000;
26154 }
26155 if (value > 0xfff)
26156 newimm = (unsigned int) FAIL;
26157 else
26158 newimm = value;
26159 }
26160 }
26161 else
26162 {
26163 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26164 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26165 disassembling, MOV is preferred when there is no encoding
db7bf105 26166 overlap. */
bada4342 26167 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
26168 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26169 but with the Rn field [19:16] set to 1111. */
26170 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
26171 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26172 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 26173 && value >= 0 && value <= 0xffff)
bada4342
JW
26174 {
26175 /* Toggle bit[25] to change encoding from T2 to T3. */
26176 newval ^= 1 << 25;
26177 /* Clear bits[19:16]. */
26178 newval &= 0xfff0ffff;
26179 /* Encoding high 4bits imm. Code below will encode the
26180 remaining low 12bits. */
26181 newval |= (value & 0x0000f000) << 4;
26182 newimm = value & 0x00000fff;
40f246e3 26183 }
e9f89963 26184 }
92e90b6e 26185 }
cc8a6dd0 26186
c19d1205 26187 if (newimm == (unsigned int)FAIL)
3631a3c8 26188 {
c19d1205
ZW
26189 as_bad_where (fixP->fx_file, fixP->fx_line,
26190 _("invalid constant (%lx) after fixup"),
26191 (unsigned long) value);
26192 break;
3631a3c8
NC
26193 }
26194
c19d1205
ZW
26195 newval |= (newimm & 0x800) << 15;
26196 newval |= (newimm & 0x700) << 4;
26197 newval |= (newimm & 0x0ff);
cc8a6dd0 26198
c19d1205
ZW
26199 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26200 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26201 break;
a737bd4d 26202
3eb17e6b 26203 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
26204 if (((unsigned long) value) > 0xffff)
26205 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 26206 _("invalid smc expression"));
2fc8bdac 26207 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26208 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26209 md_number_to_chars (buf, newval, INSN_SIZE);
26210 break;
a737bd4d 26211
90ec0d68
MGD
26212 case BFD_RELOC_ARM_HVC:
26213 if (((unsigned long) value) > 0xffff)
26214 as_bad_where (fixP->fx_file, fixP->fx_line,
26215 _("invalid hvc expression"));
26216 newval = md_chars_to_number (buf, INSN_SIZE);
26217 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26218 md_number_to_chars (buf, newval, INSN_SIZE);
26219 break;
26220
c19d1205 26221 case BFD_RELOC_ARM_SWI:
adbaf948 26222 if (fixP->tc_fix_data != 0)
c19d1205
ZW
26223 {
26224 if (((unsigned long) value) > 0xff)
26225 as_bad_where (fixP->fx_file, fixP->fx_line,
26226 _("invalid swi expression"));
2fc8bdac 26227 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
26228 newval |= value;
26229 md_number_to_chars (buf, newval, THUMB_SIZE);
26230 }
26231 else
26232 {
26233 if (((unsigned long) value) > 0x00ffffff)
26234 as_bad_where (fixP->fx_file, fixP->fx_line,
26235 _("invalid swi expression"));
2fc8bdac 26236 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
26237 newval |= value;
26238 md_number_to_chars (buf, newval, INSN_SIZE);
26239 }
26240 break;
a737bd4d 26241
c19d1205
ZW
26242 case BFD_RELOC_ARM_MULTI:
26243 if (((unsigned long) value) > 0xffff)
26244 as_bad_where (fixP->fx_file, fixP->fx_line,
26245 _("invalid expression in load/store multiple"));
26246 newval = value | md_chars_to_number (buf, INSN_SIZE);
26247 md_number_to_chars (buf, newval, INSN_SIZE);
26248 break;
a737bd4d 26249
c19d1205 26250#ifdef OBJ_ELF
39b41c9c 26251 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
26252
26253 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26254 && fixP->fx_addsy
34e77a92 26255 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26256 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26257 && THUMB_IS_FUNC (fixP->fx_addsy))
26258 /* Flip the bl to blx. This is a simple flip
26259 bit here because we generate PCREL_CALL for
26260 unconditional bls. */
26261 {
26262 newval = md_chars_to_number (buf, INSN_SIZE);
26263 newval = newval | 0x10000000;
26264 md_number_to_chars (buf, newval, INSN_SIZE);
26265 temp = 1;
26266 fixP->fx_done = 1;
26267 }
39b41c9c
PB
26268 else
26269 temp = 3;
26270 goto arm_branch_common;
26271
26272 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
26273 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26274 && fixP->fx_addsy
34e77a92 26275 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26276 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26277 && THUMB_IS_FUNC (fixP->fx_addsy))
26278 {
26279 /* This would map to a bl<cond>, b<cond>,
26280 b<always> to a Thumb function. We
26281 need to force a relocation for this particular
26282 case. */
26283 newval = md_chars_to_number (buf, INSN_SIZE);
26284 fixP->fx_done = 0;
26285 }
1a0670f3 26286 /* Fall through. */
267bf995 26287
2fc8bdac 26288 case BFD_RELOC_ARM_PLT32:
c19d1205 26289#endif
39b41c9c
PB
26290 case BFD_RELOC_ARM_PCREL_BRANCH:
26291 temp = 3;
26292 goto arm_branch_common;
a737bd4d 26293
39b41c9c 26294 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 26295
39b41c9c 26296 temp = 1;
267bf995
RR
26297 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26298 && fixP->fx_addsy
34e77a92 26299 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26300 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26301 && ARM_IS_FUNC (fixP->fx_addsy))
26302 {
26303 /* Flip the blx to a bl and warn. */
26304 const char *name = S_GET_NAME (fixP->fx_addsy);
26305 newval = 0xeb000000;
26306 as_warn_where (fixP->fx_file, fixP->fx_line,
26307 _("blx to '%s' an ARM ISA state function changed to bl"),
26308 name);
26309 md_number_to_chars (buf, newval, INSN_SIZE);
26310 temp = 3;
26311 fixP->fx_done = 1;
26312 }
26313
26314#ifdef OBJ_ELF
26315 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 26316 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
26317#endif
26318
39b41c9c 26319 arm_branch_common:
c19d1205 26320 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
26321 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26322 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 26323 also be clear. */
39b41c9c 26324 if (value & temp)
c19d1205 26325 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
26326 _("misaligned branch destination"));
26327 if ((value & (offsetT)0xfe000000) != (offsetT)0
26328 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 26329 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26330
2fc8bdac 26331 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26332 {
2fc8bdac
ZW
26333 newval = md_chars_to_number (buf, INSN_SIZE);
26334 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
26335 /* Set the H bit on BLX instructions. */
26336 if (temp == 1)
26337 {
26338 if (value & 2)
26339 newval |= 0x01000000;
26340 else
26341 newval &= ~0x01000000;
26342 }
2fc8bdac 26343 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 26344 }
c19d1205 26345 break;
a737bd4d 26346
25fe350b
MS
26347 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26348 /* CBZ can only branch forward. */
a737bd4d 26349
738755b0 26350 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
26351 (which, strictly speaking, are prohibited) will be turned into
26352 no-ops.
738755b0
MS
26353
26354 FIXME: It may be better to remove the instruction completely and
26355 perform relaxation. */
26356 if (value == -2)
2fc8bdac
ZW
26357 {
26358 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 26359 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
26360 md_number_to_chars (buf, newval, THUMB_SIZE);
26361 }
738755b0
MS
26362 else
26363 {
26364 if (value & ~0x7e)
08f10d51 26365 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 26366
477330fc 26367 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
26368 {
26369 newval = md_chars_to_number (buf, THUMB_SIZE);
26370 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26371 md_number_to_chars (buf, newval, THUMB_SIZE);
26372 }
26373 }
c19d1205 26374 break;
a737bd4d 26375
c19d1205 26376 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 26377 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 26378 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26379
2fc8bdac
ZW
26380 if (fixP->fx_done || !seg->use_rela_p)
26381 {
26382 newval = md_chars_to_number (buf, THUMB_SIZE);
26383 newval |= (value & 0x1ff) >> 1;
26384 md_number_to_chars (buf, newval, THUMB_SIZE);
26385 }
c19d1205 26386 break;
a737bd4d 26387
c19d1205 26388 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 26389 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 26390 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 26391
2fc8bdac
ZW
26392 if (fixP->fx_done || !seg->use_rela_p)
26393 {
26394 newval = md_chars_to_number (buf, THUMB_SIZE);
26395 newval |= (value & 0xfff) >> 1;
26396 md_number_to_chars (buf, newval, THUMB_SIZE);
26397 }
c19d1205 26398 break;
a737bd4d 26399
c19d1205 26400 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
26401 if (fixP->fx_addsy
26402 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26403 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26404 && ARM_IS_FUNC (fixP->fx_addsy)
26405 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26406 {
26407 /* Force a relocation for a branch 20 bits wide. */
26408 fixP->fx_done = 0;
26409 }
08f10d51 26410 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
26411 as_bad_where (fixP->fx_file, fixP->fx_line,
26412 _("conditional branch out of range"));
404ff6b5 26413
2fc8bdac
ZW
26414 if (fixP->fx_done || !seg->use_rela_p)
26415 {
26416 offsetT newval2;
26417 addressT S, J1, J2, lo, hi;
404ff6b5 26418
2fc8bdac
ZW
26419 S = (value & 0x00100000) >> 20;
26420 J2 = (value & 0x00080000) >> 19;
26421 J1 = (value & 0x00040000) >> 18;
26422 hi = (value & 0x0003f000) >> 12;
26423 lo = (value & 0x00000ffe) >> 1;
6c43fab6 26424
2fc8bdac
ZW
26425 newval = md_chars_to_number (buf, THUMB_SIZE);
26426 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26427 newval |= (S << 10) | hi;
26428 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26429 md_number_to_chars (buf, newval, THUMB_SIZE);
26430 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26431 }
c19d1205 26432 break;
6c43fab6 26433
c19d1205 26434 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
26435 /* If there is a blx from a thumb state function to
26436 another thumb function flip this to a bl and warn
26437 about it. */
26438
26439 if (fixP->fx_addsy
34e77a92 26440 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26441 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26442 && THUMB_IS_FUNC (fixP->fx_addsy))
26443 {
26444 const char *name = S_GET_NAME (fixP->fx_addsy);
26445 as_warn_where (fixP->fx_file, fixP->fx_line,
26446 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26447 name);
26448 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26449 newval = newval | 0x1000;
26450 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26451 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26452 fixP->fx_done = 1;
26453 }
26454
26455
26456 goto thumb_bl_common;
26457
c19d1205 26458 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
26459 /* A bl from Thumb state ISA to an internal ARM state function
26460 is converted to a blx. */
26461 if (fixP->fx_addsy
26462 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26463 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
26464 && ARM_IS_FUNC (fixP->fx_addsy)
26465 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26466 {
26467 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26468 newval = newval & ~0x1000;
26469 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26470 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26471 fixP->fx_done = 1;
26472 }
26473
26474 thumb_bl_common:
26475
2fc8bdac
ZW
26476 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26477 /* For a BLX instruction, make sure that the relocation is rounded up
26478 to a word boundary. This follows the semantics of the instruction
26479 which specifies that bit 1 of the target address will come from bit
26480 1 of the base address. */
d406f3e4
JB
26481 value = (value + 3) & ~ 3;
26482
26483#ifdef OBJ_ELF
26484 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26485 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26486 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26487#endif
404ff6b5 26488
2b2f5df9
NC
26489 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26490 {
fc289b0a 26491 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
26492 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26493 else if ((value & ~0x1ffffff)
26494 && ((value & ~0x1ffffff) != ~0x1ffffff))
26495 as_bad_where (fixP->fx_file, fixP->fx_line,
26496 _("Thumb2 branch out of range"));
26497 }
4a42ebbc
RR
26498
26499 if (fixP->fx_done || !seg->use_rela_p)
26500 encode_thumb2_b_bl_offset (buf, value);
26501
c19d1205 26502 break;
404ff6b5 26503
c19d1205 26504 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
26505 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26506 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 26507
2fc8bdac 26508 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 26509 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 26510
2fc8bdac 26511 break;
a737bd4d 26512
2fc8bdac
ZW
26513 case BFD_RELOC_8:
26514 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 26515 *buf = value;
c19d1205 26516 break;
a737bd4d 26517
c19d1205 26518 case BFD_RELOC_16:
2fc8bdac 26519 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 26520 md_number_to_chars (buf, value, 2);
c19d1205 26521 break;
a737bd4d 26522
c19d1205 26523#ifdef OBJ_ELF
0855e32b
NS
26524 case BFD_RELOC_ARM_TLS_CALL:
26525 case BFD_RELOC_ARM_THM_TLS_CALL:
26526 case BFD_RELOC_ARM_TLS_DESCSEQ:
26527 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 26528 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
26529 case BFD_RELOC_ARM_TLS_GD32:
26530 case BFD_RELOC_ARM_TLS_LE32:
26531 case BFD_RELOC_ARM_TLS_IE32:
26532 case BFD_RELOC_ARM_TLS_LDM32:
26533 case BFD_RELOC_ARM_TLS_LDO32:
26534 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 26535 break;
6c43fab6 26536
5c5a4843
CL
26537 /* Same handling as above, but with the arm_fdpic guard. */
26538 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26539 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26540 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26541 if (arm_fdpic)
26542 {
26543 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26544 }
26545 else
26546 {
26547 as_bad_where (fixP->fx_file, fixP->fx_line,
26548 _("Relocation supported only in FDPIC mode"));
26549 }
26550 break;
26551
c19d1205
ZW
26552 case BFD_RELOC_ARM_GOT32:
26553 case BFD_RELOC_ARM_GOTOFF:
c19d1205 26554 break;
b43420e6
NC
26555
26556 case BFD_RELOC_ARM_GOT_PREL:
26557 if (fixP->fx_done || !seg->use_rela_p)
477330fc 26558 md_number_to_chars (buf, value, 4);
b43420e6
NC
26559 break;
26560
9a6f4e97
NS
26561 case BFD_RELOC_ARM_TARGET2:
26562 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
26563 addend here for REL targets, because it won't be written out
26564 during reloc processing later. */
9a6f4e97
NS
26565 if (fixP->fx_done || !seg->use_rela_p)
26566 md_number_to_chars (buf, fixP->fx_offset, 4);
26567 break;
188fd7ae
CL
26568
26569 /* Relocations for FDPIC. */
26570 case BFD_RELOC_ARM_GOTFUNCDESC:
26571 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26572 case BFD_RELOC_ARM_FUNCDESC:
26573 if (arm_fdpic)
26574 {
26575 if (fixP->fx_done || !seg->use_rela_p)
26576 md_number_to_chars (buf, 0, 4);
26577 }
26578 else
26579 {
26580 as_bad_where (fixP->fx_file, fixP->fx_line,
26581 _("Relocation supported only in FDPIC mode"));
26582 }
26583 break;
c19d1205 26584#endif
6c43fab6 26585
c19d1205
ZW
26586 case BFD_RELOC_RVA:
26587 case BFD_RELOC_32:
26588 case BFD_RELOC_ARM_TARGET1:
26589 case BFD_RELOC_ARM_ROSEGREL32:
26590 case BFD_RELOC_ARM_SBREL32:
26591 case BFD_RELOC_32_PCREL:
f0927246
NC
26592#ifdef TE_PE
26593 case BFD_RELOC_32_SECREL:
26594#endif
2fc8bdac 26595 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
26596#ifdef TE_WINCE
26597 /* For WinCE we only do this for pcrel fixups. */
26598 if (fixP->fx_done || fixP->fx_pcrel)
26599#endif
26600 md_number_to_chars (buf, value, 4);
c19d1205 26601 break;
6c43fab6 26602
c19d1205
ZW
26603#ifdef OBJ_ELF
26604 case BFD_RELOC_ARM_PREL31:
2fc8bdac 26605 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
26606 {
26607 newval = md_chars_to_number (buf, 4) & 0x80000000;
26608 if ((value ^ (value >> 1)) & 0x40000000)
26609 {
26610 as_bad_where (fixP->fx_file, fixP->fx_line,
26611 _("rel31 relocation overflow"));
26612 }
26613 newval |= value & 0x7fffffff;
26614 md_number_to_chars (buf, newval, 4);
26615 }
26616 break;
c19d1205 26617#endif
a737bd4d 26618
c19d1205 26619 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 26620 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 26621 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
26622 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26623 newval = md_chars_to_number (buf, INSN_SIZE);
26624 else
26625 newval = get_thumb32_insn (buf);
26626 if ((newval & 0x0f200f00) == 0x0d000900)
26627 {
26628 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26629 has permitted values that are multiples of 2, in the range 0
26630 to 510. */
26631 if (value < -510 || value > 510 || (value & 1))
26632 as_bad_where (fixP->fx_file, fixP->fx_line,
26633 _("co-processor offset out of range"));
26634 }
32c36c3c
AV
26635 else if ((newval & 0xfe001f80) == 0xec000f80)
26636 {
26637 if (value < -511 || value > 512 || (value & 3))
26638 as_bad_where (fixP->fx_file, fixP->fx_line,
26639 _("co-processor offset out of range"));
26640 }
9db2f6b4 26641 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
26642 as_bad_where (fixP->fx_file, fixP->fx_line,
26643 _("co-processor offset out of range"));
26644 cp_off_common:
26d97720 26645 sign = value > 0;
c19d1205
ZW
26646 if (value < 0)
26647 value = -value;
8f06b2d8
PB
26648 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26649 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26650 newval = md_chars_to_number (buf, INSN_SIZE);
26651 else
26652 newval = get_thumb32_insn (buf);
26d97720 26653 if (value == 0)
32c36c3c
AV
26654 {
26655 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26656 newval &= 0xffffff80;
26657 else
26658 newval &= 0xffffff00;
26659 }
26d97720
NS
26660 else
26661 {
32c36c3c
AV
26662 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26663 newval &= 0xff7fff80;
26664 else
26665 newval &= 0xff7fff00;
9db2f6b4
RL
26666 if ((newval & 0x0f200f00) == 0x0d000900)
26667 {
26668 /* This is a fp16 vstr/vldr.
26669
26670 It requires the immediate offset in the instruction is shifted
26671 left by 1 to be a half-word offset.
26672
26673 Here, left shift by 1 first, and later right shift by 2
26674 should get the right offset. */
26675 value <<= 1;
26676 }
26d97720
NS
26677 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
26678 }
8f06b2d8
PB
26679 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26680 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26681 md_number_to_chars (buf, newval, INSN_SIZE);
26682 else
26683 put_thumb32_insn (buf, newval);
c19d1205 26684 break;
a737bd4d 26685
c19d1205 26686 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 26687 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
26688 if (value < -255 || value > 255)
26689 as_bad_where (fixP->fx_file, fixP->fx_line,
26690 _("co-processor offset out of range"));
df7849c5 26691 value *= 4;
c19d1205 26692 goto cp_off_common;
6c43fab6 26693
c19d1205
ZW
26694 case BFD_RELOC_ARM_THUMB_OFFSET:
26695 newval = md_chars_to_number (buf, THUMB_SIZE);
26696 /* Exactly what ranges, and where the offset is inserted depends
26697 on the type of instruction, we can establish this from the
26698 top 4 bits. */
26699 switch (newval >> 12)
26700 {
26701 case 4: /* PC load. */
26702 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26703 forced to zero for these loads; md_pcrel_from has already
26704 compensated for this. */
26705 if (value & 3)
26706 as_bad_where (fixP->fx_file, fixP->fx_line,
26707 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
26708 (((unsigned long) fixP->fx_frag->fr_address
26709 + (unsigned long) fixP->fx_where) & ~3)
26710 + (unsigned long) value);
a737bd4d 26711
c19d1205
ZW
26712 if (value & ~0x3fc)
26713 as_bad_where (fixP->fx_file, fixP->fx_line,
26714 _("invalid offset, value too big (0x%08lX)"),
26715 (long) value);
a737bd4d 26716
c19d1205
ZW
26717 newval |= value >> 2;
26718 break;
a737bd4d 26719
c19d1205
ZW
26720 case 9: /* SP load/store. */
26721 if (value & ~0x3fc)
26722 as_bad_where (fixP->fx_file, fixP->fx_line,
26723 _("invalid offset, value too big (0x%08lX)"),
26724 (long) value);
26725 newval |= value >> 2;
26726 break;
6c43fab6 26727
c19d1205
ZW
26728 case 6: /* Word load/store. */
26729 if (value & ~0x7c)
26730 as_bad_where (fixP->fx_file, fixP->fx_line,
26731 _("invalid offset, value too big (0x%08lX)"),
26732 (long) value);
26733 newval |= value << 4; /* 6 - 2. */
26734 break;
a737bd4d 26735
c19d1205
ZW
26736 case 7: /* Byte load/store. */
26737 if (value & ~0x1f)
26738 as_bad_where (fixP->fx_file, fixP->fx_line,
26739 _("invalid offset, value too big (0x%08lX)"),
26740 (long) value);
26741 newval |= value << 6;
26742 break;
a737bd4d 26743
c19d1205
ZW
26744 case 8: /* Halfword load/store. */
26745 if (value & ~0x3e)
26746 as_bad_where (fixP->fx_file, fixP->fx_line,
26747 _("invalid offset, value too big (0x%08lX)"),
26748 (long) value);
26749 newval |= value << 5; /* 6 - 1. */
26750 break;
a737bd4d 26751
c19d1205
ZW
26752 default:
26753 as_bad_where (fixP->fx_file, fixP->fx_line,
26754 "Unable to process relocation for thumb opcode: %lx",
26755 (unsigned long) newval);
26756 break;
26757 }
26758 md_number_to_chars (buf, newval, THUMB_SIZE);
26759 break;
a737bd4d 26760
c19d1205
ZW
26761 case BFD_RELOC_ARM_THUMB_ADD:
26762 /* This is a complicated relocation, since we use it for all of
26763 the following immediate relocations:
a737bd4d 26764
c19d1205
ZW
26765 3bit ADD/SUB
26766 8bit ADD/SUB
26767 9bit ADD/SUB SP word-aligned
26768 10bit ADD PC/SP word-aligned
a737bd4d 26769
c19d1205
ZW
26770 The type of instruction being processed is encoded in the
26771 instruction field:
a737bd4d 26772
c19d1205
ZW
26773 0x8000 SUB
26774 0x00F0 Rd
26775 0x000F Rs
26776 */
26777 newval = md_chars_to_number (buf, THUMB_SIZE);
26778 {
26779 int rd = (newval >> 4) & 0xf;
26780 int rs = newval & 0xf;
26781 int subtract = !!(newval & 0x8000);
a737bd4d 26782
c19d1205
ZW
26783 /* Check for HI regs, only very restricted cases allowed:
26784 Adjusting SP, and using PC or SP to get an address. */
26785 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
26786 || (rs > 7 && rs != REG_SP && rs != REG_PC))
26787 as_bad_where (fixP->fx_file, fixP->fx_line,
26788 _("invalid Hi register with immediate"));
a737bd4d 26789
c19d1205
ZW
26790 /* If value is negative, choose the opposite instruction. */
26791 if (value < 0)
26792 {
26793 value = -value;
26794 subtract = !subtract;
26795 if (value < 0)
26796 as_bad_where (fixP->fx_file, fixP->fx_line,
26797 _("immediate value out of range"));
26798 }
a737bd4d 26799
c19d1205
ZW
26800 if (rd == REG_SP)
26801 {
75c11999 26802 if (value & ~0x1fc)
c19d1205
ZW
26803 as_bad_where (fixP->fx_file, fixP->fx_line,
26804 _("invalid immediate for stack address calculation"));
26805 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
26806 newval |= value >> 2;
26807 }
26808 else if (rs == REG_PC || rs == REG_SP)
26809 {
c12d2c9d
NC
26810 /* PR gas/18541. If the addition is for a defined symbol
26811 within range of an ADR instruction then accept it. */
26812 if (subtract
26813 && value == 4
26814 && fixP->fx_addsy != NULL)
26815 {
26816 subtract = 0;
26817
26818 if (! S_IS_DEFINED (fixP->fx_addsy)
26819 || S_GET_SEGMENT (fixP->fx_addsy) != seg
26820 || S_IS_WEAK (fixP->fx_addsy))
26821 {
26822 as_bad_where (fixP->fx_file, fixP->fx_line,
26823 _("address calculation needs a strongly defined nearby symbol"));
26824 }
26825 else
26826 {
26827 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
26828
26829 /* Round up to the next 4-byte boundary. */
26830 if (v & 3)
26831 v = (v + 3) & ~ 3;
26832 else
26833 v += 4;
26834 v = S_GET_VALUE (fixP->fx_addsy) - v;
26835
26836 if (v & ~0x3fc)
26837 {
26838 as_bad_where (fixP->fx_file, fixP->fx_line,
26839 _("symbol too far away"));
26840 }
26841 else
26842 {
26843 fixP->fx_done = 1;
26844 value = v;
26845 }
26846 }
26847 }
26848
c19d1205
ZW
26849 if (subtract || value & ~0x3fc)
26850 as_bad_where (fixP->fx_file, fixP->fx_line,
26851 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 26852 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
26853 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
26854 newval |= rd << 8;
26855 newval |= value >> 2;
26856 }
26857 else if (rs == rd)
26858 {
26859 if (value & ~0xff)
26860 as_bad_where (fixP->fx_file, fixP->fx_line,
26861 _("immediate value out of range"));
26862 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
26863 newval |= (rd << 8) | value;
26864 }
26865 else
26866 {
26867 if (value & ~0x7)
26868 as_bad_where (fixP->fx_file, fixP->fx_line,
26869 _("immediate value out of range"));
26870 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
26871 newval |= rd | (rs << 3) | (value << 6);
26872 }
26873 }
26874 md_number_to_chars (buf, newval, THUMB_SIZE);
26875 break;
a737bd4d 26876
c19d1205
ZW
26877 case BFD_RELOC_ARM_THUMB_IMM:
26878 newval = md_chars_to_number (buf, THUMB_SIZE);
26879 if (value < 0 || value > 255)
26880 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 26881 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
26882 (long) value);
26883 newval |= value;
26884 md_number_to_chars (buf, newval, THUMB_SIZE);
26885 break;
a737bd4d 26886
c19d1205
ZW
26887 case BFD_RELOC_ARM_THUMB_SHIFT:
26888 /* 5bit shift value (0..32). LSL cannot take 32. */
26889 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
26890 temp = newval & 0xf800;
26891 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
26892 as_bad_where (fixP->fx_file, fixP->fx_line,
26893 _("invalid shift value: %ld"), (long) value);
26894 /* Shifts of zero must be encoded as LSL. */
26895 if (value == 0)
26896 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
26897 /* Shifts of 32 are encoded as zero. */
26898 else if (value == 32)
26899 value = 0;
26900 newval |= value << 6;
26901 md_number_to_chars (buf, newval, THUMB_SIZE);
26902 break;
a737bd4d 26903
c19d1205
ZW
26904 case BFD_RELOC_VTABLE_INHERIT:
26905 case BFD_RELOC_VTABLE_ENTRY:
26906 fixP->fx_done = 0;
26907 return;
6c43fab6 26908
b6895b4f
PB
26909 case BFD_RELOC_ARM_MOVW:
26910 case BFD_RELOC_ARM_MOVT:
26911 case BFD_RELOC_ARM_THUMB_MOVW:
26912 case BFD_RELOC_ARM_THUMB_MOVT:
26913 if (fixP->fx_done || !seg->use_rela_p)
26914 {
26915 /* REL format relocations are limited to a 16-bit addend. */
26916 if (!fixP->fx_done)
26917 {
39623e12 26918 if (value < -0x8000 || value > 0x7fff)
b6895b4f 26919 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 26920 _("offset out of range"));
b6895b4f
PB
26921 }
26922 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
26923 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
26924 {
26925 value >>= 16;
26926 }
26927
26928 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
26929 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
26930 {
26931 newval = get_thumb32_insn (buf);
26932 newval &= 0xfbf08f00;
26933 newval |= (value & 0xf000) << 4;
26934 newval |= (value & 0x0800) << 15;
26935 newval |= (value & 0x0700) << 4;
26936 newval |= (value & 0x00ff);
26937 put_thumb32_insn (buf, newval);
26938 }
26939 else
26940 {
26941 newval = md_chars_to_number (buf, 4);
26942 newval &= 0xfff0f000;
26943 newval |= value & 0x0fff;
26944 newval |= (value & 0xf000) << 4;
26945 md_number_to_chars (buf, newval, 4);
26946 }
26947 }
26948 return;
26949
72d98d16
MG
26950 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
26951 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
26952 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
26953 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
26954 gas_assert (!fixP->fx_done);
26955 {
26956 bfd_vma insn;
26957 bfd_boolean is_mov;
26958 bfd_vma encoded_addend = value;
26959
26960 /* Check that addend can be encoded in instruction. */
26961 if (!seg->use_rela_p && (value < 0 || value > 255))
26962 as_bad_where (fixP->fx_file, fixP->fx_line,
26963 _("the offset 0x%08lX is not representable"),
26964 (unsigned long) encoded_addend);
26965
26966 /* Extract the instruction. */
26967 insn = md_chars_to_number (buf, THUMB_SIZE);
26968 is_mov = (insn & 0xf800) == 0x2000;
26969
26970 /* Encode insn. */
26971 if (is_mov)
26972 {
26973 if (!seg->use_rela_p)
26974 insn |= encoded_addend;
26975 }
26976 else
26977 {
26978 int rd, rs;
26979
26980 /* Extract the instruction. */
26981 /* Encoding is the following
26982 0x8000 SUB
26983 0x00F0 Rd
26984 0x000F Rs
26985 */
26986 /* The following conditions must be true :
26987 - ADD
26988 - Rd == Rs
26989 - Rd <= 7
26990 */
26991 rd = (insn >> 4) & 0xf;
26992 rs = insn & 0xf;
26993 if ((insn & 0x8000) || (rd != rs) || rd > 7)
26994 as_bad_where (fixP->fx_file, fixP->fx_line,
26995 _("Unable to process relocation for thumb opcode: %lx"),
26996 (unsigned long) insn);
26997
26998 /* Encode as ADD immediate8 thumb 1 code. */
26999 insn = 0x3000 | (rd << 8);
27000
27001 /* Place the encoded addend into the first 8 bits of the
27002 instruction. */
27003 if (!seg->use_rela_p)
27004 insn |= encoded_addend;
27005 }
27006
27007 /* Update the instruction. */
27008 md_number_to_chars (buf, insn, THUMB_SIZE);
27009 }
27010 break;
27011
4962c51a
MS
27012 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27013 case BFD_RELOC_ARM_ALU_PC_G0:
27014 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27015 case BFD_RELOC_ARM_ALU_PC_G1:
27016 case BFD_RELOC_ARM_ALU_PC_G2:
27017 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27018 case BFD_RELOC_ARM_ALU_SB_G0:
27019 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27020 case BFD_RELOC_ARM_ALU_SB_G1:
27021 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 27022 gas_assert (!fixP->fx_done);
4962c51a
MS
27023 if (!seg->use_rela_p)
27024 {
477330fc
RM
27025 bfd_vma insn;
27026 bfd_vma encoded_addend;
3ca4a8ec 27027 bfd_vma addend_abs = llabs (value);
477330fc
RM
27028
27029 /* Check that the absolute value of the addend can be
27030 expressed as an 8-bit constant plus a rotation. */
27031 encoded_addend = encode_arm_immediate (addend_abs);
27032 if (encoded_addend == (unsigned int) FAIL)
4962c51a 27033 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27034 _("the offset 0x%08lX is not representable"),
27035 (unsigned long) addend_abs);
27036
27037 /* Extract the instruction. */
27038 insn = md_chars_to_number (buf, INSN_SIZE);
27039
27040 /* If the addend is positive, use an ADD instruction.
27041 Otherwise use a SUB. Take care not to destroy the S bit. */
27042 insn &= 0xff1fffff;
27043 if (value < 0)
27044 insn |= 1 << 22;
27045 else
27046 insn |= 1 << 23;
27047
27048 /* Place the encoded addend into the first 12 bits of the
27049 instruction. */
27050 insn &= 0xfffff000;
27051 insn |= encoded_addend;
27052
27053 /* Update the instruction. */
27054 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
27055 }
27056 break;
27057
27058 case BFD_RELOC_ARM_LDR_PC_G0:
27059 case BFD_RELOC_ARM_LDR_PC_G1:
27060 case BFD_RELOC_ARM_LDR_PC_G2:
27061 case BFD_RELOC_ARM_LDR_SB_G0:
27062 case BFD_RELOC_ARM_LDR_SB_G1:
27063 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 27064 gas_assert (!fixP->fx_done);
4962c51a 27065 if (!seg->use_rela_p)
477330fc
RM
27066 {
27067 bfd_vma insn;
3ca4a8ec 27068 bfd_vma addend_abs = llabs (value);
4962c51a 27069
477330fc
RM
27070 /* Check that the absolute value of the addend can be
27071 encoded in 12 bits. */
27072 if (addend_abs >= 0x1000)
4962c51a 27073 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27074 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27075 (unsigned long) addend_abs);
27076
27077 /* Extract the instruction. */
27078 insn = md_chars_to_number (buf, INSN_SIZE);
27079
27080 /* If the addend is negative, clear bit 23 of the instruction.
27081 Otherwise set it. */
27082 if (value < 0)
27083 insn &= ~(1 << 23);
27084 else
27085 insn |= 1 << 23;
27086
27087 /* Place the absolute value of the addend into the first 12 bits
27088 of the instruction. */
27089 insn &= 0xfffff000;
27090 insn |= addend_abs;
27091
27092 /* Update the instruction. */
27093 md_number_to_chars (buf, insn, INSN_SIZE);
27094 }
4962c51a
MS
27095 break;
27096
27097 case BFD_RELOC_ARM_LDRS_PC_G0:
27098 case BFD_RELOC_ARM_LDRS_PC_G1:
27099 case BFD_RELOC_ARM_LDRS_PC_G2:
27100 case BFD_RELOC_ARM_LDRS_SB_G0:
27101 case BFD_RELOC_ARM_LDRS_SB_G1:
27102 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 27103 gas_assert (!fixP->fx_done);
4962c51a 27104 if (!seg->use_rela_p)
477330fc
RM
27105 {
27106 bfd_vma insn;
3ca4a8ec 27107 bfd_vma addend_abs = llabs (value);
4962c51a 27108
477330fc
RM
27109 /* Check that the absolute value of the addend can be
27110 encoded in 8 bits. */
27111 if (addend_abs >= 0x100)
4962c51a 27112 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27113 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27114 (unsigned long) addend_abs);
27115
27116 /* Extract the instruction. */
27117 insn = md_chars_to_number (buf, INSN_SIZE);
27118
27119 /* If the addend is negative, clear bit 23 of the instruction.
27120 Otherwise set it. */
27121 if (value < 0)
27122 insn &= ~(1 << 23);
27123 else
27124 insn |= 1 << 23;
27125
27126 /* Place the first four bits of the absolute value of the addend
27127 into the first 4 bits of the instruction, and the remaining
27128 four into bits 8 .. 11. */
27129 insn &= 0xfffff0f0;
27130 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27131
27132 /* Update the instruction. */
27133 md_number_to_chars (buf, insn, INSN_SIZE);
27134 }
4962c51a
MS
27135 break;
27136
27137 case BFD_RELOC_ARM_LDC_PC_G0:
27138 case BFD_RELOC_ARM_LDC_PC_G1:
27139 case BFD_RELOC_ARM_LDC_PC_G2:
27140 case BFD_RELOC_ARM_LDC_SB_G0:
27141 case BFD_RELOC_ARM_LDC_SB_G1:
27142 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 27143 gas_assert (!fixP->fx_done);
4962c51a 27144 if (!seg->use_rela_p)
477330fc
RM
27145 {
27146 bfd_vma insn;
3ca4a8ec 27147 bfd_vma addend_abs = llabs (value);
4962c51a 27148
477330fc
RM
27149 /* Check that the absolute value of the addend is a multiple of
27150 four and, when divided by four, fits in 8 bits. */
27151 if (addend_abs & 0x3)
4962c51a 27152 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27153 _("bad offset 0x%08lX (must be word-aligned)"),
27154 (unsigned long) addend_abs);
4962c51a 27155
477330fc 27156 if ((addend_abs >> 2) > 0xff)
4962c51a 27157 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
27158 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27159 (unsigned long) addend_abs);
27160
27161 /* Extract the instruction. */
27162 insn = md_chars_to_number (buf, INSN_SIZE);
27163
27164 /* If the addend is negative, clear bit 23 of the instruction.
27165 Otherwise set it. */
27166 if (value < 0)
27167 insn &= ~(1 << 23);
27168 else
27169 insn |= 1 << 23;
27170
27171 /* Place the addend (divided by four) into the first eight
27172 bits of the instruction. */
27173 insn &= 0xfffffff0;
27174 insn |= addend_abs >> 2;
27175
27176 /* Update the instruction. */
27177 md_number_to_chars (buf, insn, INSN_SIZE);
27178 }
4962c51a
MS
27179 break;
27180
e12437dc
AV
27181 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27182 if (fixP->fx_addsy
27183 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27184 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27185 && ARM_IS_FUNC (fixP->fx_addsy)
27186 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27187 {
27188 /* Force a relocation for a branch 5 bits wide. */
27189 fixP->fx_done = 0;
27190 }
27191 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27192 as_bad_where (fixP->fx_file, fixP->fx_line,
27193 BAD_BRANCH_OFF);
27194
27195 if (fixP->fx_done || !seg->use_rela_p)
27196 {
27197 addressT boff = value >> 1;
27198
27199 newval = md_chars_to_number (buf, THUMB_SIZE);
27200 newval |= (boff << 7);
27201 md_number_to_chars (buf, newval, THUMB_SIZE);
27202 }
27203 break;
27204
f6b2b12d
AV
27205 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27206 if (fixP->fx_addsy
27207 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27208 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27209 && ARM_IS_FUNC (fixP->fx_addsy)
27210 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27211 {
27212 fixP->fx_done = 0;
27213 }
27214 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27215 as_bad_where (fixP->fx_file, fixP->fx_line,
27216 _("branch out of range"));
27217
27218 if (fixP->fx_done || !seg->use_rela_p)
27219 {
27220 newval = md_chars_to_number (buf, THUMB_SIZE);
27221
27222 addressT boff = ((newval & 0x0780) >> 7) << 1;
27223 addressT diff = value - boff;
27224
27225 if (diff == 4)
27226 {
27227 newval |= 1 << 1; /* T bit. */
27228 }
27229 else if (diff != 2)
27230 {
27231 as_bad_where (fixP->fx_file, fixP->fx_line,
27232 _("out of range label-relative fixup value"));
27233 }
27234 md_number_to_chars (buf, newval, THUMB_SIZE);
27235 }
27236 break;
27237
e5d6e09e
AV
27238 case BFD_RELOC_ARM_THUMB_BF17:
27239 if (fixP->fx_addsy
27240 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27241 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27242 && ARM_IS_FUNC (fixP->fx_addsy)
27243 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27244 {
27245 /* Force a relocation for a branch 17 bits wide. */
27246 fixP->fx_done = 0;
27247 }
27248
27249 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27250 as_bad_where (fixP->fx_file, fixP->fx_line,
27251 BAD_BRANCH_OFF);
27252
27253 if (fixP->fx_done || !seg->use_rela_p)
27254 {
27255 offsetT newval2;
27256 addressT immA, immB, immC;
27257
27258 immA = (value & 0x0001f000) >> 12;
27259 immB = (value & 0x00000ffc) >> 2;
27260 immC = (value & 0x00000002) >> 1;
27261
27262 newval = md_chars_to_number (buf, THUMB_SIZE);
27263 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27264 newval |= immA;
27265 newval2 |= (immC << 11) | (immB << 1);
27266 md_number_to_chars (buf, newval, THUMB_SIZE);
27267 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27268 }
27269 break;
27270
1caf72a5
AV
27271 case BFD_RELOC_ARM_THUMB_BF19:
27272 if (fixP->fx_addsy
27273 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27274 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27275 && ARM_IS_FUNC (fixP->fx_addsy)
27276 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27277 {
27278 /* Force a relocation for a branch 19 bits wide. */
27279 fixP->fx_done = 0;
27280 }
27281
27282 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27283 as_bad_where (fixP->fx_file, fixP->fx_line,
27284 BAD_BRANCH_OFF);
27285
27286 if (fixP->fx_done || !seg->use_rela_p)
27287 {
27288 offsetT newval2;
27289 addressT immA, immB, immC;
27290
27291 immA = (value & 0x0007f000) >> 12;
27292 immB = (value & 0x00000ffc) >> 2;
27293 immC = (value & 0x00000002) >> 1;
27294
27295 newval = md_chars_to_number (buf, THUMB_SIZE);
27296 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27297 newval |= immA;
27298 newval2 |= (immC << 11) | (immB << 1);
27299 md_number_to_chars (buf, newval, THUMB_SIZE);
27300 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27301 }
27302 break;
27303
1889da70
AV
27304 case BFD_RELOC_ARM_THUMB_BF13:
27305 if (fixP->fx_addsy
27306 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27307 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27308 && ARM_IS_FUNC (fixP->fx_addsy)
27309 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27310 {
27311 /* Force a relocation for a branch 13 bits wide. */
27312 fixP->fx_done = 0;
27313 }
27314
27315 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27316 as_bad_where (fixP->fx_file, fixP->fx_line,
27317 BAD_BRANCH_OFF);
27318
27319 if (fixP->fx_done || !seg->use_rela_p)
27320 {
27321 offsetT newval2;
27322 addressT immA, immB, immC;
27323
27324 immA = (value & 0x00001000) >> 12;
27325 immB = (value & 0x00000ffc) >> 2;
27326 immC = (value & 0x00000002) >> 1;
27327
27328 newval = md_chars_to_number (buf, THUMB_SIZE);
27329 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27330 newval |= immA;
27331 newval2 |= (immC << 11) | (immB << 1);
27332 md_number_to_chars (buf, newval, THUMB_SIZE);
27333 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27334 }
27335 break;
27336
60f993ce
AV
27337 case BFD_RELOC_ARM_THUMB_LOOP12:
27338 if (fixP->fx_addsy
27339 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27340 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27341 && ARM_IS_FUNC (fixP->fx_addsy)
27342 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27343 {
27344 /* Force a relocation for a branch 12 bits wide. */
27345 fixP->fx_done = 0;
27346 }
27347
27348 bfd_vma insn = get_thumb32_insn (buf);
27349 /* le lr, <label> or le <label> */
27350 if (((insn & 0xffffffff) == 0xf00fc001)
27351 || ((insn & 0xffffffff) == 0xf02fc001))
27352 value = -value;
27353
27354 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27355 as_bad_where (fixP->fx_file, fixP->fx_line,
27356 BAD_BRANCH_OFF);
27357 if (fixP->fx_done || !seg->use_rela_p)
27358 {
27359 addressT imml, immh;
27360
27361 immh = (value & 0x00000ffc) >> 2;
27362 imml = (value & 0x00000002) >> 1;
27363
27364 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27365 newval |= (imml << 11) | (immh << 1);
27366 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27367 }
27368 break;
27369
845b51d6
PB
27370 case BFD_RELOC_ARM_V4BX:
27371 /* This will need to go in the object file. */
27372 fixP->fx_done = 0;
27373 break;
27374
c19d1205
ZW
27375 case BFD_RELOC_UNUSED:
27376 default:
27377 as_bad_where (fixP->fx_file, fixP->fx_line,
27378 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27379 }
6c43fab6
RE
27380}
27381
c19d1205
ZW
27382/* Translate internal representation of relocation info to BFD target
27383 format. */
a737bd4d 27384
c19d1205 27385arelent *
00a97672 27386tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 27387{
c19d1205
ZW
27388 arelent * reloc;
27389 bfd_reloc_code_real_type code;
a737bd4d 27390
325801bd 27391 reloc = XNEW (arelent);
a737bd4d 27392
325801bd 27393 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
27394 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27395 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 27396
2fc8bdac 27397 if (fixp->fx_pcrel)
00a97672
RS
27398 {
27399 if (section->use_rela_p)
27400 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27401 else
27402 fixp->fx_offset = reloc->address;
27403 }
c19d1205 27404 reloc->addend = fixp->fx_offset;
a737bd4d 27405
c19d1205 27406 switch (fixp->fx_r_type)
a737bd4d 27407 {
c19d1205
ZW
27408 case BFD_RELOC_8:
27409 if (fixp->fx_pcrel)
27410 {
27411 code = BFD_RELOC_8_PCREL;
27412 break;
27413 }
1a0670f3 27414 /* Fall through. */
a737bd4d 27415
c19d1205
ZW
27416 case BFD_RELOC_16:
27417 if (fixp->fx_pcrel)
27418 {
27419 code = BFD_RELOC_16_PCREL;
27420 break;
27421 }
1a0670f3 27422 /* Fall through. */
6c43fab6 27423
c19d1205
ZW
27424 case BFD_RELOC_32:
27425 if (fixp->fx_pcrel)
27426 {
27427 code = BFD_RELOC_32_PCREL;
27428 break;
27429 }
1a0670f3 27430 /* Fall through. */
a737bd4d 27431
b6895b4f
PB
27432 case BFD_RELOC_ARM_MOVW:
27433 if (fixp->fx_pcrel)
27434 {
27435 code = BFD_RELOC_ARM_MOVW_PCREL;
27436 break;
27437 }
1a0670f3 27438 /* Fall through. */
b6895b4f
PB
27439
27440 case BFD_RELOC_ARM_MOVT:
27441 if (fixp->fx_pcrel)
27442 {
27443 code = BFD_RELOC_ARM_MOVT_PCREL;
27444 break;
27445 }
1a0670f3 27446 /* Fall through. */
b6895b4f
PB
27447
27448 case BFD_RELOC_ARM_THUMB_MOVW:
27449 if (fixp->fx_pcrel)
27450 {
27451 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27452 break;
27453 }
1a0670f3 27454 /* Fall through. */
b6895b4f
PB
27455
27456 case BFD_RELOC_ARM_THUMB_MOVT:
27457 if (fixp->fx_pcrel)
27458 {
27459 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27460 break;
27461 }
1a0670f3 27462 /* Fall through. */
b6895b4f 27463
c19d1205
ZW
27464 case BFD_RELOC_NONE:
27465 case BFD_RELOC_ARM_PCREL_BRANCH:
27466 case BFD_RELOC_ARM_PCREL_BLX:
27467 case BFD_RELOC_RVA:
27468 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27469 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27470 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27471 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27472 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27473 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
27474 case BFD_RELOC_VTABLE_ENTRY:
27475 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
27476#ifdef TE_PE
27477 case BFD_RELOC_32_SECREL:
27478#endif
c19d1205
ZW
27479 code = fixp->fx_r_type;
27480 break;
a737bd4d 27481
00adf2d4
JB
27482 case BFD_RELOC_THUMB_PCREL_BLX:
27483#ifdef OBJ_ELF
27484 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27485 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27486 else
27487#endif
27488 code = BFD_RELOC_THUMB_PCREL_BLX;
27489 break;
27490
c19d1205
ZW
27491 case BFD_RELOC_ARM_LITERAL:
27492 case BFD_RELOC_ARM_HWLITERAL:
27493 /* If this is called then the a literal has
27494 been referenced across a section boundary. */
27495 as_bad_where (fixp->fx_file, fixp->fx_line,
27496 _("literal referenced across section boundary"));
27497 return NULL;
a737bd4d 27498
c19d1205 27499#ifdef OBJ_ELF
0855e32b
NS
27500 case BFD_RELOC_ARM_TLS_CALL:
27501 case BFD_RELOC_ARM_THM_TLS_CALL:
27502 case BFD_RELOC_ARM_TLS_DESCSEQ:
27503 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
27504 case BFD_RELOC_ARM_GOT32:
27505 case BFD_RELOC_ARM_GOTOFF:
b43420e6 27506 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
27507 case BFD_RELOC_ARM_PLT32:
27508 case BFD_RELOC_ARM_TARGET1:
27509 case BFD_RELOC_ARM_ROSEGREL32:
27510 case BFD_RELOC_ARM_SBREL32:
27511 case BFD_RELOC_ARM_PREL31:
27512 case BFD_RELOC_ARM_TARGET2:
c19d1205 27513 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
27514 case BFD_RELOC_ARM_PCREL_CALL:
27515 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
27516 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27517 case BFD_RELOC_ARM_ALU_PC_G0:
27518 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27519 case BFD_RELOC_ARM_ALU_PC_G1:
27520 case BFD_RELOC_ARM_ALU_PC_G2:
27521 case BFD_RELOC_ARM_LDR_PC_G0:
27522 case BFD_RELOC_ARM_LDR_PC_G1:
27523 case BFD_RELOC_ARM_LDR_PC_G2:
27524 case BFD_RELOC_ARM_LDRS_PC_G0:
27525 case BFD_RELOC_ARM_LDRS_PC_G1:
27526 case BFD_RELOC_ARM_LDRS_PC_G2:
27527 case BFD_RELOC_ARM_LDC_PC_G0:
27528 case BFD_RELOC_ARM_LDC_PC_G1:
27529 case BFD_RELOC_ARM_LDC_PC_G2:
27530 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27531 case BFD_RELOC_ARM_ALU_SB_G0:
27532 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27533 case BFD_RELOC_ARM_ALU_SB_G1:
27534 case BFD_RELOC_ARM_ALU_SB_G2:
27535 case BFD_RELOC_ARM_LDR_SB_G0:
27536 case BFD_RELOC_ARM_LDR_SB_G1:
27537 case BFD_RELOC_ARM_LDR_SB_G2:
27538 case BFD_RELOC_ARM_LDRS_SB_G0:
27539 case BFD_RELOC_ARM_LDRS_SB_G1:
27540 case BFD_RELOC_ARM_LDRS_SB_G2:
27541 case BFD_RELOC_ARM_LDC_SB_G0:
27542 case BFD_RELOC_ARM_LDC_SB_G1:
27543 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 27544 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
27545 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27546 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27547 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27548 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
27549 case BFD_RELOC_ARM_GOTFUNCDESC:
27550 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27551 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 27552 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 27553 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 27554 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
27555 code = fixp->fx_r_type;
27556 break;
a737bd4d 27557
0855e32b 27558 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 27559 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 27560 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 27561 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 27562 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 27563 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 27564 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 27565 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
27566 /* BFD will include the symbol's address in the addend.
27567 But we don't want that, so subtract it out again here. */
27568 if (!S_IS_COMMON (fixp->fx_addsy))
27569 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27570 code = fixp->fx_r_type;
27571 break;
27572#endif
a737bd4d 27573
c19d1205
ZW
27574 case BFD_RELOC_ARM_IMMEDIATE:
27575 as_bad_where (fixp->fx_file, fixp->fx_line,
27576 _("internal relocation (type: IMMEDIATE) not fixed up"));
27577 return NULL;
a737bd4d 27578
c19d1205
ZW
27579 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27580 as_bad_where (fixp->fx_file, fixp->fx_line,
27581 _("ADRL used for a symbol not defined in the same file"));
27582 return NULL;
a737bd4d 27583
e12437dc 27584 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 27585 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 27586 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
27587 as_bad_where (fixp->fx_file, fixp->fx_line,
27588 _("%s used for a symbol not defined in the same file"),
27589 bfd_get_reloc_code_name (fixp->fx_r_type));
27590 return NULL;
27591
c19d1205 27592 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27593 if (section->use_rela_p)
27594 {
27595 code = fixp->fx_r_type;
27596 break;
27597 }
27598
c19d1205
ZW
27599 if (fixp->fx_addsy != NULL
27600 && !S_IS_DEFINED (fixp->fx_addsy)
27601 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 27602 {
c19d1205
ZW
27603 as_bad_where (fixp->fx_file, fixp->fx_line,
27604 _("undefined local label `%s'"),
27605 S_GET_NAME (fixp->fx_addsy));
27606 return NULL;
a737bd4d
NC
27607 }
27608
c19d1205
ZW
27609 as_bad_where (fixp->fx_file, fixp->fx_line,
27610 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27611 return NULL;
a737bd4d 27612
c19d1205
ZW
27613 default:
27614 {
e0471c16 27615 const char * type;
6c43fab6 27616
c19d1205
ZW
27617 switch (fixp->fx_r_type)
27618 {
27619 case BFD_RELOC_NONE: type = "NONE"; break;
27620 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27621 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 27622 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
27623 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27624 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27625 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 27626 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 27627 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
27628 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27629 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27630 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27631 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27632 default: type = _("<unknown>"); break;
27633 }
27634 as_bad_where (fixp->fx_file, fixp->fx_line,
27635 _("cannot represent %s relocation in this object file format"),
27636 type);
27637 return NULL;
27638 }
a737bd4d 27639 }
6c43fab6 27640
c19d1205
ZW
27641#ifdef OBJ_ELF
27642 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27643 && GOT_symbol
27644 && fixp->fx_addsy == GOT_symbol)
27645 {
27646 code = BFD_RELOC_ARM_GOTPC;
27647 reloc->addend = fixp->fx_offset = reloc->address;
27648 }
27649#endif
6c43fab6 27650
c19d1205 27651 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 27652
c19d1205
ZW
27653 if (reloc->howto == NULL)
27654 {
27655 as_bad_where (fixp->fx_file, fixp->fx_line,
27656 _("cannot represent %s relocation in this object file format"),
27657 bfd_get_reloc_code_name (code));
27658 return NULL;
27659 }
6c43fab6 27660
c19d1205
ZW
27661 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27662 vtable entry to be used in the relocation's section offset. */
27663 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27664 reloc->address = fixp->fx_offset;
6c43fab6 27665
c19d1205 27666 return reloc;
6c43fab6
RE
27667}
27668
c19d1205 27669/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 27670
c19d1205
ZW
27671void
27672cons_fix_new_arm (fragS * frag,
27673 int where,
27674 int size,
62ebcb5c
AM
27675 expressionS * exp,
27676 bfd_reloc_code_real_type reloc)
6c43fab6 27677{
c19d1205 27678 int pcrel = 0;
6c43fab6 27679
c19d1205
ZW
27680 /* Pick a reloc.
27681 FIXME: @@ Should look at CPU word size. */
27682 switch (size)
27683 {
27684 case 1:
62ebcb5c 27685 reloc = BFD_RELOC_8;
c19d1205
ZW
27686 break;
27687 case 2:
62ebcb5c 27688 reloc = BFD_RELOC_16;
c19d1205
ZW
27689 break;
27690 case 4:
27691 default:
62ebcb5c 27692 reloc = BFD_RELOC_32;
c19d1205
ZW
27693 break;
27694 case 8:
62ebcb5c 27695 reloc = BFD_RELOC_64;
c19d1205
ZW
27696 break;
27697 }
6c43fab6 27698
f0927246
NC
27699#ifdef TE_PE
27700 if (exp->X_op == O_secrel)
27701 {
27702 exp->X_op = O_symbol;
62ebcb5c 27703 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
27704 }
27705#endif
27706
62ebcb5c 27707 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 27708}
6c43fab6 27709
4343666d 27710#if defined (OBJ_COFF)
c19d1205
ZW
27711void
27712arm_validate_fix (fixS * fixP)
6c43fab6 27713{
c19d1205
ZW
27714 /* If the destination of the branch is a defined symbol which does not have
27715 the THUMB_FUNC attribute, then we must be calling a function which has
27716 the (interfacearm) attribute. We look for the Thumb entry point to that
27717 function and change the branch to refer to that function instead. */
27718 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
27719 && fixP->fx_addsy != NULL
27720 && S_IS_DEFINED (fixP->fx_addsy)
27721 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 27722 {
c19d1205 27723 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 27724 }
c19d1205
ZW
27725}
27726#endif
6c43fab6 27727
267bf995 27728
c19d1205
ZW
27729int
27730arm_force_relocation (struct fix * fixp)
27731{
27732#if defined (OBJ_COFF) && defined (TE_PE)
27733 if (fixp->fx_r_type == BFD_RELOC_RVA)
27734 return 1;
27735#endif
6c43fab6 27736
267bf995
RR
27737 /* In case we have a call or a branch to a function in ARM ISA mode from
27738 a thumb function or vice-versa force the relocation. These relocations
27739 are cleared off for some cores that might have blx and simple transformations
27740 are possible. */
27741
27742#ifdef OBJ_ELF
27743 switch (fixp->fx_r_type)
27744 {
27745 case BFD_RELOC_ARM_PCREL_JUMP:
27746 case BFD_RELOC_ARM_PCREL_CALL:
27747 case BFD_RELOC_THUMB_PCREL_BLX:
27748 if (THUMB_IS_FUNC (fixp->fx_addsy))
27749 return 1;
27750 break;
27751
27752 case BFD_RELOC_ARM_PCREL_BLX:
27753 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27754 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27755 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27756 if (ARM_IS_FUNC (fixp->fx_addsy))
27757 return 1;
27758 break;
27759
27760 default:
27761 break;
27762 }
27763#endif
27764
b5884301
PB
27765 /* Resolve these relocations even if the symbol is extern or weak.
27766 Technically this is probably wrong due to symbol preemption.
27767 In practice these relocations do not have enough range to be useful
27768 at dynamic link time, and some code (e.g. in the Linux kernel)
27769 expects these references to be resolved. */
c19d1205
ZW
27770 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
27771 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 27772 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 27773 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
27774 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27775 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
27776 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 27777 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
27778 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27779 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
27780 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
27781 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
27782 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
27783 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 27784 return 0;
a737bd4d 27785
4962c51a
MS
27786 /* Always leave these relocations for the linker. */
27787 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27788 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27789 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27790 return 1;
27791
f0291e4c
PB
27792 /* Always generate relocations against function symbols. */
27793 if (fixp->fx_r_type == BFD_RELOC_32
27794 && fixp->fx_addsy
27795 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
27796 return 1;
27797
c19d1205 27798 return generic_force_reloc (fixp);
404ff6b5
AH
27799}
27800
0ffdc86c 27801#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
27802/* Relocations against function names must be left unadjusted,
27803 so that the linker can use this information to generate interworking
27804 stubs. The MIPS version of this function
c19d1205
ZW
27805 also prevents relocations that are mips-16 specific, but I do not
27806 know why it does this.
404ff6b5 27807
c19d1205
ZW
27808 FIXME:
27809 There is one other problem that ought to be addressed here, but
27810 which currently is not: Taking the address of a label (rather
27811 than a function) and then later jumping to that address. Such
27812 addresses also ought to have their bottom bit set (assuming that
27813 they reside in Thumb code), but at the moment they will not. */
404ff6b5 27814
c19d1205
ZW
27815bfd_boolean
27816arm_fix_adjustable (fixS * fixP)
404ff6b5 27817{
c19d1205
ZW
27818 if (fixP->fx_addsy == NULL)
27819 return 1;
404ff6b5 27820
e28387c3
PB
27821 /* Preserve relocations against symbols with function type. */
27822 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 27823 return FALSE;
e28387c3 27824
c19d1205
ZW
27825 if (THUMB_IS_FUNC (fixP->fx_addsy)
27826 && fixP->fx_subsy == NULL)
c921be7d 27827 return FALSE;
a737bd4d 27828
c19d1205
ZW
27829 /* We need the symbol name for the VTABLE entries. */
27830 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
27831 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 27832 return FALSE;
404ff6b5 27833
c19d1205
ZW
27834 /* Don't allow symbols to be discarded on GOT related relocs. */
27835 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
27836 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
27837 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
27838 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 27839 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
27840 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
27841 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 27842 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 27843 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 27844 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 27845 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
27846 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
27847 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
27848 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
27849 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
27850 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 27851 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 27852 return FALSE;
a737bd4d 27853
4962c51a
MS
27854 /* Similarly for group relocations. */
27855 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27856 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27857 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 27858 return FALSE;
4962c51a 27859
79947c54
CD
27860 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
27861 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
27862 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27863 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
27864 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
27865 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27866 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
27867 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
27868 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 27869 return FALSE;
79947c54 27870
72d98d16
MG
27871 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
27872 offsets, so keep these symbols. */
27873 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
27874 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
27875 return FALSE;
27876
c921be7d 27877 return TRUE;
a737bd4d 27878}
0ffdc86c
NC
27879#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
27880
27881#ifdef OBJ_ELF
c19d1205
ZW
27882const char *
27883elf32_arm_target_format (void)
404ff6b5 27884{
c19d1205
ZW
27885#ifdef TE_SYMBIAN
27886 return (target_big_endian
27887 ? "elf32-bigarm-symbian"
27888 : "elf32-littlearm-symbian");
27889#elif defined (TE_VXWORKS)
27890 return (target_big_endian
27891 ? "elf32-bigarm-vxworks"
27892 : "elf32-littlearm-vxworks");
b38cadfb
NC
27893#elif defined (TE_NACL)
27894 return (target_big_endian
27895 ? "elf32-bigarm-nacl"
27896 : "elf32-littlearm-nacl");
c19d1205 27897#else
18a20338
CL
27898 if (arm_fdpic)
27899 {
27900 if (target_big_endian)
27901 return "elf32-bigarm-fdpic";
27902 else
27903 return "elf32-littlearm-fdpic";
27904 }
c19d1205 27905 else
18a20338
CL
27906 {
27907 if (target_big_endian)
27908 return "elf32-bigarm";
27909 else
27910 return "elf32-littlearm";
27911 }
c19d1205 27912#endif
404ff6b5
AH
27913}
27914
c19d1205
ZW
27915void
27916armelf_frob_symbol (symbolS * symp,
27917 int * puntp)
404ff6b5 27918{
c19d1205
ZW
27919 elf_frob_symbol (symp, puntp);
27920}
27921#endif
404ff6b5 27922
c19d1205 27923/* MD interface: Finalization. */
a737bd4d 27924
c19d1205
ZW
27925void
27926arm_cleanup (void)
27927{
27928 literal_pool * pool;
a737bd4d 27929
5ee91343
AV
27930 /* Ensure that all the predication blocks are properly closed. */
27931 check_pred_blocks_finished ();
e07e6e58 27932
c19d1205
ZW
27933 for (pool = list_of_pools; pool; pool = pool->next)
27934 {
5f4273c7 27935 /* Put it at the end of the relevant section. */
c19d1205
ZW
27936 subseg_set (pool->section, pool->sub_section);
27937#ifdef OBJ_ELF
27938 arm_elf_change_section ();
27939#endif
27940 s_ltorg (0);
27941 }
404ff6b5
AH
27942}
27943
cd000bff
DJ
27944#ifdef OBJ_ELF
27945/* Remove any excess mapping symbols generated for alignment frags in
27946 SEC. We may have created a mapping symbol before a zero byte
27947 alignment; remove it if there's a mapping symbol after the
27948 alignment. */
27949static void
27950check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
27951 void *dummy ATTRIBUTE_UNUSED)
27952{
27953 segment_info_type *seginfo = seg_info (sec);
27954 fragS *fragp;
27955
27956 if (seginfo == NULL || seginfo->frchainP == NULL)
27957 return;
27958
27959 for (fragp = seginfo->frchainP->frch_root;
27960 fragp != NULL;
27961 fragp = fragp->fr_next)
27962 {
27963 symbolS *sym = fragp->tc_frag_data.last_map;
27964 fragS *next = fragp->fr_next;
27965
27966 /* Variable-sized frags have been converted to fixed size by
27967 this point. But if this was variable-sized to start with,
27968 there will be a fixed-size frag after it. So don't handle
27969 next == NULL. */
27970 if (sym == NULL || next == NULL)
27971 continue;
27972
27973 if (S_GET_VALUE (sym) < next->fr_address)
27974 /* Not at the end of this frag. */
27975 continue;
27976 know (S_GET_VALUE (sym) == next->fr_address);
27977
27978 do
27979 {
27980 if (next->tc_frag_data.first_map != NULL)
27981 {
27982 /* Next frag starts with a mapping symbol. Discard this
27983 one. */
27984 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
27985 break;
27986 }
27987
27988 if (next->fr_next == NULL)
27989 {
27990 /* This mapping symbol is at the end of the section. Discard
27991 it. */
27992 know (next->fr_fix == 0 && next->fr_var == 0);
27993 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
27994 break;
27995 }
27996
27997 /* As long as we have empty frags without any mapping symbols,
27998 keep looking. */
27999 /* If the next frag is non-empty and does not start with a
28000 mapping symbol, then this mapping symbol is required. */
28001 if (next->fr_address != next->fr_next->fr_address)
28002 break;
28003
28004 next = next->fr_next;
28005 }
28006 while (next != NULL);
28007 }
28008}
28009#endif
28010
c19d1205
ZW
28011/* Adjust the symbol table. This marks Thumb symbols as distinct from
28012 ARM ones. */
404ff6b5 28013
c19d1205
ZW
28014void
28015arm_adjust_symtab (void)
404ff6b5 28016{
c19d1205
ZW
28017#ifdef OBJ_COFF
28018 symbolS * sym;
404ff6b5 28019
c19d1205
ZW
28020 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28021 {
28022 if (ARM_IS_THUMB (sym))
28023 {
28024 if (THUMB_IS_FUNC (sym))
28025 {
28026 /* Mark the symbol as a Thumb function. */
28027 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28028 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28029 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 28030
c19d1205
ZW
28031 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28032 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28033 else
28034 as_bad (_("%s: unexpected function type: %d"),
28035 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28036 }
28037 else switch (S_GET_STORAGE_CLASS (sym))
28038 {
28039 case C_EXT:
28040 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28041 break;
28042 case C_STAT:
28043 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28044 break;
28045 case C_LABEL:
28046 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28047 break;
28048 default:
28049 /* Do nothing. */
28050 break;
28051 }
28052 }
a737bd4d 28053
c19d1205
ZW
28054 if (ARM_IS_INTERWORK (sym))
28055 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 28056 }
c19d1205
ZW
28057#endif
28058#ifdef OBJ_ELF
28059 symbolS * sym;
28060 char bind;
404ff6b5 28061
c19d1205 28062 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 28063 {
c19d1205
ZW
28064 if (ARM_IS_THUMB (sym))
28065 {
28066 elf_symbol_type * elf_sym;
404ff6b5 28067
c19d1205
ZW
28068 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28069 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 28070
b0796911
PB
28071 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28072 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
28073 {
28074 /* If it's a .thumb_func, declare it as so,
28075 otherwise tag label as .code 16. */
28076 if (THUMB_IS_FUNC (sym))
39d911fc
TP
28077 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28078 ST_BRANCH_TO_THUMB);
3ba67470 28079 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
28080 elf_sym->internal_elf_sym.st_info =
28081 ELF_ST_INFO (bind, STT_ARM_16BIT);
28082 }
28083 }
28084 }
cd000bff
DJ
28085
28086 /* Remove any overlapping mapping symbols generated by alignment frags. */
28087 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
28088 /* Now do generic ELF adjustments. */
28089 elf_adjust_symtab ();
c19d1205 28090#endif
404ff6b5
AH
28091}
28092
c19d1205 28093/* MD interface: Initialization. */
404ff6b5 28094
a737bd4d 28095static void
c19d1205 28096set_constant_flonums (void)
a737bd4d 28097{
c19d1205 28098 int i;
404ff6b5 28099
c19d1205
ZW
28100 for (i = 0; i < NUM_FLOAT_VALS; i++)
28101 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28102 abort ();
a737bd4d 28103}
404ff6b5 28104
3e9e4fcf
JB
28105/* Auto-select Thumb mode if it's the only available instruction set for the
28106 given architecture. */
28107
28108static void
28109autoselect_thumb_from_cpu_variant (void)
28110{
28111 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28112 opcode_select (16);
28113}
28114
c19d1205
ZW
28115void
28116md_begin (void)
a737bd4d 28117{
c19d1205
ZW
28118 unsigned mach;
28119 unsigned int i;
404ff6b5 28120
c19d1205
ZW
28121 if ( (arm_ops_hsh = hash_new ()) == NULL
28122 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 28123 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
28124 || (arm_shift_hsh = hash_new ()) == NULL
28125 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 28126 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 28127 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
28128 || (arm_reloc_hsh = hash_new ()) == NULL
28129 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
28130 as_fatal (_("virtual memory exhausted"));
28131
28132 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 28133 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 28134 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 28135 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
28136 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28137 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 28138 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 28139 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 28140 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28141 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 28142 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 28143 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 28144 (void *) (v7m_psrs + i));
c19d1205 28145 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 28146 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
28147 for (i = 0;
28148 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28149 i++)
d3ce72d0 28150 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 28151 (void *) (barrier_opt_names + i));
c19d1205 28152#ifdef OBJ_ELF
3da1d841
NC
28153 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28154 {
28155 struct reloc_entry * entry = reloc_names + i;
28156
28157 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28158 /* This makes encode_branch() use the EABI versions of this relocation. */
28159 entry->reloc = BFD_RELOC_UNUSED;
28160
28161 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28162 }
c19d1205
ZW
28163#endif
28164
28165 set_constant_flonums ();
404ff6b5 28166
c19d1205
ZW
28167 /* Set the cpu variant based on the command-line options. We prefer
28168 -mcpu= over -march= if both are set (as for GCC); and we prefer
28169 -mfpu= over any other way of setting the floating point unit.
28170 Use of legacy options with new options are faulted. */
e74cfd16 28171 if (legacy_cpu)
404ff6b5 28172 {
e74cfd16 28173 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
28174 as_bad (_("use of old and new-style options to set CPU type"));
28175
4d354d8b 28176 selected_arch = *legacy_cpu;
404ff6b5 28177 }
4d354d8b
TP
28178 else if (mcpu_cpu_opt)
28179 {
28180 selected_arch = *mcpu_cpu_opt;
28181 selected_ext = *mcpu_ext_opt;
28182 }
28183 else if (march_cpu_opt)
c168ce07 28184 {
4d354d8b
TP
28185 selected_arch = *march_cpu_opt;
28186 selected_ext = *march_ext_opt;
c168ce07 28187 }
4d354d8b 28188 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 28189
e74cfd16 28190 if (legacy_fpu)
c19d1205 28191 {
e74cfd16 28192 if (mfpu_opt)
c19d1205 28193 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 28194
4d354d8b 28195 selected_fpu = *legacy_fpu;
03b1477f 28196 }
4d354d8b
TP
28197 else if (mfpu_opt)
28198 selected_fpu = *mfpu_opt;
28199 else
03b1477f 28200 {
45eb4c1b
NS
28201#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28202 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
28203 /* Some environments specify a default FPU. If they don't, infer it
28204 from the processor. */
e74cfd16 28205 if (mcpu_fpu_opt)
4d354d8b 28206 selected_fpu = *mcpu_fpu_opt;
e7da50fa 28207 else if (march_fpu_opt)
4d354d8b 28208 selected_fpu = *march_fpu_opt;
39c2da32 28209#else
4d354d8b 28210 selected_fpu = fpu_default;
39c2da32 28211#endif
03b1477f
RE
28212 }
28213
4d354d8b 28214 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 28215 {
4d354d8b
TP
28216 if (!no_cpu_selected ())
28217 selected_fpu = fpu_default;
03b1477f 28218 else
4d354d8b 28219 selected_fpu = fpu_arch_fpa;
03b1477f
RE
28220 }
28221
ee065d83 28222#ifdef CPU_DEFAULT
4d354d8b 28223 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 28224 {
4d354d8b
TP
28225 selected_arch = cpu_default;
28226 selected_cpu = selected_arch;
ee065d83 28227 }
4d354d8b 28228 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 28229#else
4d354d8b
TP
28230 /* Autodection of feature mode: allow all features in cpu_variant but leave
28231 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28232 after all instruction have been processed and we can decide what CPU
28233 should be selected. */
28234 if (ARM_FEATURE_ZERO (selected_arch))
28235 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 28236 else
4d354d8b 28237 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 28238#endif
03b1477f 28239
3e9e4fcf
JB
28240 autoselect_thumb_from_cpu_variant ();
28241
e74cfd16 28242 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 28243
f17c130b 28244#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 28245 {
7cc69913
NC
28246 unsigned int flags = 0;
28247
28248#if defined OBJ_ELF
28249 flags = meabi_flags;
d507cf36
PB
28250
28251 switch (meabi_flags)
33a392fb 28252 {
d507cf36 28253 case EF_ARM_EABI_UNKNOWN:
7cc69913 28254#endif
d507cf36
PB
28255 /* Set the flags in the private structure. */
28256 if (uses_apcs_26) flags |= F_APCS26;
28257 if (support_interwork) flags |= F_INTERWORK;
28258 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 28259 if (pic_code) flags |= F_PIC;
e74cfd16 28260 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
28261 flags |= F_SOFT_FLOAT;
28262
d507cf36
PB
28263 switch (mfloat_abi_opt)
28264 {
28265 case ARM_FLOAT_ABI_SOFT:
28266 case ARM_FLOAT_ABI_SOFTFP:
28267 flags |= F_SOFT_FLOAT;
28268 break;
33a392fb 28269
d507cf36
PB
28270 case ARM_FLOAT_ABI_HARD:
28271 if (flags & F_SOFT_FLOAT)
28272 as_bad (_("hard-float conflicts with specified fpu"));
28273 break;
28274 }
03b1477f 28275
e74cfd16
PB
28276 /* Using pure-endian doubles (even if soft-float). */
28277 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 28278 flags |= F_VFP_FLOAT;
f17c130b 28279
fde78edd 28280#if defined OBJ_ELF
e74cfd16 28281 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 28282 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
28283 break;
28284
8cb51566 28285 case EF_ARM_EABI_VER4:
3a4a14e9 28286 case EF_ARM_EABI_VER5:
c19d1205 28287 /* No additional flags to set. */
d507cf36
PB
28288 break;
28289
28290 default:
28291 abort ();
28292 }
7cc69913 28293#endif
b99bd4ef
NC
28294 bfd_set_private_flags (stdoutput, flags);
28295
28296 /* We have run out flags in the COFF header to encode the
28297 status of ATPCS support, so instead we create a dummy,
c19d1205 28298 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
28299 if (atpcs)
28300 {
28301 asection * sec;
28302
28303 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28304
28305 if (sec != NULL)
28306 {
28307 bfd_set_section_flags
28308 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28309 bfd_set_section_size (stdoutput, sec, 0);
28310 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28311 }
28312 }
7cc69913 28313 }
f17c130b 28314#endif
b99bd4ef
NC
28315
28316 /* Record the CPU type as well. */
2d447fca
JM
28317 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28318 mach = bfd_mach_arm_iWMMXt2;
28319 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 28320 mach = bfd_mach_arm_iWMMXt;
e74cfd16 28321 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 28322 mach = bfd_mach_arm_XScale;
e74cfd16 28323 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 28324 mach = bfd_mach_arm_ep9312;
e74cfd16 28325 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 28326 mach = bfd_mach_arm_5TE;
e74cfd16 28327 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 28328 {
e74cfd16 28329 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28330 mach = bfd_mach_arm_5T;
28331 else
28332 mach = bfd_mach_arm_5;
28333 }
e74cfd16 28334 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 28335 {
e74cfd16 28336 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
28337 mach = bfd_mach_arm_4T;
28338 else
28339 mach = bfd_mach_arm_4;
28340 }
e74cfd16 28341 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 28342 mach = bfd_mach_arm_3M;
e74cfd16
PB
28343 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28344 mach = bfd_mach_arm_3;
28345 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28346 mach = bfd_mach_arm_2a;
28347 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28348 mach = bfd_mach_arm_2;
28349 else
28350 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
28351
28352 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28353}
28354
c19d1205 28355/* Command line processing. */
b99bd4ef 28356
c19d1205
ZW
28357/* md_parse_option
28358 Invocation line includes a switch not recognized by the base assembler.
28359 See if it's a processor-specific option.
b99bd4ef 28360
c19d1205
ZW
28361 This routine is somewhat complicated by the need for backwards
28362 compatibility (since older releases of gcc can't be changed).
28363 The new options try to make the interface as compatible as
28364 possible with GCC.
b99bd4ef 28365
c19d1205 28366 New options (supported) are:
b99bd4ef 28367
c19d1205
ZW
28368 -mcpu=<cpu name> Assemble for selected processor
28369 -march=<architecture name> Assemble for selected architecture
28370 -mfpu=<fpu architecture> Assemble for selected FPU.
28371 -EB/-mbig-endian Big-endian
28372 -EL/-mlittle-endian Little-endian
28373 -k Generate PIC code
28374 -mthumb Start in Thumb mode
28375 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 28376
278df34e 28377 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 28378 -m[no-]warn-syms Warn when symbols match instructions
267bf995 28379
c19d1205 28380 For now we will also provide support for:
b99bd4ef 28381
c19d1205
ZW
28382 -mapcs-32 32-bit Program counter
28383 -mapcs-26 26-bit Program counter
28384 -macps-float Floats passed in FP registers
28385 -mapcs-reentrant Reentrant code
28386 -matpcs
28387 (sometime these will probably be replaced with -mapcs=<list of options>
28388 and -matpcs=<list of options>)
b99bd4ef 28389
c19d1205
ZW
28390 The remaining options are only supported for back-wards compatibility.
28391 Cpu variants, the arm part is optional:
28392 -m[arm]1 Currently not supported.
28393 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28394 -m[arm]3 Arm 3 processor
28395 -m[arm]6[xx], Arm 6 processors
28396 -m[arm]7[xx][t][[d]m] Arm 7 processors
28397 -m[arm]8[10] Arm 8 processors
28398 -m[arm]9[20][tdmi] Arm 9 processors
28399 -mstrongarm[110[0]] StrongARM processors
28400 -mxscale XScale processors
28401 -m[arm]v[2345[t[e]]] Arm architectures
28402 -mall All (except the ARM1)
28403 FP variants:
28404 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28405 -mfpe-old (No float load/store multiples)
28406 -mvfpxd VFP Single precision
28407 -mvfp All VFP
28408 -mno-fpu Disable all floating point instructions
b99bd4ef 28409
c19d1205
ZW
28410 The following CPU names are recognized:
28411 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28412 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28413 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28414 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28415 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28416 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28417 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 28418
c19d1205 28419 */
b99bd4ef 28420
c19d1205 28421const char * md_shortopts = "m:k";
b99bd4ef 28422
c19d1205
ZW
28423#ifdef ARM_BI_ENDIAN
28424#define OPTION_EB (OPTION_MD_BASE + 0)
28425#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 28426#else
c19d1205
ZW
28427#if TARGET_BYTES_BIG_ENDIAN
28428#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 28429#else
c19d1205
ZW
28430#define OPTION_EL (OPTION_MD_BASE + 1)
28431#endif
b99bd4ef 28432#endif
845b51d6 28433#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 28434#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 28435
c19d1205 28436struct option md_longopts[] =
b99bd4ef 28437{
c19d1205
ZW
28438#ifdef OPTION_EB
28439 {"EB", no_argument, NULL, OPTION_EB},
28440#endif
28441#ifdef OPTION_EL
28442 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 28443#endif
845b51d6 28444 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
28445#ifdef OBJ_ELF
28446 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28447#endif
c19d1205
ZW
28448 {NULL, no_argument, NULL, 0}
28449};
b99bd4ef 28450
c19d1205 28451size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 28452
c19d1205 28453struct arm_option_table
b99bd4ef 28454{
0198d5e6
TC
28455 const char * option; /* Option name to match. */
28456 const char * help; /* Help information. */
28457 int * var; /* Variable to change. */
28458 int value; /* What to change it to. */
28459 const char * deprecated; /* If non-null, print this message. */
c19d1205 28460};
b99bd4ef 28461
c19d1205
ZW
28462struct arm_option_table arm_opts[] =
28463{
28464 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28465 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28466 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28467 &support_interwork, 1, NULL},
28468 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28469 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28470 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28471 1, NULL},
28472 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28473 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28474 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28475 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28476 NULL},
b99bd4ef 28477
c19d1205
ZW
28478 /* These are recognized by the assembler, but have no affect on code. */
28479 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28480 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
28481
28482 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28483 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28484 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
28485 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28486 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
28487 {NULL, NULL, NULL, 0, NULL}
28488};
28489
28490struct arm_legacy_option_table
28491{
0198d5e6
TC
28492 const char * option; /* Option name to match. */
28493 const arm_feature_set ** var; /* Variable to change. */
28494 const arm_feature_set value; /* What to change it to. */
28495 const char * deprecated; /* If non-null, print this message. */
e74cfd16 28496};
b99bd4ef 28497
e74cfd16
PB
28498const struct arm_legacy_option_table arm_legacy_opts[] =
28499{
c19d1205
ZW
28500 /* DON'T add any new processors to this list -- we want the whole list
28501 to go away... Add them to the processors table instead. */
e74cfd16
PB
28502 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28503 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28504 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28505 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28506 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28507 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28508 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28509 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28510 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28511 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28512 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28513 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28514 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28515 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28516 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28517 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28518 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28519 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28520 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28521 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28522 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28523 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28524 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28525 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28526 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28527 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28528 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28529 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28530 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28531 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28532 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28533 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28534 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28535 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28536 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28537 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28538 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28539 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28540 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28541 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28542 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28543 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28544 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28545 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28546 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28547 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28548 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28549 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28550 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28551 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28552 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28553 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28554 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28555 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28556 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28557 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28558 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28559 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28560 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28561 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28562 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28563 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28564 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28565 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28566 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28567 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28568 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28569 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28570 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28571 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28572 N_("use -mcpu=strongarm110")},
e74cfd16 28573 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28574 N_("use -mcpu=strongarm1100")},
e74cfd16 28575 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 28576 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
28577 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28578 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28579 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 28580
c19d1205 28581 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
28582 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28583 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28584 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28585 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28586 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28587 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28588 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28589 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28590 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28591 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28592 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28593 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28594 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28595 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28596 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28597 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28598 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28599 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 28600
c19d1205 28601 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
28602 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28603 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28604 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28605 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 28606 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 28607
e74cfd16 28608 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 28609};
7ed4c4c5 28610
c19d1205 28611struct arm_cpu_option_table
7ed4c4c5 28612{
0198d5e6
TC
28613 const char * name;
28614 size_t name_len;
28615 const arm_feature_set value;
28616 const arm_feature_set ext;
c19d1205
ZW
28617 /* For some CPUs we assume an FPU unless the user explicitly sets
28618 -mfpu=... */
0198d5e6 28619 const arm_feature_set default_fpu;
ee065d83
PB
28620 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28621 case. */
0198d5e6 28622 const char * canonical_name;
c19d1205 28623};
7ed4c4c5 28624
c19d1205
ZW
28625/* This list should, at a minimum, contain all the cpu names
28626 recognized by GCC. */
996b5569 28627#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 28628
e74cfd16 28629static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 28630{
996b5569
TP
28631 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28632 ARM_ARCH_NONE,
28633 FPU_ARCH_FPA),
28634 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28635 ARM_ARCH_NONE,
28636 FPU_ARCH_FPA),
28637 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28638 ARM_ARCH_NONE,
28639 FPU_ARCH_FPA),
28640 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28641 ARM_ARCH_NONE,
28642 FPU_ARCH_FPA),
28643 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28644 ARM_ARCH_NONE,
28645 FPU_ARCH_FPA),
28646 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28647 ARM_ARCH_NONE,
28648 FPU_ARCH_FPA),
28649 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28650 ARM_ARCH_NONE,
28651 FPU_ARCH_FPA),
28652 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28653 ARM_ARCH_NONE,
28654 FPU_ARCH_FPA),
28655 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28656 ARM_ARCH_NONE,
28657 FPU_ARCH_FPA),
28658 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
28659 ARM_ARCH_NONE,
28660 FPU_ARCH_FPA),
28661 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
28662 ARM_ARCH_NONE,
28663 FPU_ARCH_FPA),
28664 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
28665 ARM_ARCH_NONE,
28666 FPU_ARCH_FPA),
28667 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
28668 ARM_ARCH_NONE,
28669 FPU_ARCH_FPA),
28670 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
28671 ARM_ARCH_NONE,
28672 FPU_ARCH_FPA),
28673 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
28674 ARM_ARCH_NONE,
28675 FPU_ARCH_FPA),
28676 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
28677 ARM_ARCH_NONE,
28678 FPU_ARCH_FPA),
28679 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
28680 ARM_ARCH_NONE,
28681 FPU_ARCH_FPA),
28682 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
28683 ARM_ARCH_NONE,
28684 FPU_ARCH_FPA),
28685 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
28686 ARM_ARCH_NONE,
28687 FPU_ARCH_FPA),
28688 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
28689 ARM_ARCH_NONE,
28690 FPU_ARCH_FPA),
28691 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
28692 ARM_ARCH_NONE,
28693 FPU_ARCH_FPA),
28694 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
28695 ARM_ARCH_NONE,
28696 FPU_ARCH_FPA),
28697 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
28698 ARM_ARCH_NONE,
28699 FPU_ARCH_FPA),
28700 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
28701 ARM_ARCH_NONE,
28702 FPU_ARCH_FPA),
28703 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
28704 ARM_ARCH_NONE,
28705 FPU_ARCH_FPA),
28706 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
28707 ARM_ARCH_NONE,
28708 FPU_ARCH_FPA),
28709 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
28710 ARM_ARCH_NONE,
28711 FPU_ARCH_FPA),
28712 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
28713 ARM_ARCH_NONE,
28714 FPU_ARCH_FPA),
28715 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
28716 ARM_ARCH_NONE,
28717 FPU_ARCH_FPA),
28718 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
28719 ARM_ARCH_NONE,
28720 FPU_ARCH_FPA),
28721 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
28722 ARM_ARCH_NONE,
28723 FPU_ARCH_FPA),
28724 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
28725 ARM_ARCH_NONE,
28726 FPU_ARCH_FPA),
28727 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
28728 ARM_ARCH_NONE,
28729 FPU_ARCH_FPA),
28730 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
28731 ARM_ARCH_NONE,
28732 FPU_ARCH_FPA),
28733 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
28734 ARM_ARCH_NONE,
28735 FPU_ARCH_FPA),
28736 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
28737 ARM_ARCH_NONE,
28738 FPU_ARCH_FPA),
28739 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
28740 ARM_ARCH_NONE,
28741 FPU_ARCH_FPA),
28742 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
28743 ARM_ARCH_NONE,
28744 FPU_ARCH_FPA),
28745 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
28746 ARM_ARCH_NONE,
28747 FPU_ARCH_FPA),
28748 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
28749 ARM_ARCH_NONE,
28750 FPU_ARCH_FPA),
28751 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
28752 ARM_ARCH_NONE,
28753 FPU_ARCH_FPA),
28754 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
28755 ARM_ARCH_NONE,
28756 FPU_ARCH_FPA),
28757 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
28758 ARM_ARCH_NONE,
28759 FPU_ARCH_FPA),
28760 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
28761 ARM_ARCH_NONE,
28762 FPU_ARCH_FPA),
28763 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
28764 ARM_ARCH_NONE,
28765 FPU_ARCH_FPA),
28766 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
28767 ARM_ARCH_NONE,
28768 FPU_ARCH_FPA),
28769
c19d1205
ZW
28770 /* For V5 or later processors we default to using VFP; but the user
28771 should really set the FPU type explicitly. */
996b5569
TP
28772 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
28773 ARM_ARCH_NONE,
28774 FPU_ARCH_VFP_V2),
28775 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
28776 ARM_ARCH_NONE,
28777 FPU_ARCH_VFP_V2),
28778 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28779 ARM_ARCH_NONE,
28780 FPU_ARCH_VFP_V2),
28781 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28782 ARM_ARCH_NONE,
28783 FPU_ARCH_VFP_V2),
28784 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
28785 ARM_ARCH_NONE,
28786 FPU_ARCH_VFP_V2),
28787 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
28788 ARM_ARCH_NONE,
28789 FPU_ARCH_VFP_V2),
28790 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
28791 ARM_ARCH_NONE,
28792 FPU_ARCH_VFP_V2),
28793 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
28794 ARM_ARCH_NONE,
28795 FPU_ARCH_VFP_V2),
28796 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
28797 ARM_ARCH_NONE,
28798 FPU_ARCH_VFP_V2),
28799 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
28800 ARM_ARCH_NONE,
28801 FPU_ARCH_VFP_V2),
28802 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
28803 ARM_ARCH_NONE,
28804 FPU_ARCH_VFP_V2),
28805 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
28806 ARM_ARCH_NONE,
28807 FPU_ARCH_VFP_V2),
28808 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
28809 ARM_ARCH_NONE,
28810 FPU_ARCH_VFP_V1),
28811 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
28812 ARM_ARCH_NONE,
28813 FPU_ARCH_VFP_V1),
28814 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
28815 ARM_ARCH_NONE,
28816 FPU_ARCH_VFP_V2),
28817 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
28818 ARM_ARCH_NONE,
28819 FPU_ARCH_VFP_V2),
28820 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
28821 ARM_ARCH_NONE,
28822 FPU_ARCH_VFP_V1),
28823 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
28824 ARM_ARCH_NONE,
28825 FPU_ARCH_VFP_V2),
28826 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
28827 ARM_ARCH_NONE,
28828 FPU_ARCH_VFP_V2),
28829 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
28830 ARM_ARCH_NONE,
28831 FPU_ARCH_VFP_V2),
28832 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
28833 ARM_ARCH_NONE,
28834 FPU_ARCH_VFP_V2),
28835 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
28836 ARM_ARCH_NONE,
28837 FPU_ARCH_VFP_V2),
28838 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
28839 ARM_ARCH_NONE,
28840 FPU_ARCH_VFP_V2),
28841 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
28842 ARM_ARCH_NONE,
28843 FPU_ARCH_VFP_V2),
28844 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
28845 ARM_ARCH_NONE,
28846 FPU_ARCH_VFP_V2),
28847 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
28848 ARM_ARCH_NONE,
28849 FPU_ARCH_VFP_V2),
28850 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
28851 ARM_ARCH_NONE,
28852 FPU_NONE),
28853 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
28854 ARM_ARCH_NONE,
28855 FPU_NONE),
28856 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
28857 ARM_ARCH_NONE,
28858 FPU_ARCH_VFP_V2),
28859 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
28860 ARM_ARCH_NONE,
28861 FPU_ARCH_VFP_V2),
28862 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
28863 ARM_ARCH_NONE,
28864 FPU_ARCH_VFP_V2),
28865 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
28866 ARM_ARCH_NONE,
28867 FPU_NONE),
28868 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
28869 ARM_ARCH_NONE,
28870 FPU_NONE),
28871 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
28872 ARM_ARCH_NONE,
28873 FPU_ARCH_VFP_V2),
28874 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
28875 ARM_ARCH_NONE,
28876 FPU_NONE),
28877 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
28878 ARM_ARCH_NONE,
28879 FPU_ARCH_VFP_V2),
28880 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
28881 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28882 FPU_NONE),
28883 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
28884 ARM_ARCH_NONE,
28885 FPU_ARCH_NEON_VFP_V4),
28886 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
28887 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
28888 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
28889 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
28890 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28891 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
28892 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
28893 ARM_ARCH_NONE,
28894 FPU_ARCH_NEON_VFP_V4),
28895 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
28896 ARM_ARCH_NONE,
28897 FPU_ARCH_NEON_VFP_V4),
28898 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
28899 ARM_ARCH_NONE,
28900 FPU_ARCH_NEON_VFP_V4),
28901 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
28902 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28903 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28904 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
28905 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28906 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28907 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
28908 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28909 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
28910 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
28911 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 28912 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
28913 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
28914 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28915 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28916 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
28917 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28918 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28919 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
28920 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28921 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
28922 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
28923 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 28924 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 28925 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
28926 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28927 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
28928 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
28929 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28930 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
28931 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
28932 ARM_ARCH_NONE,
28933 FPU_NONE),
28934 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
28935 ARM_ARCH_NONE,
28936 FPU_ARCH_VFP_V3D16),
28937 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
28938 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
28939 FPU_NONE),
28940 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
28941 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
28942 FPU_ARCH_VFP_V3D16),
28943 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
28944 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
28945 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
28946 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
28947 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28948 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
28949 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
28950 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
28951 FPU_NONE),
28952 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
28953 ARM_ARCH_NONE,
28954 FPU_NONE),
28955 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
28956 ARM_ARCH_NONE,
28957 FPU_NONE),
28958 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
28959 ARM_ARCH_NONE,
28960 FPU_NONE),
28961 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
28962 ARM_ARCH_NONE,
28963 FPU_NONE),
28964 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
28965 ARM_ARCH_NONE,
28966 FPU_NONE),
28967 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
28968 ARM_ARCH_NONE,
28969 FPU_NONE),
28970 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
28971 ARM_ARCH_NONE,
28972 FPU_NONE),
28973 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
28974 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28975 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
28976 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
28977 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28978 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 28979 /* ??? XSCALE is really an architecture. */
996b5569
TP
28980 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
28981 ARM_ARCH_NONE,
28982 FPU_ARCH_VFP_V2),
28983
c19d1205 28984 /* ??? iwmmxt is not a processor. */
996b5569
TP
28985 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
28986 ARM_ARCH_NONE,
28987 FPU_ARCH_VFP_V2),
28988 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
28989 ARM_ARCH_NONE,
28990 FPU_ARCH_VFP_V2),
28991 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
28992 ARM_ARCH_NONE,
28993 FPU_ARCH_VFP_V2),
28994
0198d5e6 28995 /* Maverick. */
996b5569
TP
28996 ARM_CPU_OPT ("ep9312", "ARM920T",
28997 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
28998 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
28999
da4339ed 29000 /* Marvell processors. */
996b5569
TP
29001 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29002 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29003 FPU_ARCH_VFP_V3D16),
29004 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29005 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29006 FPU_ARCH_NEON_VFP_V4),
da4339ed 29007
996b5569
TP
29008 /* APM X-Gene family. */
29009 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29010 ARM_ARCH_NONE,
29011 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29012 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29013 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29014 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29015
29016 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29017};
f3bad469 29018#undef ARM_CPU_OPT
7ed4c4c5 29019
34ef62f4
AV
29020struct arm_ext_table
29021{
29022 const char * name;
29023 size_t name_len;
29024 const arm_feature_set merge;
29025 const arm_feature_set clear;
29026};
29027
c19d1205 29028struct arm_arch_option_table
7ed4c4c5 29029{
34ef62f4
AV
29030 const char * name;
29031 size_t name_len;
29032 const arm_feature_set value;
29033 const arm_feature_set default_fpu;
29034 const struct arm_ext_table * ext_table;
29035};
29036
29037/* Used to add support for +E and +noE extension. */
29038#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29039/* Used to add support for a +E extension. */
29040#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29041/* Used to add support for a +noE extension. */
29042#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29043
29044#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29045 ~0 & ~FPU_ENDIAN_PURE)
29046
29047static const struct arm_ext_table armv5te_ext_table[] =
29048{
29049 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29050 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29051};
29052
29053static const struct arm_ext_table armv7_ext_table[] =
29054{
29055 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29056 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29057};
29058
29059static const struct arm_ext_table armv7ve_ext_table[] =
29060{
29061 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29062 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29063 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29064 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29065 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29066 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29067 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29068
29069 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29070 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29071
29072 /* Aliases for +simd. */
29073 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29074
29075 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29076 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29077 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29078
29079 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29080};
29081
29082static const struct arm_ext_table armv7a_ext_table[] =
29083{
29084 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29085 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29086 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29087 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29088 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29089 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29090 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29091
29092 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29093 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29094
29095 /* Aliases for +simd. */
29096 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29097 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29098
29099 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29100 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29101
29102 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29103 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29104 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29105};
29106
29107static const struct arm_ext_table armv7r_ext_table[] =
29108{
29109 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29110 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29111 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29112 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29113 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29114 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29115 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29116 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29117 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29118};
29119
29120static const struct arm_ext_table armv7em_ext_table[] =
29121{
29122 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29123 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29124 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29125 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29126 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29127 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29128 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29129};
29130
29131static const struct arm_ext_table armv8a_ext_table[] =
29132{
29133 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29134 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29135 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29136 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29137
29138 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29139 should use the +simd option to turn on FP. */
29140 ARM_REMOVE ("fp", ALL_FP),
29141 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29142 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29143 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29144};
29145
29146
29147static const struct arm_ext_table armv81a_ext_table[] =
29148{
29149 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29150 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29151 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29152
29153 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29154 should use the +simd option to turn on FP. */
29155 ARM_REMOVE ("fp", ALL_FP),
29156 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29157 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29158 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29159};
29160
29161static const struct arm_ext_table armv82a_ext_table[] =
29162{
29163 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29164 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29165 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29166 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29167 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29168 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29169
29170 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29171 should use the +simd option to turn on FP. */
29172 ARM_REMOVE ("fp", ALL_FP),
29173 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29174 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29175 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29176};
29177
29178static const struct arm_ext_table armv84a_ext_table[] =
29179{
29180 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29181 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29182 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29183 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29184
29185 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29186 should use the +simd option to turn on FP. */
29187 ARM_REMOVE ("fp", ALL_FP),
29188 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29189 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29190 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29191};
29192
29193static const struct arm_ext_table armv85a_ext_table[] =
29194{
29195 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29196 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29197 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29198 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29199
29200 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29201 should use the +simd option to turn on FP. */
29202 ARM_REMOVE ("fp", ALL_FP),
29203 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29204};
29205
29206static const struct arm_ext_table armv8m_main_ext_table[] =
29207{
29208 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29209 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29210 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29211 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29212 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29213};
29214
e0991585
AV
29215static const struct arm_ext_table armv8_1m_main_ext_table[] =
29216{
29217 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29218 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29219 ARM_EXT ("fp",
29220 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29221 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29222 ALL_FP),
29223 ARM_ADD ("fp.dp",
29224 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29225 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
29226 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29227 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29228 ARM_ADD ("mve.fp",
29229 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29230 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29231 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
29232 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29233};
29234
34ef62f4
AV
29235static const struct arm_ext_table armv8r_ext_table[] =
29236{
29237 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29238 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29239 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29240 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29241 ARM_REMOVE ("fp", ALL_FP),
29242 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29243 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 29244};
7ed4c4c5 29245
c19d1205
ZW
29246/* This list should, at a minimum, contain all the architecture names
29247 recognized by GCC. */
34ef62f4
AV
29248#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29249#define ARM_ARCH_OPT2(N, V, DF, ext) \
29250 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 29251
e74cfd16 29252static const struct arm_arch_option_table arm_archs[] =
c19d1205 29253{
497d849d
TP
29254 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29255 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29256 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29257 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29258 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29259 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29260 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29261 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29262 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29263 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29264 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29265 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29266 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29267 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
29268 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29269 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29270 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29271 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29272 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29273 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29274 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29275 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29276 kept to preserve existing behaviour. */
34ef62f4
AV
29277 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29278 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29279 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29280 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29281 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
29282 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29283 kept to preserve existing behaviour. */
34ef62f4
AV
29284 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29285 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
29286 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29287 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 29288 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
29289 /* The official spelling of the ARMv7 profile variants is the dashed form.
29290 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
29291 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29292 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29293 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29294 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
29295 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29296 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 29297 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 29298 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 29299 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
29300 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29301 armv8m_main),
e0991585
AV
29302 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29303 armv8_1m_main),
34ef62f4
AV
29304 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29305 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29306 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29307 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29308 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29309 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29310 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
29311 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29312 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29313 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 29314 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 29315};
f3bad469 29316#undef ARM_ARCH_OPT
7ed4c4c5 29317
69133863 29318/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 29319
69133863 29320struct arm_option_extension_value_table
c19d1205 29321{
0198d5e6
TC
29322 const char * name;
29323 size_t name_len;
29324 const arm_feature_set merge_value;
29325 const arm_feature_set clear_value;
d942732e
TP
29326 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29327 indicates that an extension is available for all architectures while
29328 ARM_ANY marks an empty entry. */
0198d5e6 29329 const arm_feature_set allowed_archs[2];
c19d1205 29330};
7ed4c4c5 29331
0198d5e6
TC
29332/* The following table must be in alphabetical order with a NULL last entry. */
29333
d942732e
TP
29334#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29335#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 29336
34ef62f4
AV
29337/* DEPRECATED: Refrain from using this table to add any new extensions, instead
29338 use the context sensitive approach using arm_ext_table's. */
69133863 29339static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 29340{
823d2571
TG
29341 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29342 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 29343 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
29344 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29345 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
29346 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29347 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29348 ARM_ARCH_V8_2A),
15afaa63
TP
29349 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29350 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29351 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
29352 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29353 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
29354 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29355 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29356 ARM_ARCH_V8_2A),
01f48020
TC
29357 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29358 | ARM_EXT2_FP16_FML),
29359 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29360 | ARM_EXT2_FP16_FML),
29361 ARM_ARCH_V8_2A),
d942732e 29362 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 29363 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
29364 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29365 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
29366 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29367 Thumb divide instruction. Due to this having the same name as the
29368 previous entry, this will be ignored when doing command-line parsing and
29369 only considered by build attribute selection code. */
29370 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29371 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29372 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 29373 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 29374 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 29375 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 29376 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 29377 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
29378 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29379 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 29380 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
29381 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29382 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
29383 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29384 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29385 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
29386 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29387 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 29388 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
29389 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29390 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29391 ARM_ARCH_V8A),
4d1464f2
MW
29392 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29393 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 29394 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
29395 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29396 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 29397 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
29398 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29399 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29400 ARM_ARCH_V8A),
d942732e 29401 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 29402 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
29403 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29404 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
29405 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29406 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29407 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
29408 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29409 | ARM_EXT_DIV),
29410 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29411 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29412 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
29413 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29414 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 29415};
f3bad469 29416#undef ARM_EXT_OPT
69133863
MGD
29417
29418/* ISA floating-point and Advanced SIMD extensions. */
29419struct arm_option_fpu_value_table
29420{
0198d5e6
TC
29421 const char * name;
29422 const arm_feature_set value;
c19d1205 29423};
7ed4c4c5 29424
c19d1205
ZW
29425/* This list should, at a minimum, contain all the fpu names
29426 recognized by GCC. */
69133863 29427static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
29428{
29429 {"softfpa", FPU_NONE},
29430 {"fpe", FPU_ARCH_FPE},
29431 {"fpe2", FPU_ARCH_FPE},
29432 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29433 {"fpa", FPU_ARCH_FPA},
29434 {"fpa10", FPU_ARCH_FPA},
29435 {"fpa11", FPU_ARCH_FPA},
29436 {"arm7500fe", FPU_ARCH_FPA},
29437 {"softvfp", FPU_ARCH_VFP},
29438 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29439 {"vfp", FPU_ARCH_VFP_V2},
29440 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 29441 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
29442 {"vfp10", FPU_ARCH_VFP_V2},
29443 {"vfp10-r0", FPU_ARCH_VFP_V1},
29444 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
29445 {"vfpv2", FPU_ARCH_VFP_V2},
29446 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 29447 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 29448 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
29449 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29450 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29451 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
29452 {"arm1020t", FPU_ARCH_VFP_V1},
29453 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 29454 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
29455 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29456 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 29457 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 29458 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 29459 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
29460 {"vfpv4", FPU_ARCH_VFP_V4},
29461 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 29462 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
29463 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29464 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 29465 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
29466 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29467 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29468 {"crypto-neon-fp-armv8",
29469 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 29470 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
29471 {"crypto-neon-fp-armv8.1",
29472 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
29473 {NULL, ARM_ARCH_NONE}
29474};
29475
29476struct arm_option_value_table
29477{
e0471c16 29478 const char *name;
e74cfd16 29479 long value;
c19d1205 29480};
7ed4c4c5 29481
e74cfd16 29482static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
29483{
29484 {"hard", ARM_FLOAT_ABI_HARD},
29485 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29486 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 29487 {NULL, 0}
c19d1205 29488};
7ed4c4c5 29489
c19d1205 29490#ifdef OBJ_ELF
3a4a14e9 29491/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 29492static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
29493{
29494 {"gnu", EF_ARM_EABI_UNKNOWN},
29495 {"4", EF_ARM_EABI_VER4},
3a4a14e9 29496 {"5", EF_ARM_EABI_VER5},
e74cfd16 29497 {NULL, 0}
c19d1205
ZW
29498};
29499#endif
7ed4c4c5 29500
c19d1205
ZW
29501struct arm_long_option_table
29502{
0198d5e6 29503 const char * option; /* Substring to match. */
e0471c16 29504 const char * help; /* Help information. */
17b9d67d 29505 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 29506 const char * deprecated; /* If non-null, print this message. */
c19d1205 29507};
7ed4c4c5 29508
c921be7d 29509static bfd_boolean
c168ce07 29510arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
29511 arm_feature_set *ext_set,
29512 const struct arm_ext_table *ext_table)
7ed4c4c5 29513{
69133863 29514 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
29515 extensions being added before being removed. We achieve this by having
29516 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 29517 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 29518 or removing it (0) and only allowing it to change in the order
69133863
MGD
29519 -1 -> 1 -> 0. */
29520 const struct arm_option_extension_value_table * opt = NULL;
d942732e 29521 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
29522 int adding_value = -1;
29523
c19d1205 29524 while (str != NULL && *str != 0)
7ed4c4c5 29525 {
82b8a785 29526 const char *ext;
f3bad469 29527 size_t len;
7ed4c4c5 29528
c19d1205
ZW
29529 if (*str != '+')
29530 {
29531 as_bad (_("invalid architectural extension"));
c921be7d 29532 return FALSE;
c19d1205 29533 }
7ed4c4c5 29534
c19d1205
ZW
29535 str++;
29536 ext = strchr (str, '+');
7ed4c4c5 29537
c19d1205 29538 if (ext != NULL)
f3bad469 29539 len = ext - str;
c19d1205 29540 else
f3bad469 29541 len = strlen (str);
7ed4c4c5 29542
f3bad469 29543 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
29544 {
29545 if (adding_value != 0)
29546 {
29547 adding_value = 0;
29548 opt = arm_extensions;
29549 }
29550
f3bad469 29551 len -= 2;
69133863
MGD
29552 str += 2;
29553 }
f3bad469 29554 else if (len > 0)
69133863
MGD
29555 {
29556 if (adding_value == -1)
29557 {
29558 adding_value = 1;
29559 opt = arm_extensions;
29560 }
29561 else if (adding_value != 1)
29562 {
29563 as_bad (_("must specify extensions to add before specifying "
29564 "those to remove"));
29565 return FALSE;
29566 }
29567 }
29568
f3bad469 29569 if (len == 0)
c19d1205
ZW
29570 {
29571 as_bad (_("missing architectural extension"));
c921be7d 29572 return FALSE;
c19d1205 29573 }
7ed4c4c5 29574
69133863
MGD
29575 gas_assert (adding_value != -1);
29576 gas_assert (opt != NULL);
29577
34ef62f4
AV
29578 if (ext_table != NULL)
29579 {
29580 const struct arm_ext_table * ext_opt = ext_table;
29581 bfd_boolean found = FALSE;
29582 for (; ext_opt->name != NULL; ext_opt++)
29583 if (ext_opt->name_len == len
29584 && strncmp (ext_opt->name, str, len) == 0)
29585 {
29586 if (adding_value)
29587 {
29588 if (ARM_FEATURE_ZERO (ext_opt->merge))
29589 /* TODO: Option not supported. When we remove the
29590 legacy table this case should error out. */
29591 continue;
29592
29593 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29594 }
29595 else
29596 {
29597 if (ARM_FEATURE_ZERO (ext_opt->clear))
29598 /* TODO: Option not supported. When we remove the
29599 legacy table this case should error out. */
29600 continue;
29601 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29602 }
29603 found = TRUE;
29604 break;
29605 }
29606 if (found)
29607 {
29608 str = ext;
29609 continue;
29610 }
29611 }
29612
69133863
MGD
29613 /* Scan over the options table trying to find an exact match. */
29614 for (; opt->name != NULL; opt++)
f3bad469 29615 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29616 {
d942732e
TP
29617 int i, nb_allowed_archs =
29618 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 29619 /* Check we can apply the extension to this architecture. */
d942732e
TP
29620 for (i = 0; i < nb_allowed_archs; i++)
29621 {
29622 /* Empty entry. */
29623 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29624 continue;
c168ce07 29625 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
29626 break;
29627 }
29628 if (i == nb_allowed_archs)
69133863
MGD
29629 {
29630 as_bad (_("extension does not apply to the base architecture"));
29631 return FALSE;
29632 }
29633
29634 /* Add or remove the extension. */
29635 if (adding_value)
4d354d8b 29636 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 29637 else
4d354d8b 29638 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 29639
3d030cdb
TP
29640 /* Allowing Thumb division instructions for ARMv7 in autodetection
29641 rely on this break so that duplicate extensions (extensions
29642 with the same name as a previous extension in the list) are not
29643 considered for command-line parsing. */
c19d1205
ZW
29644 break;
29645 }
7ed4c4c5 29646
c19d1205
ZW
29647 if (opt->name == NULL)
29648 {
69133863
MGD
29649 /* Did we fail to find an extension because it wasn't specified in
29650 alphabetical order, or because it does not exist? */
29651
29652 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 29653 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
29654 break;
29655
29656 if (opt->name == NULL)
29657 as_bad (_("unknown architectural extension `%s'"), str);
29658 else
29659 as_bad (_("architectural extensions must be specified in "
29660 "alphabetical order"));
29661
c921be7d 29662 return FALSE;
c19d1205 29663 }
69133863
MGD
29664 else
29665 {
29666 /* We should skip the extension we've just matched the next time
29667 round. */
29668 opt++;
29669 }
7ed4c4c5 29670
c19d1205
ZW
29671 str = ext;
29672 };
7ed4c4c5 29673
c921be7d 29674 return TRUE;
c19d1205 29675}
7ed4c4c5 29676
c921be7d 29677static bfd_boolean
17b9d67d 29678arm_parse_cpu (const char *str)
7ed4c4c5 29679{
f3bad469 29680 const struct arm_cpu_option_table *opt;
82b8a785 29681 const char *ext = strchr (str, '+');
f3bad469 29682 size_t len;
7ed4c4c5 29683
c19d1205 29684 if (ext != NULL)
f3bad469 29685 len = ext - str;
7ed4c4c5 29686 else
f3bad469 29687 len = strlen (str);
7ed4c4c5 29688
f3bad469 29689 if (len == 0)
7ed4c4c5 29690 {
c19d1205 29691 as_bad (_("missing cpu name `%s'"), str);
c921be7d 29692 return FALSE;
7ed4c4c5
NC
29693 }
29694
c19d1205 29695 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 29696 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29697 {
c168ce07 29698 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
29699 if (mcpu_ext_opt == NULL)
29700 mcpu_ext_opt = XNEW (arm_feature_set);
29701 *mcpu_ext_opt = opt->ext;
e74cfd16 29702 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 29703 if (opt->canonical_name)
ef8e6722
JW
29704 {
29705 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
29706 strcpy (selected_cpu_name, opt->canonical_name);
29707 }
ee065d83
PB
29708 else
29709 {
f3bad469 29710 size_t i;
c921be7d 29711
ef8e6722
JW
29712 if (len >= sizeof selected_cpu_name)
29713 len = (sizeof selected_cpu_name) - 1;
29714
f3bad469 29715 for (i = 0; i < len; i++)
ee065d83
PB
29716 selected_cpu_name[i] = TOUPPER (opt->name[i]);
29717 selected_cpu_name[i] = 0;
29718 }
7ed4c4c5 29719
c19d1205 29720 if (ext != NULL)
34ef62f4 29721 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 29722
c921be7d 29723 return TRUE;
c19d1205 29724 }
7ed4c4c5 29725
c19d1205 29726 as_bad (_("unknown cpu `%s'"), str);
c921be7d 29727 return FALSE;
7ed4c4c5
NC
29728}
29729
c921be7d 29730static bfd_boolean
17b9d67d 29731arm_parse_arch (const char *str)
7ed4c4c5 29732{
e74cfd16 29733 const struct arm_arch_option_table *opt;
82b8a785 29734 const char *ext = strchr (str, '+');
f3bad469 29735 size_t len;
7ed4c4c5 29736
c19d1205 29737 if (ext != NULL)
f3bad469 29738 len = ext - str;
7ed4c4c5 29739 else
f3bad469 29740 len = strlen (str);
7ed4c4c5 29741
f3bad469 29742 if (len == 0)
7ed4c4c5 29743 {
c19d1205 29744 as_bad (_("missing architecture name `%s'"), str);
c921be7d 29745 return FALSE;
7ed4c4c5
NC
29746 }
29747
c19d1205 29748 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 29749 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 29750 {
e74cfd16 29751 march_cpu_opt = &opt->value;
4d354d8b
TP
29752 if (march_ext_opt == NULL)
29753 march_ext_opt = XNEW (arm_feature_set);
29754 *march_ext_opt = arm_arch_none;
e74cfd16 29755 march_fpu_opt = &opt->default_fpu;
5f4273c7 29756 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 29757
c19d1205 29758 if (ext != NULL)
34ef62f4
AV
29759 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
29760 opt->ext_table);
7ed4c4c5 29761
c921be7d 29762 return TRUE;
c19d1205
ZW
29763 }
29764
29765 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 29766 return FALSE;
7ed4c4c5 29767}
eb043451 29768
c921be7d 29769static bfd_boolean
17b9d67d 29770arm_parse_fpu (const char * str)
c19d1205 29771{
69133863 29772 const struct arm_option_fpu_value_table * opt;
b99bd4ef 29773
c19d1205
ZW
29774 for (opt = arm_fpus; opt->name != NULL; opt++)
29775 if (streq (opt->name, str))
29776 {
e74cfd16 29777 mfpu_opt = &opt->value;
c921be7d 29778 return TRUE;
c19d1205 29779 }
b99bd4ef 29780
c19d1205 29781 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 29782 return FALSE;
c19d1205
ZW
29783}
29784
c921be7d 29785static bfd_boolean
17b9d67d 29786arm_parse_float_abi (const char * str)
b99bd4ef 29787{
e74cfd16 29788 const struct arm_option_value_table * opt;
b99bd4ef 29789
c19d1205
ZW
29790 for (opt = arm_float_abis; opt->name != NULL; opt++)
29791 if (streq (opt->name, str))
29792 {
29793 mfloat_abi_opt = opt->value;
c921be7d 29794 return TRUE;
c19d1205 29795 }
cc8a6dd0 29796
c19d1205 29797 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 29798 return FALSE;
c19d1205 29799}
b99bd4ef 29800
c19d1205 29801#ifdef OBJ_ELF
c921be7d 29802static bfd_boolean
17b9d67d 29803arm_parse_eabi (const char * str)
c19d1205 29804{
e74cfd16 29805 const struct arm_option_value_table *opt;
cc8a6dd0 29806
c19d1205
ZW
29807 for (opt = arm_eabis; opt->name != NULL; opt++)
29808 if (streq (opt->name, str))
29809 {
29810 meabi_flags = opt->value;
c921be7d 29811 return TRUE;
c19d1205
ZW
29812 }
29813 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 29814 return FALSE;
c19d1205
ZW
29815}
29816#endif
cc8a6dd0 29817
c921be7d 29818static bfd_boolean
17b9d67d 29819arm_parse_it_mode (const char * str)
e07e6e58 29820{
c921be7d 29821 bfd_boolean ret = TRUE;
e07e6e58
NC
29822
29823 if (streq ("arm", str))
29824 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
29825 else if (streq ("thumb", str))
29826 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
29827 else if (streq ("always", str))
29828 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
29829 else if (streq ("never", str))
29830 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
29831 else
29832 {
29833 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 29834 "arm, thumb, always, or never."), str);
c921be7d 29835 ret = FALSE;
e07e6e58
NC
29836 }
29837
29838 return ret;
29839}
29840
2e6976a8 29841static bfd_boolean
17b9d67d 29842arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
29843{
29844 codecomposer_syntax = TRUE;
29845 arm_comment_chars[0] = ';';
29846 arm_line_separator_chars[0] = 0;
29847 return TRUE;
29848}
29849
c19d1205
ZW
29850struct arm_long_option_table arm_long_opts[] =
29851{
29852 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
29853 arm_parse_cpu, NULL},
29854 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
29855 arm_parse_arch, NULL},
29856 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
29857 arm_parse_fpu, NULL},
29858 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
29859 arm_parse_float_abi, NULL},
29860#ifdef OBJ_ELF
7fac0536 29861 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
29862 arm_parse_eabi, NULL},
29863#endif
e07e6e58
NC
29864 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
29865 arm_parse_it_mode, NULL},
2e6976a8
DG
29866 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
29867 arm_ccs_mode, NULL},
c19d1205
ZW
29868 {NULL, NULL, 0, NULL}
29869};
cc8a6dd0 29870
c19d1205 29871int
17b9d67d 29872md_parse_option (int c, const char * arg)
c19d1205
ZW
29873{
29874 struct arm_option_table *opt;
e74cfd16 29875 const struct arm_legacy_option_table *fopt;
c19d1205 29876 struct arm_long_option_table *lopt;
b99bd4ef 29877
c19d1205 29878 switch (c)
b99bd4ef 29879 {
c19d1205
ZW
29880#ifdef OPTION_EB
29881 case OPTION_EB:
29882 target_big_endian = 1;
29883 break;
29884#endif
cc8a6dd0 29885
c19d1205
ZW
29886#ifdef OPTION_EL
29887 case OPTION_EL:
29888 target_big_endian = 0;
29889 break;
29890#endif
b99bd4ef 29891
845b51d6
PB
29892 case OPTION_FIX_V4BX:
29893 fix_v4bx = TRUE;
29894 break;
29895
18a20338
CL
29896#ifdef OBJ_ELF
29897 case OPTION_FDPIC:
29898 arm_fdpic = TRUE;
29899 break;
29900#endif /* OBJ_ELF */
29901
c19d1205
ZW
29902 case 'a':
29903 /* Listing option. Just ignore these, we don't support additional
29904 ones. */
29905 return 0;
b99bd4ef 29906
c19d1205
ZW
29907 default:
29908 for (opt = arm_opts; opt->option != NULL; opt++)
29909 {
29910 if (c == opt->option[0]
29911 && ((arg == NULL && opt->option[1] == 0)
29912 || streq (arg, opt->option + 1)))
29913 {
c19d1205 29914 /* If the option is deprecated, tell the user. */
278df34e 29915 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
29916 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
29917 arg ? arg : "", _(opt->deprecated));
b99bd4ef 29918
c19d1205
ZW
29919 if (opt->var != NULL)
29920 *opt->var = opt->value;
cc8a6dd0 29921
c19d1205
ZW
29922 return 1;
29923 }
29924 }
b99bd4ef 29925
e74cfd16
PB
29926 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
29927 {
29928 if (c == fopt->option[0]
29929 && ((arg == NULL && fopt->option[1] == 0)
29930 || streq (arg, fopt->option + 1)))
29931 {
e74cfd16 29932 /* If the option is deprecated, tell the user. */
278df34e 29933 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
29934 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
29935 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
29936
29937 if (fopt->var != NULL)
29938 *fopt->var = &fopt->value;
29939
29940 return 1;
29941 }
29942 }
29943
c19d1205
ZW
29944 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
29945 {
29946 /* These options are expected to have an argument. */
29947 if (c == lopt->option[0]
29948 && arg != NULL
29949 && strncmp (arg, lopt->option + 1,
29950 strlen (lopt->option + 1)) == 0)
29951 {
c19d1205 29952 /* If the option is deprecated, tell the user. */
278df34e 29953 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
29954 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
29955 _(lopt->deprecated));
b99bd4ef 29956
c19d1205
ZW
29957 /* Call the sup-option parser. */
29958 return lopt->func (arg + strlen (lopt->option) - 1);
29959 }
29960 }
a737bd4d 29961
c19d1205
ZW
29962 return 0;
29963 }
a394c00f 29964
c19d1205
ZW
29965 return 1;
29966}
a394c00f 29967
c19d1205
ZW
29968void
29969md_show_usage (FILE * fp)
a394c00f 29970{
c19d1205
ZW
29971 struct arm_option_table *opt;
29972 struct arm_long_option_table *lopt;
a394c00f 29973
c19d1205 29974 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 29975
c19d1205
ZW
29976 for (opt = arm_opts; opt->option != NULL; opt++)
29977 if (opt->help != NULL)
29978 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 29979
c19d1205
ZW
29980 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
29981 if (lopt->help != NULL)
29982 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 29983
c19d1205
ZW
29984#ifdef OPTION_EB
29985 fprintf (fp, _("\
29986 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
29987#endif
29988
c19d1205
ZW
29989#ifdef OPTION_EL
29990 fprintf (fp, _("\
29991 -EL assemble code for a little-endian cpu\n"));
a737bd4d 29992#endif
845b51d6
PB
29993
29994 fprintf (fp, _("\
29995 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
29996
29997#ifdef OBJ_ELF
29998 fprintf (fp, _("\
29999 --fdpic generate an FDPIC object file\n"));
30000#endif /* OBJ_ELF */
c19d1205 30001}
ee065d83 30002
ee065d83 30003#ifdef OBJ_ELF
0198d5e6 30004
62b3e311
PB
30005typedef struct
30006{
30007 int val;
30008 arm_feature_set flags;
30009} cpu_arch_ver_table;
30010
2c6b98ea
TP
30011/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30012 chronologically for architectures, with an exception for ARMv6-M and
30013 ARMv6S-M due to legacy reasons. No new architecture should have a
30014 special case. This allows for build attribute selection results to be
30015 stable when new architectures are added. */
62b3e311
PB
30016static const cpu_arch_ver_table cpu_arch_ver[] =
30017{
031254f2
AV
30018 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30019 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30020 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30021 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30022 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30023 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30024 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30025 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30026 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30027 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30028 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30029 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30030 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30031 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30032 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30033 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30034 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30035 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30036 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30037 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30038 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30039 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30040 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30041 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
30042
30043 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30044 always selected build attributes to match those of ARMv6-M
30045 (resp. ARMv6S-M). However, due to these architectures being a strict
30046 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30047 would be selected when fully respecting chronology of architectures.
30048 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30049 move them before ARMv7 architectures. */
031254f2
AV
30050 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30051 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30052
30053 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30054 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30055 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30056 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30057 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30058 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30059 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30060 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30061 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30062 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30063 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30064 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30065 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30066 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30067 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30068 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30069 {-1, ARM_ARCH_NONE}
62b3e311
PB
30070};
30071
ee3c0378 30072/* Set an attribute if it has not already been set by the user. */
0198d5e6 30073
ee3c0378
AS
30074static void
30075aeabi_set_attribute_int (int tag, int value)
30076{
30077 if (tag < 1
30078 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30079 || !attributes_set_explicitly[tag])
30080 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30081}
30082
30083static void
30084aeabi_set_attribute_string (int tag, const char *value)
30085{
30086 if (tag < 1
30087 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30088 || !attributes_set_explicitly[tag])
30089 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30090}
30091
2c6b98ea
TP
30092/* Return whether features in the *NEEDED feature set are available via
30093 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 30094
2c6b98ea
TP
30095static bfd_boolean
30096have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30097 const arm_feature_set *needed)
30098{
30099 int i, nb_allowed_archs;
30100 arm_feature_set ext_fset;
30101 const struct arm_option_extension_value_table *opt;
30102
30103 ext_fset = arm_arch_none;
30104 for (opt = arm_extensions; opt->name != NULL; opt++)
30105 {
30106 /* Extension does not provide any feature we need. */
30107 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30108 continue;
30109
30110 nb_allowed_archs =
30111 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30112 for (i = 0; i < nb_allowed_archs; i++)
30113 {
30114 /* Empty entry. */
30115 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30116 break;
30117
30118 /* Extension is available, add it. */
30119 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30120 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30121 }
30122 }
30123
30124 /* Can we enable all features in *needed? */
30125 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30126}
30127
30128/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30129 a given architecture feature set *ARCH_EXT_FSET including extension feature
30130 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30131 - if true, check for an exact match of the architecture modulo extensions;
30132 - otherwise, select build attribute value of the first superset
30133 architecture released so that results remains stable when new architectures
30134 are added.
30135 For -march/-mcpu=all the build attribute value of the most featureful
30136 architecture is returned. Tag_CPU_arch_profile result is returned in
30137 PROFILE. */
0198d5e6 30138
2c6b98ea
TP
30139static int
30140get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30141 const arm_feature_set *ext_fset,
30142 char *profile, int exact_match)
30143{
30144 arm_feature_set arch_fset;
30145 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30146
30147 /* Select most featureful architecture with all its extensions if building
30148 for -march=all as the feature sets used to set build attributes. */
30149 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30150 {
30151 /* Force revisiting of decision for each new architecture. */
031254f2 30152 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
30153 *profile = 'A';
30154 return TAG_CPU_ARCH_V8;
30155 }
30156
30157 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30158
30159 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30160 {
30161 arm_feature_set known_arch_fset;
30162
30163 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30164 if (exact_match)
30165 {
30166 /* Base architecture match user-specified architecture and
30167 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30168 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30169 {
30170 p_ver_ret = p_ver;
30171 goto found;
30172 }
30173 /* Base architecture match user-specified architecture only
30174 (eg. ARMv6-M in the same case as above). Record it in case we
30175 find a match with above condition. */
30176 else if (p_ver_ret == NULL
30177 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30178 p_ver_ret = p_ver;
30179 }
30180 else
30181 {
30182
30183 /* Architecture has all features wanted. */
30184 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30185 {
30186 arm_feature_set added_fset;
30187
30188 /* Compute features added by this architecture over the one
30189 recorded in p_ver_ret. */
30190 if (p_ver_ret != NULL)
30191 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30192 p_ver_ret->flags);
30193 /* First architecture that match incl. with extensions, or the
30194 only difference in features over the recorded match is
30195 features that were optional and are now mandatory. */
30196 if (p_ver_ret == NULL
30197 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30198 {
30199 p_ver_ret = p_ver;
30200 goto found;
30201 }
30202 }
30203 else if (p_ver_ret == NULL)
30204 {
30205 arm_feature_set needed_ext_fset;
30206
30207 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30208
30209 /* Architecture has all features needed when using some
30210 extensions. Record it and continue searching in case there
30211 exist an architecture providing all needed features without
30212 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30213 OS extension). */
30214 if (have_ext_for_needed_feat_p (&known_arch_fset,
30215 &needed_ext_fset))
30216 p_ver_ret = p_ver;
30217 }
30218 }
30219 }
30220
30221 if (p_ver_ret == NULL)
30222 return -1;
30223
30224found:
30225 /* Tag_CPU_arch_profile. */
30226 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30227 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30228 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30229 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30230 *profile = 'A';
30231 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30232 *profile = 'R';
30233 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30234 *profile = 'M';
30235 else
30236 *profile = '\0';
30237 return p_ver_ret->val;
30238}
30239
ee065d83 30240/* Set the public EABI object attributes. */
0198d5e6 30241
c168ce07 30242static void
ee065d83
PB
30243aeabi_set_public_attributes (void)
30244{
b90d5ba0 30245 char profile = '\0';
2c6b98ea 30246 int arch = -1;
90ec0d68 30247 int virt_sec = 0;
bca38921 30248 int fp16_optional = 0;
2c6b98ea
TP
30249 int skip_exact_match = 0;
30250 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 30251
54bab281
TP
30252 /* Autodetection mode, choose the architecture based the instructions
30253 actually used. */
30254 if (no_cpu_selected ())
30255 {
30256 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 30257
54bab281
TP
30258 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30259 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 30260
54bab281
TP
30261 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30262 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 30263
54bab281 30264 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
30265 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30266 flags_ext = arm_arch_none;
30267 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30268 selected_ext = flags_ext;
54bab281
TP
30269 selected_cpu = flags;
30270 }
30271 /* Otherwise, choose the architecture based on the capabilities of the
30272 requested cpu. */
30273 else
4d354d8b
TP
30274 {
30275 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30276 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30277 flags_ext = selected_ext;
30278 flags = selected_cpu;
30279 }
30280 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 30281
ddd7f988 30282 /* Allow the user to override the reported architecture. */
4d354d8b 30283 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 30284 {
4d354d8b 30285 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 30286 flags_ext = arm_arch_none;
7a1d4c38 30287 }
2c6b98ea 30288 else
4d354d8b 30289 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
30290
30291 /* When this function is run again after relaxation has happened there is no
30292 way to determine whether an architecture or CPU was specified by the user:
30293 - selected_cpu is set above for relaxation to work;
30294 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30295 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30296 Therefore, if not in -march=all case we first try an exact match and fall
30297 back to autodetection. */
30298 if (!skip_exact_match)
30299 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30300 if (arch == -1)
30301 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30302 if (arch == -1)
30303 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 30304
ee065d83
PB
30305 /* Tag_CPU_name. */
30306 if (selected_cpu_name[0])
30307 {
91d6fa6a 30308 char *q;
ee065d83 30309
91d6fa6a
NC
30310 q = selected_cpu_name;
30311 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
30312 {
30313 int i;
5f4273c7 30314
91d6fa6a
NC
30315 q += 4;
30316 for (i = 0; q[i]; i++)
30317 q[i] = TOUPPER (q[i]);
ee065d83 30318 }
91d6fa6a 30319 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 30320 }
62f3b8c8 30321
ee065d83 30322 /* Tag_CPU_arch. */
ee3c0378 30323 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 30324
62b3e311 30325 /* Tag_CPU_arch_profile. */
69239280
MGD
30326 if (profile != '\0')
30327 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 30328
15afaa63 30329 /* Tag_DSP_extension. */
4d354d8b 30330 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 30331 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 30332
2c6b98ea 30333 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 30334 /* Tag_ARM_ISA_use. */
ee3c0378 30335 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 30336 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 30337 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 30338
ee065d83 30339 /* Tag_THUMB_ISA_use. */
ee3c0378 30340 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 30341 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
30342 {
30343 int thumb_isa_use;
30344
30345 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 30346 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
30347 thumb_isa_use = 3;
30348 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30349 thumb_isa_use = 2;
30350 else
30351 thumb_isa_use = 1;
30352 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30353 }
62f3b8c8 30354
ee065d83 30355 /* Tag_VFP_arch. */
a715796b
TG
30356 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30357 aeabi_set_attribute_int (Tag_VFP_arch,
30358 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30359 ? 7 : 8);
bca38921 30360 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
30361 aeabi_set_attribute_int (Tag_VFP_arch,
30362 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30363 ? 5 : 6);
30364 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
30365 {
30366 fp16_optional = 1;
30367 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30368 }
ada65aa3 30369 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
30370 {
30371 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30372 fp16_optional = 1;
30373 }
ee3c0378
AS
30374 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30375 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30376 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 30377 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 30378 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 30379
4547cb56
NC
30380 /* Tag_ABI_HardFP_use. */
30381 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30382 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30383 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30384
ee065d83 30385 /* Tag_WMMX_arch. */
ee3c0378
AS
30386 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30387 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30388 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30389 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 30390
ee3c0378 30391 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
30392 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30393 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30394 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
30395 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30396 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30397 {
30398 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30399 {
30400 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30401 }
30402 else
30403 {
30404 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30405 fp16_optional = 1;
30406 }
30407 }
fa94de6b 30408
a7ad558c
AV
30409 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30410 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30411 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30412 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30413
ee3c0378 30414 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 30415 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 30416 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 30417
69239280
MGD
30418 /* Tag_DIV_use.
30419
30420 We set Tag_DIV_use to two when integer divide instructions have been used
30421 in ARM state, or when Thumb integer divide instructions have been used,
30422 but we have no architecture profile set, nor have we any ARM instructions.
30423
4ed7ed8d
TP
30424 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30425 by the base architecture.
bca38921 30426
69239280 30427 For new architectures we will have to check these tests. */
031254f2 30428 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
30429 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30430 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
30431 aeabi_set_attribute_int (Tag_DIV_use, 0);
30432 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30433 || (profile == '\0'
30434 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30435 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 30436 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
30437
30438 /* Tag_MP_extension_use. */
30439 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30440 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
30441
30442 /* Tag Virtualization_use. */
30443 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
30444 virt_sec |= 1;
30445 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30446 virt_sec |= 2;
30447 if (virt_sec != 0)
30448 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
30449}
30450
c168ce07
TP
30451/* Post relaxation hook. Recompute ARM attributes now that relaxation is
30452 finished and free extension feature bits which will not be used anymore. */
0198d5e6 30453
c168ce07
TP
30454void
30455arm_md_post_relax (void)
30456{
30457 aeabi_set_public_attributes ();
4d354d8b
TP
30458 XDELETE (mcpu_ext_opt);
30459 mcpu_ext_opt = NULL;
30460 XDELETE (march_ext_opt);
30461 march_ext_opt = NULL;
c168ce07
TP
30462}
30463
104d59d1 30464/* Add the default contents for the .ARM.attributes section. */
0198d5e6 30465
ee065d83
PB
30466void
30467arm_md_end (void)
30468{
ee065d83
PB
30469 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30470 return;
30471
30472 aeabi_set_public_attributes ();
ee065d83 30473}
8463be01 30474#endif /* OBJ_ELF */
ee065d83 30475
ee065d83
PB
30476/* Parse a .cpu directive. */
30477
30478static void
30479s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30480{
e74cfd16 30481 const struct arm_cpu_option_table *opt;
ee065d83
PB
30482 char *name;
30483 char saved_char;
30484
30485 name = input_line_pointer;
5f4273c7 30486 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30487 input_line_pointer++;
30488 saved_char = *input_line_pointer;
30489 *input_line_pointer = 0;
30490
30491 /* Skip the first "all" entry. */
30492 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30493 if (streq (opt->name, name))
30494 {
4d354d8b
TP
30495 selected_arch = opt->value;
30496 selected_ext = opt->ext;
30497 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 30498 if (opt->canonical_name)
5f4273c7 30499 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
30500 else
30501 {
30502 int i;
30503 for (i = 0; opt->name[i]; i++)
30504 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 30505
ee065d83
PB
30506 selected_cpu_name[i] = 0;
30507 }
4d354d8b
TP
30508 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30509
ee065d83
PB
30510 *input_line_pointer = saved_char;
30511 demand_empty_rest_of_line ();
30512 return;
30513 }
30514 as_bad (_("unknown cpu `%s'"), name);
30515 *input_line_pointer = saved_char;
30516 ignore_rest_of_line ();
30517}
30518
ee065d83
PB
30519/* Parse a .arch directive. */
30520
30521static void
30522s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30523{
e74cfd16 30524 const struct arm_arch_option_table *opt;
ee065d83
PB
30525 char saved_char;
30526 char *name;
30527
30528 name = input_line_pointer;
5f4273c7 30529 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30530 input_line_pointer++;
30531 saved_char = *input_line_pointer;
30532 *input_line_pointer = 0;
30533
30534 /* Skip the first "all" entry. */
30535 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30536 if (streq (opt->name, name))
30537 {
4d354d8b
TP
30538 selected_arch = opt->value;
30539 selected_ext = arm_arch_none;
30540 selected_cpu = selected_arch;
5f4273c7 30541 strcpy (selected_cpu_name, opt->name);
4d354d8b 30542 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30543 *input_line_pointer = saved_char;
30544 demand_empty_rest_of_line ();
30545 return;
30546 }
30547
30548 as_bad (_("unknown architecture `%s'\n"), name);
30549 *input_line_pointer = saved_char;
30550 ignore_rest_of_line ();
30551}
30552
7a1d4c38
PB
30553/* Parse a .object_arch directive. */
30554
30555static void
30556s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30557{
30558 const struct arm_arch_option_table *opt;
30559 char saved_char;
30560 char *name;
30561
30562 name = input_line_pointer;
5f4273c7 30563 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
30564 input_line_pointer++;
30565 saved_char = *input_line_pointer;
30566 *input_line_pointer = 0;
30567
30568 /* Skip the first "all" entry. */
30569 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30570 if (streq (opt->name, name))
30571 {
4d354d8b 30572 selected_object_arch = opt->value;
7a1d4c38
PB
30573 *input_line_pointer = saved_char;
30574 demand_empty_rest_of_line ();
30575 return;
30576 }
30577
30578 as_bad (_("unknown architecture `%s'\n"), name);
30579 *input_line_pointer = saved_char;
30580 ignore_rest_of_line ();
30581}
30582
69133863
MGD
30583/* Parse a .arch_extension directive. */
30584
30585static void
30586s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30587{
30588 const struct arm_option_extension_value_table *opt;
30589 char saved_char;
30590 char *name;
30591 int adding_value = 1;
30592
30593 name = input_line_pointer;
30594 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30595 input_line_pointer++;
30596 saved_char = *input_line_pointer;
30597 *input_line_pointer = 0;
30598
30599 if (strlen (name) >= 2
30600 && strncmp (name, "no", 2) == 0)
30601 {
30602 adding_value = 0;
30603 name += 2;
30604 }
30605
30606 for (opt = arm_extensions; opt->name != NULL; opt++)
30607 if (streq (opt->name, name))
30608 {
d942732e
TP
30609 int i, nb_allowed_archs =
30610 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30611 for (i = 0; i < nb_allowed_archs; i++)
30612 {
30613 /* Empty entry. */
4d354d8b 30614 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 30615 continue;
4d354d8b 30616 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
30617 break;
30618 }
30619
30620 if (i == nb_allowed_archs)
69133863
MGD
30621 {
30622 as_bad (_("architectural extension `%s' is not allowed for the "
30623 "current base architecture"), name);
30624 break;
30625 }
30626
30627 if (adding_value)
4d354d8b 30628 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 30629 opt->merge_value);
69133863 30630 else
4d354d8b 30631 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 30632
4d354d8b
TP
30633 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30634 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
30635 *input_line_pointer = saved_char;
30636 demand_empty_rest_of_line ();
3d030cdb
TP
30637 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30638 on this return so that duplicate extensions (extensions with the
30639 same name as a previous extension in the list) are not considered
30640 for command-line parsing. */
69133863
MGD
30641 return;
30642 }
30643
30644 if (opt->name == NULL)
e673710a 30645 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
30646
30647 *input_line_pointer = saved_char;
30648 ignore_rest_of_line ();
30649}
30650
ee065d83
PB
30651/* Parse a .fpu directive. */
30652
30653static void
30654s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30655{
69133863 30656 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
30657 char saved_char;
30658 char *name;
30659
30660 name = input_line_pointer;
5f4273c7 30661 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
30662 input_line_pointer++;
30663 saved_char = *input_line_pointer;
30664 *input_line_pointer = 0;
5f4273c7 30665
ee065d83
PB
30666 for (opt = arm_fpus; opt->name != NULL; opt++)
30667 if (streq (opt->name, name))
30668 {
4d354d8b
TP
30669 selected_fpu = opt->value;
30670#ifndef CPU_DEFAULT
30671 if (no_cpu_selected ())
30672 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30673 else
30674#endif
30675 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
30676 *input_line_pointer = saved_char;
30677 demand_empty_rest_of_line ();
30678 return;
30679 }
30680
30681 as_bad (_("unknown floating point format `%s'\n"), name);
30682 *input_line_pointer = saved_char;
30683 ignore_rest_of_line ();
30684}
ee065d83 30685
794ba86a 30686/* Copy symbol information. */
f31fef98 30687
794ba86a
DJ
30688void
30689arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
30690{
30691 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
30692}
e04befd0 30693
f31fef98 30694#ifdef OBJ_ELF
e04befd0
AS
30695/* Given a symbolic attribute NAME, return the proper integer value.
30696 Returns -1 if the attribute is not known. */
f31fef98 30697
e04befd0
AS
30698int
30699arm_convert_symbolic_attribute (const char *name)
30700{
f31fef98
NC
30701 static const struct
30702 {
30703 const char * name;
30704 const int tag;
30705 }
30706 attribute_table[] =
30707 {
30708 /* When you modify this table you should
30709 also modify the list in doc/c-arm.texi. */
e04befd0 30710#define T(tag) {#tag, tag}
f31fef98
NC
30711 T (Tag_CPU_raw_name),
30712 T (Tag_CPU_name),
30713 T (Tag_CPU_arch),
30714 T (Tag_CPU_arch_profile),
30715 T (Tag_ARM_ISA_use),
30716 T (Tag_THUMB_ISA_use),
75375b3e 30717 T (Tag_FP_arch),
f31fef98
NC
30718 T (Tag_VFP_arch),
30719 T (Tag_WMMX_arch),
30720 T (Tag_Advanced_SIMD_arch),
30721 T (Tag_PCS_config),
30722 T (Tag_ABI_PCS_R9_use),
30723 T (Tag_ABI_PCS_RW_data),
30724 T (Tag_ABI_PCS_RO_data),
30725 T (Tag_ABI_PCS_GOT_use),
30726 T (Tag_ABI_PCS_wchar_t),
30727 T (Tag_ABI_FP_rounding),
30728 T (Tag_ABI_FP_denormal),
30729 T (Tag_ABI_FP_exceptions),
30730 T (Tag_ABI_FP_user_exceptions),
30731 T (Tag_ABI_FP_number_model),
75375b3e 30732 T (Tag_ABI_align_needed),
f31fef98 30733 T (Tag_ABI_align8_needed),
75375b3e 30734 T (Tag_ABI_align_preserved),
f31fef98
NC
30735 T (Tag_ABI_align8_preserved),
30736 T (Tag_ABI_enum_size),
30737 T (Tag_ABI_HardFP_use),
30738 T (Tag_ABI_VFP_args),
30739 T (Tag_ABI_WMMX_args),
30740 T (Tag_ABI_optimization_goals),
30741 T (Tag_ABI_FP_optimization_goals),
30742 T (Tag_compatibility),
30743 T (Tag_CPU_unaligned_access),
75375b3e 30744 T (Tag_FP_HP_extension),
f31fef98
NC
30745 T (Tag_VFP_HP_extension),
30746 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
30747 T (Tag_MPextension_use),
30748 T (Tag_DIV_use),
f31fef98
NC
30749 T (Tag_nodefaults),
30750 T (Tag_also_compatible_with),
30751 T (Tag_conformance),
30752 T (Tag_T2EE_use),
30753 T (Tag_Virtualization_use),
15afaa63 30754 T (Tag_DSP_extension),
a7ad558c 30755 T (Tag_MVE_arch),
cd21e546 30756 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 30757#undef T
f31fef98 30758 };
e04befd0
AS
30759 unsigned int i;
30760
30761 if (name == NULL)
30762 return -1;
30763
f31fef98 30764 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 30765 if (streq (name, attribute_table[i].name))
e04befd0
AS
30766 return attribute_table[i].tag;
30767
30768 return -1;
30769}
267bf995 30770
93ef582d
NC
30771/* Apply sym value for relocations only in the case that they are for
30772 local symbols in the same segment as the fixup and you have the
30773 respective architectural feature for blx and simple switches. */
0198d5e6 30774
267bf995 30775int
93ef582d 30776arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
30777{
30778 if (fixP->fx_addsy
30779 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
30780 /* PR 17444: If the local symbol is in a different section then a reloc
30781 will always be generated for it, so applying the symbol value now
30782 will result in a double offset being stored in the relocation. */
30783 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 30784 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
30785 {
30786 switch (fixP->fx_r_type)
30787 {
30788 case BFD_RELOC_ARM_PCREL_BLX:
30789 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30790 if (ARM_IS_FUNC (fixP->fx_addsy))
30791 return 1;
30792 break;
30793
30794 case BFD_RELOC_ARM_PCREL_CALL:
30795 case BFD_RELOC_THUMB_PCREL_BLX:
30796 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 30797 return 1;
267bf995
RR
30798 break;
30799
30800 default:
30801 break;
30802 }
30803
30804 }
30805 return 0;
30806}
f31fef98 30807#endif /* OBJ_ELF */
This page took 6.574477 seconds and 4 git commands to generate.