*** empty log message ***
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
f31fef98 3 2004, 2005, 2006, 2007, 2008, 2009
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef
NC
99#ifndef CPU_DEFAULT
100#if defined __XSCALE__
e74cfd16 101#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
102#else
103#if defined __thumb__
e74cfd16 104#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
105#endif
106#endif
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
e74cfd16
PB
129static arm_feature_set cpu_variant;
130static arm_feature_set arm_arch_used;
131static arm_feature_set thumb_arch_used;
b99bd4ef 132
b99bd4ef 133/* Flags stored in private area of BFD structure. */
c19d1205
ZW
134static int uses_apcs_26 = FALSE;
135static int atpcs = FALSE;
b34976b6
AM
136static int support_interwork = FALSE;
137static int uses_apcs_float = FALSE;
c19d1205 138static int pic_code = FALSE;
845b51d6 139static int fix_v4bx = FALSE;
278df34e
NS
140/* Warn on using deprecated features. */
141static int warn_on_deprecated = TRUE;
142
03b1477f
RE
143
144/* Variables that we set while parsing command-line options. Once all
145 options have been read we re-process these values to set the real
146 assembly flags. */
e74cfd16
PB
147static const arm_feature_set *legacy_cpu = NULL;
148static const arm_feature_set *legacy_fpu = NULL;
149
150static const arm_feature_set *mcpu_cpu_opt = NULL;
151static const arm_feature_set *mcpu_fpu_opt = NULL;
152static const arm_feature_set *march_cpu_opt = NULL;
153static const arm_feature_set *march_fpu_opt = NULL;
154static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 155static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
156
157/* Constants for known architecture features. */
158static const arm_feature_set fpu_default = FPU_DEFAULT;
159static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
160static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
161static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
162static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
163static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
164static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
165static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
166static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
167
168#ifdef CPU_DEFAULT
169static const arm_feature_set cpu_default = CPU_DEFAULT;
170#endif
171
172static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
174static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
175static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
176static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
177static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
178static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
179static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
180static const arm_feature_set arm_ext_v4t_5 =
181 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
182static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
183static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
184static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
185static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
186static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
187static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
188static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
189static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 190static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 191static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
192static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
193static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
194static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 198static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470
PB
199static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
201
202static const arm_feature_set arm_arch_any = ARM_ANY;
203static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
204static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
205static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
206
2d447fca
JM
207static const arm_feature_set arm_cext_iwmmxt2 =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
209static const arm_feature_set arm_cext_iwmmxt =
210 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
211static const arm_feature_set arm_cext_xscale =
212 ARM_FEATURE (0, ARM_CEXT_XSCALE);
213static const arm_feature_set arm_cext_maverick =
214 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
215static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
216static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
217static const arm_feature_set fpu_vfp_ext_v1xd =
218 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
219static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
220static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 221static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 222static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
223static const arm_feature_set fpu_vfp_ext_d32 =
224 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
225static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
226static const arm_feature_set fpu_vfp_v3_or_neon_ext =
227 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
228static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
229static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
230static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 231
33a392fb 232static int mfloat_abi_opt = -1;
e74cfd16
PB
233/* Record user cpu selection for object attributes. */
234static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
235/* Must be long enough to hold any of the names in arm_cpus. */
236static char selected_cpu_name[16];
7cc69913 237#ifdef OBJ_ELF
deeaaff8
DJ
238# ifdef EABI_DEFAULT
239static int meabi_flags = EABI_DEFAULT;
240# else
d507cf36 241static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 242# endif
e1da3f5b 243
ee3c0378
AS
244static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
e1da3f5b 246bfd_boolean
5f4273c7 247arm_is_eabi (void)
e1da3f5b
PB
248{
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250}
7cc69913 251#endif
b99bd4ef 252
b99bd4ef 253#ifdef OBJ_ELF
c19d1205 254/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
255symbolS * GOT_symbol;
256#endif
257
b99bd4ef
NC
258/* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262static int thumb_mode = 0;
8dc2430f
NC
263/* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266#define MODE_RECORDED (1 << 4)
b99bd4ef 267
e07e6e58
NC
268/* Specifies the intrinsic IT insn behavior mode. */
269enum implicit_it_mode
270{
271 IMPLICIT_IT_MODE_NEVER = 0x00,
272 IMPLICIT_IT_MODE_ARM = 0x01,
273 IMPLICIT_IT_MODE_THUMB = 0x02,
274 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
275};
276static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
277
c19d1205
ZW
278/* If unified_syntax is true, we are processing the new unified
279 ARM/Thumb syntax. Important differences from the old ARM mode:
280
281 - Immediate operands do not require a # prefix.
282 - Conditional affixes always appear at the end of the
283 instruction. (For backward compatibility, those instructions
284 that formerly had them in the middle, continue to accept them
285 there.)
286 - The IT instruction may appear, and if it does is validated
287 against subsequent conditional affixes. It does not generate
288 machine code.
289
290 Important differences from the old Thumb mode:
291
292 - Immediate operands do not require a # prefix.
293 - Most of the V6T2 instructions are only available in unified mode.
294 - The .N and .W suffixes are recognized and honored (it is an error
295 if they cannot be honored).
296 - All instructions set the flags if and only if they have an 's' affix.
297 - Conditional affixes may be used. They are validated against
298 preceding IT instructions. Unlike ARM mode, you cannot use a
299 conditional affix except in the scope of an IT instruction. */
300
301static bfd_boolean unified_syntax = FALSE;
b99bd4ef 302
5287ad62
JB
303enum neon_el_type
304{
dcbf9037 305 NT_invtype,
5287ad62
JB
306 NT_untyped,
307 NT_integer,
308 NT_float,
309 NT_poly,
310 NT_signed,
dcbf9037 311 NT_unsigned
5287ad62
JB
312};
313
314struct neon_type_el
315{
316 enum neon_el_type type;
317 unsigned size;
318};
319
320#define NEON_MAX_TYPE_ELS 4
321
322struct neon_type
323{
324 struct neon_type_el el[NEON_MAX_TYPE_ELS];
325 unsigned elems;
326};
327
e07e6e58
NC
328enum it_instruction_type
329{
330 OUTSIDE_IT_INSN,
331 INSIDE_IT_INSN,
332 INSIDE_IT_LAST_INSN,
333 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
334 if inside, should be the last one. */
335 NEUTRAL_IT_INSN, /* This could be either inside or outside,
336 i.e. BKPT and NOP. */
337 IT_INSN /* The IT insn has been parsed. */
338};
339
b99bd4ef
NC
340struct arm_it
341{
c19d1205 342 const char * error;
b99bd4ef 343 unsigned long instruction;
c19d1205
ZW
344 int size;
345 int size_req;
346 int cond;
037e8744
JB
347 /* "uncond_value" is set to the value in place of the conditional field in
348 unconditional versions of the instruction, or -1 if nothing is
349 appropriate. */
350 int uncond_value;
5287ad62 351 struct neon_type vectype;
0110f2b8
PB
352 /* Set to the opcode if the instruction needs relaxation.
353 Zero if the instruction is not relaxed. */
354 unsigned long relax;
b99bd4ef
NC
355 struct
356 {
357 bfd_reloc_code_real_type type;
c19d1205
ZW
358 expressionS exp;
359 int pc_rel;
b99bd4ef 360 } reloc;
b99bd4ef 361
e07e6e58
NC
362 enum it_instruction_type it_insn_type;
363
c19d1205
ZW
364 struct
365 {
366 unsigned reg;
ca3f61f7 367 signed int imm;
dcbf9037 368 struct neon_type_el vectype;
ca3f61f7
NC
369 unsigned present : 1; /* Operand present. */
370 unsigned isreg : 1; /* Operand was a register. */
371 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
372 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
373 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 374 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
375 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
376 instructions. This allows us to disambiguate ARM <-> vector insns. */
377 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 378 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 379 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 380 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
381 unsigned hasreloc : 1; /* Operand has relocation suffix. */
382 unsigned writeback : 1; /* Operand has trailing ! */
383 unsigned preind : 1; /* Preindexed address. */
384 unsigned postind : 1; /* Postindexed address. */
385 unsigned negative : 1; /* Index register was negated. */
386 unsigned shifted : 1; /* Shift applied to operation. */
387 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 388 } operands[6];
b99bd4ef
NC
389};
390
c19d1205 391static struct arm_it inst;
b99bd4ef
NC
392
393#define NUM_FLOAT_VALS 8
394
05d2d07e 395const char * fp_const[] =
b99bd4ef
NC
396{
397 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
398};
399
c19d1205 400/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
401#define MAX_LITTLENUMS 6
402
403LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
404
405#define FAIL (-1)
406#define SUCCESS (0)
407
408#define SUFF_S 1
409#define SUFF_D 2
410#define SUFF_E 3
411#define SUFF_P 4
412
c19d1205
ZW
413#define CP_T_X 0x00008000
414#define CP_T_Y 0x00400000
b99bd4ef 415
c19d1205
ZW
416#define CONDS_BIT 0x00100000
417#define LOAD_BIT 0x00100000
b99bd4ef
NC
418
419#define DOUBLE_LOAD_FLAG 0x00000001
420
421struct asm_cond
422{
d3ce72d0 423 const char * template_name;
c921be7d 424 unsigned long value;
b99bd4ef
NC
425};
426
c19d1205 427#define COND_ALWAYS 0xE
b99bd4ef 428
b99bd4ef
NC
429struct asm_psr
430{
d3ce72d0 431 const char * template_name;
c921be7d 432 unsigned long field;
b99bd4ef
NC
433};
434
62b3e311
PB
435struct asm_barrier_opt
436{
d3ce72d0 437 const char * template_name;
c921be7d 438 unsigned long value;
62b3e311
PB
439};
440
2d2255b5 441/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
442#define SPSR_BIT (1 << 22)
443
c19d1205
ZW
444/* The individual PSR flag bits. */
445#define PSR_c (1 << 16)
446#define PSR_x (1 << 17)
447#define PSR_s (1 << 18)
448#define PSR_f (1 << 19)
b99bd4ef 449
c19d1205 450struct reloc_entry
bfae80f2 451{
c921be7d
NC
452 char * name;
453 bfd_reloc_code_real_type reloc;
bfae80f2
RE
454};
455
5287ad62 456enum vfp_reg_pos
bfae80f2 457{
5287ad62
JB
458 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
459 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
460};
461
462enum vfp_ldstm_type
463{
464 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
465};
466
dcbf9037
JB
467/* Bits for DEFINED field in neon_typed_alias. */
468#define NTA_HASTYPE 1
469#define NTA_HASINDEX 2
470
471struct neon_typed_alias
472{
c921be7d
NC
473 unsigned char defined;
474 unsigned char index;
475 struct neon_type_el eltype;
dcbf9037
JB
476};
477
c19d1205
ZW
478/* ARM register categories. This includes coprocessor numbers and various
479 architecture extensions' registers. */
480enum arm_reg_type
bfae80f2 481{
c19d1205
ZW
482 REG_TYPE_RN,
483 REG_TYPE_CP,
484 REG_TYPE_CN,
485 REG_TYPE_FN,
486 REG_TYPE_VFS,
487 REG_TYPE_VFD,
5287ad62 488 REG_TYPE_NQ,
037e8744 489 REG_TYPE_VFSD,
5287ad62 490 REG_TYPE_NDQ,
037e8744 491 REG_TYPE_NSDQ,
c19d1205
ZW
492 REG_TYPE_VFC,
493 REG_TYPE_MVF,
494 REG_TYPE_MVD,
495 REG_TYPE_MVFX,
496 REG_TYPE_MVDX,
497 REG_TYPE_MVAX,
498 REG_TYPE_DSPSC,
499 REG_TYPE_MMXWR,
500 REG_TYPE_MMXWC,
501 REG_TYPE_MMXWCG,
502 REG_TYPE_XSCALE,
bfae80f2
RE
503};
504
dcbf9037
JB
505/* Structure for a hash table entry for a register.
506 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
507 information which states whether a vector type or index is specified (for a
508 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
509struct reg_entry
510{
c921be7d
NC
511 const char * name;
512 unsigned char number;
513 unsigned char type;
514 unsigned char builtin;
515 struct neon_typed_alias * neon;
6c43fab6
RE
516};
517
c19d1205 518/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 519const char * const reg_expected_msgs[] =
c19d1205
ZW
520{
521 N_("ARM register expected"),
522 N_("bad or missing co-processor number"),
523 N_("co-processor register expected"),
524 N_("FPA register expected"),
525 N_("VFP single precision register expected"),
5287ad62
JB
526 N_("VFP/Neon double precision register expected"),
527 N_("Neon quad precision register expected"),
037e8744 528 N_("VFP single or double precision register expected"),
5287ad62 529 N_("Neon double or quad precision register expected"),
037e8744 530 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
531 N_("VFP system register expected"),
532 N_("Maverick MVF register expected"),
533 N_("Maverick MVD register expected"),
534 N_("Maverick MVFX register expected"),
535 N_("Maverick MVDX register expected"),
536 N_("Maverick MVAX register expected"),
537 N_("Maverick DSPSC register expected"),
538 N_("iWMMXt data register expected"),
539 N_("iWMMXt control register expected"),
540 N_("iWMMXt scalar register expected"),
541 N_("XScale accumulator register expected"),
6c43fab6
RE
542};
543
c19d1205
ZW
544/* Some well known registers that we refer to directly elsewhere. */
545#define REG_SP 13
546#define REG_LR 14
547#define REG_PC 15
404ff6b5 548
b99bd4ef
NC
549/* ARM instructions take 4bytes in the object file, Thumb instructions
550 take 2: */
c19d1205 551#define INSN_SIZE 4
b99bd4ef
NC
552
553struct asm_opcode
554{
555 /* Basic string to match. */
d3ce72d0 556 const char * template_name;
c19d1205
ZW
557
558 /* Parameters to instruction. */
559 unsigned char operands[8];
560
561 /* Conditional tag - see opcode_lookup. */
562 unsigned int tag : 4;
b99bd4ef
NC
563
564 /* Basic instruction code. */
c19d1205 565 unsigned int avalue : 28;
b99bd4ef 566
c19d1205
ZW
567 /* Thumb-format instruction code. */
568 unsigned int tvalue;
b99bd4ef 569
90e4755a 570 /* Which architecture variant provides this instruction. */
c921be7d
NC
571 const arm_feature_set * avariant;
572 const arm_feature_set * tvariant;
c19d1205
ZW
573
574 /* Function to call to encode instruction in ARM format. */
575 void (* aencode) (void);
b99bd4ef 576
c19d1205
ZW
577 /* Function to call to encode instruction in Thumb format. */
578 void (* tencode) (void);
b99bd4ef
NC
579};
580
a737bd4d
NC
581/* Defines for various bits that we will want to toggle. */
582#define INST_IMMEDIATE 0x02000000
583#define OFFSET_REG 0x02000000
c19d1205 584#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
585#define SHIFT_BY_REG 0x00000010
586#define PRE_INDEX 0x01000000
587#define INDEX_UP 0x00800000
588#define WRITE_BACK 0x00200000
589#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 590#define CPSI_MMOD 0x00020000
90e4755a 591
a737bd4d
NC
592#define LITERAL_MASK 0xf000f000
593#define OPCODE_MASK 0xfe1fffff
594#define V4_STR_BIT 0x00000020
90e4755a 595
efd81785
PB
596#define T2_SUBS_PC_LR 0xf3de8f00
597
a737bd4d 598#define DATA_OP_SHIFT 21
90e4755a 599
ef8d22e6
PB
600#define T2_OPCODE_MASK 0xfe1fffff
601#define T2_DATA_OP_SHIFT 21
602
a737bd4d
NC
603/* Codes to distinguish the arithmetic instructions. */
604#define OPCODE_AND 0
605#define OPCODE_EOR 1
606#define OPCODE_SUB 2
607#define OPCODE_RSB 3
608#define OPCODE_ADD 4
609#define OPCODE_ADC 5
610#define OPCODE_SBC 6
611#define OPCODE_RSC 7
612#define OPCODE_TST 8
613#define OPCODE_TEQ 9
614#define OPCODE_CMP 10
615#define OPCODE_CMN 11
616#define OPCODE_ORR 12
617#define OPCODE_MOV 13
618#define OPCODE_BIC 14
619#define OPCODE_MVN 15
90e4755a 620
ef8d22e6
PB
621#define T2_OPCODE_AND 0
622#define T2_OPCODE_BIC 1
623#define T2_OPCODE_ORR 2
624#define T2_OPCODE_ORN 3
625#define T2_OPCODE_EOR 4
626#define T2_OPCODE_ADD 8
627#define T2_OPCODE_ADC 10
628#define T2_OPCODE_SBC 11
629#define T2_OPCODE_SUB 13
630#define T2_OPCODE_RSB 14
631
a737bd4d
NC
632#define T_OPCODE_MUL 0x4340
633#define T_OPCODE_TST 0x4200
634#define T_OPCODE_CMN 0x42c0
635#define T_OPCODE_NEG 0x4240
636#define T_OPCODE_MVN 0x43c0
90e4755a 637
a737bd4d
NC
638#define T_OPCODE_ADD_R3 0x1800
639#define T_OPCODE_SUB_R3 0x1a00
640#define T_OPCODE_ADD_HI 0x4400
641#define T_OPCODE_ADD_ST 0xb000
642#define T_OPCODE_SUB_ST 0xb080
643#define T_OPCODE_ADD_SP 0xa800
644#define T_OPCODE_ADD_PC 0xa000
645#define T_OPCODE_ADD_I8 0x3000
646#define T_OPCODE_SUB_I8 0x3800
647#define T_OPCODE_ADD_I3 0x1c00
648#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 649
a737bd4d
NC
650#define T_OPCODE_ASR_R 0x4100
651#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
652#define T_OPCODE_LSR_R 0x40c0
653#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
654#define T_OPCODE_ASR_I 0x1000
655#define T_OPCODE_LSL_I 0x0000
656#define T_OPCODE_LSR_I 0x0800
b99bd4ef 657
a737bd4d
NC
658#define T_OPCODE_MOV_I8 0x2000
659#define T_OPCODE_CMP_I8 0x2800
660#define T_OPCODE_CMP_LR 0x4280
661#define T_OPCODE_MOV_HR 0x4600
662#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 663
a737bd4d
NC
664#define T_OPCODE_LDR_PC 0x4800
665#define T_OPCODE_LDR_SP 0x9800
666#define T_OPCODE_STR_SP 0x9000
667#define T_OPCODE_LDR_IW 0x6800
668#define T_OPCODE_STR_IW 0x6000
669#define T_OPCODE_LDR_IH 0x8800
670#define T_OPCODE_STR_IH 0x8000
671#define T_OPCODE_LDR_IB 0x7800
672#define T_OPCODE_STR_IB 0x7000
673#define T_OPCODE_LDR_RW 0x5800
674#define T_OPCODE_STR_RW 0x5000
675#define T_OPCODE_LDR_RH 0x5a00
676#define T_OPCODE_STR_RH 0x5200
677#define T_OPCODE_LDR_RB 0x5c00
678#define T_OPCODE_STR_RB 0x5400
c9b604bd 679
a737bd4d
NC
680#define T_OPCODE_PUSH 0xb400
681#define T_OPCODE_POP 0xbc00
b99bd4ef 682
2fc8bdac 683#define T_OPCODE_BRANCH 0xe000
b99bd4ef 684
a737bd4d 685#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 686#define THUMB_PP_PC_LR 0x0100
c19d1205 687#define THUMB_LOAD_BIT 0x0800
53365c0d 688#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
689
690#define BAD_ARGS _("bad arguments to instruction")
fdfde340 691#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
692#define BAD_PC _("r15 not allowed here")
693#define BAD_COND _("instruction cannot be conditional")
694#define BAD_OVERLAP _("registers may not be the same")
695#define BAD_HIREG _("lo register required")
696#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 697#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
698#define BAD_BRANCH _("branch must be last instruction in IT block")
699#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 700#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
701#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
702#define BAD_IT_COND _("incorrect condition in IT block")
703#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 704#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
c19d1205 705
c921be7d
NC
706static struct hash_control * arm_ops_hsh;
707static struct hash_control * arm_cond_hsh;
708static struct hash_control * arm_shift_hsh;
709static struct hash_control * arm_psr_hsh;
710static struct hash_control * arm_v7m_psr_hsh;
711static struct hash_control * arm_reg_hsh;
712static struct hash_control * arm_reloc_hsh;
713static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 714
b99bd4ef
NC
715/* Stuff needed to resolve the label ambiguity
716 As:
717 ...
718 label: <insn>
719 may differ from:
720 ...
721 label:
5f4273c7 722 <insn> */
b99bd4ef
NC
723
724symbolS * last_label_seen;
b34976b6 725static int label_is_thumb_function_name = FALSE;
e07e6e58 726
3d0c9500
NC
727/* Literal pool structure. Held on a per-section
728 and per-sub-section basis. */
a737bd4d 729
c19d1205 730#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 731typedef struct literal_pool
b99bd4ef 732{
c921be7d
NC
733 expressionS literals [MAX_LITERAL_POOL_SIZE];
734 unsigned int next_free_entry;
735 unsigned int id;
736 symbolS * symbol;
737 segT section;
738 subsegT sub_section;
739 struct literal_pool * next;
3d0c9500 740} literal_pool;
b99bd4ef 741
3d0c9500
NC
742/* Pointer to a linked list of literal pools. */
743literal_pool * list_of_pools = NULL;
e27ec89e 744
e07e6e58
NC
745#ifdef OBJ_ELF
746# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
747#else
748static struct current_it now_it;
749#endif
750
751static inline int
752now_it_compatible (int cond)
753{
754 return (cond & ~1) == (now_it.cc & ~1);
755}
756
757static inline int
758conditional_insn (void)
759{
760 return inst.cond != COND_ALWAYS;
761}
762
763static int in_it_block (void);
764
765static int handle_it_state (void);
766
767static void force_automatic_it_block_close (void);
768
c921be7d
NC
769static void it_fsm_post_encode (void);
770
e07e6e58
NC
771#define set_it_insn_type(type) \
772 do \
773 { \
774 inst.it_insn_type = type; \
775 if (handle_it_state () == FAIL) \
776 return; \
777 } \
778 while (0)
779
c921be7d
NC
780#define set_it_insn_type_nonvoid(type, failret) \
781 do \
782 { \
783 inst.it_insn_type = type; \
784 if (handle_it_state () == FAIL) \
785 return failret; \
786 } \
787 while(0)
788
e07e6e58
NC
789#define set_it_insn_type_last() \
790 do \
791 { \
792 if (inst.cond == COND_ALWAYS) \
793 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
794 else \
795 set_it_insn_type (INSIDE_IT_LAST_INSN); \
796 } \
797 while (0)
798
c19d1205 799/* Pure syntax. */
b99bd4ef 800
c19d1205
ZW
801/* This array holds the chars that always start a comment. If the
802 pre-processor is disabled, these aren't very useful. */
803const char comment_chars[] = "@";
3d0c9500 804
c19d1205
ZW
805/* This array holds the chars that only start a comment at the beginning of
806 a line. If the line seems to have the form '# 123 filename'
807 .line and .file directives will appear in the pre-processed output. */
808/* Note that input_file.c hand checks for '#' at the beginning of the
809 first line of the input file. This is because the compiler outputs
810 #NO_APP at the beginning of its output. */
811/* Also note that comments like this one will always work. */
812const char line_comment_chars[] = "#";
3d0c9500 813
c19d1205 814const char line_separator_chars[] = ";";
b99bd4ef 815
c19d1205
ZW
816/* Chars that can be used to separate mant
817 from exp in floating point numbers. */
818const char EXP_CHARS[] = "eE";
3d0c9500 819
c19d1205
ZW
820/* Chars that mean this number is a floating point constant. */
821/* As in 0f12.456 */
822/* or 0d1.2345e12 */
b99bd4ef 823
c19d1205 824const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 825
c19d1205
ZW
826/* Prefix characters that indicate the start of an immediate
827 value. */
828#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 829
c19d1205
ZW
830/* Separator character handling. */
831
832#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
833
834static inline int
835skip_past_char (char ** str, char c)
836{
837 if (**str == c)
838 {
839 (*str)++;
840 return SUCCESS;
3d0c9500 841 }
c19d1205
ZW
842 else
843 return FAIL;
844}
c921be7d 845
c19d1205 846#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 847
c19d1205
ZW
848/* Arithmetic expressions (possibly involving symbols). */
849
850/* Return TRUE if anything in the expression is a bignum. */
851
852static int
853walk_no_bignums (symbolS * sp)
854{
855 if (symbol_get_value_expression (sp)->X_op == O_big)
856 return 1;
857
858 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 859 {
c19d1205
ZW
860 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
861 || (symbol_get_value_expression (sp)->X_op_symbol
862 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
863 }
864
c19d1205 865 return 0;
3d0c9500
NC
866}
867
c19d1205
ZW
868static int in_my_get_expression = 0;
869
870/* Third argument to my_get_expression. */
871#define GE_NO_PREFIX 0
872#define GE_IMM_PREFIX 1
873#define GE_OPT_PREFIX 2
5287ad62
JB
874/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
875 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
876#define GE_OPT_PREFIX_BIG 3
a737bd4d 877
b99bd4ef 878static int
c19d1205 879my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 880{
c19d1205
ZW
881 char * save_in;
882 segT seg;
b99bd4ef 883
c19d1205
ZW
884 /* In unified syntax, all prefixes are optional. */
885 if (unified_syntax)
5287ad62
JB
886 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
887 : GE_OPT_PREFIX;
b99bd4ef 888
c19d1205 889 switch (prefix_mode)
b99bd4ef 890 {
c19d1205
ZW
891 case GE_NO_PREFIX: break;
892 case GE_IMM_PREFIX:
893 if (!is_immediate_prefix (**str))
894 {
895 inst.error = _("immediate expression requires a # prefix");
896 return FAIL;
897 }
898 (*str)++;
899 break;
900 case GE_OPT_PREFIX:
5287ad62 901 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
902 if (is_immediate_prefix (**str))
903 (*str)++;
904 break;
905 default: abort ();
906 }
b99bd4ef 907
c19d1205 908 memset (ep, 0, sizeof (expressionS));
b99bd4ef 909
c19d1205
ZW
910 save_in = input_line_pointer;
911 input_line_pointer = *str;
912 in_my_get_expression = 1;
913 seg = expression (ep);
914 in_my_get_expression = 0;
915
f86adc07 916 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 917 {
f86adc07 918 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
919 *str = input_line_pointer;
920 input_line_pointer = save_in;
921 if (inst.error == NULL)
f86adc07
NS
922 inst.error = (ep->X_op == O_absent
923 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
924 return 1;
925 }
b99bd4ef 926
c19d1205
ZW
927#ifdef OBJ_AOUT
928 if (seg != absolute_section
929 && seg != text_section
930 && seg != data_section
931 && seg != bss_section
932 && seg != undefined_section)
933 {
934 inst.error = _("bad segment");
935 *str = input_line_pointer;
936 input_line_pointer = save_in;
937 return 1;
b99bd4ef 938 }
c19d1205 939#endif
b99bd4ef 940
c19d1205
ZW
941 /* Get rid of any bignums now, so that we don't generate an error for which
942 we can't establish a line number later on. Big numbers are never valid
943 in instructions, which is where this routine is always called. */
5287ad62
JB
944 if (prefix_mode != GE_OPT_PREFIX_BIG
945 && (ep->X_op == O_big
946 || (ep->X_add_symbol
947 && (walk_no_bignums (ep->X_add_symbol)
948 || (ep->X_op_symbol
949 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
950 {
951 inst.error = _("invalid constant");
952 *str = input_line_pointer;
953 input_line_pointer = save_in;
954 return 1;
955 }
b99bd4ef 956
c19d1205
ZW
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 0;
b99bd4ef
NC
960}
961
c19d1205
ZW
962/* Turn a string in input_line_pointer into a floating point constant
963 of type TYPE, and store the appropriate bytes in *LITP. The number
964 of LITTLENUMS emitted is stored in *SIZEP. An error message is
965 returned, or NULL on OK.
b99bd4ef 966
c19d1205
ZW
967 Note that fp constants aren't represent in the normal way on the ARM.
968 In big endian mode, things are as expected. However, in little endian
969 mode fp constants are big-endian word-wise, and little-endian byte-wise
970 within the words. For example, (double) 1.1 in big endian mode is
971 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
972 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 973
c19d1205 974 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 975
c19d1205
ZW
976char *
977md_atof (int type, char * litP, int * sizeP)
978{
979 int prec;
980 LITTLENUM_TYPE words[MAX_LITTLENUMS];
981 char *t;
982 int i;
b99bd4ef 983
c19d1205
ZW
984 switch (type)
985 {
986 case 'f':
987 case 'F':
988 case 's':
989 case 'S':
990 prec = 2;
991 break;
b99bd4ef 992
c19d1205
ZW
993 case 'd':
994 case 'D':
995 case 'r':
996 case 'R':
997 prec = 4;
998 break;
b99bd4ef 999
c19d1205
ZW
1000 case 'x':
1001 case 'X':
499ac353 1002 prec = 5;
c19d1205 1003 break;
b99bd4ef 1004
c19d1205
ZW
1005 case 'p':
1006 case 'P':
499ac353 1007 prec = 5;
c19d1205 1008 break;
a737bd4d 1009
c19d1205
ZW
1010 default:
1011 *sizeP = 0;
499ac353 1012 return _("Unrecognized or unsupported floating point constant");
c19d1205 1013 }
b99bd4ef 1014
c19d1205
ZW
1015 t = atof_ieee (input_line_pointer, type, words);
1016 if (t)
1017 input_line_pointer = t;
499ac353 1018 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1019
c19d1205
ZW
1020 if (target_big_endian)
1021 {
1022 for (i = 0; i < prec; i++)
1023 {
499ac353
NC
1024 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1025 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1026 }
1027 }
1028 else
1029 {
e74cfd16 1030 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1031 for (i = prec - 1; i >= 0; i--)
1032 {
499ac353
NC
1033 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1034 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1035 }
1036 else
1037 /* For a 4 byte float the order of elements in `words' is 1 0.
1038 For an 8 byte float the order is 1 0 3 2. */
1039 for (i = 0; i < prec; i += 2)
1040 {
499ac353
NC
1041 md_number_to_chars (litP, (valueT) words[i + 1],
1042 sizeof (LITTLENUM_TYPE));
1043 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1044 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1045 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1046 }
1047 }
b99bd4ef 1048
499ac353 1049 return NULL;
c19d1205 1050}
b99bd4ef 1051
c19d1205
ZW
1052/* We handle all bad expressions here, so that we can report the faulty
1053 instruction in the error message. */
1054void
91d6fa6a 1055md_operand (expressionS * exp)
c19d1205
ZW
1056{
1057 if (in_my_get_expression)
91d6fa6a 1058 exp->X_op = O_illegal;
b99bd4ef
NC
1059}
1060
c19d1205 1061/* Immediate values. */
b99bd4ef 1062
c19d1205
ZW
1063/* Generic immediate-value read function for use in directives.
1064 Accepts anything that 'expression' can fold to a constant.
1065 *val receives the number. */
1066#ifdef OBJ_ELF
1067static int
1068immediate_for_directive (int *val)
b99bd4ef 1069{
c19d1205
ZW
1070 expressionS exp;
1071 exp.X_op = O_illegal;
b99bd4ef 1072
c19d1205
ZW
1073 if (is_immediate_prefix (*input_line_pointer))
1074 {
1075 input_line_pointer++;
1076 expression (&exp);
1077 }
b99bd4ef 1078
c19d1205
ZW
1079 if (exp.X_op != O_constant)
1080 {
1081 as_bad (_("expected #constant"));
1082 ignore_rest_of_line ();
1083 return FAIL;
1084 }
1085 *val = exp.X_add_number;
1086 return SUCCESS;
b99bd4ef 1087}
c19d1205 1088#endif
b99bd4ef 1089
c19d1205 1090/* Register parsing. */
b99bd4ef 1091
c19d1205
ZW
1092/* Generic register parser. CCP points to what should be the
1093 beginning of a register name. If it is indeed a valid register
1094 name, advance CCP over it and return the reg_entry structure;
1095 otherwise return NULL. Does not issue diagnostics. */
1096
1097static struct reg_entry *
1098arm_reg_parse_multi (char **ccp)
b99bd4ef 1099{
c19d1205
ZW
1100 char *start = *ccp;
1101 char *p;
1102 struct reg_entry *reg;
b99bd4ef 1103
c19d1205
ZW
1104#ifdef REGISTER_PREFIX
1105 if (*start != REGISTER_PREFIX)
01cfc07f 1106 return NULL;
c19d1205
ZW
1107 start++;
1108#endif
1109#ifdef OPTIONAL_REGISTER_PREFIX
1110 if (*start == OPTIONAL_REGISTER_PREFIX)
1111 start++;
1112#endif
b99bd4ef 1113
c19d1205
ZW
1114 p = start;
1115 if (!ISALPHA (*p) || !is_name_beginner (*p))
1116 return NULL;
b99bd4ef 1117
c19d1205
ZW
1118 do
1119 p++;
1120 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1121
1122 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1123
1124 if (!reg)
1125 return NULL;
1126
1127 *ccp = p;
1128 return reg;
b99bd4ef
NC
1129}
1130
1131static int
dcbf9037
JB
1132arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1133 enum arm_reg_type type)
b99bd4ef 1134{
c19d1205
ZW
1135 /* Alternative syntaxes are accepted for a few register classes. */
1136 switch (type)
1137 {
1138 case REG_TYPE_MVF:
1139 case REG_TYPE_MVD:
1140 case REG_TYPE_MVFX:
1141 case REG_TYPE_MVDX:
1142 /* Generic coprocessor register names are allowed for these. */
79134647 1143 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1144 return reg->number;
1145 break;
69b97547 1146
c19d1205
ZW
1147 case REG_TYPE_CP:
1148 /* For backward compatibility, a bare number is valid here. */
1149 {
1150 unsigned long processor = strtoul (start, ccp, 10);
1151 if (*ccp != start && processor <= 15)
1152 return processor;
1153 }
6057a28f 1154
c19d1205
ZW
1155 case REG_TYPE_MMXWC:
1156 /* WC includes WCG. ??? I'm not sure this is true for all
1157 instructions that take WC registers. */
79134647 1158 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1159 return reg->number;
6057a28f 1160 break;
c19d1205 1161
6057a28f 1162 default:
c19d1205 1163 break;
6057a28f
NC
1164 }
1165
dcbf9037
JB
1166 return FAIL;
1167}
1168
1169/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1170 return value is the register number or FAIL. */
1171
1172static int
1173arm_reg_parse (char **ccp, enum arm_reg_type type)
1174{
1175 char *start = *ccp;
1176 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1177 int ret;
1178
1179 /* Do not allow a scalar (reg+index) to parse as a register. */
1180 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1181 return FAIL;
1182
1183 if (reg && reg->type == type)
1184 return reg->number;
1185
1186 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1187 return ret;
1188
c19d1205
ZW
1189 *ccp = start;
1190 return FAIL;
1191}
69b97547 1192
dcbf9037
JB
1193/* Parse a Neon type specifier. *STR should point at the leading '.'
1194 character. Does no verification at this stage that the type fits the opcode
1195 properly. E.g.,
1196
1197 .i32.i32.s16
1198 .s32.f32
1199 .u16
1200
1201 Can all be legally parsed by this function.
1202
1203 Fills in neon_type struct pointer with parsed information, and updates STR
1204 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1205 type, FAIL if not. */
1206
1207static int
1208parse_neon_type (struct neon_type *type, char **str)
1209{
1210 char *ptr = *str;
1211
1212 if (type)
1213 type->elems = 0;
1214
1215 while (type->elems < NEON_MAX_TYPE_ELS)
1216 {
1217 enum neon_el_type thistype = NT_untyped;
1218 unsigned thissize = -1u;
1219
1220 if (*ptr != '.')
1221 break;
1222
1223 ptr++;
1224
1225 /* Just a size without an explicit type. */
1226 if (ISDIGIT (*ptr))
1227 goto parsesize;
1228
1229 switch (TOLOWER (*ptr))
1230 {
1231 case 'i': thistype = NT_integer; break;
1232 case 'f': thistype = NT_float; break;
1233 case 'p': thistype = NT_poly; break;
1234 case 's': thistype = NT_signed; break;
1235 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1236 case 'd':
1237 thistype = NT_float;
1238 thissize = 64;
1239 ptr++;
1240 goto done;
dcbf9037
JB
1241 default:
1242 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1243 return FAIL;
1244 }
1245
1246 ptr++;
1247
1248 /* .f is an abbreviation for .f32. */
1249 if (thistype == NT_float && !ISDIGIT (*ptr))
1250 thissize = 32;
1251 else
1252 {
1253 parsesize:
1254 thissize = strtoul (ptr, &ptr, 10);
1255
1256 if (thissize != 8 && thissize != 16 && thissize != 32
1257 && thissize != 64)
1258 {
1259 as_bad (_("bad size %d in type specifier"), thissize);
1260 return FAIL;
1261 }
1262 }
1263
037e8744 1264 done:
dcbf9037
JB
1265 if (type)
1266 {
1267 type->el[type->elems].type = thistype;
1268 type->el[type->elems].size = thissize;
1269 type->elems++;
1270 }
1271 }
1272
1273 /* Empty/missing type is not a successful parse. */
1274 if (type->elems == 0)
1275 return FAIL;
1276
1277 *str = ptr;
1278
1279 return SUCCESS;
1280}
1281
1282/* Errors may be set multiple times during parsing or bit encoding
1283 (particularly in the Neon bits), but usually the earliest error which is set
1284 will be the most meaningful. Avoid overwriting it with later (cascading)
1285 errors by calling this function. */
1286
1287static void
1288first_error (const char *err)
1289{
1290 if (!inst.error)
1291 inst.error = err;
1292}
1293
1294/* Parse a single type, e.g. ".s32", leading period included. */
1295static int
1296parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1297{
1298 char *str = *ccp;
1299 struct neon_type optype;
1300
1301 if (*str == '.')
1302 {
1303 if (parse_neon_type (&optype, &str) == SUCCESS)
1304 {
1305 if (optype.elems == 1)
1306 *vectype = optype.el[0];
1307 else
1308 {
1309 first_error (_("only one type should be specified for operand"));
1310 return FAIL;
1311 }
1312 }
1313 else
1314 {
1315 first_error (_("vector type expected"));
1316 return FAIL;
1317 }
1318 }
1319 else
1320 return FAIL;
5f4273c7 1321
dcbf9037 1322 *ccp = str;
5f4273c7 1323
dcbf9037
JB
1324 return SUCCESS;
1325}
1326
1327/* Special meanings for indices (which have a range of 0-7), which will fit into
1328 a 4-bit integer. */
1329
1330#define NEON_ALL_LANES 15
1331#define NEON_INTERLEAVE_LANES 14
1332
1333/* Parse either a register or a scalar, with an optional type. Return the
1334 register number, and optionally fill in the actual type of the register
1335 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1336 type/index information in *TYPEINFO. */
1337
1338static int
1339parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1340 enum arm_reg_type *rtype,
1341 struct neon_typed_alias *typeinfo)
1342{
1343 char *str = *ccp;
1344 struct reg_entry *reg = arm_reg_parse_multi (&str);
1345 struct neon_typed_alias atype;
1346 struct neon_type_el parsetype;
1347
1348 atype.defined = 0;
1349 atype.index = -1;
1350 atype.eltype.type = NT_invtype;
1351 atype.eltype.size = -1;
1352
1353 /* Try alternate syntax for some types of register. Note these are mutually
1354 exclusive with the Neon syntax extensions. */
1355 if (reg == NULL)
1356 {
1357 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1358 if (altreg != FAIL)
1359 *ccp = str;
1360 if (typeinfo)
1361 *typeinfo = atype;
1362 return altreg;
1363 }
1364
037e8744
JB
1365 /* Undo polymorphism when a set of register types may be accepted. */
1366 if ((type == REG_TYPE_NDQ
1367 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1368 || (type == REG_TYPE_VFSD
1369 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1370 || (type == REG_TYPE_NSDQ
1371 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1372 || reg->type == REG_TYPE_NQ))
1373 || (type == REG_TYPE_MMXWC
1374 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1375 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1376
1377 if (type != reg->type)
1378 return FAIL;
1379
1380 if (reg->neon)
1381 atype = *reg->neon;
5f4273c7 1382
dcbf9037
JB
1383 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1384 {
1385 if ((atype.defined & NTA_HASTYPE) != 0)
1386 {
1387 first_error (_("can't redefine type for operand"));
1388 return FAIL;
1389 }
1390 atype.defined |= NTA_HASTYPE;
1391 atype.eltype = parsetype;
1392 }
5f4273c7 1393
dcbf9037
JB
1394 if (skip_past_char (&str, '[') == SUCCESS)
1395 {
1396 if (type != REG_TYPE_VFD)
1397 {
1398 first_error (_("only D registers may be indexed"));
1399 return FAIL;
1400 }
5f4273c7 1401
dcbf9037
JB
1402 if ((atype.defined & NTA_HASINDEX) != 0)
1403 {
1404 first_error (_("can't change index for operand"));
1405 return FAIL;
1406 }
1407
1408 atype.defined |= NTA_HASINDEX;
1409
1410 if (skip_past_char (&str, ']') == SUCCESS)
1411 atype.index = NEON_ALL_LANES;
1412 else
1413 {
1414 expressionS exp;
1415
1416 my_get_expression (&exp, &str, GE_NO_PREFIX);
1417
1418 if (exp.X_op != O_constant)
1419 {
1420 first_error (_("constant expression required"));
1421 return FAIL;
1422 }
1423
1424 if (skip_past_char (&str, ']') == FAIL)
1425 return FAIL;
1426
1427 atype.index = exp.X_add_number;
1428 }
1429 }
5f4273c7 1430
dcbf9037
JB
1431 if (typeinfo)
1432 *typeinfo = atype;
5f4273c7 1433
dcbf9037
JB
1434 if (rtype)
1435 *rtype = type;
5f4273c7 1436
dcbf9037 1437 *ccp = str;
5f4273c7 1438
dcbf9037
JB
1439 return reg->number;
1440}
1441
1442/* Like arm_reg_parse, but allow allow the following extra features:
1443 - If RTYPE is non-zero, return the (possibly restricted) type of the
1444 register (e.g. Neon double or quad reg when either has been requested).
1445 - If this is a Neon vector type with additional type information, fill
1446 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1447 This function will fault on encountering a scalar. */
dcbf9037
JB
1448
1449static int
1450arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1451 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1452{
1453 struct neon_typed_alias atype;
1454 char *str = *ccp;
1455 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1456
1457 if (reg == FAIL)
1458 return FAIL;
1459
1460 /* Do not allow a scalar (reg+index) to parse as a register. */
1461 if ((atype.defined & NTA_HASINDEX) != 0)
1462 {
1463 first_error (_("register operand expected, but got scalar"));
1464 return FAIL;
1465 }
1466
1467 if (vectype)
1468 *vectype = atype.eltype;
1469
1470 *ccp = str;
1471
1472 return reg;
1473}
1474
1475#define NEON_SCALAR_REG(X) ((X) >> 4)
1476#define NEON_SCALAR_INDEX(X) ((X) & 15)
1477
5287ad62
JB
1478/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1479 have enough information to be able to do a good job bounds-checking. So, we
1480 just do easy checks here, and do further checks later. */
1481
1482static int
dcbf9037 1483parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1484{
dcbf9037 1485 int reg;
5287ad62 1486 char *str = *ccp;
dcbf9037 1487 struct neon_typed_alias atype;
5f4273c7 1488
dcbf9037 1489 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1490
dcbf9037 1491 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1492 return FAIL;
5f4273c7 1493
dcbf9037 1494 if (atype.index == NEON_ALL_LANES)
5287ad62 1495 {
dcbf9037 1496 first_error (_("scalar must have an index"));
5287ad62
JB
1497 return FAIL;
1498 }
dcbf9037 1499 else if (atype.index >= 64 / elsize)
5287ad62 1500 {
dcbf9037 1501 first_error (_("scalar index out of range"));
5287ad62
JB
1502 return FAIL;
1503 }
5f4273c7 1504
dcbf9037
JB
1505 if (type)
1506 *type = atype.eltype;
5f4273c7 1507
5287ad62 1508 *ccp = str;
5f4273c7 1509
dcbf9037 1510 return reg * 16 + atype.index;
5287ad62
JB
1511}
1512
c19d1205 1513/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1514
c19d1205
ZW
1515static long
1516parse_reg_list (char ** strp)
1517{
1518 char * str = * strp;
1519 long range = 0;
1520 int another_range;
a737bd4d 1521
c19d1205
ZW
1522 /* We come back here if we get ranges concatenated by '+' or '|'. */
1523 do
6057a28f 1524 {
c19d1205 1525 another_range = 0;
a737bd4d 1526
c19d1205
ZW
1527 if (*str == '{')
1528 {
1529 int in_range = 0;
1530 int cur_reg = -1;
a737bd4d 1531
c19d1205
ZW
1532 str++;
1533 do
1534 {
1535 int reg;
6057a28f 1536
dcbf9037 1537 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1538 {
dcbf9037 1539 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1540 return FAIL;
1541 }
a737bd4d 1542
c19d1205
ZW
1543 if (in_range)
1544 {
1545 int i;
a737bd4d 1546
c19d1205
ZW
1547 if (reg <= cur_reg)
1548 {
dcbf9037 1549 first_error (_("bad range in register list"));
c19d1205
ZW
1550 return FAIL;
1551 }
40a18ebd 1552
c19d1205
ZW
1553 for (i = cur_reg + 1; i < reg; i++)
1554 {
1555 if (range & (1 << i))
1556 as_tsktsk
1557 (_("Warning: duplicated register (r%d) in register list"),
1558 i);
1559 else
1560 range |= 1 << i;
1561 }
1562 in_range = 0;
1563 }
a737bd4d 1564
c19d1205
ZW
1565 if (range & (1 << reg))
1566 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1567 reg);
1568 else if (reg <= cur_reg)
1569 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1570
c19d1205
ZW
1571 range |= 1 << reg;
1572 cur_reg = reg;
1573 }
1574 while (skip_past_comma (&str) != FAIL
1575 || (in_range = 1, *str++ == '-'));
1576 str--;
a737bd4d 1577
c19d1205
ZW
1578 if (*str++ != '}')
1579 {
dcbf9037 1580 first_error (_("missing `}'"));
c19d1205
ZW
1581 return FAIL;
1582 }
1583 }
1584 else
1585 {
91d6fa6a 1586 expressionS exp;
40a18ebd 1587
91d6fa6a 1588 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1589 return FAIL;
40a18ebd 1590
91d6fa6a 1591 if (exp.X_op == O_constant)
c19d1205 1592 {
91d6fa6a
NC
1593 if (exp.X_add_number
1594 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1595 {
1596 inst.error = _("invalid register mask");
1597 return FAIL;
1598 }
a737bd4d 1599
91d6fa6a 1600 if ((range & exp.X_add_number) != 0)
c19d1205 1601 {
91d6fa6a 1602 int regno = range & exp.X_add_number;
a737bd4d 1603
c19d1205
ZW
1604 regno &= -regno;
1605 regno = (1 << regno) - 1;
1606 as_tsktsk
1607 (_("Warning: duplicated register (r%d) in register list"),
1608 regno);
1609 }
a737bd4d 1610
91d6fa6a 1611 range |= exp.X_add_number;
c19d1205
ZW
1612 }
1613 else
1614 {
1615 if (inst.reloc.type != 0)
1616 {
1617 inst.error = _("expression too complex");
1618 return FAIL;
1619 }
a737bd4d 1620
91d6fa6a 1621 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1622 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1623 inst.reloc.pc_rel = 0;
1624 }
1625 }
a737bd4d 1626
c19d1205
ZW
1627 if (*str == '|' || *str == '+')
1628 {
1629 str++;
1630 another_range = 1;
1631 }
a737bd4d 1632 }
c19d1205 1633 while (another_range);
a737bd4d 1634
c19d1205
ZW
1635 *strp = str;
1636 return range;
a737bd4d
NC
1637}
1638
5287ad62
JB
1639/* Types of registers in a list. */
1640
1641enum reg_list_els
1642{
1643 REGLIST_VFP_S,
1644 REGLIST_VFP_D,
1645 REGLIST_NEON_D
1646};
1647
c19d1205
ZW
1648/* Parse a VFP register list. If the string is invalid return FAIL.
1649 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1650 register. Parses registers of type ETYPE.
1651 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1652 - Q registers can be used to specify pairs of D registers
1653 - { } can be omitted from around a singleton register list
1654 FIXME: This is not implemented, as it would require backtracking in
1655 some cases, e.g.:
1656 vtbl.8 d3,d4,d5
1657 This could be done (the meaning isn't really ambiguous), but doesn't
1658 fit in well with the current parsing framework.
dcbf9037
JB
1659 - 32 D registers may be used (also true for VFPv3).
1660 FIXME: Types are ignored in these register lists, which is probably a
1661 bug. */
6057a28f 1662
c19d1205 1663static int
037e8744 1664parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1665{
037e8744 1666 char *str = *ccp;
c19d1205
ZW
1667 int base_reg;
1668 int new_base;
21d799b5 1669 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1670 int max_regs = 0;
c19d1205
ZW
1671 int count = 0;
1672 int warned = 0;
1673 unsigned long mask = 0;
a737bd4d 1674 int i;
6057a28f 1675
037e8744 1676 if (*str != '{')
5287ad62
JB
1677 {
1678 inst.error = _("expecting {");
1679 return FAIL;
1680 }
6057a28f 1681
037e8744 1682 str++;
6057a28f 1683
5287ad62 1684 switch (etype)
c19d1205 1685 {
5287ad62 1686 case REGLIST_VFP_S:
c19d1205
ZW
1687 regtype = REG_TYPE_VFS;
1688 max_regs = 32;
5287ad62 1689 break;
5f4273c7 1690
5287ad62
JB
1691 case REGLIST_VFP_D:
1692 regtype = REG_TYPE_VFD;
b7fc2769 1693 break;
5f4273c7 1694
b7fc2769
JB
1695 case REGLIST_NEON_D:
1696 regtype = REG_TYPE_NDQ;
1697 break;
1698 }
1699
1700 if (etype != REGLIST_VFP_S)
1701 {
b1cc4aeb
PB
1702 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1703 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1704 {
1705 max_regs = 32;
1706 if (thumb_mode)
1707 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1708 fpu_vfp_ext_d32);
5287ad62
JB
1709 else
1710 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1711 fpu_vfp_ext_d32);
5287ad62
JB
1712 }
1713 else
1714 max_regs = 16;
c19d1205 1715 }
6057a28f 1716
c19d1205 1717 base_reg = max_regs;
a737bd4d 1718
c19d1205
ZW
1719 do
1720 {
5287ad62 1721 int setmask = 1, addregs = 1;
dcbf9037 1722
037e8744 1723 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1724
c19d1205 1725 if (new_base == FAIL)
a737bd4d 1726 {
dcbf9037 1727 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1728 return FAIL;
1729 }
5f4273c7 1730
b7fc2769
JB
1731 if (new_base >= max_regs)
1732 {
1733 first_error (_("register out of range in list"));
1734 return FAIL;
1735 }
5f4273c7 1736
5287ad62
JB
1737 /* Note: a value of 2 * n is returned for the register Q<n>. */
1738 if (regtype == REG_TYPE_NQ)
1739 {
1740 setmask = 3;
1741 addregs = 2;
1742 }
1743
c19d1205
ZW
1744 if (new_base < base_reg)
1745 base_reg = new_base;
a737bd4d 1746
5287ad62 1747 if (mask & (setmask << new_base))
c19d1205 1748 {
dcbf9037 1749 first_error (_("invalid register list"));
c19d1205 1750 return FAIL;
a737bd4d 1751 }
a737bd4d 1752
c19d1205
ZW
1753 if ((mask >> new_base) != 0 && ! warned)
1754 {
1755 as_tsktsk (_("register list not in ascending order"));
1756 warned = 1;
1757 }
0bbf2aa4 1758
5287ad62
JB
1759 mask |= setmask << new_base;
1760 count += addregs;
0bbf2aa4 1761
037e8744 1762 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1763 {
1764 int high_range;
0bbf2aa4 1765
037e8744 1766 str++;
0bbf2aa4 1767
037e8744 1768 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1769 == FAIL)
c19d1205
ZW
1770 {
1771 inst.error = gettext (reg_expected_msgs[regtype]);
1772 return FAIL;
1773 }
0bbf2aa4 1774
b7fc2769
JB
1775 if (high_range >= max_regs)
1776 {
1777 first_error (_("register out of range in list"));
1778 return FAIL;
1779 }
1780
5287ad62
JB
1781 if (regtype == REG_TYPE_NQ)
1782 high_range = high_range + 1;
1783
c19d1205
ZW
1784 if (high_range <= new_base)
1785 {
1786 inst.error = _("register range not in ascending order");
1787 return FAIL;
1788 }
0bbf2aa4 1789
5287ad62 1790 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1791 {
5287ad62 1792 if (mask & (setmask << new_base))
0bbf2aa4 1793 {
c19d1205
ZW
1794 inst.error = _("invalid register list");
1795 return FAIL;
0bbf2aa4 1796 }
c19d1205 1797
5287ad62
JB
1798 mask |= setmask << new_base;
1799 count += addregs;
0bbf2aa4 1800 }
0bbf2aa4 1801 }
0bbf2aa4 1802 }
037e8744 1803 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1804
037e8744 1805 str++;
0bbf2aa4 1806
c19d1205
ZW
1807 /* Sanity check -- should have raised a parse error above. */
1808 if (count == 0 || count > max_regs)
1809 abort ();
1810
1811 *pbase = base_reg;
1812
1813 /* Final test -- the registers must be consecutive. */
1814 mask >>= base_reg;
1815 for (i = 0; i < count; i++)
1816 {
1817 if ((mask & (1u << i)) == 0)
1818 {
1819 inst.error = _("non-contiguous register range");
1820 return FAIL;
1821 }
1822 }
1823
037e8744
JB
1824 *ccp = str;
1825
c19d1205 1826 return count;
b99bd4ef
NC
1827}
1828
dcbf9037
JB
1829/* True if two alias types are the same. */
1830
c921be7d 1831static bfd_boolean
dcbf9037
JB
1832neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1833{
1834 if (!a && !b)
c921be7d 1835 return TRUE;
5f4273c7 1836
dcbf9037 1837 if (!a || !b)
c921be7d 1838 return FALSE;
dcbf9037
JB
1839
1840 if (a->defined != b->defined)
c921be7d 1841 return FALSE;
5f4273c7 1842
dcbf9037
JB
1843 if ((a->defined & NTA_HASTYPE) != 0
1844 && (a->eltype.type != b->eltype.type
1845 || a->eltype.size != b->eltype.size))
c921be7d 1846 return FALSE;
dcbf9037
JB
1847
1848 if ((a->defined & NTA_HASINDEX) != 0
1849 && (a->index != b->index))
c921be7d 1850 return FALSE;
5f4273c7 1851
c921be7d 1852 return TRUE;
dcbf9037
JB
1853}
1854
5287ad62
JB
1855/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1856 The base register is put in *PBASE.
dcbf9037 1857 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1858 the return value.
1859 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1860 Bits [6:5] encode the list length (minus one).
1861 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1862
5287ad62 1863#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1864#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1865#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1866
1867static int
dcbf9037
JB
1868parse_neon_el_struct_list (char **str, unsigned *pbase,
1869 struct neon_type_el *eltype)
5287ad62
JB
1870{
1871 char *ptr = *str;
1872 int base_reg = -1;
1873 int reg_incr = -1;
1874 int count = 0;
1875 int lane = -1;
1876 int leading_brace = 0;
1877 enum arm_reg_type rtype = REG_TYPE_NDQ;
1878 int addregs = 1;
20203fb9
NC
1879 const char *const incr_error = _("register stride must be 1 or 2");
1880 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1881 struct neon_typed_alias firsttype;
5f4273c7 1882
5287ad62
JB
1883 if (skip_past_char (&ptr, '{') == SUCCESS)
1884 leading_brace = 1;
5f4273c7 1885
5287ad62
JB
1886 do
1887 {
dcbf9037
JB
1888 struct neon_typed_alias atype;
1889 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1890
5287ad62
JB
1891 if (getreg == FAIL)
1892 {
dcbf9037 1893 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1894 return FAIL;
1895 }
5f4273c7 1896
5287ad62
JB
1897 if (base_reg == -1)
1898 {
1899 base_reg = getreg;
1900 if (rtype == REG_TYPE_NQ)
1901 {
1902 reg_incr = 1;
1903 addregs = 2;
1904 }
dcbf9037 1905 firsttype = atype;
5287ad62
JB
1906 }
1907 else if (reg_incr == -1)
1908 {
1909 reg_incr = getreg - base_reg;
1910 if (reg_incr < 1 || reg_incr > 2)
1911 {
dcbf9037 1912 first_error (_(incr_error));
5287ad62
JB
1913 return FAIL;
1914 }
1915 }
1916 else if (getreg != base_reg + reg_incr * count)
1917 {
dcbf9037
JB
1918 first_error (_(incr_error));
1919 return FAIL;
1920 }
1921
c921be7d 1922 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1923 {
1924 first_error (_(type_error));
5287ad62
JB
1925 return FAIL;
1926 }
5f4273c7 1927
5287ad62
JB
1928 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1929 modes. */
1930 if (ptr[0] == '-')
1931 {
dcbf9037 1932 struct neon_typed_alias htype;
5287ad62
JB
1933 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1934 if (lane == -1)
1935 lane = NEON_INTERLEAVE_LANES;
1936 else if (lane != NEON_INTERLEAVE_LANES)
1937 {
dcbf9037 1938 first_error (_(type_error));
5287ad62
JB
1939 return FAIL;
1940 }
1941 if (reg_incr == -1)
1942 reg_incr = 1;
1943 else if (reg_incr != 1)
1944 {
dcbf9037 1945 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1946 return FAIL;
1947 }
1948 ptr++;
dcbf9037 1949 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1950 if (hireg == FAIL)
1951 {
dcbf9037
JB
1952 first_error (_(reg_expected_msgs[rtype]));
1953 return FAIL;
1954 }
c921be7d 1955 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1956 {
1957 first_error (_(type_error));
5287ad62
JB
1958 return FAIL;
1959 }
1960 count += hireg + dregs - getreg;
1961 continue;
1962 }
5f4273c7 1963
5287ad62
JB
1964 /* If we're using Q registers, we can't use [] or [n] syntax. */
1965 if (rtype == REG_TYPE_NQ)
1966 {
1967 count += 2;
1968 continue;
1969 }
5f4273c7 1970
dcbf9037 1971 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1972 {
dcbf9037
JB
1973 if (lane == -1)
1974 lane = atype.index;
1975 else if (lane != atype.index)
5287ad62 1976 {
dcbf9037
JB
1977 first_error (_(type_error));
1978 return FAIL;
5287ad62
JB
1979 }
1980 }
1981 else if (lane == -1)
1982 lane = NEON_INTERLEAVE_LANES;
1983 else if (lane != NEON_INTERLEAVE_LANES)
1984 {
dcbf9037 1985 first_error (_(type_error));
5287ad62
JB
1986 return FAIL;
1987 }
1988 count++;
1989 }
1990 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1991
5287ad62
JB
1992 /* No lane set by [x]. We must be interleaving structures. */
1993 if (lane == -1)
1994 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1995
5287ad62
JB
1996 /* Sanity check. */
1997 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1998 || (count > 1 && reg_incr == -1))
1999 {
dcbf9037 2000 first_error (_("error parsing element/structure list"));
5287ad62
JB
2001 return FAIL;
2002 }
2003
2004 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2005 {
dcbf9037 2006 first_error (_("expected }"));
5287ad62
JB
2007 return FAIL;
2008 }
5f4273c7 2009
5287ad62
JB
2010 if (reg_incr == -1)
2011 reg_incr = 1;
2012
dcbf9037
JB
2013 if (eltype)
2014 *eltype = firsttype.eltype;
2015
5287ad62
JB
2016 *pbase = base_reg;
2017 *str = ptr;
5f4273c7 2018
5287ad62
JB
2019 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2020}
2021
c19d1205
ZW
2022/* Parse an explicit relocation suffix on an expression. This is
2023 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2024 arm_reloc_hsh contains no entries, so this function can only
2025 succeed if there is no () after the word. Returns -1 on error,
2026 BFD_RELOC_UNUSED if there wasn't any suffix. */
2027static int
2028parse_reloc (char **str)
b99bd4ef 2029{
c19d1205
ZW
2030 struct reloc_entry *r;
2031 char *p, *q;
b99bd4ef 2032
c19d1205
ZW
2033 if (**str != '(')
2034 return BFD_RELOC_UNUSED;
b99bd4ef 2035
c19d1205
ZW
2036 p = *str + 1;
2037 q = p;
2038
2039 while (*q && *q != ')' && *q != ',')
2040 q++;
2041 if (*q != ')')
2042 return -1;
2043
21d799b5
NC
2044 if ((r = (struct reloc_entry *)
2045 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2046 return -1;
2047
2048 *str = q + 1;
2049 return r->reloc;
b99bd4ef
NC
2050}
2051
c19d1205
ZW
2052/* Directives: register aliases. */
2053
dcbf9037 2054static struct reg_entry *
c19d1205 2055insert_reg_alias (char *str, int number, int type)
b99bd4ef 2056{
d3ce72d0 2057 struct reg_entry *new_reg;
c19d1205 2058 const char *name;
b99bd4ef 2059
d3ce72d0 2060 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2061 {
d3ce72d0 2062 if (new_reg->builtin)
c19d1205 2063 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2064
c19d1205
ZW
2065 /* Only warn about a redefinition if it's not defined as the
2066 same register. */
d3ce72d0 2067 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2068 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2069
d929913e 2070 return NULL;
c19d1205 2071 }
b99bd4ef 2072
c19d1205 2073 name = xstrdup (str);
d3ce72d0 2074 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2075
d3ce72d0
NC
2076 new_reg->name = name;
2077 new_reg->number = number;
2078 new_reg->type = type;
2079 new_reg->builtin = FALSE;
2080 new_reg->neon = NULL;
b99bd4ef 2081
d3ce72d0 2082 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2083 abort ();
5f4273c7 2084
d3ce72d0 2085 return new_reg;
dcbf9037
JB
2086}
2087
2088static void
2089insert_neon_reg_alias (char *str, int number, int type,
2090 struct neon_typed_alias *atype)
2091{
2092 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2093
dcbf9037
JB
2094 if (!reg)
2095 {
2096 first_error (_("attempt to redefine typed alias"));
2097 return;
2098 }
5f4273c7 2099
dcbf9037
JB
2100 if (atype)
2101 {
21d799b5
NC
2102 reg->neon = (struct neon_typed_alias *)
2103 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2104 *reg->neon = *atype;
2105 }
c19d1205 2106}
b99bd4ef 2107
c19d1205 2108/* Look for the .req directive. This is of the form:
b99bd4ef 2109
c19d1205 2110 new_register_name .req existing_register_name
b99bd4ef 2111
c19d1205 2112 If we find one, or if it looks sufficiently like one that we want to
d929913e 2113 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2114
d929913e 2115static bfd_boolean
c19d1205
ZW
2116create_register_alias (char * newname, char *p)
2117{
2118 struct reg_entry *old;
2119 char *oldname, *nbuf;
2120 size_t nlen;
b99bd4ef 2121
c19d1205
ZW
2122 /* The input scrubber ensures that whitespace after the mnemonic is
2123 collapsed to single spaces. */
2124 oldname = p;
2125 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2126 return FALSE;
b99bd4ef 2127
c19d1205
ZW
2128 oldname += 6;
2129 if (*oldname == '\0')
d929913e 2130 return FALSE;
b99bd4ef 2131
21d799b5 2132 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2133 if (!old)
b99bd4ef 2134 {
c19d1205 2135 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2136 return TRUE;
b99bd4ef
NC
2137 }
2138
c19d1205
ZW
2139 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2140 the desired alias name, and p points to its end. If not, then
2141 the desired alias name is in the global original_case_string. */
2142#ifdef TC_CASE_SENSITIVE
2143 nlen = p - newname;
2144#else
2145 newname = original_case_string;
2146 nlen = strlen (newname);
2147#endif
b99bd4ef 2148
21d799b5 2149 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2150 memcpy (nbuf, newname, nlen);
2151 nbuf[nlen] = '\0';
b99bd4ef 2152
c19d1205
ZW
2153 /* Create aliases under the new name as stated; an all-lowercase
2154 version of the new name; and an all-uppercase version of the new
2155 name. */
d929913e
NC
2156 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2157 {
2158 for (p = nbuf; *p; p++)
2159 *p = TOUPPER (*p);
c19d1205 2160
d929913e
NC
2161 if (strncmp (nbuf, newname, nlen))
2162 {
2163 /* If this attempt to create an additional alias fails, do not bother
2164 trying to create the all-lower case alias. We will fail and issue
2165 a second, duplicate error message. This situation arises when the
2166 programmer does something like:
2167 foo .req r0
2168 Foo .req r1
2169 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2170 the artificial FOO alias because it has already been created by the
d929913e
NC
2171 first .req. */
2172 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2173 return TRUE;
2174 }
c19d1205 2175
d929913e
NC
2176 for (p = nbuf; *p; p++)
2177 *p = TOLOWER (*p);
c19d1205 2178
d929913e
NC
2179 if (strncmp (nbuf, newname, nlen))
2180 insert_reg_alias (nbuf, old->number, old->type);
2181 }
c19d1205 2182
d929913e 2183 return TRUE;
b99bd4ef
NC
2184}
2185
dcbf9037
JB
2186/* Create a Neon typed/indexed register alias using directives, e.g.:
2187 X .dn d5.s32[1]
2188 Y .qn 6.s16
2189 Z .dn d7
2190 T .dn Z[0]
2191 These typed registers can be used instead of the types specified after the
2192 Neon mnemonic, so long as all operands given have types. Types can also be
2193 specified directly, e.g.:
5f4273c7 2194 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2195
c921be7d 2196static bfd_boolean
dcbf9037
JB
2197create_neon_reg_alias (char *newname, char *p)
2198{
2199 enum arm_reg_type basetype;
2200 struct reg_entry *basereg;
2201 struct reg_entry mybasereg;
2202 struct neon_type ntype;
2203 struct neon_typed_alias typeinfo;
2204 char *namebuf, *nameend;
2205 int namelen;
5f4273c7 2206
dcbf9037
JB
2207 typeinfo.defined = 0;
2208 typeinfo.eltype.type = NT_invtype;
2209 typeinfo.eltype.size = -1;
2210 typeinfo.index = -1;
5f4273c7 2211
dcbf9037 2212 nameend = p;
5f4273c7 2213
dcbf9037
JB
2214 if (strncmp (p, " .dn ", 5) == 0)
2215 basetype = REG_TYPE_VFD;
2216 else if (strncmp (p, " .qn ", 5) == 0)
2217 basetype = REG_TYPE_NQ;
2218 else
c921be7d 2219 return FALSE;
5f4273c7 2220
dcbf9037 2221 p += 5;
5f4273c7 2222
dcbf9037 2223 if (*p == '\0')
c921be7d 2224 return FALSE;
5f4273c7 2225
dcbf9037
JB
2226 basereg = arm_reg_parse_multi (&p);
2227
2228 if (basereg && basereg->type != basetype)
2229 {
2230 as_bad (_("bad type for register"));
c921be7d 2231 return FALSE;
dcbf9037
JB
2232 }
2233
2234 if (basereg == NULL)
2235 {
2236 expressionS exp;
2237 /* Try parsing as an integer. */
2238 my_get_expression (&exp, &p, GE_NO_PREFIX);
2239 if (exp.X_op != O_constant)
2240 {
2241 as_bad (_("expression must be constant"));
c921be7d 2242 return FALSE;
dcbf9037
JB
2243 }
2244 basereg = &mybasereg;
2245 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2246 : exp.X_add_number;
2247 basereg->neon = 0;
2248 }
2249
2250 if (basereg->neon)
2251 typeinfo = *basereg->neon;
2252
2253 if (parse_neon_type (&ntype, &p) == SUCCESS)
2254 {
2255 /* We got a type. */
2256 if (typeinfo.defined & NTA_HASTYPE)
2257 {
2258 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2259 return FALSE;
dcbf9037 2260 }
5f4273c7 2261
dcbf9037
JB
2262 typeinfo.defined |= NTA_HASTYPE;
2263 if (ntype.elems != 1)
2264 {
2265 as_bad (_("you must specify a single type only"));
c921be7d 2266 return FALSE;
dcbf9037
JB
2267 }
2268 typeinfo.eltype = ntype.el[0];
2269 }
5f4273c7 2270
dcbf9037
JB
2271 if (skip_past_char (&p, '[') == SUCCESS)
2272 {
2273 expressionS exp;
2274 /* We got a scalar index. */
5f4273c7 2275
dcbf9037
JB
2276 if (typeinfo.defined & NTA_HASINDEX)
2277 {
2278 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2279 return FALSE;
dcbf9037 2280 }
5f4273c7 2281
dcbf9037 2282 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2283
dcbf9037
JB
2284 if (exp.X_op != O_constant)
2285 {
2286 as_bad (_("scalar index must be constant"));
c921be7d 2287 return FALSE;
dcbf9037 2288 }
5f4273c7 2289
dcbf9037
JB
2290 typeinfo.defined |= NTA_HASINDEX;
2291 typeinfo.index = exp.X_add_number;
5f4273c7 2292
dcbf9037
JB
2293 if (skip_past_char (&p, ']') == FAIL)
2294 {
2295 as_bad (_("expecting ]"));
c921be7d 2296 return FALSE;
dcbf9037
JB
2297 }
2298 }
2299
2300 namelen = nameend - newname;
21d799b5 2301 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2302 strncpy (namebuf, newname, namelen);
2303 namebuf[namelen] = '\0';
5f4273c7 2304
dcbf9037
JB
2305 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2306 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2307
dcbf9037
JB
2308 /* Insert name in all uppercase. */
2309 for (p = namebuf; *p; p++)
2310 *p = TOUPPER (*p);
5f4273c7 2311
dcbf9037
JB
2312 if (strncmp (namebuf, newname, namelen))
2313 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2314 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2315
dcbf9037
JB
2316 /* Insert name in all lowercase. */
2317 for (p = namebuf; *p; p++)
2318 *p = TOLOWER (*p);
5f4273c7 2319
dcbf9037
JB
2320 if (strncmp (namebuf, newname, namelen))
2321 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2322 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2323
c921be7d 2324 return TRUE;
dcbf9037
JB
2325}
2326
c19d1205
ZW
2327/* Should never be called, as .req goes between the alias and the
2328 register name, not at the beginning of the line. */
c921be7d 2329
b99bd4ef 2330static void
c19d1205 2331s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2332{
c19d1205
ZW
2333 as_bad (_("invalid syntax for .req directive"));
2334}
b99bd4ef 2335
dcbf9037
JB
2336static void
2337s_dn (int a ATTRIBUTE_UNUSED)
2338{
2339 as_bad (_("invalid syntax for .dn directive"));
2340}
2341
2342static void
2343s_qn (int a ATTRIBUTE_UNUSED)
2344{
2345 as_bad (_("invalid syntax for .qn directive"));
2346}
2347
c19d1205
ZW
2348/* The .unreq directive deletes an alias which was previously defined
2349 by .req. For example:
b99bd4ef 2350
c19d1205
ZW
2351 my_alias .req r11
2352 .unreq my_alias */
b99bd4ef
NC
2353
2354static void
c19d1205 2355s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2356{
c19d1205
ZW
2357 char * name;
2358 char saved_char;
b99bd4ef 2359
c19d1205
ZW
2360 name = input_line_pointer;
2361
2362 while (*input_line_pointer != 0
2363 && *input_line_pointer != ' '
2364 && *input_line_pointer != '\n')
2365 ++input_line_pointer;
2366
2367 saved_char = *input_line_pointer;
2368 *input_line_pointer = 0;
2369
2370 if (!*name)
2371 as_bad (_("invalid syntax for .unreq directive"));
2372 else
2373 {
21d799b5
NC
2374 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2375 name);
c19d1205
ZW
2376
2377 if (!reg)
2378 as_bad (_("unknown register alias '%s'"), name);
2379 else if (reg->builtin)
2380 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2381 name);
2382 else
2383 {
d929913e
NC
2384 char * p;
2385 char * nbuf;
2386
db0bc284 2387 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2388 free ((char *) reg->name);
dcbf9037
JB
2389 if (reg->neon)
2390 free (reg->neon);
c19d1205 2391 free (reg);
d929913e
NC
2392
2393 /* Also locate the all upper case and all lower case versions.
2394 Do not complain if we cannot find one or the other as it
2395 was probably deleted above. */
5f4273c7 2396
d929913e
NC
2397 nbuf = strdup (name);
2398 for (p = nbuf; *p; p++)
2399 *p = TOUPPER (*p);
21d799b5 2400 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2401 if (reg)
2402 {
db0bc284 2403 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2404 free ((char *) reg->name);
2405 if (reg->neon)
2406 free (reg->neon);
2407 free (reg);
2408 }
2409
2410 for (p = nbuf; *p; p++)
2411 *p = TOLOWER (*p);
21d799b5 2412 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2413 if (reg)
2414 {
db0bc284 2415 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2416 free ((char *) reg->name);
2417 if (reg->neon)
2418 free (reg->neon);
2419 free (reg);
2420 }
2421
2422 free (nbuf);
c19d1205
ZW
2423 }
2424 }
b99bd4ef 2425
c19d1205 2426 *input_line_pointer = saved_char;
b99bd4ef
NC
2427 demand_empty_rest_of_line ();
2428}
2429
c19d1205
ZW
2430/* Directives: Instruction set selection. */
2431
2432#ifdef OBJ_ELF
2433/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2434 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2435 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2436 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2437
cd000bff
DJ
2438/* Create a new mapping symbol for the transition to STATE. */
2439
2440static void
2441make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2442{
a737bd4d 2443 symbolS * symbolP;
c19d1205
ZW
2444 const char * symname;
2445 int type;
b99bd4ef 2446
c19d1205 2447 switch (state)
b99bd4ef 2448 {
c19d1205
ZW
2449 case MAP_DATA:
2450 symname = "$d";
2451 type = BSF_NO_FLAGS;
2452 break;
2453 case MAP_ARM:
2454 symname = "$a";
2455 type = BSF_NO_FLAGS;
2456 break;
2457 case MAP_THUMB:
2458 symname = "$t";
2459 type = BSF_NO_FLAGS;
2460 break;
c19d1205
ZW
2461 default:
2462 abort ();
2463 }
2464
cd000bff 2465 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2466 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2467
2468 switch (state)
2469 {
2470 case MAP_ARM:
2471 THUMB_SET_FUNC (symbolP, 0);
2472 ARM_SET_THUMB (symbolP, 0);
2473 ARM_SET_INTERWORK (symbolP, support_interwork);
2474 break;
2475
2476 case MAP_THUMB:
2477 THUMB_SET_FUNC (symbolP, 1);
2478 ARM_SET_THUMB (symbolP, 1);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_DATA:
2483 default:
cd000bff
DJ
2484 break;
2485 }
2486
2487 /* Save the mapping symbols for future reference. Also check that
2488 we do not place two mapping symbols at the same offset within a
2489 frag. We'll handle overlap between frags in
2490 check_mapping_symbols. */
2491 if (value == 0)
2492 {
2493 know (frag->tc_frag_data.first_map == NULL);
2494 frag->tc_frag_data.first_map = symbolP;
2495 }
2496 if (frag->tc_frag_data.last_map != NULL)
c5ed243b 2497 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
cd000bff
DJ
2498 frag->tc_frag_data.last_map = symbolP;
2499}
2500
2501/* We must sometimes convert a region marked as code to data during
2502 code alignment, if an odd number of bytes have to be padded. The
2503 code mapping symbol is pushed to an aligned address. */
2504
2505static void
2506insert_data_mapping_symbol (enum mstate state,
2507 valueT value, fragS *frag, offsetT bytes)
2508{
2509 /* If there was already a mapping symbol, remove it. */
2510 if (frag->tc_frag_data.last_map != NULL
2511 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2512 {
2513 symbolS *symp = frag->tc_frag_data.last_map;
2514
2515 if (value == 0)
2516 {
2517 know (frag->tc_frag_data.first_map == symp);
2518 frag->tc_frag_data.first_map = NULL;
2519 }
2520 frag->tc_frag_data.last_map = NULL;
2521 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2522 }
cd000bff
DJ
2523
2524 make_mapping_symbol (MAP_DATA, value, frag);
2525 make_mapping_symbol (state, value + bytes, frag);
2526}
2527
2528static void mapping_state_2 (enum mstate state, int max_chars);
2529
2530/* Set the mapping state to STATE. Only call this when about to
2531 emit some STATE bytes to the file. */
2532
2533void
2534mapping_state (enum mstate state)
2535{
940b5ce0
DJ
2536 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2537
cd000bff
DJ
2538#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2539
2540 if (mapstate == state)
2541 /* The mapping symbol has already been emitted.
2542 There is nothing else to do. */
2543 return;
2544 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2545 /* This case will be evaluated later in the next else. */
2546 return;
2547 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2548 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2549 {
2550 /* Only add the symbol if the offset is > 0:
2551 if we're at the first frag, check it's size > 0;
2552 if we're not at the first frag, then for sure
2553 the offset is > 0. */
2554 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2555 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2556
2557 if (add_symbol)
2558 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2559 }
2560
2561 mapping_state_2 (state, 0);
2562#undef TRANSITION
2563}
2564
2565/* Same as mapping_state, but MAX_CHARS bytes have already been
2566 allocated. Put the mapping symbol that far back. */
2567
2568static void
2569mapping_state_2 (enum mstate state, int max_chars)
2570{
940b5ce0
DJ
2571 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2572
2573 if (!SEG_NORMAL (now_seg))
2574 return;
2575
cd000bff
DJ
2576 if (mapstate == state)
2577 /* The mapping symbol has already been emitted.
2578 There is nothing else to do. */
2579 return;
2580
cd000bff
DJ
2581 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2582 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2583}
2584#else
d3106081
NS
2585#define mapping_state(x) ((void)0)
2586#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2587#endif
2588
2589/* Find the real, Thumb encoded start of a Thumb function. */
2590
4343666d 2591#ifdef OBJ_COFF
c19d1205
ZW
2592static symbolS *
2593find_real_start (symbolS * symbolP)
2594{
2595 char * real_start;
2596 const char * name = S_GET_NAME (symbolP);
2597 symbolS * new_target;
2598
2599 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2600#define STUB_NAME ".real_start_of"
2601
2602 if (name == NULL)
2603 abort ();
2604
37f6032b
ZW
2605 /* The compiler may generate BL instructions to local labels because
2606 it needs to perform a branch to a far away location. These labels
2607 do not have a corresponding ".real_start_of" label. We check
2608 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2609 the ".real_start_of" convention for nonlocal branches. */
2610 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2611 return symbolP;
2612
37f6032b 2613 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2614 new_target = symbol_find (real_start);
2615
2616 if (new_target == NULL)
2617 {
bd3ba5d1 2618 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2619 new_target = symbolP;
2620 }
2621
c19d1205
ZW
2622 return new_target;
2623}
4343666d 2624#endif
c19d1205
ZW
2625
2626static void
2627opcode_select (int width)
2628{
2629 switch (width)
2630 {
2631 case 16:
2632 if (! thumb_mode)
2633 {
e74cfd16 2634 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2635 as_bad (_("selected processor does not support THUMB opcodes"));
2636
2637 thumb_mode = 1;
2638 /* No need to force the alignment, since we will have been
2639 coming from ARM mode, which is word-aligned. */
2640 record_alignment (now_seg, 1);
2641 }
c19d1205
ZW
2642 break;
2643
2644 case 32:
2645 if (thumb_mode)
2646 {
e74cfd16 2647 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2648 as_bad (_("selected processor does not support ARM opcodes"));
2649
2650 thumb_mode = 0;
2651
2652 if (!need_pass_2)
2653 frag_align (2, 0, 0);
2654
2655 record_alignment (now_seg, 1);
2656 }
c19d1205
ZW
2657 break;
2658
2659 default:
2660 as_bad (_("invalid instruction size selected (%d)"), width);
2661 }
2662}
2663
2664static void
2665s_arm (int ignore ATTRIBUTE_UNUSED)
2666{
2667 opcode_select (32);
2668 demand_empty_rest_of_line ();
2669}
2670
2671static void
2672s_thumb (int ignore ATTRIBUTE_UNUSED)
2673{
2674 opcode_select (16);
2675 demand_empty_rest_of_line ();
2676}
2677
2678static void
2679s_code (int unused ATTRIBUTE_UNUSED)
2680{
2681 int temp;
2682
2683 temp = get_absolute_expression ();
2684 switch (temp)
2685 {
2686 case 16:
2687 case 32:
2688 opcode_select (temp);
2689 break;
2690
2691 default:
2692 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2693 }
2694}
2695
2696static void
2697s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2698{
2699 /* If we are not already in thumb mode go into it, EVEN if
2700 the target processor does not support thumb instructions.
2701 This is used by gcc/config/arm/lib1funcs.asm for example
2702 to compile interworking support functions even if the
2703 target processor should not support interworking. */
2704 if (! thumb_mode)
2705 {
2706 thumb_mode = 2;
2707 record_alignment (now_seg, 1);
2708 }
2709
2710 demand_empty_rest_of_line ();
2711}
2712
2713static void
2714s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2715{
2716 s_thumb (0);
2717
2718 /* The following label is the name/address of the start of a Thumb function.
2719 We need to know this for the interworking support. */
2720 label_is_thumb_function_name = TRUE;
2721}
2722
2723/* Perform a .set directive, but also mark the alias as
2724 being a thumb function. */
2725
2726static void
2727s_thumb_set (int equiv)
2728{
2729 /* XXX the following is a duplicate of the code for s_set() in read.c
2730 We cannot just call that code as we need to get at the symbol that
2731 is created. */
2732 char * name;
2733 char delim;
2734 char * end_name;
2735 symbolS * symbolP;
2736
2737 /* Especial apologies for the random logic:
2738 This just grew, and could be parsed much more simply!
2739 Dean - in haste. */
2740 name = input_line_pointer;
2741 delim = get_symbol_end ();
2742 end_name = input_line_pointer;
2743 *end_name = delim;
2744
2745 if (*input_line_pointer != ',')
2746 {
2747 *end_name = 0;
2748 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2749 *end_name = delim;
2750 ignore_rest_of_line ();
2751 return;
2752 }
2753
2754 input_line_pointer++;
2755 *end_name = 0;
2756
2757 if (name[0] == '.' && name[1] == '\0')
2758 {
2759 /* XXX - this should not happen to .thumb_set. */
2760 abort ();
2761 }
2762
2763 if ((symbolP = symbol_find (name)) == NULL
2764 && (symbolP = md_undefined_symbol (name)) == NULL)
2765 {
2766#ifndef NO_LISTING
2767 /* When doing symbol listings, play games with dummy fragments living
2768 outside the normal fragment chain to record the file and line info
c19d1205 2769 for this symbol. */
b99bd4ef
NC
2770 if (listing & LISTING_SYMBOLS)
2771 {
2772 extern struct list_info_struct * listing_tail;
21d799b5 2773 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2774
2775 memset (dummy_frag, 0, sizeof (fragS));
2776 dummy_frag->fr_type = rs_fill;
2777 dummy_frag->line = listing_tail;
2778 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2779 dummy_frag->fr_symbol = symbolP;
2780 }
2781 else
2782#endif
2783 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2784
2785#ifdef OBJ_COFF
2786 /* "set" symbols are local unless otherwise specified. */
2787 SF_SET_LOCAL (symbolP);
2788#endif /* OBJ_COFF */
2789 } /* Make a new symbol. */
2790
2791 symbol_table_insert (symbolP);
2792
2793 * end_name = delim;
2794
2795 if (equiv
2796 && S_IS_DEFINED (symbolP)
2797 && S_GET_SEGMENT (symbolP) != reg_section)
2798 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2799
2800 pseudo_set (symbolP);
2801
2802 demand_empty_rest_of_line ();
2803
c19d1205 2804 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2805
2806 THUMB_SET_FUNC (symbolP, 1);
2807 ARM_SET_THUMB (symbolP, 1);
2808#if defined OBJ_ELF || defined OBJ_COFF
2809 ARM_SET_INTERWORK (symbolP, support_interwork);
2810#endif
2811}
2812
c19d1205 2813/* Directives: Mode selection. */
b99bd4ef 2814
c19d1205
ZW
2815/* .syntax [unified|divided] - choose the new unified syntax
2816 (same for Arm and Thumb encoding, modulo slight differences in what
2817 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2818static void
c19d1205 2819s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2820{
c19d1205
ZW
2821 char *name, delim;
2822
2823 name = input_line_pointer;
2824 delim = get_symbol_end ();
2825
2826 if (!strcasecmp (name, "unified"))
2827 unified_syntax = TRUE;
2828 else if (!strcasecmp (name, "divided"))
2829 unified_syntax = FALSE;
2830 else
2831 {
2832 as_bad (_("unrecognized syntax mode \"%s\""), name);
2833 return;
2834 }
2835 *input_line_pointer = delim;
b99bd4ef
NC
2836 demand_empty_rest_of_line ();
2837}
2838
c19d1205
ZW
2839/* Directives: sectioning and alignment. */
2840
2841/* Same as s_align_ptwo but align 0 => align 2. */
2842
b99bd4ef 2843static void
c19d1205 2844s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2845{
a737bd4d 2846 int temp;
dce323d1 2847 bfd_boolean fill_p;
c19d1205
ZW
2848 long temp_fill;
2849 long max_alignment = 15;
b99bd4ef
NC
2850
2851 temp = get_absolute_expression ();
c19d1205
ZW
2852 if (temp > max_alignment)
2853 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2854 else if (temp < 0)
b99bd4ef 2855 {
c19d1205
ZW
2856 as_bad (_("alignment negative. 0 assumed."));
2857 temp = 0;
2858 }
b99bd4ef 2859
c19d1205
ZW
2860 if (*input_line_pointer == ',')
2861 {
2862 input_line_pointer++;
2863 temp_fill = get_absolute_expression ();
dce323d1 2864 fill_p = TRUE;
b99bd4ef 2865 }
c19d1205 2866 else
dce323d1
PB
2867 {
2868 fill_p = FALSE;
2869 temp_fill = 0;
2870 }
b99bd4ef 2871
c19d1205
ZW
2872 if (!temp)
2873 temp = 2;
b99bd4ef 2874
c19d1205
ZW
2875 /* Only make a frag if we HAVE to. */
2876 if (temp && !need_pass_2)
dce323d1
PB
2877 {
2878 if (!fill_p && subseg_text_p (now_seg))
2879 frag_align_code (temp, 0);
2880 else
2881 frag_align (temp, (int) temp_fill, 0);
2882 }
c19d1205
ZW
2883 demand_empty_rest_of_line ();
2884
2885 record_alignment (now_seg, temp);
b99bd4ef
NC
2886}
2887
c19d1205
ZW
2888static void
2889s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2890{
c19d1205
ZW
2891 /* We don't support putting frags in the BSS segment, we fake it by
2892 marking in_bss, then looking at s_skip for clues. */
2893 subseg_set (bss_section, 0);
2894 demand_empty_rest_of_line ();
cd000bff
DJ
2895
2896#ifdef md_elf_section_change_hook
2897 md_elf_section_change_hook ();
2898#endif
c19d1205 2899}
b99bd4ef 2900
c19d1205
ZW
2901static void
2902s_even (int ignore ATTRIBUTE_UNUSED)
2903{
2904 /* Never make frag if expect extra pass. */
2905 if (!need_pass_2)
2906 frag_align (1, 0, 0);
b99bd4ef 2907
c19d1205 2908 record_alignment (now_seg, 1);
b99bd4ef 2909
c19d1205 2910 demand_empty_rest_of_line ();
b99bd4ef
NC
2911}
2912
c19d1205 2913/* Directives: Literal pools. */
a737bd4d 2914
c19d1205
ZW
2915static literal_pool *
2916find_literal_pool (void)
a737bd4d 2917{
c19d1205 2918 literal_pool * pool;
a737bd4d 2919
c19d1205 2920 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2921 {
c19d1205
ZW
2922 if (pool->section == now_seg
2923 && pool->sub_section == now_subseg)
2924 break;
a737bd4d
NC
2925 }
2926
c19d1205 2927 return pool;
a737bd4d
NC
2928}
2929
c19d1205
ZW
2930static literal_pool *
2931find_or_make_literal_pool (void)
a737bd4d 2932{
c19d1205
ZW
2933 /* Next literal pool ID number. */
2934 static unsigned int latest_pool_num = 1;
2935 literal_pool * pool;
a737bd4d 2936
c19d1205 2937 pool = find_literal_pool ();
a737bd4d 2938
c19d1205 2939 if (pool == NULL)
a737bd4d 2940 {
c19d1205 2941 /* Create a new pool. */
21d799b5 2942 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2943 if (! pool)
2944 return NULL;
a737bd4d 2945
c19d1205
ZW
2946 pool->next_free_entry = 0;
2947 pool->section = now_seg;
2948 pool->sub_section = now_subseg;
2949 pool->next = list_of_pools;
2950 pool->symbol = NULL;
2951
2952 /* Add it to the list. */
2953 list_of_pools = pool;
a737bd4d 2954 }
a737bd4d 2955
c19d1205
ZW
2956 /* New pools, and emptied pools, will have a NULL symbol. */
2957 if (pool->symbol == NULL)
a737bd4d 2958 {
c19d1205
ZW
2959 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2960 (valueT) 0, &zero_address_frag);
2961 pool->id = latest_pool_num ++;
a737bd4d
NC
2962 }
2963
c19d1205
ZW
2964 /* Done. */
2965 return pool;
a737bd4d
NC
2966}
2967
c19d1205 2968/* Add the literal in the global 'inst'
5f4273c7 2969 structure to the relevant literal pool. */
b99bd4ef
NC
2970
2971static int
c19d1205 2972add_to_lit_pool (void)
b99bd4ef 2973{
c19d1205
ZW
2974 literal_pool * pool;
2975 unsigned int entry;
b99bd4ef 2976
c19d1205
ZW
2977 pool = find_or_make_literal_pool ();
2978
2979 /* Check if this literal value is already in the pool. */
2980 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2981 {
c19d1205
ZW
2982 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2983 && (inst.reloc.exp.X_op == O_constant)
2984 && (pool->literals[entry].X_add_number
2985 == inst.reloc.exp.X_add_number)
2986 && (pool->literals[entry].X_unsigned
2987 == inst.reloc.exp.X_unsigned))
2988 break;
2989
2990 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2991 && (inst.reloc.exp.X_op == O_symbol)
2992 && (pool->literals[entry].X_add_number
2993 == inst.reloc.exp.X_add_number)
2994 && (pool->literals[entry].X_add_symbol
2995 == inst.reloc.exp.X_add_symbol)
2996 && (pool->literals[entry].X_op_symbol
2997 == inst.reloc.exp.X_op_symbol))
2998 break;
b99bd4ef
NC
2999 }
3000
c19d1205
ZW
3001 /* Do we need to create a new entry? */
3002 if (entry == pool->next_free_entry)
3003 {
3004 if (entry >= MAX_LITERAL_POOL_SIZE)
3005 {
3006 inst.error = _("literal pool overflow");
3007 return FAIL;
3008 }
3009
3010 pool->literals[entry] = inst.reloc.exp;
3011 pool->next_free_entry += 1;
3012 }
b99bd4ef 3013
c19d1205
ZW
3014 inst.reloc.exp.X_op = O_symbol;
3015 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3016 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3017
c19d1205 3018 return SUCCESS;
b99bd4ef
NC
3019}
3020
c19d1205
ZW
3021/* Can't use symbol_new here, so have to create a symbol and then at
3022 a later date assign it a value. Thats what these functions do. */
e16bb312 3023
c19d1205
ZW
3024static void
3025symbol_locate (symbolS * symbolP,
3026 const char * name, /* It is copied, the caller can modify. */
3027 segT segment, /* Segment identifier (SEG_<something>). */
3028 valueT valu, /* Symbol value. */
3029 fragS * frag) /* Associated fragment. */
3030{
3031 unsigned int name_length;
3032 char * preserved_copy_of_name;
e16bb312 3033
c19d1205
ZW
3034 name_length = strlen (name) + 1; /* +1 for \0. */
3035 obstack_grow (&notes, name, name_length);
21d799b5 3036 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3037
c19d1205
ZW
3038#ifdef tc_canonicalize_symbol_name
3039 preserved_copy_of_name =
3040 tc_canonicalize_symbol_name (preserved_copy_of_name);
3041#endif
b99bd4ef 3042
c19d1205 3043 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3044
c19d1205
ZW
3045 S_SET_SEGMENT (symbolP, segment);
3046 S_SET_VALUE (symbolP, valu);
3047 symbol_clear_list_pointers (symbolP);
b99bd4ef 3048
c19d1205 3049 symbol_set_frag (symbolP, frag);
b99bd4ef 3050
c19d1205
ZW
3051 /* Link to end of symbol chain. */
3052 {
3053 extern int symbol_table_frozen;
b99bd4ef 3054
c19d1205
ZW
3055 if (symbol_table_frozen)
3056 abort ();
3057 }
b99bd4ef 3058
c19d1205 3059 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3060
c19d1205 3061 obj_symbol_new_hook (symbolP);
b99bd4ef 3062
c19d1205
ZW
3063#ifdef tc_symbol_new_hook
3064 tc_symbol_new_hook (symbolP);
3065#endif
3066
3067#ifdef DEBUG_SYMS
3068 verify_symbol_chain (symbol_rootP, symbol_lastP);
3069#endif /* DEBUG_SYMS */
b99bd4ef
NC
3070}
3071
b99bd4ef 3072
c19d1205
ZW
3073static void
3074s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3075{
c19d1205
ZW
3076 unsigned int entry;
3077 literal_pool * pool;
3078 char sym_name[20];
b99bd4ef 3079
c19d1205
ZW
3080 pool = find_literal_pool ();
3081 if (pool == NULL
3082 || pool->symbol == NULL
3083 || pool->next_free_entry == 0)
3084 return;
b99bd4ef 3085
c19d1205 3086 mapping_state (MAP_DATA);
b99bd4ef 3087
c19d1205
ZW
3088 /* Align pool as you have word accesses.
3089 Only make a frag if we have to. */
3090 if (!need_pass_2)
3091 frag_align (2, 0, 0);
b99bd4ef 3092
c19d1205 3093 record_alignment (now_seg, 2);
b99bd4ef 3094
c19d1205 3095 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3096
c19d1205
ZW
3097 symbol_locate (pool->symbol, sym_name, now_seg,
3098 (valueT) frag_now_fix (), frag_now);
3099 symbol_table_insert (pool->symbol);
b99bd4ef 3100
c19d1205 3101 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3102
c19d1205
ZW
3103#if defined OBJ_COFF || defined OBJ_ELF
3104 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3105#endif
6c43fab6 3106
c19d1205
ZW
3107 for (entry = 0; entry < pool->next_free_entry; entry ++)
3108 /* First output the expression in the instruction to the pool. */
3109 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3110
c19d1205
ZW
3111 /* Mark the pool as empty. */
3112 pool->next_free_entry = 0;
3113 pool->symbol = NULL;
b99bd4ef
NC
3114}
3115
c19d1205
ZW
3116#ifdef OBJ_ELF
3117/* Forward declarations for functions below, in the MD interface
3118 section. */
3119static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3120static valueT create_unwind_entry (int);
3121static void start_unwind_section (const segT, int);
3122static void add_unwind_opcode (valueT, int);
3123static void flush_pending_unwind (void);
b99bd4ef 3124
c19d1205 3125/* Directives: Data. */
b99bd4ef 3126
c19d1205
ZW
3127static void
3128s_arm_elf_cons (int nbytes)
3129{
3130 expressionS exp;
b99bd4ef 3131
c19d1205
ZW
3132#ifdef md_flush_pending_output
3133 md_flush_pending_output ();
3134#endif
b99bd4ef 3135
c19d1205 3136 if (is_it_end_of_statement ())
b99bd4ef 3137 {
c19d1205
ZW
3138 demand_empty_rest_of_line ();
3139 return;
b99bd4ef
NC
3140 }
3141
c19d1205
ZW
3142#ifdef md_cons_align
3143 md_cons_align (nbytes);
3144#endif
b99bd4ef 3145
c19d1205
ZW
3146 mapping_state (MAP_DATA);
3147 do
b99bd4ef 3148 {
c19d1205
ZW
3149 int reloc;
3150 char *base = input_line_pointer;
b99bd4ef 3151
c19d1205 3152 expression (& exp);
b99bd4ef 3153
c19d1205
ZW
3154 if (exp.X_op != O_symbol)
3155 emit_expr (&exp, (unsigned int) nbytes);
3156 else
3157 {
3158 char *before_reloc = input_line_pointer;
3159 reloc = parse_reloc (&input_line_pointer);
3160 if (reloc == -1)
3161 {
3162 as_bad (_("unrecognized relocation suffix"));
3163 ignore_rest_of_line ();
3164 return;
3165 }
3166 else if (reloc == BFD_RELOC_UNUSED)
3167 emit_expr (&exp, (unsigned int) nbytes);
3168 else
3169 {
21d799b5
NC
3170 reloc_howto_type *howto = (reloc_howto_type *)
3171 bfd_reloc_type_lookup (stdoutput,
3172 (bfd_reloc_code_real_type) reloc);
c19d1205 3173 int size = bfd_get_reloc_size (howto);
b99bd4ef 3174
2fc8bdac
ZW
3175 if (reloc == BFD_RELOC_ARM_PLT32)
3176 {
3177 as_bad (_("(plt) is only valid on branch targets"));
3178 reloc = BFD_RELOC_UNUSED;
3179 size = 0;
3180 }
3181
c19d1205 3182 if (size > nbytes)
2fc8bdac 3183 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3184 howto->name, nbytes);
3185 else
3186 {
3187 /* We've parsed an expression stopping at O_symbol.
3188 But there may be more expression left now that we
3189 have parsed the relocation marker. Parse it again.
3190 XXX Surely there is a cleaner way to do this. */
3191 char *p = input_line_pointer;
3192 int offset;
21d799b5 3193 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3194 memcpy (save_buf, base, input_line_pointer - base);
3195 memmove (base + (input_line_pointer - before_reloc),
3196 base, before_reloc - base);
3197
3198 input_line_pointer = base + (input_line_pointer-before_reloc);
3199 expression (&exp);
3200 memcpy (base, save_buf, p - base);
3201
3202 offset = nbytes - size;
3203 p = frag_more ((int) nbytes);
3204 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3205 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3206 }
3207 }
3208 }
b99bd4ef 3209 }
c19d1205 3210 while (*input_line_pointer++ == ',');
b99bd4ef 3211
c19d1205
ZW
3212 /* Put terminator back into stream. */
3213 input_line_pointer --;
3214 demand_empty_rest_of_line ();
b99bd4ef
NC
3215}
3216
c921be7d
NC
3217/* Emit an expression containing a 32-bit thumb instruction.
3218 Implementation based on put_thumb32_insn. */
3219
3220static void
3221emit_thumb32_expr (expressionS * exp)
3222{
3223 expressionS exp_high = *exp;
3224
3225 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3226 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3227 exp->X_add_number &= 0xffff;
3228 emit_expr (exp, (unsigned int) THUMB_SIZE);
3229}
3230
3231/* Guess the instruction size based on the opcode. */
3232
3233static int
3234thumb_insn_size (int opcode)
3235{
3236 if ((unsigned int) opcode < 0xe800u)
3237 return 2;
3238 else if ((unsigned int) opcode >= 0xe8000000u)
3239 return 4;
3240 else
3241 return 0;
3242}
3243
3244static bfd_boolean
3245emit_insn (expressionS *exp, int nbytes)
3246{
3247 int size = 0;
3248
3249 if (exp->X_op == O_constant)
3250 {
3251 size = nbytes;
3252
3253 if (size == 0)
3254 size = thumb_insn_size (exp->X_add_number);
3255
3256 if (size != 0)
3257 {
3258 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3259 {
3260 as_bad (_(".inst.n operand too big. "\
3261 "Use .inst.w instead"));
3262 size = 0;
3263 }
3264 else
3265 {
3266 if (now_it.state == AUTOMATIC_IT_BLOCK)
3267 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3268 else
3269 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3270
3271 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3272 emit_thumb32_expr (exp);
3273 else
3274 emit_expr (exp, (unsigned int) size);
3275
3276 it_fsm_post_encode ();
3277 }
3278 }
3279 else
3280 as_bad (_("cannot determine Thumb instruction size. " \
3281 "Use .inst.n/.inst.w instead"));
3282 }
3283 else
3284 as_bad (_("constant expression required"));
3285
3286 return (size != 0);
3287}
3288
3289/* Like s_arm_elf_cons but do not use md_cons_align and
3290 set the mapping state to MAP_ARM/MAP_THUMB. */
3291
3292static void
3293s_arm_elf_inst (int nbytes)
3294{
3295 if (is_it_end_of_statement ())
3296 {
3297 demand_empty_rest_of_line ();
3298 return;
3299 }
3300
3301 /* Calling mapping_state () here will not change ARM/THUMB,
3302 but will ensure not to be in DATA state. */
3303
3304 if (thumb_mode)
3305 mapping_state (MAP_THUMB);
3306 else
3307 {
3308 if (nbytes != 0)
3309 {
3310 as_bad (_("width suffixes are invalid in ARM mode"));
3311 ignore_rest_of_line ();
3312 return;
3313 }
3314
3315 nbytes = 4;
3316
3317 mapping_state (MAP_ARM);
3318 }
3319
3320 do
3321 {
3322 expressionS exp;
3323
3324 expression (& exp);
3325
3326 if (! emit_insn (& exp, nbytes))
3327 {
3328 ignore_rest_of_line ();
3329 return;
3330 }
3331 }
3332 while (*input_line_pointer++ == ',');
3333
3334 /* Put terminator back into stream. */
3335 input_line_pointer --;
3336 demand_empty_rest_of_line ();
3337}
b99bd4ef 3338
c19d1205 3339/* Parse a .rel31 directive. */
b99bd4ef 3340
c19d1205
ZW
3341static void
3342s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3343{
3344 expressionS exp;
3345 char *p;
3346 valueT highbit;
b99bd4ef 3347
c19d1205
ZW
3348 highbit = 0;
3349 if (*input_line_pointer == '1')
3350 highbit = 0x80000000;
3351 else if (*input_line_pointer != '0')
3352 as_bad (_("expected 0 or 1"));
b99bd4ef 3353
c19d1205
ZW
3354 input_line_pointer++;
3355 if (*input_line_pointer != ',')
3356 as_bad (_("missing comma"));
3357 input_line_pointer++;
b99bd4ef 3358
c19d1205
ZW
3359#ifdef md_flush_pending_output
3360 md_flush_pending_output ();
3361#endif
b99bd4ef 3362
c19d1205
ZW
3363#ifdef md_cons_align
3364 md_cons_align (4);
3365#endif
b99bd4ef 3366
c19d1205 3367 mapping_state (MAP_DATA);
b99bd4ef 3368
c19d1205 3369 expression (&exp);
b99bd4ef 3370
c19d1205
ZW
3371 p = frag_more (4);
3372 md_number_to_chars (p, highbit, 4);
3373 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3374 BFD_RELOC_ARM_PREL31);
b99bd4ef 3375
c19d1205 3376 demand_empty_rest_of_line ();
b99bd4ef
NC
3377}
3378
c19d1205 3379/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3380
c19d1205 3381/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3382
c19d1205
ZW
3383static void
3384s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3385{
3386 demand_empty_rest_of_line ();
921e5f0a
PB
3387 if (unwind.proc_start)
3388 {
c921be7d 3389 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3390 return;
3391 }
3392
c19d1205
ZW
3393 /* Mark the start of the function. */
3394 unwind.proc_start = expr_build_dot ();
b99bd4ef 3395
c19d1205
ZW
3396 /* Reset the rest of the unwind info. */
3397 unwind.opcode_count = 0;
3398 unwind.table_entry = NULL;
3399 unwind.personality_routine = NULL;
3400 unwind.personality_index = -1;
3401 unwind.frame_size = 0;
3402 unwind.fp_offset = 0;
fdfde340 3403 unwind.fp_reg = REG_SP;
c19d1205
ZW
3404 unwind.fp_used = 0;
3405 unwind.sp_restored = 0;
3406}
b99bd4ef 3407
b99bd4ef 3408
c19d1205
ZW
3409/* Parse a handlerdata directive. Creates the exception handling table entry
3410 for the function. */
b99bd4ef 3411
c19d1205
ZW
3412static void
3413s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3414{
3415 demand_empty_rest_of_line ();
921e5f0a 3416 if (!unwind.proc_start)
c921be7d 3417 as_bad (MISSING_FNSTART);
921e5f0a 3418
c19d1205 3419 if (unwind.table_entry)
6decc662 3420 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3421
c19d1205
ZW
3422 create_unwind_entry (1);
3423}
a737bd4d 3424
c19d1205 3425/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3426
c19d1205
ZW
3427static void
3428s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3429{
3430 long where;
3431 char *ptr;
3432 valueT val;
940b5ce0 3433 unsigned int marked_pr_dependency;
f02232aa 3434
c19d1205 3435 demand_empty_rest_of_line ();
f02232aa 3436
921e5f0a
PB
3437 if (!unwind.proc_start)
3438 {
c921be7d 3439 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3440 return;
3441 }
3442
c19d1205
ZW
3443 /* Add eh table entry. */
3444 if (unwind.table_entry == NULL)
3445 val = create_unwind_entry (0);
3446 else
3447 val = 0;
f02232aa 3448
c19d1205
ZW
3449 /* Add index table entry. This is two words. */
3450 start_unwind_section (unwind.saved_seg, 1);
3451 frag_align (2, 0, 0);
3452 record_alignment (now_seg, 2);
b99bd4ef 3453
c19d1205
ZW
3454 ptr = frag_more (8);
3455 where = frag_now_fix () - 8;
f02232aa 3456
c19d1205
ZW
3457 /* Self relative offset of the function start. */
3458 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3459 BFD_RELOC_ARM_PREL31);
f02232aa 3460
c19d1205
ZW
3461 /* Indicate dependency on EHABI-defined personality routines to the
3462 linker, if it hasn't been done already. */
940b5ce0
DJ
3463 marked_pr_dependency
3464 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3465 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3466 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3467 {
5f4273c7
NC
3468 static const char *const name[] =
3469 {
3470 "__aeabi_unwind_cpp_pr0",
3471 "__aeabi_unwind_cpp_pr1",
3472 "__aeabi_unwind_cpp_pr2"
3473 };
c19d1205
ZW
3474 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3475 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3476 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3477 |= 1 << unwind.personality_index;
c19d1205 3478 }
f02232aa 3479
c19d1205
ZW
3480 if (val)
3481 /* Inline exception table entry. */
3482 md_number_to_chars (ptr + 4, val, 4);
3483 else
3484 /* Self relative offset of the table entry. */
3485 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3486 BFD_RELOC_ARM_PREL31);
f02232aa 3487
c19d1205
ZW
3488 /* Restore the original section. */
3489 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3490
3491 unwind.proc_start = NULL;
c19d1205 3492}
f02232aa 3493
f02232aa 3494
c19d1205 3495/* Parse an unwind_cantunwind directive. */
b99bd4ef 3496
c19d1205
ZW
3497static void
3498s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3499{
3500 demand_empty_rest_of_line ();
921e5f0a 3501 if (!unwind.proc_start)
c921be7d 3502 as_bad (MISSING_FNSTART);
921e5f0a 3503
c19d1205
ZW
3504 if (unwind.personality_routine || unwind.personality_index != -1)
3505 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3506
c19d1205
ZW
3507 unwind.personality_index = -2;
3508}
b99bd4ef 3509
b99bd4ef 3510
c19d1205 3511/* Parse a personalityindex directive. */
b99bd4ef 3512
c19d1205
ZW
3513static void
3514s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3515{
3516 expressionS exp;
b99bd4ef 3517
921e5f0a 3518 if (!unwind.proc_start)
c921be7d 3519 as_bad (MISSING_FNSTART);
921e5f0a 3520
c19d1205
ZW
3521 if (unwind.personality_routine || unwind.personality_index != -1)
3522 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3523
c19d1205 3524 expression (&exp);
b99bd4ef 3525
c19d1205
ZW
3526 if (exp.X_op != O_constant
3527 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3528 {
c19d1205
ZW
3529 as_bad (_("bad personality routine number"));
3530 ignore_rest_of_line ();
3531 return;
b99bd4ef
NC
3532 }
3533
c19d1205 3534 unwind.personality_index = exp.X_add_number;
b99bd4ef 3535
c19d1205
ZW
3536 demand_empty_rest_of_line ();
3537}
e16bb312 3538
e16bb312 3539
c19d1205 3540/* Parse a personality directive. */
e16bb312 3541
c19d1205
ZW
3542static void
3543s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3544{
3545 char *name, *p, c;
a737bd4d 3546
921e5f0a 3547 if (!unwind.proc_start)
c921be7d 3548 as_bad (MISSING_FNSTART);
921e5f0a 3549
c19d1205
ZW
3550 if (unwind.personality_routine || unwind.personality_index != -1)
3551 as_bad (_("duplicate .personality directive"));
a737bd4d 3552
c19d1205
ZW
3553 name = input_line_pointer;
3554 c = get_symbol_end ();
3555 p = input_line_pointer;
3556 unwind.personality_routine = symbol_find_or_make (name);
3557 *p = c;
3558 demand_empty_rest_of_line ();
3559}
e16bb312 3560
e16bb312 3561
c19d1205 3562/* Parse a directive saving core registers. */
e16bb312 3563
c19d1205
ZW
3564static void
3565s_arm_unwind_save_core (void)
e16bb312 3566{
c19d1205
ZW
3567 valueT op;
3568 long range;
3569 int n;
e16bb312 3570
c19d1205
ZW
3571 range = parse_reg_list (&input_line_pointer);
3572 if (range == FAIL)
e16bb312 3573 {
c19d1205
ZW
3574 as_bad (_("expected register list"));
3575 ignore_rest_of_line ();
3576 return;
3577 }
e16bb312 3578
c19d1205 3579 demand_empty_rest_of_line ();
e16bb312 3580
c19d1205
ZW
3581 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3582 into .unwind_save {..., sp...}. We aren't bothered about the value of
3583 ip because it is clobbered by calls. */
3584 if (unwind.sp_restored && unwind.fp_reg == 12
3585 && (range & 0x3000) == 0x1000)
3586 {
3587 unwind.opcode_count--;
3588 unwind.sp_restored = 0;
3589 range = (range | 0x2000) & ~0x1000;
3590 unwind.pending_offset = 0;
3591 }
e16bb312 3592
01ae4198
DJ
3593 /* Pop r4-r15. */
3594 if (range & 0xfff0)
c19d1205 3595 {
01ae4198
DJ
3596 /* See if we can use the short opcodes. These pop a block of up to 8
3597 registers starting with r4, plus maybe r14. */
3598 for (n = 0; n < 8; n++)
3599 {
3600 /* Break at the first non-saved register. */
3601 if ((range & (1 << (n + 4))) == 0)
3602 break;
3603 }
3604 /* See if there are any other bits set. */
3605 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3606 {
3607 /* Use the long form. */
3608 op = 0x8000 | ((range >> 4) & 0xfff);
3609 add_unwind_opcode (op, 2);
3610 }
0dd132b6 3611 else
01ae4198
DJ
3612 {
3613 /* Use the short form. */
3614 if (range & 0x4000)
3615 op = 0xa8; /* Pop r14. */
3616 else
3617 op = 0xa0; /* Do not pop r14. */
3618 op |= (n - 1);
3619 add_unwind_opcode (op, 1);
3620 }
c19d1205 3621 }
0dd132b6 3622
c19d1205
ZW
3623 /* Pop r0-r3. */
3624 if (range & 0xf)
3625 {
3626 op = 0xb100 | (range & 0xf);
3627 add_unwind_opcode (op, 2);
0dd132b6
NC
3628 }
3629
c19d1205
ZW
3630 /* Record the number of bytes pushed. */
3631 for (n = 0; n < 16; n++)
3632 {
3633 if (range & (1 << n))
3634 unwind.frame_size += 4;
3635 }
0dd132b6
NC
3636}
3637
c19d1205
ZW
3638
3639/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3640
3641static void
c19d1205 3642s_arm_unwind_save_fpa (int reg)
b99bd4ef 3643{
c19d1205
ZW
3644 expressionS exp;
3645 int num_regs;
3646 valueT op;
b99bd4ef 3647
c19d1205
ZW
3648 /* Get Number of registers to transfer. */
3649 if (skip_past_comma (&input_line_pointer) != FAIL)
3650 expression (&exp);
3651 else
3652 exp.X_op = O_illegal;
b99bd4ef 3653
c19d1205 3654 if (exp.X_op != O_constant)
b99bd4ef 3655 {
c19d1205
ZW
3656 as_bad (_("expected , <constant>"));
3657 ignore_rest_of_line ();
b99bd4ef
NC
3658 return;
3659 }
3660
c19d1205
ZW
3661 num_regs = exp.X_add_number;
3662
3663 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3664 {
c19d1205
ZW
3665 as_bad (_("number of registers must be in the range [1:4]"));
3666 ignore_rest_of_line ();
b99bd4ef
NC
3667 return;
3668 }
3669
c19d1205 3670 demand_empty_rest_of_line ();
b99bd4ef 3671
c19d1205
ZW
3672 if (reg == 4)
3673 {
3674 /* Short form. */
3675 op = 0xb4 | (num_regs - 1);
3676 add_unwind_opcode (op, 1);
3677 }
b99bd4ef
NC
3678 else
3679 {
c19d1205
ZW
3680 /* Long form. */
3681 op = 0xc800 | (reg << 4) | (num_regs - 1);
3682 add_unwind_opcode (op, 2);
b99bd4ef 3683 }
c19d1205 3684 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3685}
3686
c19d1205 3687
fa073d69
MS
3688/* Parse a directive saving VFP registers for ARMv6 and above. */
3689
3690static void
3691s_arm_unwind_save_vfp_armv6 (void)
3692{
3693 int count;
3694 unsigned int start;
3695 valueT op;
3696 int num_vfpv3_regs = 0;
3697 int num_regs_below_16;
3698
3699 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3700 if (count == FAIL)
3701 {
3702 as_bad (_("expected register list"));
3703 ignore_rest_of_line ();
3704 return;
3705 }
3706
3707 demand_empty_rest_of_line ();
3708
3709 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3710 than FSTMX/FLDMX-style ones). */
3711
3712 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3713 if (start >= 16)
3714 num_vfpv3_regs = count;
3715 else if (start + count > 16)
3716 num_vfpv3_regs = start + count - 16;
3717
3718 if (num_vfpv3_regs > 0)
3719 {
3720 int start_offset = start > 16 ? start - 16 : 0;
3721 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3722 add_unwind_opcode (op, 2);
3723 }
3724
3725 /* Generate opcode for registers numbered in the range 0 .. 15. */
3726 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3727 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3728 if (num_regs_below_16 > 0)
3729 {
3730 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3731 add_unwind_opcode (op, 2);
3732 }
3733
3734 unwind.frame_size += count * 8;
3735}
3736
3737
3738/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3739
3740static void
c19d1205 3741s_arm_unwind_save_vfp (void)
b99bd4ef 3742{
c19d1205 3743 int count;
ca3f61f7 3744 unsigned int reg;
c19d1205 3745 valueT op;
b99bd4ef 3746
5287ad62 3747 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3748 if (count == FAIL)
b99bd4ef 3749 {
c19d1205
ZW
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
b99bd4ef
NC
3752 return;
3753 }
3754
c19d1205 3755 demand_empty_rest_of_line ();
b99bd4ef 3756
c19d1205 3757 if (reg == 8)
b99bd4ef 3758 {
c19d1205
ZW
3759 /* Short form. */
3760 op = 0xb8 | (count - 1);
3761 add_unwind_opcode (op, 1);
b99bd4ef 3762 }
c19d1205 3763 else
b99bd4ef 3764 {
c19d1205
ZW
3765 /* Long form. */
3766 op = 0xb300 | (reg << 4) | (count - 1);
3767 add_unwind_opcode (op, 2);
b99bd4ef 3768 }
c19d1205
ZW
3769 unwind.frame_size += count * 8 + 4;
3770}
b99bd4ef 3771
b99bd4ef 3772
c19d1205
ZW
3773/* Parse a directive saving iWMMXt data registers. */
3774
3775static void
3776s_arm_unwind_save_mmxwr (void)
3777{
3778 int reg;
3779 int hi_reg;
3780 int i;
3781 unsigned mask = 0;
3782 valueT op;
b99bd4ef 3783
c19d1205
ZW
3784 if (*input_line_pointer == '{')
3785 input_line_pointer++;
b99bd4ef 3786
c19d1205 3787 do
b99bd4ef 3788 {
dcbf9037 3789 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3790
c19d1205 3791 if (reg == FAIL)
b99bd4ef 3792 {
9b7132d3 3793 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3794 goto error;
b99bd4ef
NC
3795 }
3796
c19d1205
ZW
3797 if (mask >> reg)
3798 as_tsktsk (_("register list not in ascending order"));
3799 mask |= 1 << reg;
b99bd4ef 3800
c19d1205
ZW
3801 if (*input_line_pointer == '-')
3802 {
3803 input_line_pointer++;
dcbf9037 3804 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3805 if (hi_reg == FAIL)
3806 {
9b7132d3 3807 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3808 goto error;
3809 }
3810 else if (reg >= hi_reg)
3811 {
3812 as_bad (_("bad register range"));
3813 goto error;
3814 }
3815 for (; reg < hi_reg; reg++)
3816 mask |= 1 << reg;
3817 }
3818 }
3819 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3820
c19d1205
ZW
3821 if (*input_line_pointer == '}')
3822 input_line_pointer++;
b99bd4ef 3823
c19d1205 3824 demand_empty_rest_of_line ();
b99bd4ef 3825
708587a4 3826 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3827 the list. */
3828 flush_pending_unwind ();
b99bd4ef 3829
c19d1205 3830 for (i = 0; i < 16; i++)
b99bd4ef 3831 {
c19d1205
ZW
3832 if (mask & (1 << i))
3833 unwind.frame_size += 8;
b99bd4ef
NC
3834 }
3835
c19d1205
ZW
3836 /* Attempt to combine with a previous opcode. We do this because gcc
3837 likes to output separate unwind directives for a single block of
3838 registers. */
3839 if (unwind.opcode_count > 0)
b99bd4ef 3840 {
c19d1205
ZW
3841 i = unwind.opcodes[unwind.opcode_count - 1];
3842 if ((i & 0xf8) == 0xc0)
3843 {
3844 i &= 7;
3845 /* Only merge if the blocks are contiguous. */
3846 if (i < 6)
3847 {
3848 if ((mask & 0xfe00) == (1 << 9))
3849 {
3850 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3851 unwind.opcode_count--;
3852 }
3853 }
3854 else if (i == 6 && unwind.opcode_count >= 2)
3855 {
3856 i = unwind.opcodes[unwind.opcode_count - 2];
3857 reg = i >> 4;
3858 i &= 0xf;
b99bd4ef 3859
c19d1205
ZW
3860 op = 0xffff << (reg - 1);
3861 if (reg > 0
87a1fd79 3862 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3863 {
3864 op = (1 << (reg + i + 1)) - 1;
3865 op &= ~((1 << reg) - 1);
3866 mask |= op;
3867 unwind.opcode_count -= 2;
3868 }
3869 }
3870 }
b99bd4ef
NC
3871 }
3872
c19d1205
ZW
3873 hi_reg = 15;
3874 /* We want to generate opcodes in the order the registers have been
3875 saved, ie. descending order. */
3876 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3877 {
c19d1205
ZW
3878 /* Save registers in blocks. */
3879 if (reg < 0
3880 || !(mask & (1 << reg)))
3881 {
3882 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3883 preceding block. */
c19d1205
ZW
3884 if (reg != hi_reg)
3885 {
3886 if (reg == 9)
3887 {
3888 /* Short form. */
3889 op = 0xc0 | (hi_reg - 10);
3890 add_unwind_opcode (op, 1);
3891 }
3892 else
3893 {
3894 /* Long form. */
3895 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3896 add_unwind_opcode (op, 2);
3897 }
3898 }
3899 hi_reg = reg - 1;
3900 }
b99bd4ef
NC
3901 }
3902
c19d1205
ZW
3903 return;
3904error:
3905 ignore_rest_of_line ();
b99bd4ef
NC
3906}
3907
3908static void
c19d1205 3909s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3910{
c19d1205
ZW
3911 int reg;
3912 int hi_reg;
3913 unsigned mask = 0;
3914 valueT op;
b99bd4ef 3915
c19d1205
ZW
3916 if (*input_line_pointer == '{')
3917 input_line_pointer++;
b99bd4ef 3918
c19d1205 3919 do
b99bd4ef 3920 {
dcbf9037 3921 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3922
c19d1205
ZW
3923 if (reg == FAIL)
3924 {
9b7132d3 3925 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3926 goto error;
3927 }
b99bd4ef 3928
c19d1205
ZW
3929 reg -= 8;
3930 if (mask >> reg)
3931 as_tsktsk (_("register list not in ascending order"));
3932 mask |= 1 << reg;
b99bd4ef 3933
c19d1205
ZW
3934 if (*input_line_pointer == '-')
3935 {
3936 input_line_pointer++;
dcbf9037 3937 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3938 if (hi_reg == FAIL)
3939 {
9b7132d3 3940 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3941 goto error;
3942 }
3943 else if (reg >= hi_reg)
3944 {
3945 as_bad (_("bad register range"));
3946 goto error;
3947 }
3948 for (; reg < hi_reg; reg++)
3949 mask |= 1 << reg;
3950 }
b99bd4ef 3951 }
c19d1205 3952 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3953
c19d1205
ZW
3954 if (*input_line_pointer == '}')
3955 input_line_pointer++;
b99bd4ef 3956
c19d1205
ZW
3957 demand_empty_rest_of_line ();
3958
708587a4 3959 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3960 the list. */
3961 flush_pending_unwind ();
b99bd4ef 3962
c19d1205 3963 for (reg = 0; reg < 16; reg++)
b99bd4ef 3964 {
c19d1205
ZW
3965 if (mask & (1 << reg))
3966 unwind.frame_size += 4;
b99bd4ef 3967 }
c19d1205
ZW
3968 op = 0xc700 | mask;
3969 add_unwind_opcode (op, 2);
3970 return;
3971error:
3972 ignore_rest_of_line ();
b99bd4ef
NC
3973}
3974
c19d1205 3975
fa073d69
MS
3976/* Parse an unwind_save directive.
3977 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3978
b99bd4ef 3979static void
fa073d69 3980s_arm_unwind_save (int arch_v6)
b99bd4ef 3981{
c19d1205
ZW
3982 char *peek;
3983 struct reg_entry *reg;
3984 bfd_boolean had_brace = FALSE;
b99bd4ef 3985
921e5f0a 3986 if (!unwind.proc_start)
c921be7d 3987 as_bad (MISSING_FNSTART);
921e5f0a 3988
c19d1205
ZW
3989 /* Figure out what sort of save we have. */
3990 peek = input_line_pointer;
b99bd4ef 3991
c19d1205 3992 if (*peek == '{')
b99bd4ef 3993 {
c19d1205
ZW
3994 had_brace = TRUE;
3995 peek++;
b99bd4ef
NC
3996 }
3997
c19d1205 3998 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3999
c19d1205 4000 if (!reg)
b99bd4ef 4001 {
c19d1205
ZW
4002 as_bad (_("register expected"));
4003 ignore_rest_of_line ();
b99bd4ef
NC
4004 return;
4005 }
4006
c19d1205 4007 switch (reg->type)
b99bd4ef 4008 {
c19d1205
ZW
4009 case REG_TYPE_FN:
4010 if (had_brace)
4011 {
4012 as_bad (_("FPA .unwind_save does not take a register list"));
4013 ignore_rest_of_line ();
4014 return;
4015 }
93ac2687 4016 input_line_pointer = peek;
c19d1205 4017 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4018 return;
c19d1205
ZW
4019
4020 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4021 case REG_TYPE_VFD:
4022 if (arch_v6)
4023 s_arm_unwind_save_vfp_armv6 ();
4024 else
4025 s_arm_unwind_save_vfp ();
4026 return;
c19d1205
ZW
4027 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4028 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4029
4030 default:
4031 as_bad (_(".unwind_save does not support this kind of register"));
4032 ignore_rest_of_line ();
b99bd4ef 4033 }
c19d1205 4034}
b99bd4ef 4035
b99bd4ef 4036
c19d1205
ZW
4037/* Parse an unwind_movsp directive. */
4038
4039static void
4040s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4041{
4042 int reg;
4043 valueT op;
4fa3602b 4044 int offset;
c19d1205 4045
921e5f0a 4046 if (!unwind.proc_start)
c921be7d 4047 as_bad (MISSING_FNSTART);
921e5f0a 4048
dcbf9037 4049 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4050 if (reg == FAIL)
b99bd4ef 4051 {
9b7132d3 4052 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4053 ignore_rest_of_line ();
b99bd4ef
NC
4054 return;
4055 }
4fa3602b
PB
4056
4057 /* Optional constant. */
4058 if (skip_past_comma (&input_line_pointer) != FAIL)
4059 {
4060 if (immediate_for_directive (&offset) == FAIL)
4061 return;
4062 }
4063 else
4064 offset = 0;
4065
c19d1205 4066 demand_empty_rest_of_line ();
b99bd4ef 4067
c19d1205 4068 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4069 {
c19d1205 4070 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4071 return;
4072 }
4073
c19d1205
ZW
4074 if (unwind.fp_reg != REG_SP)
4075 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4076
c19d1205
ZW
4077 /* Generate opcode to restore the value. */
4078 op = 0x90 | reg;
4079 add_unwind_opcode (op, 1);
4080
4081 /* Record the information for later. */
4082 unwind.fp_reg = reg;
4fa3602b 4083 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4084 unwind.sp_restored = 1;
b05fe5cf
ZW
4085}
4086
c19d1205
ZW
4087/* Parse an unwind_pad directive. */
4088
b05fe5cf 4089static void
c19d1205 4090s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4091{
c19d1205 4092 int offset;
b05fe5cf 4093
921e5f0a 4094 if (!unwind.proc_start)
c921be7d 4095 as_bad (MISSING_FNSTART);
921e5f0a 4096
c19d1205
ZW
4097 if (immediate_for_directive (&offset) == FAIL)
4098 return;
b99bd4ef 4099
c19d1205
ZW
4100 if (offset & 3)
4101 {
4102 as_bad (_("stack increment must be multiple of 4"));
4103 ignore_rest_of_line ();
4104 return;
4105 }
b99bd4ef 4106
c19d1205
ZW
4107 /* Don't generate any opcodes, just record the details for later. */
4108 unwind.frame_size += offset;
4109 unwind.pending_offset += offset;
4110
4111 demand_empty_rest_of_line ();
4112}
4113
4114/* Parse an unwind_setfp directive. */
4115
4116static void
4117s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4118{
c19d1205
ZW
4119 int sp_reg;
4120 int fp_reg;
4121 int offset;
4122
921e5f0a 4123 if (!unwind.proc_start)
c921be7d 4124 as_bad (MISSING_FNSTART);
921e5f0a 4125
dcbf9037 4126 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4127 if (skip_past_comma (&input_line_pointer) == FAIL)
4128 sp_reg = FAIL;
4129 else
dcbf9037 4130 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4131
c19d1205
ZW
4132 if (fp_reg == FAIL || sp_reg == FAIL)
4133 {
4134 as_bad (_("expected <reg>, <reg>"));
4135 ignore_rest_of_line ();
4136 return;
4137 }
b99bd4ef 4138
c19d1205
ZW
4139 /* Optional constant. */
4140 if (skip_past_comma (&input_line_pointer) != FAIL)
4141 {
4142 if (immediate_for_directive (&offset) == FAIL)
4143 return;
4144 }
4145 else
4146 offset = 0;
a737bd4d 4147
c19d1205 4148 demand_empty_rest_of_line ();
a737bd4d 4149
fdfde340 4150 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4151 {
c19d1205
ZW
4152 as_bad (_("register must be either sp or set by a previous"
4153 "unwind_movsp directive"));
4154 return;
a737bd4d
NC
4155 }
4156
c19d1205
ZW
4157 /* Don't generate any opcodes, just record the information for later. */
4158 unwind.fp_reg = fp_reg;
4159 unwind.fp_used = 1;
fdfde340 4160 if (sp_reg == REG_SP)
c19d1205
ZW
4161 unwind.fp_offset = unwind.frame_size - offset;
4162 else
4163 unwind.fp_offset -= offset;
a737bd4d
NC
4164}
4165
c19d1205
ZW
4166/* Parse an unwind_raw directive. */
4167
4168static void
4169s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4170{
c19d1205 4171 expressionS exp;
708587a4 4172 /* This is an arbitrary limit. */
c19d1205
ZW
4173 unsigned char op[16];
4174 int count;
a737bd4d 4175
921e5f0a 4176 if (!unwind.proc_start)
c921be7d 4177 as_bad (MISSING_FNSTART);
921e5f0a 4178
c19d1205
ZW
4179 expression (&exp);
4180 if (exp.X_op == O_constant
4181 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4182 {
c19d1205
ZW
4183 unwind.frame_size += exp.X_add_number;
4184 expression (&exp);
4185 }
4186 else
4187 exp.X_op = O_illegal;
a737bd4d 4188
c19d1205
ZW
4189 if (exp.X_op != O_constant)
4190 {
4191 as_bad (_("expected <offset>, <opcode>"));
4192 ignore_rest_of_line ();
4193 return;
4194 }
a737bd4d 4195
c19d1205 4196 count = 0;
a737bd4d 4197
c19d1205
ZW
4198 /* Parse the opcode. */
4199 for (;;)
4200 {
4201 if (count >= 16)
4202 {
4203 as_bad (_("unwind opcode too long"));
4204 ignore_rest_of_line ();
a737bd4d 4205 }
c19d1205 4206 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4207 {
c19d1205
ZW
4208 as_bad (_("invalid unwind opcode"));
4209 ignore_rest_of_line ();
4210 return;
a737bd4d 4211 }
c19d1205 4212 op[count++] = exp.X_add_number;
a737bd4d 4213
c19d1205
ZW
4214 /* Parse the next byte. */
4215 if (skip_past_comma (&input_line_pointer) == FAIL)
4216 break;
a737bd4d 4217
c19d1205
ZW
4218 expression (&exp);
4219 }
b99bd4ef 4220
c19d1205
ZW
4221 /* Add the opcode bytes in reverse order. */
4222 while (count--)
4223 add_unwind_opcode (op[count], 1);
b99bd4ef 4224
c19d1205 4225 demand_empty_rest_of_line ();
b99bd4ef 4226}
ee065d83
PB
4227
4228
4229/* Parse a .eabi_attribute directive. */
4230
4231static void
4232s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4233{
ee3c0378
AS
4234 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4235
4236 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4237 attributes_set_explicitly[tag] = 1;
ee065d83 4238}
8463be01 4239#endif /* OBJ_ELF */
ee065d83
PB
4240
4241static void s_arm_arch (int);
7a1d4c38 4242static void s_arm_object_arch (int);
ee065d83
PB
4243static void s_arm_cpu (int);
4244static void s_arm_fpu (int);
b99bd4ef 4245
f0927246
NC
4246#ifdef TE_PE
4247
4248static void
5f4273c7 4249pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4250{
4251 expressionS exp;
4252
4253 do
4254 {
4255 expression (&exp);
4256 if (exp.X_op == O_symbol)
4257 exp.X_op = O_secrel;
4258
4259 emit_expr (&exp, 4);
4260 }
4261 while (*input_line_pointer++ == ',');
4262
4263 input_line_pointer--;
4264 demand_empty_rest_of_line ();
4265}
4266#endif /* TE_PE */
4267
c19d1205
ZW
4268/* This table describes all the machine specific pseudo-ops the assembler
4269 has to support. The fields are:
4270 pseudo-op name without dot
4271 function to call to execute this pseudo-op
4272 Integer arg to pass to the function. */
b99bd4ef 4273
c19d1205 4274const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4275{
c19d1205
ZW
4276 /* Never called because '.req' does not start a line. */
4277 { "req", s_req, 0 },
dcbf9037
JB
4278 /* Following two are likewise never called. */
4279 { "dn", s_dn, 0 },
4280 { "qn", s_qn, 0 },
c19d1205
ZW
4281 { "unreq", s_unreq, 0 },
4282 { "bss", s_bss, 0 },
4283 { "align", s_align, 0 },
4284 { "arm", s_arm, 0 },
4285 { "thumb", s_thumb, 0 },
4286 { "code", s_code, 0 },
4287 { "force_thumb", s_force_thumb, 0 },
4288 { "thumb_func", s_thumb_func, 0 },
4289 { "thumb_set", s_thumb_set, 0 },
4290 { "even", s_even, 0 },
4291 { "ltorg", s_ltorg, 0 },
4292 { "pool", s_ltorg, 0 },
4293 { "syntax", s_syntax, 0 },
8463be01
PB
4294 { "cpu", s_arm_cpu, 0 },
4295 { "arch", s_arm_arch, 0 },
7a1d4c38 4296 { "object_arch", s_arm_object_arch, 0 },
8463be01 4297 { "fpu", s_arm_fpu, 0 },
c19d1205 4298#ifdef OBJ_ELF
c921be7d
NC
4299 { "word", s_arm_elf_cons, 4 },
4300 { "long", s_arm_elf_cons, 4 },
4301 { "inst.n", s_arm_elf_inst, 2 },
4302 { "inst.w", s_arm_elf_inst, 4 },
4303 { "inst", s_arm_elf_inst, 0 },
4304 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4305 { "fnstart", s_arm_unwind_fnstart, 0 },
4306 { "fnend", s_arm_unwind_fnend, 0 },
4307 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4308 { "personality", s_arm_unwind_personality, 0 },
4309 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4310 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4311 { "save", s_arm_unwind_save, 0 },
fa073d69 4312 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4313 { "movsp", s_arm_unwind_movsp, 0 },
4314 { "pad", s_arm_unwind_pad, 0 },
4315 { "setfp", s_arm_unwind_setfp, 0 },
4316 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4317 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4318#else
4319 { "word", cons, 4},
f0927246
NC
4320
4321 /* These are used for dwarf. */
4322 {"2byte", cons, 2},
4323 {"4byte", cons, 4},
4324 {"8byte", cons, 8},
4325 /* These are used for dwarf2. */
4326 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4327 { "loc", dwarf2_directive_loc, 0 },
4328 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4329#endif
4330 { "extend", float_cons, 'x' },
4331 { "ldouble", float_cons, 'x' },
4332 { "packed", float_cons, 'p' },
f0927246
NC
4333#ifdef TE_PE
4334 {"secrel32", pe_directive_secrel, 0},
4335#endif
c19d1205
ZW
4336 { 0, 0, 0 }
4337};
4338\f
4339/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4340
c19d1205
ZW
4341/* Generic immediate-value read function for use in insn parsing.
4342 STR points to the beginning of the immediate (the leading #);
4343 VAL receives the value; if the value is outside [MIN, MAX]
4344 issue an error. PREFIX_OPT is true if the immediate prefix is
4345 optional. */
b99bd4ef 4346
c19d1205
ZW
4347static int
4348parse_immediate (char **str, int *val, int min, int max,
4349 bfd_boolean prefix_opt)
4350{
4351 expressionS exp;
4352 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4353 if (exp.X_op != O_constant)
b99bd4ef 4354 {
c19d1205
ZW
4355 inst.error = _("constant expression required");
4356 return FAIL;
4357 }
b99bd4ef 4358
c19d1205
ZW
4359 if (exp.X_add_number < min || exp.X_add_number > max)
4360 {
4361 inst.error = _("immediate value out of range");
4362 return FAIL;
4363 }
b99bd4ef 4364
c19d1205
ZW
4365 *val = exp.X_add_number;
4366 return SUCCESS;
4367}
b99bd4ef 4368
5287ad62 4369/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4370 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4371 instructions. Puts the result directly in inst.operands[i]. */
4372
4373static int
4374parse_big_immediate (char **str, int i)
4375{
4376 expressionS exp;
4377 char *ptr = *str;
4378
4379 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4380
4381 if (exp.X_op == O_constant)
036dc3f7
PB
4382 {
4383 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4384 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4385 O_constant. We have to be careful not to break compilation for
4386 32-bit X_add_number, though. */
4387 if ((exp.X_add_number & ~0xffffffffl) != 0)
4388 {
4389 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4390 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4391 inst.operands[i].regisimm = 1;
4392 }
4393 }
5287ad62
JB
4394 else if (exp.X_op == O_big
4395 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4396 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4397 {
4398 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4399 /* Bignums have their least significant bits in
4400 generic_bignum[0]. Make sure we put 32 bits in imm and
4401 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4402 gas_assert (parts != 0);
5287ad62
JB
4403 inst.operands[i].imm = 0;
4404 for (j = 0; j < parts; j++, idx++)
4405 inst.operands[i].imm |= generic_bignum[idx]
4406 << (LITTLENUM_NUMBER_OF_BITS * j);
4407 inst.operands[i].reg = 0;
4408 for (j = 0; j < parts; j++, idx++)
4409 inst.operands[i].reg |= generic_bignum[idx]
4410 << (LITTLENUM_NUMBER_OF_BITS * j);
4411 inst.operands[i].regisimm = 1;
4412 }
4413 else
4414 return FAIL;
5f4273c7 4415
5287ad62
JB
4416 *str = ptr;
4417
4418 return SUCCESS;
4419}
4420
c19d1205
ZW
4421/* Returns the pseudo-register number of an FPA immediate constant,
4422 or FAIL if there isn't a valid constant here. */
b99bd4ef 4423
c19d1205
ZW
4424static int
4425parse_fpa_immediate (char ** str)
4426{
4427 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4428 char * save_in;
4429 expressionS exp;
4430 int i;
4431 int j;
b99bd4ef 4432
c19d1205
ZW
4433 /* First try and match exact strings, this is to guarantee
4434 that some formats will work even for cross assembly. */
b99bd4ef 4435
c19d1205
ZW
4436 for (i = 0; fp_const[i]; i++)
4437 {
4438 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4439 {
c19d1205 4440 char *start = *str;
b99bd4ef 4441
c19d1205
ZW
4442 *str += strlen (fp_const[i]);
4443 if (is_end_of_line[(unsigned char) **str])
4444 return i + 8;
4445 *str = start;
4446 }
4447 }
b99bd4ef 4448
c19d1205
ZW
4449 /* Just because we didn't get a match doesn't mean that the constant
4450 isn't valid, just that it is in a format that we don't
4451 automatically recognize. Try parsing it with the standard
4452 expression routines. */
b99bd4ef 4453
c19d1205 4454 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4455
c19d1205
ZW
4456 /* Look for a raw floating point number. */
4457 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4458 && is_end_of_line[(unsigned char) *save_in])
4459 {
4460 for (i = 0; i < NUM_FLOAT_VALS; i++)
4461 {
4462 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4463 {
c19d1205
ZW
4464 if (words[j] != fp_values[i][j])
4465 break;
b99bd4ef
NC
4466 }
4467
c19d1205 4468 if (j == MAX_LITTLENUMS)
b99bd4ef 4469 {
c19d1205
ZW
4470 *str = save_in;
4471 return i + 8;
b99bd4ef
NC
4472 }
4473 }
4474 }
b99bd4ef 4475
c19d1205
ZW
4476 /* Try and parse a more complex expression, this will probably fail
4477 unless the code uses a floating point prefix (eg "0f"). */
4478 save_in = input_line_pointer;
4479 input_line_pointer = *str;
4480 if (expression (&exp) == absolute_section
4481 && exp.X_op == O_big
4482 && exp.X_add_number < 0)
4483 {
4484 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4485 Ditto for 15. */
4486 if (gen_to_words (words, 5, (long) 15) == 0)
4487 {
4488 for (i = 0; i < NUM_FLOAT_VALS; i++)
4489 {
4490 for (j = 0; j < MAX_LITTLENUMS; j++)
4491 {
4492 if (words[j] != fp_values[i][j])
4493 break;
4494 }
b99bd4ef 4495
c19d1205
ZW
4496 if (j == MAX_LITTLENUMS)
4497 {
4498 *str = input_line_pointer;
4499 input_line_pointer = save_in;
4500 return i + 8;
4501 }
4502 }
4503 }
b99bd4ef
NC
4504 }
4505
c19d1205
ZW
4506 *str = input_line_pointer;
4507 input_line_pointer = save_in;
4508 inst.error = _("invalid FPA immediate expression");
4509 return FAIL;
b99bd4ef
NC
4510}
4511
136da414
JB
4512/* Returns 1 if a number has "quarter-precision" float format
4513 0baBbbbbbc defgh000 00000000 00000000. */
4514
4515static int
4516is_quarter_float (unsigned imm)
4517{
4518 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4519 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4520}
4521
4522/* Parse an 8-bit "quarter-precision" floating point number of the form:
4523 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4524 The zero and minus-zero cases need special handling, since they can't be
4525 encoded in the "quarter-precision" float format, but can nonetheless be
4526 loaded as integer constants. */
136da414
JB
4527
4528static unsigned
4529parse_qfloat_immediate (char **ccp, int *immed)
4530{
4531 char *str = *ccp;
c96612cc 4532 char *fpnum;
136da414 4533 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4534 int found_fpchar = 0;
5f4273c7 4535
136da414 4536 skip_past_char (&str, '#');
5f4273c7 4537
c96612cc
JB
4538 /* We must not accidentally parse an integer as a floating-point number. Make
4539 sure that the value we parse is not an integer by checking for special
4540 characters '.' or 'e'.
4541 FIXME: This is a horrible hack, but doing better is tricky because type
4542 information isn't in a very usable state at parse time. */
4543 fpnum = str;
4544 skip_whitespace (fpnum);
4545
4546 if (strncmp (fpnum, "0x", 2) == 0)
4547 return FAIL;
4548 else
4549 {
4550 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4551 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4552 {
4553 found_fpchar = 1;
4554 break;
4555 }
4556
4557 if (!found_fpchar)
4558 return FAIL;
4559 }
5f4273c7 4560
136da414
JB
4561 if ((str = atof_ieee (str, 's', words)) != NULL)
4562 {
4563 unsigned fpword = 0;
4564 int i;
5f4273c7 4565
136da414
JB
4566 /* Our FP word must be 32 bits (single-precision FP). */
4567 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4568 {
4569 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4570 fpword |= words[i];
4571 }
5f4273c7 4572
c96612cc 4573 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4574 *immed = fpword;
4575 else
4576 return FAIL;
4577
4578 *ccp = str;
5f4273c7 4579
136da414
JB
4580 return SUCCESS;
4581 }
5f4273c7 4582
136da414
JB
4583 return FAIL;
4584}
4585
c19d1205
ZW
4586/* Shift operands. */
4587enum shift_kind
b99bd4ef 4588{
c19d1205
ZW
4589 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4590};
b99bd4ef 4591
c19d1205
ZW
4592struct asm_shift_name
4593{
4594 const char *name;
4595 enum shift_kind kind;
4596};
b99bd4ef 4597
c19d1205
ZW
4598/* Third argument to parse_shift. */
4599enum parse_shift_mode
4600{
4601 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4602 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4603 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4604 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4605 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4606};
b99bd4ef 4607
c19d1205
ZW
4608/* Parse a <shift> specifier on an ARM data processing instruction.
4609 This has three forms:
b99bd4ef 4610
c19d1205
ZW
4611 (LSL|LSR|ASL|ASR|ROR) Rs
4612 (LSL|LSR|ASL|ASR|ROR) #imm
4613 RRX
b99bd4ef 4614
c19d1205
ZW
4615 Note that ASL is assimilated to LSL in the instruction encoding, and
4616 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4617
c19d1205
ZW
4618static int
4619parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4620{
c19d1205
ZW
4621 const struct asm_shift_name *shift_name;
4622 enum shift_kind shift;
4623 char *s = *str;
4624 char *p = s;
4625 int reg;
b99bd4ef 4626
c19d1205
ZW
4627 for (p = *str; ISALPHA (*p); p++)
4628 ;
b99bd4ef 4629
c19d1205 4630 if (p == *str)
b99bd4ef 4631 {
c19d1205
ZW
4632 inst.error = _("shift expression expected");
4633 return FAIL;
b99bd4ef
NC
4634 }
4635
21d799b5
NC
4636 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4637 p - *str);
c19d1205
ZW
4638
4639 if (shift_name == NULL)
b99bd4ef 4640 {
c19d1205
ZW
4641 inst.error = _("shift expression expected");
4642 return FAIL;
b99bd4ef
NC
4643 }
4644
c19d1205 4645 shift = shift_name->kind;
b99bd4ef 4646
c19d1205
ZW
4647 switch (mode)
4648 {
4649 case NO_SHIFT_RESTRICT:
4650 case SHIFT_IMMEDIATE: break;
b99bd4ef 4651
c19d1205
ZW
4652 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4653 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4654 {
4655 inst.error = _("'LSL' or 'ASR' required");
4656 return FAIL;
4657 }
4658 break;
b99bd4ef 4659
c19d1205
ZW
4660 case SHIFT_LSL_IMMEDIATE:
4661 if (shift != SHIFT_LSL)
4662 {
4663 inst.error = _("'LSL' required");
4664 return FAIL;
4665 }
4666 break;
b99bd4ef 4667
c19d1205
ZW
4668 case SHIFT_ASR_IMMEDIATE:
4669 if (shift != SHIFT_ASR)
4670 {
4671 inst.error = _("'ASR' required");
4672 return FAIL;
4673 }
4674 break;
b99bd4ef 4675
c19d1205
ZW
4676 default: abort ();
4677 }
b99bd4ef 4678
c19d1205
ZW
4679 if (shift != SHIFT_RRX)
4680 {
4681 /* Whitespace can appear here if the next thing is a bare digit. */
4682 skip_whitespace (p);
b99bd4ef 4683
c19d1205 4684 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4685 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4686 {
4687 inst.operands[i].imm = reg;
4688 inst.operands[i].immisreg = 1;
4689 }
4690 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4691 return FAIL;
4692 }
4693 inst.operands[i].shift_kind = shift;
4694 inst.operands[i].shifted = 1;
4695 *str = p;
4696 return SUCCESS;
b99bd4ef
NC
4697}
4698
c19d1205 4699/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4700
c19d1205
ZW
4701 #<immediate>
4702 #<immediate>, <rotate>
4703 <Rm>
4704 <Rm>, <shift>
b99bd4ef 4705
c19d1205
ZW
4706 where <shift> is defined by parse_shift above, and <rotate> is a
4707 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4708 is deferred to md_apply_fix. */
b99bd4ef 4709
c19d1205
ZW
4710static int
4711parse_shifter_operand (char **str, int i)
4712{
4713 int value;
91d6fa6a 4714 expressionS exp;
b99bd4ef 4715
dcbf9037 4716 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4717 {
4718 inst.operands[i].reg = value;
4719 inst.operands[i].isreg = 1;
b99bd4ef 4720
c19d1205
ZW
4721 /* parse_shift will override this if appropriate */
4722 inst.reloc.exp.X_op = O_constant;
4723 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4724
c19d1205
ZW
4725 if (skip_past_comma (str) == FAIL)
4726 return SUCCESS;
b99bd4ef 4727
c19d1205
ZW
4728 /* Shift operation on register. */
4729 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4730 }
4731
c19d1205
ZW
4732 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4733 return FAIL;
b99bd4ef 4734
c19d1205 4735 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4736 {
c19d1205 4737 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4738 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4739 return FAIL;
b99bd4ef 4740
91d6fa6a 4741 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4742 {
4743 inst.error = _("constant expression expected");
4744 return FAIL;
4745 }
b99bd4ef 4746
91d6fa6a 4747 value = exp.X_add_number;
c19d1205
ZW
4748 if (value < 0 || value > 30 || value % 2 != 0)
4749 {
4750 inst.error = _("invalid rotation");
4751 return FAIL;
4752 }
4753 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4754 {
4755 inst.error = _("invalid constant");
4756 return FAIL;
4757 }
09d92015 4758
55cf6793 4759 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4760 inst.reloc.exp.X_add_number
4761 = (((inst.reloc.exp.X_add_number << (32 - value))
4762 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4763 }
4764
c19d1205
ZW
4765 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4766 inst.reloc.pc_rel = 0;
4767 return SUCCESS;
09d92015
MM
4768}
4769
4962c51a
MS
4770/* Group relocation information. Each entry in the table contains the
4771 textual name of the relocation as may appear in assembler source
4772 and must end with a colon.
4773 Along with this textual name are the relocation codes to be used if
4774 the corresponding instruction is an ALU instruction (ADD or SUB only),
4775 an LDR, an LDRS, or an LDC. */
4776
4777struct group_reloc_table_entry
4778{
4779 const char *name;
4780 int alu_code;
4781 int ldr_code;
4782 int ldrs_code;
4783 int ldc_code;
4784};
4785
4786typedef enum
4787{
4788 /* Varieties of non-ALU group relocation. */
4789
4790 GROUP_LDR,
4791 GROUP_LDRS,
4792 GROUP_LDC
4793} group_reloc_type;
4794
4795static struct group_reloc_table_entry group_reloc_table[] =
4796 { /* Program counter relative: */
4797 { "pc_g0_nc",
4798 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4799 0, /* LDR */
4800 0, /* LDRS */
4801 0 }, /* LDC */
4802 { "pc_g0",
4803 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4804 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4805 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4806 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4807 { "pc_g1_nc",
4808 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4809 0, /* LDR */
4810 0, /* LDRS */
4811 0 }, /* LDC */
4812 { "pc_g1",
4813 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4814 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4815 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4816 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4817 { "pc_g2",
4818 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4819 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4820 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4821 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4822 /* Section base relative */
4823 { "sb_g0_nc",
4824 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4825 0, /* LDR */
4826 0, /* LDRS */
4827 0 }, /* LDC */
4828 { "sb_g0",
4829 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4830 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4831 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4832 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4833 { "sb_g1_nc",
4834 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4835 0, /* LDR */
4836 0, /* LDRS */
4837 0 }, /* LDC */
4838 { "sb_g1",
4839 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4840 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4841 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4842 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4843 { "sb_g2",
4844 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4845 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4846 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4847 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4848
4849/* Given the address of a pointer pointing to the textual name of a group
4850 relocation as may appear in assembler source, attempt to find its details
4851 in group_reloc_table. The pointer will be updated to the character after
4852 the trailing colon. On failure, FAIL will be returned; SUCCESS
4853 otherwise. On success, *entry will be updated to point at the relevant
4854 group_reloc_table entry. */
4855
4856static int
4857find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4858{
4859 unsigned int i;
4860 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4861 {
4862 int length = strlen (group_reloc_table[i].name);
4863
5f4273c7
NC
4864 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4865 && (*str)[length] == ':')
4962c51a
MS
4866 {
4867 *out = &group_reloc_table[i];
4868 *str += (length + 1);
4869 return SUCCESS;
4870 }
4871 }
4872
4873 return FAIL;
4874}
4875
4876/* Parse a <shifter_operand> for an ARM data processing instruction
4877 (as for parse_shifter_operand) where group relocations are allowed:
4878
4879 #<immediate>
4880 #<immediate>, <rotate>
4881 #:<group_reloc>:<expression>
4882 <Rm>
4883 <Rm>, <shift>
4884
4885 where <group_reloc> is one of the strings defined in group_reloc_table.
4886 The hashes are optional.
4887
4888 Everything else is as for parse_shifter_operand. */
4889
4890static parse_operand_result
4891parse_shifter_operand_group_reloc (char **str, int i)
4892{
4893 /* Determine if we have the sequence of characters #: or just :
4894 coming next. If we do, then we check for a group relocation.
4895 If we don't, punt the whole lot to parse_shifter_operand. */
4896
4897 if (((*str)[0] == '#' && (*str)[1] == ':')
4898 || (*str)[0] == ':')
4899 {
4900 struct group_reloc_table_entry *entry;
4901
4902 if ((*str)[0] == '#')
4903 (*str) += 2;
4904 else
4905 (*str)++;
4906
4907 /* Try to parse a group relocation. Anything else is an error. */
4908 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4909 {
4910 inst.error = _("unknown group relocation");
4911 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4912 }
4913
4914 /* We now have the group relocation table entry corresponding to
4915 the name in the assembler source. Next, we parse the expression. */
4916 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4917 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4918
4919 /* Record the relocation type (always the ALU variant here). */
21d799b5 4920 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4921 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4922
4923 return PARSE_OPERAND_SUCCESS;
4924 }
4925 else
4926 return parse_shifter_operand (str, i) == SUCCESS
4927 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4928
4929 /* Never reached. */
4930}
4931
c19d1205
ZW
4932/* Parse all forms of an ARM address expression. Information is written
4933 to inst.operands[i] and/or inst.reloc.
09d92015 4934
c19d1205 4935 Preindexed addressing (.preind=1):
09d92015 4936
c19d1205
ZW
4937 [Rn, #offset] .reg=Rn .reloc.exp=offset
4938 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4939 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4940 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4941
c19d1205 4942 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4943
c19d1205 4944 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4945
c19d1205
ZW
4946 [Rn], #offset .reg=Rn .reloc.exp=offset
4947 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4948 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4949 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4950
c19d1205 4951 Unindexed addressing (.preind=0, .postind=0):
09d92015 4952
c19d1205 4953 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4954
c19d1205 4955 Other:
09d92015 4956
c19d1205
ZW
4957 [Rn]{!} shorthand for [Rn,#0]{!}
4958 =immediate .isreg=0 .reloc.exp=immediate
4959 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4960
c19d1205
ZW
4961 It is the caller's responsibility to check for addressing modes not
4962 supported by the instruction, and to set inst.reloc.type. */
4963
4962c51a
MS
4964static parse_operand_result
4965parse_address_main (char **str, int i, int group_relocations,
4966 group_reloc_type group_type)
09d92015 4967{
c19d1205
ZW
4968 char *p = *str;
4969 int reg;
09d92015 4970
c19d1205 4971 if (skip_past_char (&p, '[') == FAIL)
09d92015 4972 {
c19d1205
ZW
4973 if (skip_past_char (&p, '=') == FAIL)
4974 {
974da60d 4975 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
4976 inst.reloc.pc_rel = 1;
4977 inst.operands[i].reg = REG_PC;
4978 inst.operands[i].isreg = 1;
4979 inst.operands[i].preind = 1;
4980 }
974da60d 4981 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 4982
c19d1205 4983 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4984 return PARSE_OPERAND_FAIL;
09d92015 4985
c19d1205 4986 *str = p;
4962c51a 4987 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4988 }
4989
dcbf9037 4990 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4991 {
c19d1205 4992 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4993 return PARSE_OPERAND_FAIL;
09d92015 4994 }
c19d1205
ZW
4995 inst.operands[i].reg = reg;
4996 inst.operands[i].isreg = 1;
09d92015 4997
c19d1205 4998 if (skip_past_comma (&p) == SUCCESS)
09d92015 4999 {
c19d1205 5000 inst.operands[i].preind = 1;
09d92015 5001
c19d1205
ZW
5002 if (*p == '+') p++;
5003 else if (*p == '-') p++, inst.operands[i].negative = 1;
5004
dcbf9037 5005 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5006 {
c19d1205
ZW
5007 inst.operands[i].imm = reg;
5008 inst.operands[i].immisreg = 1;
5009
5010 if (skip_past_comma (&p) == SUCCESS)
5011 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5012 return PARSE_OPERAND_FAIL;
c19d1205 5013 }
5287ad62
JB
5014 else if (skip_past_char (&p, ':') == SUCCESS)
5015 {
5016 /* FIXME: '@' should be used here, but it's filtered out by generic
5017 code before we get to see it here. This may be subject to
5018 change. */
5019 expressionS exp;
5020 my_get_expression (&exp, &p, GE_NO_PREFIX);
5021 if (exp.X_op != O_constant)
5022 {
5023 inst.error = _("alignment must be constant");
4962c51a 5024 return PARSE_OPERAND_FAIL;
5287ad62
JB
5025 }
5026 inst.operands[i].imm = exp.X_add_number << 8;
5027 inst.operands[i].immisalign = 1;
5028 /* Alignments are not pre-indexes. */
5029 inst.operands[i].preind = 0;
5030 }
c19d1205
ZW
5031 else
5032 {
5033 if (inst.operands[i].negative)
5034 {
5035 inst.operands[i].negative = 0;
5036 p--;
5037 }
4962c51a 5038
5f4273c7
NC
5039 if (group_relocations
5040 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5041 {
5042 struct group_reloc_table_entry *entry;
5043
5044 /* Skip over the #: or : sequence. */
5045 if (*p == '#')
5046 p += 2;
5047 else
5048 p++;
5049
5050 /* Try to parse a group relocation. Anything else is an
5051 error. */
5052 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5053 {
5054 inst.error = _("unknown group relocation");
5055 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5056 }
5057
5058 /* We now have the group relocation table entry corresponding to
5059 the name in the assembler source. Next, we parse the
5060 expression. */
5061 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5062 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5063
5064 /* Record the relocation type. */
5065 switch (group_type)
5066 {
5067 case GROUP_LDR:
21d799b5 5068 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5069 break;
5070
5071 case GROUP_LDRS:
21d799b5 5072 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5073 break;
5074
5075 case GROUP_LDC:
21d799b5 5076 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5077 break;
5078
5079 default:
9c2799c2 5080 gas_assert (0);
4962c51a
MS
5081 }
5082
5083 if (inst.reloc.type == 0)
5084 {
5085 inst.error = _("this group relocation is not allowed on this instruction");
5086 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5087 }
5088 }
5089 else
5090 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5091 return PARSE_OPERAND_FAIL;
09d92015
MM
5092 }
5093 }
5094
c19d1205 5095 if (skip_past_char (&p, ']') == FAIL)
09d92015 5096 {
c19d1205 5097 inst.error = _("']' expected");
4962c51a 5098 return PARSE_OPERAND_FAIL;
09d92015
MM
5099 }
5100
c19d1205
ZW
5101 if (skip_past_char (&p, '!') == SUCCESS)
5102 inst.operands[i].writeback = 1;
09d92015 5103
c19d1205 5104 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5105 {
c19d1205
ZW
5106 if (skip_past_char (&p, '{') == SUCCESS)
5107 {
5108 /* [Rn], {expr} - unindexed, with option */
5109 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5110 0, 255, TRUE) == FAIL)
4962c51a 5111 return PARSE_OPERAND_FAIL;
09d92015 5112
c19d1205
ZW
5113 if (skip_past_char (&p, '}') == FAIL)
5114 {
5115 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5116 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5117 }
5118 if (inst.operands[i].preind)
5119 {
5120 inst.error = _("cannot combine index with option");
4962c51a 5121 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5122 }
5123 *str = p;
4962c51a 5124 return PARSE_OPERAND_SUCCESS;
09d92015 5125 }
c19d1205
ZW
5126 else
5127 {
5128 inst.operands[i].postind = 1;
5129 inst.operands[i].writeback = 1;
09d92015 5130
c19d1205
ZW
5131 if (inst.operands[i].preind)
5132 {
5133 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5134 return PARSE_OPERAND_FAIL;
c19d1205 5135 }
09d92015 5136
c19d1205
ZW
5137 if (*p == '+') p++;
5138 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5139
dcbf9037 5140 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5141 {
5287ad62
JB
5142 /* We might be using the immediate for alignment already. If we
5143 are, OR the register number into the low-order bits. */
5144 if (inst.operands[i].immisalign)
5145 inst.operands[i].imm |= reg;
5146 else
5147 inst.operands[i].imm = reg;
c19d1205 5148 inst.operands[i].immisreg = 1;
a737bd4d 5149
c19d1205
ZW
5150 if (skip_past_comma (&p) == SUCCESS)
5151 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5152 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5153 }
5154 else
5155 {
5156 if (inst.operands[i].negative)
5157 {
5158 inst.operands[i].negative = 0;
5159 p--;
5160 }
5161 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5162 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5163 }
5164 }
a737bd4d
NC
5165 }
5166
c19d1205
ZW
5167 /* If at this point neither .preind nor .postind is set, we have a
5168 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5169 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5170 {
5171 inst.operands[i].preind = 1;
5172 inst.reloc.exp.X_op = O_constant;
5173 inst.reloc.exp.X_add_number = 0;
5174 }
5175 *str = p;
4962c51a
MS
5176 return PARSE_OPERAND_SUCCESS;
5177}
5178
5179static int
5180parse_address (char **str, int i)
5181{
21d799b5 5182 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5183 ? SUCCESS : FAIL;
5184}
5185
5186static parse_operand_result
5187parse_address_group_reloc (char **str, int i, group_reloc_type type)
5188{
5189 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5190}
5191
b6895b4f
PB
5192/* Parse an operand for a MOVW or MOVT instruction. */
5193static int
5194parse_half (char **str)
5195{
5196 char * p;
5f4273c7 5197
b6895b4f
PB
5198 p = *str;
5199 skip_past_char (&p, '#');
5f4273c7 5200 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5201 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5202 else if (strncasecmp (p, ":upper16:", 9) == 0)
5203 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5204
5205 if (inst.reloc.type != BFD_RELOC_UNUSED)
5206 {
5207 p += 9;
5f4273c7 5208 skip_whitespace (p);
b6895b4f
PB
5209 }
5210
5211 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5212 return FAIL;
5213
5214 if (inst.reloc.type == BFD_RELOC_UNUSED)
5215 {
5216 if (inst.reloc.exp.X_op != O_constant)
5217 {
5218 inst.error = _("constant expression expected");
5219 return FAIL;
5220 }
5221 if (inst.reloc.exp.X_add_number < 0
5222 || inst.reloc.exp.X_add_number > 0xffff)
5223 {
5224 inst.error = _("immediate value out of range");
5225 return FAIL;
5226 }
5227 }
5228 *str = p;
5229 return SUCCESS;
5230}
5231
c19d1205 5232/* Miscellaneous. */
a737bd4d 5233
c19d1205
ZW
5234/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5235 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5236static int
5237parse_psr (char **str)
09d92015 5238{
c19d1205
ZW
5239 char *p;
5240 unsigned long psr_field;
62b3e311
PB
5241 const struct asm_psr *psr;
5242 char *start;
09d92015 5243
c19d1205
ZW
5244 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5245 feature for ease of use and backwards compatibility. */
5246 p = *str;
62b3e311 5247 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5248 psr_field = SPSR_BIT;
62b3e311 5249 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
5250 psr_field = 0;
5251 else
62b3e311
PB
5252 {
5253 start = p;
5254 do
5255 p++;
5256 while (ISALNUM (*p) || *p == '_');
5257
21d799b5
NC
5258 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5259 p - start);
62b3e311
PB
5260 if (!psr)
5261 return FAIL;
09d92015 5262
62b3e311
PB
5263 *str = p;
5264 return psr->field;
5265 }
09d92015 5266
62b3e311 5267 p += 4;
c19d1205
ZW
5268 if (*p == '_')
5269 {
5270 /* A suffix follows. */
c19d1205
ZW
5271 p++;
5272 start = p;
a737bd4d 5273
c19d1205
ZW
5274 do
5275 p++;
5276 while (ISALNUM (*p) || *p == '_');
a737bd4d 5277
21d799b5
NC
5278 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5279 p - start);
c19d1205
ZW
5280 if (!psr)
5281 goto error;
a737bd4d 5282
c19d1205 5283 psr_field |= psr->field;
a737bd4d 5284 }
c19d1205 5285 else
a737bd4d 5286 {
c19d1205
ZW
5287 if (ISALNUM (*p))
5288 goto error; /* Garbage after "[CS]PSR". */
5289
5290 psr_field |= (PSR_c | PSR_f);
a737bd4d 5291 }
c19d1205
ZW
5292 *str = p;
5293 return psr_field;
a737bd4d 5294
c19d1205
ZW
5295 error:
5296 inst.error = _("flag for {c}psr instruction expected");
5297 return FAIL;
a737bd4d
NC
5298}
5299
c19d1205
ZW
5300/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5301 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5302
c19d1205
ZW
5303static int
5304parse_cps_flags (char **str)
a737bd4d 5305{
c19d1205
ZW
5306 int val = 0;
5307 int saw_a_flag = 0;
5308 char *s = *str;
a737bd4d 5309
c19d1205
ZW
5310 for (;;)
5311 switch (*s++)
5312 {
5313 case '\0': case ',':
5314 goto done;
a737bd4d 5315
c19d1205
ZW
5316 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5317 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5318 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5319
c19d1205
ZW
5320 default:
5321 inst.error = _("unrecognized CPS flag");
5322 return FAIL;
5323 }
a737bd4d 5324
c19d1205
ZW
5325 done:
5326 if (saw_a_flag == 0)
a737bd4d 5327 {
c19d1205
ZW
5328 inst.error = _("missing CPS flags");
5329 return FAIL;
a737bd4d 5330 }
a737bd4d 5331
c19d1205
ZW
5332 *str = s - 1;
5333 return val;
a737bd4d
NC
5334}
5335
c19d1205
ZW
5336/* Parse an endian specifier ("BE" or "LE", case insensitive);
5337 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5338
5339static int
c19d1205 5340parse_endian_specifier (char **str)
a737bd4d 5341{
c19d1205
ZW
5342 int little_endian;
5343 char *s = *str;
a737bd4d 5344
c19d1205
ZW
5345 if (strncasecmp (s, "BE", 2))
5346 little_endian = 0;
5347 else if (strncasecmp (s, "LE", 2))
5348 little_endian = 1;
5349 else
a737bd4d 5350 {
c19d1205 5351 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5352 return FAIL;
5353 }
5354
c19d1205 5355 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5356 {
c19d1205 5357 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5358 return FAIL;
5359 }
5360
c19d1205
ZW
5361 *str = s + 2;
5362 return little_endian;
5363}
a737bd4d 5364
c19d1205
ZW
5365/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5366 value suitable for poking into the rotate field of an sxt or sxta
5367 instruction, or FAIL on error. */
5368
5369static int
5370parse_ror (char **str)
5371{
5372 int rot;
5373 char *s = *str;
5374
5375 if (strncasecmp (s, "ROR", 3) == 0)
5376 s += 3;
5377 else
a737bd4d 5378 {
c19d1205 5379 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5380 return FAIL;
5381 }
c19d1205
ZW
5382
5383 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5384 return FAIL;
5385
5386 switch (rot)
a737bd4d 5387 {
c19d1205
ZW
5388 case 0: *str = s; return 0x0;
5389 case 8: *str = s; return 0x1;
5390 case 16: *str = s; return 0x2;
5391 case 24: *str = s; return 0x3;
5392
5393 default:
5394 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5395 return FAIL;
5396 }
c19d1205 5397}
a737bd4d 5398
c19d1205
ZW
5399/* Parse a conditional code (from conds[] below). The value returned is in the
5400 range 0 .. 14, or FAIL. */
5401static int
5402parse_cond (char **str)
5403{
c462b453 5404 char *q;
c19d1205 5405 const struct asm_cond *c;
c462b453
PB
5406 int n;
5407 /* Condition codes are always 2 characters, so matching up to
5408 3 characters is sufficient. */
5409 char cond[3];
a737bd4d 5410
c462b453
PB
5411 q = *str;
5412 n = 0;
5413 while (ISALPHA (*q) && n < 3)
5414 {
e07e6e58 5415 cond[n] = TOLOWER (*q);
c462b453
PB
5416 q++;
5417 n++;
5418 }
a737bd4d 5419
21d799b5 5420 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5421 if (!c)
a737bd4d 5422 {
c19d1205 5423 inst.error = _("condition required");
a737bd4d
NC
5424 return FAIL;
5425 }
5426
c19d1205
ZW
5427 *str = q;
5428 return c->value;
5429}
5430
62b3e311
PB
5431/* Parse an option for a barrier instruction. Returns the encoding for the
5432 option, or FAIL. */
5433static int
5434parse_barrier (char **str)
5435{
5436 char *p, *q;
5437 const struct asm_barrier_opt *o;
5438
5439 p = q = *str;
5440 while (ISALPHA (*q))
5441 q++;
5442
21d799b5
NC
5443 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5444 q - p);
62b3e311
PB
5445 if (!o)
5446 return FAIL;
5447
5448 *str = q;
5449 return o->value;
5450}
5451
92e90b6e
PB
5452/* Parse the operands of a table branch instruction. Similar to a memory
5453 operand. */
5454static int
5455parse_tb (char **str)
5456{
5457 char * p = *str;
5458 int reg;
5459
5460 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5461 {
5462 inst.error = _("'[' expected");
5463 return FAIL;
5464 }
92e90b6e 5465
dcbf9037 5466 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5467 {
5468 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5469 return FAIL;
5470 }
5471 inst.operands[0].reg = reg;
5472
5473 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5474 {
5475 inst.error = _("',' expected");
5476 return FAIL;
5477 }
5f4273c7 5478
dcbf9037 5479 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5480 {
5481 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5482 return FAIL;
5483 }
5484 inst.operands[0].imm = reg;
5485
5486 if (skip_past_comma (&p) == SUCCESS)
5487 {
5488 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5489 return FAIL;
5490 if (inst.reloc.exp.X_add_number != 1)
5491 {
5492 inst.error = _("invalid shift");
5493 return FAIL;
5494 }
5495 inst.operands[0].shifted = 1;
5496 }
5497
5498 if (skip_past_char (&p, ']') == FAIL)
5499 {
5500 inst.error = _("']' expected");
5501 return FAIL;
5502 }
5503 *str = p;
5504 return SUCCESS;
5505}
5506
5287ad62
JB
5507/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5508 information on the types the operands can take and how they are encoded.
037e8744
JB
5509 Up to four operands may be read; this function handles setting the
5510 ".present" field for each read operand itself.
5287ad62
JB
5511 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5512 else returns FAIL. */
5513
5514static int
5515parse_neon_mov (char **str, int *which_operand)
5516{
5517 int i = *which_operand, val;
5518 enum arm_reg_type rtype;
5519 char *ptr = *str;
dcbf9037 5520 struct neon_type_el optype;
5f4273c7 5521
dcbf9037 5522 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5523 {
5524 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5525 inst.operands[i].reg = val;
5526 inst.operands[i].isscalar = 1;
dcbf9037 5527 inst.operands[i].vectype = optype;
5287ad62
JB
5528 inst.operands[i++].present = 1;
5529
5530 if (skip_past_comma (&ptr) == FAIL)
5531 goto wanted_comma;
5f4273c7 5532
dcbf9037 5533 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5534 goto wanted_arm;
5f4273c7 5535
5287ad62
JB
5536 inst.operands[i].reg = val;
5537 inst.operands[i].isreg = 1;
5538 inst.operands[i].present = 1;
5539 }
037e8744 5540 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5541 != FAIL)
5287ad62
JB
5542 {
5543 /* Cases 0, 1, 2, 3, 5 (D only). */
5544 if (skip_past_comma (&ptr) == FAIL)
5545 goto wanted_comma;
5f4273c7 5546
5287ad62
JB
5547 inst.operands[i].reg = val;
5548 inst.operands[i].isreg = 1;
5549 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5550 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5551 inst.operands[i].isvec = 1;
dcbf9037 5552 inst.operands[i].vectype = optype;
5287ad62
JB
5553 inst.operands[i++].present = 1;
5554
dcbf9037 5555 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5556 {
037e8744
JB
5557 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5558 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5559 inst.operands[i].reg = val;
5560 inst.operands[i].isreg = 1;
037e8744 5561 inst.operands[i].present = 1;
5287ad62
JB
5562
5563 if (rtype == REG_TYPE_NQ)
5564 {
dcbf9037 5565 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5566 return FAIL;
5567 }
037e8744
JB
5568 else if (rtype != REG_TYPE_VFS)
5569 {
5570 i++;
5571 if (skip_past_comma (&ptr) == FAIL)
5572 goto wanted_comma;
5573 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5574 goto wanted_arm;
5575 inst.operands[i].reg = val;
5576 inst.operands[i].isreg = 1;
5577 inst.operands[i].present = 1;
5578 }
5287ad62 5579 }
037e8744
JB
5580 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5581 &optype)) != FAIL)
5287ad62
JB
5582 {
5583 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5584 Case 1: VMOV<c><q> <Dd>, <Dm>
5585 Case 8: VMOV.F32 <Sd>, <Sm>
5586 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5587
5588 inst.operands[i].reg = val;
5589 inst.operands[i].isreg = 1;
5590 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5591 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5592 inst.operands[i].isvec = 1;
dcbf9037 5593 inst.operands[i].vectype = optype;
5287ad62 5594 inst.operands[i].present = 1;
5f4273c7 5595
037e8744
JB
5596 if (skip_past_comma (&ptr) == SUCCESS)
5597 {
5598 /* Case 15. */
5599 i++;
5600
5601 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5602 goto wanted_arm;
5603
5604 inst.operands[i].reg = val;
5605 inst.operands[i].isreg = 1;
5606 inst.operands[i++].present = 1;
5f4273c7 5607
037e8744
JB
5608 if (skip_past_comma (&ptr) == FAIL)
5609 goto wanted_comma;
5f4273c7 5610
037e8744
JB
5611 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5612 goto wanted_arm;
5f4273c7 5613
037e8744
JB
5614 inst.operands[i].reg = val;
5615 inst.operands[i].isreg = 1;
5616 inst.operands[i++].present = 1;
5617 }
5287ad62 5618 }
4641781c
PB
5619 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5620 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5621 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5622 Case 10: VMOV.F32 <Sd>, #<imm>
5623 Case 11: VMOV.F64 <Dd>, #<imm> */
5624 inst.operands[i].immisfloat = 1;
5625 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5626 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5627 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5628 ;
5287ad62
JB
5629 else
5630 {
dcbf9037 5631 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5632 return FAIL;
5633 }
5634 }
dcbf9037 5635 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5636 {
5637 /* Cases 6, 7. */
5638 inst.operands[i].reg = val;
5639 inst.operands[i].isreg = 1;
5640 inst.operands[i++].present = 1;
5f4273c7 5641
5287ad62
JB
5642 if (skip_past_comma (&ptr) == FAIL)
5643 goto wanted_comma;
5f4273c7 5644
dcbf9037 5645 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5646 {
5647 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5648 inst.operands[i].reg = val;
5649 inst.operands[i].isscalar = 1;
5650 inst.operands[i].present = 1;
dcbf9037 5651 inst.operands[i].vectype = optype;
5287ad62 5652 }
dcbf9037 5653 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5654 {
5655 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5656 inst.operands[i].reg = val;
5657 inst.operands[i].isreg = 1;
5658 inst.operands[i++].present = 1;
5f4273c7 5659
5287ad62
JB
5660 if (skip_past_comma (&ptr) == FAIL)
5661 goto wanted_comma;
5f4273c7 5662
037e8744 5663 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5664 == FAIL)
5287ad62 5665 {
037e8744 5666 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5667 return FAIL;
5668 }
5669
5670 inst.operands[i].reg = val;
5671 inst.operands[i].isreg = 1;
037e8744
JB
5672 inst.operands[i].isvec = 1;
5673 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5674 inst.operands[i].vectype = optype;
5287ad62 5675 inst.operands[i].present = 1;
5f4273c7 5676
037e8744
JB
5677 if (rtype == REG_TYPE_VFS)
5678 {
5679 /* Case 14. */
5680 i++;
5681 if (skip_past_comma (&ptr) == FAIL)
5682 goto wanted_comma;
5683 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5684 &optype)) == FAIL)
5685 {
5686 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5687 return FAIL;
5688 }
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
5691 inst.operands[i].isvec = 1;
5692 inst.operands[i].issingle = 1;
5693 inst.operands[i].vectype = optype;
5694 inst.operands[i].present = 1;
5695 }
5696 }
5697 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5698 != FAIL)
5699 {
5700 /* Case 13. */
5701 inst.operands[i].reg = val;
5702 inst.operands[i].isreg = 1;
5703 inst.operands[i].isvec = 1;
5704 inst.operands[i].issingle = 1;
5705 inst.operands[i].vectype = optype;
5706 inst.operands[i++].present = 1;
5287ad62
JB
5707 }
5708 }
5709 else
5710 {
dcbf9037 5711 first_error (_("parse error"));
5287ad62
JB
5712 return FAIL;
5713 }
5714
5715 /* Successfully parsed the operands. Update args. */
5716 *which_operand = i;
5717 *str = ptr;
5718 return SUCCESS;
5719
5f4273c7 5720 wanted_comma:
dcbf9037 5721 first_error (_("expected comma"));
5287ad62 5722 return FAIL;
5f4273c7
NC
5723
5724 wanted_arm:
dcbf9037 5725 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5726 return FAIL;
5287ad62
JB
5727}
5728
c19d1205
ZW
5729/* Matcher codes for parse_operands. */
5730enum operand_parse_code
5731{
5732 OP_stop, /* end of line */
5733
5734 OP_RR, /* ARM register */
5735 OP_RRnpc, /* ARM register, not r15 */
5736 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5737 OP_RRw, /* ARM register, not r15, optional trailing ! */
5738 OP_RCP, /* Coprocessor number */
5739 OP_RCN, /* Coprocessor register */
5740 OP_RF, /* FPA register */
5741 OP_RVS, /* VFP single precision register */
5287ad62
JB
5742 OP_RVD, /* VFP double precision register (0..15) */
5743 OP_RND, /* Neon double precision register (0..31) */
5744 OP_RNQ, /* Neon quad precision register */
037e8744 5745 OP_RVSD, /* VFP single or double precision register */
5287ad62 5746 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5747 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5748 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5749 OP_RVC, /* VFP control register */
5750 OP_RMF, /* Maverick F register */
5751 OP_RMD, /* Maverick D register */
5752 OP_RMFX, /* Maverick FX register */
5753 OP_RMDX, /* Maverick DX register */
5754 OP_RMAX, /* Maverick AX register */
5755 OP_RMDS, /* Maverick DSPSC register */
5756 OP_RIWR, /* iWMMXt wR register */
5757 OP_RIWC, /* iWMMXt wC register */
5758 OP_RIWG, /* iWMMXt wCG register */
5759 OP_RXA, /* XScale accumulator register */
5760
5761 OP_REGLST, /* ARM register list */
5762 OP_VRSLST, /* VFP single-precision register list */
5763 OP_VRDLST, /* VFP double-precision register list */
037e8744 5764 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5765 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5766 OP_NSTRLST, /* Neon element/structure list */
5767
5768 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5769 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5770 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5771 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5772 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5773 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5774 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5775 OP_VMOV, /* Neon VMOV operands. */
5776 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5777 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5778 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5779
5780 OP_I0, /* immediate zero */
c19d1205
ZW
5781 OP_I7, /* immediate value 0 .. 7 */
5782 OP_I15, /* 0 .. 15 */
5783 OP_I16, /* 1 .. 16 */
5287ad62 5784 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5785 OP_I31, /* 0 .. 31 */
5786 OP_I31w, /* 0 .. 31, optional trailing ! */
5787 OP_I32, /* 1 .. 32 */
5287ad62
JB
5788 OP_I32z, /* 0 .. 32 */
5789 OP_I63, /* 0 .. 63 */
c19d1205 5790 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5791 OP_I64, /* 1 .. 64 */
5792 OP_I64z, /* 0 .. 64 */
c19d1205 5793 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5794
5795 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5796 OP_I7b, /* 0 .. 7 */
5797 OP_I15b, /* 0 .. 15 */
5798 OP_I31b, /* 0 .. 31 */
5799
5800 OP_SH, /* shifter operand */
4962c51a 5801 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5802 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5803 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5804 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5805 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5806 OP_EXP, /* arbitrary expression */
5807 OP_EXPi, /* same, with optional immediate prefix */
5808 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5809 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5810
5811 OP_CPSF, /* CPS flags */
5812 OP_ENDI, /* Endianness specifier */
5813 OP_PSR, /* CPSR/SPSR mask for msr */
5814 OP_COND, /* conditional code */
92e90b6e 5815 OP_TB, /* Table branch. */
c19d1205 5816
037e8744
JB
5817 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5818 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5819
c19d1205
ZW
5820 OP_RRnpc_I0, /* ARM register or literal 0 */
5821 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5822 OP_RR_EXi, /* ARM register or expression with imm prefix */
5823 OP_RF_IF, /* FPA register or immediate */
5824 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5825 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5826
5827 /* Optional operands. */
5828 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5829 OP_oI31b, /* 0 .. 31 */
5287ad62 5830 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5831 OP_oIffffb, /* 0 .. 65535 */
5832 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5833
5834 OP_oRR, /* ARM register */
5835 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5836 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5837 OP_oRND, /* Optional Neon double precision register */
5838 OP_oRNQ, /* Optional Neon quad precision register */
5839 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5840 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5841 OP_oSHll, /* LSL immediate */
5842 OP_oSHar, /* ASR immediate */
5843 OP_oSHllar, /* LSL or ASR immediate */
5844 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5845 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5846
5847 OP_FIRST_OPTIONAL = OP_oI7b
5848};
a737bd4d 5849
c19d1205
ZW
5850/* Generic instruction operand parser. This does no encoding and no
5851 semantic validation; it merely squirrels values away in the inst
5852 structure. Returns SUCCESS or FAIL depending on whether the
5853 specified grammar matched. */
5854static int
ca3f61f7 5855parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5856{
5857 unsigned const char *upat = pattern;
5858 char *backtrack_pos = 0;
5859 const char *backtrack_error = 0;
5860 int i, val, backtrack_index = 0;
5287ad62 5861 enum arm_reg_type rtype;
4962c51a 5862 parse_operand_result result;
c19d1205 5863
e07e6e58
NC
5864#define po_char_or_fail(chr) \
5865 do \
5866 { \
5867 if (skip_past_char (&str, chr) == FAIL) \
5868 goto bad_args; \
5869 } \
5870 while (0)
c19d1205 5871
e07e6e58
NC
5872#define po_reg_or_fail(regtype) \
5873 do \
dcbf9037 5874 { \
e07e6e58
NC
5875 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5876 & inst.operands[i].vectype); \
5877 if (val == FAIL) \
5878 { \
5879 first_error (_(reg_expected_msgs[regtype])); \
5880 goto failure; \
5881 } \
5882 inst.operands[i].reg = val; \
5883 inst.operands[i].isreg = 1; \
5884 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5885 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5886 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5887 || rtype == REG_TYPE_VFD \
5888 || rtype == REG_TYPE_NQ); \
dcbf9037 5889 } \
e07e6e58
NC
5890 while (0)
5891
5892#define po_reg_or_goto(regtype, label) \
5893 do \
5894 { \
5895 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5896 & inst.operands[i].vectype); \
5897 if (val == FAIL) \
5898 goto label; \
dcbf9037 5899 \
e07e6e58
NC
5900 inst.operands[i].reg = val; \
5901 inst.operands[i].isreg = 1; \
5902 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5903 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5904 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5905 || rtype == REG_TYPE_VFD \
5906 || rtype == REG_TYPE_NQ); \
5907 } \
5908 while (0)
5909
5910#define po_imm_or_fail(min, max, popt) \
5911 do \
5912 { \
5913 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5914 goto failure; \
5915 inst.operands[i].imm = val; \
5916 } \
5917 while (0)
5918
5919#define po_scalar_or_goto(elsz, label) \
5920 do \
5921 { \
5922 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5923 if (val == FAIL) \
5924 goto label; \
5925 inst.operands[i].reg = val; \
5926 inst.operands[i].isscalar = 1; \
5927 } \
5928 while (0)
5929
5930#define po_misc_or_fail(expr) \
5931 do \
5932 { \
5933 if (expr) \
5934 goto failure; \
5935 } \
5936 while (0)
5937
5938#define po_misc_or_fail_no_backtrack(expr) \
5939 do \
5940 { \
5941 result = expr; \
5942 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5943 backtrack_pos = 0; \
5944 if (result != PARSE_OPERAND_SUCCESS) \
5945 goto failure; \
5946 } \
5947 while (0)
4962c51a 5948
c19d1205
ZW
5949 skip_whitespace (str);
5950
5951 for (i = 0; upat[i] != OP_stop; i++)
5952 {
5953 if (upat[i] >= OP_FIRST_OPTIONAL)
5954 {
5955 /* Remember where we are in case we need to backtrack. */
9c2799c2 5956 gas_assert (!backtrack_pos);
c19d1205
ZW
5957 backtrack_pos = str;
5958 backtrack_error = inst.error;
5959 backtrack_index = i;
5960 }
5961
b6702015 5962 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5963 po_char_or_fail (',');
5964
5965 switch (upat[i])
5966 {
5967 /* Registers */
5968 case OP_oRRnpc:
5969 case OP_RRnpc:
5970 case OP_oRR:
5971 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5972 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5973 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5974 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5975 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5976 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5977 case OP_oRND:
5978 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5979 case OP_RVC:
5980 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5981 break;
5982 /* Also accept generic coprocessor regs for unknown registers. */
5983 coproc_reg:
5984 po_reg_or_fail (REG_TYPE_CN);
5985 break;
c19d1205
ZW
5986 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5987 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5988 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5989 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5990 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5991 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5992 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5993 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5994 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5995 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5996 case OP_oRNQ:
5997 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5998 case OP_oRNDQ:
5999 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6000 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6001 case OP_oRNSDQ:
6002 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6003
6004 /* Neon scalar. Using an element size of 8 means that some invalid
6005 scalars are accepted here, so deal with those in later code. */
6006 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6007
6008 /* WARNING: We can expand to two operands here. This has the potential
6009 to totally confuse the backtracking mechanism! It will be OK at
6010 least as long as we don't try to use optional args as well,
6011 though. */
6012 case OP_NILO:
6013 {
6014 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 6015 inst.operands[i].present = 1;
5287ad62
JB
6016 i++;
6017 skip_past_comma (&str);
6018 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
6019 break;
6020 one_reg_only:
6021 /* Optional register operand was omitted. Unfortunately, it's in
6022 operands[i-1] and we need it to be in inst.operands[i]. Fix that
6023 here (this is a bit grotty). */
6024 inst.operands[i] = inst.operands[i-1];
6025 inst.operands[i-1].present = 0;
6026 break;
6027 try_imm:
036dc3f7
PB
6028 /* There's a possibility of getting a 64-bit immediate here, so
6029 we need special handling. */
6030 if (parse_big_immediate (&str, i) == FAIL)
6031 {
6032 inst.error = _("immediate value is out of range");
6033 goto failure;
6034 }
5287ad62
JB
6035 }
6036 break;
6037
6038 case OP_RNDQ_I0:
6039 {
6040 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6041 break;
6042 try_imm0:
6043 po_imm_or_fail (0, 0, TRUE);
6044 }
6045 break;
6046
037e8744
JB
6047 case OP_RVSD_I0:
6048 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6049 break;
6050
5287ad62
JB
6051 case OP_RR_RNSC:
6052 {
6053 po_scalar_or_goto (8, try_rr);
6054 break;
6055 try_rr:
6056 po_reg_or_fail (REG_TYPE_RN);
6057 }
6058 break;
6059
037e8744
JB
6060 case OP_RNSDQ_RNSC:
6061 {
6062 po_scalar_or_goto (8, try_nsdq);
6063 break;
6064 try_nsdq:
6065 po_reg_or_fail (REG_TYPE_NSDQ);
6066 }
6067 break;
6068
5287ad62
JB
6069 case OP_RNDQ_RNSC:
6070 {
6071 po_scalar_or_goto (8, try_ndq);
6072 break;
6073 try_ndq:
6074 po_reg_or_fail (REG_TYPE_NDQ);
6075 }
6076 break;
6077
6078 case OP_RND_RNSC:
6079 {
6080 po_scalar_or_goto (8, try_vfd);
6081 break;
6082 try_vfd:
6083 po_reg_or_fail (REG_TYPE_VFD);
6084 }
6085 break;
6086
6087 case OP_VMOV:
6088 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6089 not careful then bad things might happen. */
6090 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6091 break;
6092
6093 case OP_RNDQ_IMVNb:
6094 {
6095 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
6096 break;
6097 try_mvnimm:
6098 /* There's a possibility of getting a 64-bit immediate here, so
6099 we need special handling. */
6100 if (parse_big_immediate (&str, i) == FAIL)
6101 {
6102 inst.error = _("immediate value is out of range");
6103 goto failure;
6104 }
6105 }
6106 break;
6107
6108 case OP_RNDQ_I63b:
6109 {
6110 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6111 break;
6112 try_shimm:
6113 po_imm_or_fail (0, 63, TRUE);
6114 }
6115 break;
c19d1205
ZW
6116
6117 case OP_RRnpcb:
6118 po_char_or_fail ('[');
6119 po_reg_or_fail (REG_TYPE_RN);
6120 po_char_or_fail (']');
6121 break;
a737bd4d 6122
c19d1205 6123 case OP_RRw:
b6702015 6124 case OP_oRRw:
c19d1205
ZW
6125 po_reg_or_fail (REG_TYPE_RN);
6126 if (skip_past_char (&str, '!') == SUCCESS)
6127 inst.operands[i].writeback = 1;
6128 break;
6129
6130 /* Immediates */
6131 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6132 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6133 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6134 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6135 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6136 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6137 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6138 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6139 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6140 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6141 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6142 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6143
6144 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6145 case OP_oI7b:
6146 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6147 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6148 case OP_oI31b:
6149 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6150 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6151 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6152
6153 /* Immediate variants */
6154 case OP_oI255c:
6155 po_char_or_fail ('{');
6156 po_imm_or_fail (0, 255, TRUE);
6157 po_char_or_fail ('}');
6158 break;
6159
6160 case OP_I31w:
6161 /* The expression parser chokes on a trailing !, so we have
6162 to find it first and zap it. */
6163 {
6164 char *s = str;
6165 while (*s && *s != ',')
6166 s++;
6167 if (s[-1] == '!')
6168 {
6169 s[-1] = '\0';
6170 inst.operands[i].writeback = 1;
6171 }
6172 po_imm_or_fail (0, 31, TRUE);
6173 if (str == s - 1)
6174 str = s;
6175 }
6176 break;
6177
6178 /* Expressions */
6179 case OP_EXPi: EXPi:
6180 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6181 GE_OPT_PREFIX));
6182 break;
6183
6184 case OP_EXP:
6185 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6186 GE_NO_PREFIX));
6187 break;
6188
6189 case OP_EXPr: EXPr:
6190 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6191 GE_NO_PREFIX));
6192 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6193 {
c19d1205
ZW
6194 val = parse_reloc (&str);
6195 if (val == -1)
6196 {
6197 inst.error = _("unrecognized relocation suffix");
6198 goto failure;
6199 }
6200 else if (val != BFD_RELOC_UNUSED)
6201 {
6202 inst.operands[i].imm = val;
6203 inst.operands[i].hasreloc = 1;
6204 }
a737bd4d 6205 }
c19d1205 6206 break;
a737bd4d 6207
b6895b4f
PB
6208 /* Operand for MOVW or MOVT. */
6209 case OP_HALF:
6210 po_misc_or_fail (parse_half (&str));
6211 break;
6212
e07e6e58 6213 /* Register or expression. */
c19d1205
ZW
6214 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6215 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6216
e07e6e58 6217 /* Register or immediate. */
c19d1205
ZW
6218 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6219 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6220
c19d1205
ZW
6221 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6222 IF:
6223 if (!is_immediate_prefix (*str))
6224 goto bad_args;
6225 str++;
6226 val = parse_fpa_immediate (&str);
6227 if (val == FAIL)
6228 goto failure;
6229 /* FPA immediates are encoded as registers 8-15.
6230 parse_fpa_immediate has already applied the offset. */
6231 inst.operands[i].reg = val;
6232 inst.operands[i].isreg = 1;
6233 break;
09d92015 6234
2d447fca
JM
6235 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6236 I32z: po_imm_or_fail (0, 32, FALSE); break;
6237
e07e6e58 6238 /* Two kinds of register. */
c19d1205
ZW
6239 case OP_RIWR_RIWC:
6240 {
6241 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6242 if (!rege
6243 || (rege->type != REG_TYPE_MMXWR
6244 && rege->type != REG_TYPE_MMXWC
6245 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6246 {
6247 inst.error = _("iWMMXt data or control register expected");
6248 goto failure;
6249 }
6250 inst.operands[i].reg = rege->number;
6251 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6252 }
6253 break;
09d92015 6254
41adaa5c
JM
6255 case OP_RIWC_RIWG:
6256 {
6257 struct reg_entry *rege = arm_reg_parse_multi (&str);
6258 if (!rege
6259 || (rege->type != REG_TYPE_MMXWC
6260 && rege->type != REG_TYPE_MMXWCG))
6261 {
6262 inst.error = _("iWMMXt control register expected");
6263 goto failure;
6264 }
6265 inst.operands[i].reg = rege->number;
6266 inst.operands[i].isreg = 1;
6267 }
6268 break;
6269
c19d1205
ZW
6270 /* Misc */
6271 case OP_CPSF: val = parse_cps_flags (&str); break;
6272 case OP_ENDI: val = parse_endian_specifier (&str); break;
6273 case OP_oROR: val = parse_ror (&str); break;
6274 case OP_PSR: val = parse_psr (&str); break;
6275 case OP_COND: val = parse_cond (&str); break;
62b3e311 6276 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 6277
037e8744
JB
6278 case OP_RVC_PSR:
6279 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6280 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6281 break;
6282 try_psr:
6283 val = parse_psr (&str);
6284 break;
6285
6286 case OP_APSR_RR:
6287 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6288 break;
6289 try_apsr:
6290 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6291 instruction). */
6292 if (strncasecmp (str, "APSR_", 5) == 0)
6293 {
6294 unsigned found = 0;
6295 str += 5;
6296 while (found < 15)
6297 switch (*str++)
6298 {
6299 case 'c': found = (found & 1) ? 16 : found | 1; break;
6300 case 'n': found = (found & 2) ? 16 : found | 2; break;
6301 case 'z': found = (found & 4) ? 16 : found | 4; break;
6302 case 'v': found = (found & 8) ? 16 : found | 8; break;
6303 default: found = 16;
6304 }
6305 if (found != 15)
6306 goto failure;
6307 inst.operands[i].isvec = 1;
f7c21dc7
NC
6308 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6309 inst.operands[i].reg = REG_PC;
037e8744
JB
6310 }
6311 else
6312 goto failure;
6313 break;
6314
92e90b6e
PB
6315 case OP_TB:
6316 po_misc_or_fail (parse_tb (&str));
6317 break;
6318
e07e6e58 6319 /* Register lists. */
c19d1205
ZW
6320 case OP_REGLST:
6321 val = parse_reg_list (&str);
6322 if (*str == '^')
6323 {
6324 inst.operands[1].writeback = 1;
6325 str++;
6326 }
6327 break;
09d92015 6328
c19d1205 6329 case OP_VRSLST:
5287ad62 6330 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6331 break;
09d92015 6332
c19d1205 6333 case OP_VRDLST:
5287ad62 6334 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6335 break;
a737bd4d 6336
037e8744
JB
6337 case OP_VRSDLST:
6338 /* Allow Q registers too. */
6339 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6340 REGLIST_NEON_D);
6341 if (val == FAIL)
6342 {
6343 inst.error = NULL;
6344 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6345 REGLIST_VFP_S);
6346 inst.operands[i].issingle = 1;
6347 }
6348 break;
6349
5287ad62
JB
6350 case OP_NRDLST:
6351 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6352 REGLIST_NEON_D);
6353 break;
6354
6355 case OP_NSTRLST:
dcbf9037
JB
6356 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6357 &inst.operands[i].vectype);
5287ad62
JB
6358 break;
6359
c19d1205
ZW
6360 /* Addressing modes */
6361 case OP_ADDR:
6362 po_misc_or_fail (parse_address (&str, i));
6363 break;
09d92015 6364
4962c51a
MS
6365 case OP_ADDRGLDR:
6366 po_misc_or_fail_no_backtrack (
6367 parse_address_group_reloc (&str, i, GROUP_LDR));
6368 break;
6369
6370 case OP_ADDRGLDRS:
6371 po_misc_or_fail_no_backtrack (
6372 parse_address_group_reloc (&str, i, GROUP_LDRS));
6373 break;
6374
6375 case OP_ADDRGLDC:
6376 po_misc_or_fail_no_backtrack (
6377 parse_address_group_reloc (&str, i, GROUP_LDC));
6378 break;
6379
c19d1205
ZW
6380 case OP_SH:
6381 po_misc_or_fail (parse_shifter_operand (&str, i));
6382 break;
09d92015 6383
4962c51a
MS
6384 case OP_SHG:
6385 po_misc_or_fail_no_backtrack (
6386 parse_shifter_operand_group_reloc (&str, i));
6387 break;
6388
c19d1205
ZW
6389 case OP_oSHll:
6390 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6391 break;
09d92015 6392
c19d1205
ZW
6393 case OP_oSHar:
6394 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6395 break;
09d92015 6396
c19d1205
ZW
6397 case OP_oSHllar:
6398 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6399 break;
09d92015 6400
c19d1205 6401 default:
bd3ba5d1 6402 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6403 }
09d92015 6404
c19d1205
ZW
6405 /* Various value-based sanity checks and shared operations. We
6406 do not signal immediate failures for the register constraints;
6407 this allows a syntax error to take precedence. */
6408 switch (upat[i])
6409 {
6410 case OP_oRRnpc:
6411 case OP_RRnpc:
6412 case OP_RRnpcb:
6413 case OP_RRw:
b6702015 6414 case OP_oRRw:
c19d1205
ZW
6415 case OP_RRnpc_I0:
6416 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6417 inst.error = BAD_PC;
6418 break;
09d92015 6419
c19d1205
ZW
6420 case OP_CPSF:
6421 case OP_ENDI:
6422 case OP_oROR:
6423 case OP_PSR:
037e8744 6424 case OP_RVC_PSR:
c19d1205 6425 case OP_COND:
62b3e311 6426 case OP_oBARRIER:
c19d1205
ZW
6427 case OP_REGLST:
6428 case OP_VRSLST:
6429 case OP_VRDLST:
037e8744 6430 case OP_VRSDLST:
5287ad62
JB
6431 case OP_NRDLST:
6432 case OP_NSTRLST:
c19d1205
ZW
6433 if (val == FAIL)
6434 goto failure;
6435 inst.operands[i].imm = val;
6436 break;
a737bd4d 6437
c19d1205
ZW
6438 default:
6439 break;
6440 }
09d92015 6441
c19d1205
ZW
6442 /* If we get here, this operand was successfully parsed. */
6443 inst.operands[i].present = 1;
6444 continue;
09d92015 6445
c19d1205 6446 bad_args:
09d92015 6447 inst.error = BAD_ARGS;
c19d1205
ZW
6448
6449 failure:
6450 if (!backtrack_pos)
d252fdde
PB
6451 {
6452 /* The parse routine should already have set inst.error, but set a
5f4273c7 6453 default here just in case. */
d252fdde
PB
6454 if (!inst.error)
6455 inst.error = _("syntax error");
6456 return FAIL;
6457 }
c19d1205
ZW
6458
6459 /* Do not backtrack over a trailing optional argument that
6460 absorbed some text. We will only fail again, with the
6461 'garbage following instruction' error message, which is
6462 probably less helpful than the current one. */
6463 if (backtrack_index == i && backtrack_pos != str
6464 && upat[i+1] == OP_stop)
d252fdde
PB
6465 {
6466 if (!inst.error)
6467 inst.error = _("syntax error");
6468 return FAIL;
6469 }
c19d1205
ZW
6470
6471 /* Try again, skipping the optional argument at backtrack_pos. */
6472 str = backtrack_pos;
6473 inst.error = backtrack_error;
6474 inst.operands[backtrack_index].present = 0;
6475 i = backtrack_index;
6476 backtrack_pos = 0;
09d92015 6477 }
09d92015 6478
c19d1205
ZW
6479 /* Check that we have parsed all the arguments. */
6480 if (*str != '\0' && !inst.error)
6481 inst.error = _("garbage following instruction");
09d92015 6482
c19d1205 6483 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6484}
6485
c19d1205
ZW
6486#undef po_char_or_fail
6487#undef po_reg_or_fail
6488#undef po_reg_or_goto
6489#undef po_imm_or_fail
5287ad62 6490#undef po_scalar_or_fail
e07e6e58 6491
c19d1205 6492/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6493#define constraint(expr, err) \
6494 do \
c19d1205 6495 { \
e07e6e58
NC
6496 if (expr) \
6497 { \
6498 inst.error = err; \
6499 return; \
6500 } \
c19d1205 6501 } \
e07e6e58 6502 while (0)
c19d1205 6503
fdfde340
JM
6504/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6505 instructions are unpredictable if these registers are used. This
6506 is the BadReg predicate in ARM's Thumb-2 documentation. */
6507#define reject_bad_reg(reg) \
6508 do \
6509 if (reg == REG_SP || reg == REG_PC) \
6510 { \
6511 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6512 return; \
6513 } \
6514 while (0)
6515
94206790
MM
6516/* If REG is R13 (the stack pointer), warn that its use is
6517 deprecated. */
6518#define warn_deprecated_sp(reg) \
6519 do \
6520 if (warn_on_deprecated && reg == REG_SP) \
6521 as_warn (_("use of r13 is deprecated")); \
6522 while (0)
6523
c19d1205
ZW
6524/* Functions for operand encoding. ARM, then Thumb. */
6525
6526#define rotate_left(v, n) (v << n | v >> (32 - n))
6527
6528/* If VAL can be encoded in the immediate field of an ARM instruction,
6529 return the encoded form. Otherwise, return FAIL. */
6530
6531static unsigned int
6532encode_arm_immediate (unsigned int val)
09d92015 6533{
c19d1205
ZW
6534 unsigned int a, i;
6535
6536 for (i = 0; i < 32; i += 2)
6537 if ((a = rotate_left (val, i)) <= 0xff)
6538 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6539
6540 return FAIL;
09d92015
MM
6541}
6542
c19d1205
ZW
6543/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6544 return the encoded form. Otherwise, return FAIL. */
6545static unsigned int
6546encode_thumb32_immediate (unsigned int val)
09d92015 6547{
c19d1205 6548 unsigned int a, i;
09d92015 6549
9c3c69f2 6550 if (val <= 0xff)
c19d1205 6551 return val;
a737bd4d 6552
9c3c69f2 6553 for (i = 1; i <= 24; i++)
09d92015 6554 {
9c3c69f2
PB
6555 a = val >> i;
6556 if ((val & ~(0xff << i)) == 0)
6557 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6558 }
a737bd4d 6559
c19d1205
ZW
6560 a = val & 0xff;
6561 if (val == ((a << 16) | a))
6562 return 0x100 | a;
6563 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6564 return 0x300 | a;
09d92015 6565
c19d1205
ZW
6566 a = val & 0xff00;
6567 if (val == ((a << 16) | a))
6568 return 0x200 | (a >> 8);
a737bd4d 6569
c19d1205 6570 return FAIL;
09d92015 6571}
5287ad62 6572/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6573
6574static void
5287ad62
JB
6575encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6576{
6577 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6578 && reg > 15)
6579 {
b1cc4aeb 6580 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6581 {
6582 if (thumb_mode)
6583 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6584 fpu_vfp_ext_d32);
5287ad62
JB
6585 else
6586 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6587 fpu_vfp_ext_d32);
5287ad62
JB
6588 }
6589 else
6590 {
dcbf9037 6591 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6592 return;
6593 }
6594 }
6595
c19d1205 6596 switch (pos)
09d92015 6597 {
c19d1205
ZW
6598 case VFP_REG_Sd:
6599 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6600 break;
6601
6602 case VFP_REG_Sn:
6603 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6604 break;
6605
6606 case VFP_REG_Sm:
6607 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6608 break;
6609
5287ad62
JB
6610 case VFP_REG_Dd:
6611 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6612 break;
5f4273c7 6613
5287ad62
JB
6614 case VFP_REG_Dn:
6615 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6616 break;
5f4273c7 6617
5287ad62
JB
6618 case VFP_REG_Dm:
6619 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6620 break;
6621
c19d1205
ZW
6622 default:
6623 abort ();
09d92015 6624 }
09d92015
MM
6625}
6626
c19d1205 6627/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6628 if any, is handled by md_apply_fix. */
09d92015 6629static void
c19d1205 6630encode_arm_shift (int i)
09d92015 6631{
c19d1205
ZW
6632 if (inst.operands[i].shift_kind == SHIFT_RRX)
6633 inst.instruction |= SHIFT_ROR << 5;
6634 else
09d92015 6635 {
c19d1205
ZW
6636 inst.instruction |= inst.operands[i].shift_kind << 5;
6637 if (inst.operands[i].immisreg)
6638 {
6639 inst.instruction |= SHIFT_BY_REG;
6640 inst.instruction |= inst.operands[i].imm << 8;
6641 }
6642 else
6643 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6644 }
c19d1205 6645}
09d92015 6646
c19d1205
ZW
6647static void
6648encode_arm_shifter_operand (int i)
6649{
6650 if (inst.operands[i].isreg)
09d92015 6651 {
c19d1205
ZW
6652 inst.instruction |= inst.operands[i].reg;
6653 encode_arm_shift (i);
09d92015 6654 }
c19d1205
ZW
6655 else
6656 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6657}
6658
c19d1205 6659/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6660static void
c19d1205 6661encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6662{
9c2799c2 6663 gas_assert (inst.operands[i].isreg);
c19d1205 6664 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6665
c19d1205 6666 if (inst.operands[i].preind)
09d92015 6667 {
c19d1205
ZW
6668 if (is_t)
6669 {
6670 inst.error = _("instruction does not accept preindexed addressing");
6671 return;
6672 }
6673 inst.instruction |= PRE_INDEX;
6674 if (inst.operands[i].writeback)
6675 inst.instruction |= WRITE_BACK;
09d92015 6676
c19d1205
ZW
6677 }
6678 else if (inst.operands[i].postind)
6679 {
9c2799c2 6680 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6681 if (is_t)
6682 inst.instruction |= WRITE_BACK;
6683 }
6684 else /* unindexed - only for coprocessor */
09d92015 6685 {
c19d1205 6686 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6687 return;
6688 }
6689
c19d1205
ZW
6690 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6691 && (((inst.instruction & 0x000f0000) >> 16)
6692 == ((inst.instruction & 0x0000f000) >> 12)))
6693 as_warn ((inst.instruction & LOAD_BIT)
6694 ? _("destination register same as write-back base")
6695 : _("source register same as write-back base"));
09d92015
MM
6696}
6697
c19d1205
ZW
6698/* inst.operands[i] was set up by parse_address. Encode it into an
6699 ARM-format mode 2 load or store instruction. If is_t is true,
6700 reject forms that cannot be used with a T instruction (i.e. not
6701 post-indexed). */
a737bd4d 6702static void
c19d1205 6703encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6704{
c19d1205 6705 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6706
c19d1205 6707 if (inst.operands[i].immisreg)
09d92015 6708 {
c19d1205
ZW
6709 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6710 inst.instruction |= inst.operands[i].imm;
6711 if (!inst.operands[i].negative)
6712 inst.instruction |= INDEX_UP;
6713 if (inst.operands[i].shifted)
6714 {
6715 if (inst.operands[i].shift_kind == SHIFT_RRX)
6716 inst.instruction |= SHIFT_ROR << 5;
6717 else
6718 {
6719 inst.instruction |= inst.operands[i].shift_kind << 5;
6720 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6721 }
6722 }
09d92015 6723 }
c19d1205 6724 else /* immediate offset in inst.reloc */
09d92015 6725 {
c19d1205
ZW
6726 if (inst.reloc.type == BFD_RELOC_UNUSED)
6727 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6728 }
09d92015
MM
6729}
6730
c19d1205
ZW
6731/* inst.operands[i] was set up by parse_address. Encode it into an
6732 ARM-format mode 3 load or store instruction. Reject forms that
6733 cannot be used with such instructions. If is_t is true, reject
6734 forms that cannot be used with a T instruction (i.e. not
6735 post-indexed). */
6736static void
6737encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6738{
c19d1205 6739 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6740 {
c19d1205
ZW
6741 inst.error = _("instruction does not accept scaled register index");
6742 return;
09d92015 6743 }
a737bd4d 6744
c19d1205 6745 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6746
c19d1205
ZW
6747 if (inst.operands[i].immisreg)
6748 {
6749 inst.instruction |= inst.operands[i].imm;
6750 if (!inst.operands[i].negative)
6751 inst.instruction |= INDEX_UP;
6752 }
6753 else /* immediate offset in inst.reloc */
6754 {
6755 inst.instruction |= HWOFFSET_IMM;
6756 if (inst.reloc.type == BFD_RELOC_UNUSED)
6757 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6758 }
a737bd4d
NC
6759}
6760
c19d1205
ZW
6761/* inst.operands[i] was set up by parse_address. Encode it into an
6762 ARM-format instruction. Reject all forms which cannot be encoded
6763 into a coprocessor load/store instruction. If wb_ok is false,
6764 reject use of writeback; if unind_ok is false, reject use of
6765 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6766 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6767 (in which case it is preserved). */
09d92015 6768
c19d1205
ZW
6769static int
6770encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6771{
c19d1205 6772 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6773
9c2799c2 6774 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6775
c19d1205 6776 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6777 {
9c2799c2 6778 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6779 if (!unind_ok)
6780 {
6781 inst.error = _("instruction does not support unindexed addressing");
6782 return FAIL;
6783 }
6784 inst.instruction |= inst.operands[i].imm;
6785 inst.instruction |= INDEX_UP;
6786 return SUCCESS;
09d92015 6787 }
a737bd4d 6788
c19d1205
ZW
6789 if (inst.operands[i].preind)
6790 inst.instruction |= PRE_INDEX;
a737bd4d 6791
c19d1205 6792 if (inst.operands[i].writeback)
09d92015 6793 {
c19d1205
ZW
6794 if (inst.operands[i].reg == REG_PC)
6795 {
6796 inst.error = _("pc may not be used with write-back");
6797 return FAIL;
6798 }
6799 if (!wb_ok)
6800 {
6801 inst.error = _("instruction does not support writeback");
6802 return FAIL;
6803 }
6804 inst.instruction |= WRITE_BACK;
09d92015 6805 }
a737bd4d 6806
c19d1205 6807 if (reloc_override)
21d799b5 6808 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6809 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6810 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6811 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6812 {
6813 if (thumb_mode)
6814 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6815 else
6816 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6817 }
6818
c19d1205
ZW
6819 return SUCCESS;
6820}
a737bd4d 6821
c19d1205
ZW
6822/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6823 Determine whether it can be performed with a move instruction; if
6824 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6825 return TRUE; if it can't, convert inst.instruction to a literal-pool
6826 load and return FALSE. If this is not a valid thing to do in the
6827 current context, set inst.error and return TRUE.
a737bd4d 6828
c19d1205
ZW
6829 inst.operands[i] describes the destination register. */
6830
c921be7d 6831static bfd_boolean
c19d1205
ZW
6832move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6833{
53365c0d
PB
6834 unsigned long tbit;
6835
6836 if (thumb_p)
6837 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6838 else
6839 tbit = LOAD_BIT;
6840
6841 if ((inst.instruction & tbit) == 0)
09d92015 6842 {
c19d1205 6843 inst.error = _("invalid pseudo operation");
c921be7d 6844 return TRUE;
09d92015 6845 }
c19d1205 6846 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6847 {
6848 inst.error = _("constant expression expected");
c921be7d 6849 return TRUE;
09d92015 6850 }
c19d1205 6851 if (inst.reloc.exp.X_op == O_constant)
09d92015 6852 {
c19d1205
ZW
6853 if (thumb_p)
6854 {
53365c0d 6855 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6856 {
6857 /* This can be done with a mov(1) instruction. */
6858 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6859 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 6860 return TRUE;
c19d1205
ZW
6861 }
6862 }
6863 else
6864 {
6865 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6866 if (value != FAIL)
6867 {
6868 /* This can be done with a mov instruction. */
6869 inst.instruction &= LITERAL_MASK;
6870 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6871 inst.instruction |= value & 0xfff;
c921be7d 6872 return TRUE;
c19d1205 6873 }
09d92015 6874
c19d1205
ZW
6875 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6876 if (value != FAIL)
6877 {
6878 /* This can be done with a mvn instruction. */
6879 inst.instruction &= LITERAL_MASK;
6880 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6881 inst.instruction |= value & 0xfff;
c921be7d 6882 return TRUE;
c19d1205
ZW
6883 }
6884 }
09d92015
MM
6885 }
6886
c19d1205
ZW
6887 if (add_to_lit_pool () == FAIL)
6888 {
6889 inst.error = _("literal pool insertion failed");
c921be7d 6890 return TRUE;
c19d1205
ZW
6891 }
6892 inst.operands[1].reg = REG_PC;
6893 inst.operands[1].isreg = 1;
6894 inst.operands[1].preind = 1;
6895 inst.reloc.pc_rel = 1;
6896 inst.reloc.type = (thumb_p
6897 ? BFD_RELOC_ARM_THUMB_OFFSET
6898 : (mode_3
6899 ? BFD_RELOC_ARM_HWLITERAL
6900 : BFD_RELOC_ARM_LITERAL));
c921be7d 6901 return FALSE;
09d92015
MM
6902}
6903
5f4273c7 6904/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6905 First some generics; their names are taken from the conventional
6906 bit positions for register arguments in ARM format instructions. */
09d92015 6907
a737bd4d 6908static void
c19d1205 6909do_noargs (void)
09d92015 6910{
c19d1205 6911}
a737bd4d 6912
c19d1205
ZW
6913static void
6914do_rd (void)
6915{
6916 inst.instruction |= inst.operands[0].reg << 12;
6917}
a737bd4d 6918
c19d1205
ZW
6919static void
6920do_rd_rm (void)
6921{
6922 inst.instruction |= inst.operands[0].reg << 12;
6923 inst.instruction |= inst.operands[1].reg;
6924}
09d92015 6925
c19d1205
ZW
6926static void
6927do_rd_rn (void)
6928{
6929 inst.instruction |= inst.operands[0].reg << 12;
6930 inst.instruction |= inst.operands[1].reg << 16;
6931}
a737bd4d 6932
c19d1205
ZW
6933static void
6934do_rn_rd (void)
6935{
6936 inst.instruction |= inst.operands[0].reg << 16;
6937 inst.instruction |= inst.operands[1].reg << 12;
6938}
09d92015 6939
c19d1205
ZW
6940static void
6941do_rd_rm_rn (void)
6942{
9a64e435 6943 unsigned Rn = inst.operands[2].reg;
708587a4 6944 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6945 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6946 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6947 _("Rn must not overlap other operands"));
c19d1205
ZW
6948 inst.instruction |= inst.operands[0].reg << 12;
6949 inst.instruction |= inst.operands[1].reg;
9a64e435 6950 inst.instruction |= Rn << 16;
c19d1205 6951}
09d92015 6952
c19d1205
ZW
6953static void
6954do_rd_rn_rm (void)
6955{
6956 inst.instruction |= inst.operands[0].reg << 12;
6957 inst.instruction |= inst.operands[1].reg << 16;
6958 inst.instruction |= inst.operands[2].reg;
6959}
a737bd4d 6960
c19d1205
ZW
6961static void
6962do_rm_rd_rn (void)
6963{
6964 inst.instruction |= inst.operands[0].reg;
6965 inst.instruction |= inst.operands[1].reg << 12;
6966 inst.instruction |= inst.operands[2].reg << 16;
6967}
09d92015 6968
c19d1205
ZW
6969static void
6970do_imm0 (void)
6971{
6972 inst.instruction |= inst.operands[0].imm;
6973}
09d92015 6974
c19d1205
ZW
6975static void
6976do_rd_cpaddr (void)
6977{
6978 inst.instruction |= inst.operands[0].reg << 12;
6979 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6980}
a737bd4d 6981
c19d1205
ZW
6982/* ARM instructions, in alphabetical order by function name (except
6983 that wrapper functions appear immediately after the function they
6984 wrap). */
09d92015 6985
c19d1205
ZW
6986/* This is a pseudo-op of the form "adr rd, label" to be converted
6987 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6988
6989static void
c19d1205 6990do_adr (void)
09d92015 6991{
c19d1205 6992 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6993
c19d1205
ZW
6994 /* Frag hacking will turn this into a sub instruction if the offset turns
6995 out to be negative. */
6996 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6997 inst.reloc.pc_rel = 1;
2fc8bdac 6998 inst.reloc.exp.X_add_number -= 8;
c19d1205 6999}
b99bd4ef 7000
c19d1205
ZW
7001/* This is a pseudo-op of the form "adrl rd, label" to be converted
7002 into a relative address of the form:
7003 add rd, pc, #low(label-.-8)"
7004 add rd, rd, #high(label-.-8)" */
b99bd4ef 7005
c19d1205
ZW
7006static void
7007do_adrl (void)
7008{
7009 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7010
c19d1205
ZW
7011 /* Frag hacking will turn this into a sub instruction if the offset turns
7012 out to be negative. */
7013 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7014 inst.reloc.pc_rel = 1;
7015 inst.size = INSN_SIZE * 2;
2fc8bdac 7016 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7017}
7018
b99bd4ef 7019static void
c19d1205 7020do_arit (void)
b99bd4ef 7021{
c19d1205
ZW
7022 if (!inst.operands[1].present)
7023 inst.operands[1].reg = inst.operands[0].reg;
7024 inst.instruction |= inst.operands[0].reg << 12;
7025 inst.instruction |= inst.operands[1].reg << 16;
7026 encode_arm_shifter_operand (2);
7027}
b99bd4ef 7028
62b3e311
PB
7029static void
7030do_barrier (void)
7031{
7032 if (inst.operands[0].present)
7033 {
7034 constraint ((inst.instruction & 0xf0) != 0x40
7035 && inst.operands[0].imm != 0xf,
bd3ba5d1 7036 _("bad barrier type"));
62b3e311
PB
7037 inst.instruction |= inst.operands[0].imm;
7038 }
7039 else
7040 inst.instruction |= 0xf;
7041}
7042
c19d1205
ZW
7043static void
7044do_bfc (void)
7045{
7046 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7047 constraint (msb > 32, _("bit-field extends past end of register"));
7048 /* The instruction encoding stores the LSB and MSB,
7049 not the LSB and width. */
7050 inst.instruction |= inst.operands[0].reg << 12;
7051 inst.instruction |= inst.operands[1].imm << 7;
7052 inst.instruction |= (msb - 1) << 16;
7053}
b99bd4ef 7054
c19d1205
ZW
7055static void
7056do_bfi (void)
7057{
7058 unsigned int msb;
b99bd4ef 7059
c19d1205
ZW
7060 /* #0 in second position is alternative syntax for bfc, which is
7061 the same instruction but with REG_PC in the Rm field. */
7062 if (!inst.operands[1].isreg)
7063 inst.operands[1].reg = REG_PC;
b99bd4ef 7064
c19d1205
ZW
7065 msb = inst.operands[2].imm + inst.operands[3].imm;
7066 constraint (msb > 32, _("bit-field extends past end of register"));
7067 /* The instruction encoding stores the LSB and MSB,
7068 not the LSB and width. */
7069 inst.instruction |= inst.operands[0].reg << 12;
7070 inst.instruction |= inst.operands[1].reg;
7071 inst.instruction |= inst.operands[2].imm << 7;
7072 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7073}
7074
b99bd4ef 7075static void
c19d1205 7076do_bfx (void)
b99bd4ef 7077{
c19d1205
ZW
7078 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7079 _("bit-field extends past end of register"));
7080 inst.instruction |= inst.operands[0].reg << 12;
7081 inst.instruction |= inst.operands[1].reg;
7082 inst.instruction |= inst.operands[2].imm << 7;
7083 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7084}
09d92015 7085
c19d1205
ZW
7086/* ARM V5 breakpoint instruction (argument parse)
7087 BKPT <16 bit unsigned immediate>
7088 Instruction is not conditional.
7089 The bit pattern given in insns[] has the COND_ALWAYS condition,
7090 and it is an error if the caller tried to override that. */
b99bd4ef 7091
c19d1205
ZW
7092static void
7093do_bkpt (void)
7094{
7095 /* Top 12 of 16 bits to bits 19:8. */
7096 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7097
c19d1205
ZW
7098 /* Bottom 4 of 16 bits to bits 3:0. */
7099 inst.instruction |= inst.operands[0].imm & 0xf;
7100}
09d92015 7101
c19d1205
ZW
7102static void
7103encode_branch (int default_reloc)
7104{
7105 if (inst.operands[0].hasreloc)
7106 {
7107 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7108 _("the only suffix valid here is '(plt)'"));
267bf995 7109 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7110 }
b99bd4ef 7111 else
c19d1205 7112 {
21d799b5 7113 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
c19d1205 7114 }
2fc8bdac 7115 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7116}
7117
b99bd4ef 7118static void
c19d1205 7119do_branch (void)
b99bd4ef 7120{
39b41c9c
PB
7121#ifdef OBJ_ELF
7122 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7123 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7124 else
7125#endif
7126 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7127}
7128
7129static void
7130do_bl (void)
7131{
7132#ifdef OBJ_ELF
7133 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7134 {
7135 if (inst.cond == COND_ALWAYS)
7136 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7137 else
7138 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7139 }
7140 else
7141#endif
7142 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7143}
b99bd4ef 7144
c19d1205
ZW
7145/* ARM V5 branch-link-exchange instruction (argument parse)
7146 BLX <target_addr> ie BLX(1)
7147 BLX{<condition>} <Rm> ie BLX(2)
7148 Unfortunately, there are two different opcodes for this mnemonic.
7149 So, the insns[].value is not used, and the code here zaps values
7150 into inst.instruction.
7151 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7152
c19d1205
ZW
7153static void
7154do_blx (void)
7155{
7156 if (inst.operands[0].isreg)
b99bd4ef 7157 {
c19d1205
ZW
7158 /* Arg is a register; the opcode provided by insns[] is correct.
7159 It is not illegal to do "blx pc", just useless. */
7160 if (inst.operands[0].reg == REG_PC)
7161 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7162
c19d1205
ZW
7163 inst.instruction |= inst.operands[0].reg;
7164 }
7165 else
b99bd4ef 7166 {
c19d1205 7167 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7168 conditionally, and the opcode must be adjusted.
7169 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7170 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7171 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7172 inst.instruction = 0xfa000000;
267bf995 7173 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7174 }
c19d1205
ZW
7175}
7176
7177static void
7178do_bx (void)
7179{
845b51d6
PB
7180 bfd_boolean want_reloc;
7181
c19d1205
ZW
7182 if (inst.operands[0].reg == REG_PC)
7183 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7184
c19d1205 7185 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7186 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7187 it is for ARMv4t or earlier. */
7188 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7189 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7190 want_reloc = TRUE;
7191
5ad34203 7192#ifdef OBJ_ELF
845b51d6 7193 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7194#endif
584206db 7195 want_reloc = FALSE;
845b51d6
PB
7196
7197 if (want_reloc)
7198 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7199}
7200
c19d1205
ZW
7201
7202/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7203
7204static void
c19d1205 7205do_bxj (void)
a737bd4d 7206{
c19d1205
ZW
7207 if (inst.operands[0].reg == REG_PC)
7208 as_tsktsk (_("use of r15 in bxj is not really useful"));
7209
7210 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7211}
7212
c19d1205
ZW
7213/* Co-processor data operation:
7214 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7215 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7216static void
7217do_cdp (void)
7218{
7219 inst.instruction |= inst.operands[0].reg << 8;
7220 inst.instruction |= inst.operands[1].imm << 20;
7221 inst.instruction |= inst.operands[2].reg << 12;
7222 inst.instruction |= inst.operands[3].reg << 16;
7223 inst.instruction |= inst.operands[4].reg;
7224 inst.instruction |= inst.operands[5].imm << 5;
7225}
a737bd4d
NC
7226
7227static void
c19d1205 7228do_cmp (void)
a737bd4d 7229{
c19d1205
ZW
7230 inst.instruction |= inst.operands[0].reg << 16;
7231 encode_arm_shifter_operand (1);
a737bd4d
NC
7232}
7233
c19d1205
ZW
7234/* Transfer between coprocessor and ARM registers.
7235 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7236 MRC2
7237 MCR{cond}
7238 MCR2
7239
7240 No special properties. */
09d92015
MM
7241
7242static void
c19d1205 7243do_co_reg (void)
09d92015 7244{
fdfde340
JM
7245 unsigned Rd;
7246
7247 Rd = inst.operands[2].reg;
7248 if (thumb_mode)
7249 {
7250 if (inst.instruction == 0xee000010
7251 || inst.instruction == 0xfe000010)
7252 /* MCR, MCR2 */
7253 reject_bad_reg (Rd);
7254 else
7255 /* MRC, MRC2 */
7256 constraint (Rd == REG_SP, BAD_SP);
7257 }
7258 else
7259 {
7260 /* MCR */
7261 if (inst.instruction == 0xe000010)
7262 constraint (Rd == REG_PC, BAD_PC);
7263 }
7264
7265
c19d1205
ZW
7266 inst.instruction |= inst.operands[0].reg << 8;
7267 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7268 inst.instruction |= Rd << 12;
c19d1205
ZW
7269 inst.instruction |= inst.operands[3].reg << 16;
7270 inst.instruction |= inst.operands[4].reg;
7271 inst.instruction |= inst.operands[5].imm << 5;
7272}
09d92015 7273
c19d1205
ZW
7274/* Transfer between coprocessor register and pair of ARM registers.
7275 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7276 MCRR2
7277 MRRC{cond}
7278 MRRC2
b99bd4ef 7279
c19d1205 7280 Two XScale instructions are special cases of these:
09d92015 7281
c19d1205
ZW
7282 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7283 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7284
5f4273c7 7285 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7286
c19d1205
ZW
7287static void
7288do_co_reg2c (void)
7289{
fdfde340
JM
7290 unsigned Rd, Rn;
7291
7292 Rd = inst.operands[2].reg;
7293 Rn = inst.operands[3].reg;
7294
7295 if (thumb_mode)
7296 {
7297 reject_bad_reg (Rd);
7298 reject_bad_reg (Rn);
7299 }
7300 else
7301 {
7302 constraint (Rd == REG_PC, BAD_PC);
7303 constraint (Rn == REG_PC, BAD_PC);
7304 }
7305
c19d1205
ZW
7306 inst.instruction |= inst.operands[0].reg << 8;
7307 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7308 inst.instruction |= Rd << 12;
7309 inst.instruction |= Rn << 16;
c19d1205 7310 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7311}
7312
c19d1205
ZW
7313static void
7314do_cpsi (void)
7315{
7316 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7317 if (inst.operands[1].present)
7318 {
7319 inst.instruction |= CPSI_MMOD;
7320 inst.instruction |= inst.operands[1].imm;
7321 }
c19d1205 7322}
b99bd4ef 7323
62b3e311
PB
7324static void
7325do_dbg (void)
7326{
7327 inst.instruction |= inst.operands[0].imm;
7328}
7329
b99bd4ef 7330static void
c19d1205 7331do_it (void)
b99bd4ef 7332{
c19d1205 7333 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7334 process it to do the validation as if in
7335 thumb mode, just in case the code gets
7336 assembled for thumb using the unified syntax. */
7337
c19d1205 7338 inst.size = 0;
e07e6e58
NC
7339 if (unified_syntax)
7340 {
7341 set_it_insn_type (IT_INSN);
7342 now_it.mask = (inst.instruction & 0xf) | 0x10;
7343 now_it.cc = inst.operands[0].imm;
7344 }
09d92015 7345}
b99bd4ef 7346
09d92015 7347static void
c19d1205 7348do_ldmstm (void)
ea6ef066 7349{
c19d1205
ZW
7350 int base_reg = inst.operands[0].reg;
7351 int range = inst.operands[1].imm;
ea6ef066 7352
c19d1205
ZW
7353 inst.instruction |= base_reg << 16;
7354 inst.instruction |= range;
ea6ef066 7355
c19d1205
ZW
7356 if (inst.operands[1].writeback)
7357 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7358
c19d1205 7359 if (inst.operands[0].writeback)
ea6ef066 7360 {
c19d1205
ZW
7361 inst.instruction |= WRITE_BACK;
7362 /* Check for unpredictable uses of writeback. */
7363 if (inst.instruction & LOAD_BIT)
09d92015 7364 {
c19d1205
ZW
7365 /* Not allowed in LDM type 2. */
7366 if ((inst.instruction & LDM_TYPE_2_OR_3)
7367 && ((range & (1 << REG_PC)) == 0))
7368 as_warn (_("writeback of base register is UNPREDICTABLE"));
7369 /* Only allowed if base reg not in list for other types. */
7370 else if (range & (1 << base_reg))
7371 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7372 }
7373 else /* STM. */
7374 {
7375 /* Not allowed for type 2. */
7376 if (inst.instruction & LDM_TYPE_2_OR_3)
7377 as_warn (_("writeback of base register is UNPREDICTABLE"));
7378 /* Only allowed if base reg not in list, or first in list. */
7379 else if ((range & (1 << base_reg))
7380 && (range & ((1 << base_reg) - 1)))
7381 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7382 }
ea6ef066 7383 }
a737bd4d
NC
7384}
7385
c19d1205
ZW
7386/* ARMv5TE load-consecutive (argument parse)
7387 Mode is like LDRH.
7388
7389 LDRccD R, mode
7390 STRccD R, mode. */
7391
a737bd4d 7392static void
c19d1205 7393do_ldrd (void)
a737bd4d 7394{
c19d1205
ZW
7395 constraint (inst.operands[0].reg % 2 != 0,
7396 _("first destination register must be even"));
7397 constraint (inst.operands[1].present
7398 && inst.operands[1].reg != inst.operands[0].reg + 1,
7399 _("can only load two consecutive registers"));
7400 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7401 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7402
c19d1205
ZW
7403 if (!inst.operands[1].present)
7404 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7405
c19d1205 7406 if (inst.instruction & LOAD_BIT)
a737bd4d 7407 {
c19d1205
ZW
7408 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7409 register and the first register written; we have to diagnose
7410 overlap between the base and the second register written here. */
ea6ef066 7411
c19d1205
ZW
7412 if (inst.operands[2].reg == inst.operands[1].reg
7413 && (inst.operands[2].writeback || inst.operands[2].postind))
7414 as_warn (_("base register written back, and overlaps "
7415 "second destination register"));
b05fe5cf 7416
c19d1205
ZW
7417 /* For an index-register load, the index register must not overlap the
7418 destination (even if not write-back). */
7419 else if (inst.operands[2].immisreg
ca3f61f7
NC
7420 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7421 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7422 as_warn (_("index register overlaps destination register"));
b05fe5cf 7423 }
c19d1205
ZW
7424
7425 inst.instruction |= inst.operands[0].reg << 12;
7426 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7427}
7428
7429static void
c19d1205 7430do_ldrex (void)
b05fe5cf 7431{
c19d1205
ZW
7432 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7433 || inst.operands[1].postind || inst.operands[1].writeback
7434 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7435 || inst.operands[1].negative
7436 /* This can arise if the programmer has written
7437 strex rN, rM, foo
7438 or if they have mistakenly used a register name as the last
7439 operand, eg:
7440 strex rN, rM, rX
7441 It is very difficult to distinguish between these two cases
7442 because "rX" might actually be a label. ie the register
7443 name has been occluded by a symbol of the same name. So we
7444 just generate a general 'bad addressing mode' type error
7445 message and leave it up to the programmer to discover the
7446 true cause and fix their mistake. */
7447 || (inst.operands[1].reg == REG_PC),
7448 BAD_ADDR_MODE);
b05fe5cf 7449
c19d1205
ZW
7450 constraint (inst.reloc.exp.X_op != O_constant
7451 || inst.reloc.exp.X_add_number != 0,
7452 _("offset must be zero in ARM encoding"));
b05fe5cf 7453
c19d1205
ZW
7454 inst.instruction |= inst.operands[0].reg << 12;
7455 inst.instruction |= inst.operands[1].reg << 16;
7456 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7457}
7458
7459static void
c19d1205 7460do_ldrexd (void)
b05fe5cf 7461{
c19d1205
ZW
7462 constraint (inst.operands[0].reg % 2 != 0,
7463 _("even register required"));
7464 constraint (inst.operands[1].present
7465 && inst.operands[1].reg != inst.operands[0].reg + 1,
7466 _("can only load two consecutive registers"));
7467 /* If op 1 were present and equal to PC, this function wouldn't
7468 have been called in the first place. */
7469 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7470
c19d1205
ZW
7471 inst.instruction |= inst.operands[0].reg << 12;
7472 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7473}
7474
7475static void
c19d1205 7476do_ldst (void)
b05fe5cf 7477{
c19d1205
ZW
7478 inst.instruction |= inst.operands[0].reg << 12;
7479 if (!inst.operands[1].isreg)
7480 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7481 return;
c19d1205 7482 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7483}
7484
7485static void
c19d1205 7486do_ldstt (void)
b05fe5cf 7487{
c19d1205
ZW
7488 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7489 reject [Rn,...]. */
7490 if (inst.operands[1].preind)
b05fe5cf 7491 {
bd3ba5d1
NC
7492 constraint (inst.reloc.exp.X_op != O_constant
7493 || inst.reloc.exp.X_add_number != 0,
c19d1205 7494 _("this instruction requires a post-indexed address"));
b05fe5cf 7495
c19d1205
ZW
7496 inst.operands[1].preind = 0;
7497 inst.operands[1].postind = 1;
7498 inst.operands[1].writeback = 1;
b05fe5cf 7499 }
c19d1205
ZW
7500 inst.instruction |= inst.operands[0].reg << 12;
7501 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7502}
b05fe5cf 7503
c19d1205 7504/* Halfword and signed-byte load/store operations. */
b05fe5cf 7505
c19d1205
ZW
7506static void
7507do_ldstv4 (void)
7508{
ff4a8d2b 7509 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7510 inst.instruction |= inst.operands[0].reg << 12;
7511 if (!inst.operands[1].isreg)
7512 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7513 return;
c19d1205 7514 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7515}
7516
7517static void
c19d1205 7518do_ldsttv4 (void)
b05fe5cf 7519{
c19d1205
ZW
7520 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7521 reject [Rn,...]. */
7522 if (inst.operands[1].preind)
b05fe5cf 7523 {
bd3ba5d1
NC
7524 constraint (inst.reloc.exp.X_op != O_constant
7525 || inst.reloc.exp.X_add_number != 0,
c19d1205 7526 _("this instruction requires a post-indexed address"));
b05fe5cf 7527
c19d1205
ZW
7528 inst.operands[1].preind = 0;
7529 inst.operands[1].postind = 1;
7530 inst.operands[1].writeback = 1;
b05fe5cf 7531 }
c19d1205
ZW
7532 inst.instruction |= inst.operands[0].reg << 12;
7533 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7534}
b05fe5cf 7535
c19d1205
ZW
7536/* Co-processor register load/store.
7537 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7538static void
7539do_lstc (void)
7540{
7541 inst.instruction |= inst.operands[0].reg << 8;
7542 inst.instruction |= inst.operands[1].reg << 12;
7543 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7544}
7545
b05fe5cf 7546static void
c19d1205 7547do_mlas (void)
b05fe5cf 7548{
8fb9d7b9 7549 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7550 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7551 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7552 && !(inst.instruction & 0x00400000))
8fb9d7b9 7553 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7554
c19d1205
ZW
7555 inst.instruction |= inst.operands[0].reg << 16;
7556 inst.instruction |= inst.operands[1].reg;
7557 inst.instruction |= inst.operands[2].reg << 8;
7558 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7559}
b05fe5cf 7560
c19d1205
ZW
7561static void
7562do_mov (void)
7563{
7564 inst.instruction |= inst.operands[0].reg << 12;
7565 encode_arm_shifter_operand (1);
7566}
b05fe5cf 7567
c19d1205
ZW
7568/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7569static void
7570do_mov16 (void)
7571{
b6895b4f
PB
7572 bfd_vma imm;
7573 bfd_boolean top;
7574
7575 top = (inst.instruction & 0x00400000) != 0;
7576 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7577 _(":lower16: not allowed this instruction"));
7578 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7579 _(":upper16: not allowed instruction"));
c19d1205 7580 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7581 if (inst.reloc.type == BFD_RELOC_UNUSED)
7582 {
7583 imm = inst.reloc.exp.X_add_number;
7584 /* The value is in two pieces: 0:11, 16:19. */
7585 inst.instruction |= (imm & 0x00000fff);
7586 inst.instruction |= (imm & 0x0000f000) << 4;
7587 }
b05fe5cf 7588}
b99bd4ef 7589
037e8744
JB
7590static void do_vfp_nsyn_opcode (const char *);
7591
7592static int
7593do_vfp_nsyn_mrs (void)
7594{
7595 if (inst.operands[0].isvec)
7596 {
7597 if (inst.operands[1].reg != 1)
7598 first_error (_("operand 1 must be FPSCR"));
7599 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7600 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7601 do_vfp_nsyn_opcode ("fmstat");
7602 }
7603 else if (inst.operands[1].isvec)
7604 do_vfp_nsyn_opcode ("fmrx");
7605 else
7606 return FAIL;
5f4273c7 7607
037e8744
JB
7608 return SUCCESS;
7609}
7610
7611static int
7612do_vfp_nsyn_msr (void)
7613{
7614 if (inst.operands[0].isvec)
7615 do_vfp_nsyn_opcode ("fmxr");
7616 else
7617 return FAIL;
7618
7619 return SUCCESS;
7620}
7621
f7c21dc7
NC
7622static void
7623do_vmrs (void)
7624{
7625 unsigned Rt = inst.operands[0].reg;
7626
7627 if (thumb_mode && inst.operands[0].reg == REG_SP)
7628 {
7629 inst.error = BAD_SP;
7630 return;
7631 }
7632
7633 /* APSR_ sets isvec. All other refs to PC are illegal. */
7634 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7635 {
7636 inst.error = BAD_PC;
7637 return;
7638 }
7639
7640 if (inst.operands[1].reg != 1)
7641 first_error (_("operand 1 must be FPSCR"));
7642
7643 inst.instruction |= (Rt << 12);
7644}
7645
7646static void
7647do_vmsr (void)
7648{
7649 unsigned Rt = inst.operands[1].reg;
7650
7651 if (thumb_mode)
7652 reject_bad_reg (Rt);
7653 else if (Rt == REG_PC)
7654 {
7655 inst.error = BAD_PC;
7656 return;
7657 }
7658
7659 if (inst.operands[0].reg != 1)
7660 first_error (_("operand 0 must be FPSCR"));
7661
7662 inst.instruction |= (Rt << 12);
7663}
7664
b99bd4ef 7665static void
c19d1205 7666do_mrs (void)
b99bd4ef 7667{
037e8744
JB
7668 if (do_vfp_nsyn_mrs () == SUCCESS)
7669 return;
7670
c19d1205
ZW
7671 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7672 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7673 != (PSR_c|PSR_f),
7674 _("'CPSR' or 'SPSR' expected"));
ff4a8d2b 7675 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7676 inst.instruction |= inst.operands[0].reg << 12;
7677 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7678}
b99bd4ef 7679
c19d1205
ZW
7680/* Two possible forms:
7681 "{C|S}PSR_<field>, Rm",
7682 "{C|S}PSR_f, #expression". */
b99bd4ef 7683
c19d1205
ZW
7684static void
7685do_msr (void)
7686{
037e8744
JB
7687 if (do_vfp_nsyn_msr () == SUCCESS)
7688 return;
7689
c19d1205
ZW
7690 inst.instruction |= inst.operands[0].imm;
7691 if (inst.operands[1].isreg)
7692 inst.instruction |= inst.operands[1].reg;
7693 else
b99bd4ef 7694 {
c19d1205
ZW
7695 inst.instruction |= INST_IMMEDIATE;
7696 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7697 inst.reloc.pc_rel = 0;
b99bd4ef 7698 }
b99bd4ef
NC
7699}
7700
c19d1205
ZW
7701static void
7702do_mul (void)
a737bd4d 7703{
ff4a8d2b
NC
7704 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7705
c19d1205
ZW
7706 if (!inst.operands[2].present)
7707 inst.operands[2].reg = inst.operands[0].reg;
7708 inst.instruction |= inst.operands[0].reg << 16;
7709 inst.instruction |= inst.operands[1].reg;
7710 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7711
8fb9d7b9
MS
7712 if (inst.operands[0].reg == inst.operands[1].reg
7713 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7714 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7715}
7716
c19d1205
ZW
7717/* Long Multiply Parser
7718 UMULL RdLo, RdHi, Rm, Rs
7719 SMULL RdLo, RdHi, Rm, Rs
7720 UMLAL RdLo, RdHi, Rm, Rs
7721 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7722
7723static void
c19d1205 7724do_mull (void)
b99bd4ef 7725{
c19d1205
ZW
7726 inst.instruction |= inst.operands[0].reg << 12;
7727 inst.instruction |= inst.operands[1].reg << 16;
7728 inst.instruction |= inst.operands[2].reg;
7729 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7730
682b27ad
PB
7731 /* rdhi and rdlo must be different. */
7732 if (inst.operands[0].reg == inst.operands[1].reg)
7733 as_tsktsk (_("rdhi and rdlo must be different"));
7734
7735 /* rdhi, rdlo and rm must all be different before armv6. */
7736 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7737 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7738 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7739 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7740}
b99bd4ef 7741
c19d1205
ZW
7742static void
7743do_nop (void)
7744{
e7495e45
NS
7745 if (inst.operands[0].present
7746 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7747 {
7748 /* Architectural NOP hints are CPSR sets with no bits selected. */
7749 inst.instruction &= 0xf0000000;
e7495e45
NS
7750 inst.instruction |= 0x0320f000;
7751 if (inst.operands[0].present)
7752 inst.instruction |= inst.operands[0].imm;
c19d1205 7753 }
b99bd4ef
NC
7754}
7755
c19d1205
ZW
7756/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7757 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7758 Condition defaults to COND_ALWAYS.
7759 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7760
7761static void
c19d1205 7762do_pkhbt (void)
b99bd4ef 7763{
c19d1205
ZW
7764 inst.instruction |= inst.operands[0].reg << 12;
7765 inst.instruction |= inst.operands[1].reg << 16;
7766 inst.instruction |= inst.operands[2].reg;
7767 if (inst.operands[3].present)
7768 encode_arm_shift (3);
7769}
b99bd4ef 7770
c19d1205 7771/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7772
c19d1205
ZW
7773static void
7774do_pkhtb (void)
7775{
7776 if (!inst.operands[3].present)
b99bd4ef 7777 {
c19d1205
ZW
7778 /* If the shift specifier is omitted, turn the instruction
7779 into pkhbt rd, rm, rn. */
7780 inst.instruction &= 0xfff00010;
7781 inst.instruction |= inst.operands[0].reg << 12;
7782 inst.instruction |= inst.operands[1].reg;
7783 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7784 }
7785 else
7786 {
c19d1205
ZW
7787 inst.instruction |= inst.operands[0].reg << 12;
7788 inst.instruction |= inst.operands[1].reg << 16;
7789 inst.instruction |= inst.operands[2].reg;
7790 encode_arm_shift (3);
b99bd4ef
NC
7791 }
7792}
7793
c19d1205
ZW
7794/* ARMv5TE: Preload-Cache
7795
7796 PLD <addr_mode>
7797
7798 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7799
7800static void
c19d1205 7801do_pld (void)
b99bd4ef 7802{
c19d1205
ZW
7803 constraint (!inst.operands[0].isreg,
7804 _("'[' expected after PLD mnemonic"));
7805 constraint (inst.operands[0].postind,
7806 _("post-indexed expression used in preload instruction"));
7807 constraint (inst.operands[0].writeback,
7808 _("writeback used in preload instruction"));
7809 constraint (!inst.operands[0].preind,
7810 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7811 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7812}
b99bd4ef 7813
62b3e311
PB
7814/* ARMv7: PLI <addr_mode> */
7815static void
7816do_pli (void)
7817{
7818 constraint (!inst.operands[0].isreg,
7819 _("'[' expected after PLI mnemonic"));
7820 constraint (inst.operands[0].postind,
7821 _("post-indexed expression used in preload instruction"));
7822 constraint (inst.operands[0].writeback,
7823 _("writeback used in preload instruction"));
7824 constraint (!inst.operands[0].preind,
7825 _("unindexed addressing used in preload instruction"));
7826 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7827 inst.instruction &= ~PRE_INDEX;
7828}
7829
c19d1205
ZW
7830static void
7831do_push_pop (void)
7832{
7833 inst.operands[1] = inst.operands[0];
7834 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7835 inst.operands[0].isreg = 1;
7836 inst.operands[0].writeback = 1;
7837 inst.operands[0].reg = REG_SP;
7838 do_ldmstm ();
7839}
b99bd4ef 7840
c19d1205
ZW
7841/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7842 word at the specified address and the following word
7843 respectively.
7844 Unconditionally executed.
7845 Error if Rn is R15. */
b99bd4ef 7846
c19d1205
ZW
7847static void
7848do_rfe (void)
7849{
7850 inst.instruction |= inst.operands[0].reg << 16;
7851 if (inst.operands[0].writeback)
7852 inst.instruction |= WRITE_BACK;
7853}
b99bd4ef 7854
c19d1205 7855/* ARM V6 ssat (argument parse). */
b99bd4ef 7856
c19d1205
ZW
7857static void
7858do_ssat (void)
7859{
7860 inst.instruction |= inst.operands[0].reg << 12;
7861 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7862 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7863
c19d1205
ZW
7864 if (inst.operands[3].present)
7865 encode_arm_shift (3);
b99bd4ef
NC
7866}
7867
c19d1205 7868/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7869
7870static void
c19d1205 7871do_usat (void)
b99bd4ef 7872{
c19d1205
ZW
7873 inst.instruction |= inst.operands[0].reg << 12;
7874 inst.instruction |= inst.operands[1].imm << 16;
7875 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7876
c19d1205
ZW
7877 if (inst.operands[3].present)
7878 encode_arm_shift (3);
b99bd4ef
NC
7879}
7880
c19d1205 7881/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7882
7883static void
c19d1205 7884do_ssat16 (void)
09d92015 7885{
c19d1205
ZW
7886 inst.instruction |= inst.operands[0].reg << 12;
7887 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7888 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7889}
7890
c19d1205
ZW
7891static void
7892do_usat16 (void)
a737bd4d 7893{
c19d1205
ZW
7894 inst.instruction |= inst.operands[0].reg << 12;
7895 inst.instruction |= inst.operands[1].imm << 16;
7896 inst.instruction |= inst.operands[2].reg;
7897}
a737bd4d 7898
c19d1205
ZW
7899/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7900 preserving the other bits.
a737bd4d 7901
c19d1205
ZW
7902 setend <endian_specifier>, where <endian_specifier> is either
7903 BE or LE. */
a737bd4d 7904
c19d1205
ZW
7905static void
7906do_setend (void)
7907{
7908 if (inst.operands[0].imm)
7909 inst.instruction |= 0x200;
a737bd4d
NC
7910}
7911
7912static void
c19d1205 7913do_shift (void)
a737bd4d 7914{
c19d1205
ZW
7915 unsigned int Rm = (inst.operands[1].present
7916 ? inst.operands[1].reg
7917 : inst.operands[0].reg);
a737bd4d 7918
c19d1205
ZW
7919 inst.instruction |= inst.operands[0].reg << 12;
7920 inst.instruction |= Rm;
7921 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7922 {
c19d1205
ZW
7923 inst.instruction |= inst.operands[2].reg << 8;
7924 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7925 }
7926 else
c19d1205 7927 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7928}
7929
09d92015 7930static void
3eb17e6b 7931do_smc (void)
09d92015 7932{
3eb17e6b 7933 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7934 inst.reloc.pc_rel = 0;
09d92015
MM
7935}
7936
09d92015 7937static void
c19d1205 7938do_swi (void)
09d92015 7939{
c19d1205
ZW
7940 inst.reloc.type = BFD_RELOC_ARM_SWI;
7941 inst.reloc.pc_rel = 0;
09d92015
MM
7942}
7943
c19d1205
ZW
7944/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7945 SMLAxy{cond} Rd,Rm,Rs,Rn
7946 SMLAWy{cond} Rd,Rm,Rs,Rn
7947 Error if any register is R15. */
e16bb312 7948
c19d1205
ZW
7949static void
7950do_smla (void)
e16bb312 7951{
c19d1205
ZW
7952 inst.instruction |= inst.operands[0].reg << 16;
7953 inst.instruction |= inst.operands[1].reg;
7954 inst.instruction |= inst.operands[2].reg << 8;
7955 inst.instruction |= inst.operands[3].reg << 12;
7956}
a737bd4d 7957
c19d1205
ZW
7958/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7959 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7960 Error if any register is R15.
7961 Warning if Rdlo == Rdhi. */
a737bd4d 7962
c19d1205
ZW
7963static void
7964do_smlal (void)
7965{
7966 inst.instruction |= inst.operands[0].reg << 12;
7967 inst.instruction |= inst.operands[1].reg << 16;
7968 inst.instruction |= inst.operands[2].reg;
7969 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7970
c19d1205
ZW
7971 if (inst.operands[0].reg == inst.operands[1].reg)
7972 as_tsktsk (_("rdhi and rdlo must be different"));
7973}
a737bd4d 7974
c19d1205
ZW
7975/* ARM V5E (El Segundo) signed-multiply (argument parse)
7976 SMULxy{cond} Rd,Rm,Rs
7977 Error if any register is R15. */
a737bd4d 7978
c19d1205
ZW
7979static void
7980do_smul (void)
7981{
7982 inst.instruction |= inst.operands[0].reg << 16;
7983 inst.instruction |= inst.operands[1].reg;
7984 inst.instruction |= inst.operands[2].reg << 8;
7985}
a737bd4d 7986
b6702015
PB
7987/* ARM V6 srs (argument parse). The variable fields in the encoding are
7988 the same for both ARM and Thumb-2. */
a737bd4d 7989
c19d1205
ZW
7990static void
7991do_srs (void)
7992{
b6702015
PB
7993 int reg;
7994
7995 if (inst.operands[0].present)
7996 {
7997 reg = inst.operands[0].reg;
fdfde340 7998 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
7999 }
8000 else
fdfde340 8001 reg = REG_SP;
b6702015
PB
8002
8003 inst.instruction |= reg << 16;
8004 inst.instruction |= inst.operands[1].imm;
8005 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8006 inst.instruction |= WRITE_BACK;
8007}
a737bd4d 8008
c19d1205 8009/* ARM V6 strex (argument parse). */
a737bd4d 8010
c19d1205
ZW
8011static void
8012do_strex (void)
8013{
8014 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8015 || inst.operands[2].postind || inst.operands[2].writeback
8016 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8017 || inst.operands[2].negative
8018 /* See comment in do_ldrex(). */
8019 || (inst.operands[2].reg == REG_PC),
8020 BAD_ADDR_MODE);
a737bd4d 8021
c19d1205
ZW
8022 constraint (inst.operands[0].reg == inst.operands[1].reg
8023 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8024
c19d1205
ZW
8025 constraint (inst.reloc.exp.X_op != O_constant
8026 || inst.reloc.exp.X_add_number != 0,
8027 _("offset must be zero in ARM encoding"));
a737bd4d 8028
c19d1205
ZW
8029 inst.instruction |= inst.operands[0].reg << 12;
8030 inst.instruction |= inst.operands[1].reg;
8031 inst.instruction |= inst.operands[2].reg << 16;
8032 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8033}
8034
8035static void
c19d1205 8036do_strexd (void)
e16bb312 8037{
c19d1205
ZW
8038 constraint (inst.operands[1].reg % 2 != 0,
8039 _("even register required"));
8040 constraint (inst.operands[2].present
8041 && inst.operands[2].reg != inst.operands[1].reg + 1,
8042 _("can only store two consecutive registers"));
8043 /* If op 2 were present and equal to PC, this function wouldn't
8044 have been called in the first place. */
8045 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8046
c19d1205
ZW
8047 constraint (inst.operands[0].reg == inst.operands[1].reg
8048 || inst.operands[0].reg == inst.operands[1].reg + 1
8049 || inst.operands[0].reg == inst.operands[3].reg,
8050 BAD_OVERLAP);
e16bb312 8051
c19d1205
ZW
8052 inst.instruction |= inst.operands[0].reg << 12;
8053 inst.instruction |= inst.operands[1].reg;
8054 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8055}
8056
c19d1205
ZW
8057/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8058 extends it to 32-bits, and adds the result to a value in another
8059 register. You can specify a rotation by 0, 8, 16, or 24 bits
8060 before extracting the 16-bit value.
8061 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8062 Condition defaults to COND_ALWAYS.
8063 Error if any register uses R15. */
8064
e16bb312 8065static void
c19d1205 8066do_sxtah (void)
e16bb312 8067{
c19d1205
ZW
8068 inst.instruction |= inst.operands[0].reg << 12;
8069 inst.instruction |= inst.operands[1].reg << 16;
8070 inst.instruction |= inst.operands[2].reg;
8071 inst.instruction |= inst.operands[3].imm << 10;
8072}
e16bb312 8073
c19d1205 8074/* ARM V6 SXTH.
e16bb312 8075
c19d1205
ZW
8076 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8077 Condition defaults to COND_ALWAYS.
8078 Error if any register uses R15. */
e16bb312
NC
8079
8080static void
c19d1205 8081do_sxth (void)
e16bb312 8082{
c19d1205
ZW
8083 inst.instruction |= inst.operands[0].reg << 12;
8084 inst.instruction |= inst.operands[1].reg;
8085 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8086}
c19d1205
ZW
8087\f
8088/* VFP instructions. In a logical order: SP variant first, monad
8089 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8090
8091static void
c19d1205 8092do_vfp_sp_monadic (void)
e16bb312 8093{
5287ad62
JB
8094 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8095 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8096}
8097
8098static void
c19d1205 8099do_vfp_sp_dyadic (void)
e16bb312 8100{
5287ad62
JB
8101 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8102 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8103 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8104}
8105
8106static void
c19d1205 8107do_vfp_sp_compare_z (void)
e16bb312 8108{
5287ad62 8109 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8110}
8111
8112static void
c19d1205 8113do_vfp_dp_sp_cvt (void)
e16bb312 8114{
5287ad62
JB
8115 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8116 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8117}
8118
8119static void
c19d1205 8120do_vfp_sp_dp_cvt (void)
e16bb312 8121{
5287ad62
JB
8122 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8123 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8124}
8125
8126static void
c19d1205 8127do_vfp_reg_from_sp (void)
e16bb312 8128{
c19d1205 8129 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8130 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8131}
8132
8133static void
c19d1205 8134do_vfp_reg2_from_sp2 (void)
e16bb312 8135{
c19d1205
ZW
8136 constraint (inst.operands[2].imm != 2,
8137 _("only two consecutive VFP SP registers allowed here"));
8138 inst.instruction |= inst.operands[0].reg << 12;
8139 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8140 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8141}
8142
8143static void
c19d1205 8144do_vfp_sp_from_reg (void)
e16bb312 8145{
5287ad62 8146 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8147 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8148}
8149
8150static void
c19d1205 8151do_vfp_sp2_from_reg2 (void)
e16bb312 8152{
c19d1205
ZW
8153 constraint (inst.operands[0].imm != 2,
8154 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8155 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8156 inst.instruction |= inst.operands[1].reg << 12;
8157 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8158}
8159
8160static void
c19d1205 8161do_vfp_sp_ldst (void)
e16bb312 8162{
5287ad62 8163 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8164 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8165}
8166
8167static void
c19d1205 8168do_vfp_dp_ldst (void)
e16bb312 8169{
5287ad62 8170 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8171 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8172}
8173
c19d1205 8174
e16bb312 8175static void
c19d1205 8176vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8177{
c19d1205
ZW
8178 if (inst.operands[0].writeback)
8179 inst.instruction |= WRITE_BACK;
8180 else
8181 constraint (ldstm_type != VFP_LDSTMIA,
8182 _("this addressing mode requires base-register writeback"));
8183 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8184 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8185 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8186}
8187
8188static void
c19d1205 8189vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8190{
c19d1205 8191 int count;
e16bb312 8192
c19d1205
ZW
8193 if (inst.operands[0].writeback)
8194 inst.instruction |= WRITE_BACK;
8195 else
8196 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8197 _("this addressing mode requires base-register writeback"));
e16bb312 8198
c19d1205 8199 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8200 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8201
c19d1205
ZW
8202 count = inst.operands[1].imm << 1;
8203 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8204 count += 1;
e16bb312 8205
c19d1205 8206 inst.instruction |= count;
e16bb312
NC
8207}
8208
8209static void
c19d1205 8210do_vfp_sp_ldstmia (void)
e16bb312 8211{
c19d1205 8212 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8213}
8214
8215static void
c19d1205 8216do_vfp_sp_ldstmdb (void)
e16bb312 8217{
c19d1205 8218 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8219}
8220
8221static void
c19d1205 8222do_vfp_dp_ldstmia (void)
e16bb312 8223{
c19d1205 8224 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8225}
8226
8227static void
c19d1205 8228do_vfp_dp_ldstmdb (void)
e16bb312 8229{
c19d1205 8230 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8231}
8232
8233static void
c19d1205 8234do_vfp_xp_ldstmia (void)
e16bb312 8235{
c19d1205
ZW
8236 vfp_dp_ldstm (VFP_LDSTMIAX);
8237}
e16bb312 8238
c19d1205
ZW
8239static void
8240do_vfp_xp_ldstmdb (void)
8241{
8242 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8243}
5287ad62
JB
8244
8245static void
8246do_vfp_dp_rd_rm (void)
8247{
8248 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8249 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8250}
8251
8252static void
8253do_vfp_dp_rn_rd (void)
8254{
8255 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8256 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8257}
8258
8259static void
8260do_vfp_dp_rd_rn (void)
8261{
8262 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8263 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8264}
8265
8266static void
8267do_vfp_dp_rd_rn_rm (void)
8268{
8269 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8270 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8271 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8272}
8273
8274static void
8275do_vfp_dp_rd (void)
8276{
8277 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8278}
8279
8280static void
8281do_vfp_dp_rm_rd_rn (void)
8282{
8283 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8284 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8285 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8286}
8287
8288/* VFPv3 instructions. */
8289static void
8290do_vfp_sp_const (void)
8291{
8292 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8293 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8294 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8295}
8296
8297static void
8298do_vfp_dp_const (void)
8299{
8300 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8301 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8302 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8303}
8304
8305static void
8306vfp_conv (int srcsize)
8307{
8308 unsigned immbits = srcsize - inst.operands[1].imm;
8309 inst.instruction |= (immbits & 1) << 5;
8310 inst.instruction |= (immbits >> 1);
8311}
8312
8313static void
8314do_vfp_sp_conv_16 (void)
8315{
8316 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8317 vfp_conv (16);
8318}
8319
8320static void
8321do_vfp_dp_conv_16 (void)
8322{
8323 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8324 vfp_conv (16);
8325}
8326
8327static void
8328do_vfp_sp_conv_32 (void)
8329{
8330 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8331 vfp_conv (32);
8332}
8333
8334static void
8335do_vfp_dp_conv_32 (void)
8336{
8337 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8338 vfp_conv (32);
8339}
c19d1205
ZW
8340\f
8341/* FPA instructions. Also in a logical order. */
e16bb312 8342
c19d1205
ZW
8343static void
8344do_fpa_cmp (void)
8345{
8346 inst.instruction |= inst.operands[0].reg << 16;
8347 inst.instruction |= inst.operands[1].reg;
8348}
b99bd4ef
NC
8349
8350static void
c19d1205 8351do_fpa_ldmstm (void)
b99bd4ef 8352{
c19d1205
ZW
8353 inst.instruction |= inst.operands[0].reg << 12;
8354 switch (inst.operands[1].imm)
8355 {
8356 case 1: inst.instruction |= CP_T_X; break;
8357 case 2: inst.instruction |= CP_T_Y; break;
8358 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8359 case 4: break;
8360 default: abort ();
8361 }
b99bd4ef 8362
c19d1205
ZW
8363 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8364 {
8365 /* The instruction specified "ea" or "fd", so we can only accept
8366 [Rn]{!}. The instruction does not really support stacking or
8367 unstacking, so we have to emulate these by setting appropriate
8368 bits and offsets. */
8369 constraint (inst.reloc.exp.X_op != O_constant
8370 || inst.reloc.exp.X_add_number != 0,
8371 _("this instruction does not support indexing"));
b99bd4ef 8372
c19d1205
ZW
8373 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8374 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8375
c19d1205
ZW
8376 if (!(inst.instruction & INDEX_UP))
8377 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8378
c19d1205
ZW
8379 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8380 {
8381 inst.operands[2].preind = 0;
8382 inst.operands[2].postind = 1;
8383 }
8384 }
b99bd4ef 8385
c19d1205 8386 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8387}
c19d1205
ZW
8388\f
8389/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8390
c19d1205
ZW
8391static void
8392do_iwmmxt_tandorc (void)
8393{
8394 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8395}
b99bd4ef 8396
c19d1205
ZW
8397static void
8398do_iwmmxt_textrc (void)
8399{
8400 inst.instruction |= inst.operands[0].reg << 12;
8401 inst.instruction |= inst.operands[1].imm;
8402}
b99bd4ef
NC
8403
8404static void
c19d1205 8405do_iwmmxt_textrm (void)
b99bd4ef 8406{
c19d1205
ZW
8407 inst.instruction |= inst.operands[0].reg << 12;
8408 inst.instruction |= inst.operands[1].reg << 16;
8409 inst.instruction |= inst.operands[2].imm;
8410}
b99bd4ef 8411
c19d1205
ZW
8412static void
8413do_iwmmxt_tinsr (void)
8414{
8415 inst.instruction |= inst.operands[0].reg << 16;
8416 inst.instruction |= inst.operands[1].reg << 12;
8417 inst.instruction |= inst.operands[2].imm;
8418}
b99bd4ef 8419
c19d1205
ZW
8420static void
8421do_iwmmxt_tmia (void)
8422{
8423 inst.instruction |= inst.operands[0].reg << 5;
8424 inst.instruction |= inst.operands[1].reg;
8425 inst.instruction |= inst.operands[2].reg << 12;
8426}
b99bd4ef 8427
c19d1205
ZW
8428static void
8429do_iwmmxt_waligni (void)
8430{
8431 inst.instruction |= inst.operands[0].reg << 12;
8432 inst.instruction |= inst.operands[1].reg << 16;
8433 inst.instruction |= inst.operands[2].reg;
8434 inst.instruction |= inst.operands[3].imm << 20;
8435}
b99bd4ef 8436
2d447fca
JM
8437static void
8438do_iwmmxt_wmerge (void)
8439{
8440 inst.instruction |= inst.operands[0].reg << 12;
8441 inst.instruction |= inst.operands[1].reg << 16;
8442 inst.instruction |= inst.operands[2].reg;
8443 inst.instruction |= inst.operands[3].imm << 21;
8444}
8445
c19d1205
ZW
8446static void
8447do_iwmmxt_wmov (void)
8448{
8449 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8450 inst.instruction |= inst.operands[0].reg << 12;
8451 inst.instruction |= inst.operands[1].reg << 16;
8452 inst.instruction |= inst.operands[1].reg;
8453}
b99bd4ef 8454
c19d1205
ZW
8455static void
8456do_iwmmxt_wldstbh (void)
8457{
8f06b2d8 8458 int reloc;
c19d1205 8459 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8460 if (thumb_mode)
8461 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8462 else
8463 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8464 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8465}
8466
c19d1205
ZW
8467static void
8468do_iwmmxt_wldstw (void)
8469{
8470 /* RIWR_RIWC clears .isreg for a control register. */
8471 if (!inst.operands[0].isreg)
8472 {
8473 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8474 inst.instruction |= 0xf0000000;
8475 }
b99bd4ef 8476
c19d1205
ZW
8477 inst.instruction |= inst.operands[0].reg << 12;
8478 encode_arm_cp_address (1, TRUE, TRUE, 0);
8479}
b99bd4ef
NC
8480
8481static void
c19d1205 8482do_iwmmxt_wldstd (void)
b99bd4ef 8483{
c19d1205 8484 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8485 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8486 && inst.operands[1].immisreg)
8487 {
8488 inst.instruction &= ~0x1a000ff;
8489 inst.instruction |= (0xf << 28);
8490 if (inst.operands[1].preind)
8491 inst.instruction |= PRE_INDEX;
8492 if (!inst.operands[1].negative)
8493 inst.instruction |= INDEX_UP;
8494 if (inst.operands[1].writeback)
8495 inst.instruction |= WRITE_BACK;
8496 inst.instruction |= inst.operands[1].reg << 16;
8497 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8498 inst.instruction |= inst.operands[1].imm;
8499 }
8500 else
8501 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8502}
b99bd4ef 8503
c19d1205
ZW
8504static void
8505do_iwmmxt_wshufh (void)
8506{
8507 inst.instruction |= inst.operands[0].reg << 12;
8508 inst.instruction |= inst.operands[1].reg << 16;
8509 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8510 inst.instruction |= (inst.operands[2].imm & 0x0f);
8511}
b99bd4ef 8512
c19d1205
ZW
8513static void
8514do_iwmmxt_wzero (void)
8515{
8516 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8517 inst.instruction |= inst.operands[0].reg;
8518 inst.instruction |= inst.operands[0].reg << 12;
8519 inst.instruction |= inst.operands[0].reg << 16;
8520}
2d447fca
JM
8521
8522static void
8523do_iwmmxt_wrwrwr_or_imm5 (void)
8524{
8525 if (inst.operands[2].isreg)
8526 do_rd_rn_rm ();
8527 else {
8528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8529 _("immediate operand requires iWMMXt2"));
8530 do_rd_rn ();
8531 if (inst.operands[2].imm == 0)
8532 {
8533 switch ((inst.instruction >> 20) & 0xf)
8534 {
8535 case 4:
8536 case 5:
8537 case 6:
5f4273c7 8538 case 7:
2d447fca
JM
8539 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8540 inst.operands[2].imm = 16;
8541 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8542 break;
8543 case 8:
8544 case 9:
8545 case 10:
8546 case 11:
8547 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8548 inst.operands[2].imm = 32;
8549 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8550 break;
8551 case 12:
8552 case 13:
8553 case 14:
8554 case 15:
8555 {
8556 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8557 unsigned long wrn;
8558 wrn = (inst.instruction >> 16) & 0xf;
8559 inst.instruction &= 0xff0fff0f;
8560 inst.instruction |= wrn;
8561 /* Bail out here; the instruction is now assembled. */
8562 return;
8563 }
8564 }
8565 }
8566 /* Map 32 -> 0, etc. */
8567 inst.operands[2].imm &= 0x1f;
8568 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8569 }
8570}
c19d1205
ZW
8571\f
8572/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8573 operations first, then control, shift, and load/store. */
b99bd4ef 8574
c19d1205 8575/* Insns like "foo X,Y,Z". */
b99bd4ef 8576
c19d1205
ZW
8577static void
8578do_mav_triple (void)
8579{
8580 inst.instruction |= inst.operands[0].reg << 16;
8581 inst.instruction |= inst.operands[1].reg;
8582 inst.instruction |= inst.operands[2].reg << 12;
8583}
b99bd4ef 8584
c19d1205
ZW
8585/* Insns like "foo W,X,Y,Z".
8586 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8587
c19d1205
ZW
8588static void
8589do_mav_quad (void)
8590{
8591 inst.instruction |= inst.operands[0].reg << 5;
8592 inst.instruction |= inst.operands[1].reg << 12;
8593 inst.instruction |= inst.operands[2].reg << 16;
8594 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8595}
8596
c19d1205
ZW
8597/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8598static void
8599do_mav_dspsc (void)
a737bd4d 8600{
c19d1205
ZW
8601 inst.instruction |= inst.operands[1].reg << 12;
8602}
a737bd4d 8603
c19d1205
ZW
8604/* Maverick shift immediate instructions.
8605 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8606 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8607
c19d1205
ZW
8608static void
8609do_mav_shift (void)
8610{
8611 int imm = inst.operands[2].imm;
a737bd4d 8612
c19d1205
ZW
8613 inst.instruction |= inst.operands[0].reg << 12;
8614 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8615
c19d1205
ZW
8616 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8617 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8618 Bit 4 should be 0. */
8619 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8620
c19d1205
ZW
8621 inst.instruction |= imm;
8622}
8623\f
8624/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8625
c19d1205
ZW
8626/* Xscale multiply-accumulate (argument parse)
8627 MIAcc acc0,Rm,Rs
8628 MIAPHcc acc0,Rm,Rs
8629 MIAxycc acc0,Rm,Rs. */
a737bd4d 8630
c19d1205
ZW
8631static void
8632do_xsc_mia (void)
8633{
8634 inst.instruction |= inst.operands[1].reg;
8635 inst.instruction |= inst.operands[2].reg << 12;
8636}
a737bd4d 8637
c19d1205 8638/* Xscale move-accumulator-register (argument parse)
a737bd4d 8639
c19d1205 8640 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8641
c19d1205
ZW
8642static void
8643do_xsc_mar (void)
8644{
8645 inst.instruction |= inst.operands[1].reg << 12;
8646 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8647}
8648
c19d1205 8649/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8650
c19d1205 8651 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8652
8653static void
c19d1205 8654do_xsc_mra (void)
b99bd4ef 8655{
c19d1205
ZW
8656 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8657 inst.instruction |= inst.operands[0].reg << 12;
8658 inst.instruction |= inst.operands[1].reg << 16;
8659}
8660\f
8661/* Encoding functions relevant only to Thumb. */
b99bd4ef 8662
c19d1205
ZW
8663/* inst.operands[i] is a shifted-register operand; encode
8664 it into inst.instruction in the format used by Thumb32. */
8665
8666static void
8667encode_thumb32_shifted_operand (int i)
8668{
8669 unsigned int value = inst.reloc.exp.X_add_number;
8670 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8671
9c3c69f2
PB
8672 constraint (inst.operands[i].immisreg,
8673 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8674 inst.instruction |= inst.operands[i].reg;
8675 if (shift == SHIFT_RRX)
8676 inst.instruction |= SHIFT_ROR << 4;
8677 else
b99bd4ef 8678 {
c19d1205
ZW
8679 constraint (inst.reloc.exp.X_op != O_constant,
8680 _("expression too complex"));
8681
8682 constraint (value > 32
8683 || (value == 32 && (shift == SHIFT_LSL
8684 || shift == SHIFT_ROR)),
8685 _("shift expression is too large"));
8686
8687 if (value == 0)
8688 shift = SHIFT_LSL;
8689 else if (value == 32)
8690 value = 0;
8691
8692 inst.instruction |= shift << 4;
8693 inst.instruction |= (value & 0x1c) << 10;
8694 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8695 }
c19d1205 8696}
b99bd4ef 8697
b99bd4ef 8698
c19d1205
ZW
8699/* inst.operands[i] was set up by parse_address. Encode it into a
8700 Thumb32 format load or store instruction. Reject forms that cannot
8701 be used with such instructions. If is_t is true, reject forms that
8702 cannot be used with a T instruction; if is_d is true, reject forms
8703 that cannot be used with a D instruction. */
b99bd4ef 8704
c19d1205
ZW
8705static void
8706encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8707{
8708 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8709
8710 constraint (!inst.operands[i].isreg,
53365c0d 8711 _("Instruction does not support =N addresses"));
b99bd4ef 8712
c19d1205
ZW
8713 inst.instruction |= inst.operands[i].reg << 16;
8714 if (inst.operands[i].immisreg)
b99bd4ef 8715 {
c19d1205
ZW
8716 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8717 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8718 constraint (inst.operands[i].negative,
8719 _("Thumb does not support negative register indexing"));
8720 constraint (inst.operands[i].postind,
8721 _("Thumb does not support register post-indexing"));
8722 constraint (inst.operands[i].writeback,
8723 _("Thumb does not support register indexing with writeback"));
8724 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8725 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8726
f40d1643 8727 inst.instruction |= inst.operands[i].imm;
c19d1205 8728 if (inst.operands[i].shifted)
b99bd4ef 8729 {
c19d1205
ZW
8730 constraint (inst.reloc.exp.X_op != O_constant,
8731 _("expression too complex"));
9c3c69f2
PB
8732 constraint (inst.reloc.exp.X_add_number < 0
8733 || inst.reloc.exp.X_add_number > 3,
c19d1205 8734 _("shift out of range"));
9c3c69f2 8735 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8736 }
8737 inst.reloc.type = BFD_RELOC_UNUSED;
8738 }
8739 else if (inst.operands[i].preind)
8740 {
8741 constraint (is_pc && inst.operands[i].writeback,
8742 _("cannot use writeback with PC-relative addressing"));
f40d1643 8743 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8744 _("cannot use writeback with this instruction"));
8745
8746 if (is_d)
8747 {
8748 inst.instruction |= 0x01000000;
8749 if (inst.operands[i].writeback)
8750 inst.instruction |= 0x00200000;
b99bd4ef 8751 }
c19d1205 8752 else
b99bd4ef 8753 {
c19d1205
ZW
8754 inst.instruction |= 0x00000c00;
8755 if (inst.operands[i].writeback)
8756 inst.instruction |= 0x00000100;
b99bd4ef 8757 }
c19d1205 8758 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8759 }
c19d1205 8760 else if (inst.operands[i].postind)
b99bd4ef 8761 {
9c2799c2 8762 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8763 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8764 constraint (is_t, _("cannot use post-indexing with this instruction"));
8765
8766 if (is_d)
8767 inst.instruction |= 0x00200000;
8768 else
8769 inst.instruction |= 0x00000900;
8770 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8771 }
8772 else /* unindexed - only for coprocessor */
8773 inst.error = _("instruction does not accept unindexed addressing");
8774}
8775
8776/* Table of Thumb instructions which exist in both 16- and 32-bit
8777 encodings (the latter only in post-V6T2 cores). The index is the
8778 value used in the insns table below. When there is more than one
8779 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8780 holds variant (1).
8781 Also contains several pseudo-instructions used during relaxation. */
c19d1205 8782#define T16_32_TAB \
21d799b5
NC
8783 X(_adc, 4140, eb400000), \
8784 X(_adcs, 4140, eb500000), \
8785 X(_add, 1c00, eb000000), \
8786 X(_adds, 1c00, eb100000), \
8787 X(_addi, 0000, f1000000), \
8788 X(_addis, 0000, f1100000), \
8789 X(_add_pc,000f, f20f0000), \
8790 X(_add_sp,000d, f10d0000), \
8791 X(_adr, 000f, f20f0000), \
8792 X(_and, 4000, ea000000), \
8793 X(_ands, 4000, ea100000), \
8794 X(_asr, 1000, fa40f000), \
8795 X(_asrs, 1000, fa50f000), \
8796 X(_b, e000, f000b000), \
8797 X(_bcond, d000, f0008000), \
8798 X(_bic, 4380, ea200000), \
8799 X(_bics, 4380, ea300000), \
8800 X(_cmn, 42c0, eb100f00), \
8801 X(_cmp, 2800, ebb00f00), \
8802 X(_cpsie, b660, f3af8400), \
8803 X(_cpsid, b670, f3af8600), \
8804 X(_cpy, 4600, ea4f0000), \
8805 X(_dec_sp,80dd, f1ad0d00), \
8806 X(_eor, 4040, ea800000), \
8807 X(_eors, 4040, ea900000), \
8808 X(_inc_sp,00dd, f10d0d00), \
8809 X(_ldmia, c800, e8900000), \
8810 X(_ldr, 6800, f8500000), \
8811 X(_ldrb, 7800, f8100000), \
8812 X(_ldrh, 8800, f8300000), \
8813 X(_ldrsb, 5600, f9100000), \
8814 X(_ldrsh, 5e00, f9300000), \
8815 X(_ldr_pc,4800, f85f0000), \
8816 X(_ldr_pc2,4800, f85f0000), \
8817 X(_ldr_sp,9800, f85d0000), \
8818 X(_lsl, 0000, fa00f000), \
8819 X(_lsls, 0000, fa10f000), \
8820 X(_lsr, 0800, fa20f000), \
8821 X(_lsrs, 0800, fa30f000), \
8822 X(_mov, 2000, ea4f0000), \
8823 X(_movs, 2000, ea5f0000), \
8824 X(_mul, 4340, fb00f000), \
8825 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8826 X(_mvn, 43c0, ea6f0000), \
8827 X(_mvns, 43c0, ea7f0000), \
8828 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8829 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8830 X(_orr, 4300, ea400000), \
8831 X(_orrs, 4300, ea500000), \
8832 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8833 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8834 X(_rev, ba00, fa90f080), \
8835 X(_rev16, ba40, fa90f090), \
8836 X(_revsh, bac0, fa90f0b0), \
8837 X(_ror, 41c0, fa60f000), \
8838 X(_rors, 41c0, fa70f000), \
8839 X(_sbc, 4180, eb600000), \
8840 X(_sbcs, 4180, eb700000), \
8841 X(_stmia, c000, e8800000), \
8842 X(_str, 6000, f8400000), \
8843 X(_strb, 7000, f8000000), \
8844 X(_strh, 8000, f8200000), \
8845 X(_str_sp,9000, f84d0000), \
8846 X(_sub, 1e00, eba00000), \
8847 X(_subs, 1e00, ebb00000), \
8848 X(_subi, 8000, f1a00000), \
8849 X(_subis, 8000, f1b00000), \
8850 X(_sxtb, b240, fa4ff080), \
8851 X(_sxth, b200, fa0ff080), \
8852 X(_tst, 4200, ea100f00), \
8853 X(_uxtb, b2c0, fa5ff080), \
8854 X(_uxth, b280, fa1ff080), \
8855 X(_nop, bf00, f3af8000), \
8856 X(_yield, bf10, f3af8001), \
8857 X(_wfe, bf20, f3af8002), \
8858 X(_wfi, bf30, f3af8003), \
8859 X(_sev, bf40, f3af8004),
c19d1205
ZW
8860
8861/* To catch errors in encoding functions, the codes are all offset by
8862 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8863 as 16-bit instructions. */
21d799b5 8864#define X(a,b,c) T_MNEM##a
c19d1205
ZW
8865enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8866#undef X
8867
8868#define X(a,b,c) 0x##b
8869static const unsigned short thumb_op16[] = { T16_32_TAB };
8870#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8871#undef X
8872
8873#define X(a,b,c) 0x##c
8874static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
8875#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8876#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
8877#undef X
8878#undef T16_32_TAB
8879
8880/* Thumb instruction encoders, in alphabetical order. */
8881
92e90b6e 8882/* ADDW or SUBW. */
c921be7d 8883
92e90b6e
PB
8884static void
8885do_t_add_sub_w (void)
8886{
8887 int Rd, Rn;
8888
8889 Rd = inst.operands[0].reg;
8890 Rn = inst.operands[1].reg;
8891
539d4391
NC
8892 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8893 is the SP-{plus,minus}-immediate form of the instruction. */
8894 if (Rn == REG_SP)
8895 constraint (Rd == REG_PC, BAD_PC);
8896 else
8897 reject_bad_reg (Rd);
fdfde340 8898
92e90b6e
PB
8899 inst.instruction |= (Rn << 16) | (Rd << 8);
8900 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8901}
8902
c19d1205
ZW
8903/* Parse an add or subtract instruction. We get here with inst.instruction
8904 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8905
8906static void
8907do_t_add_sub (void)
8908{
8909 int Rd, Rs, Rn;
8910
8911 Rd = inst.operands[0].reg;
8912 Rs = (inst.operands[1].present
8913 ? inst.operands[1].reg /* Rd, Rs, foo */
8914 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8915
e07e6e58
NC
8916 if (Rd == REG_PC)
8917 set_it_insn_type_last ();
8918
c19d1205
ZW
8919 if (unified_syntax)
8920 {
0110f2b8
PB
8921 bfd_boolean flags;
8922 bfd_boolean narrow;
8923 int opcode;
8924
8925 flags = (inst.instruction == T_MNEM_adds
8926 || inst.instruction == T_MNEM_subs);
8927 if (flags)
e07e6e58 8928 narrow = !in_it_block ();
0110f2b8 8929 else
e07e6e58 8930 narrow = in_it_block ();
c19d1205 8931 if (!inst.operands[2].isreg)
b99bd4ef 8932 {
16805f35
PB
8933 int add;
8934
fdfde340
JM
8935 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8936
16805f35
PB
8937 add = (inst.instruction == T_MNEM_add
8938 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8939 opcode = 0;
8940 if (inst.size_req != 4)
8941 {
0110f2b8
PB
8942 /* Attempt to use a narrow opcode, with relaxation if
8943 appropriate. */
8944 if (Rd == REG_SP && Rs == REG_SP && !flags)
8945 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8946 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8947 opcode = T_MNEM_add_sp;
8948 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8949 opcode = T_MNEM_add_pc;
8950 else if (Rd <= 7 && Rs <= 7 && narrow)
8951 {
8952 if (flags)
8953 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8954 else
8955 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8956 }
8957 if (opcode)
8958 {
8959 inst.instruction = THUMB_OP16(opcode);
8960 inst.instruction |= (Rd << 4) | Rs;
8961 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8962 if (inst.size_req != 2)
8963 inst.relax = opcode;
8964 }
8965 else
8966 constraint (inst.size_req == 2, BAD_HIREG);
8967 }
8968 if (inst.size_req == 4
8969 || (inst.size_req != 2 && !opcode))
8970 {
efd81785
PB
8971 if (Rd == REG_PC)
8972 {
fdfde340 8973 constraint (add, BAD_PC);
efd81785
PB
8974 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8975 _("only SUBS PC, LR, #const allowed"));
8976 constraint (inst.reloc.exp.X_op != O_constant,
8977 _("expression too complex"));
8978 constraint (inst.reloc.exp.X_add_number < 0
8979 || inst.reloc.exp.X_add_number > 0xff,
8980 _("immediate value out of range"));
8981 inst.instruction = T2_SUBS_PC_LR
8982 | inst.reloc.exp.X_add_number;
8983 inst.reloc.type = BFD_RELOC_UNUSED;
8984 return;
8985 }
8986 else if (Rs == REG_PC)
16805f35
PB
8987 {
8988 /* Always use addw/subw. */
8989 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8990 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8991 }
8992 else
8993 {
8994 inst.instruction = THUMB_OP32 (inst.instruction);
8995 inst.instruction = (inst.instruction & 0xe1ffffff)
8996 | 0x10000000;
8997 if (flags)
8998 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8999 else
9000 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9001 }
dc4503c6
PB
9002 inst.instruction |= Rd << 8;
9003 inst.instruction |= Rs << 16;
0110f2b8 9004 }
b99bd4ef 9005 }
c19d1205
ZW
9006 else
9007 {
9008 Rn = inst.operands[2].reg;
9009 /* See if we can do this with a 16-bit instruction. */
9010 if (!inst.operands[2].shifted && inst.size_req != 4)
9011 {
e27ec89e
PB
9012 if (Rd > 7 || Rs > 7 || Rn > 7)
9013 narrow = FALSE;
9014
9015 if (narrow)
c19d1205 9016 {
e27ec89e
PB
9017 inst.instruction = ((inst.instruction == T_MNEM_adds
9018 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9019 ? T_OPCODE_ADD_R3
9020 : T_OPCODE_SUB_R3);
9021 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9022 return;
9023 }
b99bd4ef 9024
7e806470 9025 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9026 {
7e806470
PB
9027 /* Thumb-1 cores (except v6-M) require at least one high
9028 register in a narrow non flag setting add. */
9029 if (Rd > 7 || Rn > 7
9030 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9031 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9032 {
7e806470
PB
9033 if (Rd == Rn)
9034 {
9035 Rn = Rs;
9036 Rs = Rd;
9037 }
c19d1205
ZW
9038 inst.instruction = T_OPCODE_ADD_HI;
9039 inst.instruction |= (Rd & 8) << 4;
9040 inst.instruction |= (Rd & 7);
9041 inst.instruction |= Rn << 3;
9042 return;
9043 }
c19d1205
ZW
9044 }
9045 }
c921be7d 9046
fdfde340
JM
9047 constraint (Rd == REG_PC, BAD_PC);
9048 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9049 constraint (Rs == REG_PC, BAD_PC);
9050 reject_bad_reg (Rn);
9051
c19d1205
ZW
9052 /* If we get here, it can't be done in 16 bits. */
9053 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9054 _("shift must be constant"));
9055 inst.instruction = THUMB_OP32 (inst.instruction);
9056 inst.instruction |= Rd << 8;
9057 inst.instruction |= Rs << 16;
9058 encode_thumb32_shifted_operand (2);
9059 }
9060 }
9061 else
9062 {
9063 constraint (inst.instruction == T_MNEM_adds
9064 || inst.instruction == T_MNEM_subs,
9065 BAD_THUMB32);
b99bd4ef 9066
c19d1205 9067 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9068 {
c19d1205
ZW
9069 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9070 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9071 BAD_HIREG);
9072
9073 inst.instruction = (inst.instruction == T_MNEM_add
9074 ? 0x0000 : 0x8000);
9075 inst.instruction |= (Rd << 4) | Rs;
9076 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9077 return;
9078 }
9079
c19d1205
ZW
9080 Rn = inst.operands[2].reg;
9081 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9082
c19d1205
ZW
9083 /* We now have Rd, Rs, and Rn set to registers. */
9084 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9085 {
c19d1205
ZW
9086 /* Can't do this for SUB. */
9087 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9088 inst.instruction = T_OPCODE_ADD_HI;
9089 inst.instruction |= (Rd & 8) << 4;
9090 inst.instruction |= (Rd & 7);
9091 if (Rs == Rd)
9092 inst.instruction |= Rn << 3;
9093 else if (Rn == Rd)
9094 inst.instruction |= Rs << 3;
9095 else
9096 constraint (1, _("dest must overlap one source register"));
9097 }
9098 else
9099 {
9100 inst.instruction = (inst.instruction == T_MNEM_add
9101 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9102 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9103 }
b99bd4ef 9104 }
b99bd4ef
NC
9105}
9106
c19d1205
ZW
9107static void
9108do_t_adr (void)
9109{
fdfde340
JM
9110 unsigned Rd;
9111
9112 Rd = inst.operands[0].reg;
9113 reject_bad_reg (Rd);
9114
9115 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9116 {
9117 /* Defer to section relaxation. */
9118 inst.relax = inst.instruction;
9119 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9120 inst.instruction |= Rd << 4;
0110f2b8
PB
9121 }
9122 else if (unified_syntax && inst.size_req != 2)
e9f89963 9123 {
0110f2b8 9124 /* Generate a 32-bit opcode. */
e9f89963 9125 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9126 inst.instruction |= Rd << 8;
e9f89963
PB
9127 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9128 inst.reloc.pc_rel = 1;
9129 }
9130 else
9131 {
0110f2b8 9132 /* Generate a 16-bit opcode. */
e9f89963
PB
9133 inst.instruction = THUMB_OP16 (inst.instruction);
9134 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9135 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9136 inst.reloc.pc_rel = 1;
b99bd4ef 9137
fdfde340 9138 inst.instruction |= Rd << 4;
e9f89963 9139 }
c19d1205 9140}
b99bd4ef 9141
c19d1205
ZW
9142/* Arithmetic instructions for which there is just one 16-bit
9143 instruction encoding, and it allows only two low registers.
9144 For maximal compatibility with ARM syntax, we allow three register
9145 operands even when Thumb-32 instructions are not available, as long
9146 as the first two are identical. For instance, both "sbc r0,r1" and
9147 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9148static void
c19d1205 9149do_t_arit3 (void)
b99bd4ef 9150{
c19d1205 9151 int Rd, Rs, Rn;
b99bd4ef 9152
c19d1205
ZW
9153 Rd = inst.operands[0].reg;
9154 Rs = (inst.operands[1].present
9155 ? inst.operands[1].reg /* Rd, Rs, foo */
9156 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9157 Rn = inst.operands[2].reg;
b99bd4ef 9158
fdfde340
JM
9159 reject_bad_reg (Rd);
9160 reject_bad_reg (Rs);
9161 if (inst.operands[2].isreg)
9162 reject_bad_reg (Rn);
9163
c19d1205 9164 if (unified_syntax)
b99bd4ef 9165 {
c19d1205
ZW
9166 if (!inst.operands[2].isreg)
9167 {
9168 /* For an immediate, we always generate a 32-bit opcode;
9169 section relaxation will shrink it later if possible. */
9170 inst.instruction = THUMB_OP32 (inst.instruction);
9171 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9172 inst.instruction |= Rd << 8;
9173 inst.instruction |= Rs << 16;
9174 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9175 }
9176 else
9177 {
e27ec89e
PB
9178 bfd_boolean narrow;
9179
c19d1205 9180 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9181 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9182 narrow = !in_it_block ();
e27ec89e 9183 else
e07e6e58 9184 narrow = in_it_block ();
e27ec89e
PB
9185
9186 if (Rd > 7 || Rn > 7 || Rs > 7)
9187 narrow = FALSE;
9188 if (inst.operands[2].shifted)
9189 narrow = FALSE;
9190 if (inst.size_req == 4)
9191 narrow = FALSE;
9192
9193 if (narrow
c19d1205
ZW
9194 && Rd == Rs)
9195 {
9196 inst.instruction = THUMB_OP16 (inst.instruction);
9197 inst.instruction |= Rd;
9198 inst.instruction |= Rn << 3;
9199 return;
9200 }
b99bd4ef 9201
c19d1205
ZW
9202 /* If we get here, it can't be done in 16 bits. */
9203 constraint (inst.operands[2].shifted
9204 && inst.operands[2].immisreg,
9205 _("shift must be constant"));
9206 inst.instruction = THUMB_OP32 (inst.instruction);
9207 inst.instruction |= Rd << 8;
9208 inst.instruction |= Rs << 16;
9209 encode_thumb32_shifted_operand (2);
9210 }
a737bd4d 9211 }
c19d1205 9212 else
b99bd4ef 9213 {
c19d1205
ZW
9214 /* On its face this is a lie - the instruction does set the
9215 flags. However, the only supported mnemonic in this mode
9216 says it doesn't. */
9217 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9218
c19d1205
ZW
9219 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9220 _("unshifted register required"));
9221 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9222 constraint (Rd != Rs,
9223 _("dest and source1 must be the same register"));
a737bd4d 9224
c19d1205
ZW
9225 inst.instruction = THUMB_OP16 (inst.instruction);
9226 inst.instruction |= Rd;
9227 inst.instruction |= Rn << 3;
b99bd4ef 9228 }
a737bd4d 9229}
b99bd4ef 9230
c19d1205
ZW
9231/* Similarly, but for instructions where the arithmetic operation is
9232 commutative, so we can allow either of them to be different from
9233 the destination operand in a 16-bit instruction. For instance, all
9234 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9235 accepted. */
9236static void
9237do_t_arit3c (void)
a737bd4d 9238{
c19d1205 9239 int Rd, Rs, Rn;
b99bd4ef 9240
c19d1205
ZW
9241 Rd = inst.operands[0].reg;
9242 Rs = (inst.operands[1].present
9243 ? inst.operands[1].reg /* Rd, Rs, foo */
9244 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9245 Rn = inst.operands[2].reg;
c921be7d 9246
fdfde340
JM
9247 reject_bad_reg (Rd);
9248 reject_bad_reg (Rs);
9249 if (inst.operands[2].isreg)
9250 reject_bad_reg (Rn);
a737bd4d 9251
c19d1205 9252 if (unified_syntax)
a737bd4d 9253 {
c19d1205 9254 if (!inst.operands[2].isreg)
b99bd4ef 9255 {
c19d1205
ZW
9256 /* For an immediate, we always generate a 32-bit opcode;
9257 section relaxation will shrink it later if possible. */
9258 inst.instruction = THUMB_OP32 (inst.instruction);
9259 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9260 inst.instruction |= Rd << 8;
9261 inst.instruction |= Rs << 16;
9262 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9263 }
c19d1205 9264 else
a737bd4d 9265 {
e27ec89e
PB
9266 bfd_boolean narrow;
9267
c19d1205 9268 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9269 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9270 narrow = !in_it_block ();
e27ec89e 9271 else
e07e6e58 9272 narrow = in_it_block ();
e27ec89e
PB
9273
9274 if (Rd > 7 || Rn > 7 || Rs > 7)
9275 narrow = FALSE;
9276 if (inst.operands[2].shifted)
9277 narrow = FALSE;
9278 if (inst.size_req == 4)
9279 narrow = FALSE;
9280
9281 if (narrow)
a737bd4d 9282 {
c19d1205 9283 if (Rd == Rs)
a737bd4d 9284 {
c19d1205
ZW
9285 inst.instruction = THUMB_OP16 (inst.instruction);
9286 inst.instruction |= Rd;
9287 inst.instruction |= Rn << 3;
9288 return;
a737bd4d 9289 }
c19d1205 9290 if (Rd == Rn)
a737bd4d 9291 {
c19d1205
ZW
9292 inst.instruction = THUMB_OP16 (inst.instruction);
9293 inst.instruction |= Rd;
9294 inst.instruction |= Rs << 3;
9295 return;
a737bd4d
NC
9296 }
9297 }
c19d1205
ZW
9298
9299 /* If we get here, it can't be done in 16 bits. */
9300 constraint (inst.operands[2].shifted
9301 && inst.operands[2].immisreg,
9302 _("shift must be constant"));
9303 inst.instruction = THUMB_OP32 (inst.instruction);
9304 inst.instruction |= Rd << 8;
9305 inst.instruction |= Rs << 16;
9306 encode_thumb32_shifted_operand (2);
a737bd4d 9307 }
b99bd4ef 9308 }
c19d1205
ZW
9309 else
9310 {
9311 /* On its face this is a lie - the instruction does set the
9312 flags. However, the only supported mnemonic in this mode
9313 says it doesn't. */
9314 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9315
c19d1205
ZW
9316 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9317 _("unshifted register required"));
9318 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9319
9320 inst.instruction = THUMB_OP16 (inst.instruction);
9321 inst.instruction |= Rd;
9322
9323 if (Rd == Rs)
9324 inst.instruction |= Rn << 3;
9325 else if (Rd == Rn)
9326 inst.instruction |= Rs << 3;
9327 else
9328 constraint (1, _("dest must overlap one source register"));
9329 }
a737bd4d
NC
9330}
9331
62b3e311
PB
9332static void
9333do_t_barrier (void)
9334{
9335 if (inst.operands[0].present)
9336 {
9337 constraint ((inst.instruction & 0xf0) != 0x40
9338 && inst.operands[0].imm != 0xf,
bd3ba5d1 9339 _("bad barrier type"));
62b3e311
PB
9340 inst.instruction |= inst.operands[0].imm;
9341 }
9342 else
9343 inst.instruction |= 0xf;
9344}
9345
c19d1205
ZW
9346static void
9347do_t_bfc (void)
a737bd4d 9348{
fdfde340 9349 unsigned Rd;
c19d1205
ZW
9350 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9351 constraint (msb > 32, _("bit-field extends past end of register"));
9352 /* The instruction encoding stores the LSB and MSB,
9353 not the LSB and width. */
fdfde340
JM
9354 Rd = inst.operands[0].reg;
9355 reject_bad_reg (Rd);
9356 inst.instruction |= Rd << 8;
c19d1205
ZW
9357 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9358 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9359 inst.instruction |= msb - 1;
b99bd4ef
NC
9360}
9361
c19d1205
ZW
9362static void
9363do_t_bfi (void)
b99bd4ef 9364{
fdfde340 9365 int Rd, Rn;
c19d1205 9366 unsigned int msb;
b99bd4ef 9367
fdfde340
JM
9368 Rd = inst.operands[0].reg;
9369 reject_bad_reg (Rd);
9370
c19d1205
ZW
9371 /* #0 in second position is alternative syntax for bfc, which is
9372 the same instruction but with REG_PC in the Rm field. */
9373 if (!inst.operands[1].isreg)
fdfde340
JM
9374 Rn = REG_PC;
9375 else
9376 {
9377 Rn = inst.operands[1].reg;
9378 reject_bad_reg (Rn);
9379 }
b99bd4ef 9380
c19d1205
ZW
9381 msb = inst.operands[2].imm + inst.operands[3].imm;
9382 constraint (msb > 32, _("bit-field extends past end of register"));
9383 /* The instruction encoding stores the LSB and MSB,
9384 not the LSB and width. */
fdfde340
JM
9385 inst.instruction |= Rd << 8;
9386 inst.instruction |= Rn << 16;
c19d1205
ZW
9387 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9388 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9389 inst.instruction |= msb - 1;
b99bd4ef
NC
9390}
9391
c19d1205
ZW
9392static void
9393do_t_bfx (void)
b99bd4ef 9394{
fdfde340
JM
9395 unsigned Rd, Rn;
9396
9397 Rd = inst.operands[0].reg;
9398 Rn = inst.operands[1].reg;
9399
9400 reject_bad_reg (Rd);
9401 reject_bad_reg (Rn);
9402
c19d1205
ZW
9403 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9404 _("bit-field extends past end of register"));
fdfde340
JM
9405 inst.instruction |= Rd << 8;
9406 inst.instruction |= Rn << 16;
c19d1205
ZW
9407 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9408 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9409 inst.instruction |= inst.operands[3].imm - 1;
9410}
b99bd4ef 9411
c19d1205
ZW
9412/* ARM V5 Thumb BLX (argument parse)
9413 BLX <target_addr> which is BLX(1)
9414 BLX <Rm> which is BLX(2)
9415 Unfortunately, there are two different opcodes for this mnemonic.
9416 So, the insns[].value is not used, and the code here zaps values
9417 into inst.instruction.
b99bd4ef 9418
c19d1205
ZW
9419 ??? How to take advantage of the additional two bits of displacement
9420 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9421
c19d1205
ZW
9422static void
9423do_t_blx (void)
9424{
e07e6e58
NC
9425 set_it_insn_type_last ();
9426
c19d1205 9427 if (inst.operands[0].isreg)
fdfde340
JM
9428 {
9429 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9430 /* We have a register, so this is BLX(2). */
9431 inst.instruction |= inst.operands[0].reg << 3;
9432 }
b99bd4ef
NC
9433 else
9434 {
c19d1205 9435 /* No register. This must be BLX(1). */
2fc8bdac 9436 inst.instruction = 0xf000e800;
00adf2d4 9437 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9438 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9439 }
9440}
9441
c19d1205
ZW
9442static void
9443do_t_branch (void)
b99bd4ef 9444{
0110f2b8 9445 int opcode;
dfa9f0d5
PB
9446 int cond;
9447
e07e6e58
NC
9448 cond = inst.cond;
9449 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9450
9451 if (in_it_block ())
dfa9f0d5
PB
9452 {
9453 /* Conditional branches inside IT blocks are encoded as unconditional
9454 branches. */
9455 cond = COND_ALWAYS;
dfa9f0d5
PB
9456 }
9457 else
9458 cond = inst.cond;
9459
9460 if (cond != COND_ALWAYS)
0110f2b8
PB
9461 opcode = T_MNEM_bcond;
9462 else
9463 opcode = inst.instruction;
9464
9465 if (unified_syntax && inst.size_req == 4)
c19d1205 9466 {
0110f2b8 9467 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9468 if (cond == COND_ALWAYS)
0110f2b8 9469 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9470 else
9471 {
9c2799c2 9472 gas_assert (cond != 0xF);
dfa9f0d5 9473 inst.instruction |= cond << 22;
c19d1205
ZW
9474 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9475 }
9476 }
b99bd4ef
NC
9477 else
9478 {
0110f2b8 9479 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9480 if (cond == COND_ALWAYS)
c19d1205
ZW
9481 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9482 else
b99bd4ef 9483 {
dfa9f0d5 9484 inst.instruction |= cond << 8;
c19d1205 9485 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9486 }
0110f2b8
PB
9487 /* Allow section relaxation. */
9488 if (unified_syntax && inst.size_req != 2)
9489 inst.relax = opcode;
b99bd4ef 9490 }
c19d1205
ZW
9491
9492 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9493}
9494
9495static void
c19d1205 9496do_t_bkpt (void)
b99bd4ef 9497{
dfa9f0d5
PB
9498 constraint (inst.cond != COND_ALWAYS,
9499 _("instruction is always unconditional"));
c19d1205 9500 if (inst.operands[0].present)
b99bd4ef 9501 {
c19d1205
ZW
9502 constraint (inst.operands[0].imm > 255,
9503 _("immediate value out of range"));
9504 inst.instruction |= inst.operands[0].imm;
e07e6e58 9505 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9506 }
b99bd4ef
NC
9507}
9508
9509static void
c19d1205 9510do_t_branch23 (void)
b99bd4ef 9511{
e07e6e58 9512 set_it_insn_type_last ();
c19d1205 9513 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9514 inst.reloc.pc_rel = 1;
9515
4343666d 9516#if defined(OBJ_COFF)
c19d1205
ZW
9517 /* If the destination of the branch is a defined symbol which does not have
9518 the THUMB_FUNC attribute, then we must be calling a function which has
9519 the (interfacearm) attribute. We look for the Thumb entry point to that
9520 function and change the branch to refer to that function instead. */
9521 if ( inst.reloc.exp.X_op == O_symbol
9522 && inst.reloc.exp.X_add_symbol != NULL
9523 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9524 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9525 inst.reloc.exp.X_add_symbol =
9526 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9527#endif
90e4755a
RE
9528}
9529
9530static void
c19d1205 9531do_t_bx (void)
90e4755a 9532{
e07e6e58 9533 set_it_insn_type_last ();
c19d1205
ZW
9534 inst.instruction |= inst.operands[0].reg << 3;
9535 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9536 should cause the alignment to be checked once it is known. This is
9537 because BX PC only works if the instruction is word aligned. */
9538}
90e4755a 9539
c19d1205
ZW
9540static void
9541do_t_bxj (void)
9542{
fdfde340 9543 int Rm;
90e4755a 9544
e07e6e58 9545 set_it_insn_type_last ();
fdfde340
JM
9546 Rm = inst.operands[0].reg;
9547 reject_bad_reg (Rm);
9548 inst.instruction |= Rm << 16;
90e4755a
RE
9549}
9550
9551static void
c19d1205 9552do_t_clz (void)
90e4755a 9553{
fdfde340
JM
9554 unsigned Rd;
9555 unsigned Rm;
9556
9557 Rd = inst.operands[0].reg;
9558 Rm = inst.operands[1].reg;
9559
9560 reject_bad_reg (Rd);
9561 reject_bad_reg (Rm);
9562
9563 inst.instruction |= Rd << 8;
9564 inst.instruction |= Rm << 16;
9565 inst.instruction |= Rm;
c19d1205 9566}
90e4755a 9567
dfa9f0d5
PB
9568static void
9569do_t_cps (void)
9570{
e07e6e58 9571 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9572 inst.instruction |= inst.operands[0].imm;
9573}
9574
c19d1205
ZW
9575static void
9576do_t_cpsi (void)
9577{
e07e6e58 9578 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9579 if (unified_syntax
62b3e311
PB
9580 && (inst.operands[1].present || inst.size_req == 4)
9581 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9582 {
c19d1205
ZW
9583 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9584 inst.instruction = 0xf3af8000;
9585 inst.instruction |= imod << 9;
9586 inst.instruction |= inst.operands[0].imm << 5;
9587 if (inst.operands[1].present)
9588 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9589 }
c19d1205 9590 else
90e4755a 9591 {
62b3e311
PB
9592 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9593 && (inst.operands[0].imm & 4),
9594 _("selected processor does not support 'A' form "
9595 "of this instruction"));
9596 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9597 _("Thumb does not support the 2-argument "
9598 "form of this instruction"));
9599 inst.instruction |= inst.operands[0].imm;
90e4755a 9600 }
90e4755a
RE
9601}
9602
c19d1205
ZW
9603/* THUMB CPY instruction (argument parse). */
9604
90e4755a 9605static void
c19d1205 9606do_t_cpy (void)
90e4755a 9607{
c19d1205 9608 if (inst.size_req == 4)
90e4755a 9609 {
c19d1205
ZW
9610 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9611 inst.instruction |= inst.operands[0].reg << 8;
9612 inst.instruction |= inst.operands[1].reg;
90e4755a 9613 }
c19d1205 9614 else
90e4755a 9615 {
c19d1205
ZW
9616 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9617 inst.instruction |= (inst.operands[0].reg & 0x7);
9618 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9619 }
90e4755a
RE
9620}
9621
90e4755a 9622static void
25fe350b 9623do_t_cbz (void)
90e4755a 9624{
e07e6e58 9625 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9626 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9627 inst.instruction |= inst.operands[0].reg;
9628 inst.reloc.pc_rel = 1;
9629 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9630}
90e4755a 9631
62b3e311
PB
9632static void
9633do_t_dbg (void)
9634{
9635 inst.instruction |= inst.operands[0].imm;
9636}
9637
9638static void
9639do_t_div (void)
9640{
fdfde340
JM
9641 unsigned Rd, Rn, Rm;
9642
9643 Rd = inst.operands[0].reg;
9644 Rn = (inst.operands[1].present
9645 ? inst.operands[1].reg : Rd);
9646 Rm = inst.operands[2].reg;
9647
9648 reject_bad_reg (Rd);
9649 reject_bad_reg (Rn);
9650 reject_bad_reg (Rm);
9651
9652 inst.instruction |= Rd << 8;
9653 inst.instruction |= Rn << 16;
9654 inst.instruction |= Rm;
62b3e311
PB
9655}
9656
c19d1205
ZW
9657static void
9658do_t_hint (void)
9659{
9660 if (unified_syntax && inst.size_req == 4)
9661 inst.instruction = THUMB_OP32 (inst.instruction);
9662 else
9663 inst.instruction = THUMB_OP16 (inst.instruction);
9664}
90e4755a 9665
c19d1205
ZW
9666static void
9667do_t_it (void)
9668{
9669 unsigned int cond = inst.operands[0].imm;
e27ec89e 9670
e07e6e58
NC
9671 set_it_insn_type (IT_INSN);
9672 now_it.mask = (inst.instruction & 0xf) | 0x10;
9673 now_it.cc = cond;
e27ec89e
PB
9674
9675 /* If the condition is a negative condition, invert the mask. */
c19d1205 9676 if ((cond & 0x1) == 0x0)
90e4755a 9677 {
c19d1205 9678 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9679
c19d1205
ZW
9680 if ((mask & 0x7) == 0)
9681 /* no conversion needed */;
9682 else if ((mask & 0x3) == 0)
e27ec89e
PB
9683 mask ^= 0x8;
9684 else if ((mask & 0x1) == 0)
9685 mask ^= 0xC;
c19d1205 9686 else
e27ec89e 9687 mask ^= 0xE;
90e4755a 9688
e27ec89e
PB
9689 inst.instruction &= 0xfff0;
9690 inst.instruction |= mask;
c19d1205 9691 }
90e4755a 9692
c19d1205
ZW
9693 inst.instruction |= cond << 4;
9694}
90e4755a 9695
3c707909
PB
9696/* Helper function used for both push/pop and ldm/stm. */
9697static void
9698encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9699{
9700 bfd_boolean load;
9701
9702 load = (inst.instruction & (1 << 20)) != 0;
9703
9704 if (mask & (1 << 13))
9705 inst.error = _("SP not allowed in register list");
9706 if (load)
9707 {
e07e6e58
NC
9708 if (mask & (1 << 15))
9709 {
9710 if (mask & (1 << 14))
9711 inst.error = _("LR and PC should not both be in register list");
9712 else
9713 set_it_insn_type_last ();
9714 }
3c707909
PB
9715
9716 if ((mask & (1 << base)) != 0
9717 && writeback)
9718 as_warn (_("base register should not be in register list "
9719 "when written back"));
9720 }
9721 else
9722 {
9723 if (mask & (1 << 15))
9724 inst.error = _("PC not allowed in register list");
9725
9726 if (mask & (1 << base))
9727 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9728 }
9729
9730 if ((mask & (mask - 1)) == 0)
9731 {
9732 /* Single register transfers implemented as str/ldr. */
9733 if (writeback)
9734 {
9735 if (inst.instruction & (1 << 23))
9736 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9737 else
9738 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9739 }
9740 else
9741 {
9742 if (inst.instruction & (1 << 23))
9743 inst.instruction = 0x00800000; /* ia -> [base] */
9744 else
9745 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9746 }
9747
9748 inst.instruction |= 0xf8400000;
9749 if (load)
9750 inst.instruction |= 0x00100000;
9751
5f4273c7 9752 mask = ffs (mask) - 1;
3c707909
PB
9753 mask <<= 12;
9754 }
9755 else if (writeback)
9756 inst.instruction |= WRITE_BACK;
9757
9758 inst.instruction |= mask;
9759 inst.instruction |= base << 16;
9760}
9761
c19d1205
ZW
9762static void
9763do_t_ldmstm (void)
9764{
9765 /* This really doesn't seem worth it. */
9766 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9767 _("expression too complex"));
9768 constraint (inst.operands[1].writeback,
9769 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9770
c19d1205
ZW
9771 if (unified_syntax)
9772 {
3c707909
PB
9773 bfd_boolean narrow;
9774 unsigned mask;
9775
9776 narrow = FALSE;
c19d1205
ZW
9777 /* See if we can use a 16-bit instruction. */
9778 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9779 && inst.size_req != 4
3c707909 9780 && !(inst.operands[1].imm & ~0xff))
90e4755a 9781 {
3c707909 9782 mask = 1 << inst.operands[0].reg;
90e4755a 9783
3c707909
PB
9784 if (inst.operands[0].reg <= 7
9785 && (inst.instruction == T_MNEM_stmia
9786 ? inst.operands[0].writeback
9787 : (inst.operands[0].writeback
9788 == !(inst.operands[1].imm & mask))))
90e4755a 9789 {
3c707909
PB
9790 if (inst.instruction == T_MNEM_stmia
9791 && (inst.operands[1].imm & mask)
9792 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9793 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9794 inst.operands[0].reg);
3c707909
PB
9795
9796 inst.instruction = THUMB_OP16 (inst.instruction);
9797 inst.instruction |= inst.operands[0].reg << 8;
9798 inst.instruction |= inst.operands[1].imm;
9799 narrow = TRUE;
90e4755a 9800 }
3c707909
PB
9801 else if (inst.operands[0] .reg == REG_SP
9802 && inst.operands[0].writeback)
90e4755a 9803 {
3c707909
PB
9804 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9805 ? T_MNEM_push : T_MNEM_pop);
9806 inst.instruction |= inst.operands[1].imm;
9807 narrow = TRUE;
90e4755a 9808 }
3c707909
PB
9809 }
9810
9811 if (!narrow)
9812 {
c19d1205
ZW
9813 if (inst.instruction < 0xffff)
9814 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9815
5f4273c7
NC
9816 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9817 inst.operands[0].writeback);
90e4755a
RE
9818 }
9819 }
c19d1205 9820 else
90e4755a 9821 {
c19d1205
ZW
9822 constraint (inst.operands[0].reg > 7
9823 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9824 constraint (inst.instruction != T_MNEM_ldmia
9825 && inst.instruction != T_MNEM_stmia,
9826 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9827 if (inst.instruction == T_MNEM_stmia)
f03698e6 9828 {
c19d1205
ZW
9829 if (!inst.operands[0].writeback)
9830 as_warn (_("this instruction will write back the base register"));
9831 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9832 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9833 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9834 inst.operands[0].reg);
f03698e6 9835 }
c19d1205 9836 else
90e4755a 9837 {
c19d1205
ZW
9838 if (!inst.operands[0].writeback
9839 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9840 as_warn (_("this instruction will write back the base register"));
9841 else if (inst.operands[0].writeback
9842 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9843 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9844 }
9845
c19d1205
ZW
9846 inst.instruction = THUMB_OP16 (inst.instruction);
9847 inst.instruction |= inst.operands[0].reg << 8;
9848 inst.instruction |= inst.operands[1].imm;
9849 }
9850}
e28cd48c 9851
c19d1205
ZW
9852static void
9853do_t_ldrex (void)
9854{
9855 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9856 || inst.operands[1].postind || inst.operands[1].writeback
9857 || inst.operands[1].immisreg || inst.operands[1].shifted
9858 || inst.operands[1].negative,
01cfc07f 9859 BAD_ADDR_MODE);
e28cd48c 9860
c19d1205
ZW
9861 inst.instruction |= inst.operands[0].reg << 12;
9862 inst.instruction |= inst.operands[1].reg << 16;
9863 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9864}
e28cd48c 9865
c19d1205
ZW
9866static void
9867do_t_ldrexd (void)
9868{
9869 if (!inst.operands[1].present)
1cac9012 9870 {
c19d1205
ZW
9871 constraint (inst.operands[0].reg == REG_LR,
9872 _("r14 not allowed as first register "
9873 "when second register is omitted"));
9874 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9875 }
c19d1205
ZW
9876 constraint (inst.operands[0].reg == inst.operands[1].reg,
9877 BAD_OVERLAP);
b99bd4ef 9878
c19d1205
ZW
9879 inst.instruction |= inst.operands[0].reg << 12;
9880 inst.instruction |= inst.operands[1].reg << 8;
9881 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9882}
9883
9884static void
c19d1205 9885do_t_ldst (void)
b99bd4ef 9886{
0110f2b8
PB
9887 unsigned long opcode;
9888 int Rn;
9889
e07e6e58
NC
9890 if (inst.operands[0].isreg
9891 && !inst.operands[0].preind
9892 && inst.operands[0].reg == REG_PC)
9893 set_it_insn_type_last ();
9894
0110f2b8 9895 opcode = inst.instruction;
c19d1205 9896 if (unified_syntax)
b99bd4ef 9897 {
53365c0d
PB
9898 if (!inst.operands[1].isreg)
9899 {
9900 if (opcode <= 0xffff)
9901 inst.instruction = THUMB_OP32 (opcode);
9902 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9903 return;
9904 }
0110f2b8
PB
9905 if (inst.operands[1].isreg
9906 && !inst.operands[1].writeback
c19d1205
ZW
9907 && !inst.operands[1].shifted && !inst.operands[1].postind
9908 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9909 && opcode <= 0xffff
9910 && inst.size_req != 4)
c19d1205 9911 {
0110f2b8
PB
9912 /* Insn may have a 16-bit form. */
9913 Rn = inst.operands[1].reg;
9914 if (inst.operands[1].immisreg)
9915 {
9916 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9917 /* [Rn, Rik] */
0110f2b8
PB
9918 if (Rn <= 7 && inst.operands[1].imm <= 7)
9919 goto op16;
9920 }
9921 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9922 && opcode != T_MNEM_ldrsb)
9923 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9924 || (Rn == REG_SP && opcode == T_MNEM_str))
9925 {
9926 /* [Rn, #const] */
9927 if (Rn > 7)
9928 {
9929 if (Rn == REG_PC)
9930 {
9931 if (inst.reloc.pc_rel)
9932 opcode = T_MNEM_ldr_pc2;
9933 else
9934 opcode = T_MNEM_ldr_pc;
9935 }
9936 else
9937 {
9938 if (opcode == T_MNEM_ldr)
9939 opcode = T_MNEM_ldr_sp;
9940 else
9941 opcode = T_MNEM_str_sp;
9942 }
9943 inst.instruction = inst.operands[0].reg << 8;
9944 }
9945 else
9946 {
9947 inst.instruction = inst.operands[0].reg;
9948 inst.instruction |= inst.operands[1].reg << 3;
9949 }
9950 inst.instruction |= THUMB_OP16 (opcode);
9951 if (inst.size_req == 2)
9952 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9953 else
9954 inst.relax = opcode;
9955 return;
9956 }
c19d1205 9957 }
0110f2b8
PB
9958 /* Definitely a 32-bit variant. */
9959 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9960 inst.instruction |= inst.operands[0].reg << 12;
9961 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9962 return;
9963 }
9964
c19d1205
ZW
9965 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9966
9967 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9968 {
c19d1205
ZW
9969 /* Only [Rn,Rm] is acceptable. */
9970 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9971 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9972 || inst.operands[1].postind || inst.operands[1].shifted
9973 || inst.operands[1].negative,
9974 _("Thumb does not support this addressing mode"));
9975 inst.instruction = THUMB_OP16 (inst.instruction);
9976 goto op16;
b99bd4ef 9977 }
5f4273c7 9978
c19d1205
ZW
9979 inst.instruction = THUMB_OP16 (inst.instruction);
9980 if (!inst.operands[1].isreg)
9981 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9982 return;
b99bd4ef 9983
c19d1205
ZW
9984 constraint (!inst.operands[1].preind
9985 || inst.operands[1].shifted
9986 || inst.operands[1].writeback,
9987 _("Thumb does not support this addressing mode"));
9988 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9989 {
c19d1205
ZW
9990 constraint (inst.instruction & 0x0600,
9991 _("byte or halfword not valid for base register"));
9992 constraint (inst.operands[1].reg == REG_PC
9993 && !(inst.instruction & THUMB_LOAD_BIT),
9994 _("r15 based store not allowed"));
9995 constraint (inst.operands[1].immisreg,
9996 _("invalid base register for register offset"));
b99bd4ef 9997
c19d1205
ZW
9998 if (inst.operands[1].reg == REG_PC)
9999 inst.instruction = T_OPCODE_LDR_PC;
10000 else if (inst.instruction & THUMB_LOAD_BIT)
10001 inst.instruction = T_OPCODE_LDR_SP;
10002 else
10003 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10004
c19d1205
ZW
10005 inst.instruction |= inst.operands[0].reg << 8;
10006 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10007 return;
10008 }
90e4755a 10009
c19d1205
ZW
10010 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10011 if (!inst.operands[1].immisreg)
10012 {
10013 /* Immediate offset. */
10014 inst.instruction |= inst.operands[0].reg;
10015 inst.instruction |= inst.operands[1].reg << 3;
10016 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10017 return;
10018 }
90e4755a 10019
c19d1205
ZW
10020 /* Register offset. */
10021 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10022 constraint (inst.operands[1].negative,
10023 _("Thumb does not support this addressing mode"));
90e4755a 10024
c19d1205
ZW
10025 op16:
10026 switch (inst.instruction)
10027 {
10028 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10029 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10030 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10031 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10032 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10033 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10034 case 0x5600 /* ldrsb */:
10035 case 0x5e00 /* ldrsh */: break;
10036 default: abort ();
10037 }
90e4755a 10038
c19d1205
ZW
10039 inst.instruction |= inst.operands[0].reg;
10040 inst.instruction |= inst.operands[1].reg << 3;
10041 inst.instruction |= inst.operands[1].imm << 6;
10042}
90e4755a 10043
c19d1205
ZW
10044static void
10045do_t_ldstd (void)
10046{
10047 if (!inst.operands[1].present)
b99bd4ef 10048 {
c19d1205
ZW
10049 inst.operands[1].reg = inst.operands[0].reg + 1;
10050 constraint (inst.operands[0].reg == REG_LR,
10051 _("r14 not allowed here"));
b99bd4ef 10052 }
c19d1205
ZW
10053 inst.instruction |= inst.operands[0].reg << 12;
10054 inst.instruction |= inst.operands[1].reg << 8;
10055 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10056}
10057
c19d1205
ZW
10058static void
10059do_t_ldstt (void)
10060{
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10063}
a737bd4d 10064
b99bd4ef 10065static void
c19d1205 10066do_t_mla (void)
b99bd4ef 10067{
fdfde340 10068 unsigned Rd, Rn, Rm, Ra;
c921be7d 10069
fdfde340
JM
10070 Rd = inst.operands[0].reg;
10071 Rn = inst.operands[1].reg;
10072 Rm = inst.operands[2].reg;
10073 Ra = inst.operands[3].reg;
10074
10075 reject_bad_reg (Rd);
10076 reject_bad_reg (Rn);
10077 reject_bad_reg (Rm);
10078 reject_bad_reg (Ra);
10079
10080 inst.instruction |= Rd << 8;
10081 inst.instruction |= Rn << 16;
10082 inst.instruction |= Rm;
10083 inst.instruction |= Ra << 12;
c19d1205 10084}
b99bd4ef 10085
c19d1205
ZW
10086static void
10087do_t_mlal (void)
10088{
fdfde340
JM
10089 unsigned RdLo, RdHi, Rn, Rm;
10090
10091 RdLo = inst.operands[0].reg;
10092 RdHi = inst.operands[1].reg;
10093 Rn = inst.operands[2].reg;
10094 Rm = inst.operands[3].reg;
10095
10096 reject_bad_reg (RdLo);
10097 reject_bad_reg (RdHi);
10098 reject_bad_reg (Rn);
10099 reject_bad_reg (Rm);
10100
10101 inst.instruction |= RdLo << 12;
10102 inst.instruction |= RdHi << 8;
10103 inst.instruction |= Rn << 16;
10104 inst.instruction |= Rm;
c19d1205 10105}
b99bd4ef 10106
c19d1205
ZW
10107static void
10108do_t_mov_cmp (void)
10109{
fdfde340
JM
10110 unsigned Rn, Rm;
10111
10112 Rn = inst.operands[0].reg;
10113 Rm = inst.operands[1].reg;
10114
e07e6e58
NC
10115 if (Rn == REG_PC)
10116 set_it_insn_type_last ();
10117
c19d1205 10118 if (unified_syntax)
b99bd4ef 10119 {
c19d1205
ZW
10120 int r0off = (inst.instruction == T_MNEM_mov
10121 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10122 unsigned long opcode;
3d388997
PB
10123 bfd_boolean narrow;
10124 bfd_boolean low_regs;
10125
fdfde340 10126 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10127 opcode = inst.instruction;
e07e6e58 10128 if (in_it_block ())
0110f2b8 10129 narrow = opcode != T_MNEM_movs;
3d388997 10130 else
0110f2b8 10131 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10132 if (inst.size_req == 4
10133 || inst.operands[1].shifted)
10134 narrow = FALSE;
10135
efd81785
PB
10136 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10137 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10138 && !inst.operands[1].shifted
fdfde340
JM
10139 && Rn == REG_PC
10140 && Rm == REG_LR)
efd81785
PB
10141 {
10142 inst.instruction = T2_SUBS_PC_LR;
10143 return;
10144 }
10145
fdfde340
JM
10146 if (opcode == T_MNEM_cmp)
10147 {
10148 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10149 if (narrow)
10150 {
10151 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10152 but valid. */
10153 warn_deprecated_sp (Rm);
10154 /* R15 was documented as a valid choice for Rm in ARMv6,
10155 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10156 tools reject R15, so we do too. */
10157 constraint (Rm == REG_PC, BAD_PC);
10158 }
10159 else
10160 reject_bad_reg (Rm);
fdfde340
JM
10161 }
10162 else if (opcode == T_MNEM_mov
10163 || opcode == T_MNEM_movs)
10164 {
10165 if (inst.operands[1].isreg)
10166 {
10167 if (opcode == T_MNEM_movs)
10168 {
10169 reject_bad_reg (Rn);
10170 reject_bad_reg (Rm);
10171 }
10172 else if ((Rn == REG_SP || Rn == REG_PC)
10173 && (Rm == REG_SP || Rm == REG_PC))
10174 reject_bad_reg (Rm);
10175 }
10176 else
10177 reject_bad_reg (Rn);
10178 }
10179
c19d1205
ZW
10180 if (!inst.operands[1].isreg)
10181 {
0110f2b8 10182 /* Immediate operand. */
e07e6e58 10183 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10184 narrow = 0;
10185 if (low_regs && narrow)
10186 {
10187 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10188 inst.instruction |= Rn << 8;
0110f2b8
PB
10189 if (inst.size_req == 2)
10190 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10191 else
10192 inst.relax = opcode;
10193 }
10194 else
10195 {
10196 inst.instruction = THUMB_OP32 (inst.instruction);
10197 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10198 inst.instruction |= Rn << r0off;
0110f2b8
PB
10199 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10200 }
c19d1205 10201 }
728ca7c9
PB
10202 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10203 && (inst.instruction == T_MNEM_mov
10204 || inst.instruction == T_MNEM_movs))
10205 {
10206 /* Register shifts are encoded as separate shift instructions. */
10207 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10208
e07e6e58 10209 if (in_it_block ())
728ca7c9
PB
10210 narrow = !flags;
10211 else
10212 narrow = flags;
10213
10214 if (inst.size_req == 4)
10215 narrow = FALSE;
10216
10217 if (!low_regs || inst.operands[1].imm > 7)
10218 narrow = FALSE;
10219
fdfde340 10220 if (Rn != Rm)
728ca7c9
PB
10221 narrow = FALSE;
10222
10223 switch (inst.operands[1].shift_kind)
10224 {
10225 case SHIFT_LSL:
10226 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10227 break;
10228 case SHIFT_ASR:
10229 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10230 break;
10231 case SHIFT_LSR:
10232 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10233 break;
10234 case SHIFT_ROR:
10235 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10236 break;
10237 default:
5f4273c7 10238 abort ();
728ca7c9
PB
10239 }
10240
10241 inst.instruction = opcode;
10242 if (narrow)
10243 {
fdfde340 10244 inst.instruction |= Rn;
728ca7c9
PB
10245 inst.instruction |= inst.operands[1].imm << 3;
10246 }
10247 else
10248 {
10249 if (flags)
10250 inst.instruction |= CONDS_BIT;
10251
fdfde340
JM
10252 inst.instruction |= Rn << 8;
10253 inst.instruction |= Rm << 16;
728ca7c9
PB
10254 inst.instruction |= inst.operands[1].imm;
10255 }
10256 }
3d388997 10257 else if (!narrow)
c19d1205 10258 {
728ca7c9
PB
10259 /* Some mov with immediate shift have narrow variants.
10260 Register shifts are handled above. */
10261 if (low_regs && inst.operands[1].shifted
10262 && (inst.instruction == T_MNEM_mov
10263 || inst.instruction == T_MNEM_movs))
10264 {
e07e6e58 10265 if (in_it_block ())
728ca7c9
PB
10266 narrow = (inst.instruction == T_MNEM_mov);
10267 else
10268 narrow = (inst.instruction == T_MNEM_movs);
10269 }
10270
10271 if (narrow)
10272 {
10273 switch (inst.operands[1].shift_kind)
10274 {
10275 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10276 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10277 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10278 default: narrow = FALSE; break;
10279 }
10280 }
10281
10282 if (narrow)
10283 {
fdfde340
JM
10284 inst.instruction |= Rn;
10285 inst.instruction |= Rm << 3;
728ca7c9
PB
10286 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10287 }
10288 else
10289 {
10290 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10291 inst.instruction |= Rn << r0off;
728ca7c9
PB
10292 encode_thumb32_shifted_operand (1);
10293 }
c19d1205
ZW
10294 }
10295 else
10296 switch (inst.instruction)
10297 {
10298 case T_MNEM_mov:
10299 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10300 inst.instruction |= (Rn & 0x8) << 4;
10301 inst.instruction |= (Rn & 0x7);
10302 inst.instruction |= Rm << 3;
c19d1205 10303 break;
b99bd4ef 10304
c19d1205
ZW
10305 case T_MNEM_movs:
10306 /* We know we have low registers at this point.
10307 Generate ADD Rd, Rs, #0. */
10308 inst.instruction = T_OPCODE_ADD_I3;
fdfde340
JM
10309 inst.instruction |= Rn;
10310 inst.instruction |= Rm << 3;
c19d1205
ZW
10311 break;
10312
10313 case T_MNEM_cmp:
3d388997 10314 if (low_regs)
c19d1205
ZW
10315 {
10316 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10317 inst.instruction |= Rn;
10318 inst.instruction |= Rm << 3;
c19d1205
ZW
10319 }
10320 else
10321 {
10322 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10323 inst.instruction |= (Rn & 0x8) << 4;
10324 inst.instruction |= (Rn & 0x7);
10325 inst.instruction |= Rm << 3;
c19d1205
ZW
10326 }
10327 break;
10328 }
b99bd4ef
NC
10329 return;
10330 }
10331
c19d1205 10332 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10333
10334 /* PR 10443: Do not silently ignore shifted operands. */
10335 constraint (inst.operands[1].shifted,
10336 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10337
c19d1205 10338 if (inst.operands[1].isreg)
b99bd4ef 10339 {
fdfde340 10340 if (Rn < 8 && Rm < 8)
b99bd4ef 10341 {
c19d1205
ZW
10342 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10343 since a MOV instruction produces unpredictable results. */
10344 if (inst.instruction == T_OPCODE_MOV_I8)
10345 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10346 else
c19d1205 10347 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10348
fdfde340
JM
10349 inst.instruction |= Rn;
10350 inst.instruction |= Rm << 3;
b99bd4ef
NC
10351 }
10352 else
10353 {
c19d1205
ZW
10354 if (inst.instruction == T_OPCODE_MOV_I8)
10355 inst.instruction = T_OPCODE_MOV_HR;
10356 else
10357 inst.instruction = T_OPCODE_CMP_HR;
10358 do_t_cpy ();
b99bd4ef
NC
10359 }
10360 }
c19d1205 10361 else
b99bd4ef 10362 {
fdfde340 10363 constraint (Rn > 7,
c19d1205 10364 _("only lo regs allowed with immediate"));
fdfde340 10365 inst.instruction |= Rn << 8;
c19d1205
ZW
10366 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10367 }
10368}
b99bd4ef 10369
c19d1205
ZW
10370static void
10371do_t_mov16 (void)
10372{
fdfde340 10373 unsigned Rd;
b6895b4f
PB
10374 bfd_vma imm;
10375 bfd_boolean top;
10376
10377 top = (inst.instruction & 0x00800000) != 0;
10378 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10379 {
10380 constraint (top, _(":lower16: not allowed this instruction"));
10381 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10382 }
10383 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10384 {
10385 constraint (!top, _(":upper16: not allowed this instruction"));
10386 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10387 }
10388
fdfde340
JM
10389 Rd = inst.operands[0].reg;
10390 reject_bad_reg (Rd);
10391
10392 inst.instruction |= Rd << 8;
b6895b4f
PB
10393 if (inst.reloc.type == BFD_RELOC_UNUSED)
10394 {
10395 imm = inst.reloc.exp.X_add_number;
10396 inst.instruction |= (imm & 0xf000) << 4;
10397 inst.instruction |= (imm & 0x0800) << 15;
10398 inst.instruction |= (imm & 0x0700) << 4;
10399 inst.instruction |= (imm & 0x00ff);
10400 }
c19d1205 10401}
b99bd4ef 10402
c19d1205
ZW
10403static void
10404do_t_mvn_tst (void)
10405{
fdfde340 10406 unsigned Rn, Rm;
c921be7d 10407
fdfde340
JM
10408 Rn = inst.operands[0].reg;
10409 Rm = inst.operands[1].reg;
10410
10411 if (inst.instruction == T_MNEM_cmp
10412 || inst.instruction == T_MNEM_cmn)
10413 constraint (Rn == REG_PC, BAD_PC);
10414 else
10415 reject_bad_reg (Rn);
10416 reject_bad_reg (Rm);
10417
c19d1205
ZW
10418 if (unified_syntax)
10419 {
10420 int r0off = (inst.instruction == T_MNEM_mvn
10421 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10422 bfd_boolean narrow;
10423
10424 if (inst.size_req == 4
10425 || inst.instruction > 0xffff
10426 || inst.operands[1].shifted
fdfde340 10427 || Rn > 7 || Rm > 7)
3d388997
PB
10428 narrow = FALSE;
10429 else if (inst.instruction == T_MNEM_cmn)
10430 narrow = TRUE;
10431 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10432 narrow = !in_it_block ();
3d388997 10433 else
e07e6e58 10434 narrow = in_it_block ();
3d388997 10435
c19d1205 10436 if (!inst.operands[1].isreg)
b99bd4ef 10437 {
c19d1205
ZW
10438 /* For an immediate, we always generate a 32-bit opcode;
10439 section relaxation will shrink it later if possible. */
10440 if (inst.instruction < 0xffff)
10441 inst.instruction = THUMB_OP32 (inst.instruction);
10442 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10443 inst.instruction |= Rn << r0off;
c19d1205 10444 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10445 }
c19d1205 10446 else
b99bd4ef 10447 {
c19d1205 10448 /* See if we can do this with a 16-bit instruction. */
3d388997 10449 if (narrow)
b99bd4ef 10450 {
c19d1205 10451 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10452 inst.instruction |= Rn;
10453 inst.instruction |= Rm << 3;
b99bd4ef 10454 }
c19d1205 10455 else
b99bd4ef 10456 {
c19d1205
ZW
10457 constraint (inst.operands[1].shifted
10458 && inst.operands[1].immisreg,
10459 _("shift must be constant"));
10460 if (inst.instruction < 0xffff)
10461 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10462 inst.instruction |= Rn << r0off;
c19d1205 10463 encode_thumb32_shifted_operand (1);
b99bd4ef 10464 }
b99bd4ef
NC
10465 }
10466 }
10467 else
10468 {
c19d1205
ZW
10469 constraint (inst.instruction > 0xffff
10470 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10471 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10472 _("unshifted register required"));
fdfde340 10473 constraint (Rn > 7 || Rm > 7,
c19d1205 10474 BAD_HIREG);
b99bd4ef 10475
c19d1205 10476 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10477 inst.instruction |= Rn;
10478 inst.instruction |= Rm << 3;
b99bd4ef 10479 }
b99bd4ef
NC
10480}
10481
b05fe5cf 10482static void
c19d1205 10483do_t_mrs (void)
b05fe5cf 10484{
fdfde340 10485 unsigned Rd;
62b3e311 10486 int flags;
037e8744
JB
10487
10488 if (do_vfp_nsyn_mrs () == SUCCESS)
10489 return;
10490
62b3e311
PB
10491 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10492 if (flags == 0)
10493 {
7e806470 10494 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10495 _("selected processor does not support "
10496 "requested special purpose register"));
10497 }
10498 else
10499 {
10500 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10501 _("selected processor does not support "
44bf2362 10502 "requested special purpose register"));
62b3e311
PB
10503 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10504 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10505 _("'CPSR' or 'SPSR' expected"));
10506 }
5f4273c7 10507
fdfde340
JM
10508 Rd = inst.operands[0].reg;
10509 reject_bad_reg (Rd);
10510
10511 inst.instruction |= Rd << 8;
62b3e311
PB
10512 inst.instruction |= (flags & SPSR_BIT) >> 2;
10513 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10514}
b05fe5cf 10515
c19d1205
ZW
10516static void
10517do_t_msr (void)
10518{
62b3e311 10519 int flags;
fdfde340 10520 unsigned Rn;
62b3e311 10521
037e8744
JB
10522 if (do_vfp_nsyn_msr () == SUCCESS)
10523 return;
10524
c19d1205
ZW
10525 constraint (!inst.operands[1].isreg,
10526 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10527 flags = inst.operands[0].imm;
10528 if (flags & ~0xff)
10529 {
10530 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10531 _("selected processor does not support "
10532 "requested special purpose register"));
10533 }
10534 else
10535 {
7e806470 10536 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10537 _("selected processor does not support "
10538 "requested special purpose register"));
10539 flags |= PSR_f;
10540 }
c921be7d 10541
fdfde340
JM
10542 Rn = inst.operands[1].reg;
10543 reject_bad_reg (Rn);
10544
62b3e311
PB
10545 inst.instruction |= (flags & SPSR_BIT) >> 2;
10546 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10547 inst.instruction |= (flags & 0xff);
fdfde340 10548 inst.instruction |= Rn << 16;
c19d1205 10549}
b05fe5cf 10550
c19d1205
ZW
10551static void
10552do_t_mul (void)
10553{
17828f45 10554 bfd_boolean narrow;
fdfde340 10555 unsigned Rd, Rn, Rm;
17828f45 10556
c19d1205
ZW
10557 if (!inst.operands[2].present)
10558 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10559
fdfde340
JM
10560 Rd = inst.operands[0].reg;
10561 Rn = inst.operands[1].reg;
10562 Rm = inst.operands[2].reg;
10563
17828f45 10564 if (unified_syntax)
b05fe5cf 10565 {
17828f45 10566 if (inst.size_req == 4
fdfde340
JM
10567 || (Rd != Rn
10568 && Rd != Rm)
10569 || Rn > 7
10570 || Rm > 7)
17828f45
JM
10571 narrow = FALSE;
10572 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10573 narrow = !in_it_block ();
17828f45 10574 else
e07e6e58 10575 narrow = in_it_block ();
b05fe5cf 10576 }
c19d1205 10577 else
b05fe5cf 10578 {
17828f45 10579 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10580 constraint (Rn > 7 || Rm > 7,
c19d1205 10581 BAD_HIREG);
17828f45
JM
10582 narrow = TRUE;
10583 }
b05fe5cf 10584
17828f45
JM
10585 if (narrow)
10586 {
10587 /* 16-bit MULS/Conditional MUL. */
c19d1205 10588 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10589 inst.instruction |= Rd;
b05fe5cf 10590
fdfde340
JM
10591 if (Rd == Rn)
10592 inst.instruction |= Rm << 3;
10593 else if (Rd == Rm)
10594 inst.instruction |= Rn << 3;
c19d1205
ZW
10595 else
10596 constraint (1, _("dest must overlap one source register"));
10597 }
17828f45
JM
10598 else
10599 {
e07e6e58
NC
10600 constraint (inst.instruction != T_MNEM_mul,
10601 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10602 /* 32-bit MUL. */
10603 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10604 inst.instruction |= Rd << 8;
10605 inst.instruction |= Rn << 16;
10606 inst.instruction |= Rm << 0;
10607
10608 reject_bad_reg (Rd);
10609 reject_bad_reg (Rn);
10610 reject_bad_reg (Rm);
17828f45 10611 }
c19d1205 10612}
b05fe5cf 10613
c19d1205
ZW
10614static void
10615do_t_mull (void)
10616{
fdfde340 10617 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10618
fdfde340
JM
10619 RdLo = inst.operands[0].reg;
10620 RdHi = inst.operands[1].reg;
10621 Rn = inst.operands[2].reg;
10622 Rm = inst.operands[3].reg;
10623
10624 reject_bad_reg (RdLo);
10625 reject_bad_reg (RdHi);
10626 reject_bad_reg (Rn);
10627 reject_bad_reg (Rm);
10628
10629 inst.instruction |= RdLo << 12;
10630 inst.instruction |= RdHi << 8;
10631 inst.instruction |= Rn << 16;
10632 inst.instruction |= Rm;
10633
10634 if (RdLo == RdHi)
c19d1205
ZW
10635 as_tsktsk (_("rdhi and rdlo must be different"));
10636}
b05fe5cf 10637
c19d1205
ZW
10638static void
10639do_t_nop (void)
10640{
e07e6e58
NC
10641 set_it_insn_type (NEUTRAL_IT_INSN);
10642
c19d1205
ZW
10643 if (unified_syntax)
10644 {
10645 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10646 {
c19d1205
ZW
10647 inst.instruction = THUMB_OP32 (inst.instruction);
10648 inst.instruction |= inst.operands[0].imm;
10649 }
10650 else
10651 {
bc2d1808
NC
10652 /* PR9722: Check for Thumb2 availability before
10653 generating a thumb2 nop instruction. */
10654 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10655 {
10656 inst.instruction = THUMB_OP16 (inst.instruction);
10657 inst.instruction |= inst.operands[0].imm << 4;
10658 }
10659 else
10660 inst.instruction = 0x46c0;
c19d1205
ZW
10661 }
10662 }
10663 else
10664 {
10665 constraint (inst.operands[0].present,
10666 _("Thumb does not support NOP with hints"));
10667 inst.instruction = 0x46c0;
10668 }
10669}
b05fe5cf 10670
c19d1205
ZW
10671static void
10672do_t_neg (void)
10673{
10674 if (unified_syntax)
10675 {
3d388997
PB
10676 bfd_boolean narrow;
10677
10678 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10679 narrow = !in_it_block ();
3d388997 10680 else
e07e6e58 10681 narrow = in_it_block ();
3d388997
PB
10682 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10683 narrow = FALSE;
10684 if (inst.size_req == 4)
10685 narrow = FALSE;
10686
10687 if (!narrow)
c19d1205
ZW
10688 {
10689 inst.instruction = THUMB_OP32 (inst.instruction);
10690 inst.instruction |= inst.operands[0].reg << 8;
10691 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10692 }
10693 else
10694 {
c19d1205
ZW
10695 inst.instruction = THUMB_OP16 (inst.instruction);
10696 inst.instruction |= inst.operands[0].reg;
10697 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10698 }
10699 }
10700 else
10701 {
c19d1205
ZW
10702 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10703 BAD_HIREG);
10704 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10705
10706 inst.instruction = THUMB_OP16 (inst.instruction);
10707 inst.instruction |= inst.operands[0].reg;
10708 inst.instruction |= inst.operands[1].reg << 3;
10709 }
10710}
10711
1c444d06
JM
10712static void
10713do_t_orn (void)
10714{
10715 unsigned Rd, Rn;
10716
10717 Rd = inst.operands[0].reg;
10718 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10719
fdfde340
JM
10720 reject_bad_reg (Rd);
10721 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10722 reject_bad_reg (Rn);
10723
1c444d06
JM
10724 inst.instruction |= Rd << 8;
10725 inst.instruction |= Rn << 16;
10726
10727 if (!inst.operands[2].isreg)
10728 {
10729 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10730 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10731 }
10732 else
10733 {
10734 unsigned Rm;
10735
10736 Rm = inst.operands[2].reg;
fdfde340 10737 reject_bad_reg (Rm);
1c444d06
JM
10738
10739 constraint (inst.operands[2].shifted
10740 && inst.operands[2].immisreg,
10741 _("shift must be constant"));
10742 encode_thumb32_shifted_operand (2);
10743 }
10744}
10745
c19d1205
ZW
10746static void
10747do_t_pkhbt (void)
10748{
fdfde340
JM
10749 unsigned Rd, Rn, Rm;
10750
10751 Rd = inst.operands[0].reg;
10752 Rn = inst.operands[1].reg;
10753 Rm = inst.operands[2].reg;
10754
10755 reject_bad_reg (Rd);
10756 reject_bad_reg (Rn);
10757 reject_bad_reg (Rm);
10758
10759 inst.instruction |= Rd << 8;
10760 inst.instruction |= Rn << 16;
10761 inst.instruction |= Rm;
c19d1205
ZW
10762 if (inst.operands[3].present)
10763 {
10764 unsigned int val = inst.reloc.exp.X_add_number;
10765 constraint (inst.reloc.exp.X_op != O_constant,
10766 _("expression too complex"));
10767 inst.instruction |= (val & 0x1c) << 10;
10768 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10769 }
c19d1205 10770}
b05fe5cf 10771
c19d1205
ZW
10772static void
10773do_t_pkhtb (void)
10774{
10775 if (!inst.operands[3].present)
1ef52f49
NC
10776 {
10777 unsigned Rtmp;
10778
10779 inst.instruction &= ~0x00000020;
10780
10781 /* PR 10168. Swap the Rm and Rn registers. */
10782 Rtmp = inst.operands[1].reg;
10783 inst.operands[1].reg = inst.operands[2].reg;
10784 inst.operands[2].reg = Rtmp;
10785 }
c19d1205 10786 do_t_pkhbt ();
b05fe5cf
ZW
10787}
10788
c19d1205
ZW
10789static void
10790do_t_pld (void)
10791{
fdfde340
JM
10792 if (inst.operands[0].immisreg)
10793 reject_bad_reg (inst.operands[0].imm);
10794
c19d1205
ZW
10795 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10796}
b05fe5cf 10797
c19d1205
ZW
10798static void
10799do_t_push_pop (void)
b99bd4ef 10800{
e9f89963 10801 unsigned mask;
5f4273c7 10802
c19d1205
ZW
10803 constraint (inst.operands[0].writeback,
10804 _("push/pop do not support {reglist}^"));
10805 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10806 _("expression too complex"));
b99bd4ef 10807
e9f89963
PB
10808 mask = inst.operands[0].imm;
10809 if ((mask & ~0xff) == 0)
3c707909 10810 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10811 else if ((inst.instruction == T_MNEM_push
e9f89963 10812 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10813 || (inst.instruction == T_MNEM_pop
e9f89963 10814 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10815 {
c19d1205
ZW
10816 inst.instruction = THUMB_OP16 (inst.instruction);
10817 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10818 inst.instruction |= mask & 0xff;
c19d1205
ZW
10819 }
10820 else if (unified_syntax)
10821 {
3c707909 10822 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10823 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10824 }
10825 else
10826 {
10827 inst.error = _("invalid register list to push/pop instruction");
10828 return;
10829 }
c19d1205 10830}
b99bd4ef 10831
c19d1205
ZW
10832static void
10833do_t_rbit (void)
10834{
fdfde340
JM
10835 unsigned Rd, Rm;
10836
10837 Rd = inst.operands[0].reg;
10838 Rm = inst.operands[1].reg;
10839
10840 reject_bad_reg (Rd);
10841 reject_bad_reg (Rm);
10842
10843 inst.instruction |= Rd << 8;
10844 inst.instruction |= Rm << 16;
10845 inst.instruction |= Rm;
c19d1205 10846}
b99bd4ef 10847
c19d1205
ZW
10848static void
10849do_t_rev (void)
10850{
fdfde340
JM
10851 unsigned Rd, Rm;
10852
10853 Rd = inst.operands[0].reg;
10854 Rm = inst.operands[1].reg;
10855
10856 reject_bad_reg (Rd);
10857 reject_bad_reg (Rm);
10858
10859 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
10860 && inst.size_req != 4)
10861 {
10862 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10863 inst.instruction |= Rd;
10864 inst.instruction |= Rm << 3;
c19d1205
ZW
10865 }
10866 else if (unified_syntax)
10867 {
10868 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10869 inst.instruction |= Rd << 8;
10870 inst.instruction |= Rm << 16;
10871 inst.instruction |= Rm;
c19d1205
ZW
10872 }
10873 else
10874 inst.error = BAD_HIREG;
10875}
b99bd4ef 10876
1c444d06
JM
10877static void
10878do_t_rrx (void)
10879{
10880 unsigned Rd, Rm;
10881
10882 Rd = inst.operands[0].reg;
10883 Rm = inst.operands[1].reg;
10884
fdfde340
JM
10885 reject_bad_reg (Rd);
10886 reject_bad_reg (Rm);
c921be7d 10887
1c444d06
JM
10888 inst.instruction |= Rd << 8;
10889 inst.instruction |= Rm;
10890}
10891
c19d1205
ZW
10892static void
10893do_t_rsb (void)
10894{
fdfde340 10895 unsigned Rd, Rs;
b99bd4ef 10896
c19d1205
ZW
10897 Rd = inst.operands[0].reg;
10898 Rs = (inst.operands[1].present
10899 ? inst.operands[1].reg /* Rd, Rs, foo */
10900 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10901
fdfde340
JM
10902 reject_bad_reg (Rd);
10903 reject_bad_reg (Rs);
10904 if (inst.operands[2].isreg)
10905 reject_bad_reg (inst.operands[2].reg);
10906
c19d1205
ZW
10907 inst.instruction |= Rd << 8;
10908 inst.instruction |= Rs << 16;
10909 if (!inst.operands[2].isreg)
10910 {
026d3abb
PB
10911 bfd_boolean narrow;
10912
10913 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 10914 narrow = !in_it_block ();
026d3abb 10915 else
e07e6e58 10916 narrow = in_it_block ();
026d3abb
PB
10917
10918 if (Rd > 7 || Rs > 7)
10919 narrow = FALSE;
10920
10921 if (inst.size_req == 4 || !unified_syntax)
10922 narrow = FALSE;
10923
10924 if (inst.reloc.exp.X_op != O_constant
10925 || inst.reloc.exp.X_add_number != 0)
10926 narrow = FALSE;
10927
10928 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10929 relaxation, but it doesn't seem worth the hassle. */
10930 if (narrow)
10931 {
10932 inst.reloc.type = BFD_RELOC_UNUSED;
10933 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10934 inst.instruction |= Rs << 3;
10935 inst.instruction |= Rd;
10936 }
10937 else
10938 {
10939 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10940 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10941 }
c19d1205
ZW
10942 }
10943 else
10944 encode_thumb32_shifted_operand (2);
10945}
b99bd4ef 10946
c19d1205
ZW
10947static void
10948do_t_setend (void)
10949{
e07e6e58 10950 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10951 if (inst.operands[0].imm)
10952 inst.instruction |= 0x8;
10953}
b99bd4ef 10954
c19d1205
ZW
10955static void
10956do_t_shift (void)
10957{
10958 if (!inst.operands[1].present)
10959 inst.operands[1].reg = inst.operands[0].reg;
10960
10961 if (unified_syntax)
10962 {
3d388997
PB
10963 bfd_boolean narrow;
10964 int shift_kind;
10965
10966 switch (inst.instruction)
10967 {
10968 case T_MNEM_asr:
10969 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10970 case T_MNEM_lsl:
10971 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10972 case T_MNEM_lsr:
10973 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10974 case T_MNEM_ror:
10975 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10976 default: abort ();
10977 }
10978
10979 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10980 narrow = !in_it_block ();
3d388997 10981 else
e07e6e58 10982 narrow = in_it_block ();
3d388997
PB
10983 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10984 narrow = FALSE;
10985 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10986 narrow = FALSE;
10987 if (inst.operands[2].isreg
10988 && (inst.operands[1].reg != inst.operands[0].reg
10989 || inst.operands[2].reg > 7))
10990 narrow = FALSE;
10991 if (inst.size_req == 4)
10992 narrow = FALSE;
10993
fdfde340
JM
10994 reject_bad_reg (inst.operands[0].reg);
10995 reject_bad_reg (inst.operands[1].reg);
c921be7d 10996
3d388997 10997 if (!narrow)
c19d1205
ZW
10998 {
10999 if (inst.operands[2].isreg)
b99bd4ef 11000 {
fdfde340 11001 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11002 inst.instruction = THUMB_OP32 (inst.instruction);
11003 inst.instruction |= inst.operands[0].reg << 8;
11004 inst.instruction |= inst.operands[1].reg << 16;
11005 inst.instruction |= inst.operands[2].reg;
11006 }
11007 else
11008 {
11009 inst.operands[1].shifted = 1;
3d388997 11010 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11011 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11012 ? T_MNEM_movs : T_MNEM_mov);
11013 inst.instruction |= inst.operands[0].reg << 8;
11014 encode_thumb32_shifted_operand (1);
11015 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11016 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11017 }
11018 }
11019 else
11020 {
c19d1205 11021 if (inst.operands[2].isreg)
b99bd4ef 11022 {
3d388997 11023 switch (shift_kind)
b99bd4ef 11024 {
3d388997
PB
11025 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11026 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11027 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11028 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11029 default: abort ();
b99bd4ef 11030 }
5f4273c7 11031
c19d1205
ZW
11032 inst.instruction |= inst.operands[0].reg;
11033 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11034 }
11035 else
11036 {
3d388997 11037 switch (shift_kind)
b99bd4ef 11038 {
3d388997
PB
11039 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11040 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11041 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11042 default: abort ();
b99bd4ef 11043 }
c19d1205
ZW
11044 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11045 inst.instruction |= inst.operands[0].reg;
11046 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11047 }
11048 }
c19d1205
ZW
11049 }
11050 else
11051 {
11052 constraint (inst.operands[0].reg > 7
11053 || inst.operands[1].reg > 7, BAD_HIREG);
11054 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11055
c19d1205
ZW
11056 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11057 {
11058 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11059 constraint (inst.operands[0].reg != inst.operands[1].reg,
11060 _("source1 and dest must be same register"));
b99bd4ef 11061
c19d1205
ZW
11062 switch (inst.instruction)
11063 {
11064 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11065 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11066 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11067 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11068 default: abort ();
11069 }
5f4273c7 11070
c19d1205
ZW
11071 inst.instruction |= inst.operands[0].reg;
11072 inst.instruction |= inst.operands[2].reg << 3;
11073 }
11074 else
b99bd4ef 11075 {
c19d1205
ZW
11076 switch (inst.instruction)
11077 {
11078 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11079 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11080 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11081 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11082 default: abort ();
11083 }
11084 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11085 inst.instruction |= inst.operands[0].reg;
11086 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11087 }
11088 }
b99bd4ef
NC
11089}
11090
11091static void
c19d1205 11092do_t_simd (void)
b99bd4ef 11093{
fdfde340
JM
11094 unsigned Rd, Rn, Rm;
11095
11096 Rd = inst.operands[0].reg;
11097 Rn = inst.operands[1].reg;
11098 Rm = inst.operands[2].reg;
11099
11100 reject_bad_reg (Rd);
11101 reject_bad_reg (Rn);
11102 reject_bad_reg (Rm);
11103
11104 inst.instruction |= Rd << 8;
11105 inst.instruction |= Rn << 16;
11106 inst.instruction |= Rm;
c19d1205 11107}
b99bd4ef 11108
03ee1b7f
NC
11109static void
11110do_t_simd2 (void)
11111{
11112 unsigned Rd, Rn, Rm;
11113
11114 Rd = inst.operands[0].reg;
11115 Rm = inst.operands[1].reg;
11116 Rn = inst.operands[2].reg;
11117
11118 reject_bad_reg (Rd);
11119 reject_bad_reg (Rn);
11120 reject_bad_reg (Rm);
11121
11122 inst.instruction |= Rd << 8;
11123 inst.instruction |= Rn << 16;
11124 inst.instruction |= Rm;
11125}
11126
c19d1205 11127static void
3eb17e6b 11128do_t_smc (void)
c19d1205
ZW
11129{
11130 unsigned int value = inst.reloc.exp.X_add_number;
11131 constraint (inst.reloc.exp.X_op != O_constant,
11132 _("expression too complex"));
11133 inst.reloc.type = BFD_RELOC_UNUSED;
11134 inst.instruction |= (value & 0xf000) >> 12;
11135 inst.instruction |= (value & 0x0ff0);
11136 inst.instruction |= (value & 0x000f) << 16;
11137}
b99bd4ef 11138
c19d1205 11139static void
3a21c15a 11140do_t_ssat_usat (int bias)
c19d1205 11141{
fdfde340
JM
11142 unsigned Rd, Rn;
11143
11144 Rd = inst.operands[0].reg;
11145 Rn = inst.operands[2].reg;
11146
11147 reject_bad_reg (Rd);
11148 reject_bad_reg (Rn);
11149
11150 inst.instruction |= Rd << 8;
3a21c15a 11151 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11152 inst.instruction |= Rn << 16;
b99bd4ef 11153
c19d1205 11154 if (inst.operands[3].present)
b99bd4ef 11155 {
3a21c15a
NC
11156 offsetT shift_amount = inst.reloc.exp.X_add_number;
11157
11158 inst.reloc.type = BFD_RELOC_UNUSED;
11159
c19d1205
ZW
11160 constraint (inst.reloc.exp.X_op != O_constant,
11161 _("expression too complex"));
b99bd4ef 11162
3a21c15a 11163 if (shift_amount != 0)
6189168b 11164 {
3a21c15a
NC
11165 constraint (shift_amount > 31,
11166 _("shift expression is too large"));
11167
c19d1205 11168 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11169 inst.instruction |= 0x00200000; /* sh bit. */
11170
11171 inst.instruction |= (shift_amount & 0x1c) << 10;
11172 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11173 }
11174 }
b99bd4ef 11175}
c921be7d 11176
3a21c15a
NC
11177static void
11178do_t_ssat (void)
11179{
11180 do_t_ssat_usat (1);
11181}
b99bd4ef 11182
0dd132b6 11183static void
c19d1205 11184do_t_ssat16 (void)
0dd132b6 11185{
fdfde340
JM
11186 unsigned Rd, Rn;
11187
11188 Rd = inst.operands[0].reg;
11189 Rn = inst.operands[2].reg;
11190
11191 reject_bad_reg (Rd);
11192 reject_bad_reg (Rn);
11193
11194 inst.instruction |= Rd << 8;
c19d1205 11195 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11196 inst.instruction |= Rn << 16;
c19d1205 11197}
0dd132b6 11198
c19d1205
ZW
11199static void
11200do_t_strex (void)
11201{
11202 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11203 || inst.operands[2].postind || inst.operands[2].writeback
11204 || inst.operands[2].immisreg || inst.operands[2].shifted
11205 || inst.operands[2].negative,
01cfc07f 11206 BAD_ADDR_MODE);
0dd132b6 11207
c19d1205
ZW
11208 inst.instruction |= inst.operands[0].reg << 8;
11209 inst.instruction |= inst.operands[1].reg << 12;
11210 inst.instruction |= inst.operands[2].reg << 16;
11211 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11212}
11213
b99bd4ef 11214static void
c19d1205 11215do_t_strexd (void)
b99bd4ef 11216{
c19d1205
ZW
11217 if (!inst.operands[2].present)
11218 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11219
c19d1205
ZW
11220 constraint (inst.operands[0].reg == inst.operands[1].reg
11221 || inst.operands[0].reg == inst.operands[2].reg
11222 || inst.operands[0].reg == inst.operands[3].reg
11223 || inst.operands[1].reg == inst.operands[2].reg,
11224 BAD_OVERLAP);
b99bd4ef 11225
c19d1205
ZW
11226 inst.instruction |= inst.operands[0].reg;
11227 inst.instruction |= inst.operands[1].reg << 12;
11228 inst.instruction |= inst.operands[2].reg << 8;
11229 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11230}
11231
11232static void
c19d1205 11233do_t_sxtah (void)
b99bd4ef 11234{
fdfde340
JM
11235 unsigned Rd, Rn, Rm;
11236
11237 Rd = inst.operands[0].reg;
11238 Rn = inst.operands[1].reg;
11239 Rm = inst.operands[2].reg;
11240
11241 reject_bad_reg (Rd);
11242 reject_bad_reg (Rn);
11243 reject_bad_reg (Rm);
11244
11245 inst.instruction |= Rd << 8;
11246 inst.instruction |= Rn << 16;
11247 inst.instruction |= Rm;
c19d1205
ZW
11248 inst.instruction |= inst.operands[3].imm << 4;
11249}
b99bd4ef 11250
c19d1205
ZW
11251static void
11252do_t_sxth (void)
11253{
fdfde340
JM
11254 unsigned Rd, Rm;
11255
11256 Rd = inst.operands[0].reg;
11257 Rm = inst.operands[1].reg;
11258
11259 reject_bad_reg (Rd);
11260 reject_bad_reg (Rm);
c921be7d
NC
11261
11262 if (inst.instruction <= 0xffff
11263 && inst.size_req != 4
fdfde340 11264 && Rd <= 7 && Rm <= 7
c19d1205 11265 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11266 {
c19d1205 11267 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11268 inst.instruction |= Rd;
11269 inst.instruction |= Rm << 3;
b99bd4ef 11270 }
c19d1205 11271 else if (unified_syntax)
b99bd4ef 11272 {
c19d1205
ZW
11273 if (inst.instruction <= 0xffff)
11274 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11275 inst.instruction |= Rd << 8;
11276 inst.instruction |= Rm;
c19d1205 11277 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11278 }
c19d1205 11279 else
b99bd4ef 11280 {
c19d1205
ZW
11281 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11282 _("Thumb encoding does not support rotation"));
11283 constraint (1, BAD_HIREG);
b99bd4ef 11284 }
c19d1205 11285}
b99bd4ef 11286
c19d1205
ZW
11287static void
11288do_t_swi (void)
11289{
11290 inst.reloc.type = BFD_RELOC_ARM_SWI;
11291}
b99bd4ef 11292
92e90b6e
PB
11293static void
11294do_t_tb (void)
11295{
fdfde340 11296 unsigned Rn, Rm;
92e90b6e
PB
11297 int half;
11298
11299 half = (inst.instruction & 0x10) != 0;
e07e6e58 11300 set_it_insn_type_last ();
dfa9f0d5
PB
11301 constraint (inst.operands[0].immisreg,
11302 _("instruction requires register index"));
fdfde340
JM
11303
11304 Rn = inst.operands[0].reg;
11305 Rm = inst.operands[0].imm;
c921be7d 11306
fdfde340
JM
11307 constraint (Rn == REG_SP, BAD_SP);
11308 reject_bad_reg (Rm);
11309
92e90b6e
PB
11310 constraint (!half && inst.operands[0].shifted,
11311 _("instruction does not allow shifted index"));
fdfde340 11312 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11313}
11314
c19d1205
ZW
11315static void
11316do_t_usat (void)
11317{
3a21c15a 11318 do_t_ssat_usat (0);
b99bd4ef
NC
11319}
11320
11321static void
c19d1205 11322do_t_usat16 (void)
b99bd4ef 11323{
fdfde340
JM
11324 unsigned Rd, Rn;
11325
11326 Rd = inst.operands[0].reg;
11327 Rn = inst.operands[2].reg;
11328
11329 reject_bad_reg (Rd);
11330 reject_bad_reg (Rn);
11331
11332 inst.instruction |= Rd << 8;
c19d1205 11333 inst.instruction |= inst.operands[1].imm;
fdfde340 11334 inst.instruction |= Rn << 16;
b99bd4ef 11335}
c19d1205 11336
5287ad62 11337/* Neon instruction encoder helpers. */
5f4273c7 11338
5287ad62 11339/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11340
5287ad62
JB
11341/* An "invalid" code for the following tables. */
11342#define N_INV -1u
11343
11344struct neon_tab_entry
b99bd4ef 11345{
5287ad62
JB
11346 unsigned integer;
11347 unsigned float_or_poly;
11348 unsigned scalar_or_imm;
11349};
5f4273c7 11350
5287ad62
JB
11351/* Map overloaded Neon opcodes to their respective encodings. */
11352#define NEON_ENC_TAB \
11353 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11354 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11355 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11356 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11357 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11358 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11359 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11360 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11361 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11362 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11363 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11364 /* Register variants of the following two instructions are encoded as
e07e6e58 11365 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11366 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11367 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11368 X(vfma, N_INV, 0x0000c10, N_INV), \
11369 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11370 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11371 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11372 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11373 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11374 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11375 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11376 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11377 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11378 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11379 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11380 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11381 X(vshl, 0x0000400, N_INV, 0x0800510), \
11382 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11383 X(vand, 0x0000110, N_INV, 0x0800030), \
11384 X(vbic, 0x0100110, N_INV, 0x0800030), \
11385 X(veor, 0x1000110, N_INV, N_INV), \
11386 X(vorn, 0x0300110, N_INV, 0x0800010), \
11387 X(vorr, 0x0200110, N_INV, 0x0800010), \
11388 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11389 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11390 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11391 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11392 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11393 X(vst1, 0x0000000, 0x0800000, N_INV), \
11394 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11395 X(vst2, 0x0000100, 0x0800100, N_INV), \
11396 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11397 X(vst3, 0x0000200, 0x0800200, N_INV), \
11398 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11399 X(vst4, 0x0000300, 0x0800300, N_INV), \
11400 X(vmovn, 0x1b20200, N_INV, N_INV), \
11401 X(vtrn, 0x1b20080, N_INV, N_INV), \
11402 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11403 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11404 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11405 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11406 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11407 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11408 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11409 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11410 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11411 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11412 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11413
11414enum neon_opc
11415{
11416#define X(OPC,I,F,S) N_MNEM_##OPC
11417NEON_ENC_TAB
11418#undef X
11419};
b99bd4ef 11420
5287ad62
JB
11421static const struct neon_tab_entry neon_enc_tab[] =
11422{
11423#define X(OPC,I,F,S) { (I), (F), (S) }
11424NEON_ENC_TAB
11425#undef X
11426};
b99bd4ef 11427
5287ad62
JB
11428#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11429#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11430#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11431#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11432#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11433#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11434#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11435#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11436#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
11437#define NEON_ENC_SINGLE(X) \
11438 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11439#define NEON_ENC_DOUBLE(X) \
11440 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11441
037e8744
JB
11442/* Define shapes for instruction operands. The following mnemonic characters
11443 are used in this table:
5287ad62 11444
037e8744 11445 F - VFP S<n> register
5287ad62
JB
11446 D - Neon D<n> register
11447 Q - Neon Q<n> register
11448 I - Immediate
11449 S - Scalar
11450 R - ARM register
11451 L - D<n> register list
5f4273c7 11452
037e8744
JB
11453 This table is used to generate various data:
11454 - enumerations of the form NS_DDR to be used as arguments to
11455 neon_select_shape.
11456 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11457 - a table used to drive neon_select_shape. */
b99bd4ef 11458
037e8744
JB
11459#define NEON_SHAPE_DEF \
11460 X(3, (D, D, D), DOUBLE), \
11461 X(3, (Q, Q, Q), QUAD), \
11462 X(3, (D, D, I), DOUBLE), \
11463 X(3, (Q, Q, I), QUAD), \
11464 X(3, (D, D, S), DOUBLE), \
11465 X(3, (Q, Q, S), QUAD), \
11466 X(2, (D, D), DOUBLE), \
11467 X(2, (Q, Q), QUAD), \
11468 X(2, (D, S), DOUBLE), \
11469 X(2, (Q, S), QUAD), \
11470 X(2, (D, R), DOUBLE), \
11471 X(2, (Q, R), QUAD), \
11472 X(2, (D, I), DOUBLE), \
11473 X(2, (Q, I), QUAD), \
11474 X(3, (D, L, D), DOUBLE), \
11475 X(2, (D, Q), MIXED), \
11476 X(2, (Q, D), MIXED), \
11477 X(3, (D, Q, I), MIXED), \
11478 X(3, (Q, D, I), MIXED), \
11479 X(3, (Q, D, D), MIXED), \
11480 X(3, (D, Q, Q), MIXED), \
11481 X(3, (Q, Q, D), MIXED), \
11482 X(3, (Q, D, S), MIXED), \
11483 X(3, (D, Q, S), MIXED), \
11484 X(4, (D, D, D, I), DOUBLE), \
11485 X(4, (Q, Q, Q, I), QUAD), \
11486 X(2, (F, F), SINGLE), \
11487 X(3, (F, F, F), SINGLE), \
11488 X(2, (F, I), SINGLE), \
11489 X(2, (F, D), MIXED), \
11490 X(2, (D, F), MIXED), \
11491 X(3, (F, F, I), MIXED), \
11492 X(4, (R, R, F, F), SINGLE), \
11493 X(4, (F, F, R, R), SINGLE), \
11494 X(3, (D, R, R), DOUBLE), \
11495 X(3, (R, R, D), DOUBLE), \
11496 X(2, (S, R), SINGLE), \
11497 X(2, (R, S), SINGLE), \
11498 X(2, (F, R), SINGLE), \
11499 X(2, (R, F), SINGLE)
11500
11501#define S2(A,B) NS_##A##B
11502#define S3(A,B,C) NS_##A##B##C
11503#define S4(A,B,C,D) NS_##A##B##C##D
11504
11505#define X(N, L, C) S##N L
11506
5287ad62
JB
11507enum neon_shape
11508{
037e8744
JB
11509 NEON_SHAPE_DEF,
11510 NS_NULL
5287ad62 11511};
b99bd4ef 11512
037e8744
JB
11513#undef X
11514#undef S2
11515#undef S3
11516#undef S4
11517
11518enum neon_shape_class
11519{
11520 SC_SINGLE,
11521 SC_DOUBLE,
11522 SC_QUAD,
11523 SC_MIXED
11524};
11525
11526#define X(N, L, C) SC_##C
11527
11528static enum neon_shape_class neon_shape_class[] =
11529{
11530 NEON_SHAPE_DEF
11531};
11532
11533#undef X
11534
11535enum neon_shape_el
11536{
11537 SE_F,
11538 SE_D,
11539 SE_Q,
11540 SE_I,
11541 SE_S,
11542 SE_R,
11543 SE_L
11544};
11545
11546/* Register widths of above. */
11547static unsigned neon_shape_el_size[] =
11548{
11549 32,
11550 64,
11551 128,
11552 0,
11553 32,
11554 32,
11555 0
11556};
11557
11558struct neon_shape_info
11559{
11560 unsigned els;
11561 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11562};
11563
11564#define S2(A,B) { SE_##A, SE_##B }
11565#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11566#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11567
11568#define X(N, L, C) { N, S##N L }
11569
11570static struct neon_shape_info neon_shape_tab[] =
11571{
11572 NEON_SHAPE_DEF
11573};
11574
11575#undef X
11576#undef S2
11577#undef S3
11578#undef S4
11579
5287ad62
JB
11580/* Bit masks used in type checking given instructions.
11581 'N_EQK' means the type must be the same as (or based on in some way) the key
11582 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11583 set, various other bits can be set as well in order to modify the meaning of
11584 the type constraint. */
11585
11586enum neon_type_mask
11587{
8e79c3df
CM
11588 N_S8 = 0x0000001,
11589 N_S16 = 0x0000002,
11590 N_S32 = 0x0000004,
11591 N_S64 = 0x0000008,
11592 N_U8 = 0x0000010,
11593 N_U16 = 0x0000020,
11594 N_U32 = 0x0000040,
11595 N_U64 = 0x0000080,
11596 N_I8 = 0x0000100,
11597 N_I16 = 0x0000200,
11598 N_I32 = 0x0000400,
11599 N_I64 = 0x0000800,
11600 N_8 = 0x0001000,
11601 N_16 = 0x0002000,
11602 N_32 = 0x0004000,
11603 N_64 = 0x0008000,
11604 N_P8 = 0x0010000,
11605 N_P16 = 0x0020000,
11606 N_F16 = 0x0040000,
11607 N_F32 = 0x0080000,
11608 N_F64 = 0x0100000,
c921be7d
NC
11609 N_KEY = 0x1000000, /* Key element (main type specifier). */
11610 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11611 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11612 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11613 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11614 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11615 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11616 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11617 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11618 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11619 N_UTYP = 0,
037e8744 11620 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11621};
11622
dcbf9037
JB
11623#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11624
5287ad62
JB
11625#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11626#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11627#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11628#define N_SUF_32 (N_SU_32 | N_F32)
11629#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11630#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11631
11632/* Pass this as the first type argument to neon_check_type to ignore types
11633 altogether. */
11634#define N_IGNORE_TYPE (N_KEY | N_EQK)
11635
037e8744
JB
11636/* Select a "shape" for the current instruction (describing register types or
11637 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11638 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11639 function of operand parsing, so this function doesn't need to be called.
11640 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11641
11642static enum neon_shape
037e8744 11643neon_select_shape (enum neon_shape shape, ...)
5287ad62 11644{
037e8744
JB
11645 va_list ap;
11646 enum neon_shape first_shape = shape;
5287ad62
JB
11647
11648 /* Fix missing optional operands. FIXME: we don't know at this point how
11649 many arguments we should have, so this makes the assumption that we have
11650 > 1. This is true of all current Neon opcodes, I think, but may not be
11651 true in the future. */
11652 if (!inst.operands[1].present)
11653 inst.operands[1] = inst.operands[0];
11654
037e8744 11655 va_start (ap, shape);
5f4273c7 11656
21d799b5 11657 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
11658 {
11659 unsigned j;
11660 int matches = 1;
11661
11662 for (j = 0; j < neon_shape_tab[shape].els; j++)
11663 {
11664 if (!inst.operands[j].present)
11665 {
11666 matches = 0;
11667 break;
11668 }
11669
11670 switch (neon_shape_tab[shape].el[j])
11671 {
11672 case SE_F:
11673 if (!(inst.operands[j].isreg
11674 && inst.operands[j].isvec
11675 && inst.operands[j].issingle
11676 && !inst.operands[j].isquad))
11677 matches = 0;
11678 break;
11679
11680 case SE_D:
11681 if (!(inst.operands[j].isreg
11682 && inst.operands[j].isvec
11683 && !inst.operands[j].isquad
11684 && !inst.operands[j].issingle))
11685 matches = 0;
11686 break;
11687
11688 case SE_R:
11689 if (!(inst.operands[j].isreg
11690 && !inst.operands[j].isvec))
11691 matches = 0;
11692 break;
11693
11694 case SE_Q:
11695 if (!(inst.operands[j].isreg
11696 && inst.operands[j].isvec
11697 && inst.operands[j].isquad
11698 && !inst.operands[j].issingle))
11699 matches = 0;
11700 break;
11701
11702 case SE_I:
11703 if (!(!inst.operands[j].isreg
11704 && !inst.operands[j].isscalar))
11705 matches = 0;
11706 break;
11707
11708 case SE_S:
11709 if (!(!inst.operands[j].isreg
11710 && inst.operands[j].isscalar))
11711 matches = 0;
11712 break;
11713
11714 case SE_L:
11715 break;
11716 }
11717 }
11718 if (matches)
5287ad62 11719 break;
037e8744 11720 }
5f4273c7 11721
037e8744 11722 va_end (ap);
5287ad62 11723
037e8744
JB
11724 if (shape == NS_NULL && first_shape != NS_NULL)
11725 first_error (_("invalid instruction shape"));
5287ad62 11726
037e8744
JB
11727 return shape;
11728}
5287ad62 11729
037e8744
JB
11730/* True if SHAPE is predominantly a quadword operation (most of the time, this
11731 means the Q bit should be set). */
11732
11733static int
11734neon_quad (enum neon_shape shape)
11735{
11736 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11737}
037e8744 11738
5287ad62
JB
11739static void
11740neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11741 unsigned *g_size)
11742{
11743 /* Allow modification to be made to types which are constrained to be
11744 based on the key element, based on bits set alongside N_EQK. */
11745 if ((typebits & N_EQK) != 0)
11746 {
11747 if ((typebits & N_HLF) != 0)
11748 *g_size /= 2;
11749 else if ((typebits & N_DBL) != 0)
11750 *g_size *= 2;
11751 if ((typebits & N_SGN) != 0)
11752 *g_type = NT_signed;
11753 else if ((typebits & N_UNS) != 0)
11754 *g_type = NT_unsigned;
11755 else if ((typebits & N_INT) != 0)
11756 *g_type = NT_integer;
11757 else if ((typebits & N_FLT) != 0)
11758 *g_type = NT_float;
dcbf9037
JB
11759 else if ((typebits & N_SIZ) != 0)
11760 *g_type = NT_untyped;
5287ad62
JB
11761 }
11762}
5f4273c7 11763
5287ad62
JB
11764/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11765 operand type, i.e. the single type specified in a Neon instruction when it
11766 is the only one given. */
11767
11768static struct neon_type_el
11769neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11770{
11771 struct neon_type_el dest = *key;
5f4273c7 11772
9c2799c2 11773 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 11774
5287ad62
JB
11775 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11776
11777 return dest;
11778}
11779
11780/* Convert Neon type and size into compact bitmask representation. */
11781
11782static enum neon_type_mask
11783type_chk_of_el_type (enum neon_el_type type, unsigned size)
11784{
11785 switch (type)
11786 {
11787 case NT_untyped:
11788 switch (size)
11789 {
11790 case 8: return N_8;
11791 case 16: return N_16;
11792 case 32: return N_32;
11793 case 64: return N_64;
11794 default: ;
11795 }
11796 break;
11797
11798 case NT_integer:
11799 switch (size)
11800 {
11801 case 8: return N_I8;
11802 case 16: return N_I16;
11803 case 32: return N_I32;
11804 case 64: return N_I64;
11805 default: ;
11806 }
11807 break;
11808
11809 case NT_float:
037e8744
JB
11810 switch (size)
11811 {
8e79c3df 11812 case 16: return N_F16;
037e8744
JB
11813 case 32: return N_F32;
11814 case 64: return N_F64;
11815 default: ;
11816 }
5287ad62
JB
11817 break;
11818
11819 case NT_poly:
11820 switch (size)
11821 {
11822 case 8: return N_P8;
11823 case 16: return N_P16;
11824 default: ;
11825 }
11826 break;
11827
11828 case NT_signed:
11829 switch (size)
11830 {
11831 case 8: return N_S8;
11832 case 16: return N_S16;
11833 case 32: return N_S32;
11834 case 64: return N_S64;
11835 default: ;
11836 }
11837 break;
11838
11839 case NT_unsigned:
11840 switch (size)
11841 {
11842 case 8: return N_U8;
11843 case 16: return N_U16;
11844 case 32: return N_U32;
11845 case 64: return N_U64;
11846 default: ;
11847 }
11848 break;
11849
11850 default: ;
11851 }
5f4273c7 11852
5287ad62
JB
11853 return N_UTYP;
11854}
11855
11856/* Convert compact Neon bitmask type representation to a type and size. Only
11857 handles the case where a single bit is set in the mask. */
11858
dcbf9037 11859static int
5287ad62
JB
11860el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11861 enum neon_type_mask mask)
11862{
dcbf9037
JB
11863 if ((mask & N_EQK) != 0)
11864 return FAIL;
11865
5287ad62
JB
11866 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11867 *size = 8;
dcbf9037 11868 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 11869 *size = 16;
dcbf9037 11870 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 11871 *size = 32;
037e8744 11872 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 11873 *size = 64;
dcbf9037
JB
11874 else
11875 return FAIL;
11876
5287ad62
JB
11877 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11878 *type = NT_signed;
dcbf9037 11879 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 11880 *type = NT_unsigned;
dcbf9037 11881 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 11882 *type = NT_integer;
dcbf9037 11883 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 11884 *type = NT_untyped;
dcbf9037 11885 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 11886 *type = NT_poly;
037e8744 11887 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 11888 *type = NT_float;
dcbf9037
JB
11889 else
11890 return FAIL;
5f4273c7 11891
dcbf9037 11892 return SUCCESS;
5287ad62
JB
11893}
11894
11895/* Modify a bitmask of allowed types. This is only needed for type
11896 relaxation. */
11897
11898static unsigned
11899modify_types_allowed (unsigned allowed, unsigned mods)
11900{
11901 unsigned size;
11902 enum neon_el_type type;
11903 unsigned destmask;
11904 int i;
5f4273c7 11905
5287ad62 11906 destmask = 0;
5f4273c7 11907
5287ad62
JB
11908 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11909 {
21d799b5
NC
11910 if (el_type_of_type_chk (&type, &size,
11911 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
11912 {
11913 neon_modify_type_size (mods, &type, &size);
11914 destmask |= type_chk_of_el_type (type, size);
11915 }
5287ad62 11916 }
5f4273c7 11917
5287ad62
JB
11918 return destmask;
11919}
11920
11921/* Check type and return type classification.
11922 The manual states (paraphrase): If one datatype is given, it indicates the
11923 type given in:
11924 - the second operand, if there is one
11925 - the operand, if there is no second operand
11926 - the result, if there are no operands.
11927 This isn't quite good enough though, so we use a concept of a "key" datatype
11928 which is set on a per-instruction basis, which is the one which matters when
11929 only one data type is written.
11930 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 11931 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
11932
11933static struct neon_type_el
11934neon_check_type (unsigned els, enum neon_shape ns, ...)
11935{
11936 va_list ap;
11937 unsigned i, pass, key_el = 0;
11938 unsigned types[NEON_MAX_TYPE_ELS];
11939 enum neon_el_type k_type = NT_invtype;
11940 unsigned k_size = -1u;
11941 struct neon_type_el badtype = {NT_invtype, -1};
11942 unsigned key_allowed = 0;
11943
11944 /* Optional registers in Neon instructions are always (not) in operand 1.
11945 Fill in the missing operand here, if it was omitted. */
11946 if (els > 1 && !inst.operands[1].present)
11947 inst.operands[1] = inst.operands[0];
11948
11949 /* Suck up all the varargs. */
11950 va_start (ap, ns);
11951 for (i = 0; i < els; i++)
11952 {
11953 unsigned thisarg = va_arg (ap, unsigned);
11954 if (thisarg == N_IGNORE_TYPE)
11955 {
11956 va_end (ap);
11957 return badtype;
11958 }
11959 types[i] = thisarg;
11960 if ((thisarg & N_KEY) != 0)
11961 key_el = i;
11962 }
11963 va_end (ap);
11964
dcbf9037
JB
11965 if (inst.vectype.elems > 0)
11966 for (i = 0; i < els; i++)
11967 if (inst.operands[i].vectype.type != NT_invtype)
11968 {
11969 first_error (_("types specified in both the mnemonic and operands"));
11970 return badtype;
11971 }
11972
5287ad62
JB
11973 /* Duplicate inst.vectype elements here as necessary.
11974 FIXME: No idea if this is exactly the same as the ARM assembler,
11975 particularly when an insn takes one register and one non-register
11976 operand. */
11977 if (inst.vectype.elems == 1 && els > 1)
11978 {
11979 unsigned j;
11980 inst.vectype.elems = els;
11981 inst.vectype.el[key_el] = inst.vectype.el[0];
11982 for (j = 0; j < els; j++)
dcbf9037
JB
11983 if (j != key_el)
11984 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11985 types[j]);
11986 }
11987 else if (inst.vectype.elems == 0 && els > 0)
11988 {
11989 unsigned j;
11990 /* No types were given after the mnemonic, so look for types specified
11991 after each operand. We allow some flexibility here; as long as the
11992 "key" operand has a type, we can infer the others. */
11993 for (j = 0; j < els; j++)
11994 if (inst.operands[j].vectype.type != NT_invtype)
11995 inst.vectype.el[j] = inst.operands[j].vectype;
11996
11997 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11998 {
dcbf9037
JB
11999 for (j = 0; j < els; j++)
12000 if (inst.operands[j].vectype.type == NT_invtype)
12001 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12002 types[j]);
12003 }
12004 else
12005 {
12006 first_error (_("operand types can't be inferred"));
12007 return badtype;
5287ad62
JB
12008 }
12009 }
12010 else if (inst.vectype.elems != els)
12011 {
dcbf9037 12012 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12013 return badtype;
12014 }
12015
12016 for (pass = 0; pass < 2; pass++)
12017 {
12018 for (i = 0; i < els; i++)
12019 {
12020 unsigned thisarg = types[i];
12021 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12022 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12023 enum neon_el_type g_type = inst.vectype.el[i].type;
12024 unsigned g_size = inst.vectype.el[i].size;
12025
12026 /* Decay more-specific signed & unsigned types to sign-insensitive
12027 integer types if sign-specific variants are unavailable. */
12028 if ((g_type == NT_signed || g_type == NT_unsigned)
12029 && (types_allowed & N_SU_ALL) == 0)
12030 g_type = NT_integer;
12031
12032 /* If only untyped args are allowed, decay any more specific types to
12033 them. Some instructions only care about signs for some element
12034 sizes, so handle that properly. */
12035 if ((g_size == 8 && (types_allowed & N_8) != 0)
12036 || (g_size == 16 && (types_allowed & N_16) != 0)
12037 || (g_size == 32 && (types_allowed & N_32) != 0)
12038 || (g_size == 64 && (types_allowed & N_64) != 0))
12039 g_type = NT_untyped;
12040
12041 if (pass == 0)
12042 {
12043 if ((thisarg & N_KEY) != 0)
12044 {
12045 k_type = g_type;
12046 k_size = g_size;
12047 key_allowed = thisarg & ~N_KEY;
12048 }
12049 }
12050 else
12051 {
037e8744
JB
12052 if ((thisarg & N_VFP) != 0)
12053 {
12054 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
12055 unsigned regwidth = neon_shape_el_size[regshape], match;
12056
12057 /* In VFP mode, operands must match register widths. If we
12058 have a key operand, use its width, else use the width of
12059 the current operand. */
12060 if (k_size != -1u)
12061 match = k_size;
12062 else
12063 match = g_size;
12064
12065 if (regwidth != match)
12066 {
12067 first_error (_("operand size must match register width"));
12068 return badtype;
12069 }
12070 }
5f4273c7 12071
5287ad62
JB
12072 if ((thisarg & N_EQK) == 0)
12073 {
12074 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12075
12076 if ((given_type & types_allowed) == 0)
12077 {
dcbf9037 12078 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12079 return badtype;
12080 }
12081 }
12082 else
12083 {
12084 enum neon_el_type mod_k_type = k_type;
12085 unsigned mod_k_size = k_size;
12086 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12087 if (g_type != mod_k_type || g_size != mod_k_size)
12088 {
dcbf9037 12089 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12090 return badtype;
12091 }
12092 }
12093 }
12094 }
12095 }
12096
12097 return inst.vectype.el[key_el];
12098}
12099
037e8744 12100/* Neon-style VFP instruction forwarding. */
5287ad62 12101
037e8744
JB
12102/* Thumb VFP instructions have 0xE in the condition field. */
12103
12104static void
12105do_vfp_cond_or_thumb (void)
5287ad62
JB
12106{
12107 if (thumb_mode)
037e8744 12108 inst.instruction |= 0xe0000000;
5287ad62 12109 else
037e8744 12110 inst.instruction |= inst.cond << 28;
5287ad62
JB
12111}
12112
037e8744
JB
12113/* Look up and encode a simple mnemonic, for use as a helper function for the
12114 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12115 etc. It is assumed that operand parsing has already been done, and that the
12116 operands are in the form expected by the given opcode (this isn't necessarily
12117 the same as the form in which they were parsed, hence some massaging must
12118 take place before this function is called).
12119 Checks current arch version against that in the looked-up opcode. */
5287ad62 12120
037e8744
JB
12121static void
12122do_vfp_nsyn_opcode (const char *opname)
5287ad62 12123{
037e8744 12124 const struct asm_opcode *opcode;
5f4273c7 12125
21d799b5 12126 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12127
037e8744
JB
12128 if (!opcode)
12129 abort ();
5287ad62 12130
037e8744
JB
12131 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12132 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12133 _(BAD_FPU));
5287ad62 12134
037e8744
JB
12135 if (thumb_mode)
12136 {
12137 inst.instruction = opcode->tvalue;
12138 opcode->tencode ();
12139 }
12140 else
12141 {
12142 inst.instruction = (inst.cond << 28) | opcode->avalue;
12143 opcode->aencode ();
12144 }
12145}
5287ad62
JB
12146
12147static void
037e8744 12148do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12149{
037e8744
JB
12150 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12151
12152 if (rs == NS_FFF)
12153 {
12154 if (is_add)
12155 do_vfp_nsyn_opcode ("fadds");
12156 else
12157 do_vfp_nsyn_opcode ("fsubs");
12158 }
12159 else
12160 {
12161 if (is_add)
12162 do_vfp_nsyn_opcode ("faddd");
12163 else
12164 do_vfp_nsyn_opcode ("fsubd");
12165 }
12166}
12167
12168/* Check operand types to see if this is a VFP instruction, and if so call
12169 PFN (). */
12170
12171static int
12172try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12173{
12174 enum neon_shape rs;
12175 struct neon_type_el et;
12176
12177 switch (args)
12178 {
12179 case 2:
12180 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12181 et = neon_check_type (2, rs,
12182 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12183 break;
5f4273c7 12184
037e8744
JB
12185 case 3:
12186 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12187 et = neon_check_type (3, rs,
12188 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12189 break;
12190
12191 default:
12192 abort ();
12193 }
12194
12195 if (et.type != NT_invtype)
12196 {
12197 pfn (rs);
12198 return SUCCESS;
12199 }
12200 else
12201 inst.error = NULL;
12202
12203 return FAIL;
12204}
12205
12206static void
12207do_vfp_nsyn_mla_mls (enum neon_shape rs)
12208{
12209 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12210
037e8744
JB
12211 if (rs == NS_FFF)
12212 {
12213 if (is_mla)
12214 do_vfp_nsyn_opcode ("fmacs");
12215 else
1ee69515 12216 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12217 }
12218 else
12219 {
12220 if (is_mla)
12221 do_vfp_nsyn_opcode ("fmacd");
12222 else
1ee69515 12223 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12224 }
12225}
12226
62f3b8c8
PB
12227static void
12228do_vfp_nsyn_fma_fms (enum neon_shape rs)
12229{
12230 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12231
12232 if (rs == NS_FFF)
12233 {
12234 if (is_fma)
12235 do_vfp_nsyn_opcode ("ffmas");
12236 else
12237 do_vfp_nsyn_opcode ("ffnmas");
12238 }
12239 else
12240 {
12241 if (is_fma)
12242 do_vfp_nsyn_opcode ("ffmad");
12243 else
12244 do_vfp_nsyn_opcode ("ffnmad");
12245 }
12246}
12247
037e8744
JB
12248static void
12249do_vfp_nsyn_mul (enum neon_shape rs)
12250{
12251 if (rs == NS_FFF)
12252 do_vfp_nsyn_opcode ("fmuls");
12253 else
12254 do_vfp_nsyn_opcode ("fmuld");
12255}
12256
12257static void
12258do_vfp_nsyn_abs_neg (enum neon_shape rs)
12259{
12260 int is_neg = (inst.instruction & 0x80) != 0;
12261 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12262
12263 if (rs == NS_FF)
12264 {
12265 if (is_neg)
12266 do_vfp_nsyn_opcode ("fnegs");
12267 else
12268 do_vfp_nsyn_opcode ("fabss");
12269 }
12270 else
12271 {
12272 if (is_neg)
12273 do_vfp_nsyn_opcode ("fnegd");
12274 else
12275 do_vfp_nsyn_opcode ("fabsd");
12276 }
12277}
12278
12279/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12280 insns belong to Neon, and are handled elsewhere. */
12281
12282static void
12283do_vfp_nsyn_ldm_stm (int is_dbmode)
12284{
12285 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12286 if (is_ldm)
12287 {
12288 if (is_dbmode)
12289 do_vfp_nsyn_opcode ("fldmdbs");
12290 else
12291 do_vfp_nsyn_opcode ("fldmias");
12292 }
12293 else
12294 {
12295 if (is_dbmode)
12296 do_vfp_nsyn_opcode ("fstmdbs");
12297 else
12298 do_vfp_nsyn_opcode ("fstmias");
12299 }
12300}
12301
037e8744
JB
12302static void
12303do_vfp_nsyn_sqrt (void)
12304{
12305 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12306 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12307
037e8744
JB
12308 if (rs == NS_FF)
12309 do_vfp_nsyn_opcode ("fsqrts");
12310 else
12311 do_vfp_nsyn_opcode ("fsqrtd");
12312}
12313
12314static void
12315do_vfp_nsyn_div (void)
12316{
12317 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12318 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12319 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12320
037e8744
JB
12321 if (rs == NS_FFF)
12322 do_vfp_nsyn_opcode ("fdivs");
12323 else
12324 do_vfp_nsyn_opcode ("fdivd");
12325}
12326
12327static void
12328do_vfp_nsyn_nmul (void)
12329{
12330 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12331 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12332 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12333
037e8744
JB
12334 if (rs == NS_FFF)
12335 {
12336 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12337 do_vfp_sp_dyadic ();
12338 }
12339 else
12340 {
12341 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12342 do_vfp_dp_rd_rn_rm ();
12343 }
12344 do_vfp_cond_or_thumb ();
12345}
12346
12347static void
12348do_vfp_nsyn_cmp (void)
12349{
12350 if (inst.operands[1].isreg)
12351 {
12352 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12353 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12354
037e8744
JB
12355 if (rs == NS_FF)
12356 {
12357 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12358 do_vfp_sp_monadic ();
12359 }
12360 else
12361 {
12362 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12363 do_vfp_dp_rd_rm ();
12364 }
12365 }
12366 else
12367 {
12368 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12369 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12370
12371 switch (inst.instruction & 0x0fffffff)
12372 {
12373 case N_MNEM_vcmp:
12374 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12375 break;
12376 case N_MNEM_vcmpe:
12377 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12378 break;
12379 default:
12380 abort ();
12381 }
5f4273c7 12382
037e8744
JB
12383 if (rs == NS_FI)
12384 {
12385 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12386 do_vfp_sp_compare_z ();
12387 }
12388 else
12389 {
12390 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12391 do_vfp_dp_rd ();
12392 }
12393 }
12394 do_vfp_cond_or_thumb ();
12395}
12396
12397static void
12398nsyn_insert_sp (void)
12399{
12400 inst.operands[1] = inst.operands[0];
12401 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12402 inst.operands[0].reg = REG_SP;
037e8744
JB
12403 inst.operands[0].isreg = 1;
12404 inst.operands[0].writeback = 1;
12405 inst.operands[0].present = 1;
12406}
12407
12408static void
12409do_vfp_nsyn_push (void)
12410{
12411 nsyn_insert_sp ();
12412 if (inst.operands[1].issingle)
12413 do_vfp_nsyn_opcode ("fstmdbs");
12414 else
12415 do_vfp_nsyn_opcode ("fstmdbd");
12416}
12417
12418static void
12419do_vfp_nsyn_pop (void)
12420{
12421 nsyn_insert_sp ();
12422 if (inst.operands[1].issingle)
22b5b651 12423 do_vfp_nsyn_opcode ("fldmias");
037e8744 12424 else
22b5b651 12425 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12426}
12427
12428/* Fix up Neon data-processing instructions, ORing in the correct bits for
12429 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12430
12431static unsigned
12432neon_dp_fixup (unsigned i)
12433{
12434 if (thumb_mode)
12435 {
12436 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12437 if (i & (1 << 24))
12438 i |= 1 << 28;
5f4273c7 12439
037e8744 12440 i &= ~(1 << 24);
5f4273c7 12441
037e8744
JB
12442 i |= 0xef000000;
12443 }
12444 else
12445 i |= 0xf2000000;
5f4273c7 12446
037e8744
JB
12447 return i;
12448}
12449
12450/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12451 (0, 1, 2, 3). */
12452
12453static unsigned
12454neon_logbits (unsigned x)
12455{
12456 return ffs (x) - 4;
12457}
12458
12459#define LOW4(R) ((R) & 0xf)
12460#define HI1(R) (((R) >> 4) & 1)
12461
12462/* Encode insns with bit pattern:
12463
12464 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12465 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12466
037e8744
JB
12467 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12468 different meaning for some instruction. */
12469
12470static void
12471neon_three_same (int isquad, int ubit, int size)
12472{
12473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12475 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12476 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12477 inst.instruction |= LOW4 (inst.operands[2].reg);
12478 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12479 inst.instruction |= (isquad != 0) << 6;
12480 inst.instruction |= (ubit != 0) << 24;
12481 if (size != -1)
12482 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12483
037e8744
JB
12484 inst.instruction = neon_dp_fixup (inst.instruction);
12485}
12486
12487/* Encode instructions of the form:
12488
12489 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12490 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12491
12492 Don't write size if SIZE == -1. */
12493
12494static void
12495neon_two_same (int qbit, int ubit, int size)
12496{
12497 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12498 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12499 inst.instruction |= LOW4 (inst.operands[1].reg);
12500 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12501 inst.instruction |= (qbit != 0) << 6;
12502 inst.instruction |= (ubit != 0) << 24;
12503
12504 if (size != -1)
12505 inst.instruction |= neon_logbits (size) << 18;
12506
12507 inst.instruction = neon_dp_fixup (inst.instruction);
12508}
12509
12510/* Neon instruction encoders, in approximate order of appearance. */
12511
12512static void
12513do_neon_dyadic_i_su (void)
12514{
037e8744 12515 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12516 struct neon_type_el et = neon_check_type (3, rs,
12517 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12518 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12519}
12520
12521static void
12522do_neon_dyadic_i64_su (void)
12523{
037e8744 12524 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12525 struct neon_type_el et = neon_check_type (3, rs,
12526 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12527 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12528}
12529
12530static void
12531neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12532 unsigned immbits)
12533{
12534 unsigned size = et.size >> 3;
12535 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12536 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12537 inst.instruction |= LOW4 (inst.operands[1].reg);
12538 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12539 inst.instruction |= (isquad != 0) << 6;
12540 inst.instruction |= immbits << 16;
12541 inst.instruction |= (size >> 3) << 7;
12542 inst.instruction |= (size & 0x7) << 19;
12543 if (write_ubit)
12544 inst.instruction |= (uval != 0) << 24;
12545
12546 inst.instruction = neon_dp_fixup (inst.instruction);
12547}
12548
12549static void
12550do_neon_shl_imm (void)
12551{
12552 if (!inst.operands[2].isreg)
12553 {
037e8744 12554 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12555 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12556 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12557 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12558 }
12559 else
12560 {
037e8744 12561 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12562 struct neon_type_el et = neon_check_type (3, rs,
12563 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12564 unsigned int tmp;
12565
12566 /* VSHL/VQSHL 3-register variants have syntax such as:
12567 vshl.xx Dd, Dm, Dn
12568 whereas other 3-register operations encoded by neon_three_same have
12569 syntax like:
12570 vadd.xx Dd, Dn, Dm
12571 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12572 here. */
12573 tmp = inst.operands[2].reg;
12574 inst.operands[2].reg = inst.operands[1].reg;
12575 inst.operands[1].reg = tmp;
5287ad62 12576 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12577 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12578 }
12579}
12580
12581static void
12582do_neon_qshl_imm (void)
12583{
12584 if (!inst.operands[2].isreg)
12585 {
037e8744 12586 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12587 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12588
5287ad62 12589 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12590 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12591 inst.operands[2].imm);
12592 }
12593 else
12594 {
037e8744 12595 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12596 struct neon_type_el et = neon_check_type (3, rs,
12597 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12598 unsigned int tmp;
12599
12600 /* See note in do_neon_shl_imm. */
12601 tmp = inst.operands[2].reg;
12602 inst.operands[2].reg = inst.operands[1].reg;
12603 inst.operands[1].reg = tmp;
5287ad62 12604 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12605 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12606 }
12607}
12608
627907b7
JB
12609static void
12610do_neon_rshl (void)
12611{
12612 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12613 struct neon_type_el et = neon_check_type (3, rs,
12614 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12615 unsigned int tmp;
12616
12617 tmp = inst.operands[2].reg;
12618 inst.operands[2].reg = inst.operands[1].reg;
12619 inst.operands[1].reg = tmp;
12620 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12621}
12622
5287ad62
JB
12623static int
12624neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12625{
036dc3f7
PB
12626 /* Handle .I8 pseudo-instructions. */
12627 if (size == 8)
5287ad62 12628 {
5287ad62
JB
12629 /* Unfortunately, this will make everything apart from zero out-of-range.
12630 FIXME is this the intended semantics? There doesn't seem much point in
12631 accepting .I8 if so. */
12632 immediate |= immediate << 8;
12633 size = 16;
036dc3f7
PB
12634 }
12635
12636 if (size >= 32)
12637 {
12638 if (immediate == (immediate & 0x000000ff))
12639 {
12640 *immbits = immediate;
12641 return 0x1;
12642 }
12643 else if (immediate == (immediate & 0x0000ff00))
12644 {
12645 *immbits = immediate >> 8;
12646 return 0x3;
12647 }
12648 else if (immediate == (immediate & 0x00ff0000))
12649 {
12650 *immbits = immediate >> 16;
12651 return 0x5;
12652 }
12653 else if (immediate == (immediate & 0xff000000))
12654 {
12655 *immbits = immediate >> 24;
12656 return 0x7;
12657 }
12658 if ((immediate & 0xffff) != (immediate >> 16))
12659 goto bad_immediate;
12660 immediate &= 0xffff;
5287ad62
JB
12661 }
12662
12663 if (immediate == (immediate & 0x000000ff))
12664 {
12665 *immbits = immediate;
036dc3f7 12666 return 0x9;
5287ad62
JB
12667 }
12668 else if (immediate == (immediate & 0x0000ff00))
12669 {
12670 *immbits = immediate >> 8;
036dc3f7 12671 return 0xb;
5287ad62
JB
12672 }
12673
12674 bad_immediate:
dcbf9037 12675 first_error (_("immediate value out of range"));
5287ad62
JB
12676 return FAIL;
12677}
12678
12679/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12680 A, B, C, D. */
12681
12682static int
12683neon_bits_same_in_bytes (unsigned imm)
12684{
12685 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12686 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12687 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12688 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12689}
12690
12691/* For immediate of above form, return 0bABCD. */
12692
12693static unsigned
12694neon_squash_bits (unsigned imm)
12695{
12696 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12697 | ((imm & 0x01000000) >> 21);
12698}
12699
136da414 12700/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12701
12702static unsigned
12703neon_qfloat_bits (unsigned imm)
12704{
136da414 12705 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12706}
12707
12708/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12709 the instruction. *OP is passed as the initial value of the op field, and
12710 may be set to a different value depending on the constant (i.e.
12711 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12712 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12713 try smaller element sizes. */
5287ad62
JB
12714
12715static int
c96612cc
JB
12716neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12717 unsigned *immbits, int *op, int size,
12718 enum neon_el_type type)
5287ad62 12719{
c96612cc
JB
12720 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12721 float. */
12722 if (type == NT_float && !float_p)
12723 return FAIL;
12724
136da414
JB
12725 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12726 {
12727 if (size != 32 || *op == 1)
12728 return FAIL;
12729 *immbits = neon_qfloat_bits (immlo);
12730 return 0xf;
12731 }
036dc3f7
PB
12732
12733 if (size == 64)
5287ad62 12734 {
036dc3f7
PB
12735 if (neon_bits_same_in_bytes (immhi)
12736 && neon_bits_same_in_bytes (immlo))
12737 {
12738 if (*op == 1)
12739 return FAIL;
12740 *immbits = (neon_squash_bits (immhi) << 4)
12741 | neon_squash_bits (immlo);
12742 *op = 1;
12743 return 0xe;
12744 }
12745
12746 if (immhi != immlo)
12747 return FAIL;
5287ad62 12748 }
036dc3f7
PB
12749
12750 if (size >= 32)
5287ad62 12751 {
036dc3f7
PB
12752 if (immlo == (immlo & 0x000000ff))
12753 {
12754 *immbits = immlo;
12755 return 0x0;
12756 }
12757 else if (immlo == (immlo & 0x0000ff00))
12758 {
12759 *immbits = immlo >> 8;
12760 return 0x2;
12761 }
12762 else if (immlo == (immlo & 0x00ff0000))
12763 {
12764 *immbits = immlo >> 16;
12765 return 0x4;
12766 }
12767 else if (immlo == (immlo & 0xff000000))
12768 {
12769 *immbits = immlo >> 24;
12770 return 0x6;
12771 }
12772 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12773 {
12774 *immbits = (immlo >> 8) & 0xff;
12775 return 0xc;
12776 }
12777 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12778 {
12779 *immbits = (immlo >> 16) & 0xff;
12780 return 0xd;
12781 }
12782
12783 if ((immlo & 0xffff) != (immlo >> 16))
12784 return FAIL;
12785 immlo &= 0xffff;
5287ad62 12786 }
036dc3f7
PB
12787
12788 if (size >= 16)
5287ad62 12789 {
036dc3f7
PB
12790 if (immlo == (immlo & 0x000000ff))
12791 {
12792 *immbits = immlo;
12793 return 0x8;
12794 }
12795 else if (immlo == (immlo & 0x0000ff00))
12796 {
12797 *immbits = immlo >> 8;
12798 return 0xa;
12799 }
12800
12801 if ((immlo & 0xff) != (immlo >> 8))
12802 return FAIL;
12803 immlo &= 0xff;
5287ad62 12804 }
036dc3f7
PB
12805
12806 if (immlo == (immlo & 0x000000ff))
5287ad62 12807 {
036dc3f7
PB
12808 /* Don't allow MVN with 8-bit immediate. */
12809 if (*op == 1)
12810 return FAIL;
12811 *immbits = immlo;
12812 return 0xe;
5287ad62 12813 }
5287ad62
JB
12814
12815 return FAIL;
12816}
12817
12818/* Write immediate bits [7:0] to the following locations:
12819
12820 |28/24|23 19|18 16|15 4|3 0|
12821 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12822
12823 This function is used by VMOV/VMVN/VORR/VBIC. */
12824
12825static void
12826neon_write_immbits (unsigned immbits)
12827{
12828 inst.instruction |= immbits & 0xf;
12829 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12830 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12831}
12832
12833/* Invert low-order SIZE bits of XHI:XLO. */
12834
12835static void
12836neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12837{
12838 unsigned immlo = xlo ? *xlo : 0;
12839 unsigned immhi = xhi ? *xhi : 0;
12840
12841 switch (size)
12842 {
12843 case 8:
12844 immlo = (~immlo) & 0xff;
12845 break;
12846
12847 case 16:
12848 immlo = (~immlo) & 0xffff;
12849 break;
12850
12851 case 64:
12852 immhi = (~immhi) & 0xffffffff;
12853 /* fall through. */
12854
12855 case 32:
12856 immlo = (~immlo) & 0xffffffff;
12857 break;
12858
12859 default:
12860 abort ();
12861 }
12862
12863 if (xlo)
12864 *xlo = immlo;
12865
12866 if (xhi)
12867 *xhi = immhi;
12868}
12869
12870static void
12871do_neon_logic (void)
12872{
12873 if (inst.operands[2].present && inst.operands[2].isreg)
12874 {
037e8744 12875 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12876 neon_check_type (3, rs, N_IGNORE_TYPE);
12877 /* U bit and size field were set as part of the bitmask. */
12878 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12879 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12880 }
12881 else
12882 {
037e8744
JB
12883 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12884 struct neon_type_el et = neon_check_type (2, rs,
12885 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 12886 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
12887 unsigned immbits;
12888 int cmode;
5f4273c7 12889
5287ad62
JB
12890 if (et.type == NT_invtype)
12891 return;
5f4273c7 12892
5287ad62
JB
12893 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12894
036dc3f7
PB
12895 immbits = inst.operands[1].imm;
12896 if (et.size == 64)
12897 {
12898 /* .i64 is a pseudo-op, so the immediate must be a repeating
12899 pattern. */
12900 if (immbits != (inst.operands[1].regisimm ?
12901 inst.operands[1].reg : 0))
12902 {
12903 /* Set immbits to an invalid constant. */
12904 immbits = 0xdeadbeef;
12905 }
12906 }
12907
5287ad62
JB
12908 switch (opcode)
12909 {
12910 case N_MNEM_vbic:
036dc3f7 12911 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12912 break;
5f4273c7 12913
5287ad62 12914 case N_MNEM_vorr:
036dc3f7 12915 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12916 break;
5f4273c7 12917
5287ad62
JB
12918 case N_MNEM_vand:
12919 /* Pseudo-instruction for VBIC. */
5287ad62
JB
12920 neon_invert_size (&immbits, 0, et.size);
12921 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12922 break;
5f4273c7 12923
5287ad62
JB
12924 case N_MNEM_vorn:
12925 /* Pseudo-instruction for VORR. */
5287ad62
JB
12926 neon_invert_size (&immbits, 0, et.size);
12927 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12928 break;
5f4273c7 12929
5287ad62
JB
12930 default:
12931 abort ();
12932 }
12933
12934 if (cmode == FAIL)
12935 return;
12936
037e8744 12937 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12938 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12939 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12940 inst.instruction |= cmode << 8;
12941 neon_write_immbits (immbits);
5f4273c7 12942
5287ad62
JB
12943 inst.instruction = neon_dp_fixup (inst.instruction);
12944 }
12945}
12946
12947static void
12948do_neon_bitfield (void)
12949{
037e8744 12950 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 12951 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 12952 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12953}
12954
12955static void
dcbf9037
JB
12956neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12957 unsigned destbits)
5287ad62 12958{
037e8744 12959 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12960 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12961 types | N_KEY);
5287ad62
JB
12962 if (et.type == NT_float)
12963 {
12964 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12965 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12966 }
12967 else
12968 {
12969 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12970 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12971 }
12972}
12973
12974static void
12975do_neon_dyadic_if_su (void)
12976{
dcbf9037 12977 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12978}
12979
12980static void
12981do_neon_dyadic_if_su_d (void)
12982{
12983 /* This version only allow D registers, but that constraint is enforced during
12984 operand parsing so we don't need to do anything extra here. */
dcbf9037 12985 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12986}
12987
5287ad62
JB
12988static void
12989do_neon_dyadic_if_i_d (void)
12990{
428e3f1f
PB
12991 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12992 affected if we specify unsigned args. */
12993 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12994}
12995
037e8744
JB
12996enum vfp_or_neon_is_neon_bits
12997{
12998 NEON_CHECK_CC = 1,
12999 NEON_CHECK_ARCH = 2
13000};
13001
13002/* Call this function if an instruction which may have belonged to the VFP or
13003 Neon instruction sets, but turned out to be a Neon instruction (due to the
13004 operand types involved, etc.). We have to check and/or fix-up a couple of
13005 things:
13006
13007 - Make sure the user hasn't attempted to make a Neon instruction
13008 conditional.
13009 - Alter the value in the condition code field if necessary.
13010 - Make sure that the arch supports Neon instructions.
13011
13012 Which of these operations take place depends on bits from enum
13013 vfp_or_neon_is_neon_bits.
13014
13015 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13016 current instruction's condition is COND_ALWAYS, the condition field is
13017 changed to inst.uncond_value. This is necessary because instructions shared
13018 between VFP and Neon may be conditional for the VFP variants only, and the
13019 unconditional Neon version must have, e.g., 0xF in the condition field. */
13020
13021static int
13022vfp_or_neon_is_neon (unsigned check)
13023{
13024 /* Conditions are always legal in Thumb mode (IT blocks). */
13025 if (!thumb_mode && (check & NEON_CHECK_CC))
13026 {
13027 if (inst.cond != COND_ALWAYS)
13028 {
13029 first_error (_(BAD_COND));
13030 return FAIL;
13031 }
13032 if (inst.uncond_value != -1)
13033 inst.instruction |= inst.uncond_value << 28;
13034 }
5f4273c7 13035
037e8744
JB
13036 if ((check & NEON_CHECK_ARCH)
13037 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13038 {
13039 first_error (_(BAD_FPU));
13040 return FAIL;
13041 }
5f4273c7 13042
037e8744
JB
13043 return SUCCESS;
13044}
13045
5287ad62
JB
13046static void
13047do_neon_addsub_if_i (void)
13048{
037e8744
JB
13049 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13050 return;
13051
13052 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13053 return;
13054
5287ad62
JB
13055 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13056 affected if we specify unsigned args. */
dcbf9037 13057 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13058}
13059
13060/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13061 result to be:
13062 V<op> A,B (A is operand 0, B is operand 2)
13063 to mean:
13064 V<op> A,B,A
13065 not:
13066 V<op> A,B,B
13067 so handle that case specially. */
13068
13069static void
13070neon_exchange_operands (void)
13071{
13072 void *scratch = alloca (sizeof (inst.operands[0]));
13073 if (inst.operands[1].present)
13074 {
13075 /* Swap operands[1] and operands[2]. */
13076 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13077 inst.operands[1] = inst.operands[2];
13078 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13079 }
13080 else
13081 {
13082 inst.operands[1] = inst.operands[2];
13083 inst.operands[2] = inst.operands[0];
13084 }
13085}
13086
13087static void
13088neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13089{
13090 if (inst.operands[2].isreg)
13091 {
13092 if (invert)
13093 neon_exchange_operands ();
dcbf9037 13094 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13095 }
13096 else
13097 {
037e8744 13098 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13099 struct neon_type_el et = neon_check_type (2, rs,
13100 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
13101
13102 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13103 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13104 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13105 inst.instruction |= LOW4 (inst.operands[1].reg);
13106 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13107 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13108 inst.instruction |= (et.type == NT_float) << 10;
13109 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13110
5287ad62
JB
13111 inst.instruction = neon_dp_fixup (inst.instruction);
13112 }
13113}
13114
13115static void
13116do_neon_cmp (void)
13117{
13118 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13119}
13120
13121static void
13122do_neon_cmp_inv (void)
13123{
13124 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13125}
13126
13127static void
13128do_neon_ceq (void)
13129{
13130 neon_compare (N_IF_32, N_IF_32, FALSE);
13131}
13132
13133/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13134 scalars, which are encoded in 5 bits, M : Rm.
13135 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13136 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13137 index in M. */
13138
13139static unsigned
13140neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13141{
dcbf9037
JB
13142 unsigned regno = NEON_SCALAR_REG (scalar);
13143 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13144
13145 switch (elsize)
13146 {
13147 case 16:
13148 if (regno > 7 || elno > 3)
13149 goto bad_scalar;
13150 return regno | (elno << 3);
5f4273c7 13151
5287ad62
JB
13152 case 32:
13153 if (regno > 15 || elno > 1)
13154 goto bad_scalar;
13155 return regno | (elno << 4);
13156
13157 default:
13158 bad_scalar:
dcbf9037 13159 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13160 }
13161
13162 return 0;
13163}
13164
13165/* Encode multiply / multiply-accumulate scalar instructions. */
13166
13167static void
13168neon_mul_mac (struct neon_type_el et, int ubit)
13169{
dcbf9037
JB
13170 unsigned scalar;
13171
13172 /* Give a more helpful error message if we have an invalid type. */
13173 if (et.type == NT_invtype)
13174 return;
5f4273c7 13175
dcbf9037 13176 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13177 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13178 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13179 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13180 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13181 inst.instruction |= LOW4 (scalar);
13182 inst.instruction |= HI1 (scalar) << 5;
13183 inst.instruction |= (et.type == NT_float) << 8;
13184 inst.instruction |= neon_logbits (et.size) << 20;
13185 inst.instruction |= (ubit != 0) << 24;
13186
13187 inst.instruction = neon_dp_fixup (inst.instruction);
13188}
13189
13190static void
13191do_neon_mac_maybe_scalar (void)
13192{
037e8744
JB
13193 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13194 return;
13195
13196 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13197 return;
13198
5287ad62
JB
13199 if (inst.operands[2].isscalar)
13200 {
037e8744 13201 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13202 struct neon_type_el et = neon_check_type (3, rs,
13203 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13204 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 13205 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13206 }
13207 else
428e3f1f
PB
13208 {
13209 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13210 affected if we specify unsigned args. */
13211 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13212 }
5287ad62
JB
13213}
13214
62f3b8c8
PB
13215static void
13216do_neon_fmac (void)
13217{
13218 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13219 return;
13220
13221 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13222 return;
13223
13224 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13225}
13226
5287ad62
JB
13227static void
13228do_neon_tst (void)
13229{
037e8744 13230 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13231 struct neon_type_el et = neon_check_type (3, rs,
13232 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13233 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13234}
13235
13236/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13237 same types as the MAC equivalents. The polynomial type for this instruction
13238 is encoded the same as the integer type. */
13239
13240static void
13241do_neon_mul (void)
13242{
037e8744
JB
13243 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13244 return;
13245
13246 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13247 return;
13248
5287ad62
JB
13249 if (inst.operands[2].isscalar)
13250 do_neon_mac_maybe_scalar ();
13251 else
dcbf9037 13252 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13253}
13254
13255static void
13256do_neon_qdmulh (void)
13257{
13258 if (inst.operands[2].isscalar)
13259 {
037e8744 13260 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13261 struct neon_type_el et = neon_check_type (3, rs,
13262 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13263 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 13264 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13265 }
13266 else
13267 {
037e8744 13268 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13269 struct neon_type_el et = neon_check_type (3, rs,
13270 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13271 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13272 /* The U bit (rounding) comes from bit mask. */
037e8744 13273 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13274 }
13275}
13276
13277static void
13278do_neon_fcmp_absolute (void)
13279{
037e8744 13280 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13281 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13282 /* Size field comes from bit mask. */
037e8744 13283 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13284}
13285
13286static void
13287do_neon_fcmp_absolute_inv (void)
13288{
13289 neon_exchange_operands ();
13290 do_neon_fcmp_absolute ();
13291}
13292
13293static void
13294do_neon_step (void)
13295{
037e8744 13296 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13297 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13298 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13299}
13300
13301static void
13302do_neon_abs_neg (void)
13303{
037e8744
JB
13304 enum neon_shape rs;
13305 struct neon_type_el et;
5f4273c7 13306
037e8744
JB
13307 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13308 return;
13309
13310 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13311 return;
13312
13313 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13314 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13315
5287ad62
JB
13316 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13318 inst.instruction |= LOW4 (inst.operands[1].reg);
13319 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13320 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13321 inst.instruction |= (et.type == NT_float) << 10;
13322 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13323
5287ad62
JB
13324 inst.instruction = neon_dp_fixup (inst.instruction);
13325}
13326
13327static void
13328do_neon_sli (void)
13329{
037e8744 13330 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13331 struct neon_type_el et = neon_check_type (2, rs,
13332 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13333 int imm = inst.operands[2].imm;
13334 constraint (imm < 0 || (unsigned)imm >= et.size,
13335 _("immediate out of range for insert"));
037e8744 13336 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13337}
13338
13339static void
13340do_neon_sri (void)
13341{
037e8744 13342 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13343 struct neon_type_el et = neon_check_type (2, rs,
13344 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13345 int imm = inst.operands[2].imm;
13346 constraint (imm < 1 || (unsigned)imm > et.size,
13347 _("immediate out of range for insert"));
037e8744 13348 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13349}
13350
13351static void
13352do_neon_qshlu_imm (void)
13353{
037e8744 13354 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13355 struct neon_type_el et = neon_check_type (2, rs,
13356 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13357 int imm = inst.operands[2].imm;
13358 constraint (imm < 0 || (unsigned)imm >= et.size,
13359 _("immediate out of range for shift"));
13360 /* Only encodes the 'U present' variant of the instruction.
13361 In this case, signed types have OP (bit 8) set to 0.
13362 Unsigned types have OP set to 1. */
13363 inst.instruction |= (et.type == NT_unsigned) << 8;
13364 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13365 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13366}
13367
13368static void
13369do_neon_qmovn (void)
13370{
13371 struct neon_type_el et = neon_check_type (2, NS_DQ,
13372 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13373 /* Saturating move where operands can be signed or unsigned, and the
13374 destination has the same signedness. */
13375 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13376 if (et.type == NT_unsigned)
13377 inst.instruction |= 0xc0;
13378 else
13379 inst.instruction |= 0x80;
13380 neon_two_same (0, 1, et.size / 2);
13381}
13382
13383static void
13384do_neon_qmovun (void)
13385{
13386 struct neon_type_el et = neon_check_type (2, NS_DQ,
13387 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13388 /* Saturating move with unsigned results. Operands must be signed. */
13389 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13390 neon_two_same (0, 1, et.size / 2);
13391}
13392
13393static void
13394do_neon_rshift_sat_narrow (void)
13395{
13396 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13397 or unsigned. If operands are unsigned, results must also be unsigned. */
13398 struct neon_type_el et = neon_check_type (2, NS_DQI,
13399 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13400 int imm = inst.operands[2].imm;
13401 /* This gets the bounds check, size encoding and immediate bits calculation
13402 right. */
13403 et.size /= 2;
5f4273c7 13404
5287ad62
JB
13405 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13406 VQMOVN.I<size> <Dd>, <Qm>. */
13407 if (imm == 0)
13408 {
13409 inst.operands[2].present = 0;
13410 inst.instruction = N_MNEM_vqmovn;
13411 do_neon_qmovn ();
13412 return;
13413 }
5f4273c7 13414
5287ad62
JB
13415 constraint (imm < 1 || (unsigned)imm > et.size,
13416 _("immediate out of range"));
13417 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13418}
13419
13420static void
13421do_neon_rshift_sat_narrow_u (void)
13422{
13423 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13424 or unsigned. If operands are unsigned, results must also be unsigned. */
13425 struct neon_type_el et = neon_check_type (2, NS_DQI,
13426 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13427 int imm = inst.operands[2].imm;
13428 /* This gets the bounds check, size encoding and immediate bits calculation
13429 right. */
13430 et.size /= 2;
13431
13432 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13433 VQMOVUN.I<size> <Dd>, <Qm>. */
13434 if (imm == 0)
13435 {
13436 inst.operands[2].present = 0;
13437 inst.instruction = N_MNEM_vqmovun;
13438 do_neon_qmovun ();
13439 return;
13440 }
13441
13442 constraint (imm < 1 || (unsigned)imm > et.size,
13443 _("immediate out of range"));
13444 /* FIXME: The manual is kind of unclear about what value U should have in
13445 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13446 must be 1. */
13447 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13448}
13449
13450static void
13451do_neon_movn (void)
13452{
13453 struct neon_type_el et = neon_check_type (2, NS_DQ,
13454 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13455 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13456 neon_two_same (0, 1, et.size / 2);
13457}
13458
13459static void
13460do_neon_rshift_narrow (void)
13461{
13462 struct neon_type_el et = neon_check_type (2, NS_DQI,
13463 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13464 int imm = inst.operands[2].imm;
13465 /* This gets the bounds check, size encoding and immediate bits calculation
13466 right. */
13467 et.size /= 2;
5f4273c7 13468
5287ad62
JB
13469 /* If immediate is zero then we are a pseudo-instruction for
13470 VMOVN.I<size> <Dd>, <Qm> */
13471 if (imm == 0)
13472 {
13473 inst.operands[2].present = 0;
13474 inst.instruction = N_MNEM_vmovn;
13475 do_neon_movn ();
13476 return;
13477 }
5f4273c7 13478
5287ad62
JB
13479 constraint (imm < 1 || (unsigned)imm > et.size,
13480 _("immediate out of range for narrowing operation"));
13481 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13482}
13483
13484static void
13485do_neon_shll (void)
13486{
13487 /* FIXME: Type checking when lengthening. */
13488 struct neon_type_el et = neon_check_type (2, NS_QDI,
13489 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13490 unsigned imm = inst.operands[2].imm;
13491
13492 if (imm == et.size)
13493 {
13494 /* Maximum shift variant. */
13495 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13496 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13497 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13498 inst.instruction |= LOW4 (inst.operands[1].reg);
13499 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13500 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13501
5287ad62
JB
13502 inst.instruction = neon_dp_fixup (inst.instruction);
13503 }
13504 else
13505 {
13506 /* A more-specific type check for non-max versions. */
13507 et = neon_check_type (2, NS_QDI,
13508 N_EQK | N_DBL, N_SU_32 | N_KEY);
13509 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13510 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13511 }
13512}
13513
037e8744 13514/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13515 the current instruction is. */
13516
13517static int
13518neon_cvt_flavour (enum neon_shape rs)
13519{
037e8744
JB
13520#define CVT_VAR(C,X,Y) \
13521 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13522 if (et.type != NT_invtype) \
13523 { \
13524 inst.error = NULL; \
13525 return (C); \
5287ad62
JB
13526 }
13527 struct neon_type_el et;
037e8744
JB
13528 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13529 || rs == NS_FF) ? N_VFP : 0;
13530 /* The instruction versions which take an immediate take one register
13531 argument, which is extended to the width of the full register. Thus the
13532 "source" and "destination" registers must have the same width. Hack that
13533 here by making the size equal to the key (wider, in this case) operand. */
13534 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13535
5287ad62
JB
13536 CVT_VAR (0, N_S32, N_F32);
13537 CVT_VAR (1, N_U32, N_F32);
13538 CVT_VAR (2, N_F32, N_S32);
13539 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13540 /* Half-precision conversions. */
13541 CVT_VAR (4, N_F32, N_F16);
13542 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13543
037e8744 13544 whole_reg = N_VFP;
5f4273c7 13545
037e8744 13546 /* VFP instructions. */
8e79c3df
CM
13547 CVT_VAR (6, N_F32, N_F64);
13548 CVT_VAR (7, N_F64, N_F32);
13549 CVT_VAR (8, N_S32, N_F64 | key);
13550 CVT_VAR (9, N_U32, N_F64 | key);
13551 CVT_VAR (10, N_F64 | key, N_S32);
13552 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13553 /* VFP instructions with bitshift. */
8e79c3df
CM
13554 CVT_VAR (12, N_F32 | key, N_S16);
13555 CVT_VAR (13, N_F32 | key, N_U16);
13556 CVT_VAR (14, N_F64 | key, N_S16);
13557 CVT_VAR (15, N_F64 | key, N_U16);
13558 CVT_VAR (16, N_S16, N_F32 | key);
13559 CVT_VAR (17, N_U16, N_F32 | key);
13560 CVT_VAR (18, N_S16, N_F64 | key);
13561 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13562
5287ad62
JB
13563 return -1;
13564#undef CVT_VAR
13565}
13566
037e8744
JB
13567/* Neon-syntax VFP conversions. */
13568
5287ad62 13569static void
037e8744 13570do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13571{
037e8744 13572 const char *opname = 0;
5f4273c7 13573
037e8744 13574 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13575 {
037e8744
JB
13576 /* Conversions with immediate bitshift. */
13577 const char *enc[] =
13578 {
13579 "ftosls",
13580 "ftouls",
13581 "fsltos",
13582 "fultos",
13583 NULL,
13584 NULL,
8e79c3df
CM
13585 NULL,
13586 NULL,
037e8744
JB
13587 "ftosld",
13588 "ftould",
13589 "fsltod",
13590 "fultod",
13591 "fshtos",
13592 "fuhtos",
13593 "fshtod",
13594 "fuhtod",
13595 "ftoshs",
13596 "ftouhs",
13597 "ftoshd",
13598 "ftouhd"
13599 };
13600
13601 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13602 {
13603 opname = enc[flavour];
13604 constraint (inst.operands[0].reg != inst.operands[1].reg,
13605 _("operands 0 and 1 must be the same register"));
13606 inst.operands[1] = inst.operands[2];
13607 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13608 }
5287ad62
JB
13609 }
13610 else
13611 {
037e8744
JB
13612 /* Conversions without bitshift. */
13613 const char *enc[] =
13614 {
13615 "ftosis",
13616 "ftouis",
13617 "fsitos",
13618 "fuitos",
8e79c3df
CM
13619 "NULL",
13620 "NULL",
037e8744
JB
13621 "fcvtsd",
13622 "fcvtds",
13623 "ftosid",
13624 "ftouid",
13625 "fsitod",
13626 "fuitod"
13627 };
13628
13629 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13630 opname = enc[flavour];
13631 }
13632
13633 if (opname)
13634 do_vfp_nsyn_opcode (opname);
13635}
13636
13637static void
13638do_vfp_nsyn_cvtz (void)
13639{
13640 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13641 int flavour = neon_cvt_flavour (rs);
13642 const char *enc[] =
13643 {
13644 "ftosizs",
13645 "ftouizs",
13646 NULL,
13647 NULL,
13648 NULL,
13649 NULL,
8e79c3df
CM
13650 NULL,
13651 NULL,
037e8744
JB
13652 "ftosizd",
13653 "ftouizd"
13654 };
13655
13656 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13657 do_vfp_nsyn_opcode (enc[flavour]);
13658}
f31fef98 13659
037e8744
JB
13660static void
13661do_neon_cvt (void)
13662{
13663 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13664 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13665 int flavour = neon_cvt_flavour (rs);
13666
13667 /* VFP rather than Neon conversions. */
8e79c3df 13668 if (flavour >= 6)
037e8744
JB
13669 {
13670 do_vfp_nsyn_cvt (rs, flavour);
13671 return;
13672 }
13673
13674 switch (rs)
13675 {
13676 case NS_DDI:
13677 case NS_QQI:
13678 {
35997600
NC
13679 unsigned immbits;
13680 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13681
037e8744
JB
13682 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13683 return;
13684
13685 /* Fixed-point conversion with #0 immediate is encoded as an
13686 integer conversion. */
13687 if (inst.operands[2].present && inst.operands[2].imm == 0)
13688 goto int_encode;
35997600 13689 immbits = 32 - inst.operands[2].imm;
037e8744
JB
13690 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13691 if (flavour != -1)
13692 inst.instruction |= enctab[flavour];
13693 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13694 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13695 inst.instruction |= LOW4 (inst.operands[1].reg);
13696 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13697 inst.instruction |= neon_quad (rs) << 6;
13698 inst.instruction |= 1 << 21;
13699 inst.instruction |= immbits << 16;
13700
13701 inst.instruction = neon_dp_fixup (inst.instruction);
13702 }
13703 break;
13704
13705 case NS_DD:
13706 case NS_QQ:
13707 int_encode:
13708 {
13709 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13710
13711 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13712
13713 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13714 return;
13715
13716 if (flavour != -1)
13717 inst.instruction |= enctab[flavour];
13718
13719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13720 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13721 inst.instruction |= LOW4 (inst.operands[1].reg);
13722 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13723 inst.instruction |= neon_quad (rs) << 6;
13724 inst.instruction |= 2 << 18;
13725
13726 inst.instruction = neon_dp_fixup (inst.instruction);
13727 }
13728 break;
13729
8e79c3df
CM
13730 /* Half-precision conversions for Advanced SIMD -- neon. */
13731 case NS_QD:
13732 case NS_DQ:
13733
13734 if ((rs == NS_DQ)
13735 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13736 {
13737 as_bad (_("operand size must match register width"));
13738 break;
13739 }
13740
13741 if ((rs == NS_QD)
13742 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13743 {
13744 as_bad (_("operand size must match register width"));
13745 break;
13746 }
13747
13748 if (rs == NS_DQ)
13749 inst.instruction = 0x3b60600;
13750 else
13751 inst.instruction = 0x3b60700;
13752
13753 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13754 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13755 inst.instruction |= LOW4 (inst.operands[1].reg);
13756 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13757 inst.instruction = neon_dp_fixup (inst.instruction);
13758 break;
13759
037e8744
JB
13760 default:
13761 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13762 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13763 }
5287ad62
JB
13764}
13765
8e79c3df
CM
13766static void
13767do_neon_cvtb (void)
13768{
13769 inst.instruction = 0xeb20a40;
13770
13771 /* The sizes are attached to the mnemonic. */
13772 if (inst.vectype.el[0].type != NT_invtype
13773 && inst.vectype.el[0].size == 16)
13774 inst.instruction |= 0x00010000;
13775
13776 /* Programmer's syntax: the sizes are attached to the operands. */
13777 else if (inst.operands[0].vectype.type != NT_invtype
13778 && inst.operands[0].vectype.size == 16)
13779 inst.instruction |= 0x00010000;
13780
13781 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13782 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13783 do_vfp_cond_or_thumb ();
13784}
13785
13786
13787static void
13788do_neon_cvtt (void)
13789{
13790 do_neon_cvtb ();
13791 inst.instruction |= 0x80;
13792}
13793
5287ad62
JB
13794static void
13795neon_move_immediate (void)
13796{
037e8744
JB
13797 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13798 struct neon_type_el et = neon_check_type (2, rs,
13799 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 13800 unsigned immlo, immhi = 0, immbits;
c96612cc 13801 int op, cmode, float_p;
5287ad62 13802
037e8744
JB
13803 constraint (et.type == NT_invtype,
13804 _("operand size must be specified for immediate VMOV"));
13805
5287ad62
JB
13806 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13807 op = (inst.instruction & (1 << 5)) != 0;
13808
13809 immlo = inst.operands[1].imm;
13810 if (inst.operands[1].regisimm)
13811 immhi = inst.operands[1].reg;
13812
13813 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13814 _("immediate has bits set outside the operand size"));
13815
c96612cc
JB
13816 float_p = inst.operands[1].immisfloat;
13817
13818 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 13819 et.size, et.type)) == FAIL)
5287ad62
JB
13820 {
13821 /* Invert relevant bits only. */
13822 neon_invert_size (&immlo, &immhi, et.size);
13823 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13824 with one or the other; those cases are caught by
13825 neon_cmode_for_move_imm. */
13826 op = !op;
c96612cc
JB
13827 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13828 &op, et.size, et.type)) == FAIL)
5287ad62 13829 {
dcbf9037 13830 first_error (_("immediate out of range"));
5287ad62
JB
13831 return;
13832 }
13833 }
13834
13835 inst.instruction &= ~(1 << 5);
13836 inst.instruction |= op << 5;
13837
13838 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13839 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 13840 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13841 inst.instruction |= cmode << 8;
13842
13843 neon_write_immbits (immbits);
13844}
13845
13846static void
13847do_neon_mvn (void)
13848{
13849 if (inst.operands[1].isreg)
13850 {
037e8744 13851 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 13852
5287ad62
JB
13853 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13854 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13855 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13856 inst.instruction |= LOW4 (inst.operands[1].reg);
13857 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13858 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13859 }
13860 else
13861 {
13862 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13863 neon_move_immediate ();
13864 }
13865
13866 inst.instruction = neon_dp_fixup (inst.instruction);
13867}
13868
13869/* Encode instructions of form:
13870
13871 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 13872 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
13873
13874static void
13875neon_mixed_length (struct neon_type_el et, unsigned size)
13876{
13877 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13878 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13879 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13880 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13881 inst.instruction |= LOW4 (inst.operands[2].reg);
13882 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13883 inst.instruction |= (et.type == NT_unsigned) << 24;
13884 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13885
5287ad62
JB
13886 inst.instruction = neon_dp_fixup (inst.instruction);
13887}
13888
13889static void
13890do_neon_dyadic_long (void)
13891{
13892 /* FIXME: Type checking for lengthening op. */
13893 struct neon_type_el et = neon_check_type (3, NS_QDD,
13894 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13895 neon_mixed_length (et, et.size);
13896}
13897
13898static void
13899do_neon_abal (void)
13900{
13901 struct neon_type_el et = neon_check_type (3, NS_QDD,
13902 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13903 neon_mixed_length (et, et.size);
13904}
13905
13906static void
13907neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13908{
13909 if (inst.operands[2].isscalar)
13910 {
dcbf9037
JB
13911 struct neon_type_el et = neon_check_type (3, NS_QDS,
13912 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
13913 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13914 neon_mul_mac (et, et.type == NT_unsigned);
13915 }
13916 else
13917 {
13918 struct neon_type_el et = neon_check_type (3, NS_QDD,
13919 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13920 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13921 neon_mixed_length (et, et.size);
13922 }
13923}
13924
13925static void
13926do_neon_mac_maybe_scalar_long (void)
13927{
13928 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13929}
13930
13931static void
13932do_neon_dyadic_wide (void)
13933{
13934 struct neon_type_el et = neon_check_type (3, NS_QQD,
13935 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13936 neon_mixed_length (et, et.size);
13937}
13938
13939static void
13940do_neon_dyadic_narrow (void)
13941{
13942 struct neon_type_el et = neon_check_type (3, NS_QDD,
13943 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
13944 /* Operand sign is unimportant, and the U bit is part of the opcode,
13945 so force the operand type to integer. */
13946 et.type = NT_integer;
5287ad62
JB
13947 neon_mixed_length (et, et.size / 2);
13948}
13949
13950static void
13951do_neon_mul_sat_scalar_long (void)
13952{
13953 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13954}
13955
13956static void
13957do_neon_vmull (void)
13958{
13959 if (inst.operands[2].isscalar)
13960 do_neon_mac_maybe_scalar_long ();
13961 else
13962 {
13963 struct neon_type_el et = neon_check_type (3, NS_QDD,
13964 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13965 if (et.type == NT_poly)
13966 inst.instruction = NEON_ENC_POLY (inst.instruction);
13967 else
13968 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13969 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13970 zero. Should be OK as-is. */
13971 neon_mixed_length (et, et.size);
13972 }
13973}
13974
13975static void
13976do_neon_ext (void)
13977{
037e8744 13978 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
13979 struct neon_type_el et = neon_check_type (3, rs,
13980 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13981 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
13982
13983 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13984 _("shift out of range"));
5287ad62
JB
13985 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13986 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13987 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13988 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13989 inst.instruction |= LOW4 (inst.operands[2].reg);
13990 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 13991 inst.instruction |= neon_quad (rs) << 6;
5287ad62 13992 inst.instruction |= imm << 8;
5f4273c7 13993
5287ad62
JB
13994 inst.instruction = neon_dp_fixup (inst.instruction);
13995}
13996
13997static void
13998do_neon_rev (void)
13999{
037e8744 14000 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14001 struct neon_type_el et = neon_check_type (2, rs,
14002 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14003 unsigned op = (inst.instruction >> 7) & 3;
14004 /* N (width of reversed regions) is encoded as part of the bitmask. We
14005 extract it here to check the elements to be reversed are smaller.
14006 Otherwise we'd get a reserved instruction. */
14007 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14008 gas_assert (elsize != 0);
5287ad62
JB
14009 constraint (et.size >= elsize,
14010 _("elements must be smaller than reversal region"));
037e8744 14011 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14012}
14013
14014static void
14015do_neon_dup (void)
14016{
14017 if (inst.operands[1].isscalar)
14018 {
037e8744 14019 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14020 struct neon_type_el et = neon_check_type (2, rs,
14021 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14022 unsigned sizebits = et.size >> 3;
dcbf9037 14023 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14024 int logsize = neon_logbits (et.size);
dcbf9037 14025 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14026
14027 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14028 return;
14029
5287ad62
JB
14030 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
14031 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14032 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14033 inst.instruction |= LOW4 (dm);
14034 inst.instruction |= HI1 (dm) << 5;
037e8744 14035 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14036 inst.instruction |= x << 17;
14037 inst.instruction |= sizebits << 16;
5f4273c7 14038
5287ad62
JB
14039 inst.instruction = neon_dp_fixup (inst.instruction);
14040 }
14041 else
14042 {
037e8744
JB
14043 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14044 struct neon_type_el et = neon_check_type (2, rs,
14045 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
14046 /* Duplicate ARM register to lanes of vector. */
14047 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
14048 switch (et.size)
14049 {
14050 case 8: inst.instruction |= 0x400000; break;
14051 case 16: inst.instruction |= 0x000020; break;
14052 case 32: inst.instruction |= 0x000000; break;
14053 default: break;
14054 }
14055 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14056 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14057 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14058 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14059 /* The encoding for this instruction is identical for the ARM and Thumb
14060 variants, except for the condition field. */
037e8744 14061 do_vfp_cond_or_thumb ();
5287ad62
JB
14062 }
14063}
14064
14065/* VMOV has particularly many variations. It can be one of:
14066 0. VMOV<c><q> <Qd>, <Qm>
14067 1. VMOV<c><q> <Dd>, <Dm>
14068 (Register operations, which are VORR with Rm = Rn.)
14069 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14070 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14071 (Immediate loads.)
14072 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14073 (ARM register to scalar.)
14074 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14075 (Two ARM registers to vector.)
14076 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14077 (Scalar to ARM register.)
14078 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14079 (Vector to two ARM registers.)
037e8744
JB
14080 8. VMOV.F32 <Sd>, <Sm>
14081 9. VMOV.F64 <Dd>, <Dm>
14082 (VFP register moves.)
14083 10. VMOV.F32 <Sd>, #imm
14084 11. VMOV.F64 <Dd>, #imm
14085 (VFP float immediate load.)
14086 12. VMOV <Rd>, <Sm>
14087 (VFP single to ARM reg.)
14088 13. VMOV <Sd>, <Rm>
14089 (ARM reg to VFP single.)
14090 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14091 (Two ARM regs to two VFP singles.)
14092 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14093 (Two VFP singles to two ARM regs.)
5f4273c7 14094
037e8744
JB
14095 These cases can be disambiguated using neon_select_shape, except cases 1/9
14096 and 3/11 which depend on the operand type too.
5f4273c7 14097
5287ad62 14098 All the encoded bits are hardcoded by this function.
5f4273c7 14099
b7fc2769
JB
14100 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14101 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14102
5287ad62 14103 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14104 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14105
14106static void
14107do_neon_mov (void)
14108{
037e8744
JB
14109 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14110 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14111 NS_NULL);
14112 struct neon_type_el et;
14113 const char *ldconst = 0;
5287ad62 14114
037e8744 14115 switch (rs)
5287ad62 14116 {
037e8744
JB
14117 case NS_DD: /* case 1/9. */
14118 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14119 /* It is not an error here if no type is given. */
14120 inst.error = NULL;
14121 if (et.type == NT_float && et.size == 64)
5287ad62 14122 {
037e8744
JB
14123 do_vfp_nsyn_opcode ("fcpyd");
14124 break;
5287ad62 14125 }
037e8744 14126 /* fall through. */
5287ad62 14127
037e8744
JB
14128 case NS_QQ: /* case 0/1. */
14129 {
14130 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14131 return;
14132 /* The architecture manual I have doesn't explicitly state which
14133 value the U bit should have for register->register moves, but
14134 the equivalent VORR instruction has U = 0, so do that. */
14135 inst.instruction = 0x0200110;
14136 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14137 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14138 inst.instruction |= LOW4 (inst.operands[1].reg);
14139 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14140 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14141 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14142 inst.instruction |= neon_quad (rs) << 6;
14143
14144 inst.instruction = neon_dp_fixup (inst.instruction);
14145 }
14146 break;
5f4273c7 14147
037e8744
JB
14148 case NS_DI: /* case 3/11. */
14149 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14150 inst.error = NULL;
14151 if (et.type == NT_float && et.size == 64)
5287ad62 14152 {
037e8744
JB
14153 /* case 11 (fconstd). */
14154 ldconst = "fconstd";
14155 goto encode_fconstd;
5287ad62 14156 }
037e8744
JB
14157 /* fall through. */
14158
14159 case NS_QI: /* case 2/3. */
14160 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14161 return;
14162 inst.instruction = 0x0800010;
14163 neon_move_immediate ();
14164 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 14165 break;
5f4273c7 14166
037e8744
JB
14167 case NS_SR: /* case 4. */
14168 {
14169 unsigned bcdebits = 0;
91d6fa6a 14170 int logsize;
037e8744
JB
14171 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14172 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14173
91d6fa6a
NC
14174 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14175 logsize = neon_logbits (et.size);
14176
037e8744
JB
14177 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14178 _(BAD_FPU));
14179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14180 && et.size != 32, _(BAD_FPU));
14181 constraint (et.type == NT_invtype, _("bad type for scalar"));
14182 constraint (x >= 64 / et.size, _("scalar index out of range"));
14183
14184 switch (et.size)
14185 {
14186 case 8: bcdebits = 0x8; break;
14187 case 16: bcdebits = 0x1; break;
14188 case 32: bcdebits = 0x0; break;
14189 default: ;
14190 }
14191
14192 bcdebits |= x << logsize;
14193
14194 inst.instruction = 0xe000b10;
14195 do_vfp_cond_or_thumb ();
14196 inst.instruction |= LOW4 (dn) << 16;
14197 inst.instruction |= HI1 (dn) << 7;
14198 inst.instruction |= inst.operands[1].reg << 12;
14199 inst.instruction |= (bcdebits & 3) << 5;
14200 inst.instruction |= (bcdebits >> 2) << 21;
14201 }
14202 break;
5f4273c7 14203
037e8744 14204 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14205 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14206 _(BAD_FPU));
b7fc2769 14207
037e8744
JB
14208 inst.instruction = 0xc400b10;
14209 do_vfp_cond_or_thumb ();
14210 inst.instruction |= LOW4 (inst.operands[0].reg);
14211 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14212 inst.instruction |= inst.operands[1].reg << 12;
14213 inst.instruction |= inst.operands[2].reg << 16;
14214 break;
5f4273c7 14215
037e8744
JB
14216 case NS_RS: /* case 6. */
14217 {
91d6fa6a 14218 unsigned logsize;
037e8744
JB
14219 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14220 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14221 unsigned abcdebits = 0;
14222
91d6fa6a
NC
14223 et = neon_check_type (2, NS_NULL,
14224 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14225 logsize = neon_logbits (et.size);
14226
037e8744
JB
14227 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14228 _(BAD_FPU));
14229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14230 && et.size != 32, _(BAD_FPU));
14231 constraint (et.type == NT_invtype, _("bad type for scalar"));
14232 constraint (x >= 64 / et.size, _("scalar index out of range"));
14233
14234 switch (et.size)
14235 {
14236 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14237 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14238 case 32: abcdebits = 0x00; break;
14239 default: ;
14240 }
14241
14242 abcdebits |= x << logsize;
14243 inst.instruction = 0xe100b10;
14244 do_vfp_cond_or_thumb ();
14245 inst.instruction |= LOW4 (dn) << 16;
14246 inst.instruction |= HI1 (dn) << 7;
14247 inst.instruction |= inst.operands[0].reg << 12;
14248 inst.instruction |= (abcdebits & 3) << 5;
14249 inst.instruction |= (abcdebits >> 2) << 21;
14250 }
14251 break;
5f4273c7 14252
037e8744
JB
14253 case NS_RRD: /* case 7 (fmrrd). */
14254 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14255 _(BAD_FPU));
14256
14257 inst.instruction = 0xc500b10;
14258 do_vfp_cond_or_thumb ();
14259 inst.instruction |= inst.operands[0].reg << 12;
14260 inst.instruction |= inst.operands[1].reg << 16;
14261 inst.instruction |= LOW4 (inst.operands[2].reg);
14262 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14263 break;
5f4273c7 14264
037e8744
JB
14265 case NS_FF: /* case 8 (fcpys). */
14266 do_vfp_nsyn_opcode ("fcpys");
14267 break;
5f4273c7 14268
037e8744
JB
14269 case NS_FI: /* case 10 (fconsts). */
14270 ldconst = "fconsts";
14271 encode_fconstd:
14272 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14273 {
037e8744
JB
14274 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14275 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14276 }
14277 else
037e8744
JB
14278 first_error (_("immediate out of range"));
14279 break;
5f4273c7 14280
037e8744
JB
14281 case NS_RF: /* case 12 (fmrs). */
14282 do_vfp_nsyn_opcode ("fmrs");
14283 break;
5f4273c7 14284
037e8744
JB
14285 case NS_FR: /* case 13 (fmsr). */
14286 do_vfp_nsyn_opcode ("fmsr");
14287 break;
5f4273c7 14288
037e8744
JB
14289 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14290 (one of which is a list), but we have parsed four. Do some fiddling to
14291 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14292 expect. */
14293 case NS_RRFF: /* case 14 (fmrrs). */
14294 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14295 _("VFP registers must be adjacent"));
14296 inst.operands[2].imm = 2;
14297 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14298 do_vfp_nsyn_opcode ("fmrrs");
14299 break;
5f4273c7 14300
037e8744
JB
14301 case NS_FFRR: /* case 15 (fmsrr). */
14302 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14303 _("VFP registers must be adjacent"));
14304 inst.operands[1] = inst.operands[2];
14305 inst.operands[2] = inst.operands[3];
14306 inst.operands[0].imm = 2;
14307 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14308 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14309 break;
5f4273c7 14310
5287ad62
JB
14311 default:
14312 abort ();
14313 }
14314}
14315
14316static void
14317do_neon_rshift_round_imm (void)
14318{
037e8744 14319 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14320 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14321 int imm = inst.operands[2].imm;
14322
14323 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14324 if (imm == 0)
14325 {
14326 inst.operands[2].present = 0;
14327 do_neon_mov ();
14328 return;
14329 }
14330
14331 constraint (imm < 1 || (unsigned)imm > et.size,
14332 _("immediate out of range for shift"));
037e8744 14333 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14334 et.size - imm);
14335}
14336
14337static void
14338do_neon_movl (void)
14339{
14340 struct neon_type_el et = neon_check_type (2, NS_QD,
14341 N_EQK | N_DBL, N_SU_32 | N_KEY);
14342 unsigned sizebits = et.size >> 3;
14343 inst.instruction |= sizebits << 19;
14344 neon_two_same (0, et.type == NT_unsigned, -1);
14345}
14346
14347static void
14348do_neon_trn (void)
14349{
037e8744 14350 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14351 struct neon_type_el et = neon_check_type (2, rs,
14352 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14353 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 14354 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14355}
14356
14357static void
14358do_neon_zip_uzp (void)
14359{
037e8744 14360 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14361 struct neon_type_el et = neon_check_type (2, rs,
14362 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14363 if (rs == NS_DD && et.size == 32)
14364 {
14365 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14366 inst.instruction = N_MNEM_vtrn;
14367 do_neon_trn ();
14368 return;
14369 }
037e8744 14370 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14371}
14372
14373static void
14374do_neon_sat_abs_neg (void)
14375{
037e8744 14376 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14377 struct neon_type_el et = neon_check_type (2, rs,
14378 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14379 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14380}
14381
14382static void
14383do_neon_pair_long (void)
14384{
037e8744 14385 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14386 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14387 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14388 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14389 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14390}
14391
14392static void
14393do_neon_recip_est (void)
14394{
037e8744 14395 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14396 struct neon_type_el et = neon_check_type (2, rs,
14397 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14398 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14399 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14400}
14401
14402static void
14403do_neon_cls (void)
14404{
037e8744 14405 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14406 struct neon_type_el et = neon_check_type (2, rs,
14407 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14408 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14409}
14410
14411static void
14412do_neon_clz (void)
14413{
037e8744 14414 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14415 struct neon_type_el et = neon_check_type (2, rs,
14416 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14417 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14418}
14419
14420static void
14421do_neon_cnt (void)
14422{
037e8744 14423 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14424 struct neon_type_el et = neon_check_type (2, rs,
14425 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14426 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14427}
14428
14429static void
14430do_neon_swp (void)
14431{
037e8744
JB
14432 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14433 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14434}
14435
14436static void
14437do_neon_tbl_tbx (void)
14438{
14439 unsigned listlenbits;
dcbf9037 14440 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14441
5287ad62
JB
14442 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14443 {
dcbf9037 14444 first_error (_("bad list length for table lookup"));
5287ad62
JB
14445 return;
14446 }
5f4273c7 14447
5287ad62
JB
14448 listlenbits = inst.operands[1].imm - 1;
14449 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14450 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14451 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14452 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14453 inst.instruction |= LOW4 (inst.operands[2].reg);
14454 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14455 inst.instruction |= listlenbits << 8;
5f4273c7 14456
5287ad62
JB
14457 inst.instruction = neon_dp_fixup (inst.instruction);
14458}
14459
14460static void
14461do_neon_ldm_stm (void)
14462{
14463 /* P, U and L bits are part of bitmask. */
14464 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14465 unsigned offsetbits = inst.operands[1].imm * 2;
14466
037e8744
JB
14467 if (inst.operands[1].issingle)
14468 {
14469 do_vfp_nsyn_ldm_stm (is_dbmode);
14470 return;
14471 }
14472
5287ad62
JB
14473 constraint (is_dbmode && !inst.operands[0].writeback,
14474 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14475
14476 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14477 _("register list must contain at least 1 and at most 16 "
14478 "registers"));
14479
14480 inst.instruction |= inst.operands[0].reg << 16;
14481 inst.instruction |= inst.operands[0].writeback << 21;
14482 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14483 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14484
14485 inst.instruction |= offsetbits;
5f4273c7 14486
037e8744 14487 do_vfp_cond_or_thumb ();
5287ad62
JB
14488}
14489
14490static void
14491do_neon_ldr_str (void)
14492{
5287ad62 14493 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14494
037e8744
JB
14495 if (inst.operands[0].issingle)
14496 {
cd2f129f
JB
14497 if (is_ldr)
14498 do_vfp_nsyn_opcode ("flds");
14499 else
14500 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14501 }
14502 else
5287ad62 14503 {
cd2f129f
JB
14504 if (is_ldr)
14505 do_vfp_nsyn_opcode ("fldd");
5287ad62 14506 else
cd2f129f 14507 do_vfp_nsyn_opcode ("fstd");
5287ad62 14508 }
5287ad62
JB
14509}
14510
14511/* "interleave" version also handles non-interleaving register VLD1/VST1
14512 instructions. */
14513
14514static void
14515do_neon_ld_st_interleave (void)
14516{
037e8744 14517 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14518 N_8 | N_16 | N_32 | N_64);
14519 unsigned alignbits = 0;
14520 unsigned idx;
14521 /* The bits in this table go:
14522 0: register stride of one (0) or two (1)
14523 1,2: register list length, minus one (1, 2, 3, 4).
14524 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14525 We use -1 for invalid entries. */
14526 const int typetable[] =
14527 {
14528 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14529 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14530 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14531 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14532 };
14533 int typebits;
14534
dcbf9037
JB
14535 if (et.type == NT_invtype)
14536 return;
14537
5287ad62
JB
14538 if (inst.operands[1].immisalign)
14539 switch (inst.operands[1].imm >> 8)
14540 {
14541 case 64: alignbits = 1; break;
14542 case 128:
14543 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14544 goto bad_alignment;
14545 alignbits = 2;
14546 break;
14547 case 256:
14548 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14549 goto bad_alignment;
14550 alignbits = 3;
14551 break;
14552 default:
14553 bad_alignment:
dcbf9037 14554 first_error (_("bad alignment"));
5287ad62
JB
14555 return;
14556 }
14557
14558 inst.instruction |= alignbits << 4;
14559 inst.instruction |= neon_logbits (et.size) << 6;
14560
14561 /* Bits [4:6] of the immediate in a list specifier encode register stride
14562 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14563 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14564 up the right value for "type" in a table based on this value and the given
14565 list style, then stick it back. */
14566 idx = ((inst.operands[0].imm >> 4) & 7)
14567 | (((inst.instruction >> 8) & 3) << 3);
14568
14569 typebits = typetable[idx];
5f4273c7 14570
5287ad62
JB
14571 constraint (typebits == -1, _("bad list type for instruction"));
14572
14573 inst.instruction &= ~0xf00;
14574 inst.instruction |= typebits << 8;
14575}
14576
14577/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14578 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14579 otherwise. The variable arguments are a list of pairs of legal (size, align)
14580 values, terminated with -1. */
14581
14582static int
14583neon_alignment_bit (int size, int align, int *do_align, ...)
14584{
14585 va_list ap;
14586 int result = FAIL, thissize, thisalign;
5f4273c7 14587
5287ad62
JB
14588 if (!inst.operands[1].immisalign)
14589 {
14590 *do_align = 0;
14591 return SUCCESS;
14592 }
5f4273c7 14593
5287ad62
JB
14594 va_start (ap, do_align);
14595
14596 do
14597 {
14598 thissize = va_arg (ap, int);
14599 if (thissize == -1)
14600 break;
14601 thisalign = va_arg (ap, int);
14602
14603 if (size == thissize && align == thisalign)
14604 result = SUCCESS;
14605 }
14606 while (result != SUCCESS);
14607
14608 va_end (ap);
14609
14610 if (result == SUCCESS)
14611 *do_align = 1;
14612 else
dcbf9037 14613 first_error (_("unsupported alignment for instruction"));
5f4273c7 14614
5287ad62
JB
14615 return result;
14616}
14617
14618static void
14619do_neon_ld_st_lane (void)
14620{
037e8744 14621 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14622 int align_good, do_align = 0;
14623 int logsize = neon_logbits (et.size);
14624 int align = inst.operands[1].imm >> 8;
14625 int n = (inst.instruction >> 8) & 3;
14626 int max_el = 64 / et.size;
5f4273c7 14627
dcbf9037
JB
14628 if (et.type == NT_invtype)
14629 return;
5f4273c7 14630
5287ad62
JB
14631 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14632 _("bad list length"));
14633 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14634 _("scalar index out of range"));
14635 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14636 && et.size == 8,
14637 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14638
5287ad62
JB
14639 switch (n)
14640 {
14641 case 0: /* VLD1 / VST1. */
14642 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14643 32, 32, -1);
14644 if (align_good == FAIL)
14645 return;
14646 if (do_align)
14647 {
14648 unsigned alignbits = 0;
14649 switch (et.size)
14650 {
14651 case 16: alignbits = 0x1; break;
14652 case 32: alignbits = 0x3; break;
14653 default: ;
14654 }
14655 inst.instruction |= alignbits << 4;
14656 }
14657 break;
14658
14659 case 1: /* VLD2 / VST2. */
14660 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14661 32, 64, -1);
14662 if (align_good == FAIL)
14663 return;
14664 if (do_align)
14665 inst.instruction |= 1 << 4;
14666 break;
14667
14668 case 2: /* VLD3 / VST3. */
14669 constraint (inst.operands[1].immisalign,
14670 _("can't use alignment with this instruction"));
14671 break;
14672
14673 case 3: /* VLD4 / VST4. */
14674 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14675 16, 64, 32, 64, 32, 128, -1);
14676 if (align_good == FAIL)
14677 return;
14678 if (do_align)
14679 {
14680 unsigned alignbits = 0;
14681 switch (et.size)
14682 {
14683 case 8: alignbits = 0x1; break;
14684 case 16: alignbits = 0x1; break;
14685 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14686 default: ;
14687 }
14688 inst.instruction |= alignbits << 4;
14689 }
14690 break;
14691
14692 default: ;
14693 }
14694
14695 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14696 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14697 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14698
5287ad62
JB
14699 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14700 inst.instruction |= logsize << 10;
14701}
14702
14703/* Encode single n-element structure to all lanes VLD<n> instructions. */
14704
14705static void
14706do_neon_ld_dup (void)
14707{
037e8744 14708 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14709 int align_good, do_align = 0;
14710
dcbf9037
JB
14711 if (et.type == NT_invtype)
14712 return;
14713
5287ad62
JB
14714 switch ((inst.instruction >> 8) & 3)
14715 {
14716 case 0: /* VLD1. */
9c2799c2 14717 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
14718 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14719 &do_align, 16, 16, 32, 32, -1);
14720 if (align_good == FAIL)
14721 return;
14722 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14723 {
14724 case 1: break;
14725 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14726 default: first_error (_("bad list length")); return;
5287ad62
JB
14727 }
14728 inst.instruction |= neon_logbits (et.size) << 6;
14729 break;
14730
14731 case 1: /* VLD2. */
14732 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14733 &do_align, 8, 16, 16, 32, 32, 64, -1);
14734 if (align_good == FAIL)
14735 return;
14736 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14737 _("bad list length"));
14738 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14739 inst.instruction |= 1 << 5;
14740 inst.instruction |= neon_logbits (et.size) << 6;
14741 break;
14742
14743 case 2: /* VLD3. */
14744 constraint (inst.operands[1].immisalign,
14745 _("can't use alignment with this instruction"));
14746 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14747 _("bad list length"));
14748 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14749 inst.instruction |= 1 << 5;
14750 inst.instruction |= neon_logbits (et.size) << 6;
14751 break;
14752
14753 case 3: /* VLD4. */
14754 {
14755 int align = inst.operands[1].imm >> 8;
14756 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14757 16, 64, 32, 64, 32, 128, -1);
14758 if (align_good == FAIL)
14759 return;
14760 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14761 _("bad list length"));
14762 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14763 inst.instruction |= 1 << 5;
14764 if (et.size == 32 && align == 128)
14765 inst.instruction |= 0x3 << 6;
14766 else
14767 inst.instruction |= neon_logbits (et.size) << 6;
14768 }
14769 break;
14770
14771 default: ;
14772 }
14773
14774 inst.instruction |= do_align << 4;
14775}
14776
14777/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14778 apart from bits [11:4]. */
14779
14780static void
14781do_neon_ldx_stx (void)
14782{
14783 switch (NEON_LANE (inst.operands[0].imm))
14784 {
14785 case NEON_INTERLEAVE_LANES:
14786 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14787 do_neon_ld_st_interleave ();
14788 break;
5f4273c7 14789
5287ad62
JB
14790 case NEON_ALL_LANES:
14791 inst.instruction = NEON_ENC_DUP (inst.instruction);
14792 do_neon_ld_dup ();
14793 break;
5f4273c7 14794
5287ad62
JB
14795 default:
14796 inst.instruction = NEON_ENC_LANE (inst.instruction);
14797 do_neon_ld_st_lane ();
14798 }
14799
14800 /* L bit comes from bit mask. */
14801 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14802 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14803 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 14804
5287ad62
JB
14805 if (inst.operands[1].postind)
14806 {
14807 int postreg = inst.operands[1].imm & 0xf;
14808 constraint (!inst.operands[1].immisreg,
14809 _("post-index must be a register"));
14810 constraint (postreg == 0xd || postreg == 0xf,
14811 _("bad register for post-index"));
14812 inst.instruction |= postreg;
14813 }
14814 else if (inst.operands[1].writeback)
14815 {
14816 inst.instruction |= 0xd;
14817 }
14818 else
5f4273c7
NC
14819 inst.instruction |= 0xf;
14820
5287ad62
JB
14821 if (thumb_mode)
14822 inst.instruction |= 0xf9000000;
14823 else
14824 inst.instruction |= 0xf4000000;
14825}
5287ad62
JB
14826\f
14827/* Overall per-instruction processing. */
14828
14829/* We need to be able to fix up arbitrary expressions in some statements.
14830 This is so that we can handle symbols that are an arbitrary distance from
14831 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14832 which returns part of an address in a form which will be valid for
14833 a data instruction. We do this by pushing the expression into a symbol
14834 in the expr_section, and creating a fix for that. */
14835
14836static void
14837fix_new_arm (fragS * frag,
14838 int where,
14839 short int size,
14840 expressionS * exp,
14841 int pc_rel,
14842 int reloc)
14843{
14844 fixS * new_fix;
14845
14846 switch (exp->X_op)
14847 {
14848 case O_constant:
14849 case O_symbol:
14850 case O_add:
14851 case O_subtract:
21d799b5
NC
14852 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14853 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14854 break;
14855
14856 default:
21d799b5
NC
14857 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14858 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14859 break;
14860 }
14861
14862 /* Mark whether the fix is to a THUMB instruction, or an ARM
14863 instruction. */
14864 new_fix->tc_fix_data = thumb_mode;
14865}
14866
14867/* Create a frg for an instruction requiring relaxation. */
14868static void
14869output_relax_insn (void)
14870{
14871 char * to;
14872 symbolS *sym;
0110f2b8
PB
14873 int offset;
14874
6e1cb1a6
PB
14875 /* The size of the instruction is unknown, so tie the debug info to the
14876 start of the instruction. */
14877 dwarf2_emit_insn (0);
6e1cb1a6 14878
0110f2b8
PB
14879 switch (inst.reloc.exp.X_op)
14880 {
14881 case O_symbol:
14882 sym = inst.reloc.exp.X_add_symbol;
14883 offset = inst.reloc.exp.X_add_number;
14884 break;
14885 case O_constant:
14886 sym = NULL;
14887 offset = inst.reloc.exp.X_add_number;
14888 break;
14889 default:
14890 sym = make_expr_symbol (&inst.reloc.exp);
14891 offset = 0;
14892 break;
14893 }
14894 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14895 inst.relax, sym, offset, NULL/*offset, opcode*/);
14896 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
14897}
14898
14899/* Write a 32-bit thumb instruction to buf. */
14900static void
14901put_thumb32_insn (char * buf, unsigned long insn)
14902{
14903 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14904 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14905}
14906
b99bd4ef 14907static void
c19d1205 14908output_inst (const char * str)
b99bd4ef 14909{
c19d1205 14910 char * to = NULL;
b99bd4ef 14911
c19d1205 14912 if (inst.error)
b99bd4ef 14913 {
c19d1205 14914 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
14915 return;
14916 }
5f4273c7
NC
14917 if (inst.relax)
14918 {
14919 output_relax_insn ();
0110f2b8 14920 return;
5f4273c7 14921 }
c19d1205
ZW
14922 if (inst.size == 0)
14923 return;
b99bd4ef 14924
c19d1205 14925 to = frag_more (inst.size);
8dc2430f
NC
14926 /* PR 9814: Record the thumb mode into the current frag so that we know
14927 what type of NOP padding to use, if necessary. We override any previous
14928 setting so that if the mode has changed then the NOPS that we use will
14929 match the encoding of the last instruction in the frag. */
cd000bff 14930 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
14931
14932 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 14933 {
9c2799c2 14934 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 14935 put_thumb32_insn (to, inst.instruction);
b99bd4ef 14936 }
c19d1205 14937 else if (inst.size > INSN_SIZE)
b99bd4ef 14938 {
9c2799c2 14939 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
14940 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14941 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 14942 }
c19d1205
ZW
14943 else
14944 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 14945
c19d1205
ZW
14946 if (inst.reloc.type != BFD_RELOC_UNUSED)
14947 fix_new_arm (frag_now, to - frag_now->fr_literal,
14948 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14949 inst.reloc.type);
b99bd4ef 14950
c19d1205 14951 dwarf2_emit_insn (inst.size);
c19d1205 14952}
b99bd4ef 14953
e07e6e58
NC
14954static char *
14955output_it_inst (int cond, int mask, char * to)
14956{
14957 unsigned long instruction = 0xbf00;
14958
14959 mask &= 0xf;
14960 instruction |= mask;
14961 instruction |= cond << 4;
14962
14963 if (to == NULL)
14964 {
14965 to = frag_more (2);
14966#ifdef OBJ_ELF
14967 dwarf2_emit_insn (2);
14968#endif
14969 }
14970
14971 md_number_to_chars (to, instruction, 2);
14972
14973 return to;
14974}
14975
c19d1205
ZW
14976/* Tag values used in struct asm_opcode's tag field. */
14977enum opcode_tag
14978{
14979 OT_unconditional, /* Instruction cannot be conditionalized.
14980 The ARM condition field is still 0xE. */
14981 OT_unconditionalF, /* Instruction cannot be conditionalized
14982 and carries 0xF in its ARM condition field. */
14983 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
14984 OT_csuffixF, /* Some forms of the instruction take a conditional
14985 suffix, others place 0xF where the condition field
14986 would be. */
c19d1205
ZW
14987 OT_cinfix3, /* Instruction takes a conditional infix,
14988 beginning at character index 3. (In
14989 unified mode, it becomes a suffix.) */
088fa78e
KH
14990 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14991 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
14992 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14993 character index 3, even in unified mode. Used for
14994 legacy instructions where suffix and infix forms
14995 may be ambiguous. */
c19d1205 14996 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 14997 suffix or an infix at character index 3. */
c19d1205
ZW
14998 OT_odd_infix_unc, /* This is the unconditional variant of an
14999 instruction that takes a conditional infix
15000 at an unusual position. In unified mode,
15001 this variant will accept a suffix. */
15002 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15003 are the conditional variants of instructions that
15004 take conditional infixes in unusual positions.
15005 The infix appears at character index
15006 (tag - OT_odd_infix_0). These are not accepted
15007 in unified mode. */
15008};
b99bd4ef 15009
c19d1205
ZW
15010/* Subroutine of md_assemble, responsible for looking up the primary
15011 opcode from the mnemonic the user wrote. STR points to the
15012 beginning of the mnemonic.
15013
15014 This is not simply a hash table lookup, because of conditional
15015 variants. Most instructions have conditional variants, which are
15016 expressed with a _conditional affix_ to the mnemonic. If we were
15017 to encode each conditional variant as a literal string in the opcode
15018 table, it would have approximately 20,000 entries.
15019
15020 Most mnemonics take this affix as a suffix, and in unified syntax,
15021 'most' is upgraded to 'all'. However, in the divided syntax, some
15022 instructions take the affix as an infix, notably the s-variants of
15023 the arithmetic instructions. Of those instructions, all but six
15024 have the infix appear after the third character of the mnemonic.
15025
15026 Accordingly, the algorithm for looking up primary opcodes given
15027 an identifier is:
15028
15029 1. Look up the identifier in the opcode table.
15030 If we find a match, go to step U.
15031
15032 2. Look up the last two characters of the identifier in the
15033 conditions table. If we find a match, look up the first N-2
15034 characters of the identifier in the opcode table. If we
15035 find a match, go to step CE.
15036
15037 3. Look up the fourth and fifth characters of the identifier in
15038 the conditions table. If we find a match, extract those
15039 characters from the identifier, and look up the remaining
15040 characters in the opcode table. If we find a match, go
15041 to step CM.
15042
15043 4. Fail.
15044
15045 U. Examine the tag field of the opcode structure, in case this is
15046 one of the six instructions with its conditional infix in an
15047 unusual place. If it is, the tag tells us where to find the
15048 infix; look it up in the conditions table and set inst.cond
15049 accordingly. Otherwise, this is an unconditional instruction.
15050 Again set inst.cond accordingly. Return the opcode structure.
15051
15052 CE. Examine the tag field to make sure this is an instruction that
15053 should receive a conditional suffix. If it is not, fail.
15054 Otherwise, set inst.cond from the suffix we already looked up,
15055 and return the opcode structure.
15056
15057 CM. Examine the tag field to make sure this is an instruction that
15058 should receive a conditional infix after the third character.
15059 If it is not, fail. Otherwise, undo the edits to the current
15060 line of input and proceed as for case CE. */
15061
15062static const struct asm_opcode *
15063opcode_lookup (char **str)
15064{
15065 char *end, *base;
15066 char *affix;
15067 const struct asm_opcode *opcode;
15068 const struct asm_cond *cond;
e3cb604e 15069 char save[2];
c19d1205
ZW
15070
15071 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15072 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15073 for (base = end = *str; *end != '\0'; end++)
721a8186 15074 if (*end == ' ' || *end == '.')
c19d1205 15075 break;
b99bd4ef 15076
c19d1205 15077 if (end == base)
c921be7d 15078 return NULL;
b99bd4ef 15079
5287ad62 15080 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15081 if (end[0] == '.')
b99bd4ef 15082 {
5287ad62 15083 int offset = 2;
5f4273c7 15084
267d2029
JB
15085 /* The .w and .n suffixes are only valid if the unified syntax is in
15086 use. */
15087 if (unified_syntax && end[1] == 'w')
c19d1205 15088 inst.size_req = 4;
267d2029 15089 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15090 inst.size_req = 2;
15091 else
5287ad62
JB
15092 offset = 0;
15093
15094 inst.vectype.elems = 0;
15095
15096 *str = end + offset;
b99bd4ef 15097
5f4273c7 15098 if (end[offset] == '.')
5287ad62 15099 {
267d2029
JB
15100 /* See if we have a Neon type suffix (possible in either unified or
15101 non-unified ARM syntax mode). */
dcbf9037 15102 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15103 return NULL;
5287ad62
JB
15104 }
15105 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15106 return NULL;
b99bd4ef 15107 }
c19d1205
ZW
15108 else
15109 *str = end;
b99bd4ef 15110
c19d1205 15111 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15112 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15113 end - base);
c19d1205 15114 if (opcode)
b99bd4ef 15115 {
c19d1205
ZW
15116 /* step U */
15117 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15118 {
c19d1205
ZW
15119 inst.cond = COND_ALWAYS;
15120 return opcode;
b99bd4ef 15121 }
b99bd4ef 15122
278df34e 15123 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15124 as_warn (_("conditional infixes are deprecated in unified syntax"));
15125 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15126 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15127 gas_assert (cond);
b99bd4ef 15128
c19d1205
ZW
15129 inst.cond = cond->value;
15130 return opcode;
15131 }
b99bd4ef 15132
c19d1205
ZW
15133 /* Cannot have a conditional suffix on a mnemonic of less than two
15134 characters. */
15135 if (end - base < 3)
c921be7d 15136 return NULL;
b99bd4ef 15137
c19d1205
ZW
15138 /* Look for suffixed mnemonic. */
15139 affix = end - 2;
21d799b5
NC
15140 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15141 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15142 affix - base);
c19d1205
ZW
15143 if (opcode && cond)
15144 {
15145 /* step CE */
15146 switch (opcode->tag)
15147 {
e3cb604e
PB
15148 case OT_cinfix3_legacy:
15149 /* Ignore conditional suffixes matched on infix only mnemonics. */
15150 break;
15151
c19d1205 15152 case OT_cinfix3:
088fa78e 15153 case OT_cinfix3_deprecated:
c19d1205
ZW
15154 case OT_odd_infix_unc:
15155 if (!unified_syntax)
e3cb604e 15156 return 0;
c19d1205
ZW
15157 /* else fall through */
15158
15159 case OT_csuffix:
037e8744 15160 case OT_csuffixF:
c19d1205
ZW
15161 case OT_csuf_or_in3:
15162 inst.cond = cond->value;
15163 return opcode;
15164
15165 case OT_unconditional:
15166 case OT_unconditionalF:
dfa9f0d5 15167 if (thumb_mode)
c921be7d 15168 inst.cond = cond->value;
dfa9f0d5
PB
15169 else
15170 {
c921be7d 15171 /* Delayed diagnostic. */
dfa9f0d5
PB
15172 inst.error = BAD_COND;
15173 inst.cond = COND_ALWAYS;
15174 }
c19d1205 15175 return opcode;
b99bd4ef 15176
c19d1205 15177 default:
c921be7d 15178 return NULL;
c19d1205
ZW
15179 }
15180 }
b99bd4ef 15181
c19d1205
ZW
15182 /* Cannot have a usual-position infix on a mnemonic of less than
15183 six characters (five would be a suffix). */
15184 if (end - base < 6)
c921be7d 15185 return NULL;
b99bd4ef 15186
c19d1205
ZW
15187 /* Look for infixed mnemonic in the usual position. */
15188 affix = base + 3;
21d799b5 15189 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15190 if (!cond)
c921be7d 15191 return NULL;
e3cb604e
PB
15192
15193 memcpy (save, affix, 2);
15194 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15195 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15196 (end - base) - 2);
e3cb604e
PB
15197 memmove (affix + 2, affix, (end - affix) - 2);
15198 memcpy (affix, save, 2);
15199
088fa78e
KH
15200 if (opcode
15201 && (opcode->tag == OT_cinfix3
15202 || opcode->tag == OT_cinfix3_deprecated
15203 || opcode->tag == OT_csuf_or_in3
15204 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15205 {
c921be7d 15206 /* Step CM. */
278df34e 15207 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15208 && (opcode->tag == OT_cinfix3
15209 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15210 as_warn (_("conditional infixes are deprecated in unified syntax"));
15211
15212 inst.cond = cond->value;
15213 return opcode;
b99bd4ef
NC
15214 }
15215
c921be7d 15216 return NULL;
b99bd4ef
NC
15217}
15218
e07e6e58
NC
15219/* This function generates an initial IT instruction, leaving its block
15220 virtually open for the new instructions. Eventually,
15221 the mask will be updated by now_it_add_mask () each time
15222 a new instruction needs to be included in the IT block.
15223 Finally, the block is closed with close_automatic_it_block ().
15224 The block closure can be requested either from md_assemble (),
15225 a tencode (), or due to a label hook. */
15226
15227static void
15228new_automatic_it_block (int cond)
15229{
15230 now_it.state = AUTOMATIC_IT_BLOCK;
15231 now_it.mask = 0x18;
15232 now_it.cc = cond;
15233 now_it.block_length = 1;
cd000bff 15234 mapping_state (MAP_THUMB);
e07e6e58
NC
15235 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15236}
15237
15238/* Close an automatic IT block.
15239 See comments in new_automatic_it_block (). */
15240
15241static void
15242close_automatic_it_block (void)
15243{
15244 now_it.mask = 0x10;
15245 now_it.block_length = 0;
15246}
15247
15248/* Update the mask of the current automatically-generated IT
15249 instruction. See comments in new_automatic_it_block (). */
15250
15251static void
15252now_it_add_mask (int cond)
15253{
15254#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15255#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15256 | ((bitvalue) << (nbit)))
e07e6e58 15257 const int resulting_bit = (cond & 1);
c921be7d 15258
e07e6e58
NC
15259 now_it.mask &= 0xf;
15260 now_it.mask = SET_BIT_VALUE (now_it.mask,
15261 resulting_bit,
15262 (5 - now_it.block_length));
15263 now_it.mask = SET_BIT_VALUE (now_it.mask,
15264 1,
15265 ((5 - now_it.block_length) - 1) );
15266 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15267
15268#undef CLEAR_BIT
15269#undef SET_BIT_VALUE
e07e6e58
NC
15270}
15271
15272/* The IT blocks handling machinery is accessed through the these functions:
15273 it_fsm_pre_encode () from md_assemble ()
15274 set_it_insn_type () optional, from the tencode functions
15275 set_it_insn_type_last () ditto
15276 in_it_block () ditto
15277 it_fsm_post_encode () from md_assemble ()
15278 force_automatic_it_block_close () from label habdling functions
15279
15280 Rationale:
15281 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15282 initializing the IT insn type with a generic initial value depending
15283 on the inst.condition.
15284 2) During the tencode function, two things may happen:
15285 a) The tencode function overrides the IT insn type by
15286 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15287 b) The tencode function queries the IT block state by
15288 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15289
15290 Both set_it_insn_type and in_it_block run the internal FSM state
15291 handling function (handle_it_state), because: a) setting the IT insn
15292 type may incur in an invalid state (exiting the function),
15293 and b) querying the state requires the FSM to be updated.
15294 Specifically we want to avoid creating an IT block for conditional
15295 branches, so it_fsm_pre_encode is actually a guess and we can't
15296 determine whether an IT block is required until the tencode () routine
15297 has decided what type of instruction this actually it.
15298 Because of this, if set_it_insn_type and in_it_block have to be used,
15299 set_it_insn_type has to be called first.
15300
15301 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15302 determines the insn IT type depending on the inst.cond code.
15303 When a tencode () routine encodes an instruction that can be
15304 either outside an IT block, or, in the case of being inside, has to be
15305 the last one, set_it_insn_type_last () will determine the proper
15306 IT instruction type based on the inst.cond code. Otherwise,
15307 set_it_insn_type can be called for overriding that logic or
15308 for covering other cases.
15309
15310 Calling handle_it_state () may not transition the IT block state to
15311 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15312 still queried. Instead, if the FSM determines that the state should
15313 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15314 after the tencode () function: that's what it_fsm_post_encode () does.
15315
15316 Since in_it_block () calls the state handling function to get an
15317 updated state, an error may occur (due to invalid insns combination).
15318 In that case, inst.error is set.
15319 Therefore, inst.error has to be checked after the execution of
15320 the tencode () routine.
15321
15322 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15323 any pending state change (if any) that didn't take place in
15324 handle_it_state () as explained above. */
15325
15326static void
15327it_fsm_pre_encode (void)
15328{
15329 if (inst.cond != COND_ALWAYS)
15330 inst.it_insn_type = INSIDE_IT_INSN;
15331 else
15332 inst.it_insn_type = OUTSIDE_IT_INSN;
15333
15334 now_it.state_handled = 0;
15335}
15336
15337/* IT state FSM handling function. */
15338
15339static int
15340handle_it_state (void)
15341{
15342 now_it.state_handled = 1;
15343
15344 switch (now_it.state)
15345 {
15346 case OUTSIDE_IT_BLOCK:
15347 switch (inst.it_insn_type)
15348 {
15349 case OUTSIDE_IT_INSN:
15350 break;
15351
15352 case INSIDE_IT_INSN:
15353 case INSIDE_IT_LAST_INSN:
15354 if (thumb_mode == 0)
15355 {
c921be7d 15356 if (unified_syntax
e07e6e58
NC
15357 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15358 as_tsktsk (_("Warning: conditional outside an IT block"\
15359 " for Thumb."));
15360 }
15361 else
15362 {
15363 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15364 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15365 {
15366 /* Automatically generate the IT instruction. */
15367 new_automatic_it_block (inst.cond);
15368 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15369 close_automatic_it_block ();
15370 }
15371 else
15372 {
15373 inst.error = BAD_OUT_IT;
15374 return FAIL;
15375 }
15376 }
15377 break;
15378
15379 case IF_INSIDE_IT_LAST_INSN:
15380 case NEUTRAL_IT_INSN:
15381 break;
15382
15383 case IT_INSN:
15384 now_it.state = MANUAL_IT_BLOCK;
15385 now_it.block_length = 0;
15386 break;
15387 }
15388 break;
15389
15390 case AUTOMATIC_IT_BLOCK:
15391 /* Three things may happen now:
15392 a) We should increment current it block size;
15393 b) We should close current it block (closing insn or 4 insns);
15394 c) We should close current it block and start a new one (due
15395 to incompatible conditions or
15396 4 insns-length block reached). */
15397
15398 switch (inst.it_insn_type)
15399 {
15400 case OUTSIDE_IT_INSN:
15401 /* The closure of the block shall happen immediatelly,
15402 so any in_it_block () call reports the block as closed. */
15403 force_automatic_it_block_close ();
15404 break;
15405
15406 case INSIDE_IT_INSN:
15407 case INSIDE_IT_LAST_INSN:
15408 case IF_INSIDE_IT_LAST_INSN:
15409 now_it.block_length++;
15410
15411 if (now_it.block_length > 4
15412 || !now_it_compatible (inst.cond))
15413 {
15414 force_automatic_it_block_close ();
15415 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15416 new_automatic_it_block (inst.cond);
15417 }
15418 else
15419 {
15420 now_it_add_mask (inst.cond);
15421 }
15422
15423 if (now_it.state == AUTOMATIC_IT_BLOCK
15424 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15425 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15426 close_automatic_it_block ();
15427 break;
15428
15429 case NEUTRAL_IT_INSN:
15430 now_it.block_length++;
15431
15432 if (now_it.block_length > 4)
15433 force_automatic_it_block_close ();
15434 else
15435 now_it_add_mask (now_it.cc & 1);
15436 break;
15437
15438 case IT_INSN:
15439 close_automatic_it_block ();
15440 now_it.state = MANUAL_IT_BLOCK;
15441 break;
15442 }
15443 break;
15444
15445 case MANUAL_IT_BLOCK:
15446 {
15447 /* Check conditional suffixes. */
15448 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15449 int is_last;
15450 now_it.mask <<= 1;
15451 now_it.mask &= 0x1f;
15452 is_last = (now_it.mask == 0x10);
15453
15454 switch (inst.it_insn_type)
15455 {
15456 case OUTSIDE_IT_INSN:
15457 inst.error = BAD_NOT_IT;
15458 return FAIL;
15459
15460 case INSIDE_IT_INSN:
15461 if (cond != inst.cond)
15462 {
15463 inst.error = BAD_IT_COND;
15464 return FAIL;
15465 }
15466 break;
15467
15468 case INSIDE_IT_LAST_INSN:
15469 case IF_INSIDE_IT_LAST_INSN:
15470 if (cond != inst.cond)
15471 {
15472 inst.error = BAD_IT_COND;
15473 return FAIL;
15474 }
15475 if (!is_last)
15476 {
15477 inst.error = BAD_BRANCH;
15478 return FAIL;
15479 }
15480 break;
15481
15482 case NEUTRAL_IT_INSN:
15483 /* The BKPT instruction is unconditional even in an IT block. */
15484 break;
15485
15486 case IT_INSN:
15487 inst.error = BAD_IT_IT;
15488 return FAIL;
15489 }
15490 }
15491 break;
15492 }
15493
15494 return SUCCESS;
15495}
15496
15497static void
15498it_fsm_post_encode (void)
15499{
15500 int is_last;
15501
15502 if (!now_it.state_handled)
15503 handle_it_state ();
15504
15505 is_last = (now_it.mask == 0x10);
15506 if (is_last)
15507 {
15508 now_it.state = OUTSIDE_IT_BLOCK;
15509 now_it.mask = 0;
15510 }
15511}
15512
15513static void
15514force_automatic_it_block_close (void)
15515{
15516 if (now_it.state == AUTOMATIC_IT_BLOCK)
15517 {
15518 close_automatic_it_block ();
15519 now_it.state = OUTSIDE_IT_BLOCK;
15520 now_it.mask = 0;
15521 }
15522}
15523
15524static int
15525in_it_block (void)
15526{
15527 if (!now_it.state_handled)
15528 handle_it_state ();
15529
15530 return now_it.state != OUTSIDE_IT_BLOCK;
15531}
15532
c19d1205
ZW
15533void
15534md_assemble (char *str)
b99bd4ef 15535{
c19d1205
ZW
15536 char *p = str;
15537 const struct asm_opcode * opcode;
b99bd4ef 15538
c19d1205
ZW
15539 /* Align the previous label if needed. */
15540 if (last_label_seen != NULL)
b99bd4ef 15541 {
c19d1205
ZW
15542 symbol_set_frag (last_label_seen, frag_now);
15543 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15544 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15545 }
15546
c19d1205
ZW
15547 memset (&inst, '\0', sizeof (inst));
15548 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15549
c19d1205
ZW
15550 opcode = opcode_lookup (&p);
15551 if (!opcode)
b99bd4ef 15552 {
c19d1205 15553 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15554 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15555 if (! create_register_alias (str, p)
15556 && ! create_neon_reg_alias (str, p))
c19d1205 15557 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15558
b99bd4ef
NC
15559 return;
15560 }
15561
278df34e 15562 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15563 as_warn (_("s suffix on comparison instruction is deprecated"));
15564
037e8744
JB
15565 /* The value which unconditional instructions should have in place of the
15566 condition field. */
15567 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15568
c19d1205 15569 if (thumb_mode)
b99bd4ef 15570 {
e74cfd16 15571 arm_feature_set variant;
8f06b2d8
PB
15572
15573 variant = cpu_variant;
15574 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15575 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15576 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15577 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15578 if (!opcode->tvariant
15579 || (thumb_mode == 1
15580 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15581 {
c19d1205 15582 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
15583 return;
15584 }
c19d1205
ZW
15585 if (inst.cond != COND_ALWAYS && !unified_syntax
15586 && opcode->tencode != do_t_branch)
b99bd4ef 15587 {
c19d1205 15588 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
15589 return;
15590 }
15591
752d5da4 15592 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 15593 {
7e806470 15594 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
15595 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15596 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15597 {
15598 /* Two things are addressed here.
15599 1) Implicit require narrow instructions on Thumb-1.
15600 This avoids relaxation accidentally introducing Thumb-2
15601 instructions.
15602 2) Reject wide instructions in non Thumb-2 cores. */
15603 if (inst.size_req == 0)
15604 inst.size_req = 2;
15605 else if (inst.size_req == 4)
15606 {
15607 as_bad (_("selected processor does not support `%s'"), str);
15608 return;
15609 }
15610 }
076d447c
PB
15611 }
15612
c19d1205
ZW
15613 inst.instruction = opcode->tvalue;
15614
15615 if (!parse_operands (p, opcode->operands))
e07e6e58
NC
15616 {
15617 /* Prepare the it_insn_type for those encodings that don't set
15618 it. */
15619 it_fsm_pre_encode ();
c19d1205 15620
e07e6e58
NC
15621 opcode->tencode ();
15622
15623 it_fsm_post_encode ();
15624 }
e27ec89e 15625
0110f2b8 15626 if (!(inst.error || inst.relax))
b99bd4ef 15627 {
9c2799c2 15628 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
15629 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15630 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 15631 {
c19d1205 15632 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
15633 return;
15634 }
15635 }
076d447c
PB
15636
15637 /* Something has gone badly wrong if we try to relax a fixed size
15638 instruction. */
9c2799c2 15639 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 15640
e74cfd16
PB
15641 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15642 *opcode->tvariant);
ee065d83 15643 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 15644 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 15645 anything other than bl/blx and v6-M instructions.
ee065d83 15646 This is overly pessimistic for relaxable instructions. */
7e806470
PB
15647 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15648 || inst.relax)
e07e6e58
NC
15649 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15650 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
15651 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15652 arm_ext_v6t2);
cd000bff
DJ
15653
15654 if (!inst.error)
c877a2f2
NC
15655 {
15656 mapping_state (MAP_THUMB);
15657 }
c19d1205 15658 }
3e9e4fcf 15659 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 15660 {
845b51d6
PB
15661 bfd_boolean is_bx;
15662
15663 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15664 is_bx = (opcode->aencode == do_bx);
15665
c19d1205 15666 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
15667 if (!(is_bx && fix_v4bx)
15668 && !(opcode->avariant &&
15669 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 15670 {
c19d1205
ZW
15671 as_bad (_("selected processor does not support `%s'"), str);
15672 return;
b99bd4ef 15673 }
c19d1205 15674 if (inst.size_req)
b99bd4ef 15675 {
c19d1205
ZW
15676 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15677 return;
b99bd4ef
NC
15678 }
15679
c19d1205
ZW
15680 inst.instruction = opcode->avalue;
15681 if (opcode->tag == OT_unconditionalF)
15682 inst.instruction |= 0xF << 28;
15683 else
15684 inst.instruction |= inst.cond << 28;
15685 inst.size = INSN_SIZE;
15686 if (!parse_operands (p, opcode->operands))
e07e6e58
NC
15687 {
15688 it_fsm_pre_encode ();
15689 opcode->aencode ();
15690 it_fsm_post_encode ();
15691 }
ee065d83
PB
15692 /* Arm mode bx is marked as both v4T and v5 because it's still required
15693 on a hypothetical non-thumb v5 core. */
845b51d6 15694 if (is_bx)
e74cfd16 15695 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 15696 else
e74cfd16
PB
15697 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15698 *opcode->avariant);
cd000bff 15699 if (!inst.error)
c877a2f2
NC
15700 {
15701 mapping_state (MAP_ARM);
15702 }
b99bd4ef 15703 }
3e9e4fcf
JB
15704 else
15705 {
15706 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15707 "-- `%s'"), str);
15708 return;
15709 }
c19d1205
ZW
15710 output_inst (str);
15711}
b99bd4ef 15712
e07e6e58
NC
15713static void
15714check_it_blocks_finished (void)
15715{
15716#ifdef OBJ_ELF
15717 asection *sect;
15718
15719 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15720 if (seg_info (sect)->tc_segment_info_data.current_it.state
15721 == MANUAL_IT_BLOCK)
15722 {
15723 as_warn (_("section '%s' finished with an open IT block."),
15724 sect->name);
15725 }
15726#else
15727 if (now_it.state == MANUAL_IT_BLOCK)
15728 as_warn (_("file finished with an open IT block."));
15729#endif
15730}
15731
c19d1205
ZW
15732/* Various frobbings of labels and their addresses. */
15733
15734void
15735arm_start_line_hook (void)
15736{
15737 last_label_seen = NULL;
b99bd4ef
NC
15738}
15739
c19d1205
ZW
15740void
15741arm_frob_label (symbolS * sym)
b99bd4ef 15742{
c19d1205 15743 last_label_seen = sym;
b99bd4ef 15744
c19d1205 15745 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 15746
c19d1205
ZW
15747#if defined OBJ_COFF || defined OBJ_ELF
15748 ARM_SET_INTERWORK (sym, support_interwork);
15749#endif
b99bd4ef 15750
e07e6e58
NC
15751 force_automatic_it_block_close ();
15752
5f4273c7 15753 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
15754 as Thumb functions. This is because these labels, whilst
15755 they exist inside Thumb code, are not the entry points for
15756 possible ARM->Thumb calls. Also, these labels can be used
15757 as part of a computed goto or switch statement. eg gcc
15758 can generate code that looks like this:
b99bd4ef 15759
c19d1205
ZW
15760 ldr r2, [pc, .Laaa]
15761 lsl r3, r3, #2
15762 ldr r2, [r3, r2]
15763 mov pc, r2
b99bd4ef 15764
c19d1205
ZW
15765 .Lbbb: .word .Lxxx
15766 .Lccc: .word .Lyyy
15767 ..etc...
15768 .Laaa: .word Lbbb
b99bd4ef 15769
c19d1205
ZW
15770 The first instruction loads the address of the jump table.
15771 The second instruction converts a table index into a byte offset.
15772 The third instruction gets the jump address out of the table.
15773 The fourth instruction performs the jump.
b99bd4ef 15774
c19d1205
ZW
15775 If the address stored at .Laaa is that of a symbol which has the
15776 Thumb_Func bit set, then the linker will arrange for this address
15777 to have the bottom bit set, which in turn would mean that the
15778 address computation performed by the third instruction would end
15779 up with the bottom bit set. Since the ARM is capable of unaligned
15780 word loads, the instruction would then load the incorrect address
15781 out of the jump table, and chaos would ensue. */
15782 if (label_is_thumb_function_name
15783 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15784 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 15785 {
c19d1205
ZW
15786 /* When the address of a Thumb function is taken the bottom
15787 bit of that address should be set. This will allow
15788 interworking between Arm and Thumb functions to work
15789 correctly. */
b99bd4ef 15790
c19d1205 15791 THUMB_SET_FUNC (sym, 1);
b99bd4ef 15792
c19d1205 15793 label_is_thumb_function_name = FALSE;
b99bd4ef 15794 }
07a53e5c 15795
07a53e5c 15796 dwarf2_emit_label (sym);
b99bd4ef
NC
15797}
15798
c921be7d 15799bfd_boolean
c19d1205 15800arm_data_in_code (void)
b99bd4ef 15801{
c19d1205 15802 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 15803 {
c19d1205
ZW
15804 *input_line_pointer = '/';
15805 input_line_pointer += 5;
15806 *input_line_pointer = 0;
c921be7d 15807 return TRUE;
b99bd4ef
NC
15808 }
15809
c921be7d 15810 return FALSE;
b99bd4ef
NC
15811}
15812
c19d1205
ZW
15813char *
15814arm_canonicalize_symbol_name (char * name)
b99bd4ef 15815{
c19d1205 15816 int len;
b99bd4ef 15817
c19d1205
ZW
15818 if (thumb_mode && (len = strlen (name)) > 5
15819 && streq (name + len - 5, "/data"))
15820 *(name + len - 5) = 0;
b99bd4ef 15821
c19d1205 15822 return name;
b99bd4ef 15823}
c19d1205
ZW
15824\f
15825/* Table of all register names defined by default. The user can
15826 define additional names with .req. Note that all register names
15827 should appear in both upper and lowercase variants. Some registers
15828 also have mixed-case names. */
b99bd4ef 15829
dcbf9037 15830#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 15831#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 15832#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
15833#define REGSET(p,t) \
15834 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15835 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15836 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15837 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
15838#define REGSETH(p,t) \
15839 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15840 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15841 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15842 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15843#define REGSET2(p,t) \
15844 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15845 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15846 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15847 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 15848
c19d1205 15849static const struct reg_entry reg_names[] =
7ed4c4c5 15850{
c19d1205
ZW
15851 /* ARM integer registers. */
15852 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 15853
c19d1205
ZW
15854 /* ATPCS synonyms. */
15855 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15856 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15857 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 15858
c19d1205
ZW
15859 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15860 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15861 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 15862
c19d1205
ZW
15863 /* Well-known aliases. */
15864 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15865 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15866
15867 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15868 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15869
15870 /* Coprocessor numbers. */
15871 REGSET(p, CP), REGSET(P, CP),
15872
15873 /* Coprocessor register numbers. The "cr" variants are for backward
15874 compatibility. */
15875 REGSET(c, CN), REGSET(C, CN),
15876 REGSET(cr, CN), REGSET(CR, CN),
15877
15878 /* FPA registers. */
15879 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15880 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15881
15882 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15883 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15884
15885 /* VFP SP registers. */
5287ad62
JB
15886 REGSET(s,VFS), REGSET(S,VFS),
15887 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
15888
15889 /* VFP DP Registers. */
5287ad62
JB
15890 REGSET(d,VFD), REGSET(D,VFD),
15891 /* Extra Neon DP registers. */
15892 REGSETH(d,VFD), REGSETH(D,VFD),
15893
15894 /* Neon QP registers. */
15895 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
15896
15897 /* VFP control registers. */
15898 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15899 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
15900 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15901 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15902 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15903 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
15904
15905 /* Maverick DSP coprocessor registers. */
15906 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15907 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15908
15909 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15910 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15911 REGDEF(dspsc,0,DSPSC),
15912
15913 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15914 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15915 REGDEF(DSPSC,0,DSPSC),
15916
15917 /* iWMMXt data registers - p0, c0-15. */
15918 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15919
15920 /* iWMMXt control registers - p1, c0-3. */
15921 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15922 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15923 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15924 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15925
15926 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15927 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15928 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15929 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15930 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15931
15932 /* XScale accumulator registers. */
15933 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15934};
15935#undef REGDEF
15936#undef REGNUM
15937#undef REGSET
7ed4c4c5 15938
c19d1205
ZW
15939/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15940 within psr_required_here. */
15941static const struct asm_psr psrs[] =
15942{
15943 /* Backward compatibility notation. Note that "all" is no longer
15944 truly all possible PSR bits. */
15945 {"all", PSR_c | PSR_f},
15946 {"flg", PSR_f},
15947 {"ctl", PSR_c},
15948
15949 /* Individual flags. */
15950 {"f", PSR_f},
15951 {"c", PSR_c},
15952 {"x", PSR_x},
15953 {"s", PSR_s},
15954 /* Combinations of flags. */
15955 {"fs", PSR_f | PSR_s},
15956 {"fx", PSR_f | PSR_x},
15957 {"fc", PSR_f | PSR_c},
15958 {"sf", PSR_s | PSR_f},
15959 {"sx", PSR_s | PSR_x},
15960 {"sc", PSR_s | PSR_c},
15961 {"xf", PSR_x | PSR_f},
15962 {"xs", PSR_x | PSR_s},
15963 {"xc", PSR_x | PSR_c},
15964 {"cf", PSR_c | PSR_f},
15965 {"cs", PSR_c | PSR_s},
15966 {"cx", PSR_c | PSR_x},
15967 {"fsx", PSR_f | PSR_s | PSR_x},
15968 {"fsc", PSR_f | PSR_s | PSR_c},
15969 {"fxs", PSR_f | PSR_x | PSR_s},
15970 {"fxc", PSR_f | PSR_x | PSR_c},
15971 {"fcs", PSR_f | PSR_c | PSR_s},
15972 {"fcx", PSR_f | PSR_c | PSR_x},
15973 {"sfx", PSR_s | PSR_f | PSR_x},
15974 {"sfc", PSR_s | PSR_f | PSR_c},
15975 {"sxf", PSR_s | PSR_x | PSR_f},
15976 {"sxc", PSR_s | PSR_x | PSR_c},
15977 {"scf", PSR_s | PSR_c | PSR_f},
15978 {"scx", PSR_s | PSR_c | PSR_x},
15979 {"xfs", PSR_x | PSR_f | PSR_s},
15980 {"xfc", PSR_x | PSR_f | PSR_c},
15981 {"xsf", PSR_x | PSR_s | PSR_f},
15982 {"xsc", PSR_x | PSR_s | PSR_c},
15983 {"xcf", PSR_x | PSR_c | PSR_f},
15984 {"xcs", PSR_x | PSR_c | PSR_s},
15985 {"cfs", PSR_c | PSR_f | PSR_s},
15986 {"cfx", PSR_c | PSR_f | PSR_x},
15987 {"csf", PSR_c | PSR_s | PSR_f},
15988 {"csx", PSR_c | PSR_s | PSR_x},
15989 {"cxf", PSR_c | PSR_x | PSR_f},
15990 {"cxs", PSR_c | PSR_x | PSR_s},
15991 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15992 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15993 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15994 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15995 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15996 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15997 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15998 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15999 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16000 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16001 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16002 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16003 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16004 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16005 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16006 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16007 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16008 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16009 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16010 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16011 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16012 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16013 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16014 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16015};
16016
62b3e311
PB
16017/* Table of V7M psr names. */
16018static const struct asm_psr v7m_psrs[] =
16019{
2b744c99
PB
16020 {"apsr", 0 }, {"APSR", 0 },
16021 {"iapsr", 1 }, {"IAPSR", 1 },
16022 {"eapsr", 2 }, {"EAPSR", 2 },
16023 {"psr", 3 }, {"PSR", 3 },
16024 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16025 {"ipsr", 5 }, {"IPSR", 5 },
16026 {"epsr", 6 }, {"EPSR", 6 },
16027 {"iepsr", 7 }, {"IEPSR", 7 },
16028 {"msp", 8 }, {"MSP", 8 },
16029 {"psp", 9 }, {"PSP", 9 },
16030 {"primask", 16}, {"PRIMASK", 16},
16031 {"basepri", 17}, {"BASEPRI", 17},
16032 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16033 {"faultmask", 19}, {"FAULTMASK", 19},
16034 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16035};
16036
c19d1205
ZW
16037/* Table of all shift-in-operand names. */
16038static const struct asm_shift_name shift_names [] =
b99bd4ef 16039{
c19d1205
ZW
16040 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16041 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16042 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16043 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16044 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16045 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16046};
b99bd4ef 16047
c19d1205
ZW
16048/* Table of all explicit relocation names. */
16049#ifdef OBJ_ELF
16050static struct reloc_entry reloc_names[] =
16051{
16052 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16053 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16054 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16055 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16056 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16057 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16058 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16059 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16060 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16061 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16062 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16063};
16064#endif
b99bd4ef 16065
c19d1205
ZW
16066/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16067static const struct asm_cond conds[] =
16068{
16069 {"eq", 0x0},
16070 {"ne", 0x1},
16071 {"cs", 0x2}, {"hs", 0x2},
16072 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16073 {"mi", 0x4},
16074 {"pl", 0x5},
16075 {"vs", 0x6},
16076 {"vc", 0x7},
16077 {"hi", 0x8},
16078 {"ls", 0x9},
16079 {"ge", 0xa},
16080 {"lt", 0xb},
16081 {"gt", 0xc},
16082 {"le", 0xd},
16083 {"al", 0xe}
16084};
bfae80f2 16085
62b3e311
PB
16086static struct asm_barrier_opt barrier_opt_names[] =
16087{
16088 { "sy", 0xf },
16089 { "un", 0x7 },
16090 { "st", 0xe },
16091 { "unst", 0x6 }
16092};
16093
c19d1205
ZW
16094/* Table of ARM-format instructions. */
16095
16096/* Macros for gluing together operand strings. N.B. In all cases
16097 other than OPS0, the trailing OP_stop comes from default
16098 zero-initialization of the unspecified elements of the array. */
16099#define OPS0() { OP_stop, }
16100#define OPS1(a) { OP_##a, }
16101#define OPS2(a,b) { OP_##a,OP_##b, }
16102#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16103#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16104#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16105#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16106
16107/* These macros abstract out the exact format of the mnemonic table and
16108 save some repeated characters. */
16109
16110/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16111#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16112 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16113 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16114
16115/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16116 a T_MNEM_xyz enumerator. */
16117#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16118 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16119#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16120 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16121
16122/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16123 infix after the third character. */
16124#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16125 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16126 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16127#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16128 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16129 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16130#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16131 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16132#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16133 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16134#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16135 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16136#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16137 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16138
16139/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16140 appear in the condition table. */
16141#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16142 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16143 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16144
16145#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16146 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16147 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16148 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16149 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16150 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16151 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16152 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16153 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16154 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16155 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16156 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16157 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16158 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16159 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16160 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16161 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16162 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16163 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16164 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16165
16166#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16167 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16168#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16169 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16170
16171/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16172 field is still 0xE. Many of the Thumb variants can be executed
16173 conditionally, so this is checked separately. */
c19d1205 16174#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16175 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16176 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16177
16178/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16179 condition code field. */
16180#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16181 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16182 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16183
16184/* ARM-only variants of all the above. */
6a86118a 16185#define CE(mnem, op, nops, ops, ae) \
21d799b5 16186 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16187
16188#define C3(mnem, op, nops, ops, ae) \
16189 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16190
e3cb604e
PB
16191/* Legacy mnemonics that always have conditional infix after the third
16192 character. */
16193#define CL(mnem, op, nops, ops, ae) \
21d799b5 16194 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16195 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16196
8f06b2d8
PB
16197/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16198#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16199 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16200
e3cb604e
PB
16201/* Legacy coprocessor instructions where conditional infix and conditional
16202 suffix are ambiguous. For consistency this includes all FPA instructions,
16203 not just the potentially ambiguous ones. */
16204#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16205 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16206 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16207
16208/* Coprocessor, takes either a suffix or a position-3 infix
16209 (for an FPA corner case). */
16210#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16211 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16212 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16213
6a86118a 16214#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16215 { m1 #m2 m3, OPS##nops ops, \
16216 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16217 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16218
16219#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16220 xCM_ (m1, , m2, op, nops, ops, ae), \
16221 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16222 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16223 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16224 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16225 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16226 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16227 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16228 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16229 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16230 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16231 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16232 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16233 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16234 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16235 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16236 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16237 xCM_ (m1, le, m2, op, nops, ops, ae), \
16238 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16239
16240#define UE(mnem, op, nops, ops, ae) \
16241 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16242
16243#define UF(mnem, op, nops, ops, ae) \
16244 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16245
5287ad62
JB
16246/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16247 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16248 use the same encoding function for each. */
16249#define NUF(mnem, op, nops, ops, enc) \
16250 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16251 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16252
16253/* Neon data processing, version which indirects through neon_enc_tab for
16254 the various overloaded versions of opcodes. */
16255#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16256 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16257 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16258
16259/* Neon insn with conditional suffix for the ARM version, non-overloaded
16260 version. */
037e8744
JB
16261#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16262 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16263 THUMB_VARIANT, do_##enc, do_##enc }
16264
037e8744 16265#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16266 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16267
16268#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16269 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16270
5287ad62 16271/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16272#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16273 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16274 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16275
037e8744 16276#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16277 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16278
16279#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16280 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16281
c19d1205
ZW
16282#define do_0 0
16283
16284/* Thumb-only, unconditional. */
e07e6e58 16285#define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
c19d1205 16286
c19d1205 16287static const struct asm_opcode insns[] =
bfae80f2 16288{
e74cfd16
PB
16289#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16290#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16291 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16292 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16293 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16294 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16295 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16296 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16297 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16298 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16299 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16300 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16301 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16302 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16303 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16304 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16305 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16306 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16307
16308 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16309 for setting PSR flag bits. They are obsolete in V6 and do not
16310 have Thumb equivalents. */
21d799b5
NC
16311 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16312 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16313 CL("tstp", 110f000, 2, (RR, SH), cmp),
16314 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16315 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16316 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16317 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16318 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16319 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16320
16321 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16322 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16323 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16324 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16325
16326 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16327 tC3("ldrb", 4500000, _ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16328 tCE("str", 4000000, _str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16329 tC3("strb", 4400000, _strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16330
16331 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16332 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16333 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16334 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16335 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16336 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16337
16338 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16339 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16340 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16341 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16342
c19d1205 16343 /* Pseudo ops. */
21d799b5 16344 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16345 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16346 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16347
16348 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16349 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16350 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16351 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16352 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16353 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16354 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16355 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16356 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16357 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16358 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16359 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16360 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16361
16a4cf17 16362 /* These may simplify to neg. */
21d799b5
NC
16363 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16364 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16365
c921be7d
NC
16366#undef THUMB_VARIANT
16367#define THUMB_VARIANT & arm_ext_v6
16368
21d799b5 16369 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16370
16371 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16372#undef THUMB_VARIANT
16373#define THUMB_VARIANT & arm_ext_v6t2
16374
21d799b5
NC
16375 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16376 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16377 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16378
21d799b5
NC
16379 TC3("ldrt", 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16380 TC3("ldrbt", 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16381 TC3("strt", 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16382 TC3("strbt", 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 16383
21d799b5
NC
16384 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16385 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16386
21d799b5
NC
16387 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16388 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16389
16390 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16391 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16392 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16393
16394 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16395 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16396 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16397 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16398 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16399 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16400 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16401 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16402
c921be7d
NC
16403#undef ARM_VARIANT
16404#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16405#undef THUMB_VARIANT
16406#define THUMB_VARIANT & arm_ext_v4t
16407
21d799b5
NC
16408 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16409 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16410
c921be7d
NC
16411#undef THUMB_VARIANT
16412#define THUMB_VARIANT & arm_ext_v6t2
16413
21d799b5 16414 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16415 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16416
16417 /* Generic coprocessor instructions. */
21d799b5
NC
16418 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16419 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16420 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16421 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16422 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16423 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16424 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16425
c921be7d
NC
16426#undef ARM_VARIANT
16427#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16428
21d799b5 16429 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16430 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16431
c921be7d
NC
16432#undef ARM_VARIANT
16433#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16434#undef THUMB_VARIANT
16435#define THUMB_VARIANT & arm_ext_msr
16436
21d799b5
NC
16437 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16438 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16439
c921be7d
NC
16440#undef ARM_VARIANT
16441#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16442#undef THUMB_VARIANT
16443#define THUMB_VARIANT & arm_ext_v6t2
16444
21d799b5
NC
16445 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16446 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16447 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16448 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16449 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16450 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16451 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16452 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16453
c921be7d
NC
16454#undef ARM_VARIANT
16455#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16456#undef THUMB_VARIANT
16457#define THUMB_VARIANT & arm_ext_v4t
16458
21d799b5
NC
16459 tC3("ldrh", 01000b0, _ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16460 tC3("strh", 00000b0, _strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16461 tC3("ldrsh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16462 tC3("ldrsb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16463 tCM("ld","sh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16464 tCM("ld","sb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16465
c921be7d
NC
16466#undef ARM_VARIANT
16467#define ARM_VARIANT & arm_ext_v4t_5
16468
c19d1205
ZW
16469 /* ARM Architecture 4T. */
16470 /* Note: bx (and blx) are required on V5, even if the processor does
16471 not support Thumb. */
21d799b5 16472 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16473
c921be7d
NC
16474#undef ARM_VARIANT
16475#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16476#undef THUMB_VARIANT
16477#define THUMB_VARIANT & arm_ext_v5t
16478
c19d1205
ZW
16479 /* Note: blx has 2 variants; the .value coded here is for
16480 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16481 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16482 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16483
c921be7d
NC
16484#undef THUMB_VARIANT
16485#define THUMB_VARIANT & arm_ext_v6t2
16486
21d799b5
NC
16487 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16488 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16489 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16490 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16491 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16492 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16493 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16494 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16495
c921be7d
NC
16496#undef ARM_VARIANT
16497#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
16498#undef THUMB_VARIANT
16499#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 16500
21d799b5
NC
16501 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16502 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16503 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16504 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16505
21d799b5
NC
16506 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16507 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16508
21d799b5
NC
16509 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16510 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16511 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16512 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16513
21d799b5
NC
16514 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16515 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16516 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16517 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16518
21d799b5
NC
16519 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16520 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16521
03ee1b7f
NC
16522 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16523 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16524 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16525 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 16526
c921be7d
NC
16527#undef ARM_VARIANT
16528#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
16529#undef THUMB_VARIANT
16530#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 16531
21d799b5
NC
16532 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16533 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16534 TC3("strd", 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205 16535
21d799b5
NC
16536 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16537 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 16538
c921be7d
NC
16539#undef ARM_VARIANT
16540#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16541
21d799b5 16542 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 16543
c921be7d
NC
16544#undef ARM_VARIANT
16545#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16546#undef THUMB_VARIANT
16547#define THUMB_VARIANT & arm_ext_v6
16548
21d799b5
NC
16549 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16550 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16551 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16552 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16553 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16554 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16555 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16556 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16557 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16558 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 16559
c921be7d
NC
16560#undef THUMB_VARIANT
16561#define THUMB_VARIANT & arm_ext_v6t2
16562
21d799b5
NC
16563 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16564 TCE("strex", 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16565 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16566 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 16567
21d799b5
NC
16568 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16569 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 16570
9e3c6df6 16571/* ARM V6 not included in V7M. */
c921be7d
NC
16572#undef THUMB_VARIANT
16573#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
16574 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16575 UF(rfeib, 9900a00, 1, (RRw), rfe),
16576 UF(rfeda, 8100a00, 1, (RRw), rfe),
16577 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16578 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16579 UF(rfefa, 9900a00, 1, (RRw), rfe),
16580 UF(rfeea, 8100a00, 1, (RRw), rfe),
16581 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16582 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16583 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16584 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16585 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 16586
9e3c6df6
PB
16587/* ARM V6 not included in V7M (eg. integer SIMD). */
16588#undef THUMB_VARIANT
16589#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
16590 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16591 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16592 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16593 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16594 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16595 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16596 /* Old name for QASX. */
21d799b5
NC
16597 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16598 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16599 /* Old name for QSAX. */
21d799b5
NC
16600 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16601 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16602 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16603 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16604 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16605 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16606 /* Old name for SASX. */
21d799b5
NC
16607 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16608 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16609 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16610 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16611 /* Old name for SHASX. */
21d799b5
NC
16612 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16613 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16614 /* Old name for SHSAX. */
21d799b5
NC
16615 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16616 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16617 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16618 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16619 /* Old name for SSAX. */
21d799b5
NC
16620 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16621 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16622 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16623 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16624 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16625 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16626 /* Old name for UASX. */
21d799b5
NC
16627 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16628 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16629 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16630 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16631 /* Old name for UHASX. */
21d799b5
NC
16632 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16633 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16634 /* Old name for UHSAX. */
21d799b5
NC
16635 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16636 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16637 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16638 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16639 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16640 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16641 /* Old name for UQASX. */
21d799b5
NC
16642 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16643 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16644 /* Old name for UQSAX. */
21d799b5
NC
16645 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16646 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16647 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16648 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16649 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16650 /* Old name for USAX. */
21d799b5
NC
16651 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16652 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
16653 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16654 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16655 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16656 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16657 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16658 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16659 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16660 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16661 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16662 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16663 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16664 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16665 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16666 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16667 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16668 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16669 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16670 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16671 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16672 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16673 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16674 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16675 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16676 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16677 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16678 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16679 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
16680 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16681 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16682 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16683 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16684 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 16685
c921be7d
NC
16686#undef ARM_VARIANT
16687#define ARM_VARIANT & arm_ext_v6k
16688#undef THUMB_VARIANT
16689#define THUMB_VARIANT & arm_ext_v6k
16690
21d799b5
NC
16691 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16692 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16693 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16694 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 16695
c921be7d
NC
16696#undef THUMB_VARIANT
16697#define THUMB_VARIANT & arm_ext_v6_notm
16698
21d799b5
NC
16699 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16700 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
ebdca51a 16701
c921be7d
NC
16702#undef THUMB_VARIANT
16703#define THUMB_VARIANT & arm_ext_v6t2
16704
21d799b5
NC
16705 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16706 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16707 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16708 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16709 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 16710
c921be7d
NC
16711#undef ARM_VARIANT
16712#define ARM_VARIANT & arm_ext_v6z
16713
21d799b5 16714 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 16715
c921be7d
NC
16716#undef ARM_VARIANT
16717#define ARM_VARIANT & arm_ext_v6t2
16718
21d799b5
NC
16719 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16720 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16721 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16722 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 16723
21d799b5
NC
16724 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16725 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16726 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16727 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 16728
21d799b5
NC
16729 TC3("ldrht", 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16730 TC3("ldrsht", 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16731 TC3("ldrsbt", 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16732 TC3("strht", 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
c19d1205 16733
21d799b5
NC
16734 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16735 UT("cbz", b100, 2, (RR, EXP), t_cbz),
c921be7d
NC
16736
16737 /* ARM does not really have an IT instruction, so always allow it.
16738 The opcode is copied from Thumb in order to allow warnings in
16739 -mimplicit-it=[never | arm] modes. */
16740#undef ARM_VARIANT
16741#define ARM_VARIANT & arm_ext_v1
16742
21d799b5
NC
16743 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16744 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16745 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16746 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16747 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16748 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16749 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16750 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16751 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16752 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16753 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16754 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16755 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16756 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16757 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 16758 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
16759 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16760 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 16761
92e90b6e 16762 /* Thumb2 only instructions. */
c921be7d
NC
16763#undef ARM_VARIANT
16764#define ARM_VARIANT NULL
92e90b6e 16765
21d799b5
NC
16766 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16767 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16768 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16769 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16770 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16771 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 16772
62b3e311 16773 /* Thumb-2 hardware division instructions (R and M profiles only). */
c921be7d
NC
16774#undef THUMB_VARIANT
16775#define THUMB_VARIANT & arm_ext_div
16776
21d799b5
NC
16777 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16778 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
62b3e311 16779
7e806470 16780 /* ARM V6M/V7 instructions. */
c921be7d
NC
16781#undef ARM_VARIANT
16782#define ARM_VARIANT & arm_ext_barrier
16783#undef THUMB_VARIANT
16784#define THUMB_VARIANT & arm_ext_barrier
16785
21d799b5
NC
16786 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16787 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16788 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
7e806470 16789
62b3e311 16790 /* ARM V7 instructions. */
c921be7d
NC
16791#undef ARM_VARIANT
16792#define ARM_VARIANT & arm_ext_v7
16793#undef THUMB_VARIANT
16794#define THUMB_VARIANT & arm_ext_v7
16795
21d799b5
NC
16796 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16797 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 16798
c921be7d
NC
16799#undef ARM_VARIANT
16800#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16801
21d799b5
NC
16802 cCE("wfs", e200110, 1, (RR), rd),
16803 cCE("rfs", e300110, 1, (RR), rd),
16804 cCE("wfc", e400110, 1, (RR), rd),
16805 cCE("rfc", e500110, 1, (RR), rd),
16806
16807 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16808 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16809 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16810 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16811
16812 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16813 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16814 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16815 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16816
16817 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16818 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16819 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16820 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16821 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16822 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16823 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16824 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16825 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16826 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16827 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16828 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16829
16830 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16831 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16832 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16833 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16834 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16835 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16836 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16837 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16838 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16839 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16840 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16841 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16842
16843 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16844 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16845 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16846 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16847 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
16848 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
16849 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
16850 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
16851 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
16852 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
16853 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
16854 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
16855
16856 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
16857 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
16858 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
16859 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
16860 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
16861 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
16862 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
16863 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
16864 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
16865 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
16866 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
16867 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
16868
16869 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
16870 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
16871 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
16872 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
16873 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
16874 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
16875 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
16876 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
16877 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
16878 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
16879 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
16880 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
16881
16882 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
16883 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
16884 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
16885 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
16886 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
16887 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
16888 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
16889 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
16890 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
16891 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
16892 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
16893 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
16894
16895 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
16896 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
16897 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
16898 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
16899 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
16900 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
16901 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
16902 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
16903 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
16904 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
16905 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
16906 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
16907
16908 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
16909 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
16910 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
16911 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
16912 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
16913 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
16914 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
16915 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
16916 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
16917 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
16918 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
16919 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
16920
16921 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
16922 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
16923 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
16924 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
16925 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
16926 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
16927 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
16928 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
16929 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
16930 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
16931 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
16932 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
16933
16934 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
16935 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
16936 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
16937 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
16938 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
16939 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
16940 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
16941 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
16942 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
16943 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
16944 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
16945 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
16946
16947 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
16948 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
16949 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
16950 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
16951 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
16952 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
16953 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
16954 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
16955 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
16956 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
16957 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
16958 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
16959
16960 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
16961 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
16962 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
16963 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
16964 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
16965 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
16966 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
16967 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
16968 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
16969 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
16970 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
16971 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
16972
16973 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
16974 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
16975 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
16976 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
16977 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
16978 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
16979 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
16980 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
16981 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
16982 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
16983 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
16984 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
16985
16986 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
16987 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
16988 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
16989 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
16990 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
16991 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
16992 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
16993 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
16994 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
16995 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
16996 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
16997 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
16998
16999 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17000 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17001 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17002 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17003 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17004 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17005 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17006 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17007 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17008 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17009 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17010 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17011
17012 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17013 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17014 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17015 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17016 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17017 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17018 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17019 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17020 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17021 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17022 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17023 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17024
17025 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17026 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17027 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17028 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17029 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17030 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17031 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17032 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17033 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17034 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17035 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17036 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17037
17038 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17039 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17040 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17041 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17042 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17043 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17044 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17045 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17046 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17047 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17048 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17049 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17050
17051 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17052 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17053 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17054 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17055 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17056 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17057 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17058 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17059 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17060 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17061 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17062 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17063
17064 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17065 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17066 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17067 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17068 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17069 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17070 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17071 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17072 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17073 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17074 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17075 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17076
17077 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17078 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17079 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17080 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17081 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17082 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17083 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17084 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17085 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17086 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17087 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17088 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17089
17090 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17091 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17092 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17093 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17094 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17095 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17096 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17097 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17098 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17099 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17100 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17101 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17102
17103 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17104 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17105 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17106 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17107 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17108 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17109 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17110 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17111 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17112 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17113 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17114 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17115
17116 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17117 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17118 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17119 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17120 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17121 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17122 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17123 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17124 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17125 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17126 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17127 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17128
17129 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17130 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17131 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17132 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17133 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17134 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17135 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17136 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17137 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17138 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17139 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17140 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17141
17142 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17143 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17144 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17145 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17146 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17147 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17148 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17149 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17150 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17151 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17152 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17153 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17154
17155 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17156 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17157 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17158 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17159 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17160 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17161 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17162 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17163 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17164 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17165 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17166 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17167
17168 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17169 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17170 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17171 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17172 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17173 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17174 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17175 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17176 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17177 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17178 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17179 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17180
17181 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17182 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17183 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17184 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17185 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17186 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17187 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17188 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17189 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17190 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17191 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17192 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17193
17194 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17195 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17196 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17197 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17198
17199 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17200 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17201 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17202 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17203 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17204 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17205 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17206 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17207 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17208 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17209 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17210 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17211
c19d1205
ZW
17212 /* The implementation of the FIX instruction is broken on some
17213 assemblers, in that it accepts a precision specifier as well as a
17214 rounding specifier, despite the fact that this is meaningless.
17215 To be more compatible, we accept it as well, though of course it
17216 does not set any bits. */
21d799b5
NC
17217 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17218 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17219 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17220 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17221 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17222 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17223 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17224 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17225 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17226 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17227 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17228 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17229 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17230
c19d1205 17231 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17232#undef ARM_VARIANT
17233#define ARM_VARIANT & fpu_fpa_ext_v2
17234
21d799b5
NC
17235 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17236 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17237 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17238 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17239 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17240 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17241
c921be7d
NC
17242#undef ARM_VARIANT
17243#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17244
c19d1205 17245 /* Moves and type conversions. */
21d799b5
NC
17246 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17247 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17248 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17249 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17250 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17251 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17252 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17253 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17254 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17255 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17256 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17257 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17258 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17259 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17260
17261 /* Memory operations. */
21d799b5
NC
17262 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17263 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17264 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17265 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17266 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17267 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17268 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17269 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17270 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17271 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17272 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17273 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17274 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17275 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17276 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17277 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17278 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17279 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17280
c19d1205 17281 /* Monadic operations. */
21d799b5
NC
17282 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17283 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17284 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17285
17286 /* Dyadic operations. */
21d799b5
NC
17287 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17288 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17289 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17290 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17291 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17292 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17293 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17294 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17295 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17296
c19d1205 17297 /* Comparisons. */
21d799b5
NC
17298 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17299 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17300 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17301 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17302
62f3b8c8
PB
17303 /* Double precision load/store are still present on single precision
17304 implementations. */
17305 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17306 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17307 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17308 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17309 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17310 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17311 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17312 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17313 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17314 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17315
c921be7d
NC
17316#undef ARM_VARIANT
17317#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17318
c19d1205 17319 /* Moves and type conversions. */
21d799b5
NC
17320 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17321 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17322 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17323 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17324 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17325 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17326 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17327 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17328 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17329 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17330 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17331 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17332 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17333
c19d1205 17334 /* Monadic operations. */
21d799b5
NC
17335 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17336 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17337 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17338
17339 /* Dyadic operations. */
21d799b5
NC
17340 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17341 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17342 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17343 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17344 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17345 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17346 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17347 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17348 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17349
c19d1205 17350 /* Comparisons. */
21d799b5
NC
17351 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17352 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17353 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17354 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17355
c921be7d
NC
17356#undef ARM_VARIANT
17357#define ARM_VARIANT & fpu_vfp_ext_v2
17358
21d799b5
NC
17359 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17360 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17361 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17362 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17363
037e8744
JB
17364/* Instructions which may belong to either the Neon or VFP instruction sets.
17365 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17366#undef ARM_VARIANT
17367#define ARM_VARIANT & fpu_vfp_ext_v1xd
17368#undef THUMB_VARIANT
17369#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17370
037e8744
JB
17371 /* These mnemonics are unique to VFP. */
17372 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17373 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17374 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17375 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17376 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17377 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17378 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17379 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17380 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17381 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17382
17383 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17384 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17385 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17386 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17387
21d799b5
NC
17388 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17389 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17390
17391 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17392 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17393
17394 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17395 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17396 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17397 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17398 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17399 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17400 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17401 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17402
21d799b5
NC
17403 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17404 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17405 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17406
037e8744
JB
17407
17408 /* NOTE: All VMOV encoding is special-cased! */
17409 NCE(vmov, 0, 1, (VMOV), neon_mov),
17410 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17411
c921be7d
NC
17412#undef THUMB_VARIANT
17413#define THUMB_VARIANT & fpu_neon_ext_v1
17414#undef ARM_VARIANT
17415#define ARM_VARIANT & fpu_neon_ext_v1
17416
5287ad62
JB
17417 /* Data processing with three registers of the same length. */
17418 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17419 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17420 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17421 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17422 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17423 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17424 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17425 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17426 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17427 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17428 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17429 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17430 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17431 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17432 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17433 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17434 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17435 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17436 /* If not immediate, fall back to neon_dyadic_i64_su.
17437 shl_imm should accept I8 I16 I32 I64,
17438 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17439 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17440 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17441 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17442 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17443 /* Logic ops, types optional & ignored. */
21d799b5
NC
17444 nUF(vand, _vand, 2, (RNDQ, NILO), neon_logic),
17445 nUF(vandq, _vand, 2, (RNQ, NILO), neon_logic),
17446 nUF(vbic, _vbic, 2, (RNDQ, NILO), neon_logic),
17447 nUF(vbicq, _vbic, 2, (RNQ, NILO), neon_logic),
17448 nUF(vorr, _vorr, 2, (RNDQ, NILO), neon_logic),
17449 nUF(vorrq, _vorr, 2, (RNQ, NILO), neon_logic),
17450 nUF(vorn, _vorn, 2, (RNDQ, NILO), neon_logic),
17451 nUF(vornq, _vorn, 2, (RNQ, NILO), neon_logic),
17452 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17453 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17454 /* Bitfield ops, untyped. */
17455 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17456 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17457 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17458 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17459 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17460 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17461 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17462 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17463 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17464 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17465 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17466 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17467 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17468 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17469 back to neon_dyadic_if_su. */
21d799b5
NC
17470 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17471 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17472 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17473 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17474 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17475 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17476 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17477 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17478 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17479 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17480 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17481 /* As above, D registers only. */
21d799b5
NC
17482 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17483 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17484 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17485 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17486 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17487 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17488 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17489 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17490 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
17491 /* vtst takes sizes 8, 16, 32. */
17492 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17493 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17494 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 17495 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 17496 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
17497 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17498 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17499 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17500 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
17501 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17502 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17503 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17504 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
17505 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17506 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17507 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17508 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
17509 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17510 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17511 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17512 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17513
17514 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 17515 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
17516 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17517
17518 /* Data processing with two registers and a shift amount. */
17519 /* Right shifts, and variants with rounding.
17520 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17521 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17522 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17523 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17524 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17525 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17526 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17527 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17528 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17529 /* Shift and insert. Sizes accepted 8 16 32 64. */
17530 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17531 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17532 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17533 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17534 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17535 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17536 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17537 /* Right shift immediate, saturating & narrowing, with rounding variants.
17538 Types accepted S16 S32 S64 U16 U32 U64. */
17539 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17540 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17541 /* As above, unsigned. Types accepted S16 S32 S64. */
17542 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17543 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17544 /* Right shift narrowing. Types accepted I16 I32 I64. */
17545 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17546 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17547 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 17548 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 17549 /* CVT with optional immediate for fixed-point variant. */
21d799b5 17550 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 17551
21d799b5
NC
17552 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
17553 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
5287ad62
JB
17554
17555 /* Data processing, three registers of different lengths. */
17556 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17557 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17558 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17559 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17560 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17561 /* If not scalar, fall back to neon_dyadic_long.
17562 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
17563 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17564 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
17565 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17566 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17567 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17568 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17569 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17570 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17571 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17572 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17573 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
17574 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17575 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17576 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
17577 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17578 S16 S32 U16 U32. */
21d799b5 17579 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
17580
17581 /* Extract. Size 8. */
3b8d421e
PB
17582 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17583 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
17584
17585 /* Two registers, miscellaneous. */
17586 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17587 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17588 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17589 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17590 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17591 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17592 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17593 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
17594 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17595 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
17596 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17597 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17598 /* VMOVN. Types I16 I32 I64. */
21d799b5 17599 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 17600 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 17601 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 17602 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 17603 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
17604 /* VZIP / VUZP. Sizes 8 16 32. */
17605 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17606 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17607 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17608 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17609 /* VQABS / VQNEG. Types S8 S16 S32. */
17610 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17611 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17612 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17613 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17614 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17615 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17616 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17617 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17618 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17619 /* Reciprocal estimates. Types U32 F32. */
17620 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17621 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17622 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17623 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17624 /* VCLS. Types S8 S16 S32. */
17625 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17626 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17627 /* VCLZ. Types I8 I16 I32. */
17628 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17629 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17630 /* VCNT. Size 8. */
17631 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17632 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17633 /* Two address, untyped. */
17634 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17635 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17636 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
17637 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17638 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
17639
17640 /* Table lookup. Size 8. */
17641 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17642 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17643
c921be7d
NC
17644#undef THUMB_VARIANT
17645#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17646#undef ARM_VARIANT
17647#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17648
5287ad62 17649 /* Neon element/structure load/store. */
21d799b5
NC
17650 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17651 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17652 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17653 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17654 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17655 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17656 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17657 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 17658
c921be7d 17659#undef THUMB_VARIANT
62f3b8c8
PB
17660#define THUMB_VARIANT &fpu_vfp_ext_v3xd
17661#undef ARM_VARIANT
17662#define ARM_VARIANT &fpu_vfp_ext_v3xd
17663 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17664 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17665 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17666 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17667 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17668 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17669 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17670 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17671 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17672
17673#undef THUMB_VARIANT
c921be7d
NC
17674#define THUMB_VARIANT & fpu_vfp_ext_v3
17675#undef ARM_VARIANT
17676#define ARM_VARIANT & fpu_vfp_ext_v3
17677
21d799b5 17678 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 17679 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17680 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17681 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17682 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17683 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17684 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17685 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17686 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 17687
62f3b8c8
PB
17688#undef ARM_VARIANT
17689#define ARM_VARIANT &fpu_vfp_ext_fma
17690#undef THUMB_VARIANT
17691#define THUMB_VARIANT &fpu_vfp_ext_fma
17692 /* Mnemonics shared by Neon and VFP. These are included in the
17693 VFP FMA variant; NEON and VFP FMA always includes the NEON
17694 FMA instructions. */
17695 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17696 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17697 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17698 the v form should always be used. */
17699 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17700 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17701 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17702 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17703 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17704 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17705
5287ad62 17706#undef THUMB_VARIANT
c921be7d
NC
17707#undef ARM_VARIANT
17708#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17709
21d799b5
NC
17710 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17711 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17712 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17713 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17714 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17715 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17716 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17717 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 17718
c921be7d
NC
17719#undef ARM_VARIANT
17720#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17721
21d799b5
NC
17722 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17723 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17724 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17725 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17726 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17727 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17728 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17729 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17730 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17731 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17732 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17733 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17734 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17735 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17736 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17737 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17738 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17739 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17740 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17741 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17742 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17743 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17744 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17745 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17746 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17747 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17748 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17749 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17750 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17751 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17752 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17753 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17754 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17755 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17756 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17757 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17758 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17759 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17760 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17761 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17762 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17763 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17764 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17765 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17766 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17767 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17768 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17769 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17770 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17771 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17772 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17773 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17774 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17775 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17776 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17777 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17778 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17779 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17780 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17781 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17782 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17783 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17784 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17785 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17786 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17787 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17788 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17789 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17790 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17791 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17792 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17793 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17794 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17795 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17796 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17797 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17798 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17799 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17800 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17801 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17802 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17803 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17804 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17805 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17806 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17807 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17808 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17809 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17810 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17811 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17812 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17813 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17814 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17815 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17816 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17817 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17818 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17819 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17820 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17821 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17822 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17823 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17824 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17825 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17826 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17827 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17828 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17829 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17830 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17831 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17832 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17833 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17834 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17835 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17836 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17837 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17838 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17839 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17840 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17841 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17842 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17843 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17844 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17845 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17846 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17847 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17848 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17849 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17850 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17851 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17852 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17853 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17854 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17855 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17856 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17857 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17858 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17859 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17860 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17861 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17862 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17863 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17864 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
17865 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
17866 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
17867 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
17868 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
17869 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
17870 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17871 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17872 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17873 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
17874 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
17875 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
17876 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
17877 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
17878 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
17879 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17880 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17881 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17882 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17883 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 17884
c921be7d
NC
17885#undef ARM_VARIANT
17886#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17887
21d799b5
NC
17888 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
17889 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
17890 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
17891 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
17892 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
17893 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
17894 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17895 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17896 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17897 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17898 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17899 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17900 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17901 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17902 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17903 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17904 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17905 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17906 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17907 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17908 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17909 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17910 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17911 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17912 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17913 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17914 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17915 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17916 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17917 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17918 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17919 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17920 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17921 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17922 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17923 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17924 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17925 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17926 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17927 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17928 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17929 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17930 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17931 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17932 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17933 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17937 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17941 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17942 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17943 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17944 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 17945
c921be7d
NC
17946#undef ARM_VARIANT
17947#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17948
21d799b5
NC
17949 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17950 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17951 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17952 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17953 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17954 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17955 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17956 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17957 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
17958 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
17959 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
17960 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
17961 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
17962 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
17963 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
17964 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
17965 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
17966 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
17967 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
17968 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
17969 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
17970 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
17971 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
17972 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
17973 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
17974 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
17975 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
17976 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
17977 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17978 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
17979 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
17980 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
17981 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
17982 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
17983 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
17984 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
17985 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
17986 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
17987 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
17988 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
17989 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
17990 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
17991 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
17992 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
17993 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17994 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17995 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17996 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17997 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17998 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17999 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18000 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18001 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18002 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18003 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18004 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18005 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18006 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18007 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18008 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18009 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18010 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18011 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18012 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18013 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18014 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18015 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18016 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18017 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18018 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18019 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18020 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18021 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18022 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18023 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18024 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18025};
18026#undef ARM_VARIANT
18027#undef THUMB_VARIANT
18028#undef TCE
18029#undef TCM
18030#undef TUE
18031#undef TUF
18032#undef TCC
8f06b2d8 18033#undef cCE
e3cb604e
PB
18034#undef cCL
18035#undef C3E
c19d1205
ZW
18036#undef CE
18037#undef CM
18038#undef UE
18039#undef UF
18040#undef UT
5287ad62
JB
18041#undef NUF
18042#undef nUF
18043#undef NCE
18044#undef nCE
c19d1205
ZW
18045#undef OPS0
18046#undef OPS1
18047#undef OPS2
18048#undef OPS3
18049#undef OPS4
18050#undef OPS5
18051#undef OPS6
18052#undef do_0
18053\f
18054/* MD interface: bits in the object file. */
bfae80f2 18055
c19d1205
ZW
18056/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18057 for use in the a.out file, and stores them in the array pointed to by buf.
18058 This knows about the endian-ness of the target machine and does
18059 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18060 2 (short) and 4 (long) Floating numbers are put out as a series of
18061 LITTLENUMS (shorts, here at least). */
b99bd4ef 18062
c19d1205
ZW
18063void
18064md_number_to_chars (char * buf, valueT val, int n)
18065{
18066 if (target_big_endian)
18067 number_to_chars_bigendian (buf, val, n);
18068 else
18069 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18070}
18071
c19d1205
ZW
18072static valueT
18073md_chars_to_number (char * buf, int n)
bfae80f2 18074{
c19d1205
ZW
18075 valueT result = 0;
18076 unsigned char * where = (unsigned char *) buf;
bfae80f2 18077
c19d1205 18078 if (target_big_endian)
b99bd4ef 18079 {
c19d1205
ZW
18080 while (n--)
18081 {
18082 result <<= 8;
18083 result |= (*where++ & 255);
18084 }
b99bd4ef 18085 }
c19d1205 18086 else
b99bd4ef 18087 {
c19d1205
ZW
18088 while (n--)
18089 {
18090 result <<= 8;
18091 result |= (where[n] & 255);
18092 }
bfae80f2 18093 }
b99bd4ef 18094
c19d1205 18095 return result;
bfae80f2 18096}
b99bd4ef 18097
c19d1205 18098/* MD interface: Sections. */
b99bd4ef 18099
0110f2b8
PB
18100/* Estimate the size of a frag before relaxing. Assume everything fits in
18101 2 bytes. */
18102
c19d1205 18103int
0110f2b8 18104md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18105 segT segtype ATTRIBUTE_UNUSED)
18106{
0110f2b8
PB
18107 fragp->fr_var = 2;
18108 return 2;
18109}
18110
18111/* Convert a machine dependent frag. */
18112
18113void
18114md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18115{
18116 unsigned long insn;
18117 unsigned long old_op;
18118 char *buf;
18119 expressionS exp;
18120 fixS *fixp;
18121 int reloc_type;
18122 int pc_rel;
18123 int opcode;
18124
18125 buf = fragp->fr_literal + fragp->fr_fix;
18126
18127 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18128 if (fragp->fr_symbol)
18129 {
0110f2b8
PB
18130 exp.X_op = O_symbol;
18131 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18132 }
18133 else
18134 {
0110f2b8 18135 exp.X_op = O_constant;
5f4273c7 18136 }
0110f2b8
PB
18137 exp.X_add_number = fragp->fr_offset;
18138 opcode = fragp->fr_subtype;
18139 switch (opcode)
18140 {
18141 case T_MNEM_ldr_pc:
18142 case T_MNEM_ldr_pc2:
18143 case T_MNEM_ldr_sp:
18144 case T_MNEM_str_sp:
18145 case T_MNEM_ldr:
18146 case T_MNEM_ldrb:
18147 case T_MNEM_ldrh:
18148 case T_MNEM_str:
18149 case T_MNEM_strb:
18150 case T_MNEM_strh:
18151 if (fragp->fr_var == 4)
18152 {
5f4273c7 18153 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18154 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18155 {
18156 insn |= (old_op & 0x700) << 4;
18157 }
18158 else
18159 {
18160 insn |= (old_op & 7) << 12;
18161 insn |= (old_op & 0x38) << 13;
18162 }
18163 insn |= 0x00000c00;
18164 put_thumb32_insn (buf, insn);
18165 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18166 }
18167 else
18168 {
18169 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18170 }
18171 pc_rel = (opcode == T_MNEM_ldr_pc2);
18172 break;
18173 case T_MNEM_adr:
18174 if (fragp->fr_var == 4)
18175 {
18176 insn = THUMB_OP32 (opcode);
18177 insn |= (old_op & 0xf0) << 4;
18178 put_thumb32_insn (buf, insn);
18179 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18180 }
18181 else
18182 {
18183 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18184 exp.X_add_number -= 4;
18185 }
18186 pc_rel = 1;
18187 break;
18188 case T_MNEM_mov:
18189 case T_MNEM_movs:
18190 case T_MNEM_cmp:
18191 case T_MNEM_cmn:
18192 if (fragp->fr_var == 4)
18193 {
18194 int r0off = (opcode == T_MNEM_mov
18195 || opcode == T_MNEM_movs) ? 0 : 8;
18196 insn = THUMB_OP32 (opcode);
18197 insn = (insn & 0xe1ffffff) | 0x10000000;
18198 insn |= (old_op & 0x700) << r0off;
18199 put_thumb32_insn (buf, insn);
18200 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18201 }
18202 else
18203 {
18204 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18205 }
18206 pc_rel = 0;
18207 break;
18208 case T_MNEM_b:
18209 if (fragp->fr_var == 4)
18210 {
18211 insn = THUMB_OP32(opcode);
18212 put_thumb32_insn (buf, insn);
18213 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18214 }
18215 else
18216 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18217 pc_rel = 1;
18218 break;
18219 case T_MNEM_bcond:
18220 if (fragp->fr_var == 4)
18221 {
18222 insn = THUMB_OP32(opcode);
18223 insn |= (old_op & 0xf00) << 14;
18224 put_thumb32_insn (buf, insn);
18225 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18226 }
18227 else
18228 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18229 pc_rel = 1;
18230 break;
18231 case T_MNEM_add_sp:
18232 case T_MNEM_add_pc:
18233 case T_MNEM_inc_sp:
18234 case T_MNEM_dec_sp:
18235 if (fragp->fr_var == 4)
18236 {
18237 /* ??? Choose between add and addw. */
18238 insn = THUMB_OP32 (opcode);
18239 insn |= (old_op & 0xf0) << 4;
18240 put_thumb32_insn (buf, insn);
16805f35
PB
18241 if (opcode == T_MNEM_add_pc)
18242 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18243 else
18244 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18245 }
18246 else
18247 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18248 pc_rel = 0;
18249 break;
18250
18251 case T_MNEM_addi:
18252 case T_MNEM_addis:
18253 case T_MNEM_subi:
18254 case T_MNEM_subis:
18255 if (fragp->fr_var == 4)
18256 {
18257 insn = THUMB_OP32 (opcode);
18258 insn |= (old_op & 0xf0) << 4;
18259 insn |= (old_op & 0xf) << 16;
18260 put_thumb32_insn (buf, insn);
16805f35
PB
18261 if (insn & (1 << 20))
18262 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18263 else
18264 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18265 }
18266 else
18267 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18268 pc_rel = 0;
18269 break;
18270 default:
5f4273c7 18271 abort ();
0110f2b8
PB
18272 }
18273 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18274 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18275 fixp->fx_file = fragp->fr_file;
18276 fixp->fx_line = fragp->fr_line;
18277 fragp->fr_fix += fragp->fr_var;
18278}
18279
18280/* Return the size of a relaxable immediate operand instruction.
18281 SHIFT and SIZE specify the form of the allowable immediate. */
18282static int
18283relax_immediate (fragS *fragp, int size, int shift)
18284{
18285 offsetT offset;
18286 offsetT mask;
18287 offsetT low;
18288
18289 /* ??? Should be able to do better than this. */
18290 if (fragp->fr_symbol)
18291 return 4;
18292
18293 low = (1 << shift) - 1;
18294 mask = (1 << (shift + size)) - (1 << shift);
18295 offset = fragp->fr_offset;
18296 /* Force misaligned offsets to 32-bit variant. */
18297 if (offset & low)
5e77afaa 18298 return 4;
0110f2b8
PB
18299 if (offset & ~mask)
18300 return 4;
18301 return 2;
18302}
18303
5e77afaa
PB
18304/* Get the address of a symbol during relaxation. */
18305static addressT
5f4273c7 18306relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18307{
18308 fragS *sym_frag;
18309 addressT addr;
18310 symbolS *sym;
18311
18312 sym = fragp->fr_symbol;
18313 sym_frag = symbol_get_frag (sym);
18314 know (S_GET_SEGMENT (sym) != absolute_section
18315 || sym_frag == &zero_address_frag);
18316 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18317
18318 /* If frag has yet to be reached on this pass, assume it will
18319 move by STRETCH just as we did. If this is not so, it will
18320 be because some frag between grows, and that will force
18321 another pass. */
18322
18323 if (stretch != 0
18324 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18325 {
18326 fragS *f;
18327
18328 /* Adjust stretch for any alignment frag. Note that if have
18329 been expanding the earlier code, the symbol may be
18330 defined in what appears to be an earlier frag. FIXME:
18331 This doesn't handle the fr_subtype field, which specifies
18332 a maximum number of bytes to skip when doing an
18333 alignment. */
18334 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18335 {
18336 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18337 {
18338 if (stretch < 0)
18339 stretch = - ((- stretch)
18340 & ~ ((1 << (int) f->fr_offset) - 1));
18341 else
18342 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18343 if (stretch == 0)
18344 break;
18345 }
18346 }
18347 if (f != NULL)
18348 addr += stretch;
18349 }
5e77afaa
PB
18350
18351 return addr;
18352}
18353
0110f2b8
PB
18354/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18355 load. */
18356static int
5e77afaa 18357relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18358{
18359 addressT addr;
18360 offsetT val;
18361
18362 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
18363 if (fragp->fr_symbol == NULL
18364 || !S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
18365 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18366 return 4;
18367
5f4273c7 18368 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18369 addr = fragp->fr_address + fragp->fr_fix;
18370 addr = (addr + 4) & ~3;
5e77afaa 18371 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18372 if (val & 3)
5e77afaa 18373 return 4;
0110f2b8
PB
18374 val -= addr;
18375 if (val < 0 || val > 1020)
18376 return 4;
18377 return 2;
18378}
18379
18380/* Return the size of a relaxable add/sub immediate instruction. */
18381static int
18382relax_addsub (fragS *fragp, asection *sec)
18383{
18384 char *buf;
18385 int op;
18386
18387 buf = fragp->fr_literal + fragp->fr_fix;
18388 op = bfd_get_16(sec->owner, buf);
18389 if ((op & 0xf) == ((op >> 4) & 0xf))
18390 return relax_immediate (fragp, 8, 0);
18391 else
18392 return relax_immediate (fragp, 3, 0);
18393}
18394
18395
18396/* Return the size of a relaxable branch instruction. BITS is the
18397 size of the offset field in the narrow instruction. */
18398
18399static int
5e77afaa 18400relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18401{
18402 addressT addr;
18403 offsetT val;
18404 offsetT limit;
18405
18406 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18407 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
18408 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18409 return 4;
18410
267bf995
RR
18411#ifdef OBJ_ELF
18412 if (S_IS_DEFINED (fragp->fr_symbol)
18413 && ARM_IS_FUNC (fragp->fr_symbol))
18414 return 4;
18415#endif
18416
5f4273c7 18417 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18418 addr = fragp->fr_address + fragp->fr_fix + 4;
18419 val -= addr;
18420
18421 /* Offset is a signed value *2 */
18422 limit = 1 << bits;
18423 if (val >= limit || val < -limit)
18424 return 4;
18425 return 2;
18426}
18427
18428
18429/* Relax a machine dependent frag. This returns the amount by which
18430 the current size of the frag should change. */
18431
18432int
5e77afaa 18433arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18434{
18435 int oldsize;
18436 int newsize;
18437
18438 oldsize = fragp->fr_var;
18439 switch (fragp->fr_subtype)
18440 {
18441 case T_MNEM_ldr_pc2:
5f4273c7 18442 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18443 break;
18444 case T_MNEM_ldr_pc:
18445 case T_MNEM_ldr_sp:
18446 case T_MNEM_str_sp:
5f4273c7 18447 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18448 break;
18449 case T_MNEM_ldr:
18450 case T_MNEM_str:
5f4273c7 18451 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18452 break;
18453 case T_MNEM_ldrh:
18454 case T_MNEM_strh:
5f4273c7 18455 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18456 break;
18457 case T_MNEM_ldrb:
18458 case T_MNEM_strb:
5f4273c7 18459 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18460 break;
18461 case T_MNEM_adr:
5f4273c7 18462 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18463 break;
18464 case T_MNEM_mov:
18465 case T_MNEM_movs:
18466 case T_MNEM_cmp:
18467 case T_MNEM_cmn:
5f4273c7 18468 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18469 break;
18470 case T_MNEM_b:
5f4273c7 18471 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18472 break;
18473 case T_MNEM_bcond:
5f4273c7 18474 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18475 break;
18476 case T_MNEM_add_sp:
18477 case T_MNEM_add_pc:
18478 newsize = relax_immediate (fragp, 8, 2);
18479 break;
18480 case T_MNEM_inc_sp:
18481 case T_MNEM_dec_sp:
18482 newsize = relax_immediate (fragp, 7, 2);
18483 break;
18484 case T_MNEM_addi:
18485 case T_MNEM_addis:
18486 case T_MNEM_subi:
18487 case T_MNEM_subis:
18488 newsize = relax_addsub (fragp, sec);
18489 break;
18490 default:
5f4273c7 18491 abort ();
0110f2b8 18492 }
5e77afaa
PB
18493
18494 fragp->fr_var = newsize;
18495 /* Freeze wide instructions that are at or before the same location as
18496 in the previous pass. This avoids infinite loops.
5f4273c7
NC
18497 Don't freeze them unconditionally because targets may be artificially
18498 misaligned by the expansion of preceding frags. */
5e77afaa 18499 if (stretch <= 0 && newsize > 2)
0110f2b8 18500 {
0110f2b8 18501 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 18502 frag_wane (fragp);
0110f2b8 18503 }
5e77afaa 18504
0110f2b8 18505 return newsize - oldsize;
c19d1205 18506}
b99bd4ef 18507
c19d1205 18508/* Round up a section size to the appropriate boundary. */
b99bd4ef 18509
c19d1205
ZW
18510valueT
18511md_section_align (segT segment ATTRIBUTE_UNUSED,
18512 valueT size)
18513{
f0927246
NC
18514#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18515 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18516 {
18517 /* For a.out, force the section size to be aligned. If we don't do
18518 this, BFD will align it for us, but it will not write out the
18519 final bytes of the section. This may be a bug in BFD, but it is
18520 easier to fix it here since that is how the other a.out targets
18521 work. */
18522 int align;
18523
18524 align = bfd_get_section_alignment (stdoutput, segment);
18525 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18526 }
c19d1205 18527#endif
f0927246
NC
18528
18529 return size;
bfae80f2 18530}
b99bd4ef 18531
c19d1205
ZW
18532/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18533 of an rs_align_code fragment. */
18534
18535void
18536arm_handle_align (fragS * fragP)
bfae80f2 18537{
e7495e45
NS
18538 static char const arm_noop[2][2][4] =
18539 {
18540 { /* ARMv1 */
18541 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18542 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18543 },
18544 { /* ARMv6k */
18545 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18546 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18547 },
18548 };
18549 static char const thumb_noop[2][2][2] =
18550 {
18551 { /* Thumb-1 */
18552 {0xc0, 0x46}, /* LE */
18553 {0x46, 0xc0}, /* BE */
18554 },
18555 { /* Thumb-2 */
18556 {0x00, 0xbf}, /* LE */
18557 {0xbf, 0x00} /* BE */
18558 }
18559 };
18560 static char const wide_thumb_noop[2][4] =
18561 { /* Wide Thumb-2 */
18562 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18563 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18564 };
c921be7d 18565
e7495e45 18566 unsigned bytes, fix, noop_size;
c19d1205
ZW
18567 char * p;
18568 const char * noop;
e7495e45 18569 const char *narrow_noop = NULL;
cd000bff
DJ
18570#ifdef OBJ_ELF
18571 enum mstate state;
18572#endif
bfae80f2 18573
c19d1205 18574 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
18575 return;
18576
c19d1205
ZW
18577 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18578 p = fragP->fr_literal + fragP->fr_fix;
18579 fix = 0;
bfae80f2 18580
c19d1205
ZW
18581 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18582 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 18583
cd000bff 18584 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 18585
cd000bff 18586 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 18587 {
e7495e45
NS
18588 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18589 {
18590 narrow_noop = thumb_noop[1][target_big_endian];
18591 noop = wide_thumb_noop[target_big_endian];
18592 }
c19d1205 18593 else
e7495e45
NS
18594 noop = thumb_noop[0][target_big_endian];
18595 noop_size = 2;
cd000bff
DJ
18596#ifdef OBJ_ELF
18597 state = MAP_THUMB;
18598#endif
7ed4c4c5
NC
18599 }
18600 else
18601 {
e7495e45
NS
18602 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18603 [target_big_endian];
18604 noop_size = 4;
cd000bff
DJ
18605#ifdef OBJ_ELF
18606 state = MAP_ARM;
18607#endif
7ed4c4c5 18608 }
c921be7d 18609
e7495e45 18610 fragP->fr_var = noop_size;
c921be7d 18611
c19d1205 18612 if (bytes & (noop_size - 1))
7ed4c4c5 18613 {
c19d1205 18614 fix = bytes & (noop_size - 1);
cd000bff
DJ
18615#ifdef OBJ_ELF
18616 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18617#endif
c19d1205
ZW
18618 memset (p, 0, fix);
18619 p += fix;
18620 bytes -= fix;
a737bd4d 18621 }
a737bd4d 18622
e7495e45
NS
18623 if (narrow_noop)
18624 {
18625 if (bytes & noop_size)
18626 {
18627 /* Insert a narrow noop. */
18628 memcpy (p, narrow_noop, noop_size);
18629 p += noop_size;
18630 bytes -= noop_size;
18631 fix += noop_size;
18632 }
18633
18634 /* Use wide noops for the remainder */
18635 noop_size = 4;
18636 }
18637
c19d1205 18638 while (bytes >= noop_size)
a737bd4d 18639 {
c19d1205
ZW
18640 memcpy (p, noop, noop_size);
18641 p += noop_size;
18642 bytes -= noop_size;
18643 fix += noop_size;
a737bd4d
NC
18644 }
18645
c19d1205 18646 fragP->fr_fix += fix;
a737bd4d
NC
18647}
18648
c19d1205
ZW
18649/* Called from md_do_align. Used to create an alignment
18650 frag in a code section. */
18651
18652void
18653arm_frag_align_code (int n, int max)
bfae80f2 18654{
c19d1205 18655 char * p;
7ed4c4c5 18656
c19d1205 18657 /* We assume that there will never be a requirement
6ec8e702 18658 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 18659 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
18660 {
18661 char err_msg[128];
18662
18663 sprintf (err_msg,
18664 _("alignments greater than %d bytes not supported in .text sections."),
18665 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 18666 as_fatal ("%s", err_msg);
6ec8e702 18667 }
bfae80f2 18668
c19d1205
ZW
18669 p = frag_var (rs_align_code,
18670 MAX_MEM_FOR_RS_ALIGN_CODE,
18671 1,
18672 (relax_substateT) max,
18673 (symbolS *) NULL,
18674 (offsetT) n,
18675 (char *) NULL);
18676 *p = 0;
18677}
bfae80f2 18678
8dc2430f
NC
18679/* Perform target specific initialisation of a frag.
18680 Note - despite the name this initialisation is not done when the frag
18681 is created, but only when its type is assigned. A frag can be created
18682 and used a long time before its type is set, so beware of assuming that
18683 this initialisationis performed first. */
bfae80f2 18684
cd000bff
DJ
18685#ifndef OBJ_ELF
18686void
18687arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18688{
18689 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 18690 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
18691}
18692
18693#else /* OBJ_ELF is defined. */
c19d1205 18694void
cd000bff 18695arm_init_frag (fragS * fragP, int max_chars)
c19d1205 18696{
8dc2430f
NC
18697 /* If the current ARM vs THUMB mode has not already
18698 been recorded into this frag then do so now. */
cd000bff
DJ
18699 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18700 {
18701 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18702
18703 /* Record a mapping symbol for alignment frags. We will delete this
18704 later if the alignment ends up empty. */
18705 switch (fragP->fr_type)
18706 {
18707 case rs_align:
18708 case rs_align_test:
18709 case rs_fill:
18710 mapping_state_2 (MAP_DATA, max_chars);
18711 break;
18712 case rs_align_code:
18713 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18714 break;
18715 default:
18716 break;
18717 }
18718 }
bfae80f2
RE
18719}
18720
c19d1205
ZW
18721/* When we change sections we need to issue a new mapping symbol. */
18722
18723void
18724arm_elf_change_section (void)
bfae80f2 18725{
c19d1205
ZW
18726 /* Link an unlinked unwind index table section to the .text section. */
18727 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18728 && elf_linked_to_section (now_seg) == NULL)
18729 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
18730}
18731
c19d1205
ZW
18732int
18733arm_elf_section_type (const char * str, size_t len)
e45d0630 18734{
c19d1205
ZW
18735 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18736 return SHT_ARM_EXIDX;
e45d0630 18737
c19d1205
ZW
18738 return -1;
18739}
18740\f
18741/* Code to deal with unwinding tables. */
e45d0630 18742
c19d1205 18743static void add_unwind_adjustsp (offsetT);
e45d0630 18744
5f4273c7 18745/* Generate any deferred unwind frame offset. */
e45d0630 18746
bfae80f2 18747static void
c19d1205 18748flush_pending_unwind (void)
bfae80f2 18749{
c19d1205 18750 offsetT offset;
bfae80f2 18751
c19d1205
ZW
18752 offset = unwind.pending_offset;
18753 unwind.pending_offset = 0;
18754 if (offset != 0)
18755 add_unwind_adjustsp (offset);
bfae80f2
RE
18756}
18757
c19d1205
ZW
18758/* Add an opcode to this list for this function. Two-byte opcodes should
18759 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18760 order. */
18761
bfae80f2 18762static void
c19d1205 18763add_unwind_opcode (valueT op, int length)
bfae80f2 18764{
c19d1205
ZW
18765 /* Add any deferred stack adjustment. */
18766 if (unwind.pending_offset)
18767 flush_pending_unwind ();
bfae80f2 18768
c19d1205 18769 unwind.sp_restored = 0;
bfae80f2 18770
c19d1205 18771 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 18772 {
c19d1205
ZW
18773 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18774 if (unwind.opcodes)
21d799b5
NC
18775 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18776 unwind.opcode_alloc);
c19d1205 18777 else
21d799b5 18778 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 18779 }
c19d1205 18780 while (length > 0)
bfae80f2 18781 {
c19d1205
ZW
18782 length--;
18783 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18784 op >>= 8;
18785 unwind.opcode_count++;
bfae80f2 18786 }
bfae80f2
RE
18787}
18788
c19d1205
ZW
18789/* Add unwind opcodes to adjust the stack pointer. */
18790
bfae80f2 18791static void
c19d1205 18792add_unwind_adjustsp (offsetT offset)
bfae80f2 18793{
c19d1205 18794 valueT op;
bfae80f2 18795
c19d1205 18796 if (offset > 0x200)
bfae80f2 18797 {
c19d1205
ZW
18798 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18799 char bytes[5];
18800 int n;
18801 valueT o;
bfae80f2 18802
c19d1205
ZW
18803 /* Long form: 0xb2, uleb128. */
18804 /* This might not fit in a word so add the individual bytes,
18805 remembering the list is built in reverse order. */
18806 o = (valueT) ((offset - 0x204) >> 2);
18807 if (o == 0)
18808 add_unwind_opcode (0, 1);
bfae80f2 18809
c19d1205
ZW
18810 /* Calculate the uleb128 encoding of the offset. */
18811 n = 0;
18812 while (o)
18813 {
18814 bytes[n] = o & 0x7f;
18815 o >>= 7;
18816 if (o)
18817 bytes[n] |= 0x80;
18818 n++;
18819 }
18820 /* Add the insn. */
18821 for (; n; n--)
18822 add_unwind_opcode (bytes[n - 1], 1);
18823 add_unwind_opcode (0xb2, 1);
18824 }
18825 else if (offset > 0x100)
bfae80f2 18826 {
c19d1205
ZW
18827 /* Two short opcodes. */
18828 add_unwind_opcode (0x3f, 1);
18829 op = (offset - 0x104) >> 2;
18830 add_unwind_opcode (op, 1);
bfae80f2 18831 }
c19d1205
ZW
18832 else if (offset > 0)
18833 {
18834 /* Short opcode. */
18835 op = (offset - 4) >> 2;
18836 add_unwind_opcode (op, 1);
18837 }
18838 else if (offset < 0)
bfae80f2 18839 {
c19d1205
ZW
18840 offset = -offset;
18841 while (offset > 0x100)
bfae80f2 18842 {
c19d1205
ZW
18843 add_unwind_opcode (0x7f, 1);
18844 offset -= 0x100;
bfae80f2 18845 }
c19d1205
ZW
18846 op = ((offset - 4) >> 2) | 0x40;
18847 add_unwind_opcode (op, 1);
bfae80f2 18848 }
bfae80f2
RE
18849}
18850
c19d1205
ZW
18851/* Finish the list of unwind opcodes for this function. */
18852static void
18853finish_unwind_opcodes (void)
bfae80f2 18854{
c19d1205 18855 valueT op;
bfae80f2 18856
c19d1205 18857 if (unwind.fp_used)
bfae80f2 18858 {
708587a4 18859 /* Adjust sp as necessary. */
c19d1205
ZW
18860 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18861 flush_pending_unwind ();
bfae80f2 18862
c19d1205
ZW
18863 /* After restoring sp from the frame pointer. */
18864 op = 0x90 | unwind.fp_reg;
18865 add_unwind_opcode (op, 1);
18866 }
18867 else
18868 flush_pending_unwind ();
bfae80f2
RE
18869}
18870
bfae80f2 18871
c19d1205
ZW
18872/* Start an exception table entry. If idx is nonzero this is an index table
18873 entry. */
bfae80f2
RE
18874
18875static void
c19d1205 18876start_unwind_section (const segT text_seg, int idx)
bfae80f2 18877{
c19d1205
ZW
18878 const char * text_name;
18879 const char * prefix;
18880 const char * prefix_once;
18881 const char * group_name;
18882 size_t prefix_len;
18883 size_t text_len;
18884 char * sec_name;
18885 size_t sec_name_len;
18886 int type;
18887 int flags;
18888 int linkonce;
bfae80f2 18889
c19d1205 18890 if (idx)
bfae80f2 18891 {
c19d1205
ZW
18892 prefix = ELF_STRING_ARM_unwind;
18893 prefix_once = ELF_STRING_ARM_unwind_once;
18894 type = SHT_ARM_EXIDX;
bfae80f2 18895 }
c19d1205 18896 else
bfae80f2 18897 {
c19d1205
ZW
18898 prefix = ELF_STRING_ARM_unwind_info;
18899 prefix_once = ELF_STRING_ARM_unwind_info_once;
18900 type = SHT_PROGBITS;
bfae80f2
RE
18901 }
18902
c19d1205
ZW
18903 text_name = segment_name (text_seg);
18904 if (streq (text_name, ".text"))
18905 text_name = "";
18906
18907 if (strncmp (text_name, ".gnu.linkonce.t.",
18908 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 18909 {
c19d1205
ZW
18910 prefix = prefix_once;
18911 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
18912 }
18913
c19d1205
ZW
18914 prefix_len = strlen (prefix);
18915 text_len = strlen (text_name);
18916 sec_name_len = prefix_len + text_len;
21d799b5 18917 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
18918 memcpy (sec_name, prefix, prefix_len);
18919 memcpy (sec_name + prefix_len, text_name, text_len);
18920 sec_name[prefix_len + text_len] = '\0';
bfae80f2 18921
c19d1205
ZW
18922 flags = SHF_ALLOC;
18923 linkonce = 0;
18924 group_name = 0;
bfae80f2 18925
c19d1205
ZW
18926 /* Handle COMDAT group. */
18927 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 18928 {
c19d1205
ZW
18929 group_name = elf_group_name (text_seg);
18930 if (group_name == NULL)
18931 {
bd3ba5d1 18932 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
18933 segment_name (text_seg));
18934 ignore_rest_of_line ();
18935 return;
18936 }
18937 flags |= SHF_GROUP;
18938 linkonce = 1;
bfae80f2
RE
18939 }
18940
c19d1205 18941 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 18942
5f4273c7 18943 /* Set the section link for index tables. */
c19d1205
ZW
18944 if (idx)
18945 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
18946}
18947
bfae80f2 18948
c19d1205
ZW
18949/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18950 personality routine data. Returns zero, or the index table value for
18951 and inline entry. */
18952
18953static valueT
18954create_unwind_entry (int have_data)
bfae80f2 18955{
c19d1205
ZW
18956 int size;
18957 addressT where;
18958 char *ptr;
18959 /* The current word of data. */
18960 valueT data;
18961 /* The number of bytes left in this word. */
18962 int n;
bfae80f2 18963
c19d1205 18964 finish_unwind_opcodes ();
bfae80f2 18965
c19d1205
ZW
18966 /* Remember the current text section. */
18967 unwind.saved_seg = now_seg;
18968 unwind.saved_subseg = now_subseg;
bfae80f2 18969
c19d1205 18970 start_unwind_section (now_seg, 0);
bfae80f2 18971
c19d1205 18972 if (unwind.personality_routine == NULL)
bfae80f2 18973 {
c19d1205
ZW
18974 if (unwind.personality_index == -2)
18975 {
18976 if (have_data)
5f4273c7 18977 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
18978 return 1; /* EXIDX_CANTUNWIND. */
18979 }
bfae80f2 18980
c19d1205
ZW
18981 /* Use a default personality routine if none is specified. */
18982 if (unwind.personality_index == -1)
18983 {
18984 if (unwind.opcode_count > 3)
18985 unwind.personality_index = 1;
18986 else
18987 unwind.personality_index = 0;
18988 }
bfae80f2 18989
c19d1205
ZW
18990 /* Space for the personality routine entry. */
18991 if (unwind.personality_index == 0)
18992 {
18993 if (unwind.opcode_count > 3)
18994 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 18995
c19d1205
ZW
18996 if (!have_data)
18997 {
18998 /* All the data is inline in the index table. */
18999 data = 0x80;
19000 n = 3;
19001 while (unwind.opcode_count > 0)
19002 {
19003 unwind.opcode_count--;
19004 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19005 n--;
19006 }
bfae80f2 19007
c19d1205
ZW
19008 /* Pad with "finish" opcodes. */
19009 while (n--)
19010 data = (data << 8) | 0xb0;
bfae80f2 19011
c19d1205
ZW
19012 return data;
19013 }
19014 size = 0;
19015 }
19016 else
19017 /* We get two opcodes "free" in the first word. */
19018 size = unwind.opcode_count - 2;
19019 }
19020 else
19021 /* An extra byte is required for the opcode count. */
19022 size = unwind.opcode_count + 1;
bfae80f2 19023
c19d1205
ZW
19024 size = (size + 3) >> 2;
19025 if (size > 0xff)
19026 as_bad (_("too many unwind opcodes"));
bfae80f2 19027
c19d1205
ZW
19028 frag_align (2, 0, 0);
19029 record_alignment (now_seg, 2);
19030 unwind.table_entry = expr_build_dot ();
19031
19032 /* Allocate the table entry. */
19033 ptr = frag_more ((size << 2) + 4);
19034 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19035
c19d1205 19036 switch (unwind.personality_index)
bfae80f2 19037 {
c19d1205
ZW
19038 case -1:
19039 /* ??? Should this be a PLT generating relocation? */
19040 /* Custom personality routine. */
19041 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19042 BFD_RELOC_ARM_PREL31);
bfae80f2 19043
c19d1205
ZW
19044 where += 4;
19045 ptr += 4;
bfae80f2 19046
c19d1205
ZW
19047 /* Set the first byte to the number of additional words. */
19048 data = size - 1;
19049 n = 3;
19050 break;
bfae80f2 19051
c19d1205
ZW
19052 /* ABI defined personality routines. */
19053 case 0:
19054 /* Three opcodes bytes are packed into the first word. */
19055 data = 0x80;
19056 n = 3;
19057 break;
bfae80f2 19058
c19d1205
ZW
19059 case 1:
19060 case 2:
19061 /* The size and first two opcode bytes go in the first word. */
19062 data = ((0x80 + unwind.personality_index) << 8) | size;
19063 n = 2;
19064 break;
bfae80f2 19065
c19d1205
ZW
19066 default:
19067 /* Should never happen. */
19068 abort ();
19069 }
bfae80f2 19070
c19d1205
ZW
19071 /* Pack the opcodes into words (MSB first), reversing the list at the same
19072 time. */
19073 while (unwind.opcode_count > 0)
19074 {
19075 if (n == 0)
19076 {
19077 md_number_to_chars (ptr, data, 4);
19078 ptr += 4;
19079 n = 4;
19080 data = 0;
19081 }
19082 unwind.opcode_count--;
19083 n--;
19084 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19085 }
19086
19087 /* Finish off the last word. */
19088 if (n < 4)
19089 {
19090 /* Pad with "finish" opcodes. */
19091 while (n--)
19092 data = (data << 8) | 0xb0;
19093
19094 md_number_to_chars (ptr, data, 4);
19095 }
19096
19097 if (!have_data)
19098 {
19099 /* Add an empty descriptor if there is no user-specified data. */
19100 ptr = frag_more (4);
19101 md_number_to_chars (ptr, 0, 4);
19102 }
19103
19104 return 0;
bfae80f2
RE
19105}
19106
f0927246
NC
19107
19108/* Initialize the DWARF-2 unwind information for this procedure. */
19109
19110void
19111tc_arm_frame_initial_instructions (void)
19112{
19113 cfi_add_CFA_def_cfa (REG_SP, 0);
19114}
19115#endif /* OBJ_ELF */
19116
c19d1205
ZW
19117/* Convert REGNAME to a DWARF-2 register number. */
19118
19119int
1df69f4f 19120tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19121{
1df69f4f 19122 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19123
19124 if (reg == FAIL)
19125 return -1;
19126
19127 return reg;
bfae80f2
RE
19128}
19129
f0927246 19130#ifdef TE_PE
c19d1205 19131void
f0927246 19132tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19133{
91d6fa6a 19134 expressionS exp;
bfae80f2 19135
91d6fa6a
NC
19136 exp.X_op = O_secrel;
19137 exp.X_add_symbol = symbol;
19138 exp.X_add_number = 0;
19139 emit_expr (&exp, size);
f0927246
NC
19140}
19141#endif
bfae80f2 19142
c19d1205 19143/* MD interface: Symbol and relocation handling. */
bfae80f2 19144
2fc8bdac
ZW
19145/* Return the address within the segment that a PC-relative fixup is
19146 relative to. For ARM, PC-relative fixups applied to instructions
19147 are generally relative to the location of the fixup plus 8 bytes.
19148 Thumb branches are offset by 4, and Thumb loads relative to PC
19149 require special handling. */
bfae80f2 19150
c19d1205 19151long
2fc8bdac 19152md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19153{
2fc8bdac
ZW
19154 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19155
19156 /* If this is pc-relative and we are going to emit a relocation
19157 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19158 will need. Otherwise we want to use the calculated base.
19159 For WinCE we skip the bias for externals as well, since this
19160 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19161 if (fixP->fx_pcrel
2fc8bdac 19162 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19163 || (arm_force_relocation (fixP)
19164#ifdef TE_WINCE
19165 && !S_IS_EXTERNAL (fixP->fx_addsy)
19166#endif
19167 )))
2fc8bdac 19168 base = 0;
bfae80f2 19169
267bf995 19170
c19d1205 19171 switch (fixP->fx_r_type)
bfae80f2 19172 {
2fc8bdac
ZW
19173 /* PC relative addressing on the Thumb is slightly odd as the
19174 bottom two bits of the PC are forced to zero for the
19175 calculation. This happens *after* application of the
19176 pipeline offset. However, Thumb adrl already adjusts for
19177 this, so we need not do it again. */
c19d1205 19178 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19179 return base & ~3;
c19d1205
ZW
19180
19181 case BFD_RELOC_ARM_THUMB_OFFSET:
19182 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19183 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19184 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19185 return (base + 4) & ~3;
c19d1205 19186
2fc8bdac
ZW
19187 /* Thumb branches are simply offset by +4. */
19188 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19189 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19190 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19191 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19192 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19193 return base + 4;
bfae80f2 19194
267bf995
RR
19195 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19196 if (fixP->fx_addsy
19197 && ARM_IS_FUNC (fixP->fx_addsy)
19198 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19199 base = fixP->fx_where + fixP->fx_frag->fr_address;
19200 return base + 4;
19201
00adf2d4
JB
19202 /* BLX is like branches above, but forces the low two bits of PC to
19203 zero. */
267bf995
RR
19204 case BFD_RELOC_THUMB_PCREL_BLX:
19205 if (fixP->fx_addsy
19206 && THUMB_IS_FUNC (fixP->fx_addsy)
19207 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19208 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19209 return (base + 4) & ~3;
19210
2fc8bdac
ZW
19211 /* ARM mode branches are offset by +8. However, the Windows CE
19212 loader expects the relocation not to take this into account. */
267bf995
RR
19213 case BFD_RELOC_ARM_PCREL_BLX:
19214 if (fixP->fx_addsy
19215 && ARM_IS_FUNC (fixP->fx_addsy)
19216 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19217 base = fixP->fx_where + fixP->fx_frag->fr_address;
19218 return base + 8;
19219
19220 case BFD_RELOC_ARM_PCREL_CALL:
19221 if (fixP->fx_addsy
19222 && THUMB_IS_FUNC (fixP->fx_addsy)
19223 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19224 base = fixP->fx_where + fixP->fx_frag->fr_address;
19225 return base + 8;
19226
2fc8bdac 19227 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19228 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19229 case BFD_RELOC_ARM_PLT32:
c19d1205 19230#ifdef TE_WINCE
5f4273c7 19231 /* When handling fixups immediately, because we have already
53baae48
NC
19232 discovered the value of a symbol, or the address of the frag involved
19233 we must account for the offset by +8, as the OS loader will never see the reloc.
19234 see fixup_segment() in write.c
19235 The S_IS_EXTERNAL test handles the case of global symbols.
19236 Those need the calculated base, not just the pipe compensation the linker will need. */
19237 if (fixP->fx_pcrel
19238 && fixP->fx_addsy != NULL
19239 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19240 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19241 return base + 8;
2fc8bdac 19242 return base;
c19d1205 19243#else
2fc8bdac 19244 return base + 8;
c19d1205 19245#endif
2fc8bdac 19246
267bf995 19247
2fc8bdac
ZW
19248 /* ARM mode loads relative to PC are also offset by +8. Unlike
19249 branches, the Windows CE loader *does* expect the relocation
19250 to take this into account. */
19251 case BFD_RELOC_ARM_OFFSET_IMM:
19252 case BFD_RELOC_ARM_OFFSET_IMM8:
19253 case BFD_RELOC_ARM_HWLITERAL:
19254 case BFD_RELOC_ARM_LITERAL:
19255 case BFD_RELOC_ARM_CP_OFF_IMM:
19256 return base + 8;
19257
19258
19259 /* Other PC-relative relocations are un-offset. */
19260 default:
19261 return base;
19262 }
bfae80f2
RE
19263}
19264
c19d1205
ZW
19265/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19266 Otherwise we have no need to default values of symbols. */
19267
19268symbolS *
19269md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19270{
c19d1205
ZW
19271#ifdef OBJ_ELF
19272 if (name[0] == '_' && name[1] == 'G'
19273 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19274 {
19275 if (!GOT_symbol)
19276 {
19277 if (symbol_find (name))
bd3ba5d1 19278 as_bad (_("GOT already in the symbol table"));
bfae80f2 19279
c19d1205
ZW
19280 GOT_symbol = symbol_new (name, undefined_section,
19281 (valueT) 0, & zero_address_frag);
19282 }
bfae80f2 19283
c19d1205 19284 return GOT_symbol;
bfae80f2 19285 }
c19d1205 19286#endif
bfae80f2 19287
c921be7d 19288 return NULL;
bfae80f2
RE
19289}
19290
55cf6793 19291/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19292 computed as two separate immediate values, added together. We
19293 already know that this value cannot be computed by just one ARM
19294 instruction. */
19295
19296static unsigned int
19297validate_immediate_twopart (unsigned int val,
19298 unsigned int * highpart)
bfae80f2 19299{
c19d1205
ZW
19300 unsigned int a;
19301 unsigned int i;
bfae80f2 19302
c19d1205
ZW
19303 for (i = 0; i < 32; i += 2)
19304 if (((a = rotate_left (val, i)) & 0xff) != 0)
19305 {
19306 if (a & 0xff00)
19307 {
19308 if (a & ~ 0xffff)
19309 continue;
19310 * highpart = (a >> 8) | ((i + 24) << 7);
19311 }
19312 else if (a & 0xff0000)
19313 {
19314 if (a & 0xff000000)
19315 continue;
19316 * highpart = (a >> 16) | ((i + 16) << 7);
19317 }
19318 else
19319 {
9c2799c2 19320 gas_assert (a & 0xff000000);
c19d1205
ZW
19321 * highpart = (a >> 24) | ((i + 8) << 7);
19322 }
bfae80f2 19323
c19d1205
ZW
19324 return (a & 0xff) | (i << 7);
19325 }
bfae80f2 19326
c19d1205 19327 return FAIL;
bfae80f2
RE
19328}
19329
c19d1205
ZW
19330static int
19331validate_offset_imm (unsigned int val, int hwse)
19332{
19333 if ((hwse && val > 255) || val > 4095)
19334 return FAIL;
19335 return val;
19336}
bfae80f2 19337
55cf6793 19338/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19339 negative immediate constant by altering the instruction. A bit of
19340 a hack really.
19341 MOV <-> MVN
19342 AND <-> BIC
19343 ADC <-> SBC
19344 by inverting the second operand, and
19345 ADD <-> SUB
19346 CMP <-> CMN
19347 by negating the second operand. */
bfae80f2 19348
c19d1205
ZW
19349static int
19350negate_data_op (unsigned long * instruction,
19351 unsigned long value)
bfae80f2 19352{
c19d1205
ZW
19353 int op, new_inst;
19354 unsigned long negated, inverted;
bfae80f2 19355
c19d1205
ZW
19356 negated = encode_arm_immediate (-value);
19357 inverted = encode_arm_immediate (~value);
bfae80f2 19358
c19d1205
ZW
19359 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19360 switch (op)
bfae80f2 19361 {
c19d1205
ZW
19362 /* First negates. */
19363 case OPCODE_SUB: /* ADD <-> SUB */
19364 new_inst = OPCODE_ADD;
19365 value = negated;
19366 break;
bfae80f2 19367
c19d1205
ZW
19368 case OPCODE_ADD:
19369 new_inst = OPCODE_SUB;
19370 value = negated;
19371 break;
bfae80f2 19372
c19d1205
ZW
19373 case OPCODE_CMP: /* CMP <-> CMN */
19374 new_inst = OPCODE_CMN;
19375 value = negated;
19376 break;
bfae80f2 19377
c19d1205
ZW
19378 case OPCODE_CMN:
19379 new_inst = OPCODE_CMP;
19380 value = negated;
19381 break;
bfae80f2 19382
c19d1205
ZW
19383 /* Now Inverted ops. */
19384 case OPCODE_MOV: /* MOV <-> MVN */
19385 new_inst = OPCODE_MVN;
19386 value = inverted;
19387 break;
bfae80f2 19388
c19d1205
ZW
19389 case OPCODE_MVN:
19390 new_inst = OPCODE_MOV;
19391 value = inverted;
19392 break;
bfae80f2 19393
c19d1205
ZW
19394 case OPCODE_AND: /* AND <-> BIC */
19395 new_inst = OPCODE_BIC;
19396 value = inverted;
19397 break;
bfae80f2 19398
c19d1205
ZW
19399 case OPCODE_BIC:
19400 new_inst = OPCODE_AND;
19401 value = inverted;
19402 break;
bfae80f2 19403
c19d1205
ZW
19404 case OPCODE_ADC: /* ADC <-> SBC */
19405 new_inst = OPCODE_SBC;
19406 value = inverted;
19407 break;
bfae80f2 19408
c19d1205
ZW
19409 case OPCODE_SBC:
19410 new_inst = OPCODE_ADC;
19411 value = inverted;
19412 break;
bfae80f2 19413
c19d1205
ZW
19414 /* We cannot do anything. */
19415 default:
19416 return FAIL;
b99bd4ef
NC
19417 }
19418
c19d1205
ZW
19419 if (value == (unsigned) FAIL)
19420 return FAIL;
19421
19422 *instruction &= OPCODE_MASK;
19423 *instruction |= new_inst << DATA_OP_SHIFT;
19424 return value;
b99bd4ef
NC
19425}
19426
ef8d22e6
PB
19427/* Like negate_data_op, but for Thumb-2. */
19428
19429static unsigned int
16dd5e42 19430thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19431{
19432 int op, new_inst;
19433 int rd;
16dd5e42 19434 unsigned int negated, inverted;
ef8d22e6
PB
19435
19436 negated = encode_thumb32_immediate (-value);
19437 inverted = encode_thumb32_immediate (~value);
19438
19439 rd = (*instruction >> 8) & 0xf;
19440 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19441 switch (op)
19442 {
19443 /* ADD <-> SUB. Includes CMP <-> CMN. */
19444 case T2_OPCODE_SUB:
19445 new_inst = T2_OPCODE_ADD;
19446 value = negated;
19447 break;
19448
19449 case T2_OPCODE_ADD:
19450 new_inst = T2_OPCODE_SUB;
19451 value = negated;
19452 break;
19453
19454 /* ORR <-> ORN. Includes MOV <-> MVN. */
19455 case T2_OPCODE_ORR:
19456 new_inst = T2_OPCODE_ORN;
19457 value = inverted;
19458 break;
19459
19460 case T2_OPCODE_ORN:
19461 new_inst = T2_OPCODE_ORR;
19462 value = inverted;
19463 break;
19464
19465 /* AND <-> BIC. TST has no inverted equivalent. */
19466 case T2_OPCODE_AND:
19467 new_inst = T2_OPCODE_BIC;
19468 if (rd == 15)
19469 value = FAIL;
19470 else
19471 value = inverted;
19472 break;
19473
19474 case T2_OPCODE_BIC:
19475 new_inst = T2_OPCODE_AND;
19476 value = inverted;
19477 break;
19478
19479 /* ADC <-> SBC */
19480 case T2_OPCODE_ADC:
19481 new_inst = T2_OPCODE_SBC;
19482 value = inverted;
19483 break;
19484
19485 case T2_OPCODE_SBC:
19486 new_inst = T2_OPCODE_ADC;
19487 value = inverted;
19488 break;
19489
19490 /* We cannot do anything. */
19491 default:
19492 return FAIL;
19493 }
19494
16dd5e42 19495 if (value == (unsigned int)FAIL)
ef8d22e6
PB
19496 return FAIL;
19497
19498 *instruction &= T2_OPCODE_MASK;
19499 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19500 return value;
19501}
19502
8f06b2d8
PB
19503/* Read a 32-bit thumb instruction from buf. */
19504static unsigned long
19505get_thumb32_insn (char * buf)
19506{
19507 unsigned long insn;
19508 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19509 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19510
19511 return insn;
19512}
19513
a8bc6c78
PB
19514
19515/* We usually want to set the low bit on the address of thumb function
19516 symbols. In particular .word foo - . should have the low bit set.
19517 Generic code tries to fold the difference of two symbols to
19518 a constant. Prevent this and force a relocation when the first symbols
19519 is a thumb function. */
c921be7d
NC
19520
19521bfd_boolean
a8bc6c78
PB
19522arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19523{
19524 if (op == O_subtract
19525 && l->X_op == O_symbol
19526 && r->X_op == O_symbol
19527 && THUMB_IS_FUNC (l->X_add_symbol))
19528 {
19529 l->X_op = O_subtract;
19530 l->X_op_symbol = r->X_add_symbol;
19531 l->X_add_number -= r->X_add_number;
c921be7d 19532 return TRUE;
a8bc6c78 19533 }
c921be7d 19534
a8bc6c78 19535 /* Process as normal. */
c921be7d 19536 return FALSE;
a8bc6c78
PB
19537}
19538
4a42ebbc
RR
19539/* Encode Thumb2 unconditional branches and calls. The encoding
19540 for the 2 are identical for the immediate values. */
19541
19542static void
19543encode_thumb2_b_bl_offset (char * buf, offsetT value)
19544{
19545#define T2I1I2MASK ((1 << 13) | (1 << 11))
19546 offsetT newval;
19547 offsetT newval2;
19548 addressT S, I1, I2, lo, hi;
19549
19550 S = (value >> 24) & 0x01;
19551 I1 = (value >> 23) & 0x01;
19552 I2 = (value >> 22) & 0x01;
19553 hi = (value >> 12) & 0x3ff;
19554 lo = (value >> 1) & 0x7ff;
19555 newval = md_chars_to_number (buf, THUMB_SIZE);
19556 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19557 newval |= (S << 10) | hi;
19558 newval2 &= ~T2I1I2MASK;
19559 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19560 md_number_to_chars (buf, newval, THUMB_SIZE);
19561 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19562}
19563
c19d1205 19564void
55cf6793 19565md_apply_fix (fixS * fixP,
c19d1205
ZW
19566 valueT * valP,
19567 segT seg)
19568{
19569 offsetT value = * valP;
19570 offsetT newval;
19571 unsigned int newimm;
19572 unsigned long temp;
19573 int sign;
19574 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 19575
9c2799c2 19576 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 19577
c19d1205 19578 /* Note whether this will delete the relocation. */
4962c51a 19579
c19d1205
ZW
19580 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19581 fixP->fx_done = 1;
b99bd4ef 19582
adbaf948 19583 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 19584 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
19585 for emit_reloc. */
19586 value &= 0xffffffff;
19587 value ^= 0x80000000;
5f4273c7 19588 value -= 0x80000000;
adbaf948
ZW
19589
19590 *valP = value;
c19d1205 19591 fixP->fx_addnumber = value;
b99bd4ef 19592
adbaf948
ZW
19593 /* Same treatment for fixP->fx_offset. */
19594 fixP->fx_offset &= 0xffffffff;
19595 fixP->fx_offset ^= 0x80000000;
19596 fixP->fx_offset -= 0x80000000;
19597
c19d1205 19598 switch (fixP->fx_r_type)
b99bd4ef 19599 {
c19d1205
ZW
19600 case BFD_RELOC_NONE:
19601 /* This will need to go in the object file. */
19602 fixP->fx_done = 0;
19603 break;
b99bd4ef 19604
c19d1205
ZW
19605 case BFD_RELOC_ARM_IMMEDIATE:
19606 /* We claim that this fixup has been processed here,
19607 even if in fact we generate an error because we do
19608 not have a reloc for it, so tc_gen_reloc will reject it. */
19609 fixP->fx_done = 1;
b99bd4ef 19610
c19d1205
ZW
19611 if (fixP->fx_addsy
19612 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 19613 {
c19d1205
ZW
19614 as_bad_where (fixP->fx_file, fixP->fx_line,
19615 _("undefined symbol %s used as an immediate value"),
19616 S_GET_NAME (fixP->fx_addsy));
19617 break;
b99bd4ef
NC
19618 }
19619
42e5fcbf
AS
19620 if (fixP->fx_addsy
19621 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19622 {
19623 as_bad_where (fixP->fx_file, fixP->fx_line,
19624 _("symbol %s is in a different section"),
19625 S_GET_NAME (fixP->fx_addsy));
19626 break;
19627 }
19628
c19d1205
ZW
19629 newimm = encode_arm_immediate (value);
19630 temp = md_chars_to_number (buf, INSN_SIZE);
19631
19632 /* If the instruction will fail, see if we can fix things up by
19633 changing the opcode. */
19634 if (newimm == (unsigned int) FAIL
19635 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 19636 {
c19d1205
ZW
19637 as_bad_where (fixP->fx_file, fixP->fx_line,
19638 _("invalid constant (%lx) after fixup"),
19639 (unsigned long) value);
19640 break;
b99bd4ef 19641 }
b99bd4ef 19642
c19d1205
ZW
19643 newimm |= (temp & 0xfffff000);
19644 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19645 break;
b99bd4ef 19646
c19d1205
ZW
19647 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19648 {
19649 unsigned int highpart = 0;
19650 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 19651
42e5fcbf
AS
19652 if (fixP->fx_addsy
19653 && ! S_IS_DEFINED (fixP->fx_addsy))
19654 {
19655 as_bad_where (fixP->fx_file, fixP->fx_line,
19656 _("undefined symbol %s used as an immediate value"),
19657 S_GET_NAME (fixP->fx_addsy));
19658 break;
19659 }
19660
19661 if (fixP->fx_addsy
19662 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19663 {
19664 as_bad_where (fixP->fx_file, fixP->fx_line,
19665 _("symbol %s is in a different section"),
19666 S_GET_NAME (fixP->fx_addsy));
19667 break;
19668 }
19669
c19d1205
ZW
19670 newimm = encode_arm_immediate (value);
19671 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 19672
c19d1205
ZW
19673 /* If the instruction will fail, see if we can fix things up by
19674 changing the opcode. */
19675 if (newimm == (unsigned int) FAIL
19676 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19677 {
19678 /* No ? OK - try using two ADD instructions to generate
19679 the value. */
19680 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 19681
c19d1205
ZW
19682 /* Yes - then make sure that the second instruction is
19683 also an add. */
19684 if (newimm != (unsigned int) FAIL)
19685 newinsn = temp;
19686 /* Still No ? Try using a negated value. */
19687 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19688 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19689 /* Otherwise - give up. */
19690 else
19691 {
19692 as_bad_where (fixP->fx_file, fixP->fx_line,
19693 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19694 (long) value);
19695 break;
19696 }
b99bd4ef 19697
c19d1205
ZW
19698 /* Replace the first operand in the 2nd instruction (which
19699 is the PC) with the destination register. We have
19700 already added in the PC in the first instruction and we
19701 do not want to do it again. */
19702 newinsn &= ~ 0xf0000;
19703 newinsn |= ((newinsn & 0x0f000) << 4);
19704 }
b99bd4ef 19705
c19d1205
ZW
19706 newimm |= (temp & 0xfffff000);
19707 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 19708
c19d1205
ZW
19709 highpart |= (newinsn & 0xfffff000);
19710 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19711 }
19712 break;
b99bd4ef 19713
c19d1205 19714 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19715 if (!fixP->fx_done && seg->use_rela_p)
19716 value = 0;
19717
c19d1205
ZW
19718 case BFD_RELOC_ARM_LITERAL:
19719 sign = value >= 0;
b99bd4ef 19720
c19d1205
ZW
19721 if (value < 0)
19722 value = - value;
b99bd4ef 19723
c19d1205 19724 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 19725 {
c19d1205
ZW
19726 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19727 as_bad_where (fixP->fx_file, fixP->fx_line,
19728 _("invalid literal constant: pool needs to be closer"));
19729 else
19730 as_bad_where (fixP->fx_file, fixP->fx_line,
19731 _("bad immediate value for offset (%ld)"),
19732 (long) value);
19733 break;
f03698e6
RE
19734 }
19735
c19d1205
ZW
19736 newval = md_chars_to_number (buf, INSN_SIZE);
19737 newval &= 0xff7ff000;
19738 newval |= value | (sign ? INDEX_UP : 0);
19739 md_number_to_chars (buf, newval, INSN_SIZE);
19740 break;
b99bd4ef 19741
c19d1205
ZW
19742 case BFD_RELOC_ARM_OFFSET_IMM8:
19743 case BFD_RELOC_ARM_HWLITERAL:
19744 sign = value >= 0;
b99bd4ef 19745
c19d1205
ZW
19746 if (value < 0)
19747 value = - value;
b99bd4ef 19748
c19d1205 19749 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 19750 {
c19d1205
ZW
19751 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19752 as_bad_where (fixP->fx_file, fixP->fx_line,
19753 _("invalid literal constant: pool needs to be closer"));
19754 else
f9d4405b 19755 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
19756 (long) value);
19757 break;
b99bd4ef
NC
19758 }
19759
c19d1205
ZW
19760 newval = md_chars_to_number (buf, INSN_SIZE);
19761 newval &= 0xff7ff0f0;
19762 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19763 md_number_to_chars (buf, newval, INSN_SIZE);
19764 break;
b99bd4ef 19765
c19d1205
ZW
19766 case BFD_RELOC_ARM_T32_OFFSET_U8:
19767 if (value < 0 || value > 1020 || value % 4 != 0)
19768 as_bad_where (fixP->fx_file, fixP->fx_line,
19769 _("bad immediate value for offset (%ld)"), (long) value);
19770 value /= 4;
b99bd4ef 19771
c19d1205 19772 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
19773 newval |= value;
19774 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19775 break;
b99bd4ef 19776
c19d1205
ZW
19777 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19778 /* This is a complicated relocation used for all varieties of Thumb32
19779 load/store instruction with immediate offset:
19780
19781 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19782 *4, optional writeback(W)
19783 (doubleword load/store)
19784
19785 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19786 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19787 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19788 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19789 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19790
19791 Uppercase letters indicate bits that are already encoded at
19792 this point. Lowercase letters are our problem. For the
19793 second block of instructions, the secondary opcode nybble
19794 (bits 8..11) is present, and bit 23 is zero, even if this is
19795 a PC-relative operation. */
19796 newval = md_chars_to_number (buf, THUMB_SIZE);
19797 newval <<= 16;
19798 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 19799
c19d1205 19800 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 19801 {
c19d1205
ZW
19802 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19803 if (value >= 0)
19804 newval |= (1 << 23);
19805 else
19806 value = -value;
19807 if (value % 4 != 0)
19808 {
19809 as_bad_where (fixP->fx_file, fixP->fx_line,
19810 _("offset not a multiple of 4"));
19811 break;
19812 }
19813 value /= 4;
216d22bc 19814 if (value > 0xff)
c19d1205
ZW
19815 {
19816 as_bad_where (fixP->fx_file, fixP->fx_line,
19817 _("offset out of range"));
19818 break;
19819 }
19820 newval &= ~0xff;
b99bd4ef 19821 }
c19d1205 19822 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 19823 {
c19d1205
ZW
19824 /* PC-relative, 12-bit offset. */
19825 if (value >= 0)
19826 newval |= (1 << 23);
19827 else
19828 value = -value;
216d22bc 19829 if (value > 0xfff)
c19d1205
ZW
19830 {
19831 as_bad_where (fixP->fx_file, fixP->fx_line,
19832 _("offset out of range"));
19833 break;
19834 }
19835 newval &= ~0xfff;
b99bd4ef 19836 }
c19d1205 19837 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 19838 {
c19d1205
ZW
19839 /* Writeback: 8-bit, +/- offset. */
19840 if (value >= 0)
19841 newval |= (1 << 9);
19842 else
19843 value = -value;
216d22bc 19844 if (value > 0xff)
c19d1205
ZW
19845 {
19846 as_bad_where (fixP->fx_file, fixP->fx_line,
19847 _("offset out of range"));
19848 break;
19849 }
19850 newval &= ~0xff;
b99bd4ef 19851 }
c19d1205 19852 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 19853 {
c19d1205 19854 /* T-instruction: positive 8-bit offset. */
216d22bc 19855 if (value < 0 || value > 0xff)
b99bd4ef 19856 {
c19d1205
ZW
19857 as_bad_where (fixP->fx_file, fixP->fx_line,
19858 _("offset out of range"));
19859 break;
b99bd4ef 19860 }
c19d1205
ZW
19861 newval &= ~0xff;
19862 newval |= value;
b99bd4ef
NC
19863 }
19864 else
b99bd4ef 19865 {
c19d1205
ZW
19866 /* Positive 12-bit or negative 8-bit offset. */
19867 int limit;
19868 if (value >= 0)
b99bd4ef 19869 {
c19d1205
ZW
19870 newval |= (1 << 23);
19871 limit = 0xfff;
19872 }
19873 else
19874 {
19875 value = -value;
19876 limit = 0xff;
19877 }
19878 if (value > limit)
19879 {
19880 as_bad_where (fixP->fx_file, fixP->fx_line,
19881 _("offset out of range"));
19882 break;
b99bd4ef 19883 }
c19d1205 19884 newval &= ~limit;
b99bd4ef 19885 }
b99bd4ef 19886
c19d1205
ZW
19887 newval |= value;
19888 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19889 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19890 break;
404ff6b5 19891
c19d1205
ZW
19892 case BFD_RELOC_ARM_SHIFT_IMM:
19893 newval = md_chars_to_number (buf, INSN_SIZE);
19894 if (((unsigned long) value) > 32
19895 || (value == 32
19896 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19897 {
19898 as_bad_where (fixP->fx_file, fixP->fx_line,
19899 _("shift expression is too large"));
19900 break;
19901 }
404ff6b5 19902
c19d1205
ZW
19903 if (value == 0)
19904 /* Shifts of zero must be done as lsl. */
19905 newval &= ~0x60;
19906 else if (value == 32)
19907 value = 0;
19908 newval &= 0xfffff07f;
19909 newval |= (value & 0x1f) << 7;
19910 md_number_to_chars (buf, newval, INSN_SIZE);
19911 break;
404ff6b5 19912
c19d1205 19913 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 19914 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 19915 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 19916 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
19917 /* We claim that this fixup has been processed here,
19918 even if in fact we generate an error because we do
19919 not have a reloc for it, so tc_gen_reloc will reject it. */
19920 fixP->fx_done = 1;
404ff6b5 19921
c19d1205
ZW
19922 if (fixP->fx_addsy
19923 && ! S_IS_DEFINED (fixP->fx_addsy))
19924 {
19925 as_bad_where (fixP->fx_file, fixP->fx_line,
19926 _("undefined symbol %s used as an immediate value"),
19927 S_GET_NAME (fixP->fx_addsy));
19928 break;
19929 }
404ff6b5 19930
c19d1205
ZW
19931 newval = md_chars_to_number (buf, THUMB_SIZE);
19932 newval <<= 16;
19933 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 19934
16805f35
PB
19935 newimm = FAIL;
19936 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19937 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
19938 {
19939 newimm = encode_thumb32_immediate (value);
19940 if (newimm == (unsigned int) FAIL)
19941 newimm = thumb32_negate_data_op (&newval, value);
19942 }
16805f35
PB
19943 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19944 && newimm == (unsigned int) FAIL)
92e90b6e 19945 {
16805f35
PB
19946 /* Turn add/sum into addw/subw. */
19947 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19948 newval = (newval & 0xfeffffff) | 0x02000000;
19949
e9f89963
PB
19950 /* 12 bit immediate for addw/subw. */
19951 if (value < 0)
19952 {
19953 value = -value;
19954 newval ^= 0x00a00000;
19955 }
92e90b6e
PB
19956 if (value > 0xfff)
19957 newimm = (unsigned int) FAIL;
19958 else
19959 newimm = value;
19960 }
cc8a6dd0 19961
c19d1205 19962 if (newimm == (unsigned int)FAIL)
3631a3c8 19963 {
c19d1205
ZW
19964 as_bad_where (fixP->fx_file, fixP->fx_line,
19965 _("invalid constant (%lx) after fixup"),
19966 (unsigned long) value);
19967 break;
3631a3c8
NC
19968 }
19969
c19d1205
ZW
19970 newval |= (newimm & 0x800) << 15;
19971 newval |= (newimm & 0x700) << 4;
19972 newval |= (newimm & 0x0ff);
cc8a6dd0 19973
c19d1205
ZW
19974 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
19975 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
19976 break;
a737bd4d 19977
3eb17e6b 19978 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
19979 if (((unsigned long) value) > 0xffff)
19980 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 19981 _("invalid smc expression"));
2fc8bdac 19982 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
19983 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
19984 md_number_to_chars (buf, newval, INSN_SIZE);
19985 break;
a737bd4d 19986
c19d1205 19987 case BFD_RELOC_ARM_SWI:
adbaf948 19988 if (fixP->tc_fix_data != 0)
c19d1205
ZW
19989 {
19990 if (((unsigned long) value) > 0xff)
19991 as_bad_where (fixP->fx_file, fixP->fx_line,
19992 _("invalid swi expression"));
2fc8bdac 19993 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
19994 newval |= value;
19995 md_number_to_chars (buf, newval, THUMB_SIZE);
19996 }
19997 else
19998 {
19999 if (((unsigned long) value) > 0x00ffffff)
20000 as_bad_where (fixP->fx_file, fixP->fx_line,
20001 _("invalid swi expression"));
2fc8bdac 20002 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20003 newval |= value;
20004 md_number_to_chars (buf, newval, INSN_SIZE);
20005 }
20006 break;
a737bd4d 20007
c19d1205
ZW
20008 case BFD_RELOC_ARM_MULTI:
20009 if (((unsigned long) value) > 0xffff)
20010 as_bad_where (fixP->fx_file, fixP->fx_line,
20011 _("invalid expression in load/store multiple"));
20012 newval = value | md_chars_to_number (buf, INSN_SIZE);
20013 md_number_to_chars (buf, newval, INSN_SIZE);
20014 break;
a737bd4d 20015
c19d1205 20016#ifdef OBJ_ELF
39b41c9c 20017 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20018
20019 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20020 && fixP->fx_addsy
20021 && !S_IS_EXTERNAL (fixP->fx_addsy)
20022 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20023 && THUMB_IS_FUNC (fixP->fx_addsy))
20024 /* Flip the bl to blx. This is a simple flip
20025 bit here because we generate PCREL_CALL for
20026 unconditional bls. */
20027 {
20028 newval = md_chars_to_number (buf, INSN_SIZE);
20029 newval = newval | 0x10000000;
20030 md_number_to_chars (buf, newval, INSN_SIZE);
20031 temp = 1;
20032 fixP->fx_done = 1;
20033 }
39b41c9c
PB
20034 else
20035 temp = 3;
20036 goto arm_branch_common;
20037
20038 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20039 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20040 && fixP->fx_addsy
20041 && !S_IS_EXTERNAL (fixP->fx_addsy)
20042 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20043 && THUMB_IS_FUNC (fixP->fx_addsy))
20044 {
20045 /* This would map to a bl<cond>, b<cond>,
20046 b<always> to a Thumb function. We
20047 need to force a relocation for this particular
20048 case. */
20049 newval = md_chars_to_number (buf, INSN_SIZE);
20050 fixP->fx_done = 0;
20051 }
20052
2fc8bdac 20053 case BFD_RELOC_ARM_PLT32:
c19d1205 20054#endif
39b41c9c
PB
20055 case BFD_RELOC_ARM_PCREL_BRANCH:
20056 temp = 3;
20057 goto arm_branch_common;
a737bd4d 20058
39b41c9c 20059 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20060
39b41c9c 20061 temp = 1;
267bf995
RR
20062 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20063 && fixP->fx_addsy
20064 && !S_IS_EXTERNAL (fixP->fx_addsy)
20065 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20066 && ARM_IS_FUNC (fixP->fx_addsy))
20067 {
20068 /* Flip the blx to a bl and warn. */
20069 const char *name = S_GET_NAME (fixP->fx_addsy);
20070 newval = 0xeb000000;
20071 as_warn_where (fixP->fx_file, fixP->fx_line,
20072 _("blx to '%s' an ARM ISA state function changed to bl"),
20073 name);
20074 md_number_to_chars (buf, newval, INSN_SIZE);
20075 temp = 3;
20076 fixP->fx_done = 1;
20077 }
20078
20079#ifdef OBJ_ELF
20080 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20081 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20082#endif
20083
39b41c9c 20084 arm_branch_common:
c19d1205 20085 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20086 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20087 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20088 also be be clear. */
20089 if (value & temp)
c19d1205 20090 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20091 _("misaligned branch destination"));
20092 if ((value & (offsetT)0xfe000000) != (offsetT)0
20093 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20094 as_bad_where (fixP->fx_file, fixP->fx_line,
20095 _("branch out of range"));
a737bd4d 20096
2fc8bdac 20097 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20098 {
2fc8bdac
ZW
20099 newval = md_chars_to_number (buf, INSN_SIZE);
20100 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20101 /* Set the H bit on BLX instructions. */
20102 if (temp == 1)
20103 {
20104 if (value & 2)
20105 newval |= 0x01000000;
20106 else
20107 newval &= ~0x01000000;
20108 }
2fc8bdac 20109 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20110 }
c19d1205 20111 break;
a737bd4d 20112
25fe350b
MS
20113 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20114 /* CBZ can only branch forward. */
a737bd4d 20115
738755b0
MS
20116 /* Attempts to use CBZ to branch to the next instruction
20117 (which, strictly speaking, are prohibited) will be turned into
20118 no-ops.
20119
20120 FIXME: It may be better to remove the instruction completely and
20121 perform relaxation. */
20122 if (value == -2)
2fc8bdac
ZW
20123 {
20124 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20125 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20126 md_number_to_chars (buf, newval, THUMB_SIZE);
20127 }
738755b0
MS
20128 else
20129 {
20130 if (value & ~0x7e)
20131 as_bad_where (fixP->fx_file, fixP->fx_line,
20132 _("branch out of range"));
20133
20134 if (fixP->fx_done || !seg->use_rela_p)
20135 {
20136 newval = md_chars_to_number (buf, THUMB_SIZE);
20137 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20138 md_number_to_chars (buf, newval, THUMB_SIZE);
20139 }
20140 }
c19d1205 20141 break;
a737bd4d 20142
c19d1205 20143 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20144 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20145 as_bad_where (fixP->fx_file, fixP->fx_line,
20146 _("branch out of range"));
a737bd4d 20147
2fc8bdac
ZW
20148 if (fixP->fx_done || !seg->use_rela_p)
20149 {
20150 newval = md_chars_to_number (buf, THUMB_SIZE);
20151 newval |= (value & 0x1ff) >> 1;
20152 md_number_to_chars (buf, newval, THUMB_SIZE);
20153 }
c19d1205 20154 break;
a737bd4d 20155
c19d1205 20156 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20157 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20158 as_bad_where (fixP->fx_file, fixP->fx_line,
20159 _("branch out of range"));
a737bd4d 20160
2fc8bdac
ZW
20161 if (fixP->fx_done || !seg->use_rela_p)
20162 {
20163 newval = md_chars_to_number (buf, THUMB_SIZE);
20164 newval |= (value & 0xfff) >> 1;
20165 md_number_to_chars (buf, newval, THUMB_SIZE);
20166 }
c19d1205 20167 break;
a737bd4d 20168
c19d1205 20169 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20170 if (fixP->fx_addsy
20171 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20172 && !S_IS_EXTERNAL (fixP->fx_addsy)
20173 && S_IS_DEFINED (fixP->fx_addsy)
20174 && ARM_IS_FUNC (fixP->fx_addsy)
20175 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20176 {
20177 /* Force a relocation for a branch 20 bits wide. */
20178 fixP->fx_done = 0;
20179 }
2fc8bdac
ZW
20180 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20181 as_bad_where (fixP->fx_file, fixP->fx_line,
20182 _("conditional branch out of range"));
404ff6b5 20183
2fc8bdac
ZW
20184 if (fixP->fx_done || !seg->use_rela_p)
20185 {
20186 offsetT newval2;
20187 addressT S, J1, J2, lo, hi;
404ff6b5 20188
2fc8bdac
ZW
20189 S = (value & 0x00100000) >> 20;
20190 J2 = (value & 0x00080000) >> 19;
20191 J1 = (value & 0x00040000) >> 18;
20192 hi = (value & 0x0003f000) >> 12;
20193 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20194
2fc8bdac
ZW
20195 newval = md_chars_to_number (buf, THUMB_SIZE);
20196 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20197 newval |= (S << 10) | hi;
20198 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20199 md_number_to_chars (buf, newval, THUMB_SIZE);
20200 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20201 }
c19d1205 20202 break;
6c43fab6 20203
c19d1205 20204 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20205
20206 /* If there is a blx from a thumb state function to
20207 another thumb function flip this to a bl and warn
20208 about it. */
20209
20210 if (fixP->fx_addsy
20211 && S_IS_DEFINED (fixP->fx_addsy)
20212 && !S_IS_EXTERNAL (fixP->fx_addsy)
20213 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20214 && THUMB_IS_FUNC (fixP->fx_addsy))
20215 {
20216 const char *name = S_GET_NAME (fixP->fx_addsy);
20217 as_warn_where (fixP->fx_file, fixP->fx_line,
20218 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20219 name);
20220 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20221 newval = newval | 0x1000;
20222 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20223 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20224 fixP->fx_done = 1;
20225 }
20226
20227
20228 goto thumb_bl_common;
20229
c19d1205 20230 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20231
20232 /* A bl from Thumb state ISA to an internal ARM state function
20233 is converted to a blx. */
20234 if (fixP->fx_addsy
20235 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20236 && !S_IS_EXTERNAL (fixP->fx_addsy)
20237 && S_IS_DEFINED (fixP->fx_addsy)
20238 && ARM_IS_FUNC (fixP->fx_addsy)
20239 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20240 {
20241 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20242 newval = newval & ~0x1000;
20243 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20244 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20245 fixP->fx_done = 1;
20246 }
20247
20248 thumb_bl_common:
20249
20250#ifdef OBJ_ELF
20251 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20252 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20253 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20254#endif
20255
2fc8bdac
ZW
20256 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20257 /* For a BLX instruction, make sure that the relocation is rounded up
20258 to a word boundary. This follows the semantics of the instruction
20259 which specifies that bit 1 of the target address will come from bit
20260 1 of the base address. */
20261 value = (value + 1) & ~ 1;
404ff6b5 20262
2fc8bdac 20263
4a42ebbc
RR
20264 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20265 {
20266 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20267 {
20268 as_bad_where (fixP->fx_file, fixP->fx_line,
20269 _("branch out of range"));
20270 }
20271 else if ((value & ~0x1ffffff)
20272 && ((value & ~0x1ffffff) != ~0x1ffffff))
20273 {
20274 as_bad_where (fixP->fx_file, fixP->fx_line,
20275 _("Thumb2 branch out of range"));
20276 }
c19d1205 20277 }
4a42ebbc
RR
20278
20279 if (fixP->fx_done || !seg->use_rela_p)
20280 encode_thumb2_b_bl_offset (buf, value);
20281
c19d1205 20282 break;
404ff6b5 20283
c19d1205 20284 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20285 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20286 as_bad_where (fixP->fx_file, fixP->fx_line,
20287 _("branch out of range"));
6c43fab6 20288
2fc8bdac 20289 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20290 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20291
2fc8bdac 20292 break;
a737bd4d 20293
2fc8bdac
ZW
20294 case BFD_RELOC_8:
20295 if (fixP->fx_done || !seg->use_rela_p)
20296 md_number_to_chars (buf, value, 1);
c19d1205 20297 break;
a737bd4d 20298
c19d1205 20299 case BFD_RELOC_16:
2fc8bdac 20300 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20301 md_number_to_chars (buf, value, 2);
c19d1205 20302 break;
a737bd4d 20303
c19d1205
ZW
20304#ifdef OBJ_ELF
20305 case BFD_RELOC_ARM_TLS_GD32:
20306 case BFD_RELOC_ARM_TLS_LE32:
20307 case BFD_RELOC_ARM_TLS_IE32:
20308 case BFD_RELOC_ARM_TLS_LDM32:
20309 case BFD_RELOC_ARM_TLS_LDO32:
20310 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20311 /* fall through */
6c43fab6 20312
c19d1205
ZW
20313 case BFD_RELOC_ARM_GOT32:
20314 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20315 if (fixP->fx_done || !seg->use_rela_p)
20316 md_number_to_chars (buf, 0, 4);
c19d1205 20317 break;
9a6f4e97
NS
20318
20319 case BFD_RELOC_ARM_TARGET2:
20320 /* TARGET2 is not partial-inplace, so we need to write the
20321 addend here for REL targets, because it won't be written out
20322 during reloc processing later. */
20323 if (fixP->fx_done || !seg->use_rela_p)
20324 md_number_to_chars (buf, fixP->fx_offset, 4);
20325 break;
c19d1205 20326#endif
6c43fab6 20327
c19d1205
ZW
20328 case BFD_RELOC_RVA:
20329 case BFD_RELOC_32:
20330 case BFD_RELOC_ARM_TARGET1:
20331 case BFD_RELOC_ARM_ROSEGREL32:
20332 case BFD_RELOC_ARM_SBREL32:
20333 case BFD_RELOC_32_PCREL:
f0927246
NC
20334#ifdef TE_PE
20335 case BFD_RELOC_32_SECREL:
20336#endif
2fc8bdac 20337 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20338#ifdef TE_WINCE
20339 /* For WinCE we only do this for pcrel fixups. */
20340 if (fixP->fx_done || fixP->fx_pcrel)
20341#endif
20342 md_number_to_chars (buf, value, 4);
c19d1205 20343 break;
6c43fab6 20344
c19d1205
ZW
20345#ifdef OBJ_ELF
20346 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20347 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20348 {
20349 newval = md_chars_to_number (buf, 4) & 0x80000000;
20350 if ((value ^ (value >> 1)) & 0x40000000)
20351 {
20352 as_bad_where (fixP->fx_file, fixP->fx_line,
20353 _("rel31 relocation overflow"));
20354 }
20355 newval |= value & 0x7fffffff;
20356 md_number_to_chars (buf, newval, 4);
20357 }
20358 break;
c19d1205 20359#endif
a737bd4d 20360
c19d1205 20361 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20362 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20363 if (value < -1023 || value > 1023 || (value & 3))
20364 as_bad_where (fixP->fx_file, fixP->fx_line,
20365 _("co-processor offset out of range"));
20366 cp_off_common:
20367 sign = value >= 0;
20368 if (value < 0)
20369 value = -value;
8f06b2d8
PB
20370 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20371 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20372 newval = md_chars_to_number (buf, INSN_SIZE);
20373 else
20374 newval = get_thumb32_insn (buf);
20375 newval &= 0xff7fff00;
c19d1205 20376 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20377 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20378 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20379 md_number_to_chars (buf, newval, INSN_SIZE);
20380 else
20381 put_thumb32_insn (buf, newval);
c19d1205 20382 break;
a737bd4d 20383
c19d1205 20384 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20385 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20386 if (value < -255 || value > 255)
20387 as_bad_where (fixP->fx_file, fixP->fx_line,
20388 _("co-processor offset out of range"));
df7849c5 20389 value *= 4;
c19d1205 20390 goto cp_off_common;
6c43fab6 20391
c19d1205
ZW
20392 case BFD_RELOC_ARM_THUMB_OFFSET:
20393 newval = md_chars_to_number (buf, THUMB_SIZE);
20394 /* Exactly what ranges, and where the offset is inserted depends
20395 on the type of instruction, we can establish this from the
20396 top 4 bits. */
20397 switch (newval >> 12)
20398 {
20399 case 4: /* PC load. */
20400 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20401 forced to zero for these loads; md_pcrel_from has already
20402 compensated for this. */
20403 if (value & 3)
20404 as_bad_where (fixP->fx_file, fixP->fx_line,
20405 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20406 (((unsigned long) fixP->fx_frag->fr_address
20407 + (unsigned long) fixP->fx_where) & ~3)
20408 + (unsigned long) value);
a737bd4d 20409
c19d1205
ZW
20410 if (value & ~0x3fc)
20411 as_bad_where (fixP->fx_file, fixP->fx_line,
20412 _("invalid offset, value too big (0x%08lX)"),
20413 (long) value);
a737bd4d 20414
c19d1205
ZW
20415 newval |= value >> 2;
20416 break;
a737bd4d 20417
c19d1205
ZW
20418 case 9: /* SP load/store. */
20419 if (value & ~0x3fc)
20420 as_bad_where (fixP->fx_file, fixP->fx_line,
20421 _("invalid offset, value too big (0x%08lX)"),
20422 (long) value);
20423 newval |= value >> 2;
20424 break;
6c43fab6 20425
c19d1205
ZW
20426 case 6: /* Word load/store. */
20427 if (value & ~0x7c)
20428 as_bad_where (fixP->fx_file, fixP->fx_line,
20429 _("invalid offset, value too big (0x%08lX)"),
20430 (long) value);
20431 newval |= value << 4; /* 6 - 2. */
20432 break;
a737bd4d 20433
c19d1205
ZW
20434 case 7: /* Byte load/store. */
20435 if (value & ~0x1f)
20436 as_bad_where (fixP->fx_file, fixP->fx_line,
20437 _("invalid offset, value too big (0x%08lX)"),
20438 (long) value);
20439 newval |= value << 6;
20440 break;
a737bd4d 20441
c19d1205
ZW
20442 case 8: /* Halfword load/store. */
20443 if (value & ~0x3e)
20444 as_bad_where (fixP->fx_file, fixP->fx_line,
20445 _("invalid offset, value too big (0x%08lX)"),
20446 (long) value);
20447 newval |= value << 5; /* 6 - 1. */
20448 break;
a737bd4d 20449
c19d1205
ZW
20450 default:
20451 as_bad_where (fixP->fx_file, fixP->fx_line,
20452 "Unable to process relocation for thumb opcode: %lx",
20453 (unsigned long) newval);
20454 break;
20455 }
20456 md_number_to_chars (buf, newval, THUMB_SIZE);
20457 break;
a737bd4d 20458
c19d1205
ZW
20459 case BFD_RELOC_ARM_THUMB_ADD:
20460 /* This is a complicated relocation, since we use it for all of
20461 the following immediate relocations:
a737bd4d 20462
c19d1205
ZW
20463 3bit ADD/SUB
20464 8bit ADD/SUB
20465 9bit ADD/SUB SP word-aligned
20466 10bit ADD PC/SP word-aligned
a737bd4d 20467
c19d1205
ZW
20468 The type of instruction being processed is encoded in the
20469 instruction field:
a737bd4d 20470
c19d1205
ZW
20471 0x8000 SUB
20472 0x00F0 Rd
20473 0x000F Rs
20474 */
20475 newval = md_chars_to_number (buf, THUMB_SIZE);
20476 {
20477 int rd = (newval >> 4) & 0xf;
20478 int rs = newval & 0xf;
20479 int subtract = !!(newval & 0x8000);
a737bd4d 20480
c19d1205
ZW
20481 /* Check for HI regs, only very restricted cases allowed:
20482 Adjusting SP, and using PC or SP to get an address. */
20483 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20484 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20485 as_bad_where (fixP->fx_file, fixP->fx_line,
20486 _("invalid Hi register with immediate"));
a737bd4d 20487
c19d1205
ZW
20488 /* If value is negative, choose the opposite instruction. */
20489 if (value < 0)
20490 {
20491 value = -value;
20492 subtract = !subtract;
20493 if (value < 0)
20494 as_bad_where (fixP->fx_file, fixP->fx_line,
20495 _("immediate value out of range"));
20496 }
a737bd4d 20497
c19d1205
ZW
20498 if (rd == REG_SP)
20499 {
20500 if (value & ~0x1fc)
20501 as_bad_where (fixP->fx_file, fixP->fx_line,
20502 _("invalid immediate for stack address calculation"));
20503 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20504 newval |= value >> 2;
20505 }
20506 else if (rs == REG_PC || rs == REG_SP)
20507 {
20508 if (subtract || value & ~0x3fc)
20509 as_bad_where (fixP->fx_file, fixP->fx_line,
20510 _("invalid immediate for address calculation (value = 0x%08lX)"),
20511 (unsigned long) value);
20512 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20513 newval |= rd << 8;
20514 newval |= value >> 2;
20515 }
20516 else if (rs == rd)
20517 {
20518 if (value & ~0xff)
20519 as_bad_where (fixP->fx_file, fixP->fx_line,
20520 _("immediate value out of range"));
20521 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20522 newval |= (rd << 8) | value;
20523 }
20524 else
20525 {
20526 if (value & ~0x7)
20527 as_bad_where (fixP->fx_file, fixP->fx_line,
20528 _("immediate value out of range"));
20529 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20530 newval |= rd | (rs << 3) | (value << 6);
20531 }
20532 }
20533 md_number_to_chars (buf, newval, THUMB_SIZE);
20534 break;
a737bd4d 20535
c19d1205
ZW
20536 case BFD_RELOC_ARM_THUMB_IMM:
20537 newval = md_chars_to_number (buf, THUMB_SIZE);
20538 if (value < 0 || value > 255)
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 20540 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
20541 (long) value);
20542 newval |= value;
20543 md_number_to_chars (buf, newval, THUMB_SIZE);
20544 break;
a737bd4d 20545
c19d1205
ZW
20546 case BFD_RELOC_ARM_THUMB_SHIFT:
20547 /* 5bit shift value (0..32). LSL cannot take 32. */
20548 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20549 temp = newval & 0xf800;
20550 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20551 as_bad_where (fixP->fx_file, fixP->fx_line,
20552 _("invalid shift value: %ld"), (long) value);
20553 /* Shifts of zero must be encoded as LSL. */
20554 if (value == 0)
20555 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20556 /* Shifts of 32 are encoded as zero. */
20557 else if (value == 32)
20558 value = 0;
20559 newval |= value << 6;
20560 md_number_to_chars (buf, newval, THUMB_SIZE);
20561 break;
a737bd4d 20562
c19d1205
ZW
20563 case BFD_RELOC_VTABLE_INHERIT:
20564 case BFD_RELOC_VTABLE_ENTRY:
20565 fixP->fx_done = 0;
20566 return;
6c43fab6 20567
b6895b4f
PB
20568 case BFD_RELOC_ARM_MOVW:
20569 case BFD_RELOC_ARM_MOVT:
20570 case BFD_RELOC_ARM_THUMB_MOVW:
20571 case BFD_RELOC_ARM_THUMB_MOVT:
20572 if (fixP->fx_done || !seg->use_rela_p)
20573 {
20574 /* REL format relocations are limited to a 16-bit addend. */
20575 if (!fixP->fx_done)
20576 {
39623e12 20577 if (value < -0x8000 || value > 0x7fff)
b6895b4f 20578 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 20579 _("offset out of range"));
b6895b4f
PB
20580 }
20581 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20582 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20583 {
20584 value >>= 16;
20585 }
20586
20587 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20588 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20589 {
20590 newval = get_thumb32_insn (buf);
20591 newval &= 0xfbf08f00;
20592 newval |= (value & 0xf000) << 4;
20593 newval |= (value & 0x0800) << 15;
20594 newval |= (value & 0x0700) << 4;
20595 newval |= (value & 0x00ff);
20596 put_thumb32_insn (buf, newval);
20597 }
20598 else
20599 {
20600 newval = md_chars_to_number (buf, 4);
20601 newval &= 0xfff0f000;
20602 newval |= value & 0x0fff;
20603 newval |= (value & 0xf000) << 4;
20604 md_number_to_chars (buf, newval, 4);
20605 }
20606 }
20607 return;
20608
4962c51a
MS
20609 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20610 case BFD_RELOC_ARM_ALU_PC_G0:
20611 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20612 case BFD_RELOC_ARM_ALU_PC_G1:
20613 case BFD_RELOC_ARM_ALU_PC_G2:
20614 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20615 case BFD_RELOC_ARM_ALU_SB_G0:
20616 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20617 case BFD_RELOC_ARM_ALU_SB_G1:
20618 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 20619 gas_assert (!fixP->fx_done);
4962c51a
MS
20620 if (!seg->use_rela_p)
20621 {
20622 bfd_vma insn;
20623 bfd_vma encoded_addend;
20624 bfd_vma addend_abs = abs (value);
20625
20626 /* Check that the absolute value of the addend can be
20627 expressed as an 8-bit constant plus a rotation. */
20628 encoded_addend = encode_arm_immediate (addend_abs);
20629 if (encoded_addend == (unsigned int) FAIL)
20630 as_bad_where (fixP->fx_file, fixP->fx_line,
20631 _("the offset 0x%08lX is not representable"),
495bde8e 20632 (unsigned long) addend_abs);
4962c51a
MS
20633
20634 /* Extract the instruction. */
20635 insn = md_chars_to_number (buf, INSN_SIZE);
20636
20637 /* If the addend is positive, use an ADD instruction.
20638 Otherwise use a SUB. Take care not to destroy the S bit. */
20639 insn &= 0xff1fffff;
20640 if (value < 0)
20641 insn |= 1 << 22;
20642 else
20643 insn |= 1 << 23;
20644
20645 /* Place the encoded addend into the first 12 bits of the
20646 instruction. */
20647 insn &= 0xfffff000;
20648 insn |= encoded_addend;
5f4273c7
NC
20649
20650 /* Update the instruction. */
4962c51a
MS
20651 md_number_to_chars (buf, insn, INSN_SIZE);
20652 }
20653 break;
20654
20655 case BFD_RELOC_ARM_LDR_PC_G0:
20656 case BFD_RELOC_ARM_LDR_PC_G1:
20657 case BFD_RELOC_ARM_LDR_PC_G2:
20658 case BFD_RELOC_ARM_LDR_SB_G0:
20659 case BFD_RELOC_ARM_LDR_SB_G1:
20660 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 20661 gas_assert (!fixP->fx_done);
4962c51a
MS
20662 if (!seg->use_rela_p)
20663 {
20664 bfd_vma insn;
20665 bfd_vma addend_abs = abs (value);
20666
20667 /* Check that the absolute value of the addend can be
20668 encoded in 12 bits. */
20669 if (addend_abs >= 0x1000)
20670 as_bad_where (fixP->fx_file, fixP->fx_line,
20671 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 20672 (unsigned long) addend_abs);
4962c51a
MS
20673
20674 /* Extract the instruction. */
20675 insn = md_chars_to_number (buf, INSN_SIZE);
20676
20677 /* If the addend is negative, clear bit 23 of the instruction.
20678 Otherwise set it. */
20679 if (value < 0)
20680 insn &= ~(1 << 23);
20681 else
20682 insn |= 1 << 23;
20683
20684 /* Place the absolute value of the addend into the first 12 bits
20685 of the instruction. */
20686 insn &= 0xfffff000;
20687 insn |= addend_abs;
5f4273c7
NC
20688
20689 /* Update the instruction. */
4962c51a
MS
20690 md_number_to_chars (buf, insn, INSN_SIZE);
20691 }
20692 break;
20693
20694 case BFD_RELOC_ARM_LDRS_PC_G0:
20695 case BFD_RELOC_ARM_LDRS_PC_G1:
20696 case BFD_RELOC_ARM_LDRS_PC_G2:
20697 case BFD_RELOC_ARM_LDRS_SB_G0:
20698 case BFD_RELOC_ARM_LDRS_SB_G1:
20699 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 20700 gas_assert (!fixP->fx_done);
4962c51a
MS
20701 if (!seg->use_rela_p)
20702 {
20703 bfd_vma insn;
20704 bfd_vma addend_abs = abs (value);
20705
20706 /* Check that the absolute value of the addend can be
20707 encoded in 8 bits. */
20708 if (addend_abs >= 0x100)
20709 as_bad_where (fixP->fx_file, fixP->fx_line,
20710 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 20711 (unsigned long) addend_abs);
4962c51a
MS
20712
20713 /* Extract the instruction. */
20714 insn = md_chars_to_number (buf, INSN_SIZE);
20715
20716 /* If the addend is negative, clear bit 23 of the instruction.
20717 Otherwise set it. */
20718 if (value < 0)
20719 insn &= ~(1 << 23);
20720 else
20721 insn |= 1 << 23;
20722
20723 /* Place the first four bits of the absolute value of the addend
20724 into the first 4 bits of the instruction, and the remaining
20725 four into bits 8 .. 11. */
20726 insn &= 0xfffff0f0;
20727 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
20728
20729 /* Update the instruction. */
4962c51a
MS
20730 md_number_to_chars (buf, insn, INSN_SIZE);
20731 }
20732 break;
20733
20734 case BFD_RELOC_ARM_LDC_PC_G0:
20735 case BFD_RELOC_ARM_LDC_PC_G1:
20736 case BFD_RELOC_ARM_LDC_PC_G2:
20737 case BFD_RELOC_ARM_LDC_SB_G0:
20738 case BFD_RELOC_ARM_LDC_SB_G1:
20739 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 20740 gas_assert (!fixP->fx_done);
4962c51a
MS
20741 if (!seg->use_rela_p)
20742 {
20743 bfd_vma insn;
20744 bfd_vma addend_abs = abs (value);
20745
20746 /* Check that the absolute value of the addend is a multiple of
20747 four and, when divided by four, fits in 8 bits. */
20748 if (addend_abs & 0x3)
20749 as_bad_where (fixP->fx_file, fixP->fx_line,
20750 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 20751 (unsigned long) addend_abs);
4962c51a
MS
20752
20753 if ((addend_abs >> 2) > 0xff)
20754 as_bad_where (fixP->fx_file, fixP->fx_line,
20755 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 20756 (unsigned long) addend_abs);
4962c51a
MS
20757
20758 /* Extract the instruction. */
20759 insn = md_chars_to_number (buf, INSN_SIZE);
20760
20761 /* If the addend is negative, clear bit 23 of the instruction.
20762 Otherwise set it. */
20763 if (value < 0)
20764 insn &= ~(1 << 23);
20765 else
20766 insn |= 1 << 23;
20767
20768 /* Place the addend (divided by four) into the first eight
20769 bits of the instruction. */
20770 insn &= 0xfffffff0;
20771 insn |= addend_abs >> 2;
5f4273c7
NC
20772
20773 /* Update the instruction. */
4962c51a
MS
20774 md_number_to_chars (buf, insn, INSN_SIZE);
20775 }
20776 break;
20777
845b51d6
PB
20778 case BFD_RELOC_ARM_V4BX:
20779 /* This will need to go in the object file. */
20780 fixP->fx_done = 0;
20781 break;
20782
c19d1205
ZW
20783 case BFD_RELOC_UNUSED:
20784 default:
20785 as_bad_where (fixP->fx_file, fixP->fx_line,
20786 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20787 }
6c43fab6
RE
20788}
20789
c19d1205
ZW
20790/* Translate internal representation of relocation info to BFD target
20791 format. */
a737bd4d 20792
c19d1205 20793arelent *
00a97672 20794tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 20795{
c19d1205
ZW
20796 arelent * reloc;
20797 bfd_reloc_code_real_type code;
a737bd4d 20798
21d799b5 20799 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 20800
21d799b5 20801 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
20802 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20803 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 20804
2fc8bdac 20805 if (fixp->fx_pcrel)
00a97672
RS
20806 {
20807 if (section->use_rela_p)
20808 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20809 else
20810 fixp->fx_offset = reloc->address;
20811 }
c19d1205 20812 reloc->addend = fixp->fx_offset;
a737bd4d 20813
c19d1205 20814 switch (fixp->fx_r_type)
a737bd4d 20815 {
c19d1205
ZW
20816 case BFD_RELOC_8:
20817 if (fixp->fx_pcrel)
20818 {
20819 code = BFD_RELOC_8_PCREL;
20820 break;
20821 }
a737bd4d 20822
c19d1205
ZW
20823 case BFD_RELOC_16:
20824 if (fixp->fx_pcrel)
20825 {
20826 code = BFD_RELOC_16_PCREL;
20827 break;
20828 }
6c43fab6 20829
c19d1205
ZW
20830 case BFD_RELOC_32:
20831 if (fixp->fx_pcrel)
20832 {
20833 code = BFD_RELOC_32_PCREL;
20834 break;
20835 }
a737bd4d 20836
b6895b4f
PB
20837 case BFD_RELOC_ARM_MOVW:
20838 if (fixp->fx_pcrel)
20839 {
20840 code = BFD_RELOC_ARM_MOVW_PCREL;
20841 break;
20842 }
20843
20844 case BFD_RELOC_ARM_MOVT:
20845 if (fixp->fx_pcrel)
20846 {
20847 code = BFD_RELOC_ARM_MOVT_PCREL;
20848 break;
20849 }
20850
20851 case BFD_RELOC_ARM_THUMB_MOVW:
20852 if (fixp->fx_pcrel)
20853 {
20854 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20855 break;
20856 }
20857
20858 case BFD_RELOC_ARM_THUMB_MOVT:
20859 if (fixp->fx_pcrel)
20860 {
20861 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20862 break;
20863 }
20864
c19d1205
ZW
20865 case BFD_RELOC_NONE:
20866 case BFD_RELOC_ARM_PCREL_BRANCH:
20867 case BFD_RELOC_ARM_PCREL_BLX:
20868 case BFD_RELOC_RVA:
20869 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20870 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20871 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20872 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20873 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20874 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
20875 case BFD_RELOC_VTABLE_ENTRY:
20876 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
20877#ifdef TE_PE
20878 case BFD_RELOC_32_SECREL:
20879#endif
c19d1205
ZW
20880 code = fixp->fx_r_type;
20881 break;
a737bd4d 20882
00adf2d4
JB
20883 case BFD_RELOC_THUMB_PCREL_BLX:
20884#ifdef OBJ_ELF
20885 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20886 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20887 else
20888#endif
20889 code = BFD_RELOC_THUMB_PCREL_BLX;
20890 break;
20891
c19d1205
ZW
20892 case BFD_RELOC_ARM_LITERAL:
20893 case BFD_RELOC_ARM_HWLITERAL:
20894 /* If this is called then the a literal has
20895 been referenced across a section boundary. */
20896 as_bad_where (fixp->fx_file, fixp->fx_line,
20897 _("literal referenced across section boundary"));
20898 return NULL;
a737bd4d 20899
c19d1205
ZW
20900#ifdef OBJ_ELF
20901 case BFD_RELOC_ARM_GOT32:
20902 case BFD_RELOC_ARM_GOTOFF:
20903 case BFD_RELOC_ARM_PLT32:
20904 case BFD_RELOC_ARM_TARGET1:
20905 case BFD_RELOC_ARM_ROSEGREL32:
20906 case BFD_RELOC_ARM_SBREL32:
20907 case BFD_RELOC_ARM_PREL31:
20908 case BFD_RELOC_ARM_TARGET2:
20909 case BFD_RELOC_ARM_TLS_LE32:
20910 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
20911 case BFD_RELOC_ARM_PCREL_CALL:
20912 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
20913 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20914 case BFD_RELOC_ARM_ALU_PC_G0:
20915 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20916 case BFD_RELOC_ARM_ALU_PC_G1:
20917 case BFD_RELOC_ARM_ALU_PC_G2:
20918 case BFD_RELOC_ARM_LDR_PC_G0:
20919 case BFD_RELOC_ARM_LDR_PC_G1:
20920 case BFD_RELOC_ARM_LDR_PC_G2:
20921 case BFD_RELOC_ARM_LDRS_PC_G0:
20922 case BFD_RELOC_ARM_LDRS_PC_G1:
20923 case BFD_RELOC_ARM_LDRS_PC_G2:
20924 case BFD_RELOC_ARM_LDC_PC_G0:
20925 case BFD_RELOC_ARM_LDC_PC_G1:
20926 case BFD_RELOC_ARM_LDC_PC_G2:
20927 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20928 case BFD_RELOC_ARM_ALU_SB_G0:
20929 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20930 case BFD_RELOC_ARM_ALU_SB_G1:
20931 case BFD_RELOC_ARM_ALU_SB_G2:
20932 case BFD_RELOC_ARM_LDR_SB_G0:
20933 case BFD_RELOC_ARM_LDR_SB_G1:
20934 case BFD_RELOC_ARM_LDR_SB_G2:
20935 case BFD_RELOC_ARM_LDRS_SB_G0:
20936 case BFD_RELOC_ARM_LDRS_SB_G1:
20937 case BFD_RELOC_ARM_LDRS_SB_G2:
20938 case BFD_RELOC_ARM_LDC_SB_G0:
20939 case BFD_RELOC_ARM_LDC_SB_G1:
20940 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 20941 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
20942 code = fixp->fx_r_type;
20943 break;
a737bd4d 20944
c19d1205
ZW
20945 case BFD_RELOC_ARM_TLS_GD32:
20946 case BFD_RELOC_ARM_TLS_IE32:
20947 case BFD_RELOC_ARM_TLS_LDM32:
20948 /* BFD will include the symbol's address in the addend.
20949 But we don't want that, so subtract it out again here. */
20950 if (!S_IS_COMMON (fixp->fx_addsy))
20951 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20952 code = fixp->fx_r_type;
20953 break;
20954#endif
a737bd4d 20955
c19d1205
ZW
20956 case BFD_RELOC_ARM_IMMEDIATE:
20957 as_bad_where (fixp->fx_file, fixp->fx_line,
20958 _("internal relocation (type: IMMEDIATE) not fixed up"));
20959 return NULL;
a737bd4d 20960
c19d1205
ZW
20961 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20962 as_bad_where (fixp->fx_file, fixp->fx_line,
20963 _("ADRL used for a symbol not defined in the same file"));
20964 return NULL;
a737bd4d 20965
c19d1205 20966 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20967 if (section->use_rela_p)
20968 {
20969 code = fixp->fx_r_type;
20970 break;
20971 }
20972
c19d1205
ZW
20973 if (fixp->fx_addsy != NULL
20974 && !S_IS_DEFINED (fixp->fx_addsy)
20975 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 20976 {
c19d1205
ZW
20977 as_bad_where (fixp->fx_file, fixp->fx_line,
20978 _("undefined local label `%s'"),
20979 S_GET_NAME (fixp->fx_addsy));
20980 return NULL;
a737bd4d
NC
20981 }
20982
c19d1205
ZW
20983 as_bad_where (fixp->fx_file, fixp->fx_line,
20984 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
20985 return NULL;
a737bd4d 20986
c19d1205
ZW
20987 default:
20988 {
20989 char * type;
6c43fab6 20990
c19d1205
ZW
20991 switch (fixp->fx_r_type)
20992 {
20993 case BFD_RELOC_NONE: type = "NONE"; break;
20994 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
20995 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 20996 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
20997 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
20998 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
20999 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 21000 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21001 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21002 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21003 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21004 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21005 default: type = _("<unknown>"); break;
21006 }
21007 as_bad_where (fixp->fx_file, fixp->fx_line,
21008 _("cannot represent %s relocation in this object file format"),
21009 type);
21010 return NULL;
21011 }
a737bd4d 21012 }
6c43fab6 21013
c19d1205
ZW
21014#ifdef OBJ_ELF
21015 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21016 && GOT_symbol
21017 && fixp->fx_addsy == GOT_symbol)
21018 {
21019 code = BFD_RELOC_ARM_GOTPC;
21020 reloc->addend = fixp->fx_offset = reloc->address;
21021 }
21022#endif
6c43fab6 21023
c19d1205 21024 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21025
c19d1205
ZW
21026 if (reloc->howto == NULL)
21027 {
21028 as_bad_where (fixp->fx_file, fixp->fx_line,
21029 _("cannot represent %s relocation in this object file format"),
21030 bfd_get_reloc_code_name (code));
21031 return NULL;
21032 }
6c43fab6 21033
c19d1205
ZW
21034 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21035 vtable entry to be used in the relocation's section offset. */
21036 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21037 reloc->address = fixp->fx_offset;
6c43fab6 21038
c19d1205 21039 return reloc;
6c43fab6
RE
21040}
21041
c19d1205 21042/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21043
c19d1205
ZW
21044void
21045cons_fix_new_arm (fragS * frag,
21046 int where,
21047 int size,
21048 expressionS * exp)
6c43fab6 21049{
c19d1205
ZW
21050 bfd_reloc_code_real_type type;
21051 int pcrel = 0;
6c43fab6 21052
c19d1205
ZW
21053 /* Pick a reloc.
21054 FIXME: @@ Should look at CPU word size. */
21055 switch (size)
21056 {
21057 case 1:
21058 type = BFD_RELOC_8;
21059 break;
21060 case 2:
21061 type = BFD_RELOC_16;
21062 break;
21063 case 4:
21064 default:
21065 type = BFD_RELOC_32;
21066 break;
21067 case 8:
21068 type = BFD_RELOC_64;
21069 break;
21070 }
6c43fab6 21071
f0927246
NC
21072#ifdef TE_PE
21073 if (exp->X_op == O_secrel)
21074 {
21075 exp->X_op = O_symbol;
21076 type = BFD_RELOC_32_SECREL;
21077 }
21078#endif
21079
c19d1205
ZW
21080 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21081}
6c43fab6 21082
4343666d 21083#if defined (OBJ_COFF)
c19d1205
ZW
21084void
21085arm_validate_fix (fixS * fixP)
6c43fab6 21086{
c19d1205
ZW
21087 /* If the destination of the branch is a defined symbol which does not have
21088 the THUMB_FUNC attribute, then we must be calling a function which has
21089 the (interfacearm) attribute. We look for the Thumb entry point to that
21090 function and change the branch to refer to that function instead. */
21091 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21092 && fixP->fx_addsy != NULL
21093 && S_IS_DEFINED (fixP->fx_addsy)
21094 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21095 {
c19d1205 21096 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21097 }
c19d1205
ZW
21098}
21099#endif
6c43fab6 21100
267bf995 21101
c19d1205
ZW
21102int
21103arm_force_relocation (struct fix * fixp)
21104{
21105#if defined (OBJ_COFF) && defined (TE_PE)
21106 if (fixp->fx_r_type == BFD_RELOC_RVA)
21107 return 1;
21108#endif
6c43fab6 21109
267bf995
RR
21110 /* In case we have a call or a branch to a function in ARM ISA mode from
21111 a thumb function or vice-versa force the relocation. These relocations
21112 are cleared off for some cores that might have blx and simple transformations
21113 are possible. */
21114
21115#ifdef OBJ_ELF
21116 switch (fixp->fx_r_type)
21117 {
21118 case BFD_RELOC_ARM_PCREL_JUMP:
21119 case BFD_RELOC_ARM_PCREL_CALL:
21120 case BFD_RELOC_THUMB_PCREL_BLX:
21121 if (THUMB_IS_FUNC (fixp->fx_addsy))
21122 return 1;
21123 break;
21124
21125 case BFD_RELOC_ARM_PCREL_BLX:
21126 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21127 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21128 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21129 if (ARM_IS_FUNC (fixp->fx_addsy))
21130 return 1;
21131 break;
21132
21133 default:
21134 break;
21135 }
21136#endif
21137
c19d1205
ZW
21138 /* Resolve these relocations even if the symbol is extern or weak. */
21139 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21140 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21141 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21142 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21143 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21144 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21145 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21146 return 0;
a737bd4d 21147
4962c51a
MS
21148 /* Always leave these relocations for the linker. */
21149 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21150 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21151 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21152 return 1;
21153
f0291e4c
PB
21154 /* Always generate relocations against function symbols. */
21155 if (fixp->fx_r_type == BFD_RELOC_32
21156 && fixp->fx_addsy
21157 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21158 return 1;
21159
c19d1205 21160 return generic_force_reloc (fixp);
404ff6b5
AH
21161}
21162
0ffdc86c 21163#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21164/* Relocations against function names must be left unadjusted,
21165 so that the linker can use this information to generate interworking
21166 stubs. The MIPS version of this function
c19d1205
ZW
21167 also prevents relocations that are mips-16 specific, but I do not
21168 know why it does this.
404ff6b5 21169
c19d1205
ZW
21170 FIXME:
21171 There is one other problem that ought to be addressed here, but
21172 which currently is not: Taking the address of a label (rather
21173 than a function) and then later jumping to that address. Such
21174 addresses also ought to have their bottom bit set (assuming that
21175 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21176
c19d1205
ZW
21177bfd_boolean
21178arm_fix_adjustable (fixS * fixP)
404ff6b5 21179{
c19d1205
ZW
21180 if (fixP->fx_addsy == NULL)
21181 return 1;
404ff6b5 21182
e28387c3
PB
21183 /* Preserve relocations against symbols with function type. */
21184 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21185 return FALSE;
e28387c3 21186
c19d1205
ZW
21187 if (THUMB_IS_FUNC (fixP->fx_addsy)
21188 && fixP->fx_subsy == NULL)
c921be7d 21189 return FALSE;
a737bd4d 21190
c19d1205
ZW
21191 /* We need the symbol name for the VTABLE entries. */
21192 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21193 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21194 return FALSE;
404ff6b5 21195
c19d1205
ZW
21196 /* Don't allow symbols to be discarded on GOT related relocs. */
21197 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21198 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21199 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21200 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21201 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21202 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21203 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21204 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21205 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21206 return FALSE;
a737bd4d 21207
4962c51a
MS
21208 /* Similarly for group relocations. */
21209 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21210 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21211 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21212 return FALSE;
4962c51a 21213
79947c54
CD
21214 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21215 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21216 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21217 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21218 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21219 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21220 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21221 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21222 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21223 return FALSE;
79947c54 21224
c921be7d 21225 return TRUE;
a737bd4d 21226}
0ffdc86c
NC
21227#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21228
21229#ifdef OBJ_ELF
404ff6b5 21230
c19d1205
ZW
21231const char *
21232elf32_arm_target_format (void)
404ff6b5 21233{
c19d1205
ZW
21234#ifdef TE_SYMBIAN
21235 return (target_big_endian
21236 ? "elf32-bigarm-symbian"
21237 : "elf32-littlearm-symbian");
21238#elif defined (TE_VXWORKS)
21239 return (target_big_endian
21240 ? "elf32-bigarm-vxworks"
21241 : "elf32-littlearm-vxworks");
21242#else
21243 if (target_big_endian)
21244 return "elf32-bigarm";
21245 else
21246 return "elf32-littlearm";
21247#endif
404ff6b5
AH
21248}
21249
c19d1205
ZW
21250void
21251armelf_frob_symbol (symbolS * symp,
21252 int * puntp)
404ff6b5 21253{
c19d1205
ZW
21254 elf_frob_symbol (symp, puntp);
21255}
21256#endif
404ff6b5 21257
c19d1205 21258/* MD interface: Finalization. */
a737bd4d 21259
c19d1205
ZW
21260void
21261arm_cleanup (void)
21262{
21263 literal_pool * pool;
a737bd4d 21264
e07e6e58
NC
21265 /* Ensure that all the IT blocks are properly closed. */
21266 check_it_blocks_finished ();
21267
c19d1205
ZW
21268 for (pool = list_of_pools; pool; pool = pool->next)
21269 {
5f4273c7 21270 /* Put it at the end of the relevant section. */
c19d1205
ZW
21271 subseg_set (pool->section, pool->sub_section);
21272#ifdef OBJ_ELF
21273 arm_elf_change_section ();
21274#endif
21275 s_ltorg (0);
21276 }
404ff6b5
AH
21277}
21278
cd000bff
DJ
21279#ifdef OBJ_ELF
21280/* Remove any excess mapping symbols generated for alignment frags in
21281 SEC. We may have created a mapping symbol before a zero byte
21282 alignment; remove it if there's a mapping symbol after the
21283 alignment. */
21284static void
21285check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21286 void *dummy ATTRIBUTE_UNUSED)
21287{
21288 segment_info_type *seginfo = seg_info (sec);
21289 fragS *fragp;
21290
21291 if (seginfo == NULL || seginfo->frchainP == NULL)
21292 return;
21293
21294 for (fragp = seginfo->frchainP->frch_root;
21295 fragp != NULL;
21296 fragp = fragp->fr_next)
21297 {
21298 symbolS *sym = fragp->tc_frag_data.last_map;
21299 fragS *next = fragp->fr_next;
21300
21301 /* Variable-sized frags have been converted to fixed size by
21302 this point. But if this was variable-sized to start with,
21303 there will be a fixed-size frag after it. So don't handle
21304 next == NULL. */
21305 if (sym == NULL || next == NULL)
21306 continue;
21307
21308 if (S_GET_VALUE (sym) < next->fr_address)
21309 /* Not at the end of this frag. */
21310 continue;
21311 know (S_GET_VALUE (sym) == next->fr_address);
21312
21313 do
21314 {
21315 if (next->tc_frag_data.first_map != NULL)
21316 {
21317 /* Next frag starts with a mapping symbol. Discard this
21318 one. */
21319 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21320 break;
21321 }
21322
21323 if (next->fr_next == NULL)
21324 {
21325 /* This mapping symbol is at the end of the section. Discard
21326 it. */
21327 know (next->fr_fix == 0 && next->fr_var == 0);
21328 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21329 break;
21330 }
21331
21332 /* As long as we have empty frags without any mapping symbols,
21333 keep looking. */
21334 /* If the next frag is non-empty and does not start with a
21335 mapping symbol, then this mapping symbol is required. */
21336 if (next->fr_address != next->fr_next->fr_address)
21337 break;
21338
21339 next = next->fr_next;
21340 }
21341 while (next != NULL);
21342 }
21343}
21344#endif
21345
c19d1205
ZW
21346/* Adjust the symbol table. This marks Thumb symbols as distinct from
21347 ARM ones. */
404ff6b5 21348
c19d1205
ZW
21349void
21350arm_adjust_symtab (void)
404ff6b5 21351{
c19d1205
ZW
21352#ifdef OBJ_COFF
21353 symbolS * sym;
404ff6b5 21354
c19d1205
ZW
21355 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21356 {
21357 if (ARM_IS_THUMB (sym))
21358 {
21359 if (THUMB_IS_FUNC (sym))
21360 {
21361 /* Mark the symbol as a Thumb function. */
21362 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21363 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21364 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21365
c19d1205
ZW
21366 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21367 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21368 else
21369 as_bad (_("%s: unexpected function type: %d"),
21370 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21371 }
21372 else switch (S_GET_STORAGE_CLASS (sym))
21373 {
21374 case C_EXT:
21375 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21376 break;
21377 case C_STAT:
21378 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21379 break;
21380 case C_LABEL:
21381 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21382 break;
21383 default:
21384 /* Do nothing. */
21385 break;
21386 }
21387 }
a737bd4d 21388
c19d1205
ZW
21389 if (ARM_IS_INTERWORK (sym))
21390 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21391 }
c19d1205
ZW
21392#endif
21393#ifdef OBJ_ELF
21394 symbolS * sym;
21395 char bind;
404ff6b5 21396
c19d1205 21397 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21398 {
c19d1205
ZW
21399 if (ARM_IS_THUMB (sym))
21400 {
21401 elf_symbol_type * elf_sym;
404ff6b5 21402
c19d1205
ZW
21403 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21404 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21405
b0796911
PB
21406 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21407 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21408 {
21409 /* If it's a .thumb_func, declare it as so,
21410 otherwise tag label as .code 16. */
21411 if (THUMB_IS_FUNC (sym))
21412 elf_sym->internal_elf_sym.st_info =
21413 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21414 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21415 elf_sym->internal_elf_sym.st_info =
21416 ELF_ST_INFO (bind, STT_ARM_16BIT);
21417 }
21418 }
21419 }
cd000bff
DJ
21420
21421 /* Remove any overlapping mapping symbols generated by alignment frags. */
21422 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
c19d1205 21423#endif
404ff6b5
AH
21424}
21425
c19d1205 21426/* MD interface: Initialization. */
404ff6b5 21427
a737bd4d 21428static void
c19d1205 21429set_constant_flonums (void)
a737bd4d 21430{
c19d1205 21431 int i;
404ff6b5 21432
c19d1205
ZW
21433 for (i = 0; i < NUM_FLOAT_VALS; i++)
21434 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21435 abort ();
a737bd4d 21436}
404ff6b5 21437
3e9e4fcf
JB
21438/* Auto-select Thumb mode if it's the only available instruction set for the
21439 given architecture. */
21440
21441static void
21442autoselect_thumb_from_cpu_variant (void)
21443{
21444 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21445 opcode_select (16);
21446}
21447
c19d1205
ZW
21448void
21449md_begin (void)
a737bd4d 21450{
c19d1205
ZW
21451 unsigned mach;
21452 unsigned int i;
404ff6b5 21453
c19d1205
ZW
21454 if ( (arm_ops_hsh = hash_new ()) == NULL
21455 || (arm_cond_hsh = hash_new ()) == NULL
21456 || (arm_shift_hsh = hash_new ()) == NULL
21457 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 21458 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 21459 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
21460 || (arm_reloc_hsh = hash_new ()) == NULL
21461 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
21462 as_fatal (_("virtual memory exhausted"));
21463
21464 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 21465 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 21466 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 21467 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 21468 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 21469 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 21470 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 21471 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 21472 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
21473 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21474 (void *) (v7m_psrs + i));
c19d1205 21475 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 21476 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
21477 for (i = 0;
21478 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21479 i++)
d3ce72d0 21480 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 21481 (void *) (barrier_opt_names + i));
c19d1205
ZW
21482#ifdef OBJ_ELF
21483 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 21484 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
21485#endif
21486
21487 set_constant_flonums ();
404ff6b5 21488
c19d1205
ZW
21489 /* Set the cpu variant based on the command-line options. We prefer
21490 -mcpu= over -march= if both are set (as for GCC); and we prefer
21491 -mfpu= over any other way of setting the floating point unit.
21492 Use of legacy options with new options are faulted. */
e74cfd16 21493 if (legacy_cpu)
404ff6b5 21494 {
e74cfd16 21495 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
21496 as_bad (_("use of old and new-style options to set CPU type"));
21497
21498 mcpu_cpu_opt = legacy_cpu;
404ff6b5 21499 }
e74cfd16 21500 else if (!mcpu_cpu_opt)
c19d1205 21501 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 21502
e74cfd16 21503 if (legacy_fpu)
c19d1205 21504 {
e74cfd16 21505 if (mfpu_opt)
c19d1205 21506 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
21507
21508 mfpu_opt = legacy_fpu;
21509 }
e74cfd16 21510 else if (!mfpu_opt)
03b1477f 21511 {
45eb4c1b
NS
21512#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21513 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
21514 /* Some environments specify a default FPU. If they don't, infer it
21515 from the processor. */
e74cfd16 21516 if (mcpu_fpu_opt)
03b1477f
RE
21517 mfpu_opt = mcpu_fpu_opt;
21518 else
21519 mfpu_opt = march_fpu_opt;
39c2da32 21520#else
e74cfd16 21521 mfpu_opt = &fpu_default;
39c2da32 21522#endif
03b1477f
RE
21523 }
21524
e74cfd16 21525 if (!mfpu_opt)
03b1477f 21526 {
493cb6ef 21527 if (mcpu_cpu_opt != NULL)
e74cfd16 21528 mfpu_opt = &fpu_default;
493cb6ef 21529 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 21530 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 21531 else
e74cfd16 21532 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
21533 }
21534
ee065d83 21535#ifdef CPU_DEFAULT
e74cfd16 21536 if (!mcpu_cpu_opt)
ee065d83 21537 {
e74cfd16
PB
21538 mcpu_cpu_opt = &cpu_default;
21539 selected_cpu = cpu_default;
ee065d83 21540 }
e74cfd16
PB
21541#else
21542 if (mcpu_cpu_opt)
21543 selected_cpu = *mcpu_cpu_opt;
ee065d83 21544 else
e74cfd16 21545 mcpu_cpu_opt = &arm_arch_any;
ee065d83 21546#endif
03b1477f 21547
e74cfd16 21548 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 21549
3e9e4fcf
JB
21550 autoselect_thumb_from_cpu_variant ();
21551
e74cfd16 21552 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 21553
f17c130b 21554#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 21555 {
7cc69913
NC
21556 unsigned int flags = 0;
21557
21558#if defined OBJ_ELF
21559 flags = meabi_flags;
d507cf36
PB
21560
21561 switch (meabi_flags)
33a392fb 21562 {
d507cf36 21563 case EF_ARM_EABI_UNKNOWN:
7cc69913 21564#endif
d507cf36
PB
21565 /* Set the flags in the private structure. */
21566 if (uses_apcs_26) flags |= F_APCS26;
21567 if (support_interwork) flags |= F_INTERWORK;
21568 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 21569 if (pic_code) flags |= F_PIC;
e74cfd16 21570 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
21571 flags |= F_SOFT_FLOAT;
21572
d507cf36
PB
21573 switch (mfloat_abi_opt)
21574 {
21575 case ARM_FLOAT_ABI_SOFT:
21576 case ARM_FLOAT_ABI_SOFTFP:
21577 flags |= F_SOFT_FLOAT;
21578 break;
33a392fb 21579
d507cf36
PB
21580 case ARM_FLOAT_ABI_HARD:
21581 if (flags & F_SOFT_FLOAT)
21582 as_bad (_("hard-float conflicts with specified fpu"));
21583 break;
21584 }
03b1477f 21585
e74cfd16
PB
21586 /* Using pure-endian doubles (even if soft-float). */
21587 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 21588 flags |= F_VFP_FLOAT;
f17c130b 21589
fde78edd 21590#if defined OBJ_ELF
e74cfd16 21591 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 21592 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
21593 break;
21594
8cb51566 21595 case EF_ARM_EABI_VER4:
3a4a14e9 21596 case EF_ARM_EABI_VER5:
c19d1205 21597 /* No additional flags to set. */
d507cf36
PB
21598 break;
21599
21600 default:
21601 abort ();
21602 }
7cc69913 21603#endif
b99bd4ef
NC
21604 bfd_set_private_flags (stdoutput, flags);
21605
21606 /* We have run out flags in the COFF header to encode the
21607 status of ATPCS support, so instead we create a dummy,
c19d1205 21608 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
21609 if (atpcs)
21610 {
21611 asection * sec;
21612
21613 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21614
21615 if (sec != NULL)
21616 {
21617 bfd_set_section_flags
21618 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21619 bfd_set_section_size (stdoutput, sec, 0);
21620 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21621 }
21622 }
7cc69913 21623 }
f17c130b 21624#endif
b99bd4ef
NC
21625
21626 /* Record the CPU type as well. */
2d447fca
JM
21627 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21628 mach = bfd_mach_arm_iWMMXt2;
21629 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 21630 mach = bfd_mach_arm_iWMMXt;
e74cfd16 21631 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 21632 mach = bfd_mach_arm_XScale;
e74cfd16 21633 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 21634 mach = bfd_mach_arm_ep9312;
e74cfd16 21635 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 21636 mach = bfd_mach_arm_5TE;
e74cfd16 21637 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 21638 {
e74cfd16 21639 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21640 mach = bfd_mach_arm_5T;
21641 else
21642 mach = bfd_mach_arm_5;
21643 }
e74cfd16 21644 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 21645 {
e74cfd16 21646 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21647 mach = bfd_mach_arm_4T;
21648 else
21649 mach = bfd_mach_arm_4;
21650 }
e74cfd16 21651 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 21652 mach = bfd_mach_arm_3M;
e74cfd16
PB
21653 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21654 mach = bfd_mach_arm_3;
21655 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21656 mach = bfd_mach_arm_2a;
21657 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21658 mach = bfd_mach_arm_2;
21659 else
21660 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
21661
21662 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21663}
21664
c19d1205 21665/* Command line processing. */
b99bd4ef 21666
c19d1205
ZW
21667/* md_parse_option
21668 Invocation line includes a switch not recognized by the base assembler.
21669 See if it's a processor-specific option.
b99bd4ef 21670
c19d1205
ZW
21671 This routine is somewhat complicated by the need for backwards
21672 compatibility (since older releases of gcc can't be changed).
21673 The new options try to make the interface as compatible as
21674 possible with GCC.
b99bd4ef 21675
c19d1205 21676 New options (supported) are:
b99bd4ef 21677
c19d1205
ZW
21678 -mcpu=<cpu name> Assemble for selected processor
21679 -march=<architecture name> Assemble for selected architecture
21680 -mfpu=<fpu architecture> Assemble for selected FPU.
21681 -EB/-mbig-endian Big-endian
21682 -EL/-mlittle-endian Little-endian
21683 -k Generate PIC code
21684 -mthumb Start in Thumb mode
21685 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 21686
278df34e 21687 -m[no-]warn-deprecated Warn about deprecated features
267bf995 21688
c19d1205 21689 For now we will also provide support for:
b99bd4ef 21690
c19d1205
ZW
21691 -mapcs-32 32-bit Program counter
21692 -mapcs-26 26-bit Program counter
21693 -macps-float Floats passed in FP registers
21694 -mapcs-reentrant Reentrant code
21695 -matpcs
21696 (sometime these will probably be replaced with -mapcs=<list of options>
21697 and -matpcs=<list of options>)
b99bd4ef 21698
c19d1205
ZW
21699 The remaining options are only supported for back-wards compatibility.
21700 Cpu variants, the arm part is optional:
21701 -m[arm]1 Currently not supported.
21702 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21703 -m[arm]3 Arm 3 processor
21704 -m[arm]6[xx], Arm 6 processors
21705 -m[arm]7[xx][t][[d]m] Arm 7 processors
21706 -m[arm]8[10] Arm 8 processors
21707 -m[arm]9[20][tdmi] Arm 9 processors
21708 -mstrongarm[110[0]] StrongARM processors
21709 -mxscale XScale processors
21710 -m[arm]v[2345[t[e]]] Arm architectures
21711 -mall All (except the ARM1)
21712 FP variants:
21713 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21714 -mfpe-old (No float load/store multiples)
21715 -mvfpxd VFP Single precision
21716 -mvfp All VFP
21717 -mno-fpu Disable all floating point instructions
b99bd4ef 21718
c19d1205
ZW
21719 The following CPU names are recognized:
21720 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21721 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21722 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21723 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21724 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21725 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21726 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 21727
c19d1205 21728 */
b99bd4ef 21729
c19d1205 21730const char * md_shortopts = "m:k";
b99bd4ef 21731
c19d1205
ZW
21732#ifdef ARM_BI_ENDIAN
21733#define OPTION_EB (OPTION_MD_BASE + 0)
21734#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 21735#else
c19d1205
ZW
21736#if TARGET_BYTES_BIG_ENDIAN
21737#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 21738#else
c19d1205
ZW
21739#define OPTION_EL (OPTION_MD_BASE + 1)
21740#endif
b99bd4ef 21741#endif
845b51d6 21742#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 21743
c19d1205 21744struct option md_longopts[] =
b99bd4ef 21745{
c19d1205
ZW
21746#ifdef OPTION_EB
21747 {"EB", no_argument, NULL, OPTION_EB},
21748#endif
21749#ifdef OPTION_EL
21750 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 21751#endif
845b51d6 21752 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
21753 {NULL, no_argument, NULL, 0}
21754};
b99bd4ef 21755
c19d1205 21756size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 21757
c19d1205 21758struct arm_option_table
b99bd4ef 21759{
c19d1205
ZW
21760 char *option; /* Option name to match. */
21761 char *help; /* Help information. */
21762 int *var; /* Variable to change. */
21763 int value; /* What to change it to. */
21764 char *deprecated; /* If non-null, print this message. */
21765};
b99bd4ef 21766
c19d1205
ZW
21767struct arm_option_table arm_opts[] =
21768{
21769 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21770 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21771 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21772 &support_interwork, 1, NULL},
21773 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21774 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21775 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21776 1, NULL},
21777 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21778 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21779 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21780 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21781 NULL},
b99bd4ef 21782
c19d1205
ZW
21783 /* These are recognized by the assembler, but have no affect on code. */
21784 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21785 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
21786
21787 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21788 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21789 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
21790 {NULL, NULL, NULL, 0, NULL}
21791};
21792
21793struct arm_legacy_option_table
21794{
21795 char *option; /* Option name to match. */
21796 const arm_feature_set **var; /* Variable to change. */
21797 const arm_feature_set value; /* What to change it to. */
21798 char *deprecated; /* If non-null, print this message. */
21799};
b99bd4ef 21800
e74cfd16
PB
21801const struct arm_legacy_option_table arm_legacy_opts[] =
21802{
c19d1205
ZW
21803 /* DON'T add any new processors to this list -- we want the whole list
21804 to go away... Add them to the processors table instead. */
e74cfd16
PB
21805 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21806 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21807 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21808 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21809 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21810 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21811 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21812 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21813 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21814 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21815 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21816 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21817 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21818 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21819 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21820 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21821 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21822 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21823 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21824 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21825 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21826 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21827 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21828 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21829 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21830 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21831 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21832 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21833 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21834 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21835 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21836 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21837 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21838 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21839 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21840 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21841 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21842 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21843 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21844 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21845 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21846 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21847 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21848 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21849 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21850 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21851 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21852 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21853 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21854 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21855 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21856 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21857 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21858 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21859 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21860 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21861 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21862 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21863 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21864 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21865 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21866 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21867 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21868 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21869 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21870 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21871 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21872 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21873 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21874 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 21875 N_("use -mcpu=strongarm110")},
e74cfd16 21876 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 21877 N_("use -mcpu=strongarm1100")},
e74cfd16 21878 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 21879 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
21880 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21881 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21882 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 21883
c19d1205 21884 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
21885 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21886 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21887 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21888 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21889 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21890 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21891 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21892 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21893 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21894 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21895 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21896 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21897 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21898 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21899 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21900 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21901 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21902 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 21903
c19d1205 21904 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
21905 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21906 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21907 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21908 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 21909 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 21910
e74cfd16 21911 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 21912};
7ed4c4c5 21913
c19d1205 21914struct arm_cpu_option_table
7ed4c4c5 21915{
c19d1205 21916 char *name;
e74cfd16 21917 const arm_feature_set value;
c19d1205
ZW
21918 /* For some CPUs we assume an FPU unless the user explicitly sets
21919 -mfpu=... */
e74cfd16 21920 const arm_feature_set default_fpu;
ee065d83
PB
21921 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21922 case. */
21923 const char *canonical_name;
c19d1205 21924};
7ed4c4c5 21925
c19d1205
ZW
21926/* This list should, at a minimum, contain all the cpu names
21927 recognized by GCC. */
e74cfd16 21928static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 21929{
ee065d83
PB
21930 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21931 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21932 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21933 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21934 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21935 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21936 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21937 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21938 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21939 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21940 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21941 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21942 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21943 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21944 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21945 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21946 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21947 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21948 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21949 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21950 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21951 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21952 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21953 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21954 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21955 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21956 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21957 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21958 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21959 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21960 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21961 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21962 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21963 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21964 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21965 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21966 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21967 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21968 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21969 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
21970 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21971 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21972 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21973 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
21974 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21975 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
21976 /* For V5 or later processors we default to using VFP; but the user
21977 should really set the FPU type explicitly. */
ee065d83
PB
21978 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21979 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21980 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21981 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21982 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21983 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21984 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
21985 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21986 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21987 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
21988 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21989 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21990 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21991 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21992 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21993 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
21994 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21995 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21996 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21997 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
21998 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
21999 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22000 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22001 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22002 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22003 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22004 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22005 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22006 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22007 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22008 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22009 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22010 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
b38f9f31 22011 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
e07e6e58 22012 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22013 | FPU_NEON_EXT_V1),
15290f0a 22014 NULL},
e07e6e58 22015 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22016 | FPU_NEON_EXT_V1),
5287ad62 22017 NULL},
62b3e311 22018 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
307c948d 22019 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
62b3e311 22020 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 22021 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
5b19eaba 22022 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 22023 /* ??? XSCALE is really an architecture. */
ee065d83 22024 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22025 /* ??? iwmmxt is not a processor. */
ee065d83 22026 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22027 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22028 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22029 /* Maverick */
e07e6e58 22030 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22031 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22032};
7ed4c4c5 22033
c19d1205 22034struct arm_arch_option_table
7ed4c4c5 22035{
c19d1205 22036 char *name;
e74cfd16
PB
22037 const arm_feature_set value;
22038 const arm_feature_set default_fpu;
c19d1205 22039};
7ed4c4c5 22040
c19d1205
ZW
22041/* This list should, at a minimum, contain all the architecture names
22042 recognized by GCC. */
e74cfd16 22043static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22044{
22045 {"all", ARM_ANY, FPU_ARCH_FPA},
22046 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22047 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22048 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22049 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22050 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22051 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22052 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22053 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22054 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22055 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22056 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22057 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22058 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22059 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22060 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22061 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22062 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22063 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22064 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22065 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22066 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22067 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22068 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22069 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22070 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22071 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 22072 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22073 /* The official spelling of the ARMv7 profile variants is the dashed form.
22074 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22075 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22076 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22077 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22078 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22079 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22080 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22081 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22082 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22083 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22084 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22085 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22086};
7ed4c4c5 22087
c19d1205 22088/* ISA extensions in the co-processor space. */
e74cfd16 22089struct arm_option_cpu_value_table
c19d1205
ZW
22090{
22091 char *name;
e74cfd16 22092 const arm_feature_set value;
c19d1205 22093};
7ed4c4c5 22094
e74cfd16 22095static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 22096{
e74cfd16
PB
22097 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22098 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22099 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 22100 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 22101 {NULL, ARM_ARCH_NONE}
c19d1205 22102};
7ed4c4c5 22103
c19d1205
ZW
22104/* This list should, at a minimum, contain all the fpu names
22105 recognized by GCC. */
e74cfd16 22106static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
22107{
22108 {"softfpa", FPU_NONE},
22109 {"fpe", FPU_ARCH_FPE},
22110 {"fpe2", FPU_ARCH_FPE},
22111 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22112 {"fpa", FPU_ARCH_FPA},
22113 {"fpa10", FPU_ARCH_FPA},
22114 {"fpa11", FPU_ARCH_FPA},
22115 {"arm7500fe", FPU_ARCH_FPA},
22116 {"softvfp", FPU_ARCH_VFP},
22117 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22118 {"vfp", FPU_ARCH_VFP_V2},
22119 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22120 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22121 {"vfp10", FPU_ARCH_VFP_V2},
22122 {"vfp10-r0", FPU_ARCH_VFP_V1},
22123 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22124 {"vfpv2", FPU_ARCH_VFP_V2},
22125 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22126 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22127 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22128 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22129 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22130 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22131 {"arm1020t", FPU_ARCH_VFP_V1},
22132 {"arm1020e", FPU_ARCH_VFP_V2},
22133 {"arm1136jfs", FPU_ARCH_VFP_V2},
22134 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22135 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22136 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22137 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22138 {"vfpv4", FPU_ARCH_VFP_V4},
22139 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22140 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22141 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22142 {NULL, ARM_ARCH_NONE}
22143};
22144
22145struct arm_option_value_table
22146{
22147 char *name;
22148 long value;
c19d1205 22149};
7ed4c4c5 22150
e74cfd16 22151static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22152{
22153 {"hard", ARM_FLOAT_ABI_HARD},
22154 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22155 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22156 {NULL, 0}
c19d1205 22157};
7ed4c4c5 22158
c19d1205 22159#ifdef OBJ_ELF
3a4a14e9 22160/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22161static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22162{
22163 {"gnu", EF_ARM_EABI_UNKNOWN},
22164 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22165 {"5", EF_ARM_EABI_VER5},
e74cfd16 22166 {NULL, 0}
c19d1205
ZW
22167};
22168#endif
7ed4c4c5 22169
c19d1205
ZW
22170struct arm_long_option_table
22171{
22172 char * option; /* Substring to match. */
22173 char * help; /* Help information. */
22174 int (* func) (char * subopt); /* Function to decode sub-option. */
22175 char * deprecated; /* If non-null, print this message. */
22176};
7ed4c4c5 22177
c921be7d 22178static bfd_boolean
e74cfd16 22179arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22180{
21d799b5
NC
22181 arm_feature_set *ext_set = (arm_feature_set *)
22182 xmalloc (sizeof (arm_feature_set));
e74cfd16
PB
22183
22184 /* Copy the feature set, so that we can modify it. */
22185 *ext_set = **opt_p;
22186 *opt_p = ext_set;
22187
c19d1205 22188 while (str != NULL && *str != 0)
7ed4c4c5 22189 {
e74cfd16 22190 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
22191 char * ext;
22192 int optlen;
7ed4c4c5 22193
c19d1205
ZW
22194 if (*str != '+')
22195 {
22196 as_bad (_("invalid architectural extension"));
c921be7d 22197 return FALSE;
c19d1205 22198 }
7ed4c4c5 22199
c19d1205
ZW
22200 str++;
22201 ext = strchr (str, '+');
7ed4c4c5 22202
c19d1205
ZW
22203 if (ext != NULL)
22204 optlen = ext - str;
22205 else
22206 optlen = strlen (str);
7ed4c4c5 22207
c19d1205
ZW
22208 if (optlen == 0)
22209 {
22210 as_bad (_("missing architectural extension"));
c921be7d 22211 return FALSE;
c19d1205 22212 }
7ed4c4c5 22213
c19d1205
ZW
22214 for (opt = arm_extensions; opt->name != NULL; opt++)
22215 if (strncmp (opt->name, str, optlen) == 0)
22216 {
e74cfd16 22217 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
22218 break;
22219 }
7ed4c4c5 22220
c19d1205
ZW
22221 if (opt->name == NULL)
22222 {
5f4273c7 22223 as_bad (_("unknown architectural extension `%s'"), str);
c921be7d 22224 return FALSE;
c19d1205 22225 }
7ed4c4c5 22226
c19d1205
ZW
22227 str = ext;
22228 };
7ed4c4c5 22229
c921be7d 22230 return TRUE;
c19d1205 22231}
7ed4c4c5 22232
c921be7d 22233static bfd_boolean
c19d1205 22234arm_parse_cpu (char * str)
7ed4c4c5 22235{
e74cfd16 22236 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22237 char * ext = strchr (str, '+');
22238 int optlen;
7ed4c4c5 22239
c19d1205
ZW
22240 if (ext != NULL)
22241 optlen = ext - str;
7ed4c4c5 22242 else
c19d1205 22243 optlen = strlen (str);
7ed4c4c5 22244
c19d1205 22245 if (optlen == 0)
7ed4c4c5 22246 {
c19d1205 22247 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22248 return FALSE;
7ed4c4c5
NC
22249 }
22250
c19d1205
ZW
22251 for (opt = arm_cpus; opt->name != NULL; opt++)
22252 if (strncmp (opt->name, str, optlen) == 0)
22253 {
e74cfd16
PB
22254 mcpu_cpu_opt = &opt->value;
22255 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22256 if (opt->canonical_name)
5f4273c7 22257 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22258 else
22259 {
22260 int i;
c921be7d 22261
ee065d83
PB
22262 for (i = 0; i < optlen; i++)
22263 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22264 selected_cpu_name[i] = 0;
22265 }
7ed4c4c5 22266
c19d1205
ZW
22267 if (ext != NULL)
22268 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22269
c921be7d 22270 return TRUE;
c19d1205 22271 }
7ed4c4c5 22272
c19d1205 22273 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22274 return FALSE;
7ed4c4c5
NC
22275}
22276
c921be7d 22277static bfd_boolean
c19d1205 22278arm_parse_arch (char * str)
7ed4c4c5 22279{
e74cfd16 22280 const struct arm_arch_option_table *opt;
c19d1205
ZW
22281 char *ext = strchr (str, '+');
22282 int optlen;
7ed4c4c5 22283
c19d1205
ZW
22284 if (ext != NULL)
22285 optlen = ext - str;
7ed4c4c5 22286 else
c19d1205 22287 optlen = strlen (str);
7ed4c4c5 22288
c19d1205 22289 if (optlen == 0)
7ed4c4c5 22290 {
c19d1205 22291 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22292 return FALSE;
7ed4c4c5
NC
22293 }
22294
c19d1205
ZW
22295 for (opt = arm_archs; opt->name != NULL; opt++)
22296 if (streq (opt->name, str))
22297 {
e74cfd16
PB
22298 march_cpu_opt = &opt->value;
22299 march_fpu_opt = &opt->default_fpu;
5f4273c7 22300 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22301
c19d1205
ZW
22302 if (ext != NULL)
22303 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22304
c921be7d 22305 return TRUE;
c19d1205
ZW
22306 }
22307
22308 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22309 return FALSE;
7ed4c4c5 22310}
eb043451 22311
c921be7d 22312static bfd_boolean
c19d1205
ZW
22313arm_parse_fpu (char * str)
22314{
e74cfd16 22315 const struct arm_option_cpu_value_table * opt;
b99bd4ef 22316
c19d1205
ZW
22317 for (opt = arm_fpus; opt->name != NULL; opt++)
22318 if (streq (opt->name, str))
22319 {
e74cfd16 22320 mfpu_opt = &opt->value;
c921be7d 22321 return TRUE;
c19d1205 22322 }
b99bd4ef 22323
c19d1205 22324 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22325 return FALSE;
c19d1205
ZW
22326}
22327
c921be7d 22328static bfd_boolean
c19d1205 22329arm_parse_float_abi (char * str)
b99bd4ef 22330{
e74cfd16 22331 const struct arm_option_value_table * opt;
b99bd4ef 22332
c19d1205
ZW
22333 for (opt = arm_float_abis; opt->name != NULL; opt++)
22334 if (streq (opt->name, str))
22335 {
22336 mfloat_abi_opt = opt->value;
c921be7d 22337 return TRUE;
c19d1205 22338 }
cc8a6dd0 22339
c19d1205 22340 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22341 return FALSE;
c19d1205 22342}
b99bd4ef 22343
c19d1205 22344#ifdef OBJ_ELF
c921be7d 22345static bfd_boolean
c19d1205
ZW
22346arm_parse_eabi (char * str)
22347{
e74cfd16 22348 const struct arm_option_value_table *opt;
cc8a6dd0 22349
c19d1205
ZW
22350 for (opt = arm_eabis; opt->name != NULL; opt++)
22351 if (streq (opt->name, str))
22352 {
22353 meabi_flags = opt->value;
c921be7d 22354 return TRUE;
c19d1205
ZW
22355 }
22356 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22357 return FALSE;
c19d1205
ZW
22358}
22359#endif
cc8a6dd0 22360
c921be7d 22361static bfd_boolean
e07e6e58
NC
22362arm_parse_it_mode (char * str)
22363{
c921be7d 22364 bfd_boolean ret = TRUE;
e07e6e58
NC
22365
22366 if (streq ("arm", str))
22367 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22368 else if (streq ("thumb", str))
22369 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22370 else if (streq ("always", str))
22371 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22372 else if (streq ("never", str))
22373 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22374 else
22375 {
22376 as_bad (_("unknown implicit IT mode `%s', should be "\
22377 "arm, thumb, always, or never."), str);
c921be7d 22378 ret = FALSE;
e07e6e58
NC
22379 }
22380
22381 return ret;
22382}
22383
c19d1205
ZW
22384struct arm_long_option_table arm_long_opts[] =
22385{
22386 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22387 arm_parse_cpu, NULL},
22388 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22389 arm_parse_arch, NULL},
22390 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22391 arm_parse_fpu, NULL},
22392 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22393 arm_parse_float_abi, NULL},
22394#ifdef OBJ_ELF
7fac0536 22395 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
22396 arm_parse_eabi, NULL},
22397#endif
e07e6e58
NC
22398 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22399 arm_parse_it_mode, NULL},
c19d1205
ZW
22400 {NULL, NULL, 0, NULL}
22401};
cc8a6dd0 22402
c19d1205
ZW
22403int
22404md_parse_option (int c, char * arg)
22405{
22406 struct arm_option_table *opt;
e74cfd16 22407 const struct arm_legacy_option_table *fopt;
c19d1205 22408 struct arm_long_option_table *lopt;
b99bd4ef 22409
c19d1205 22410 switch (c)
b99bd4ef 22411 {
c19d1205
ZW
22412#ifdef OPTION_EB
22413 case OPTION_EB:
22414 target_big_endian = 1;
22415 break;
22416#endif
cc8a6dd0 22417
c19d1205
ZW
22418#ifdef OPTION_EL
22419 case OPTION_EL:
22420 target_big_endian = 0;
22421 break;
22422#endif
b99bd4ef 22423
845b51d6
PB
22424 case OPTION_FIX_V4BX:
22425 fix_v4bx = TRUE;
22426 break;
22427
c19d1205
ZW
22428 case 'a':
22429 /* Listing option. Just ignore these, we don't support additional
22430 ones. */
22431 return 0;
b99bd4ef 22432
c19d1205
ZW
22433 default:
22434 for (opt = arm_opts; opt->option != NULL; opt++)
22435 {
22436 if (c == opt->option[0]
22437 && ((arg == NULL && opt->option[1] == 0)
22438 || streq (arg, opt->option + 1)))
22439 {
c19d1205 22440 /* If the option is deprecated, tell the user. */
278df34e 22441 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
22442 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22443 arg ? arg : "", _(opt->deprecated));
b99bd4ef 22444
c19d1205
ZW
22445 if (opt->var != NULL)
22446 *opt->var = opt->value;
cc8a6dd0 22447
c19d1205
ZW
22448 return 1;
22449 }
22450 }
b99bd4ef 22451
e74cfd16
PB
22452 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22453 {
22454 if (c == fopt->option[0]
22455 && ((arg == NULL && fopt->option[1] == 0)
22456 || streq (arg, fopt->option + 1)))
22457 {
e74cfd16 22458 /* If the option is deprecated, tell the user. */
278df34e 22459 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
22460 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22461 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
22462
22463 if (fopt->var != NULL)
22464 *fopt->var = &fopt->value;
22465
22466 return 1;
22467 }
22468 }
22469
c19d1205
ZW
22470 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22471 {
22472 /* These options are expected to have an argument. */
22473 if (c == lopt->option[0]
22474 && arg != NULL
22475 && strncmp (arg, lopt->option + 1,
22476 strlen (lopt->option + 1)) == 0)
22477 {
c19d1205 22478 /* If the option is deprecated, tell the user. */
278df34e 22479 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
22480 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22481 _(lopt->deprecated));
b99bd4ef 22482
c19d1205
ZW
22483 /* Call the sup-option parser. */
22484 return lopt->func (arg + strlen (lopt->option) - 1);
22485 }
22486 }
a737bd4d 22487
c19d1205
ZW
22488 return 0;
22489 }
a394c00f 22490
c19d1205
ZW
22491 return 1;
22492}
a394c00f 22493
c19d1205
ZW
22494void
22495md_show_usage (FILE * fp)
a394c00f 22496{
c19d1205
ZW
22497 struct arm_option_table *opt;
22498 struct arm_long_option_table *lopt;
a394c00f 22499
c19d1205 22500 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 22501
c19d1205
ZW
22502 for (opt = arm_opts; opt->option != NULL; opt++)
22503 if (opt->help != NULL)
22504 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 22505
c19d1205
ZW
22506 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22507 if (lopt->help != NULL)
22508 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 22509
c19d1205
ZW
22510#ifdef OPTION_EB
22511 fprintf (fp, _("\
22512 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
22513#endif
22514
c19d1205
ZW
22515#ifdef OPTION_EL
22516 fprintf (fp, _("\
22517 -EL assemble code for a little-endian cpu\n"));
a737bd4d 22518#endif
845b51d6
PB
22519
22520 fprintf (fp, _("\
22521 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 22522}
ee065d83
PB
22523
22524
22525#ifdef OBJ_ELF
62b3e311
PB
22526typedef struct
22527{
22528 int val;
22529 arm_feature_set flags;
22530} cpu_arch_ver_table;
22531
22532/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22533 least features first. */
22534static const cpu_arch_ver_table cpu_arch_ver[] =
22535{
22536 {1, ARM_ARCH_V4},
22537 {2, ARM_ARCH_V4T},
22538 {3, ARM_ARCH_V5},
ee3c0378 22539 {3, ARM_ARCH_V5T},
62b3e311
PB
22540 {4, ARM_ARCH_V5TE},
22541 {5, ARM_ARCH_V5TEJ},
22542 {6, ARM_ARCH_V6},
22543 {7, ARM_ARCH_V6Z},
7e806470 22544 {9, ARM_ARCH_V6K},
91e22acd 22545 {11, ARM_ARCH_V6M},
7e806470 22546 {8, ARM_ARCH_V6T2},
62b3e311
PB
22547 {10, ARM_ARCH_V7A},
22548 {10, ARM_ARCH_V7R},
22549 {10, ARM_ARCH_V7M},
22550 {0, ARM_ARCH_NONE}
22551};
22552
ee3c0378
AS
22553/* Set an attribute if it has not already been set by the user. */
22554static void
22555aeabi_set_attribute_int (int tag, int value)
22556{
22557 if (tag < 1
22558 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22559 || !attributes_set_explicitly[tag])
22560 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22561}
22562
22563static void
22564aeabi_set_attribute_string (int tag, const char *value)
22565{
22566 if (tag < 1
22567 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22568 || !attributes_set_explicitly[tag])
22569 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22570}
22571
ee065d83
PB
22572/* Set the public EABI object attributes. */
22573static void
22574aeabi_set_public_attributes (void)
22575{
22576 int arch;
e74cfd16 22577 arm_feature_set flags;
62b3e311
PB
22578 arm_feature_set tmp;
22579 const cpu_arch_ver_table *p;
ee065d83
PB
22580
22581 /* Choose the architecture based on the capabilities of the requested cpu
22582 (if any) and/or the instructions actually used. */
e74cfd16
PB
22583 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22584 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22585 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
22586 /*Allow the user to override the reported architecture. */
22587 if (object_arch)
22588 {
22589 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22590 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22591 }
22592
62b3e311
PB
22593 tmp = flags;
22594 arch = 0;
22595 for (p = cpu_arch_ver; p->val; p++)
22596 {
22597 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22598 {
22599 arch = p->val;
22600 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22601 }
22602 }
ee065d83 22603
9e3c6df6
PB
22604 /* The table lookup above finds the last architecture to contribute
22605 a new feature. Unfortunately, Tag13 is a subset of the union of
22606 v6T2 and v7-M, so it is never seen as contributing a new feature.
22607 We can not search for the last entry which is entirely used,
22608 because if no CPU is specified we build up only those flags
22609 actually used. Perhaps we should separate out the specified
22610 and implicit cases. Avoid taking this path for -march=all by
22611 checking for contradictory v7-A / v7-M features. */
22612 if (arch == 10
22613 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22614 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22615 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22616 arch = 13;
22617
ee065d83
PB
22618 /* Tag_CPU_name. */
22619 if (selected_cpu_name[0])
22620 {
91d6fa6a 22621 char *q;
ee065d83 22622
91d6fa6a
NC
22623 q = selected_cpu_name;
22624 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
22625 {
22626 int i;
5f4273c7 22627
91d6fa6a
NC
22628 q += 4;
22629 for (i = 0; q[i]; i++)
22630 q[i] = TOUPPER (q[i]);
ee065d83 22631 }
91d6fa6a 22632 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 22633 }
62f3b8c8 22634
ee065d83 22635 /* Tag_CPU_arch. */
ee3c0378 22636 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 22637
62b3e311
PB
22638 /* Tag_CPU_arch_profile. */
22639 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 22640 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 22641 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 22642 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 22643 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 22644 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 22645
ee065d83 22646 /* Tag_ARM_ISA_use. */
ee3c0378
AS
22647 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22648 || arch == 0)
22649 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 22650
ee065d83 22651 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
22652 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22653 || arch == 0)
22654 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22655 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 22656
ee065d83 22657 /* Tag_VFP_arch. */
62f3b8c8
PB
22658 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22659 aeabi_set_attribute_int (Tag_VFP_arch,
22660 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22661 ? 5 : 6);
22662 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 22663 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 22664 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
22665 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22666 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22667 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22668 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22669 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22670 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 22671
ee065d83 22672 /* Tag_WMMX_arch. */
ee3c0378
AS
22673 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22674 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22675 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22676 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 22677
ee3c0378 22678 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 22679 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
22680 aeabi_set_attribute_int
22681 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22682 ? 2 : 1));
22683
ee3c0378 22684 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 22685 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 22686 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
ee065d83
PB
22687}
22688
104d59d1 22689/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
22690void
22691arm_md_end (void)
22692{
ee065d83
PB
22693 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22694 return;
22695
22696 aeabi_set_public_attributes ();
ee065d83 22697}
8463be01 22698#endif /* OBJ_ELF */
ee065d83
PB
22699
22700
22701/* Parse a .cpu directive. */
22702
22703static void
22704s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22705{
e74cfd16 22706 const struct arm_cpu_option_table *opt;
ee065d83
PB
22707 char *name;
22708 char saved_char;
22709
22710 name = input_line_pointer;
5f4273c7 22711 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22712 input_line_pointer++;
22713 saved_char = *input_line_pointer;
22714 *input_line_pointer = 0;
22715
22716 /* Skip the first "all" entry. */
22717 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22718 if (streq (opt->name, name))
22719 {
e74cfd16
PB
22720 mcpu_cpu_opt = &opt->value;
22721 selected_cpu = opt->value;
ee065d83 22722 if (opt->canonical_name)
5f4273c7 22723 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22724 else
22725 {
22726 int i;
22727 for (i = 0; opt->name[i]; i++)
22728 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22729 selected_cpu_name[i] = 0;
22730 }
e74cfd16 22731 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22732 *input_line_pointer = saved_char;
22733 demand_empty_rest_of_line ();
22734 return;
22735 }
22736 as_bad (_("unknown cpu `%s'"), name);
22737 *input_line_pointer = saved_char;
22738 ignore_rest_of_line ();
22739}
22740
22741
22742/* Parse a .arch directive. */
22743
22744static void
22745s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22746{
e74cfd16 22747 const struct arm_arch_option_table *opt;
ee065d83
PB
22748 char saved_char;
22749 char *name;
22750
22751 name = input_line_pointer;
5f4273c7 22752 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22753 input_line_pointer++;
22754 saved_char = *input_line_pointer;
22755 *input_line_pointer = 0;
22756
22757 /* Skip the first "all" entry. */
22758 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22759 if (streq (opt->name, name))
22760 {
e74cfd16
PB
22761 mcpu_cpu_opt = &opt->value;
22762 selected_cpu = opt->value;
5f4273c7 22763 strcpy (selected_cpu_name, opt->name);
e74cfd16 22764 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22765 *input_line_pointer = saved_char;
22766 demand_empty_rest_of_line ();
22767 return;
22768 }
22769
22770 as_bad (_("unknown architecture `%s'\n"), name);
22771 *input_line_pointer = saved_char;
22772 ignore_rest_of_line ();
22773}
22774
22775
7a1d4c38
PB
22776/* Parse a .object_arch directive. */
22777
22778static void
22779s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22780{
22781 const struct arm_arch_option_table *opt;
22782 char saved_char;
22783 char *name;
22784
22785 name = input_line_pointer;
5f4273c7 22786 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
22787 input_line_pointer++;
22788 saved_char = *input_line_pointer;
22789 *input_line_pointer = 0;
22790
22791 /* Skip the first "all" entry. */
22792 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22793 if (streq (opt->name, name))
22794 {
22795 object_arch = &opt->value;
22796 *input_line_pointer = saved_char;
22797 demand_empty_rest_of_line ();
22798 return;
22799 }
22800
22801 as_bad (_("unknown architecture `%s'\n"), name);
22802 *input_line_pointer = saved_char;
22803 ignore_rest_of_line ();
22804}
22805
ee065d83
PB
22806/* Parse a .fpu directive. */
22807
22808static void
22809s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22810{
e74cfd16 22811 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
22812 char saved_char;
22813 char *name;
22814
22815 name = input_line_pointer;
5f4273c7 22816 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22817 input_line_pointer++;
22818 saved_char = *input_line_pointer;
22819 *input_line_pointer = 0;
5f4273c7 22820
ee065d83
PB
22821 for (opt = arm_fpus; opt->name != NULL; opt++)
22822 if (streq (opt->name, name))
22823 {
e74cfd16
PB
22824 mfpu_opt = &opt->value;
22825 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22826 *input_line_pointer = saved_char;
22827 demand_empty_rest_of_line ();
22828 return;
22829 }
22830
22831 as_bad (_("unknown floating point format `%s'\n"), name);
22832 *input_line_pointer = saved_char;
22833 ignore_rest_of_line ();
22834}
ee065d83 22835
794ba86a 22836/* Copy symbol information. */
f31fef98 22837
794ba86a
DJ
22838void
22839arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22840{
22841 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22842}
e04befd0 22843
f31fef98 22844#ifdef OBJ_ELF
e04befd0
AS
22845/* Given a symbolic attribute NAME, return the proper integer value.
22846 Returns -1 if the attribute is not known. */
f31fef98 22847
e04befd0
AS
22848int
22849arm_convert_symbolic_attribute (const char *name)
22850{
f31fef98
NC
22851 static const struct
22852 {
22853 const char * name;
22854 const int tag;
22855 }
22856 attribute_table[] =
22857 {
22858 /* When you modify this table you should
22859 also modify the list in doc/c-arm.texi. */
e04befd0 22860#define T(tag) {#tag, tag}
f31fef98
NC
22861 T (Tag_CPU_raw_name),
22862 T (Tag_CPU_name),
22863 T (Tag_CPU_arch),
22864 T (Tag_CPU_arch_profile),
22865 T (Tag_ARM_ISA_use),
22866 T (Tag_THUMB_ISA_use),
22867 T (Tag_VFP_arch),
22868 T (Tag_WMMX_arch),
22869 T (Tag_Advanced_SIMD_arch),
22870 T (Tag_PCS_config),
22871 T (Tag_ABI_PCS_R9_use),
22872 T (Tag_ABI_PCS_RW_data),
22873 T (Tag_ABI_PCS_RO_data),
22874 T (Tag_ABI_PCS_GOT_use),
22875 T (Tag_ABI_PCS_wchar_t),
22876 T (Tag_ABI_FP_rounding),
22877 T (Tag_ABI_FP_denormal),
22878 T (Tag_ABI_FP_exceptions),
22879 T (Tag_ABI_FP_user_exceptions),
22880 T (Tag_ABI_FP_number_model),
22881 T (Tag_ABI_align8_needed),
22882 T (Tag_ABI_align8_preserved),
22883 T (Tag_ABI_enum_size),
22884 T (Tag_ABI_HardFP_use),
22885 T (Tag_ABI_VFP_args),
22886 T (Tag_ABI_WMMX_args),
22887 T (Tag_ABI_optimization_goals),
22888 T (Tag_ABI_FP_optimization_goals),
22889 T (Tag_compatibility),
22890 T (Tag_CPU_unaligned_access),
22891 T (Tag_VFP_HP_extension),
22892 T (Tag_ABI_FP_16bit_format),
22893 T (Tag_nodefaults),
22894 T (Tag_also_compatible_with),
22895 T (Tag_conformance),
22896 T (Tag_T2EE_use),
22897 T (Tag_Virtualization_use),
22898 T (Tag_MPextension_use)
e04befd0 22899#undef T
f31fef98 22900 };
e04befd0
AS
22901 unsigned int i;
22902
22903 if (name == NULL)
22904 return -1;
22905
f31fef98 22906 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 22907 if (streq (name, attribute_table[i].name))
e04befd0
AS
22908 return attribute_table[i].tag;
22909
22910 return -1;
22911}
267bf995
RR
22912
22913
22914/* Apply sym value for relocations only in the case that
22915 they are for local symbols and you have the respective
22916 architectural feature for blx and simple switches. */
22917int
22918arm_apply_sym_value (struct fix * fixP)
22919{
22920 if (fixP->fx_addsy
22921 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22922 && !S_IS_EXTERNAL (fixP->fx_addsy))
22923 {
22924 switch (fixP->fx_r_type)
22925 {
22926 case BFD_RELOC_ARM_PCREL_BLX:
22927 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22928 if (ARM_IS_FUNC (fixP->fx_addsy))
22929 return 1;
22930 break;
22931
22932 case BFD_RELOC_ARM_PCREL_CALL:
22933 case BFD_RELOC_THUMB_PCREL_BLX:
22934 if (THUMB_IS_FUNC (fixP->fx_addsy))
22935 return 1;
22936 break;
22937
22938 default:
22939 break;
22940 }
22941
22942 }
22943 return 0;
22944}
f31fef98 22945#endif /* OBJ_ELF */
This page took 2.280035 seconds and 4 git commands to generate.