[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
69c9e028 305#ifdef OBJ_ELF
823d2571
TG
306static const arm_feature_set fpu_vfp_fp16 =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
308static const arm_feature_set fpu_neon_ext_fma =
309 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 310#endif
823d2571
TG
311static const arm_feature_set fpu_vfp_ext_fma =
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 313static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 314 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 315static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 316 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 317static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 319static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 320 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 321static const arm_feature_set crc_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 323static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 324 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
325static const arm_feature_set fpu_neon_ext_dotprod =
326 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 327
33a392fb 328static int mfloat_abi_opt = -1;
4d354d8b
TP
329/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
330 directive. */
331static arm_feature_set selected_arch = ARM_ARCH_NONE;
332/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
333 directive. */
334static arm_feature_set selected_ext = ARM_ARCH_NONE;
335/* Feature bits selected by the last -mcpu/-march or by the combination of the
336 last .cpu/.arch directive .arch_extension directives since that
337 directive. */
e74cfd16 338static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
339/* FPU feature bits selected by the last -mfpu or .fpu directive. */
340static arm_feature_set selected_fpu = FPU_NONE;
341/* Feature bits selected by the last .object_arch directive. */
342static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 343/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 344static char selected_cpu_name[20];
8d67f500 345
aacf0b33
KT
346extern FLONUM_TYPE generic_floating_point_number;
347
8d67f500
NC
348/* Return if no cpu was selected on command-line. */
349static bfd_boolean
350no_cpu_selected (void)
351{
823d2571 352 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
353}
354
7cc69913 355#ifdef OBJ_ELF
deeaaff8
DJ
356# ifdef EABI_DEFAULT
357static int meabi_flags = EABI_DEFAULT;
358# else
d507cf36 359static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 360# endif
e1da3f5b 361
ee3c0378
AS
362static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
363
e1da3f5b 364bfd_boolean
5f4273c7 365arm_is_eabi (void)
e1da3f5b
PB
366{
367 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
368}
7cc69913 369#endif
b99bd4ef 370
b99bd4ef 371#ifdef OBJ_ELF
c19d1205 372/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
373symbolS * GOT_symbol;
374#endif
375
b99bd4ef
NC
376/* 0: assemble for ARM,
377 1: assemble for Thumb,
378 2: assemble for Thumb even though target CPU does not support thumb
379 instructions. */
380static int thumb_mode = 0;
8dc2430f
NC
381/* A value distinct from the possible values for thumb_mode that we
382 can use to record whether thumb_mode has been copied into the
383 tc_frag_data field of a frag. */
384#define MODE_RECORDED (1 << 4)
b99bd4ef 385
e07e6e58
NC
386/* Specifies the intrinsic IT insn behavior mode. */
387enum implicit_it_mode
388{
389 IMPLICIT_IT_MODE_NEVER = 0x00,
390 IMPLICIT_IT_MODE_ARM = 0x01,
391 IMPLICIT_IT_MODE_THUMB = 0x02,
392 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
393};
394static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
395
c19d1205
ZW
396/* If unified_syntax is true, we are processing the new unified
397 ARM/Thumb syntax. Important differences from the old ARM mode:
398
399 - Immediate operands do not require a # prefix.
400 - Conditional affixes always appear at the end of the
401 instruction. (For backward compatibility, those instructions
402 that formerly had them in the middle, continue to accept them
403 there.)
404 - The IT instruction may appear, and if it does is validated
405 against subsequent conditional affixes. It does not generate
406 machine code.
407
408 Important differences from the old Thumb mode:
409
410 - Immediate operands do not require a # prefix.
411 - Most of the V6T2 instructions are only available in unified mode.
412 - The .N and .W suffixes are recognized and honored (it is an error
413 if they cannot be honored).
414 - All instructions set the flags if and only if they have an 's' affix.
415 - Conditional affixes may be used. They are validated against
416 preceding IT instructions. Unlike ARM mode, you cannot use a
417 conditional affix except in the scope of an IT instruction. */
418
419static bfd_boolean unified_syntax = FALSE;
b99bd4ef 420
bacebabc
RM
421/* An immediate operand can start with #, and ld*, st*, pld operands
422 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
423 before a [, which can appear as the first operand for pld.
424 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
425const char arm_symbol_chars[] = "#[]{}";
bacebabc 426
5287ad62
JB
427enum neon_el_type
428{
dcbf9037 429 NT_invtype,
5287ad62
JB
430 NT_untyped,
431 NT_integer,
432 NT_float,
433 NT_poly,
434 NT_signed,
dcbf9037 435 NT_unsigned
5287ad62
JB
436};
437
438struct neon_type_el
439{
440 enum neon_el_type type;
441 unsigned size;
442};
443
444#define NEON_MAX_TYPE_ELS 4
445
446struct neon_type
447{
448 struct neon_type_el el[NEON_MAX_TYPE_ELS];
449 unsigned elems;
450};
451
e07e6e58
NC
452enum it_instruction_type
453{
454 OUTSIDE_IT_INSN,
455 INSIDE_IT_INSN,
456 INSIDE_IT_LAST_INSN,
457 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 458 if inside, should be the last one. */
e07e6e58 459 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 460 i.e. BKPT and NOP. */
e07e6e58
NC
461 IT_INSN /* The IT insn has been parsed. */
462};
463
ad6cec43
MGD
464/* The maximum number of operands we need. */
465#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 466#define ARM_IT_MAX_RELOCS 3
ad6cec43 467
b99bd4ef
NC
468struct arm_it
469{
c19d1205 470 const char * error;
b99bd4ef 471 unsigned long instruction;
c19d1205
ZW
472 int size;
473 int size_req;
474 int cond;
037e8744
JB
475 /* "uncond_value" is set to the value in place of the conditional field in
476 unconditional versions of the instruction, or -1 if nothing is
477 appropriate. */
478 int uncond_value;
5287ad62 479 struct neon_type vectype;
88714cb8
DG
480 /* This does not indicate an actual NEON instruction, only that
481 the mnemonic accepts neon-style type suffixes. */
482 int is_neon;
0110f2b8
PB
483 /* Set to the opcode if the instruction needs relaxation.
484 Zero if the instruction is not relaxed. */
485 unsigned long relax;
b99bd4ef
NC
486 struct
487 {
488 bfd_reloc_code_real_type type;
c19d1205
ZW
489 expressionS exp;
490 int pc_rel;
e2b0ab59 491 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 492
e07e6e58
NC
493 enum it_instruction_type it_insn_type;
494
c19d1205
ZW
495 struct
496 {
497 unsigned reg;
ca3f61f7 498 signed int imm;
dcbf9037 499 struct neon_type_el vectype;
ca3f61f7
NC
500 unsigned present : 1; /* Operand present. */
501 unsigned isreg : 1; /* Operand was a register. */
502 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
503 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
504 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 505 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
506 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
507 instructions. This allows us to disambiguate ARM <-> vector insns. */
508 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 509 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 510 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 511 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
512 unsigned hasreloc : 1; /* Operand has relocation suffix. */
513 unsigned writeback : 1; /* Operand has trailing ! */
514 unsigned preind : 1; /* Preindexed address. */
515 unsigned postind : 1; /* Postindexed address. */
516 unsigned negative : 1; /* Index register was negated. */
517 unsigned shifted : 1; /* Shift applied to operation. */
518 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 519 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
520};
521
c19d1205 522static struct arm_it inst;
b99bd4ef
NC
523
524#define NUM_FLOAT_VALS 8
525
05d2d07e 526const char * fp_const[] =
b99bd4ef
NC
527{
528 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
529};
530
c19d1205 531/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
532#define MAX_LITTLENUMS 6
533
534LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
535
536#define FAIL (-1)
537#define SUCCESS (0)
538
539#define SUFF_S 1
540#define SUFF_D 2
541#define SUFF_E 3
542#define SUFF_P 4
543
c19d1205
ZW
544#define CP_T_X 0x00008000
545#define CP_T_Y 0x00400000
b99bd4ef 546
c19d1205
ZW
547#define CONDS_BIT 0x00100000
548#define LOAD_BIT 0x00100000
b99bd4ef
NC
549
550#define DOUBLE_LOAD_FLAG 0x00000001
551
552struct asm_cond
553{
d3ce72d0 554 const char * template_name;
c921be7d 555 unsigned long value;
b99bd4ef
NC
556};
557
c19d1205 558#define COND_ALWAYS 0xE
b99bd4ef 559
b99bd4ef
NC
560struct asm_psr
561{
d3ce72d0 562 const char * template_name;
c921be7d 563 unsigned long field;
b99bd4ef
NC
564};
565
62b3e311
PB
566struct asm_barrier_opt
567{
e797f7e0
MGD
568 const char * template_name;
569 unsigned long value;
570 const arm_feature_set arch;
62b3e311
PB
571};
572
2d2255b5 573/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
574#define SPSR_BIT (1 << 22)
575
c19d1205
ZW
576/* The individual PSR flag bits. */
577#define PSR_c (1 << 16)
578#define PSR_x (1 << 17)
579#define PSR_s (1 << 18)
580#define PSR_f (1 << 19)
b99bd4ef 581
c19d1205 582struct reloc_entry
bfae80f2 583{
0198d5e6 584 const char * name;
c921be7d 585 bfd_reloc_code_real_type reloc;
bfae80f2
RE
586};
587
5287ad62 588enum vfp_reg_pos
bfae80f2 589{
5287ad62
JB
590 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
591 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
592};
593
594enum vfp_ldstm_type
595{
596 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
597};
598
dcbf9037
JB
599/* Bits for DEFINED field in neon_typed_alias. */
600#define NTA_HASTYPE 1
601#define NTA_HASINDEX 2
602
603struct neon_typed_alias
604{
c921be7d
NC
605 unsigned char defined;
606 unsigned char index;
607 struct neon_type_el eltype;
dcbf9037
JB
608};
609
c19d1205 610/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
611 architecture extensions' registers. Each entry should have an error message
612 in reg_expected_msgs below. */
c19d1205 613enum arm_reg_type
bfae80f2 614{
c19d1205
ZW
615 REG_TYPE_RN,
616 REG_TYPE_CP,
617 REG_TYPE_CN,
618 REG_TYPE_FN,
619 REG_TYPE_VFS,
620 REG_TYPE_VFD,
5287ad62 621 REG_TYPE_NQ,
037e8744 622 REG_TYPE_VFSD,
5287ad62 623 REG_TYPE_NDQ,
dec41383 624 REG_TYPE_NSD,
037e8744 625 REG_TYPE_NSDQ,
c19d1205
ZW
626 REG_TYPE_VFC,
627 REG_TYPE_MVF,
628 REG_TYPE_MVD,
629 REG_TYPE_MVFX,
630 REG_TYPE_MVDX,
631 REG_TYPE_MVAX,
632 REG_TYPE_DSPSC,
633 REG_TYPE_MMXWR,
634 REG_TYPE_MMXWC,
635 REG_TYPE_MMXWCG,
636 REG_TYPE_XSCALE,
90ec0d68 637 REG_TYPE_RNB
bfae80f2
RE
638};
639
dcbf9037
JB
640/* Structure for a hash table entry for a register.
641 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
642 information which states whether a vector type or index is specified (for a
643 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
644struct reg_entry
645{
c921be7d 646 const char * name;
90ec0d68 647 unsigned int number;
c921be7d
NC
648 unsigned char type;
649 unsigned char builtin;
650 struct neon_typed_alias * neon;
6c43fab6
RE
651};
652
c19d1205 653/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 654const char * const reg_expected_msgs[] =
c19d1205 655{
5aa75429
TP
656 [REG_TYPE_RN] = N_("ARM register expected"),
657 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
658 [REG_TYPE_CN] = N_("co-processor register expected"),
659 [REG_TYPE_FN] = N_("FPA register expected"),
660 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
661 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
662 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
663 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
664 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
665 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
666 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
667 " expected"),
668 [REG_TYPE_VFC] = N_("VFP system register expected"),
669 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
670 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
671 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
672 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
673 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
674 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
675 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
676 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
677 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
678 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
679 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
680};
681
c19d1205 682/* Some well known registers that we refer to directly elsewhere. */
bd340a04 683#define REG_R12 12
c19d1205
ZW
684#define REG_SP 13
685#define REG_LR 14
686#define REG_PC 15
404ff6b5 687
b99bd4ef
NC
688/* ARM instructions take 4bytes in the object file, Thumb instructions
689 take 2: */
c19d1205 690#define INSN_SIZE 4
b99bd4ef
NC
691
692struct asm_opcode
693{
694 /* Basic string to match. */
d3ce72d0 695 const char * template_name;
c19d1205
ZW
696
697 /* Parameters to instruction. */
5be8be5d 698 unsigned int operands[8];
c19d1205
ZW
699
700 /* Conditional tag - see opcode_lookup. */
701 unsigned int tag : 4;
b99bd4ef
NC
702
703 /* Basic instruction code. */
c19d1205 704 unsigned int avalue : 28;
b99bd4ef 705
c19d1205
ZW
706 /* Thumb-format instruction code. */
707 unsigned int tvalue;
b99bd4ef 708
90e4755a 709 /* Which architecture variant provides this instruction. */
c921be7d
NC
710 const arm_feature_set * avariant;
711 const arm_feature_set * tvariant;
c19d1205
ZW
712
713 /* Function to call to encode instruction in ARM format. */
714 void (* aencode) (void);
b99bd4ef 715
c19d1205
ZW
716 /* Function to call to encode instruction in Thumb format. */
717 void (* tencode) (void);
b99bd4ef
NC
718};
719
a737bd4d
NC
720/* Defines for various bits that we will want to toggle. */
721#define INST_IMMEDIATE 0x02000000
722#define OFFSET_REG 0x02000000
c19d1205 723#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
724#define SHIFT_BY_REG 0x00000010
725#define PRE_INDEX 0x01000000
726#define INDEX_UP 0x00800000
727#define WRITE_BACK 0x00200000
728#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 729#define CPSI_MMOD 0x00020000
90e4755a 730
a737bd4d
NC
731#define LITERAL_MASK 0xf000f000
732#define OPCODE_MASK 0xfe1fffff
733#define V4_STR_BIT 0x00000020
8335d6aa 734#define VLDR_VMOV_SAME 0x0040f000
90e4755a 735
efd81785
PB
736#define T2_SUBS_PC_LR 0xf3de8f00
737
a737bd4d 738#define DATA_OP_SHIFT 21
bada4342 739#define SBIT_SHIFT 20
90e4755a 740
ef8d22e6
PB
741#define T2_OPCODE_MASK 0xfe1fffff
742#define T2_DATA_OP_SHIFT 21
bada4342 743#define T2_SBIT_SHIFT 20
ef8d22e6 744
6530b175
NC
745#define A_COND_MASK 0xf0000000
746#define A_PUSH_POP_OP_MASK 0x0fff0000
747
748/* Opcodes for pushing/poping registers to/from the stack. */
749#define A1_OPCODE_PUSH 0x092d0000
750#define A2_OPCODE_PUSH 0x052d0004
751#define A2_OPCODE_POP 0x049d0004
752
a737bd4d
NC
753/* Codes to distinguish the arithmetic instructions. */
754#define OPCODE_AND 0
755#define OPCODE_EOR 1
756#define OPCODE_SUB 2
757#define OPCODE_RSB 3
758#define OPCODE_ADD 4
759#define OPCODE_ADC 5
760#define OPCODE_SBC 6
761#define OPCODE_RSC 7
762#define OPCODE_TST 8
763#define OPCODE_TEQ 9
764#define OPCODE_CMP 10
765#define OPCODE_CMN 11
766#define OPCODE_ORR 12
767#define OPCODE_MOV 13
768#define OPCODE_BIC 14
769#define OPCODE_MVN 15
90e4755a 770
ef8d22e6
PB
771#define T2_OPCODE_AND 0
772#define T2_OPCODE_BIC 1
773#define T2_OPCODE_ORR 2
774#define T2_OPCODE_ORN 3
775#define T2_OPCODE_EOR 4
776#define T2_OPCODE_ADD 8
777#define T2_OPCODE_ADC 10
778#define T2_OPCODE_SBC 11
779#define T2_OPCODE_SUB 13
780#define T2_OPCODE_RSB 14
781
a737bd4d
NC
782#define T_OPCODE_MUL 0x4340
783#define T_OPCODE_TST 0x4200
784#define T_OPCODE_CMN 0x42c0
785#define T_OPCODE_NEG 0x4240
786#define T_OPCODE_MVN 0x43c0
90e4755a 787
a737bd4d
NC
788#define T_OPCODE_ADD_R3 0x1800
789#define T_OPCODE_SUB_R3 0x1a00
790#define T_OPCODE_ADD_HI 0x4400
791#define T_OPCODE_ADD_ST 0xb000
792#define T_OPCODE_SUB_ST 0xb080
793#define T_OPCODE_ADD_SP 0xa800
794#define T_OPCODE_ADD_PC 0xa000
795#define T_OPCODE_ADD_I8 0x3000
796#define T_OPCODE_SUB_I8 0x3800
797#define T_OPCODE_ADD_I3 0x1c00
798#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 799
a737bd4d
NC
800#define T_OPCODE_ASR_R 0x4100
801#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
802#define T_OPCODE_LSR_R 0x40c0
803#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
804#define T_OPCODE_ASR_I 0x1000
805#define T_OPCODE_LSL_I 0x0000
806#define T_OPCODE_LSR_I 0x0800
b99bd4ef 807
a737bd4d
NC
808#define T_OPCODE_MOV_I8 0x2000
809#define T_OPCODE_CMP_I8 0x2800
810#define T_OPCODE_CMP_LR 0x4280
811#define T_OPCODE_MOV_HR 0x4600
812#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 813
a737bd4d
NC
814#define T_OPCODE_LDR_PC 0x4800
815#define T_OPCODE_LDR_SP 0x9800
816#define T_OPCODE_STR_SP 0x9000
817#define T_OPCODE_LDR_IW 0x6800
818#define T_OPCODE_STR_IW 0x6000
819#define T_OPCODE_LDR_IH 0x8800
820#define T_OPCODE_STR_IH 0x8000
821#define T_OPCODE_LDR_IB 0x7800
822#define T_OPCODE_STR_IB 0x7000
823#define T_OPCODE_LDR_RW 0x5800
824#define T_OPCODE_STR_RW 0x5000
825#define T_OPCODE_LDR_RH 0x5a00
826#define T_OPCODE_STR_RH 0x5200
827#define T_OPCODE_LDR_RB 0x5c00
828#define T_OPCODE_STR_RB 0x5400
c9b604bd 829
a737bd4d
NC
830#define T_OPCODE_PUSH 0xb400
831#define T_OPCODE_POP 0xbc00
b99bd4ef 832
2fc8bdac 833#define T_OPCODE_BRANCH 0xe000
b99bd4ef 834
a737bd4d 835#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 836#define THUMB_PP_PC_LR 0x0100
c19d1205 837#define THUMB_LOAD_BIT 0x0800
53365c0d 838#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
839
840#define BAD_ARGS _("bad arguments to instruction")
fdfde340 841#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
842#define BAD_PC _("r15 not allowed here")
843#define BAD_COND _("instruction cannot be conditional")
844#define BAD_OVERLAP _("registers may not be the same")
845#define BAD_HIREG _("lo register required")
846#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 847#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5 848#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 849#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 850#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 851#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
852#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
853#define BAD_IT_COND _("incorrect condition in IT block")
854#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 855#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
856#define BAD_PC_ADDRESSING \
857 _("cannot use register index with PC-relative addressing")
858#define BAD_PC_WRITEBACK \
859 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
860#define BAD_RANGE _("branch out of range")
861#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 862#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 863#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
c19d1205 864
c921be7d
NC
865static struct hash_control * arm_ops_hsh;
866static struct hash_control * arm_cond_hsh;
867static struct hash_control * arm_shift_hsh;
868static struct hash_control * arm_psr_hsh;
869static struct hash_control * arm_v7m_psr_hsh;
870static struct hash_control * arm_reg_hsh;
871static struct hash_control * arm_reloc_hsh;
872static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 873
b99bd4ef
NC
874/* Stuff needed to resolve the label ambiguity
875 As:
876 ...
877 label: <insn>
878 may differ from:
879 ...
880 label:
5f4273c7 881 <insn> */
b99bd4ef
NC
882
883symbolS * last_label_seen;
b34976b6 884static int label_is_thumb_function_name = FALSE;
e07e6e58 885
3d0c9500
NC
886/* Literal pool structure. Held on a per-section
887 and per-sub-section basis. */
a737bd4d 888
c19d1205 889#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 890typedef struct literal_pool
b99bd4ef 891{
c921be7d
NC
892 expressionS literals [MAX_LITERAL_POOL_SIZE];
893 unsigned int next_free_entry;
894 unsigned int id;
895 symbolS * symbol;
896 segT section;
897 subsegT sub_section;
a8040cf2
NC
898#ifdef OBJ_ELF
899 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
900#endif
c921be7d 901 struct literal_pool * next;
8335d6aa 902 unsigned int alignment;
3d0c9500 903} literal_pool;
b99bd4ef 904
3d0c9500
NC
905/* Pointer to a linked list of literal pools. */
906literal_pool * list_of_pools = NULL;
e27ec89e 907
2e6976a8
DG
908typedef enum asmfunc_states
909{
910 OUTSIDE_ASMFUNC,
911 WAITING_ASMFUNC_NAME,
912 WAITING_ENDASMFUNC
913} asmfunc_states;
914
915static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
916
e07e6e58
NC
917#ifdef OBJ_ELF
918# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
919#else
920static struct current_it now_it;
921#endif
922
923static inline int
924now_it_compatible (int cond)
925{
926 return (cond & ~1) == (now_it.cc & ~1);
927}
928
929static inline int
930conditional_insn (void)
931{
932 return inst.cond != COND_ALWAYS;
933}
934
935static int in_it_block (void);
936
937static int handle_it_state (void);
938
939static void force_automatic_it_block_close (void);
940
c921be7d
NC
941static void it_fsm_post_encode (void);
942
e07e6e58
NC
943#define set_it_insn_type(type) \
944 do \
945 { \
946 inst.it_insn_type = type; \
947 if (handle_it_state () == FAIL) \
477330fc 948 return; \
e07e6e58
NC
949 } \
950 while (0)
951
c921be7d
NC
952#define set_it_insn_type_nonvoid(type, failret) \
953 do \
954 { \
955 inst.it_insn_type = type; \
956 if (handle_it_state () == FAIL) \
477330fc 957 return failret; \
c921be7d
NC
958 } \
959 while(0)
960
e07e6e58
NC
961#define set_it_insn_type_last() \
962 do \
963 { \
964 if (inst.cond == COND_ALWAYS) \
477330fc 965 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 966 else \
477330fc 967 set_it_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
968 } \
969 while (0)
970
c19d1205 971/* Pure syntax. */
b99bd4ef 972
c19d1205
ZW
973/* This array holds the chars that always start a comment. If the
974 pre-processor is disabled, these aren't very useful. */
2e6976a8 975char arm_comment_chars[] = "@";
3d0c9500 976
c19d1205
ZW
977/* This array holds the chars that only start a comment at the beginning of
978 a line. If the line seems to have the form '# 123 filename'
979 .line and .file directives will appear in the pre-processed output. */
980/* Note that input_file.c hand checks for '#' at the beginning of the
981 first line of the input file. This is because the compiler outputs
982 #NO_APP at the beginning of its output. */
983/* Also note that comments like this one will always work. */
984const char line_comment_chars[] = "#";
3d0c9500 985
2e6976a8 986char arm_line_separator_chars[] = ";";
b99bd4ef 987
c19d1205
ZW
988/* Chars that can be used to separate mant
989 from exp in floating point numbers. */
990const char EXP_CHARS[] = "eE";
3d0c9500 991
c19d1205
ZW
992/* Chars that mean this number is a floating point constant. */
993/* As in 0f12.456 */
994/* or 0d1.2345e12 */
b99bd4ef 995
c19d1205 996const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 997
c19d1205
ZW
998/* Prefix characters that indicate the start of an immediate
999 value. */
1000#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1001
c19d1205
ZW
1002/* Separator character handling. */
1003
1004#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1005
1006static inline int
1007skip_past_char (char ** str, char c)
1008{
8ab8155f
NC
1009 /* PR gas/14987: Allow for whitespace before the expected character. */
1010 skip_whitespace (*str);
427d0db6 1011
c19d1205
ZW
1012 if (**str == c)
1013 {
1014 (*str)++;
1015 return SUCCESS;
3d0c9500 1016 }
c19d1205
ZW
1017 else
1018 return FAIL;
1019}
c921be7d 1020
c19d1205 1021#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1022
c19d1205
ZW
1023/* Arithmetic expressions (possibly involving symbols). */
1024
1025/* Return TRUE if anything in the expression is a bignum. */
1026
0198d5e6 1027static bfd_boolean
c19d1205
ZW
1028walk_no_bignums (symbolS * sp)
1029{
1030 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1031 return TRUE;
c19d1205
ZW
1032
1033 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1034 {
c19d1205
ZW
1035 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1036 || (symbol_get_value_expression (sp)->X_op_symbol
1037 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1038 }
1039
0198d5e6 1040 return FALSE;
3d0c9500
NC
1041}
1042
0198d5e6 1043static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1044
1045/* Third argument to my_get_expression. */
1046#define GE_NO_PREFIX 0
1047#define GE_IMM_PREFIX 1
1048#define GE_OPT_PREFIX 2
5287ad62
JB
1049/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1050 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1051#define GE_OPT_PREFIX_BIG 3
a737bd4d 1052
b99bd4ef 1053static int
c19d1205 1054my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1055{
c19d1205 1056 char * save_in;
b99bd4ef 1057
c19d1205
ZW
1058 /* In unified syntax, all prefixes are optional. */
1059 if (unified_syntax)
5287ad62 1060 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1061 : GE_OPT_PREFIX;
b99bd4ef 1062
c19d1205 1063 switch (prefix_mode)
b99bd4ef 1064 {
c19d1205
ZW
1065 case GE_NO_PREFIX: break;
1066 case GE_IMM_PREFIX:
1067 if (!is_immediate_prefix (**str))
1068 {
1069 inst.error = _("immediate expression requires a # prefix");
1070 return FAIL;
1071 }
1072 (*str)++;
1073 break;
1074 case GE_OPT_PREFIX:
5287ad62 1075 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1076 if (is_immediate_prefix (**str))
1077 (*str)++;
1078 break;
0198d5e6
TC
1079 default:
1080 abort ();
c19d1205 1081 }
b99bd4ef 1082
c19d1205 1083 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1084
c19d1205
ZW
1085 save_in = input_line_pointer;
1086 input_line_pointer = *str;
0198d5e6 1087 in_my_get_expression = TRUE;
2ac93be7 1088 expression (ep);
0198d5e6 1089 in_my_get_expression = FALSE;
c19d1205 1090
f86adc07 1091 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1092 {
f86adc07 1093 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1094 *str = input_line_pointer;
1095 input_line_pointer = save_in;
1096 if (inst.error == NULL)
f86adc07
NS
1097 inst.error = (ep->X_op == O_absent
1098 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1099 return 1;
1100 }
b99bd4ef 1101
c19d1205
ZW
1102 /* Get rid of any bignums now, so that we don't generate an error for which
1103 we can't establish a line number later on. Big numbers are never valid
1104 in instructions, which is where this routine is always called. */
5287ad62
JB
1105 if (prefix_mode != GE_OPT_PREFIX_BIG
1106 && (ep->X_op == O_big
477330fc 1107 || (ep->X_add_symbol
5287ad62 1108 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1109 || (ep->X_op_symbol
5287ad62 1110 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1111 {
1112 inst.error = _("invalid constant");
1113 *str = input_line_pointer;
1114 input_line_pointer = save_in;
1115 return 1;
1116 }
b99bd4ef 1117
c19d1205
ZW
1118 *str = input_line_pointer;
1119 input_line_pointer = save_in;
0198d5e6 1120 return SUCCESS;
b99bd4ef
NC
1121}
1122
c19d1205
ZW
1123/* Turn a string in input_line_pointer into a floating point constant
1124 of type TYPE, and store the appropriate bytes in *LITP. The number
1125 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1126 returned, or NULL on OK.
b99bd4ef 1127
c19d1205
ZW
1128 Note that fp constants aren't represent in the normal way on the ARM.
1129 In big endian mode, things are as expected. However, in little endian
1130 mode fp constants are big-endian word-wise, and little-endian byte-wise
1131 within the words. For example, (double) 1.1 in big endian mode is
1132 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1133 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1134
c19d1205 1135 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1136
6d4af3c2 1137const char *
c19d1205
ZW
1138md_atof (int type, char * litP, int * sizeP)
1139{
1140 int prec;
1141 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1142 char *t;
1143 int i;
b99bd4ef 1144
c19d1205
ZW
1145 switch (type)
1146 {
1147 case 'f':
1148 case 'F':
1149 case 's':
1150 case 'S':
1151 prec = 2;
1152 break;
b99bd4ef 1153
c19d1205
ZW
1154 case 'd':
1155 case 'D':
1156 case 'r':
1157 case 'R':
1158 prec = 4;
1159 break;
b99bd4ef 1160
c19d1205
ZW
1161 case 'x':
1162 case 'X':
499ac353 1163 prec = 5;
c19d1205 1164 break;
b99bd4ef 1165
c19d1205
ZW
1166 case 'p':
1167 case 'P':
499ac353 1168 prec = 5;
c19d1205 1169 break;
a737bd4d 1170
c19d1205
ZW
1171 default:
1172 *sizeP = 0;
499ac353 1173 return _("Unrecognized or unsupported floating point constant");
c19d1205 1174 }
b99bd4ef 1175
c19d1205
ZW
1176 t = atof_ieee (input_line_pointer, type, words);
1177 if (t)
1178 input_line_pointer = t;
499ac353 1179 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1180
c19d1205
ZW
1181 if (target_big_endian)
1182 {
1183 for (i = 0; i < prec; i++)
1184 {
499ac353
NC
1185 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1186 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1187 }
1188 }
1189 else
1190 {
e74cfd16 1191 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1192 for (i = prec - 1; i >= 0; i--)
1193 {
499ac353
NC
1194 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1195 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1196 }
1197 else
1198 /* For a 4 byte float the order of elements in `words' is 1 0.
1199 For an 8 byte float the order is 1 0 3 2. */
1200 for (i = 0; i < prec; i += 2)
1201 {
499ac353
NC
1202 md_number_to_chars (litP, (valueT) words[i + 1],
1203 sizeof (LITTLENUM_TYPE));
1204 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1205 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1206 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1207 }
1208 }
b99bd4ef 1209
499ac353 1210 return NULL;
c19d1205 1211}
b99bd4ef 1212
c19d1205
ZW
1213/* We handle all bad expressions here, so that we can report the faulty
1214 instruction in the error message. */
0198d5e6 1215
c19d1205 1216void
91d6fa6a 1217md_operand (expressionS * exp)
c19d1205
ZW
1218{
1219 if (in_my_get_expression)
91d6fa6a 1220 exp->X_op = O_illegal;
b99bd4ef
NC
1221}
1222
c19d1205 1223/* Immediate values. */
b99bd4ef 1224
0198d5e6 1225#ifdef OBJ_ELF
c19d1205
ZW
1226/* Generic immediate-value read function for use in directives.
1227 Accepts anything that 'expression' can fold to a constant.
1228 *val receives the number. */
0198d5e6 1229
c19d1205
ZW
1230static int
1231immediate_for_directive (int *val)
b99bd4ef 1232{
c19d1205
ZW
1233 expressionS exp;
1234 exp.X_op = O_illegal;
b99bd4ef 1235
c19d1205
ZW
1236 if (is_immediate_prefix (*input_line_pointer))
1237 {
1238 input_line_pointer++;
1239 expression (&exp);
1240 }
b99bd4ef 1241
c19d1205
ZW
1242 if (exp.X_op != O_constant)
1243 {
1244 as_bad (_("expected #constant"));
1245 ignore_rest_of_line ();
1246 return FAIL;
1247 }
1248 *val = exp.X_add_number;
1249 return SUCCESS;
b99bd4ef 1250}
c19d1205 1251#endif
b99bd4ef 1252
c19d1205 1253/* Register parsing. */
b99bd4ef 1254
c19d1205
ZW
1255/* Generic register parser. CCP points to what should be the
1256 beginning of a register name. If it is indeed a valid register
1257 name, advance CCP over it and return the reg_entry structure;
1258 otherwise return NULL. Does not issue diagnostics. */
1259
1260static struct reg_entry *
1261arm_reg_parse_multi (char **ccp)
b99bd4ef 1262{
c19d1205
ZW
1263 char *start = *ccp;
1264 char *p;
1265 struct reg_entry *reg;
b99bd4ef 1266
477330fc
RM
1267 skip_whitespace (start);
1268
c19d1205
ZW
1269#ifdef REGISTER_PREFIX
1270 if (*start != REGISTER_PREFIX)
01cfc07f 1271 return NULL;
c19d1205
ZW
1272 start++;
1273#endif
1274#ifdef OPTIONAL_REGISTER_PREFIX
1275 if (*start == OPTIONAL_REGISTER_PREFIX)
1276 start++;
1277#endif
b99bd4ef 1278
c19d1205
ZW
1279 p = start;
1280 if (!ISALPHA (*p) || !is_name_beginner (*p))
1281 return NULL;
b99bd4ef 1282
c19d1205
ZW
1283 do
1284 p++;
1285 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1286
1287 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1288
1289 if (!reg)
1290 return NULL;
1291
1292 *ccp = p;
1293 return reg;
b99bd4ef
NC
1294}
1295
1296static int
dcbf9037 1297arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1298 enum arm_reg_type type)
b99bd4ef 1299{
c19d1205
ZW
1300 /* Alternative syntaxes are accepted for a few register classes. */
1301 switch (type)
1302 {
1303 case REG_TYPE_MVF:
1304 case REG_TYPE_MVD:
1305 case REG_TYPE_MVFX:
1306 case REG_TYPE_MVDX:
1307 /* Generic coprocessor register names are allowed for these. */
79134647 1308 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1309 return reg->number;
1310 break;
69b97547 1311
c19d1205
ZW
1312 case REG_TYPE_CP:
1313 /* For backward compatibility, a bare number is valid here. */
1314 {
1315 unsigned long processor = strtoul (start, ccp, 10);
1316 if (*ccp != start && processor <= 15)
1317 return processor;
1318 }
1a0670f3 1319 /* Fall through. */
6057a28f 1320
c19d1205
ZW
1321 case REG_TYPE_MMXWC:
1322 /* WC includes WCG. ??? I'm not sure this is true for all
1323 instructions that take WC registers. */
79134647 1324 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1325 return reg->number;
6057a28f 1326 break;
c19d1205 1327
6057a28f 1328 default:
c19d1205 1329 break;
6057a28f
NC
1330 }
1331
dcbf9037
JB
1332 return FAIL;
1333}
1334
1335/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1336 return value is the register number or FAIL. */
1337
1338static int
1339arm_reg_parse (char **ccp, enum arm_reg_type type)
1340{
1341 char *start = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1343 int ret;
1344
1345 /* Do not allow a scalar (reg+index) to parse as a register. */
1346 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1347 return FAIL;
1348
1349 if (reg && reg->type == type)
1350 return reg->number;
1351
1352 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1353 return ret;
1354
c19d1205
ZW
1355 *ccp = start;
1356 return FAIL;
1357}
69b97547 1358
dcbf9037
JB
1359/* Parse a Neon type specifier. *STR should point at the leading '.'
1360 character. Does no verification at this stage that the type fits the opcode
1361 properly. E.g.,
1362
1363 .i32.i32.s16
1364 .s32.f32
1365 .u16
1366
1367 Can all be legally parsed by this function.
1368
1369 Fills in neon_type struct pointer with parsed information, and updates STR
1370 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1371 type, FAIL if not. */
1372
1373static int
1374parse_neon_type (struct neon_type *type, char **str)
1375{
1376 char *ptr = *str;
1377
1378 if (type)
1379 type->elems = 0;
1380
1381 while (type->elems < NEON_MAX_TYPE_ELS)
1382 {
1383 enum neon_el_type thistype = NT_untyped;
1384 unsigned thissize = -1u;
1385
1386 if (*ptr != '.')
1387 break;
1388
1389 ptr++;
1390
1391 /* Just a size without an explicit type. */
1392 if (ISDIGIT (*ptr))
1393 goto parsesize;
1394
1395 switch (TOLOWER (*ptr))
1396 {
1397 case 'i': thistype = NT_integer; break;
1398 case 'f': thistype = NT_float; break;
1399 case 'p': thistype = NT_poly; break;
1400 case 's': thistype = NT_signed; break;
1401 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1402 case 'd':
1403 thistype = NT_float;
1404 thissize = 64;
1405 ptr++;
1406 goto done;
dcbf9037
JB
1407 default:
1408 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1409 return FAIL;
1410 }
1411
1412 ptr++;
1413
1414 /* .f is an abbreviation for .f32. */
1415 if (thistype == NT_float && !ISDIGIT (*ptr))
1416 thissize = 32;
1417 else
1418 {
1419 parsesize:
1420 thissize = strtoul (ptr, &ptr, 10);
1421
1422 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1423 && thissize != 64)
1424 {
1425 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1426 return FAIL;
1427 }
1428 }
1429
037e8744 1430 done:
dcbf9037 1431 if (type)
477330fc
RM
1432 {
1433 type->el[type->elems].type = thistype;
dcbf9037
JB
1434 type->el[type->elems].size = thissize;
1435 type->elems++;
1436 }
1437 }
1438
1439 /* Empty/missing type is not a successful parse. */
1440 if (type->elems == 0)
1441 return FAIL;
1442
1443 *str = ptr;
1444
1445 return SUCCESS;
1446}
1447
1448/* Errors may be set multiple times during parsing or bit encoding
1449 (particularly in the Neon bits), but usually the earliest error which is set
1450 will be the most meaningful. Avoid overwriting it with later (cascading)
1451 errors by calling this function. */
1452
1453static void
1454first_error (const char *err)
1455{
1456 if (!inst.error)
1457 inst.error = err;
1458}
1459
1460/* Parse a single type, e.g. ".s32", leading period included. */
1461static int
1462parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1463{
1464 char *str = *ccp;
1465 struct neon_type optype;
1466
1467 if (*str == '.')
1468 {
1469 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1470 {
1471 if (optype.elems == 1)
1472 *vectype = optype.el[0];
1473 else
1474 {
1475 first_error (_("only one type should be specified for operand"));
1476 return FAIL;
1477 }
1478 }
dcbf9037 1479 else
477330fc
RM
1480 {
1481 first_error (_("vector type expected"));
1482 return FAIL;
1483 }
dcbf9037
JB
1484 }
1485 else
1486 return FAIL;
5f4273c7 1487
dcbf9037 1488 *ccp = str;
5f4273c7 1489
dcbf9037
JB
1490 return SUCCESS;
1491}
1492
1493/* Special meanings for indices (which have a range of 0-7), which will fit into
1494 a 4-bit integer. */
1495
1496#define NEON_ALL_LANES 15
1497#define NEON_INTERLEAVE_LANES 14
1498
1499/* Parse either a register or a scalar, with an optional type. Return the
1500 register number, and optionally fill in the actual type of the register
1501 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1502 type/index information in *TYPEINFO. */
1503
1504static int
1505parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1506 enum arm_reg_type *rtype,
1507 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1508{
1509 char *str = *ccp;
1510 struct reg_entry *reg = arm_reg_parse_multi (&str);
1511 struct neon_typed_alias atype;
1512 struct neon_type_el parsetype;
1513
1514 atype.defined = 0;
1515 atype.index = -1;
1516 atype.eltype.type = NT_invtype;
1517 atype.eltype.size = -1;
1518
1519 /* Try alternate syntax for some types of register. Note these are mutually
1520 exclusive with the Neon syntax extensions. */
1521 if (reg == NULL)
1522 {
1523 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1524 if (altreg != FAIL)
477330fc 1525 *ccp = str;
dcbf9037 1526 if (typeinfo)
477330fc 1527 *typeinfo = atype;
dcbf9037
JB
1528 return altreg;
1529 }
1530
037e8744
JB
1531 /* Undo polymorphism when a set of register types may be accepted. */
1532 if ((type == REG_TYPE_NDQ
1533 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1534 || (type == REG_TYPE_VFSD
477330fc 1535 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1536 || (type == REG_TYPE_NSDQ
477330fc
RM
1537 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1538 || reg->type == REG_TYPE_NQ))
dec41383
JW
1539 || (type == REG_TYPE_NSD
1540 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1541 || (type == REG_TYPE_MMXWC
1542 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1543 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1544
1545 if (type != reg->type)
1546 return FAIL;
1547
1548 if (reg->neon)
1549 atype = *reg->neon;
5f4273c7 1550
dcbf9037
JB
1551 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1552 {
1553 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1554 {
1555 first_error (_("can't redefine type for operand"));
1556 return FAIL;
1557 }
dcbf9037
JB
1558 atype.defined |= NTA_HASTYPE;
1559 atype.eltype = parsetype;
1560 }
5f4273c7 1561
dcbf9037
JB
1562 if (skip_past_char (&str, '[') == SUCCESS)
1563 {
dec41383
JW
1564 if (type != REG_TYPE_VFD
1565 && !(type == REG_TYPE_VFS
1566 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
477330fc
RM
1567 {
1568 first_error (_("only D registers may be indexed"));
1569 return FAIL;
1570 }
5f4273c7 1571
dcbf9037 1572 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1573 {
1574 first_error (_("can't change index for operand"));
1575 return FAIL;
1576 }
dcbf9037
JB
1577
1578 atype.defined |= NTA_HASINDEX;
1579
1580 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1581 atype.index = NEON_ALL_LANES;
dcbf9037 1582 else
477330fc
RM
1583 {
1584 expressionS exp;
dcbf9037 1585
477330fc 1586 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1587
477330fc
RM
1588 if (exp.X_op != O_constant)
1589 {
1590 first_error (_("constant expression required"));
1591 return FAIL;
1592 }
dcbf9037 1593
477330fc
RM
1594 if (skip_past_char (&str, ']') == FAIL)
1595 return FAIL;
dcbf9037 1596
477330fc
RM
1597 atype.index = exp.X_add_number;
1598 }
dcbf9037 1599 }
5f4273c7 1600
dcbf9037
JB
1601 if (typeinfo)
1602 *typeinfo = atype;
5f4273c7 1603
dcbf9037
JB
1604 if (rtype)
1605 *rtype = type;
5f4273c7 1606
dcbf9037 1607 *ccp = str;
5f4273c7 1608
dcbf9037
JB
1609 return reg->number;
1610}
1611
1612/* Like arm_reg_parse, but allow allow the following extra features:
1613 - If RTYPE is non-zero, return the (possibly restricted) type of the
1614 register (e.g. Neon double or quad reg when either has been requested).
1615 - If this is a Neon vector type with additional type information, fill
1616 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1617 This function will fault on encountering a scalar. */
dcbf9037
JB
1618
1619static int
1620arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1621 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1622{
1623 struct neon_typed_alias atype;
1624 char *str = *ccp;
1625 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1626
1627 if (reg == FAIL)
1628 return FAIL;
1629
0855e32b
NS
1630 /* Do not allow regname(... to parse as a register. */
1631 if (*str == '(')
1632 return FAIL;
1633
dcbf9037
JB
1634 /* Do not allow a scalar (reg+index) to parse as a register. */
1635 if ((atype.defined & NTA_HASINDEX) != 0)
1636 {
1637 first_error (_("register operand expected, but got scalar"));
1638 return FAIL;
1639 }
1640
1641 if (vectype)
1642 *vectype = atype.eltype;
1643
1644 *ccp = str;
1645
1646 return reg;
1647}
1648
1649#define NEON_SCALAR_REG(X) ((X) >> 4)
1650#define NEON_SCALAR_INDEX(X) ((X) & 15)
1651
5287ad62
JB
1652/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1653 have enough information to be able to do a good job bounds-checking. So, we
1654 just do easy checks here, and do further checks later. */
1655
1656static int
dcbf9037 1657parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1658{
dcbf9037 1659 int reg;
5287ad62 1660 char *str = *ccp;
dcbf9037 1661 struct neon_typed_alias atype;
dec41383
JW
1662 enum arm_reg_type reg_type = REG_TYPE_VFD;
1663
1664 if (elsize == 4)
1665 reg_type = REG_TYPE_VFS;
5f4273c7 1666
dec41383 1667 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1668
dcbf9037 1669 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1670 return FAIL;
5f4273c7 1671
dcbf9037 1672 if (atype.index == NEON_ALL_LANES)
5287ad62 1673 {
dcbf9037 1674 first_error (_("scalar must have an index"));
5287ad62
JB
1675 return FAIL;
1676 }
dcbf9037 1677 else if (atype.index >= 64 / elsize)
5287ad62 1678 {
dcbf9037 1679 first_error (_("scalar index out of range"));
5287ad62
JB
1680 return FAIL;
1681 }
5f4273c7 1682
dcbf9037
JB
1683 if (type)
1684 *type = atype.eltype;
5f4273c7 1685
5287ad62 1686 *ccp = str;
5f4273c7 1687
dcbf9037 1688 return reg * 16 + atype.index;
5287ad62
JB
1689}
1690
c19d1205 1691/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1692
c19d1205
ZW
1693static long
1694parse_reg_list (char ** strp)
1695{
1696 char * str = * strp;
1697 long range = 0;
1698 int another_range;
a737bd4d 1699
c19d1205
ZW
1700 /* We come back here if we get ranges concatenated by '+' or '|'. */
1701 do
6057a28f 1702 {
477330fc
RM
1703 skip_whitespace (str);
1704
c19d1205 1705 another_range = 0;
a737bd4d 1706
c19d1205
ZW
1707 if (*str == '{')
1708 {
1709 int in_range = 0;
1710 int cur_reg = -1;
a737bd4d 1711
c19d1205
ZW
1712 str++;
1713 do
1714 {
1715 int reg;
6057a28f 1716
dcbf9037 1717 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1718 {
dcbf9037 1719 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1720 return FAIL;
1721 }
a737bd4d 1722
c19d1205
ZW
1723 if (in_range)
1724 {
1725 int i;
a737bd4d 1726
c19d1205
ZW
1727 if (reg <= cur_reg)
1728 {
dcbf9037 1729 first_error (_("bad range in register list"));
c19d1205
ZW
1730 return FAIL;
1731 }
40a18ebd 1732
c19d1205
ZW
1733 for (i = cur_reg + 1; i < reg; i++)
1734 {
1735 if (range & (1 << i))
1736 as_tsktsk
1737 (_("Warning: duplicated register (r%d) in register list"),
1738 i);
1739 else
1740 range |= 1 << i;
1741 }
1742 in_range = 0;
1743 }
a737bd4d 1744
c19d1205
ZW
1745 if (range & (1 << reg))
1746 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1747 reg);
1748 else if (reg <= cur_reg)
1749 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1750
c19d1205
ZW
1751 range |= 1 << reg;
1752 cur_reg = reg;
1753 }
1754 while (skip_past_comma (&str) != FAIL
1755 || (in_range = 1, *str++ == '-'));
1756 str--;
a737bd4d 1757
d996d970 1758 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1759 {
dcbf9037 1760 first_error (_("missing `}'"));
c19d1205
ZW
1761 return FAIL;
1762 }
1763 }
1764 else
1765 {
91d6fa6a 1766 expressionS exp;
40a18ebd 1767
91d6fa6a 1768 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1769 return FAIL;
40a18ebd 1770
91d6fa6a 1771 if (exp.X_op == O_constant)
c19d1205 1772 {
91d6fa6a
NC
1773 if (exp.X_add_number
1774 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1775 {
1776 inst.error = _("invalid register mask");
1777 return FAIL;
1778 }
a737bd4d 1779
91d6fa6a 1780 if ((range & exp.X_add_number) != 0)
c19d1205 1781 {
91d6fa6a 1782 int regno = range & exp.X_add_number;
a737bd4d 1783
c19d1205
ZW
1784 regno &= -regno;
1785 regno = (1 << regno) - 1;
1786 as_tsktsk
1787 (_("Warning: duplicated register (r%d) in register list"),
1788 regno);
1789 }
a737bd4d 1790
91d6fa6a 1791 range |= exp.X_add_number;
c19d1205
ZW
1792 }
1793 else
1794 {
e2b0ab59 1795 if (inst.relocs[0].type != 0)
c19d1205
ZW
1796 {
1797 inst.error = _("expression too complex");
1798 return FAIL;
1799 }
a737bd4d 1800
e2b0ab59
AV
1801 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1802 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1803 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1804 }
1805 }
a737bd4d 1806
c19d1205
ZW
1807 if (*str == '|' || *str == '+')
1808 {
1809 str++;
1810 another_range = 1;
1811 }
a737bd4d 1812 }
c19d1205 1813 while (another_range);
a737bd4d 1814
c19d1205
ZW
1815 *strp = str;
1816 return range;
a737bd4d
NC
1817}
1818
5287ad62
JB
1819/* Types of registers in a list. */
1820
1821enum reg_list_els
1822{
1823 REGLIST_VFP_S,
1824 REGLIST_VFP_D,
1825 REGLIST_NEON_D
1826};
1827
c19d1205
ZW
1828/* Parse a VFP register list. If the string is invalid return FAIL.
1829 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1830 register. Parses registers of type ETYPE.
1831 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1832 - Q registers can be used to specify pairs of D registers
1833 - { } can be omitted from around a singleton register list
477330fc
RM
1834 FIXME: This is not implemented, as it would require backtracking in
1835 some cases, e.g.:
1836 vtbl.8 d3,d4,d5
1837 This could be done (the meaning isn't really ambiguous), but doesn't
1838 fit in well with the current parsing framework.
dcbf9037
JB
1839 - 32 D registers may be used (also true for VFPv3).
1840 FIXME: Types are ignored in these register lists, which is probably a
1841 bug. */
6057a28f 1842
c19d1205 1843static int
037e8744 1844parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1845{
037e8744 1846 char *str = *ccp;
c19d1205
ZW
1847 int base_reg;
1848 int new_base;
21d799b5 1849 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1850 int max_regs = 0;
c19d1205
ZW
1851 int count = 0;
1852 int warned = 0;
1853 unsigned long mask = 0;
a737bd4d 1854 int i;
6057a28f 1855
477330fc 1856 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
1857 {
1858 inst.error = _("expecting {");
1859 return FAIL;
1860 }
6057a28f 1861
5287ad62 1862 switch (etype)
c19d1205 1863 {
5287ad62 1864 case REGLIST_VFP_S:
c19d1205
ZW
1865 regtype = REG_TYPE_VFS;
1866 max_regs = 32;
5287ad62 1867 break;
5f4273c7 1868
5287ad62
JB
1869 case REGLIST_VFP_D:
1870 regtype = REG_TYPE_VFD;
b7fc2769 1871 break;
5f4273c7 1872
b7fc2769
JB
1873 case REGLIST_NEON_D:
1874 regtype = REG_TYPE_NDQ;
1875 break;
1876 }
1877
1878 if (etype != REGLIST_VFP_S)
1879 {
b1cc4aeb
PB
1880 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1881 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
1882 {
1883 max_regs = 32;
1884 if (thumb_mode)
1885 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1886 fpu_vfp_ext_d32);
1887 else
1888 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1889 fpu_vfp_ext_d32);
1890 }
5287ad62 1891 else
477330fc 1892 max_regs = 16;
c19d1205 1893 }
6057a28f 1894
c19d1205 1895 base_reg = max_regs;
a737bd4d 1896
c19d1205
ZW
1897 do
1898 {
5287ad62 1899 int setmask = 1, addregs = 1;
dcbf9037 1900
037e8744 1901 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1902
c19d1205 1903 if (new_base == FAIL)
a737bd4d 1904 {
dcbf9037 1905 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1906 return FAIL;
1907 }
5f4273c7 1908
b7fc2769 1909 if (new_base >= max_regs)
477330fc
RM
1910 {
1911 first_error (_("register out of range in list"));
1912 return FAIL;
1913 }
5f4273c7 1914
5287ad62
JB
1915 /* Note: a value of 2 * n is returned for the register Q<n>. */
1916 if (regtype == REG_TYPE_NQ)
477330fc
RM
1917 {
1918 setmask = 3;
1919 addregs = 2;
1920 }
5287ad62 1921
c19d1205
ZW
1922 if (new_base < base_reg)
1923 base_reg = new_base;
a737bd4d 1924
5287ad62 1925 if (mask & (setmask << new_base))
c19d1205 1926 {
dcbf9037 1927 first_error (_("invalid register list"));
c19d1205 1928 return FAIL;
a737bd4d 1929 }
a737bd4d 1930
c19d1205
ZW
1931 if ((mask >> new_base) != 0 && ! warned)
1932 {
1933 as_tsktsk (_("register list not in ascending order"));
1934 warned = 1;
1935 }
0bbf2aa4 1936
5287ad62
JB
1937 mask |= setmask << new_base;
1938 count += addregs;
0bbf2aa4 1939
037e8744 1940 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1941 {
1942 int high_range;
0bbf2aa4 1943
037e8744 1944 str++;
0bbf2aa4 1945
037e8744 1946 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 1947 == FAIL)
c19d1205
ZW
1948 {
1949 inst.error = gettext (reg_expected_msgs[regtype]);
1950 return FAIL;
1951 }
0bbf2aa4 1952
477330fc
RM
1953 if (high_range >= max_regs)
1954 {
1955 first_error (_("register out of range in list"));
1956 return FAIL;
1957 }
b7fc2769 1958
477330fc
RM
1959 if (regtype == REG_TYPE_NQ)
1960 high_range = high_range + 1;
5287ad62 1961
c19d1205
ZW
1962 if (high_range <= new_base)
1963 {
1964 inst.error = _("register range not in ascending order");
1965 return FAIL;
1966 }
0bbf2aa4 1967
5287ad62 1968 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1969 {
5287ad62 1970 if (mask & (setmask << new_base))
0bbf2aa4 1971 {
c19d1205
ZW
1972 inst.error = _("invalid register list");
1973 return FAIL;
0bbf2aa4 1974 }
c19d1205 1975
5287ad62
JB
1976 mask |= setmask << new_base;
1977 count += addregs;
0bbf2aa4 1978 }
0bbf2aa4 1979 }
0bbf2aa4 1980 }
037e8744 1981 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1982
037e8744 1983 str++;
0bbf2aa4 1984
c19d1205
ZW
1985 /* Sanity check -- should have raised a parse error above. */
1986 if (count == 0 || count > max_regs)
1987 abort ();
1988
1989 *pbase = base_reg;
1990
1991 /* Final test -- the registers must be consecutive. */
1992 mask >>= base_reg;
1993 for (i = 0; i < count; i++)
1994 {
1995 if ((mask & (1u << i)) == 0)
1996 {
1997 inst.error = _("non-contiguous register range");
1998 return FAIL;
1999 }
2000 }
2001
037e8744
JB
2002 *ccp = str;
2003
c19d1205 2004 return count;
b99bd4ef
NC
2005}
2006
dcbf9037
JB
2007/* True if two alias types are the same. */
2008
c921be7d 2009static bfd_boolean
dcbf9037
JB
2010neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2011{
2012 if (!a && !b)
c921be7d 2013 return TRUE;
5f4273c7 2014
dcbf9037 2015 if (!a || !b)
c921be7d 2016 return FALSE;
dcbf9037
JB
2017
2018 if (a->defined != b->defined)
c921be7d 2019 return FALSE;
5f4273c7 2020
dcbf9037
JB
2021 if ((a->defined & NTA_HASTYPE) != 0
2022 && (a->eltype.type != b->eltype.type
477330fc 2023 || a->eltype.size != b->eltype.size))
c921be7d 2024 return FALSE;
dcbf9037
JB
2025
2026 if ((a->defined & NTA_HASINDEX) != 0
2027 && (a->index != b->index))
c921be7d 2028 return FALSE;
5f4273c7 2029
c921be7d 2030 return TRUE;
dcbf9037
JB
2031}
2032
5287ad62
JB
2033/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2034 The base register is put in *PBASE.
dcbf9037 2035 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2036 the return value.
2037 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2038 Bits [6:5] encode the list length (minus one).
2039 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2040
5287ad62 2041#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2042#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2043#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2044
2045static int
dcbf9037 2046parse_neon_el_struct_list (char **str, unsigned *pbase,
477330fc 2047 struct neon_type_el *eltype)
5287ad62
JB
2048{
2049 char *ptr = *str;
2050 int base_reg = -1;
2051 int reg_incr = -1;
2052 int count = 0;
2053 int lane = -1;
2054 int leading_brace = 0;
2055 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
2056 const char *const incr_error = _("register stride must be 1 or 2");
2057 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2058 struct neon_typed_alias firsttype;
f85d59c3
KT
2059 firsttype.defined = 0;
2060 firsttype.eltype.type = NT_invtype;
2061 firsttype.eltype.size = -1;
2062 firsttype.index = -1;
5f4273c7 2063
5287ad62
JB
2064 if (skip_past_char (&ptr, '{') == SUCCESS)
2065 leading_brace = 1;
5f4273c7 2066
5287ad62
JB
2067 do
2068 {
dcbf9037
JB
2069 struct neon_typed_alias atype;
2070 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2071
5287ad62 2072 if (getreg == FAIL)
477330fc
RM
2073 {
2074 first_error (_(reg_expected_msgs[rtype]));
2075 return FAIL;
2076 }
5f4273c7 2077
5287ad62 2078 if (base_reg == -1)
477330fc
RM
2079 {
2080 base_reg = getreg;
2081 if (rtype == REG_TYPE_NQ)
2082 {
2083 reg_incr = 1;
2084 }
2085 firsttype = atype;
2086 }
5287ad62 2087 else if (reg_incr == -1)
477330fc
RM
2088 {
2089 reg_incr = getreg - base_reg;
2090 if (reg_incr < 1 || reg_incr > 2)
2091 {
2092 first_error (_(incr_error));
2093 return FAIL;
2094 }
2095 }
5287ad62 2096 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2097 {
2098 first_error (_(incr_error));
2099 return FAIL;
2100 }
dcbf9037 2101
c921be7d 2102 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2103 {
2104 first_error (_(type_error));
2105 return FAIL;
2106 }
5f4273c7 2107
5287ad62 2108 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2109 modes. */
5287ad62 2110 if (ptr[0] == '-')
477330fc
RM
2111 {
2112 struct neon_typed_alias htype;
2113 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2114 if (lane == -1)
2115 lane = NEON_INTERLEAVE_LANES;
2116 else if (lane != NEON_INTERLEAVE_LANES)
2117 {
2118 first_error (_(type_error));
2119 return FAIL;
2120 }
2121 if (reg_incr == -1)
2122 reg_incr = 1;
2123 else if (reg_incr != 1)
2124 {
2125 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2126 return FAIL;
2127 }
2128 ptr++;
2129 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2130 if (hireg == FAIL)
2131 {
2132 first_error (_(reg_expected_msgs[rtype]));
2133 return FAIL;
2134 }
2135 if (! neon_alias_types_same (&htype, &firsttype))
2136 {
2137 first_error (_(type_error));
2138 return FAIL;
2139 }
2140 count += hireg + dregs - getreg;
2141 continue;
2142 }
5f4273c7 2143
5287ad62
JB
2144 /* If we're using Q registers, we can't use [] or [n] syntax. */
2145 if (rtype == REG_TYPE_NQ)
477330fc
RM
2146 {
2147 count += 2;
2148 continue;
2149 }
5f4273c7 2150
dcbf9037 2151 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2152 {
2153 if (lane == -1)
2154 lane = atype.index;
2155 else if (lane != atype.index)
2156 {
2157 first_error (_(type_error));
2158 return FAIL;
2159 }
2160 }
5287ad62 2161 else if (lane == -1)
477330fc 2162 lane = NEON_INTERLEAVE_LANES;
5287ad62 2163 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2164 {
2165 first_error (_(type_error));
2166 return FAIL;
2167 }
5287ad62
JB
2168 count++;
2169 }
2170 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2171
5287ad62
JB
2172 /* No lane set by [x]. We must be interleaving structures. */
2173 if (lane == -1)
2174 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2175
5287ad62
JB
2176 /* Sanity check. */
2177 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2178 || (count > 1 && reg_incr == -1))
2179 {
dcbf9037 2180 first_error (_("error parsing element/structure list"));
5287ad62
JB
2181 return FAIL;
2182 }
2183
2184 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2185 {
dcbf9037 2186 first_error (_("expected }"));
5287ad62
JB
2187 return FAIL;
2188 }
5f4273c7 2189
5287ad62
JB
2190 if (reg_incr == -1)
2191 reg_incr = 1;
2192
dcbf9037
JB
2193 if (eltype)
2194 *eltype = firsttype.eltype;
2195
5287ad62
JB
2196 *pbase = base_reg;
2197 *str = ptr;
5f4273c7 2198
5287ad62
JB
2199 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2200}
2201
c19d1205
ZW
2202/* Parse an explicit relocation suffix on an expression. This is
2203 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2204 arm_reloc_hsh contains no entries, so this function can only
2205 succeed if there is no () after the word. Returns -1 on error,
2206 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2207
c19d1205
ZW
2208static int
2209parse_reloc (char **str)
b99bd4ef 2210{
c19d1205
ZW
2211 struct reloc_entry *r;
2212 char *p, *q;
b99bd4ef 2213
c19d1205
ZW
2214 if (**str != '(')
2215 return BFD_RELOC_UNUSED;
b99bd4ef 2216
c19d1205
ZW
2217 p = *str + 1;
2218 q = p;
2219
2220 while (*q && *q != ')' && *q != ',')
2221 q++;
2222 if (*q != ')')
2223 return -1;
2224
21d799b5
NC
2225 if ((r = (struct reloc_entry *)
2226 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2227 return -1;
2228
2229 *str = q + 1;
2230 return r->reloc;
b99bd4ef
NC
2231}
2232
c19d1205
ZW
2233/* Directives: register aliases. */
2234
dcbf9037 2235static struct reg_entry *
90ec0d68 2236insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2237{
d3ce72d0 2238 struct reg_entry *new_reg;
c19d1205 2239 const char *name;
b99bd4ef 2240
d3ce72d0 2241 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2242 {
d3ce72d0 2243 if (new_reg->builtin)
c19d1205 2244 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2245
c19d1205
ZW
2246 /* Only warn about a redefinition if it's not defined as the
2247 same register. */
d3ce72d0 2248 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2249 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2250
d929913e 2251 return NULL;
c19d1205 2252 }
b99bd4ef 2253
c19d1205 2254 name = xstrdup (str);
325801bd 2255 new_reg = XNEW (struct reg_entry);
b99bd4ef 2256
d3ce72d0
NC
2257 new_reg->name = name;
2258 new_reg->number = number;
2259 new_reg->type = type;
2260 new_reg->builtin = FALSE;
2261 new_reg->neon = NULL;
b99bd4ef 2262
d3ce72d0 2263 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2264 abort ();
5f4273c7 2265
d3ce72d0 2266 return new_reg;
dcbf9037
JB
2267}
2268
2269static void
2270insert_neon_reg_alias (char *str, int number, int type,
477330fc 2271 struct neon_typed_alias *atype)
dcbf9037
JB
2272{
2273 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2274
dcbf9037
JB
2275 if (!reg)
2276 {
2277 first_error (_("attempt to redefine typed alias"));
2278 return;
2279 }
5f4273c7 2280
dcbf9037
JB
2281 if (atype)
2282 {
325801bd 2283 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2284 *reg->neon = *atype;
2285 }
c19d1205 2286}
b99bd4ef 2287
c19d1205 2288/* Look for the .req directive. This is of the form:
b99bd4ef 2289
c19d1205 2290 new_register_name .req existing_register_name
b99bd4ef 2291
c19d1205 2292 If we find one, or if it looks sufficiently like one that we want to
d929913e 2293 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2294
d929913e 2295static bfd_boolean
c19d1205
ZW
2296create_register_alias (char * newname, char *p)
2297{
2298 struct reg_entry *old;
2299 char *oldname, *nbuf;
2300 size_t nlen;
b99bd4ef 2301
c19d1205
ZW
2302 /* The input scrubber ensures that whitespace after the mnemonic is
2303 collapsed to single spaces. */
2304 oldname = p;
2305 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2306 return FALSE;
b99bd4ef 2307
c19d1205
ZW
2308 oldname += 6;
2309 if (*oldname == '\0')
d929913e 2310 return FALSE;
b99bd4ef 2311
21d799b5 2312 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2313 if (!old)
b99bd4ef 2314 {
c19d1205 2315 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2316 return TRUE;
b99bd4ef
NC
2317 }
2318
c19d1205
ZW
2319 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2320 the desired alias name, and p points to its end. If not, then
2321 the desired alias name is in the global original_case_string. */
2322#ifdef TC_CASE_SENSITIVE
2323 nlen = p - newname;
2324#else
2325 newname = original_case_string;
2326 nlen = strlen (newname);
2327#endif
b99bd4ef 2328
29a2809e 2329 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2330
c19d1205
ZW
2331 /* Create aliases under the new name as stated; an all-lowercase
2332 version of the new name; and an all-uppercase version of the new
2333 name. */
d929913e
NC
2334 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2335 {
2336 for (p = nbuf; *p; p++)
2337 *p = TOUPPER (*p);
c19d1205 2338
d929913e
NC
2339 if (strncmp (nbuf, newname, nlen))
2340 {
2341 /* If this attempt to create an additional alias fails, do not bother
2342 trying to create the all-lower case alias. We will fail and issue
2343 a second, duplicate error message. This situation arises when the
2344 programmer does something like:
2345 foo .req r0
2346 Foo .req r1
2347 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2348 the artificial FOO alias because it has already been created by the
d929913e
NC
2349 first .req. */
2350 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2351 {
2352 free (nbuf);
2353 return TRUE;
2354 }
d929913e 2355 }
c19d1205 2356
d929913e
NC
2357 for (p = nbuf; *p; p++)
2358 *p = TOLOWER (*p);
c19d1205 2359
d929913e
NC
2360 if (strncmp (nbuf, newname, nlen))
2361 insert_reg_alias (nbuf, old->number, old->type);
2362 }
c19d1205 2363
e1fa0163 2364 free (nbuf);
d929913e 2365 return TRUE;
b99bd4ef
NC
2366}
2367
dcbf9037
JB
2368/* Create a Neon typed/indexed register alias using directives, e.g.:
2369 X .dn d5.s32[1]
2370 Y .qn 6.s16
2371 Z .dn d7
2372 T .dn Z[0]
2373 These typed registers can be used instead of the types specified after the
2374 Neon mnemonic, so long as all operands given have types. Types can also be
2375 specified directly, e.g.:
5f4273c7 2376 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2377
c921be7d 2378static bfd_boolean
dcbf9037
JB
2379create_neon_reg_alias (char *newname, char *p)
2380{
2381 enum arm_reg_type basetype;
2382 struct reg_entry *basereg;
2383 struct reg_entry mybasereg;
2384 struct neon_type ntype;
2385 struct neon_typed_alias typeinfo;
12d6b0b7 2386 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2387 int namelen;
5f4273c7 2388
dcbf9037
JB
2389 typeinfo.defined = 0;
2390 typeinfo.eltype.type = NT_invtype;
2391 typeinfo.eltype.size = -1;
2392 typeinfo.index = -1;
5f4273c7 2393
dcbf9037 2394 nameend = p;
5f4273c7 2395
dcbf9037
JB
2396 if (strncmp (p, " .dn ", 5) == 0)
2397 basetype = REG_TYPE_VFD;
2398 else if (strncmp (p, " .qn ", 5) == 0)
2399 basetype = REG_TYPE_NQ;
2400 else
c921be7d 2401 return FALSE;
5f4273c7 2402
dcbf9037 2403 p += 5;
5f4273c7 2404
dcbf9037 2405 if (*p == '\0')
c921be7d 2406 return FALSE;
5f4273c7 2407
dcbf9037
JB
2408 basereg = arm_reg_parse_multi (&p);
2409
2410 if (basereg && basereg->type != basetype)
2411 {
2412 as_bad (_("bad type for register"));
c921be7d 2413 return FALSE;
dcbf9037
JB
2414 }
2415
2416 if (basereg == NULL)
2417 {
2418 expressionS exp;
2419 /* Try parsing as an integer. */
2420 my_get_expression (&exp, &p, GE_NO_PREFIX);
2421 if (exp.X_op != O_constant)
477330fc
RM
2422 {
2423 as_bad (_("expression must be constant"));
2424 return FALSE;
2425 }
dcbf9037
JB
2426 basereg = &mybasereg;
2427 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2428 : exp.X_add_number;
dcbf9037
JB
2429 basereg->neon = 0;
2430 }
2431
2432 if (basereg->neon)
2433 typeinfo = *basereg->neon;
2434
2435 if (parse_neon_type (&ntype, &p) == SUCCESS)
2436 {
2437 /* We got a type. */
2438 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2439 {
2440 as_bad (_("can't redefine the type of a register alias"));
2441 return FALSE;
2442 }
5f4273c7 2443
dcbf9037
JB
2444 typeinfo.defined |= NTA_HASTYPE;
2445 if (ntype.elems != 1)
477330fc
RM
2446 {
2447 as_bad (_("you must specify a single type only"));
2448 return FALSE;
2449 }
dcbf9037
JB
2450 typeinfo.eltype = ntype.el[0];
2451 }
5f4273c7 2452
dcbf9037
JB
2453 if (skip_past_char (&p, '[') == SUCCESS)
2454 {
2455 expressionS exp;
2456 /* We got a scalar index. */
5f4273c7 2457
dcbf9037 2458 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2459 {
2460 as_bad (_("can't redefine the index of a scalar alias"));
2461 return FALSE;
2462 }
5f4273c7 2463
dcbf9037 2464 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2465
dcbf9037 2466 if (exp.X_op != O_constant)
477330fc
RM
2467 {
2468 as_bad (_("scalar index must be constant"));
2469 return FALSE;
2470 }
5f4273c7 2471
dcbf9037
JB
2472 typeinfo.defined |= NTA_HASINDEX;
2473 typeinfo.index = exp.X_add_number;
5f4273c7 2474
dcbf9037 2475 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2476 {
2477 as_bad (_("expecting ]"));
2478 return FALSE;
2479 }
dcbf9037
JB
2480 }
2481
15735687
NS
2482 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2483 the desired alias name, and p points to its end. If not, then
2484 the desired alias name is in the global original_case_string. */
2485#ifdef TC_CASE_SENSITIVE
dcbf9037 2486 namelen = nameend - newname;
15735687
NS
2487#else
2488 newname = original_case_string;
2489 namelen = strlen (newname);
2490#endif
2491
29a2809e 2492 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2493
dcbf9037 2494 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2495 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2496
dcbf9037
JB
2497 /* Insert name in all uppercase. */
2498 for (p = namebuf; *p; p++)
2499 *p = TOUPPER (*p);
5f4273c7 2500
dcbf9037
JB
2501 if (strncmp (namebuf, newname, namelen))
2502 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2503 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2504
dcbf9037
JB
2505 /* Insert name in all lowercase. */
2506 for (p = namebuf; *p; p++)
2507 *p = TOLOWER (*p);
5f4273c7 2508
dcbf9037
JB
2509 if (strncmp (namebuf, newname, namelen))
2510 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2511 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2512
e1fa0163 2513 free (namebuf);
c921be7d 2514 return TRUE;
dcbf9037
JB
2515}
2516
c19d1205
ZW
2517/* Should never be called, as .req goes between the alias and the
2518 register name, not at the beginning of the line. */
c921be7d 2519
b99bd4ef 2520static void
c19d1205 2521s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2522{
c19d1205
ZW
2523 as_bad (_("invalid syntax for .req directive"));
2524}
b99bd4ef 2525
dcbf9037
JB
2526static void
2527s_dn (int a ATTRIBUTE_UNUSED)
2528{
2529 as_bad (_("invalid syntax for .dn directive"));
2530}
2531
2532static void
2533s_qn (int a ATTRIBUTE_UNUSED)
2534{
2535 as_bad (_("invalid syntax for .qn directive"));
2536}
2537
c19d1205
ZW
2538/* The .unreq directive deletes an alias which was previously defined
2539 by .req. For example:
b99bd4ef 2540
c19d1205
ZW
2541 my_alias .req r11
2542 .unreq my_alias */
b99bd4ef
NC
2543
2544static void
c19d1205 2545s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2546{
c19d1205
ZW
2547 char * name;
2548 char saved_char;
b99bd4ef 2549
c19d1205
ZW
2550 name = input_line_pointer;
2551
2552 while (*input_line_pointer != 0
2553 && *input_line_pointer != ' '
2554 && *input_line_pointer != '\n')
2555 ++input_line_pointer;
2556
2557 saved_char = *input_line_pointer;
2558 *input_line_pointer = 0;
2559
2560 if (!*name)
2561 as_bad (_("invalid syntax for .unreq directive"));
2562 else
2563 {
21d799b5 2564 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2565 name);
c19d1205
ZW
2566
2567 if (!reg)
2568 as_bad (_("unknown register alias '%s'"), name);
2569 else if (reg->builtin)
a1727c1a 2570 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2571 name);
2572 else
2573 {
d929913e
NC
2574 char * p;
2575 char * nbuf;
2576
db0bc284 2577 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2578 free ((char *) reg->name);
477330fc
RM
2579 if (reg->neon)
2580 free (reg->neon);
c19d1205 2581 free (reg);
d929913e
NC
2582
2583 /* Also locate the all upper case and all lower case versions.
2584 Do not complain if we cannot find one or the other as it
2585 was probably deleted above. */
5f4273c7 2586
d929913e
NC
2587 nbuf = strdup (name);
2588 for (p = nbuf; *p; p++)
2589 *p = TOUPPER (*p);
21d799b5 2590 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2591 if (reg)
2592 {
db0bc284 2593 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2594 free ((char *) reg->name);
2595 if (reg->neon)
2596 free (reg->neon);
2597 free (reg);
2598 }
2599
2600 for (p = nbuf; *p; p++)
2601 *p = TOLOWER (*p);
21d799b5 2602 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2603 if (reg)
2604 {
db0bc284 2605 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2606 free ((char *) reg->name);
2607 if (reg->neon)
2608 free (reg->neon);
2609 free (reg);
2610 }
2611
2612 free (nbuf);
c19d1205
ZW
2613 }
2614 }
b99bd4ef 2615
c19d1205 2616 *input_line_pointer = saved_char;
b99bd4ef
NC
2617 demand_empty_rest_of_line ();
2618}
2619
c19d1205
ZW
2620/* Directives: Instruction set selection. */
2621
2622#ifdef OBJ_ELF
2623/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2624 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2625 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2626 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2627
cd000bff
DJ
2628/* Create a new mapping symbol for the transition to STATE. */
2629
2630static void
2631make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2632{
a737bd4d 2633 symbolS * symbolP;
c19d1205
ZW
2634 const char * symname;
2635 int type;
b99bd4ef 2636
c19d1205 2637 switch (state)
b99bd4ef 2638 {
c19d1205
ZW
2639 case MAP_DATA:
2640 symname = "$d";
2641 type = BSF_NO_FLAGS;
2642 break;
2643 case MAP_ARM:
2644 symname = "$a";
2645 type = BSF_NO_FLAGS;
2646 break;
2647 case MAP_THUMB:
2648 symname = "$t";
2649 type = BSF_NO_FLAGS;
2650 break;
c19d1205
ZW
2651 default:
2652 abort ();
2653 }
2654
cd000bff 2655 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2656 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2657
2658 switch (state)
2659 {
2660 case MAP_ARM:
2661 THUMB_SET_FUNC (symbolP, 0);
2662 ARM_SET_THUMB (symbolP, 0);
2663 ARM_SET_INTERWORK (symbolP, support_interwork);
2664 break;
2665
2666 case MAP_THUMB:
2667 THUMB_SET_FUNC (symbolP, 1);
2668 ARM_SET_THUMB (symbolP, 1);
2669 ARM_SET_INTERWORK (symbolP, support_interwork);
2670 break;
2671
2672 case MAP_DATA:
2673 default:
cd000bff
DJ
2674 break;
2675 }
2676
2677 /* Save the mapping symbols for future reference. Also check that
2678 we do not place two mapping symbols at the same offset within a
2679 frag. We'll handle overlap between frags in
2de7820f
JZ
2680 check_mapping_symbols.
2681
2682 If .fill or other data filling directive generates zero sized data,
2683 the mapping symbol for the following code will have the same value
2684 as the one generated for the data filling directive. In this case,
2685 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2686 if (value == 0)
2687 {
2de7820f
JZ
2688 if (frag->tc_frag_data.first_map != NULL)
2689 {
2690 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2691 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2692 }
cd000bff
DJ
2693 frag->tc_frag_data.first_map = symbolP;
2694 }
2695 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2696 {
2697 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2698 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2699 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2700 }
cd000bff
DJ
2701 frag->tc_frag_data.last_map = symbolP;
2702}
2703
2704/* We must sometimes convert a region marked as code to data during
2705 code alignment, if an odd number of bytes have to be padded. The
2706 code mapping symbol is pushed to an aligned address. */
2707
2708static void
2709insert_data_mapping_symbol (enum mstate state,
2710 valueT value, fragS *frag, offsetT bytes)
2711{
2712 /* If there was already a mapping symbol, remove it. */
2713 if (frag->tc_frag_data.last_map != NULL
2714 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2715 {
2716 symbolS *symp = frag->tc_frag_data.last_map;
2717
2718 if (value == 0)
2719 {
2720 know (frag->tc_frag_data.first_map == symp);
2721 frag->tc_frag_data.first_map = NULL;
2722 }
2723 frag->tc_frag_data.last_map = NULL;
2724 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2725 }
cd000bff
DJ
2726
2727 make_mapping_symbol (MAP_DATA, value, frag);
2728 make_mapping_symbol (state, value + bytes, frag);
2729}
2730
2731static void mapping_state_2 (enum mstate state, int max_chars);
2732
2733/* Set the mapping state to STATE. Only call this when about to
2734 emit some STATE bytes to the file. */
2735
4e9aaefb 2736#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2737void
2738mapping_state (enum mstate state)
2739{
940b5ce0
DJ
2740 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2741
cd000bff
DJ
2742 if (mapstate == state)
2743 /* The mapping symbol has already been emitted.
2744 There is nothing else to do. */
2745 return;
49c62a33
NC
2746
2747 if (state == MAP_ARM || state == MAP_THUMB)
2748 /* PR gas/12931
2749 All ARM instructions require 4-byte alignment.
2750 (Almost) all Thumb instructions require 2-byte alignment.
2751
2752 When emitting instructions into any section, mark the section
2753 appropriately.
2754
2755 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2756 but themselves require 2-byte alignment; this applies to some
33eaf5de 2757 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2758 literal pool generation or an explicit .align >=2, both of
2759 which will cause the section to me marked with sufficient
2760 alignment. Thus, we don't handle those cases here. */
2761 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2762
2763 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2764 /* This case will be evaluated later. */
cd000bff 2765 return;
cd000bff
DJ
2766
2767 mapping_state_2 (state, 0);
cd000bff
DJ
2768}
2769
2770/* Same as mapping_state, but MAX_CHARS bytes have already been
2771 allocated. Put the mapping symbol that far back. */
2772
2773static void
2774mapping_state_2 (enum mstate state, int max_chars)
2775{
940b5ce0
DJ
2776 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2777
2778 if (!SEG_NORMAL (now_seg))
2779 return;
2780
cd000bff
DJ
2781 if (mapstate == state)
2782 /* The mapping symbol has already been emitted.
2783 There is nothing else to do. */
2784 return;
2785
4e9aaefb
SA
2786 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2787 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2788 {
2789 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2790 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2791
2792 if (add_symbol)
2793 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2794 }
2795
cd000bff
DJ
2796 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2797 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2798}
4e9aaefb 2799#undef TRANSITION
c19d1205 2800#else
d3106081
NS
2801#define mapping_state(x) ((void)0)
2802#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2803#endif
2804
2805/* Find the real, Thumb encoded start of a Thumb function. */
2806
4343666d 2807#ifdef OBJ_COFF
c19d1205
ZW
2808static symbolS *
2809find_real_start (symbolS * symbolP)
2810{
2811 char * real_start;
2812 const char * name = S_GET_NAME (symbolP);
2813 symbolS * new_target;
2814
2815 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2816#define STUB_NAME ".real_start_of"
2817
2818 if (name == NULL)
2819 abort ();
2820
37f6032b
ZW
2821 /* The compiler may generate BL instructions to local labels because
2822 it needs to perform a branch to a far away location. These labels
2823 do not have a corresponding ".real_start_of" label. We check
2824 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2825 the ".real_start_of" convention for nonlocal branches. */
2826 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2827 return symbolP;
2828
e1fa0163 2829 real_start = concat (STUB_NAME, name, NULL);
c19d1205 2830 new_target = symbol_find (real_start);
e1fa0163 2831 free (real_start);
c19d1205
ZW
2832
2833 if (new_target == NULL)
2834 {
bd3ba5d1 2835 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2836 new_target = symbolP;
2837 }
2838
c19d1205
ZW
2839 return new_target;
2840}
4343666d 2841#endif
c19d1205
ZW
2842
2843static void
2844opcode_select (int width)
2845{
2846 switch (width)
2847 {
2848 case 16:
2849 if (! thumb_mode)
2850 {
e74cfd16 2851 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2852 as_bad (_("selected processor does not support THUMB opcodes"));
2853
2854 thumb_mode = 1;
2855 /* No need to force the alignment, since we will have been
2856 coming from ARM mode, which is word-aligned. */
2857 record_alignment (now_seg, 1);
2858 }
c19d1205
ZW
2859 break;
2860
2861 case 32:
2862 if (thumb_mode)
2863 {
e74cfd16 2864 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2865 as_bad (_("selected processor does not support ARM opcodes"));
2866
2867 thumb_mode = 0;
2868
2869 if (!need_pass_2)
2870 frag_align (2, 0, 0);
2871
2872 record_alignment (now_seg, 1);
2873 }
c19d1205
ZW
2874 break;
2875
2876 default:
2877 as_bad (_("invalid instruction size selected (%d)"), width);
2878 }
2879}
2880
2881static void
2882s_arm (int ignore ATTRIBUTE_UNUSED)
2883{
2884 opcode_select (32);
2885 demand_empty_rest_of_line ();
2886}
2887
2888static void
2889s_thumb (int ignore ATTRIBUTE_UNUSED)
2890{
2891 opcode_select (16);
2892 demand_empty_rest_of_line ();
2893}
2894
2895static void
2896s_code (int unused ATTRIBUTE_UNUSED)
2897{
2898 int temp;
2899
2900 temp = get_absolute_expression ();
2901 switch (temp)
2902 {
2903 case 16:
2904 case 32:
2905 opcode_select (temp);
2906 break;
2907
2908 default:
2909 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2910 }
2911}
2912
2913static void
2914s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2915{
2916 /* If we are not already in thumb mode go into it, EVEN if
2917 the target processor does not support thumb instructions.
2918 This is used by gcc/config/arm/lib1funcs.asm for example
2919 to compile interworking support functions even if the
2920 target processor should not support interworking. */
2921 if (! thumb_mode)
2922 {
2923 thumb_mode = 2;
2924 record_alignment (now_seg, 1);
2925 }
2926
2927 demand_empty_rest_of_line ();
2928}
2929
2930static void
2931s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2932{
2933 s_thumb (0);
2934
2935 /* The following label is the name/address of the start of a Thumb function.
2936 We need to know this for the interworking support. */
2937 label_is_thumb_function_name = TRUE;
2938}
2939
2940/* Perform a .set directive, but also mark the alias as
2941 being a thumb function. */
2942
2943static void
2944s_thumb_set (int equiv)
2945{
2946 /* XXX the following is a duplicate of the code for s_set() in read.c
2947 We cannot just call that code as we need to get at the symbol that
2948 is created. */
2949 char * name;
2950 char delim;
2951 char * end_name;
2952 symbolS * symbolP;
2953
2954 /* Especial apologies for the random logic:
2955 This just grew, and could be parsed much more simply!
2956 Dean - in haste. */
d02603dc 2957 delim = get_symbol_name (& name);
c19d1205 2958 end_name = input_line_pointer;
d02603dc 2959 (void) restore_line_pointer (delim);
c19d1205
ZW
2960
2961 if (*input_line_pointer != ',')
2962 {
2963 *end_name = 0;
2964 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2965 *end_name = delim;
2966 ignore_rest_of_line ();
2967 return;
2968 }
2969
2970 input_line_pointer++;
2971 *end_name = 0;
2972
2973 if (name[0] == '.' && name[1] == '\0')
2974 {
2975 /* XXX - this should not happen to .thumb_set. */
2976 abort ();
2977 }
2978
2979 if ((symbolP = symbol_find (name)) == NULL
2980 && (symbolP = md_undefined_symbol (name)) == NULL)
2981 {
2982#ifndef NO_LISTING
2983 /* When doing symbol listings, play games with dummy fragments living
2984 outside the normal fragment chain to record the file and line info
c19d1205 2985 for this symbol. */
b99bd4ef
NC
2986 if (listing & LISTING_SYMBOLS)
2987 {
2988 extern struct list_info_struct * listing_tail;
21d799b5 2989 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2990
2991 memset (dummy_frag, 0, sizeof (fragS));
2992 dummy_frag->fr_type = rs_fill;
2993 dummy_frag->line = listing_tail;
2994 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2995 dummy_frag->fr_symbol = symbolP;
2996 }
2997 else
2998#endif
2999 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3000
3001#ifdef OBJ_COFF
3002 /* "set" symbols are local unless otherwise specified. */
3003 SF_SET_LOCAL (symbolP);
3004#endif /* OBJ_COFF */
3005 } /* Make a new symbol. */
3006
3007 symbol_table_insert (symbolP);
3008
3009 * end_name = delim;
3010
3011 if (equiv
3012 && S_IS_DEFINED (symbolP)
3013 && S_GET_SEGMENT (symbolP) != reg_section)
3014 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3015
3016 pseudo_set (symbolP);
3017
3018 demand_empty_rest_of_line ();
3019
c19d1205 3020 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3021
3022 THUMB_SET_FUNC (symbolP, 1);
3023 ARM_SET_THUMB (symbolP, 1);
3024#if defined OBJ_ELF || defined OBJ_COFF
3025 ARM_SET_INTERWORK (symbolP, support_interwork);
3026#endif
3027}
3028
c19d1205 3029/* Directives: Mode selection. */
b99bd4ef 3030
c19d1205
ZW
3031/* .syntax [unified|divided] - choose the new unified syntax
3032 (same for Arm and Thumb encoding, modulo slight differences in what
3033 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3034static void
c19d1205 3035s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3036{
c19d1205
ZW
3037 char *name, delim;
3038
d02603dc 3039 delim = get_symbol_name (& name);
c19d1205
ZW
3040
3041 if (!strcasecmp (name, "unified"))
3042 unified_syntax = TRUE;
3043 else if (!strcasecmp (name, "divided"))
3044 unified_syntax = FALSE;
3045 else
3046 {
3047 as_bad (_("unrecognized syntax mode \"%s\""), name);
3048 return;
3049 }
d02603dc 3050 (void) restore_line_pointer (delim);
b99bd4ef
NC
3051 demand_empty_rest_of_line ();
3052}
3053
c19d1205
ZW
3054/* Directives: sectioning and alignment. */
3055
c19d1205
ZW
3056static void
3057s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3058{
c19d1205
ZW
3059 /* We don't support putting frags in the BSS segment, we fake it by
3060 marking in_bss, then looking at s_skip for clues. */
3061 subseg_set (bss_section, 0);
3062 demand_empty_rest_of_line ();
cd000bff
DJ
3063
3064#ifdef md_elf_section_change_hook
3065 md_elf_section_change_hook ();
3066#endif
c19d1205 3067}
b99bd4ef 3068
c19d1205
ZW
3069static void
3070s_even (int ignore ATTRIBUTE_UNUSED)
3071{
3072 /* Never make frag if expect extra pass. */
3073 if (!need_pass_2)
3074 frag_align (1, 0, 0);
b99bd4ef 3075
c19d1205 3076 record_alignment (now_seg, 1);
b99bd4ef 3077
c19d1205 3078 demand_empty_rest_of_line ();
b99bd4ef
NC
3079}
3080
2e6976a8
DG
3081/* Directives: CodeComposer Studio. */
3082
3083/* .ref (for CodeComposer Studio syntax only). */
3084static void
3085s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3086{
3087 if (codecomposer_syntax)
3088 ignore_rest_of_line ();
3089 else
3090 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3091}
3092
3093/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3094 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3095static void
3096asmfunc_debug (const char * name)
3097{
3098 static const char * last_name = NULL;
3099
3100 if (name != NULL)
3101 {
3102 gas_assert (last_name == NULL);
3103 last_name = name;
3104
3105 if (debug_type == DEBUG_STABS)
3106 stabs_generate_asm_func (name, name);
3107 }
3108 else
3109 {
3110 gas_assert (last_name != NULL);
3111
3112 if (debug_type == DEBUG_STABS)
3113 stabs_generate_asm_endfunc (last_name, last_name);
3114
3115 last_name = NULL;
3116 }
3117}
3118
3119static void
3120s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3121{
3122 if (codecomposer_syntax)
3123 {
3124 switch (asmfunc_state)
3125 {
3126 case OUTSIDE_ASMFUNC:
3127 asmfunc_state = WAITING_ASMFUNC_NAME;
3128 break;
3129
3130 case WAITING_ASMFUNC_NAME:
3131 as_bad (_(".asmfunc repeated."));
3132 break;
3133
3134 case WAITING_ENDASMFUNC:
3135 as_bad (_(".asmfunc without function."));
3136 break;
3137 }
3138 demand_empty_rest_of_line ();
3139 }
3140 else
3141 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3142}
3143
3144static void
3145s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3146{
3147 if (codecomposer_syntax)
3148 {
3149 switch (asmfunc_state)
3150 {
3151 case OUTSIDE_ASMFUNC:
3152 as_bad (_(".endasmfunc without a .asmfunc."));
3153 break;
3154
3155 case WAITING_ASMFUNC_NAME:
3156 as_bad (_(".endasmfunc without function."));
3157 break;
3158
3159 case WAITING_ENDASMFUNC:
3160 asmfunc_state = OUTSIDE_ASMFUNC;
3161 asmfunc_debug (NULL);
3162 break;
3163 }
3164 demand_empty_rest_of_line ();
3165 }
3166 else
3167 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3168}
3169
3170static void
3171s_ccs_def (int name)
3172{
3173 if (codecomposer_syntax)
3174 s_globl (name);
3175 else
3176 as_bad (_(".def pseudo-op only available with -mccs flag."));
3177}
3178
c19d1205 3179/* Directives: Literal pools. */
a737bd4d 3180
c19d1205
ZW
3181static literal_pool *
3182find_literal_pool (void)
a737bd4d 3183{
c19d1205 3184 literal_pool * pool;
a737bd4d 3185
c19d1205 3186 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3187 {
c19d1205
ZW
3188 if (pool->section == now_seg
3189 && pool->sub_section == now_subseg)
3190 break;
a737bd4d
NC
3191 }
3192
c19d1205 3193 return pool;
a737bd4d
NC
3194}
3195
c19d1205
ZW
3196static literal_pool *
3197find_or_make_literal_pool (void)
a737bd4d 3198{
c19d1205
ZW
3199 /* Next literal pool ID number. */
3200 static unsigned int latest_pool_num = 1;
3201 literal_pool * pool;
a737bd4d 3202
c19d1205 3203 pool = find_literal_pool ();
a737bd4d 3204
c19d1205 3205 if (pool == NULL)
a737bd4d 3206 {
c19d1205 3207 /* Create a new pool. */
325801bd 3208 pool = XNEW (literal_pool);
c19d1205
ZW
3209 if (! pool)
3210 return NULL;
a737bd4d 3211
c19d1205
ZW
3212 pool->next_free_entry = 0;
3213 pool->section = now_seg;
3214 pool->sub_section = now_subseg;
3215 pool->next = list_of_pools;
3216 pool->symbol = NULL;
8335d6aa 3217 pool->alignment = 2;
c19d1205
ZW
3218
3219 /* Add it to the list. */
3220 list_of_pools = pool;
a737bd4d 3221 }
a737bd4d 3222
c19d1205
ZW
3223 /* New pools, and emptied pools, will have a NULL symbol. */
3224 if (pool->symbol == NULL)
a737bd4d 3225 {
c19d1205
ZW
3226 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3227 (valueT) 0, &zero_address_frag);
3228 pool->id = latest_pool_num ++;
a737bd4d
NC
3229 }
3230
c19d1205
ZW
3231 /* Done. */
3232 return pool;
a737bd4d
NC
3233}
3234
c19d1205 3235/* Add the literal in the global 'inst'
5f4273c7 3236 structure to the relevant literal pool. */
b99bd4ef
NC
3237
3238static int
8335d6aa 3239add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3240{
8335d6aa
JW
3241#define PADDING_SLOT 0x1
3242#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3243 literal_pool * pool;
8335d6aa
JW
3244 unsigned int entry, pool_size = 0;
3245 bfd_boolean padding_slot_p = FALSE;
e56c722b 3246 unsigned imm1 = 0;
8335d6aa
JW
3247 unsigned imm2 = 0;
3248
3249 if (nbytes == 8)
3250 {
3251 imm1 = inst.operands[1].imm;
3252 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3253 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3254 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3255 if (target_big_endian)
3256 {
3257 imm1 = imm2;
3258 imm2 = inst.operands[1].imm;
3259 }
3260 }
b99bd4ef 3261
c19d1205
ZW
3262 pool = find_or_make_literal_pool ();
3263
3264 /* Check if this literal value is already in the pool. */
3265 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3266 {
8335d6aa
JW
3267 if (nbytes == 4)
3268 {
e2b0ab59
AV
3269 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3270 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3271 && (pool->literals[entry].X_add_number
e2b0ab59 3272 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3273 && (pool->literals[entry].X_md == nbytes)
3274 && (pool->literals[entry].X_unsigned
e2b0ab59 3275 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3276 break;
3277
e2b0ab59
AV
3278 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3279 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3280 && (pool->literals[entry].X_add_number
e2b0ab59 3281 == inst.relocs[0].exp.X_add_number)
8335d6aa 3282 && (pool->literals[entry].X_add_symbol
e2b0ab59 3283 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3284 && (pool->literals[entry].X_op_symbol
e2b0ab59 3285 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3286 && (pool->literals[entry].X_md == nbytes))
3287 break;
3288 }
3289 else if ((nbytes == 8)
3290 && !(pool_size & 0x7)
3291 && ((entry + 1) != pool->next_free_entry)
3292 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3293 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3294 && (pool->literals[entry].X_unsigned
e2b0ab59 3295 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3296 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3297 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3298 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3299 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3300 break;
3301
8335d6aa
JW
3302 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3303 if (padding_slot_p && (nbytes == 4))
c19d1205 3304 break;
8335d6aa
JW
3305
3306 pool_size += 4;
b99bd4ef
NC
3307 }
3308
c19d1205
ZW
3309 /* Do we need to create a new entry? */
3310 if (entry == pool->next_free_entry)
3311 {
3312 if (entry >= MAX_LITERAL_POOL_SIZE)
3313 {
3314 inst.error = _("literal pool overflow");
3315 return FAIL;
3316 }
3317
8335d6aa
JW
3318 if (nbytes == 8)
3319 {
3320 /* For 8-byte entries, we align to an 8-byte boundary,
3321 and split it into two 4-byte entries, because on 32-bit
3322 host, 8-byte constants are treated as big num, thus
3323 saved in "generic_bignum" which will be overwritten
3324 by later assignments.
3325
3326 We also need to make sure there is enough space for
3327 the split.
3328
3329 We also check to make sure the literal operand is a
3330 constant number. */
e2b0ab59
AV
3331 if (!(inst.relocs[0].exp.X_op == O_constant
3332 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3333 {
3334 inst.error = _("invalid type for literal pool");
3335 return FAIL;
3336 }
3337 else if (pool_size & 0x7)
3338 {
3339 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3340 {
3341 inst.error = _("literal pool overflow");
3342 return FAIL;
3343 }
3344
e2b0ab59 3345 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3346 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3347 pool->literals[entry].X_add_number = 0;
3348 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3349 pool->next_free_entry += 1;
3350 pool_size += 4;
3351 }
3352 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3353 {
3354 inst.error = _("literal pool overflow");
3355 return FAIL;
3356 }
3357
e2b0ab59 3358 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3359 pool->literals[entry].X_op = O_constant;
3360 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3361 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3362 pool->literals[entry++].X_md = 4;
e2b0ab59 3363 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3364 pool->literals[entry].X_op = O_constant;
3365 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3366 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3367 pool->literals[entry].X_md = 4;
3368 pool->alignment = 3;
3369 pool->next_free_entry += 1;
3370 }
3371 else
3372 {
e2b0ab59 3373 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3374 pool->literals[entry].X_md = 4;
3375 }
3376
a8040cf2
NC
3377#ifdef OBJ_ELF
3378 /* PR ld/12974: Record the location of the first source line to reference
3379 this entry in the literal pool. If it turns out during linking that the
3380 symbol does not exist we will be able to give an accurate line number for
3381 the (first use of the) missing reference. */
3382 if (debug_type == DEBUG_DWARF2)
3383 dwarf2_where (pool->locs + entry);
3384#endif
c19d1205
ZW
3385 pool->next_free_entry += 1;
3386 }
8335d6aa
JW
3387 else if (padding_slot_p)
3388 {
e2b0ab59 3389 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3390 pool->literals[entry].X_md = nbytes;
3391 }
b99bd4ef 3392
e2b0ab59
AV
3393 inst.relocs[0].exp.X_op = O_symbol;
3394 inst.relocs[0].exp.X_add_number = pool_size;
3395 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3396
c19d1205 3397 return SUCCESS;
b99bd4ef
NC
3398}
3399
2e6976a8 3400bfd_boolean
2e57ce7b 3401tc_start_label_without_colon (void)
2e6976a8
DG
3402{
3403 bfd_boolean ret = TRUE;
3404
3405 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3406 {
2e57ce7b 3407 const char *label = input_line_pointer;
2e6976a8
DG
3408
3409 while (!is_end_of_line[(int) label[-1]])
3410 --label;
3411
3412 if (*label == '.')
3413 {
3414 as_bad (_("Invalid label '%s'"), label);
3415 ret = FALSE;
3416 }
3417
3418 asmfunc_debug (label);
3419
3420 asmfunc_state = WAITING_ENDASMFUNC;
3421 }
3422
3423 return ret;
3424}
3425
c19d1205 3426/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3427 a later date assign it a value. That's what these functions do. */
e16bb312 3428
c19d1205
ZW
3429static void
3430symbol_locate (symbolS * symbolP,
3431 const char * name, /* It is copied, the caller can modify. */
3432 segT segment, /* Segment identifier (SEG_<something>). */
3433 valueT valu, /* Symbol value. */
3434 fragS * frag) /* Associated fragment. */
3435{
e57e6ddc 3436 size_t name_length;
c19d1205 3437 char * preserved_copy_of_name;
e16bb312 3438
c19d1205
ZW
3439 name_length = strlen (name) + 1; /* +1 for \0. */
3440 obstack_grow (&notes, name, name_length);
21d799b5 3441 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3442
c19d1205
ZW
3443#ifdef tc_canonicalize_symbol_name
3444 preserved_copy_of_name =
3445 tc_canonicalize_symbol_name (preserved_copy_of_name);
3446#endif
b99bd4ef 3447
c19d1205 3448 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3449
c19d1205
ZW
3450 S_SET_SEGMENT (symbolP, segment);
3451 S_SET_VALUE (symbolP, valu);
3452 symbol_clear_list_pointers (symbolP);
b99bd4ef 3453
c19d1205 3454 symbol_set_frag (symbolP, frag);
b99bd4ef 3455
c19d1205
ZW
3456 /* Link to end of symbol chain. */
3457 {
3458 extern int symbol_table_frozen;
b99bd4ef 3459
c19d1205
ZW
3460 if (symbol_table_frozen)
3461 abort ();
3462 }
b99bd4ef 3463
c19d1205 3464 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3465
c19d1205 3466 obj_symbol_new_hook (symbolP);
b99bd4ef 3467
c19d1205
ZW
3468#ifdef tc_symbol_new_hook
3469 tc_symbol_new_hook (symbolP);
3470#endif
3471
3472#ifdef DEBUG_SYMS
3473 verify_symbol_chain (symbol_rootP, symbol_lastP);
3474#endif /* DEBUG_SYMS */
b99bd4ef
NC
3475}
3476
c19d1205
ZW
3477static void
3478s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3479{
c19d1205
ZW
3480 unsigned int entry;
3481 literal_pool * pool;
3482 char sym_name[20];
b99bd4ef 3483
c19d1205
ZW
3484 pool = find_literal_pool ();
3485 if (pool == NULL
3486 || pool->symbol == NULL
3487 || pool->next_free_entry == 0)
3488 return;
b99bd4ef 3489
c19d1205
ZW
3490 /* Align pool as you have word accesses.
3491 Only make a frag if we have to. */
3492 if (!need_pass_2)
8335d6aa 3493 frag_align (pool->alignment, 0, 0);
b99bd4ef 3494
c19d1205 3495 record_alignment (now_seg, 2);
b99bd4ef 3496
aaca88ef 3497#ifdef OBJ_ELF
47fc6e36
WN
3498 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3499 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3500#endif
c19d1205 3501 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3502
c19d1205
ZW
3503 symbol_locate (pool->symbol, sym_name, now_seg,
3504 (valueT) frag_now_fix (), frag_now);
3505 symbol_table_insert (pool->symbol);
b99bd4ef 3506
c19d1205 3507 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3508
c19d1205
ZW
3509#if defined OBJ_COFF || defined OBJ_ELF
3510 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3511#endif
6c43fab6 3512
c19d1205 3513 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3514 {
3515#ifdef OBJ_ELF
3516 if (debug_type == DEBUG_DWARF2)
3517 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3518#endif
3519 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3520 emit_expr (&(pool->literals[entry]),
3521 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3522 }
b99bd4ef 3523
c19d1205
ZW
3524 /* Mark the pool as empty. */
3525 pool->next_free_entry = 0;
3526 pool->symbol = NULL;
b99bd4ef
NC
3527}
3528
c19d1205
ZW
3529#ifdef OBJ_ELF
3530/* Forward declarations for functions below, in the MD interface
3531 section. */
3532static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3533static valueT create_unwind_entry (int);
3534static void start_unwind_section (const segT, int);
3535static void add_unwind_opcode (valueT, int);
3536static void flush_pending_unwind (void);
b99bd4ef 3537
c19d1205 3538/* Directives: Data. */
b99bd4ef 3539
c19d1205
ZW
3540static void
3541s_arm_elf_cons (int nbytes)
3542{
3543 expressionS exp;
b99bd4ef 3544
c19d1205
ZW
3545#ifdef md_flush_pending_output
3546 md_flush_pending_output ();
3547#endif
b99bd4ef 3548
c19d1205 3549 if (is_it_end_of_statement ())
b99bd4ef 3550 {
c19d1205
ZW
3551 demand_empty_rest_of_line ();
3552 return;
b99bd4ef
NC
3553 }
3554
c19d1205
ZW
3555#ifdef md_cons_align
3556 md_cons_align (nbytes);
3557#endif
b99bd4ef 3558
c19d1205
ZW
3559 mapping_state (MAP_DATA);
3560 do
b99bd4ef 3561 {
c19d1205
ZW
3562 int reloc;
3563 char *base = input_line_pointer;
b99bd4ef 3564
c19d1205 3565 expression (& exp);
b99bd4ef 3566
c19d1205
ZW
3567 if (exp.X_op != O_symbol)
3568 emit_expr (&exp, (unsigned int) nbytes);
3569 else
3570 {
3571 char *before_reloc = input_line_pointer;
3572 reloc = parse_reloc (&input_line_pointer);
3573 if (reloc == -1)
3574 {
3575 as_bad (_("unrecognized relocation suffix"));
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 else if (reloc == BFD_RELOC_UNUSED)
3580 emit_expr (&exp, (unsigned int) nbytes);
3581 else
3582 {
21d799b5 3583 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3584 bfd_reloc_type_lookup (stdoutput,
3585 (bfd_reloc_code_real_type) reloc);
c19d1205 3586 int size = bfd_get_reloc_size (howto);
b99bd4ef 3587
2fc8bdac
ZW
3588 if (reloc == BFD_RELOC_ARM_PLT32)
3589 {
3590 as_bad (_("(plt) is only valid on branch targets"));
3591 reloc = BFD_RELOC_UNUSED;
3592 size = 0;
3593 }
3594
c19d1205 3595 if (size > nbytes)
992a06ee
AM
3596 as_bad (ngettext ("%s relocations do not fit in %d byte",
3597 "%s relocations do not fit in %d bytes",
3598 nbytes),
c19d1205
ZW
3599 howto->name, nbytes);
3600 else
3601 {
3602 /* We've parsed an expression stopping at O_symbol.
3603 But there may be more expression left now that we
3604 have parsed the relocation marker. Parse it again.
3605 XXX Surely there is a cleaner way to do this. */
3606 char *p = input_line_pointer;
3607 int offset;
325801bd 3608 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3609
c19d1205
ZW
3610 memcpy (save_buf, base, input_line_pointer - base);
3611 memmove (base + (input_line_pointer - before_reloc),
3612 base, before_reloc - base);
3613
3614 input_line_pointer = base + (input_line_pointer-before_reloc);
3615 expression (&exp);
3616 memcpy (base, save_buf, p - base);
3617
3618 offset = nbytes - size;
4b1a927e
AM
3619 p = frag_more (nbytes);
3620 memset (p, 0, nbytes);
c19d1205 3621 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3622 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3623 free (save_buf);
c19d1205
ZW
3624 }
3625 }
3626 }
b99bd4ef 3627 }
c19d1205 3628 while (*input_line_pointer++ == ',');
b99bd4ef 3629
c19d1205
ZW
3630 /* Put terminator back into stream. */
3631 input_line_pointer --;
3632 demand_empty_rest_of_line ();
b99bd4ef
NC
3633}
3634
c921be7d
NC
3635/* Emit an expression containing a 32-bit thumb instruction.
3636 Implementation based on put_thumb32_insn. */
3637
3638static void
3639emit_thumb32_expr (expressionS * exp)
3640{
3641 expressionS exp_high = *exp;
3642
3643 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3644 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3645 exp->X_add_number &= 0xffff;
3646 emit_expr (exp, (unsigned int) THUMB_SIZE);
3647}
3648
3649/* Guess the instruction size based on the opcode. */
3650
3651static int
3652thumb_insn_size (int opcode)
3653{
3654 if ((unsigned int) opcode < 0xe800u)
3655 return 2;
3656 else if ((unsigned int) opcode >= 0xe8000000u)
3657 return 4;
3658 else
3659 return 0;
3660}
3661
3662static bfd_boolean
3663emit_insn (expressionS *exp, int nbytes)
3664{
3665 int size = 0;
3666
3667 if (exp->X_op == O_constant)
3668 {
3669 size = nbytes;
3670
3671 if (size == 0)
3672 size = thumb_insn_size (exp->X_add_number);
3673
3674 if (size != 0)
3675 {
3676 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3677 {
3678 as_bad (_(".inst.n operand too big. "\
3679 "Use .inst.w instead"));
3680 size = 0;
3681 }
3682 else
3683 {
3684 if (now_it.state == AUTOMATIC_IT_BLOCK)
3685 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3686 else
3687 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3688
3689 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3690 emit_thumb32_expr (exp);
3691 else
3692 emit_expr (exp, (unsigned int) size);
3693
3694 it_fsm_post_encode ();
3695 }
3696 }
3697 else
3698 as_bad (_("cannot determine Thumb instruction size. " \
3699 "Use .inst.n/.inst.w instead"));
3700 }
3701 else
3702 as_bad (_("constant expression required"));
3703
3704 return (size != 0);
3705}
3706
3707/* Like s_arm_elf_cons but do not use md_cons_align and
3708 set the mapping state to MAP_ARM/MAP_THUMB. */
3709
3710static void
3711s_arm_elf_inst (int nbytes)
3712{
3713 if (is_it_end_of_statement ())
3714 {
3715 demand_empty_rest_of_line ();
3716 return;
3717 }
3718
3719 /* Calling mapping_state () here will not change ARM/THUMB,
3720 but will ensure not to be in DATA state. */
3721
3722 if (thumb_mode)
3723 mapping_state (MAP_THUMB);
3724 else
3725 {
3726 if (nbytes != 0)
3727 {
3728 as_bad (_("width suffixes are invalid in ARM mode"));
3729 ignore_rest_of_line ();
3730 return;
3731 }
3732
3733 nbytes = 4;
3734
3735 mapping_state (MAP_ARM);
3736 }
3737
3738 do
3739 {
3740 expressionS exp;
3741
3742 expression (& exp);
3743
3744 if (! emit_insn (& exp, nbytes))
3745 {
3746 ignore_rest_of_line ();
3747 return;
3748 }
3749 }
3750 while (*input_line_pointer++ == ',');
3751
3752 /* Put terminator back into stream. */
3753 input_line_pointer --;
3754 demand_empty_rest_of_line ();
3755}
b99bd4ef 3756
c19d1205 3757/* Parse a .rel31 directive. */
b99bd4ef 3758
c19d1205
ZW
3759static void
3760s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3761{
3762 expressionS exp;
3763 char *p;
3764 valueT highbit;
b99bd4ef 3765
c19d1205
ZW
3766 highbit = 0;
3767 if (*input_line_pointer == '1')
3768 highbit = 0x80000000;
3769 else if (*input_line_pointer != '0')
3770 as_bad (_("expected 0 or 1"));
b99bd4ef 3771
c19d1205
ZW
3772 input_line_pointer++;
3773 if (*input_line_pointer != ',')
3774 as_bad (_("missing comma"));
3775 input_line_pointer++;
b99bd4ef 3776
c19d1205
ZW
3777#ifdef md_flush_pending_output
3778 md_flush_pending_output ();
3779#endif
b99bd4ef 3780
c19d1205
ZW
3781#ifdef md_cons_align
3782 md_cons_align (4);
3783#endif
b99bd4ef 3784
c19d1205 3785 mapping_state (MAP_DATA);
b99bd4ef 3786
c19d1205 3787 expression (&exp);
b99bd4ef 3788
c19d1205
ZW
3789 p = frag_more (4);
3790 md_number_to_chars (p, highbit, 4);
3791 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3792 BFD_RELOC_ARM_PREL31);
b99bd4ef 3793
c19d1205 3794 demand_empty_rest_of_line ();
b99bd4ef
NC
3795}
3796
c19d1205 3797/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3798
c19d1205 3799/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3800
c19d1205
ZW
3801static void
3802s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3803{
3804 demand_empty_rest_of_line ();
921e5f0a
PB
3805 if (unwind.proc_start)
3806 {
c921be7d 3807 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3808 return;
3809 }
3810
c19d1205
ZW
3811 /* Mark the start of the function. */
3812 unwind.proc_start = expr_build_dot ();
b99bd4ef 3813
c19d1205
ZW
3814 /* Reset the rest of the unwind info. */
3815 unwind.opcode_count = 0;
3816 unwind.table_entry = NULL;
3817 unwind.personality_routine = NULL;
3818 unwind.personality_index = -1;
3819 unwind.frame_size = 0;
3820 unwind.fp_offset = 0;
fdfde340 3821 unwind.fp_reg = REG_SP;
c19d1205
ZW
3822 unwind.fp_used = 0;
3823 unwind.sp_restored = 0;
3824}
b99bd4ef 3825
b99bd4ef 3826
c19d1205
ZW
3827/* Parse a handlerdata directive. Creates the exception handling table entry
3828 for the function. */
b99bd4ef 3829
c19d1205
ZW
3830static void
3831s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3832{
3833 demand_empty_rest_of_line ();
921e5f0a 3834 if (!unwind.proc_start)
c921be7d 3835 as_bad (MISSING_FNSTART);
921e5f0a 3836
c19d1205 3837 if (unwind.table_entry)
6decc662 3838 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3839
c19d1205
ZW
3840 create_unwind_entry (1);
3841}
a737bd4d 3842
c19d1205 3843/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3844
c19d1205
ZW
3845static void
3846s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3847{
3848 long where;
3849 char *ptr;
3850 valueT val;
940b5ce0 3851 unsigned int marked_pr_dependency;
f02232aa 3852
c19d1205 3853 demand_empty_rest_of_line ();
f02232aa 3854
921e5f0a
PB
3855 if (!unwind.proc_start)
3856 {
c921be7d 3857 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3858 return;
3859 }
3860
c19d1205
ZW
3861 /* Add eh table entry. */
3862 if (unwind.table_entry == NULL)
3863 val = create_unwind_entry (0);
3864 else
3865 val = 0;
f02232aa 3866
c19d1205
ZW
3867 /* Add index table entry. This is two words. */
3868 start_unwind_section (unwind.saved_seg, 1);
3869 frag_align (2, 0, 0);
3870 record_alignment (now_seg, 2);
b99bd4ef 3871
c19d1205 3872 ptr = frag_more (8);
5011093d 3873 memset (ptr, 0, 8);
c19d1205 3874 where = frag_now_fix () - 8;
f02232aa 3875
c19d1205
ZW
3876 /* Self relative offset of the function start. */
3877 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3878 BFD_RELOC_ARM_PREL31);
f02232aa 3879
c19d1205
ZW
3880 /* Indicate dependency on EHABI-defined personality routines to the
3881 linker, if it hasn't been done already. */
940b5ce0
DJ
3882 marked_pr_dependency
3883 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3884 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3885 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3886 {
5f4273c7
NC
3887 static const char *const name[] =
3888 {
3889 "__aeabi_unwind_cpp_pr0",
3890 "__aeabi_unwind_cpp_pr1",
3891 "__aeabi_unwind_cpp_pr2"
3892 };
c19d1205
ZW
3893 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3894 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3895 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3896 |= 1 << unwind.personality_index;
c19d1205 3897 }
f02232aa 3898
c19d1205
ZW
3899 if (val)
3900 /* Inline exception table entry. */
3901 md_number_to_chars (ptr + 4, val, 4);
3902 else
3903 /* Self relative offset of the table entry. */
3904 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3905 BFD_RELOC_ARM_PREL31);
f02232aa 3906
c19d1205
ZW
3907 /* Restore the original section. */
3908 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3909
3910 unwind.proc_start = NULL;
c19d1205 3911}
f02232aa 3912
f02232aa 3913
c19d1205 3914/* Parse an unwind_cantunwind directive. */
b99bd4ef 3915
c19d1205
ZW
3916static void
3917s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3918{
3919 demand_empty_rest_of_line ();
921e5f0a 3920 if (!unwind.proc_start)
c921be7d 3921 as_bad (MISSING_FNSTART);
921e5f0a 3922
c19d1205
ZW
3923 if (unwind.personality_routine || unwind.personality_index != -1)
3924 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3925
c19d1205
ZW
3926 unwind.personality_index = -2;
3927}
b99bd4ef 3928
b99bd4ef 3929
c19d1205 3930/* Parse a personalityindex directive. */
b99bd4ef 3931
c19d1205
ZW
3932static void
3933s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3934{
3935 expressionS exp;
b99bd4ef 3936
921e5f0a 3937 if (!unwind.proc_start)
c921be7d 3938 as_bad (MISSING_FNSTART);
921e5f0a 3939
c19d1205
ZW
3940 if (unwind.personality_routine || unwind.personality_index != -1)
3941 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3942
c19d1205 3943 expression (&exp);
b99bd4ef 3944
c19d1205
ZW
3945 if (exp.X_op != O_constant
3946 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3947 {
c19d1205
ZW
3948 as_bad (_("bad personality routine number"));
3949 ignore_rest_of_line ();
3950 return;
b99bd4ef
NC
3951 }
3952
c19d1205 3953 unwind.personality_index = exp.X_add_number;
b99bd4ef 3954
c19d1205
ZW
3955 demand_empty_rest_of_line ();
3956}
e16bb312 3957
e16bb312 3958
c19d1205 3959/* Parse a personality directive. */
e16bb312 3960
c19d1205
ZW
3961static void
3962s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3963{
3964 char *name, *p, c;
a737bd4d 3965
921e5f0a 3966 if (!unwind.proc_start)
c921be7d 3967 as_bad (MISSING_FNSTART);
921e5f0a 3968
c19d1205
ZW
3969 if (unwind.personality_routine || unwind.personality_index != -1)
3970 as_bad (_("duplicate .personality directive"));
a737bd4d 3971
d02603dc 3972 c = get_symbol_name (& name);
c19d1205 3973 p = input_line_pointer;
d02603dc
NC
3974 if (c == '"')
3975 ++ input_line_pointer;
c19d1205
ZW
3976 unwind.personality_routine = symbol_find_or_make (name);
3977 *p = c;
3978 demand_empty_rest_of_line ();
3979}
e16bb312 3980
e16bb312 3981
c19d1205 3982/* Parse a directive saving core registers. */
e16bb312 3983
c19d1205
ZW
3984static void
3985s_arm_unwind_save_core (void)
e16bb312 3986{
c19d1205
ZW
3987 valueT op;
3988 long range;
3989 int n;
e16bb312 3990
c19d1205
ZW
3991 range = parse_reg_list (&input_line_pointer);
3992 if (range == FAIL)
e16bb312 3993 {
c19d1205
ZW
3994 as_bad (_("expected register list"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
e16bb312 3998
c19d1205 3999 demand_empty_rest_of_line ();
e16bb312 4000
c19d1205
ZW
4001 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4002 into .unwind_save {..., sp...}. We aren't bothered about the value of
4003 ip because it is clobbered by calls. */
4004 if (unwind.sp_restored && unwind.fp_reg == 12
4005 && (range & 0x3000) == 0x1000)
4006 {
4007 unwind.opcode_count--;
4008 unwind.sp_restored = 0;
4009 range = (range | 0x2000) & ~0x1000;
4010 unwind.pending_offset = 0;
4011 }
e16bb312 4012
01ae4198
DJ
4013 /* Pop r4-r15. */
4014 if (range & 0xfff0)
c19d1205 4015 {
01ae4198
DJ
4016 /* See if we can use the short opcodes. These pop a block of up to 8
4017 registers starting with r4, plus maybe r14. */
4018 for (n = 0; n < 8; n++)
4019 {
4020 /* Break at the first non-saved register. */
4021 if ((range & (1 << (n + 4))) == 0)
4022 break;
4023 }
4024 /* See if there are any other bits set. */
4025 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4026 {
4027 /* Use the long form. */
4028 op = 0x8000 | ((range >> 4) & 0xfff);
4029 add_unwind_opcode (op, 2);
4030 }
0dd132b6 4031 else
01ae4198
DJ
4032 {
4033 /* Use the short form. */
4034 if (range & 0x4000)
4035 op = 0xa8; /* Pop r14. */
4036 else
4037 op = 0xa0; /* Do not pop r14. */
4038 op |= (n - 1);
4039 add_unwind_opcode (op, 1);
4040 }
c19d1205 4041 }
0dd132b6 4042
c19d1205
ZW
4043 /* Pop r0-r3. */
4044 if (range & 0xf)
4045 {
4046 op = 0xb100 | (range & 0xf);
4047 add_unwind_opcode (op, 2);
0dd132b6
NC
4048 }
4049
c19d1205
ZW
4050 /* Record the number of bytes pushed. */
4051 for (n = 0; n < 16; n++)
4052 {
4053 if (range & (1 << n))
4054 unwind.frame_size += 4;
4055 }
0dd132b6
NC
4056}
4057
c19d1205
ZW
4058
4059/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4060
4061static void
c19d1205 4062s_arm_unwind_save_fpa (int reg)
b99bd4ef 4063{
c19d1205
ZW
4064 expressionS exp;
4065 int num_regs;
4066 valueT op;
b99bd4ef 4067
c19d1205
ZW
4068 /* Get Number of registers to transfer. */
4069 if (skip_past_comma (&input_line_pointer) != FAIL)
4070 expression (&exp);
4071 else
4072 exp.X_op = O_illegal;
b99bd4ef 4073
c19d1205 4074 if (exp.X_op != O_constant)
b99bd4ef 4075 {
c19d1205
ZW
4076 as_bad (_("expected , <constant>"));
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078 return;
4079 }
4080
c19d1205
ZW
4081 num_regs = exp.X_add_number;
4082
4083 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4084 {
c19d1205
ZW
4085 as_bad (_("number of registers must be in the range [1:4]"));
4086 ignore_rest_of_line ();
b99bd4ef
NC
4087 return;
4088 }
4089
c19d1205 4090 demand_empty_rest_of_line ();
b99bd4ef 4091
c19d1205
ZW
4092 if (reg == 4)
4093 {
4094 /* Short form. */
4095 op = 0xb4 | (num_regs - 1);
4096 add_unwind_opcode (op, 1);
4097 }
b99bd4ef
NC
4098 else
4099 {
c19d1205
ZW
4100 /* Long form. */
4101 op = 0xc800 | (reg << 4) | (num_regs - 1);
4102 add_unwind_opcode (op, 2);
b99bd4ef 4103 }
c19d1205 4104 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4105}
4106
c19d1205 4107
fa073d69
MS
4108/* Parse a directive saving VFP registers for ARMv6 and above. */
4109
4110static void
4111s_arm_unwind_save_vfp_armv6 (void)
4112{
4113 int count;
4114 unsigned int start;
4115 valueT op;
4116 int num_vfpv3_regs = 0;
4117 int num_regs_below_16;
4118
4119 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4120 if (count == FAIL)
4121 {
4122 as_bad (_("expected register list"));
4123 ignore_rest_of_line ();
4124 return;
4125 }
4126
4127 demand_empty_rest_of_line ();
4128
4129 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4130 than FSTMX/FLDMX-style ones). */
4131
4132 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4133 if (start >= 16)
4134 num_vfpv3_regs = count;
4135 else if (start + count > 16)
4136 num_vfpv3_regs = start + count - 16;
4137
4138 if (num_vfpv3_regs > 0)
4139 {
4140 int start_offset = start > 16 ? start - 16 : 0;
4141 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4142 add_unwind_opcode (op, 2);
4143 }
4144
4145 /* Generate opcode for registers numbered in the range 0 .. 15. */
4146 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4147 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4148 if (num_regs_below_16 > 0)
4149 {
4150 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4151 add_unwind_opcode (op, 2);
4152 }
4153
4154 unwind.frame_size += count * 8;
4155}
4156
4157
4158/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4159
4160static void
c19d1205 4161s_arm_unwind_save_vfp (void)
b99bd4ef 4162{
c19d1205 4163 int count;
ca3f61f7 4164 unsigned int reg;
c19d1205 4165 valueT op;
b99bd4ef 4166
5287ad62 4167 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 4168 if (count == FAIL)
b99bd4ef 4169 {
c19d1205
ZW
4170 as_bad (_("expected register list"));
4171 ignore_rest_of_line ();
b99bd4ef
NC
4172 return;
4173 }
4174
c19d1205 4175 demand_empty_rest_of_line ();
b99bd4ef 4176
c19d1205 4177 if (reg == 8)
b99bd4ef 4178 {
c19d1205
ZW
4179 /* Short form. */
4180 op = 0xb8 | (count - 1);
4181 add_unwind_opcode (op, 1);
b99bd4ef 4182 }
c19d1205 4183 else
b99bd4ef 4184 {
c19d1205
ZW
4185 /* Long form. */
4186 op = 0xb300 | (reg << 4) | (count - 1);
4187 add_unwind_opcode (op, 2);
b99bd4ef 4188 }
c19d1205
ZW
4189 unwind.frame_size += count * 8 + 4;
4190}
b99bd4ef 4191
b99bd4ef 4192
c19d1205
ZW
4193/* Parse a directive saving iWMMXt data registers. */
4194
4195static void
4196s_arm_unwind_save_mmxwr (void)
4197{
4198 int reg;
4199 int hi_reg;
4200 int i;
4201 unsigned mask = 0;
4202 valueT op;
b99bd4ef 4203
c19d1205
ZW
4204 if (*input_line_pointer == '{')
4205 input_line_pointer++;
b99bd4ef 4206
c19d1205 4207 do
b99bd4ef 4208 {
dcbf9037 4209 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4210
c19d1205 4211 if (reg == FAIL)
b99bd4ef 4212 {
9b7132d3 4213 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4214 goto error;
b99bd4ef
NC
4215 }
4216
c19d1205
ZW
4217 if (mask >> reg)
4218 as_tsktsk (_("register list not in ascending order"));
4219 mask |= 1 << reg;
b99bd4ef 4220
c19d1205
ZW
4221 if (*input_line_pointer == '-')
4222 {
4223 input_line_pointer++;
dcbf9037 4224 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4225 if (hi_reg == FAIL)
4226 {
9b7132d3 4227 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4228 goto error;
4229 }
4230 else if (reg >= hi_reg)
4231 {
4232 as_bad (_("bad register range"));
4233 goto error;
4234 }
4235 for (; reg < hi_reg; reg++)
4236 mask |= 1 << reg;
4237 }
4238 }
4239 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4240
d996d970 4241 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4242
c19d1205 4243 demand_empty_rest_of_line ();
b99bd4ef 4244
708587a4 4245 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4246 the list. */
4247 flush_pending_unwind ();
b99bd4ef 4248
c19d1205 4249 for (i = 0; i < 16; i++)
b99bd4ef 4250 {
c19d1205
ZW
4251 if (mask & (1 << i))
4252 unwind.frame_size += 8;
b99bd4ef
NC
4253 }
4254
c19d1205
ZW
4255 /* Attempt to combine with a previous opcode. We do this because gcc
4256 likes to output separate unwind directives for a single block of
4257 registers. */
4258 if (unwind.opcode_count > 0)
b99bd4ef 4259 {
c19d1205
ZW
4260 i = unwind.opcodes[unwind.opcode_count - 1];
4261 if ((i & 0xf8) == 0xc0)
4262 {
4263 i &= 7;
4264 /* Only merge if the blocks are contiguous. */
4265 if (i < 6)
4266 {
4267 if ((mask & 0xfe00) == (1 << 9))
4268 {
4269 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4270 unwind.opcode_count--;
4271 }
4272 }
4273 else if (i == 6 && unwind.opcode_count >= 2)
4274 {
4275 i = unwind.opcodes[unwind.opcode_count - 2];
4276 reg = i >> 4;
4277 i &= 0xf;
b99bd4ef 4278
c19d1205
ZW
4279 op = 0xffff << (reg - 1);
4280 if (reg > 0
87a1fd79 4281 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4282 {
4283 op = (1 << (reg + i + 1)) - 1;
4284 op &= ~((1 << reg) - 1);
4285 mask |= op;
4286 unwind.opcode_count -= 2;
4287 }
4288 }
4289 }
b99bd4ef
NC
4290 }
4291
c19d1205
ZW
4292 hi_reg = 15;
4293 /* We want to generate opcodes in the order the registers have been
4294 saved, ie. descending order. */
4295 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4296 {
c19d1205
ZW
4297 /* Save registers in blocks. */
4298 if (reg < 0
4299 || !(mask & (1 << reg)))
4300 {
4301 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4302 preceding block. */
c19d1205
ZW
4303 if (reg != hi_reg)
4304 {
4305 if (reg == 9)
4306 {
4307 /* Short form. */
4308 op = 0xc0 | (hi_reg - 10);
4309 add_unwind_opcode (op, 1);
4310 }
4311 else
4312 {
4313 /* Long form. */
4314 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4315 add_unwind_opcode (op, 2);
4316 }
4317 }
4318 hi_reg = reg - 1;
4319 }
b99bd4ef
NC
4320 }
4321
c19d1205
ZW
4322 return;
4323error:
4324 ignore_rest_of_line ();
b99bd4ef
NC
4325}
4326
4327static void
c19d1205 4328s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4329{
c19d1205
ZW
4330 int reg;
4331 int hi_reg;
4332 unsigned mask = 0;
4333 valueT op;
b99bd4ef 4334
c19d1205
ZW
4335 if (*input_line_pointer == '{')
4336 input_line_pointer++;
b99bd4ef 4337
477330fc
RM
4338 skip_whitespace (input_line_pointer);
4339
c19d1205 4340 do
b99bd4ef 4341 {
dcbf9037 4342 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4343
c19d1205
ZW
4344 if (reg == FAIL)
4345 {
9b7132d3 4346 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4347 goto error;
4348 }
b99bd4ef 4349
c19d1205
ZW
4350 reg -= 8;
4351 if (mask >> reg)
4352 as_tsktsk (_("register list not in ascending order"));
4353 mask |= 1 << reg;
b99bd4ef 4354
c19d1205
ZW
4355 if (*input_line_pointer == '-')
4356 {
4357 input_line_pointer++;
dcbf9037 4358 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4359 if (hi_reg == FAIL)
4360 {
9b7132d3 4361 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4362 goto error;
4363 }
4364 else if (reg >= hi_reg)
4365 {
4366 as_bad (_("bad register range"));
4367 goto error;
4368 }
4369 for (; reg < hi_reg; reg++)
4370 mask |= 1 << reg;
4371 }
b99bd4ef 4372 }
c19d1205 4373 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4374
d996d970 4375 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4376
c19d1205
ZW
4377 demand_empty_rest_of_line ();
4378
708587a4 4379 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4380 the list. */
4381 flush_pending_unwind ();
b99bd4ef 4382
c19d1205 4383 for (reg = 0; reg < 16; reg++)
b99bd4ef 4384 {
c19d1205
ZW
4385 if (mask & (1 << reg))
4386 unwind.frame_size += 4;
b99bd4ef 4387 }
c19d1205
ZW
4388 op = 0xc700 | mask;
4389 add_unwind_opcode (op, 2);
4390 return;
4391error:
4392 ignore_rest_of_line ();
b99bd4ef
NC
4393}
4394
c19d1205 4395
fa073d69
MS
4396/* Parse an unwind_save directive.
4397 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4398
b99bd4ef 4399static void
fa073d69 4400s_arm_unwind_save (int arch_v6)
b99bd4ef 4401{
c19d1205
ZW
4402 char *peek;
4403 struct reg_entry *reg;
4404 bfd_boolean had_brace = FALSE;
b99bd4ef 4405
921e5f0a 4406 if (!unwind.proc_start)
c921be7d 4407 as_bad (MISSING_FNSTART);
921e5f0a 4408
c19d1205
ZW
4409 /* Figure out what sort of save we have. */
4410 peek = input_line_pointer;
b99bd4ef 4411
c19d1205 4412 if (*peek == '{')
b99bd4ef 4413 {
c19d1205
ZW
4414 had_brace = TRUE;
4415 peek++;
b99bd4ef
NC
4416 }
4417
c19d1205 4418 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4419
c19d1205 4420 if (!reg)
b99bd4ef 4421 {
c19d1205
ZW
4422 as_bad (_("register expected"));
4423 ignore_rest_of_line ();
b99bd4ef
NC
4424 return;
4425 }
4426
c19d1205 4427 switch (reg->type)
b99bd4ef 4428 {
c19d1205
ZW
4429 case REG_TYPE_FN:
4430 if (had_brace)
4431 {
4432 as_bad (_("FPA .unwind_save does not take a register list"));
4433 ignore_rest_of_line ();
4434 return;
4435 }
93ac2687 4436 input_line_pointer = peek;
c19d1205 4437 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4438 return;
c19d1205 4439
1f5afe1c
NC
4440 case REG_TYPE_RN:
4441 s_arm_unwind_save_core ();
4442 return;
4443
fa073d69
MS
4444 case REG_TYPE_VFD:
4445 if (arch_v6)
477330fc 4446 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4447 else
477330fc 4448 s_arm_unwind_save_vfp ();
fa073d69 4449 return;
1f5afe1c
NC
4450
4451 case REG_TYPE_MMXWR:
4452 s_arm_unwind_save_mmxwr ();
4453 return;
4454
4455 case REG_TYPE_MMXWCG:
4456 s_arm_unwind_save_mmxwcg ();
4457 return;
c19d1205
ZW
4458
4459 default:
4460 as_bad (_(".unwind_save does not support this kind of register"));
4461 ignore_rest_of_line ();
b99bd4ef 4462 }
c19d1205 4463}
b99bd4ef 4464
b99bd4ef 4465
c19d1205
ZW
4466/* Parse an unwind_movsp directive. */
4467
4468static void
4469s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4470{
4471 int reg;
4472 valueT op;
4fa3602b 4473 int offset;
c19d1205 4474
921e5f0a 4475 if (!unwind.proc_start)
c921be7d 4476 as_bad (MISSING_FNSTART);
921e5f0a 4477
dcbf9037 4478 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4479 if (reg == FAIL)
b99bd4ef 4480 {
9b7132d3 4481 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4482 ignore_rest_of_line ();
b99bd4ef
NC
4483 return;
4484 }
4fa3602b
PB
4485
4486 /* Optional constant. */
4487 if (skip_past_comma (&input_line_pointer) != FAIL)
4488 {
4489 if (immediate_for_directive (&offset) == FAIL)
4490 return;
4491 }
4492 else
4493 offset = 0;
4494
c19d1205 4495 demand_empty_rest_of_line ();
b99bd4ef 4496
c19d1205 4497 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4498 {
c19d1205 4499 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4500 return;
4501 }
4502
c19d1205
ZW
4503 if (unwind.fp_reg != REG_SP)
4504 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4505
c19d1205
ZW
4506 /* Generate opcode to restore the value. */
4507 op = 0x90 | reg;
4508 add_unwind_opcode (op, 1);
4509
4510 /* Record the information for later. */
4511 unwind.fp_reg = reg;
4fa3602b 4512 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4513 unwind.sp_restored = 1;
b05fe5cf
ZW
4514}
4515
c19d1205
ZW
4516/* Parse an unwind_pad directive. */
4517
b05fe5cf 4518static void
c19d1205 4519s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4520{
c19d1205 4521 int offset;
b05fe5cf 4522
921e5f0a 4523 if (!unwind.proc_start)
c921be7d 4524 as_bad (MISSING_FNSTART);
921e5f0a 4525
c19d1205
ZW
4526 if (immediate_for_directive (&offset) == FAIL)
4527 return;
b99bd4ef 4528
c19d1205
ZW
4529 if (offset & 3)
4530 {
4531 as_bad (_("stack increment must be multiple of 4"));
4532 ignore_rest_of_line ();
4533 return;
4534 }
b99bd4ef 4535
c19d1205
ZW
4536 /* Don't generate any opcodes, just record the details for later. */
4537 unwind.frame_size += offset;
4538 unwind.pending_offset += offset;
4539
4540 demand_empty_rest_of_line ();
4541}
4542
4543/* Parse an unwind_setfp directive. */
4544
4545static void
4546s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4547{
c19d1205
ZW
4548 int sp_reg;
4549 int fp_reg;
4550 int offset;
4551
921e5f0a 4552 if (!unwind.proc_start)
c921be7d 4553 as_bad (MISSING_FNSTART);
921e5f0a 4554
dcbf9037 4555 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4556 if (skip_past_comma (&input_line_pointer) == FAIL)
4557 sp_reg = FAIL;
4558 else
dcbf9037 4559 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4560
c19d1205
ZW
4561 if (fp_reg == FAIL || sp_reg == FAIL)
4562 {
4563 as_bad (_("expected <reg>, <reg>"));
4564 ignore_rest_of_line ();
4565 return;
4566 }
b99bd4ef 4567
c19d1205
ZW
4568 /* Optional constant. */
4569 if (skip_past_comma (&input_line_pointer) != FAIL)
4570 {
4571 if (immediate_for_directive (&offset) == FAIL)
4572 return;
4573 }
4574 else
4575 offset = 0;
a737bd4d 4576
c19d1205 4577 demand_empty_rest_of_line ();
a737bd4d 4578
fdfde340 4579 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4580 {
c19d1205
ZW
4581 as_bad (_("register must be either sp or set by a previous"
4582 "unwind_movsp directive"));
4583 return;
a737bd4d
NC
4584 }
4585
c19d1205
ZW
4586 /* Don't generate any opcodes, just record the information for later. */
4587 unwind.fp_reg = fp_reg;
4588 unwind.fp_used = 1;
fdfde340 4589 if (sp_reg == REG_SP)
c19d1205
ZW
4590 unwind.fp_offset = unwind.frame_size - offset;
4591 else
4592 unwind.fp_offset -= offset;
a737bd4d
NC
4593}
4594
c19d1205
ZW
4595/* Parse an unwind_raw directive. */
4596
4597static void
4598s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4599{
c19d1205 4600 expressionS exp;
708587a4 4601 /* This is an arbitrary limit. */
c19d1205
ZW
4602 unsigned char op[16];
4603 int count;
a737bd4d 4604
921e5f0a 4605 if (!unwind.proc_start)
c921be7d 4606 as_bad (MISSING_FNSTART);
921e5f0a 4607
c19d1205
ZW
4608 expression (&exp);
4609 if (exp.X_op == O_constant
4610 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4611 {
c19d1205
ZW
4612 unwind.frame_size += exp.X_add_number;
4613 expression (&exp);
4614 }
4615 else
4616 exp.X_op = O_illegal;
a737bd4d 4617
c19d1205
ZW
4618 if (exp.X_op != O_constant)
4619 {
4620 as_bad (_("expected <offset>, <opcode>"));
4621 ignore_rest_of_line ();
4622 return;
4623 }
a737bd4d 4624
c19d1205 4625 count = 0;
a737bd4d 4626
c19d1205
ZW
4627 /* Parse the opcode. */
4628 for (;;)
4629 {
4630 if (count >= 16)
4631 {
4632 as_bad (_("unwind opcode too long"));
4633 ignore_rest_of_line ();
a737bd4d 4634 }
c19d1205 4635 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4636 {
c19d1205
ZW
4637 as_bad (_("invalid unwind opcode"));
4638 ignore_rest_of_line ();
4639 return;
a737bd4d 4640 }
c19d1205 4641 op[count++] = exp.X_add_number;
a737bd4d 4642
c19d1205
ZW
4643 /* Parse the next byte. */
4644 if (skip_past_comma (&input_line_pointer) == FAIL)
4645 break;
a737bd4d 4646
c19d1205
ZW
4647 expression (&exp);
4648 }
b99bd4ef 4649
c19d1205
ZW
4650 /* Add the opcode bytes in reverse order. */
4651 while (count--)
4652 add_unwind_opcode (op[count], 1);
b99bd4ef 4653
c19d1205 4654 demand_empty_rest_of_line ();
b99bd4ef 4655}
ee065d83
PB
4656
4657
4658/* Parse a .eabi_attribute directive. */
4659
4660static void
4661s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4662{
0420f52b 4663 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378
AS
4664
4665 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4666 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4667}
4668
0855e32b
NS
4669/* Emit a tls fix for the symbol. */
4670
4671static void
4672s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4673{
4674 char *p;
4675 expressionS exp;
4676#ifdef md_flush_pending_output
4677 md_flush_pending_output ();
4678#endif
4679
4680#ifdef md_cons_align
4681 md_cons_align (4);
4682#endif
4683
4684 /* Since we're just labelling the code, there's no need to define a
4685 mapping symbol. */
4686 expression (&exp);
4687 p = obstack_next_free (&frchain_now->frch_obstack);
4688 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4689 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4690 : BFD_RELOC_ARM_TLS_DESCSEQ);
4691}
cdf9ccec 4692#endif /* OBJ_ELF */
0855e32b 4693
ee065d83 4694static void s_arm_arch (int);
7a1d4c38 4695static void s_arm_object_arch (int);
ee065d83
PB
4696static void s_arm_cpu (int);
4697static void s_arm_fpu (int);
69133863 4698static void s_arm_arch_extension (int);
b99bd4ef 4699
f0927246
NC
4700#ifdef TE_PE
4701
4702static void
5f4273c7 4703pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4704{
4705 expressionS exp;
4706
4707 do
4708 {
4709 expression (&exp);
4710 if (exp.X_op == O_symbol)
4711 exp.X_op = O_secrel;
4712
4713 emit_expr (&exp, 4);
4714 }
4715 while (*input_line_pointer++ == ',');
4716
4717 input_line_pointer--;
4718 demand_empty_rest_of_line ();
4719}
4720#endif /* TE_PE */
4721
c19d1205
ZW
4722/* This table describes all the machine specific pseudo-ops the assembler
4723 has to support. The fields are:
4724 pseudo-op name without dot
4725 function to call to execute this pseudo-op
4726 Integer arg to pass to the function. */
b99bd4ef 4727
c19d1205 4728const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4729{
c19d1205
ZW
4730 /* Never called because '.req' does not start a line. */
4731 { "req", s_req, 0 },
dcbf9037
JB
4732 /* Following two are likewise never called. */
4733 { "dn", s_dn, 0 },
4734 { "qn", s_qn, 0 },
c19d1205
ZW
4735 { "unreq", s_unreq, 0 },
4736 { "bss", s_bss, 0 },
db2ed2e0 4737 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4738 { "arm", s_arm, 0 },
4739 { "thumb", s_thumb, 0 },
4740 { "code", s_code, 0 },
4741 { "force_thumb", s_force_thumb, 0 },
4742 { "thumb_func", s_thumb_func, 0 },
4743 { "thumb_set", s_thumb_set, 0 },
4744 { "even", s_even, 0 },
4745 { "ltorg", s_ltorg, 0 },
4746 { "pool", s_ltorg, 0 },
4747 { "syntax", s_syntax, 0 },
8463be01
PB
4748 { "cpu", s_arm_cpu, 0 },
4749 { "arch", s_arm_arch, 0 },
7a1d4c38 4750 { "object_arch", s_arm_object_arch, 0 },
8463be01 4751 { "fpu", s_arm_fpu, 0 },
69133863 4752 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4753#ifdef OBJ_ELF
c921be7d
NC
4754 { "word", s_arm_elf_cons, 4 },
4755 { "long", s_arm_elf_cons, 4 },
4756 { "inst.n", s_arm_elf_inst, 2 },
4757 { "inst.w", s_arm_elf_inst, 4 },
4758 { "inst", s_arm_elf_inst, 0 },
4759 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4760 { "fnstart", s_arm_unwind_fnstart, 0 },
4761 { "fnend", s_arm_unwind_fnend, 0 },
4762 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4763 { "personality", s_arm_unwind_personality, 0 },
4764 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4765 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4766 { "save", s_arm_unwind_save, 0 },
fa073d69 4767 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4768 { "movsp", s_arm_unwind_movsp, 0 },
4769 { "pad", s_arm_unwind_pad, 0 },
4770 { "setfp", s_arm_unwind_setfp, 0 },
4771 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4772 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4773 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4774#else
4775 { "word", cons, 4},
f0927246
NC
4776
4777 /* These are used for dwarf. */
4778 {"2byte", cons, 2},
4779 {"4byte", cons, 4},
4780 {"8byte", cons, 8},
4781 /* These are used for dwarf2. */
68d20676 4782 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4783 { "loc", dwarf2_directive_loc, 0 },
4784 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4785#endif
4786 { "extend", float_cons, 'x' },
4787 { "ldouble", float_cons, 'x' },
4788 { "packed", float_cons, 'p' },
f0927246
NC
4789#ifdef TE_PE
4790 {"secrel32", pe_directive_secrel, 0},
4791#endif
2e6976a8
DG
4792
4793 /* These are for compatibility with CodeComposer Studio. */
4794 {"ref", s_ccs_ref, 0},
4795 {"def", s_ccs_def, 0},
4796 {"asmfunc", s_ccs_asmfunc, 0},
4797 {"endasmfunc", s_ccs_endasmfunc, 0},
4798
c19d1205
ZW
4799 { 0, 0, 0 }
4800};
4801\f
4802/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4803
c19d1205
ZW
4804/* Generic immediate-value read function for use in insn parsing.
4805 STR points to the beginning of the immediate (the leading #);
4806 VAL receives the value; if the value is outside [MIN, MAX]
4807 issue an error. PREFIX_OPT is true if the immediate prefix is
4808 optional. */
b99bd4ef 4809
c19d1205
ZW
4810static int
4811parse_immediate (char **str, int *val, int min, int max,
4812 bfd_boolean prefix_opt)
4813{
4814 expressionS exp;
0198d5e6 4815
c19d1205
ZW
4816 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4817 if (exp.X_op != O_constant)
b99bd4ef 4818 {
c19d1205
ZW
4819 inst.error = _("constant expression required");
4820 return FAIL;
4821 }
b99bd4ef 4822
c19d1205
ZW
4823 if (exp.X_add_number < min || exp.X_add_number > max)
4824 {
4825 inst.error = _("immediate value out of range");
4826 return FAIL;
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 *val = exp.X_add_number;
4830 return SUCCESS;
4831}
b99bd4ef 4832
5287ad62 4833/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4834 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4835 instructions. Puts the result directly in inst.operands[i]. */
4836
4837static int
8335d6aa
JW
4838parse_big_immediate (char **str, int i, expressionS *in_exp,
4839 bfd_boolean allow_symbol_p)
5287ad62
JB
4840{
4841 expressionS exp;
8335d6aa 4842 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
4843 char *ptr = *str;
4844
8335d6aa 4845 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 4846
8335d6aa 4847 if (exp_p->X_op == O_constant)
036dc3f7 4848 {
8335d6aa 4849 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
4850 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4851 O_constant. We have to be careful not to break compilation for
4852 32-bit X_add_number, though. */
8335d6aa 4853 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 4854 {
8335d6aa
JW
4855 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4856 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4857 & 0xffffffff);
036dc3f7
PB
4858 inst.operands[i].regisimm = 1;
4859 }
4860 }
8335d6aa
JW
4861 else if (exp_p->X_op == O_big
4862 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
4863 {
4864 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4865
5287ad62 4866 /* Bignums have their least significant bits in
477330fc
RM
4867 generic_bignum[0]. Make sure we put 32 bits in imm and
4868 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4869 gas_assert (parts != 0);
95b75c01
NC
4870
4871 /* Make sure that the number is not too big.
4872 PR 11972: Bignums can now be sign-extended to the
4873 size of a .octa so check that the out of range bits
4874 are all zero or all one. */
8335d6aa 4875 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
4876 {
4877 LITTLENUM_TYPE m = -1;
4878
4879 if (generic_bignum[parts * 2] != 0
4880 && generic_bignum[parts * 2] != m)
4881 return FAIL;
4882
8335d6aa 4883 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
4884 if (generic_bignum[j] != generic_bignum[j-1])
4885 return FAIL;
4886 }
4887
5287ad62
JB
4888 inst.operands[i].imm = 0;
4889 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4890 inst.operands[i].imm |= generic_bignum[idx]
4891 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4892 inst.operands[i].reg = 0;
4893 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4894 inst.operands[i].reg |= generic_bignum[idx]
4895 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4896 inst.operands[i].regisimm = 1;
4897 }
8335d6aa 4898 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 4899 return FAIL;
5f4273c7 4900
5287ad62
JB
4901 *str = ptr;
4902
4903 return SUCCESS;
4904}
4905
c19d1205
ZW
4906/* Returns the pseudo-register number of an FPA immediate constant,
4907 or FAIL if there isn't a valid constant here. */
b99bd4ef 4908
c19d1205
ZW
4909static int
4910parse_fpa_immediate (char ** str)
4911{
4912 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4913 char * save_in;
4914 expressionS exp;
4915 int i;
4916 int j;
b99bd4ef 4917
c19d1205
ZW
4918 /* First try and match exact strings, this is to guarantee
4919 that some formats will work even for cross assembly. */
b99bd4ef 4920
c19d1205
ZW
4921 for (i = 0; fp_const[i]; i++)
4922 {
4923 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4924 {
c19d1205 4925 char *start = *str;
b99bd4ef 4926
c19d1205
ZW
4927 *str += strlen (fp_const[i]);
4928 if (is_end_of_line[(unsigned char) **str])
4929 return i + 8;
4930 *str = start;
4931 }
4932 }
b99bd4ef 4933
c19d1205
ZW
4934 /* Just because we didn't get a match doesn't mean that the constant
4935 isn't valid, just that it is in a format that we don't
4936 automatically recognize. Try parsing it with the standard
4937 expression routines. */
b99bd4ef 4938
c19d1205 4939 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4940
c19d1205
ZW
4941 /* Look for a raw floating point number. */
4942 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4943 && is_end_of_line[(unsigned char) *save_in])
4944 {
4945 for (i = 0; i < NUM_FLOAT_VALS; i++)
4946 {
4947 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4948 {
c19d1205
ZW
4949 if (words[j] != fp_values[i][j])
4950 break;
b99bd4ef
NC
4951 }
4952
c19d1205 4953 if (j == MAX_LITTLENUMS)
b99bd4ef 4954 {
c19d1205
ZW
4955 *str = save_in;
4956 return i + 8;
b99bd4ef
NC
4957 }
4958 }
4959 }
b99bd4ef 4960
c19d1205
ZW
4961 /* Try and parse a more complex expression, this will probably fail
4962 unless the code uses a floating point prefix (eg "0f"). */
4963 save_in = input_line_pointer;
4964 input_line_pointer = *str;
4965 if (expression (&exp) == absolute_section
4966 && exp.X_op == O_big
4967 && exp.X_add_number < 0)
4968 {
4969 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4970 Ditto for 15. */
ba592044
AM
4971#define X_PRECISION 5
4972#define E_PRECISION 15L
4973 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
4974 {
4975 for (i = 0; i < NUM_FLOAT_VALS; i++)
4976 {
4977 for (j = 0; j < MAX_LITTLENUMS; j++)
4978 {
4979 if (words[j] != fp_values[i][j])
4980 break;
4981 }
b99bd4ef 4982
c19d1205
ZW
4983 if (j == MAX_LITTLENUMS)
4984 {
4985 *str = input_line_pointer;
4986 input_line_pointer = save_in;
4987 return i + 8;
4988 }
4989 }
4990 }
b99bd4ef
NC
4991 }
4992
c19d1205
ZW
4993 *str = input_line_pointer;
4994 input_line_pointer = save_in;
4995 inst.error = _("invalid FPA immediate expression");
4996 return FAIL;
b99bd4ef
NC
4997}
4998
136da414
JB
4999/* Returns 1 if a number has "quarter-precision" float format
5000 0baBbbbbbc defgh000 00000000 00000000. */
5001
5002static int
5003is_quarter_float (unsigned imm)
5004{
5005 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5006 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5007}
5008
aacf0b33
KT
5009
5010/* Detect the presence of a floating point or integer zero constant,
5011 i.e. #0.0 or #0. */
5012
5013static bfd_boolean
5014parse_ifimm_zero (char **in)
5015{
5016 int error_code;
5017
5018 if (!is_immediate_prefix (**in))
3c6452ae
TP
5019 {
5020 /* In unified syntax, all prefixes are optional. */
5021 if (!unified_syntax)
5022 return FALSE;
5023 }
5024 else
5025 ++*in;
0900a05b
JW
5026
5027 /* Accept #0x0 as a synonym for #0. */
5028 if (strncmp (*in, "0x", 2) == 0)
5029 {
5030 int val;
5031 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5032 return FALSE;
5033 return TRUE;
5034 }
5035
aacf0b33
KT
5036 error_code = atof_generic (in, ".", EXP_CHARS,
5037 &generic_floating_point_number);
5038
5039 if (!error_code
5040 && generic_floating_point_number.sign == '+'
5041 && (generic_floating_point_number.low
5042 > generic_floating_point_number.leader))
5043 return TRUE;
5044
5045 return FALSE;
5046}
5047
136da414
JB
5048/* Parse an 8-bit "quarter-precision" floating point number of the form:
5049 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5050 The zero and minus-zero cases need special handling, since they can't be
5051 encoded in the "quarter-precision" float format, but can nonetheless be
5052 loaded as integer constants. */
136da414
JB
5053
5054static unsigned
5055parse_qfloat_immediate (char **ccp, int *immed)
5056{
5057 char *str = *ccp;
c96612cc 5058 char *fpnum;
136da414 5059 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5060 int found_fpchar = 0;
5f4273c7 5061
136da414 5062 skip_past_char (&str, '#');
5f4273c7 5063
c96612cc
JB
5064 /* We must not accidentally parse an integer as a floating-point number. Make
5065 sure that the value we parse is not an integer by checking for special
5066 characters '.' or 'e'.
5067 FIXME: This is a horrible hack, but doing better is tricky because type
5068 information isn't in a very usable state at parse time. */
5069 fpnum = str;
5070 skip_whitespace (fpnum);
5071
5072 if (strncmp (fpnum, "0x", 2) == 0)
5073 return FAIL;
5074 else
5075 {
5076 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5077 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5078 {
5079 found_fpchar = 1;
5080 break;
5081 }
c96612cc
JB
5082
5083 if (!found_fpchar)
477330fc 5084 return FAIL;
c96612cc 5085 }
5f4273c7 5086
136da414
JB
5087 if ((str = atof_ieee (str, 's', words)) != NULL)
5088 {
5089 unsigned fpword = 0;
5090 int i;
5f4273c7 5091
136da414
JB
5092 /* Our FP word must be 32 bits (single-precision FP). */
5093 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5094 {
5095 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5096 fpword |= words[i];
5097 }
5f4273c7 5098
c96612cc 5099 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5100 *immed = fpword;
136da414 5101 else
477330fc 5102 return FAIL;
136da414
JB
5103
5104 *ccp = str;
5f4273c7 5105
136da414
JB
5106 return SUCCESS;
5107 }
5f4273c7 5108
136da414
JB
5109 return FAIL;
5110}
5111
c19d1205
ZW
5112/* Shift operands. */
5113enum shift_kind
b99bd4ef 5114{
c19d1205
ZW
5115 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5116};
b99bd4ef 5117
c19d1205
ZW
5118struct asm_shift_name
5119{
5120 const char *name;
5121 enum shift_kind kind;
5122};
b99bd4ef 5123
c19d1205
ZW
5124/* Third argument to parse_shift. */
5125enum parse_shift_mode
5126{
5127 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5128 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5129 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5130 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5131 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5132};
b99bd4ef 5133
c19d1205
ZW
5134/* Parse a <shift> specifier on an ARM data processing instruction.
5135 This has three forms:
b99bd4ef 5136
c19d1205
ZW
5137 (LSL|LSR|ASL|ASR|ROR) Rs
5138 (LSL|LSR|ASL|ASR|ROR) #imm
5139 RRX
b99bd4ef 5140
c19d1205
ZW
5141 Note that ASL is assimilated to LSL in the instruction encoding, and
5142 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5143
c19d1205
ZW
5144static int
5145parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5146{
c19d1205
ZW
5147 const struct asm_shift_name *shift_name;
5148 enum shift_kind shift;
5149 char *s = *str;
5150 char *p = s;
5151 int reg;
b99bd4ef 5152
c19d1205
ZW
5153 for (p = *str; ISALPHA (*p); p++)
5154 ;
b99bd4ef 5155
c19d1205 5156 if (p == *str)
b99bd4ef 5157 {
c19d1205
ZW
5158 inst.error = _("shift expression expected");
5159 return FAIL;
b99bd4ef
NC
5160 }
5161
21d799b5 5162 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5163 p - *str);
c19d1205
ZW
5164
5165 if (shift_name == NULL)
b99bd4ef 5166 {
c19d1205
ZW
5167 inst.error = _("shift expression expected");
5168 return FAIL;
b99bd4ef
NC
5169 }
5170
c19d1205 5171 shift = shift_name->kind;
b99bd4ef 5172
c19d1205
ZW
5173 switch (mode)
5174 {
5175 case NO_SHIFT_RESTRICT:
5176 case SHIFT_IMMEDIATE: break;
b99bd4ef 5177
c19d1205
ZW
5178 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5179 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5180 {
5181 inst.error = _("'LSL' or 'ASR' required");
5182 return FAIL;
5183 }
5184 break;
b99bd4ef 5185
c19d1205
ZW
5186 case SHIFT_LSL_IMMEDIATE:
5187 if (shift != SHIFT_LSL)
5188 {
5189 inst.error = _("'LSL' required");
5190 return FAIL;
5191 }
5192 break;
b99bd4ef 5193
c19d1205
ZW
5194 case SHIFT_ASR_IMMEDIATE:
5195 if (shift != SHIFT_ASR)
5196 {
5197 inst.error = _("'ASR' required");
5198 return FAIL;
5199 }
5200 break;
b99bd4ef 5201
c19d1205
ZW
5202 default: abort ();
5203 }
b99bd4ef 5204
c19d1205
ZW
5205 if (shift != SHIFT_RRX)
5206 {
5207 /* Whitespace can appear here if the next thing is a bare digit. */
5208 skip_whitespace (p);
b99bd4ef 5209
c19d1205 5210 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5211 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5212 {
5213 inst.operands[i].imm = reg;
5214 inst.operands[i].immisreg = 1;
5215 }
e2b0ab59 5216 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5217 return FAIL;
5218 }
5219 inst.operands[i].shift_kind = shift;
5220 inst.operands[i].shifted = 1;
5221 *str = p;
5222 return SUCCESS;
b99bd4ef
NC
5223}
5224
c19d1205 5225/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5226
c19d1205
ZW
5227 #<immediate>
5228 #<immediate>, <rotate>
5229 <Rm>
5230 <Rm>, <shift>
b99bd4ef 5231
c19d1205
ZW
5232 where <shift> is defined by parse_shift above, and <rotate> is a
5233 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5234 is deferred to md_apply_fix. */
b99bd4ef 5235
c19d1205
ZW
5236static int
5237parse_shifter_operand (char **str, int i)
5238{
5239 int value;
91d6fa6a 5240 expressionS exp;
b99bd4ef 5241
dcbf9037 5242 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5243 {
5244 inst.operands[i].reg = value;
5245 inst.operands[i].isreg = 1;
b99bd4ef 5246
c19d1205 5247 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5248 inst.relocs[0].exp.X_op = O_constant;
5249 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5250
c19d1205
ZW
5251 if (skip_past_comma (str) == FAIL)
5252 return SUCCESS;
b99bd4ef 5253
c19d1205
ZW
5254 /* Shift operation on register. */
5255 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5256 }
5257
e2b0ab59 5258 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5259 return FAIL;
b99bd4ef 5260
c19d1205 5261 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5262 {
c19d1205 5263 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5264 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5265 return FAIL;
b99bd4ef 5266
e2b0ab59 5267 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5268 {
5269 inst.error = _("constant expression expected");
5270 return FAIL;
5271 }
b99bd4ef 5272
91d6fa6a 5273 value = exp.X_add_number;
c19d1205
ZW
5274 if (value < 0 || value > 30 || value % 2 != 0)
5275 {
5276 inst.error = _("invalid rotation");
5277 return FAIL;
5278 }
e2b0ab59
AV
5279 if (inst.relocs[0].exp.X_add_number < 0
5280 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5281 {
5282 inst.error = _("invalid constant");
5283 return FAIL;
5284 }
09d92015 5285
a415b1cd 5286 /* Encode as specified. */
e2b0ab59 5287 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5288 return SUCCESS;
09d92015
MM
5289 }
5290
e2b0ab59
AV
5291 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5292 inst.relocs[0].pc_rel = 0;
c19d1205 5293 return SUCCESS;
09d92015
MM
5294}
5295
4962c51a
MS
5296/* Group relocation information. Each entry in the table contains the
5297 textual name of the relocation as may appear in assembler source
5298 and must end with a colon.
5299 Along with this textual name are the relocation codes to be used if
5300 the corresponding instruction is an ALU instruction (ADD or SUB only),
5301 an LDR, an LDRS, or an LDC. */
5302
5303struct group_reloc_table_entry
5304{
5305 const char *name;
5306 int alu_code;
5307 int ldr_code;
5308 int ldrs_code;
5309 int ldc_code;
5310};
5311
5312typedef enum
5313{
5314 /* Varieties of non-ALU group relocation. */
5315
5316 GROUP_LDR,
5317 GROUP_LDRS,
5318 GROUP_LDC
5319} group_reloc_type;
5320
5321static struct group_reloc_table_entry group_reloc_table[] =
5322 { /* Program counter relative: */
5323 { "pc_g0_nc",
5324 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5325 0, /* LDR */
5326 0, /* LDRS */
5327 0 }, /* LDC */
5328 { "pc_g0",
5329 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5330 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5331 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5332 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5333 { "pc_g1_nc",
5334 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5335 0, /* LDR */
5336 0, /* LDRS */
5337 0 }, /* LDC */
5338 { "pc_g1",
5339 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5340 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5341 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5342 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5343 { "pc_g2",
5344 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5345 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5346 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5347 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5348 /* Section base relative */
5349 { "sb_g0_nc",
5350 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5351 0, /* LDR */
5352 0, /* LDRS */
5353 0 }, /* LDC */
5354 { "sb_g0",
5355 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5356 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5357 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5358 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5359 { "sb_g1_nc",
5360 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5361 0, /* LDR */
5362 0, /* LDRS */
5363 0 }, /* LDC */
5364 { "sb_g1",
5365 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5366 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5367 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5368 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5369 { "sb_g2",
5370 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5371 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5372 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5373 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5374 /* Absolute thumb alu relocations. */
5375 { "lower0_7",
5376 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5377 0, /* LDR. */
5378 0, /* LDRS. */
5379 0 }, /* LDC. */
5380 { "lower8_15",
5381 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5382 0, /* LDR. */
5383 0, /* LDRS. */
5384 0 }, /* LDC. */
5385 { "upper0_7",
5386 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5387 0, /* LDR. */
5388 0, /* LDRS. */
5389 0 }, /* LDC. */
5390 { "upper8_15",
5391 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5392 0, /* LDR. */
5393 0, /* LDRS. */
5394 0 } }; /* LDC. */
4962c51a
MS
5395
5396/* Given the address of a pointer pointing to the textual name of a group
5397 relocation as may appear in assembler source, attempt to find its details
5398 in group_reloc_table. The pointer will be updated to the character after
5399 the trailing colon. On failure, FAIL will be returned; SUCCESS
5400 otherwise. On success, *entry will be updated to point at the relevant
5401 group_reloc_table entry. */
5402
5403static int
5404find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5405{
5406 unsigned int i;
5407 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5408 {
5409 int length = strlen (group_reloc_table[i].name);
5410
5f4273c7
NC
5411 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5412 && (*str)[length] == ':')
477330fc
RM
5413 {
5414 *out = &group_reloc_table[i];
5415 *str += (length + 1);
5416 return SUCCESS;
5417 }
4962c51a
MS
5418 }
5419
5420 return FAIL;
5421}
5422
5423/* Parse a <shifter_operand> for an ARM data processing instruction
5424 (as for parse_shifter_operand) where group relocations are allowed:
5425
5426 #<immediate>
5427 #<immediate>, <rotate>
5428 #:<group_reloc>:<expression>
5429 <Rm>
5430 <Rm>, <shift>
5431
5432 where <group_reloc> is one of the strings defined in group_reloc_table.
5433 The hashes are optional.
5434
5435 Everything else is as for parse_shifter_operand. */
5436
5437static parse_operand_result
5438parse_shifter_operand_group_reloc (char **str, int i)
5439{
5440 /* Determine if we have the sequence of characters #: or just :
5441 coming next. If we do, then we check for a group relocation.
5442 If we don't, punt the whole lot to parse_shifter_operand. */
5443
5444 if (((*str)[0] == '#' && (*str)[1] == ':')
5445 || (*str)[0] == ':')
5446 {
5447 struct group_reloc_table_entry *entry;
5448
5449 if ((*str)[0] == '#')
477330fc 5450 (*str) += 2;
4962c51a 5451 else
477330fc 5452 (*str)++;
4962c51a
MS
5453
5454 /* Try to parse a group relocation. Anything else is an error. */
5455 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5456 {
5457 inst.error = _("unknown group relocation");
5458 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5459 }
4962c51a
MS
5460
5461 /* We now have the group relocation table entry corresponding to
477330fc 5462 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5463 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5464 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5465
5466 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5467 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5468 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5469
5470 return PARSE_OPERAND_SUCCESS;
5471 }
5472 else
5473 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5474 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5475
5476 /* Never reached. */
5477}
5478
8e560766
MGD
5479/* Parse a Neon alignment expression. Information is written to
5480 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5481
8e560766
MGD
5482 align .imm = align << 8, .immisalign=1, .preind=0 */
5483static parse_operand_result
5484parse_neon_alignment (char **str, int i)
5485{
5486 char *p = *str;
5487 expressionS exp;
5488
5489 my_get_expression (&exp, &p, GE_NO_PREFIX);
5490
5491 if (exp.X_op != O_constant)
5492 {
5493 inst.error = _("alignment must be constant");
5494 return PARSE_OPERAND_FAIL;
5495 }
5496
5497 inst.operands[i].imm = exp.X_add_number << 8;
5498 inst.operands[i].immisalign = 1;
5499 /* Alignments are not pre-indexes. */
5500 inst.operands[i].preind = 0;
5501
5502 *str = p;
5503 return PARSE_OPERAND_SUCCESS;
5504}
5505
c19d1205 5506/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5507 to inst.operands[i] and/or inst.relocs[0].
09d92015 5508
c19d1205 5509 Preindexed addressing (.preind=1):
09d92015 5510
e2b0ab59 5511 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5512 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5513 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5514 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5515
c19d1205 5516 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5517
c19d1205 5518 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5519
e2b0ab59 5520 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5521 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5522 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5523 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5524
c19d1205 5525 Unindexed addressing (.preind=0, .postind=0):
09d92015 5526
c19d1205 5527 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5528
c19d1205 5529 Other:
09d92015 5530
c19d1205 5531 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5532 =immediate .isreg=0 .relocs[0].exp=immediate
5533 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5534
c19d1205 5535 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5536 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5537
4962c51a
MS
5538static parse_operand_result
5539parse_address_main (char **str, int i, int group_relocations,
477330fc 5540 group_reloc_type group_type)
09d92015 5541{
c19d1205
ZW
5542 char *p = *str;
5543 int reg;
09d92015 5544
c19d1205 5545 if (skip_past_char (&p, '[') == FAIL)
09d92015 5546 {
c19d1205
ZW
5547 if (skip_past_char (&p, '=') == FAIL)
5548 {
974da60d 5549 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5550 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5551 inst.operands[i].reg = REG_PC;
5552 inst.operands[i].isreg = 1;
5553 inst.operands[i].preind = 1;
09d92015 5554
e2b0ab59 5555 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5556 return PARSE_OPERAND_FAIL;
5557 }
e2b0ab59 5558 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5559 /*allow_symbol_p=*/TRUE))
4962c51a 5560 return PARSE_OPERAND_FAIL;
09d92015 5561
c19d1205 5562 *str = p;
4962c51a 5563 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5564 }
5565
8ab8155f
NC
5566 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5567 skip_whitespace (p);
5568
dcbf9037 5569 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5570 {
c19d1205 5571 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5572 return PARSE_OPERAND_FAIL;
09d92015 5573 }
c19d1205
ZW
5574 inst.operands[i].reg = reg;
5575 inst.operands[i].isreg = 1;
09d92015 5576
c19d1205 5577 if (skip_past_comma (&p) == SUCCESS)
09d92015 5578 {
c19d1205 5579 inst.operands[i].preind = 1;
09d92015 5580
c19d1205
ZW
5581 if (*p == '+') p++;
5582 else if (*p == '-') p++, inst.operands[i].negative = 1;
5583
dcbf9037 5584 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5585 {
c19d1205
ZW
5586 inst.operands[i].imm = reg;
5587 inst.operands[i].immisreg = 1;
5588
5589 if (skip_past_comma (&p) == SUCCESS)
5590 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5591 return PARSE_OPERAND_FAIL;
c19d1205 5592 }
5287ad62 5593 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5594 {
5595 /* FIXME: '@' should be used here, but it's filtered out by generic
5596 code before we get to see it here. This may be subject to
5597 change. */
5598 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5599
8e560766
MGD
5600 if (result != PARSE_OPERAND_SUCCESS)
5601 return result;
5602 }
c19d1205
ZW
5603 else
5604 {
5605 if (inst.operands[i].negative)
5606 {
5607 inst.operands[i].negative = 0;
5608 p--;
5609 }
4962c51a 5610
5f4273c7
NC
5611 if (group_relocations
5612 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5613 {
5614 struct group_reloc_table_entry *entry;
5615
477330fc
RM
5616 /* Skip over the #: or : sequence. */
5617 if (*p == '#')
5618 p += 2;
5619 else
5620 p++;
4962c51a
MS
5621
5622 /* Try to parse a group relocation. Anything else is an
477330fc 5623 error. */
4962c51a
MS
5624 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5625 {
5626 inst.error = _("unknown group relocation");
5627 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5628 }
5629
5630 /* We now have the group relocation table entry corresponding to
5631 the name in the assembler source. Next, we parse the
477330fc 5632 expression. */
e2b0ab59 5633 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5634 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5635
5636 /* Record the relocation type. */
477330fc
RM
5637 switch (group_type)
5638 {
5639 case GROUP_LDR:
e2b0ab59
AV
5640 inst.relocs[0].type
5641 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5642 break;
4962c51a 5643
477330fc 5644 case GROUP_LDRS:
e2b0ab59
AV
5645 inst.relocs[0].type
5646 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5647 break;
4962c51a 5648
477330fc 5649 case GROUP_LDC:
e2b0ab59
AV
5650 inst.relocs[0].type
5651 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5652 break;
4962c51a 5653
477330fc
RM
5654 default:
5655 gas_assert (0);
5656 }
4962c51a 5657
e2b0ab59 5658 if (inst.relocs[0].type == 0)
4962c51a
MS
5659 {
5660 inst.error = _("this group relocation is not allowed on this instruction");
5661 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5662 }
477330fc
RM
5663 }
5664 else
26d97720
NS
5665 {
5666 char *q = p;
0198d5e6 5667
e2b0ab59 5668 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5669 return PARSE_OPERAND_FAIL;
5670 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5671 if (inst.relocs[0].exp.X_op == O_constant
5672 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5673 {
5674 skip_whitespace (q);
5675 if (*q == '#')
5676 {
5677 q++;
5678 skip_whitespace (q);
5679 }
5680 if (*q == '-')
5681 inst.operands[i].negative = 1;
5682 }
5683 }
09d92015
MM
5684 }
5685 }
8e560766
MGD
5686 else if (skip_past_char (&p, ':') == SUCCESS)
5687 {
5688 /* FIXME: '@' should be used here, but it's filtered out by generic code
5689 before we get to see it here. This may be subject to change. */
5690 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5691
8e560766
MGD
5692 if (result != PARSE_OPERAND_SUCCESS)
5693 return result;
5694 }
09d92015 5695
c19d1205 5696 if (skip_past_char (&p, ']') == FAIL)
09d92015 5697 {
c19d1205 5698 inst.error = _("']' expected");
4962c51a 5699 return PARSE_OPERAND_FAIL;
09d92015
MM
5700 }
5701
c19d1205
ZW
5702 if (skip_past_char (&p, '!') == SUCCESS)
5703 inst.operands[i].writeback = 1;
09d92015 5704
c19d1205 5705 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5706 {
c19d1205
ZW
5707 if (skip_past_char (&p, '{') == SUCCESS)
5708 {
5709 /* [Rn], {expr} - unindexed, with option */
5710 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5711 0, 255, TRUE) == FAIL)
4962c51a 5712 return PARSE_OPERAND_FAIL;
09d92015 5713
c19d1205
ZW
5714 if (skip_past_char (&p, '}') == FAIL)
5715 {
5716 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5717 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5718 }
5719 if (inst.operands[i].preind)
5720 {
5721 inst.error = _("cannot combine index with option");
4962c51a 5722 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5723 }
5724 *str = p;
4962c51a 5725 return PARSE_OPERAND_SUCCESS;
09d92015 5726 }
c19d1205
ZW
5727 else
5728 {
5729 inst.operands[i].postind = 1;
5730 inst.operands[i].writeback = 1;
09d92015 5731
c19d1205
ZW
5732 if (inst.operands[i].preind)
5733 {
5734 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5735 return PARSE_OPERAND_FAIL;
c19d1205 5736 }
09d92015 5737
c19d1205
ZW
5738 if (*p == '+') p++;
5739 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5740
dcbf9037 5741 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5742 {
477330fc
RM
5743 /* We might be using the immediate for alignment already. If we
5744 are, OR the register number into the low-order bits. */
5745 if (inst.operands[i].immisalign)
5746 inst.operands[i].imm |= reg;
5747 else
5748 inst.operands[i].imm = reg;
c19d1205 5749 inst.operands[i].immisreg = 1;
a737bd4d 5750
c19d1205
ZW
5751 if (skip_past_comma (&p) == SUCCESS)
5752 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5753 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5754 }
5755 else
5756 {
26d97720 5757 char *q = p;
0198d5e6 5758
c19d1205
ZW
5759 if (inst.operands[i].negative)
5760 {
5761 inst.operands[i].negative = 0;
5762 p--;
5763 }
e2b0ab59 5764 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 5765 return PARSE_OPERAND_FAIL;
26d97720 5766 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5767 if (inst.relocs[0].exp.X_op == O_constant
5768 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5769 {
5770 skip_whitespace (q);
5771 if (*q == '#')
5772 {
5773 q++;
5774 skip_whitespace (q);
5775 }
5776 if (*q == '-')
5777 inst.operands[i].negative = 1;
5778 }
c19d1205
ZW
5779 }
5780 }
a737bd4d
NC
5781 }
5782
c19d1205
ZW
5783 /* If at this point neither .preind nor .postind is set, we have a
5784 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5785 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5786 {
5787 inst.operands[i].preind = 1;
e2b0ab59
AV
5788 inst.relocs[0].exp.X_op = O_constant;
5789 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
5790 }
5791 *str = p;
4962c51a
MS
5792 return PARSE_OPERAND_SUCCESS;
5793}
5794
5795static int
5796parse_address (char **str, int i)
5797{
21d799b5 5798 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 5799 ? SUCCESS : FAIL;
4962c51a
MS
5800}
5801
5802static parse_operand_result
5803parse_address_group_reloc (char **str, int i, group_reloc_type type)
5804{
5805 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5806}
5807
b6895b4f
PB
5808/* Parse an operand for a MOVW or MOVT instruction. */
5809static int
5810parse_half (char **str)
5811{
5812 char * p;
5f4273c7 5813
b6895b4f
PB
5814 p = *str;
5815 skip_past_char (&p, '#');
5f4273c7 5816 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 5817 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 5818 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 5819 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 5820
e2b0ab59 5821 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
5822 {
5823 p += 9;
5f4273c7 5824 skip_whitespace (p);
b6895b4f
PB
5825 }
5826
e2b0ab59 5827 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
5828 return FAIL;
5829
e2b0ab59 5830 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 5831 {
e2b0ab59 5832 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
5833 {
5834 inst.error = _("constant expression expected");
5835 return FAIL;
5836 }
e2b0ab59
AV
5837 if (inst.relocs[0].exp.X_add_number < 0
5838 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
5839 {
5840 inst.error = _("immediate value out of range");
5841 return FAIL;
5842 }
5843 }
5844 *str = p;
5845 return SUCCESS;
5846}
5847
c19d1205 5848/* Miscellaneous. */
a737bd4d 5849
c19d1205
ZW
5850/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5851 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5852static int
d2cd1205 5853parse_psr (char **str, bfd_boolean lhs)
09d92015 5854{
c19d1205
ZW
5855 char *p;
5856 unsigned long psr_field;
62b3e311
PB
5857 const struct asm_psr *psr;
5858 char *start;
d2cd1205 5859 bfd_boolean is_apsr = FALSE;
ac7f631b 5860 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5861
a4482bb6
NC
5862 /* PR gas/12698: If the user has specified -march=all then m_profile will
5863 be TRUE, but we want to ignore it in this case as we are building for any
5864 CPU type, including non-m variants. */
823d2571 5865 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
5866 m_profile = FALSE;
5867
c19d1205
ZW
5868 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5869 feature for ease of use and backwards compatibility. */
5870 p = *str;
62b3e311 5871 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5872 {
5873 if (m_profile)
5874 goto unsupported_psr;
fa94de6b 5875
d2cd1205
JB
5876 psr_field = SPSR_BIT;
5877 }
5878 else if (strncasecmp (p, "CPSR", 4) == 0)
5879 {
5880 if (m_profile)
5881 goto unsupported_psr;
5882
5883 psr_field = 0;
5884 }
5885 else if (strncasecmp (p, "APSR", 4) == 0)
5886 {
5887 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5888 and ARMv7-R architecture CPUs. */
5889 is_apsr = TRUE;
5890 psr_field = 0;
5891 }
5892 else if (m_profile)
62b3e311
PB
5893 {
5894 start = p;
5895 do
5896 p++;
5897 while (ISALNUM (*p) || *p == '_');
5898
d2cd1205
JB
5899 if (strncasecmp (start, "iapsr", 5) == 0
5900 || strncasecmp (start, "eapsr", 5) == 0
5901 || strncasecmp (start, "xpsr", 4) == 0
5902 || strncasecmp (start, "psr", 3) == 0)
5903 p = start + strcspn (start, "rR") + 1;
5904
21d799b5 5905 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 5906 p - start);
d2cd1205 5907
62b3e311
PB
5908 if (!psr)
5909 return FAIL;
09d92015 5910
d2cd1205
JB
5911 /* If APSR is being written, a bitfield may be specified. Note that
5912 APSR itself is handled above. */
5913 if (psr->field <= 3)
5914 {
5915 psr_field = psr->field;
5916 is_apsr = TRUE;
5917 goto check_suffix;
5918 }
5919
62b3e311 5920 *str = p;
d2cd1205
JB
5921 /* M-profile MSR instructions have the mask field set to "10", except
5922 *PSR variants which modify APSR, which may use a different mask (and
5923 have been handled already). Do that by setting the PSR_f field
5924 here. */
5925 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5926 }
d2cd1205
JB
5927 else
5928 goto unsupported_psr;
09d92015 5929
62b3e311 5930 p += 4;
d2cd1205 5931check_suffix:
c19d1205
ZW
5932 if (*p == '_')
5933 {
5934 /* A suffix follows. */
c19d1205
ZW
5935 p++;
5936 start = p;
a737bd4d 5937
c19d1205
ZW
5938 do
5939 p++;
5940 while (ISALNUM (*p) || *p == '_');
a737bd4d 5941
d2cd1205
JB
5942 if (is_apsr)
5943 {
5944 /* APSR uses a notation for bits, rather than fields. */
5945 unsigned int nzcvq_bits = 0;
5946 unsigned int g_bit = 0;
5947 char *bit;
fa94de6b 5948
d2cd1205
JB
5949 for (bit = start; bit != p; bit++)
5950 {
5951 switch (TOLOWER (*bit))
477330fc 5952 {
d2cd1205
JB
5953 case 'n':
5954 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5955 break;
5956
5957 case 'z':
5958 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5959 break;
5960
5961 case 'c':
5962 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5963 break;
5964
5965 case 'v':
5966 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5967 break;
fa94de6b 5968
d2cd1205
JB
5969 case 'q':
5970 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5971 break;
fa94de6b 5972
d2cd1205
JB
5973 case 'g':
5974 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5975 break;
fa94de6b 5976
d2cd1205
JB
5977 default:
5978 inst.error = _("unexpected bit specified after APSR");
5979 return FAIL;
5980 }
5981 }
fa94de6b 5982
d2cd1205
JB
5983 if (nzcvq_bits == 0x1f)
5984 psr_field |= PSR_f;
fa94de6b 5985
d2cd1205
JB
5986 if (g_bit == 0x1)
5987 {
5988 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 5989 {
d2cd1205
JB
5990 inst.error = _("selected processor does not "
5991 "support DSP extension");
5992 return FAIL;
5993 }
5994
5995 psr_field |= PSR_s;
5996 }
fa94de6b 5997
d2cd1205
JB
5998 if ((nzcvq_bits & 0x20) != 0
5999 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6000 || (g_bit & 0x2) != 0)
6001 {
6002 inst.error = _("bad bitmask specified after APSR");
6003 return FAIL;
6004 }
6005 }
6006 else
477330fc 6007 {
d2cd1205 6008 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6009 p - start);
d2cd1205 6010 if (!psr)
477330fc 6011 goto error;
a737bd4d 6012
d2cd1205
JB
6013 psr_field |= psr->field;
6014 }
a737bd4d 6015 }
c19d1205 6016 else
a737bd4d 6017 {
c19d1205
ZW
6018 if (ISALNUM (*p))
6019 goto error; /* Garbage after "[CS]PSR". */
6020
d2cd1205 6021 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6022 is deprecated, but allow it anyway. */
d2cd1205
JB
6023 if (is_apsr && lhs)
6024 {
6025 psr_field |= PSR_f;
6026 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6027 "deprecated"));
6028 }
6029 else if (!m_profile)
6030 /* These bits are never right for M-profile devices: don't set them
6031 (only code paths which read/write APSR reach here). */
6032 psr_field |= (PSR_c | PSR_f);
a737bd4d 6033 }
c19d1205
ZW
6034 *str = p;
6035 return psr_field;
a737bd4d 6036
d2cd1205
JB
6037 unsupported_psr:
6038 inst.error = _("selected processor does not support requested special "
6039 "purpose register");
6040 return FAIL;
6041
c19d1205
ZW
6042 error:
6043 inst.error = _("flag for {c}psr instruction expected");
6044 return FAIL;
a737bd4d
NC
6045}
6046
c19d1205
ZW
6047/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6048 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6049
c19d1205
ZW
6050static int
6051parse_cps_flags (char **str)
a737bd4d 6052{
c19d1205
ZW
6053 int val = 0;
6054 int saw_a_flag = 0;
6055 char *s = *str;
a737bd4d 6056
c19d1205
ZW
6057 for (;;)
6058 switch (*s++)
6059 {
6060 case '\0': case ',':
6061 goto done;
a737bd4d 6062
c19d1205
ZW
6063 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6064 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6065 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6066
c19d1205
ZW
6067 default:
6068 inst.error = _("unrecognized CPS flag");
6069 return FAIL;
6070 }
a737bd4d 6071
c19d1205
ZW
6072 done:
6073 if (saw_a_flag == 0)
a737bd4d 6074 {
c19d1205
ZW
6075 inst.error = _("missing CPS flags");
6076 return FAIL;
a737bd4d 6077 }
a737bd4d 6078
c19d1205
ZW
6079 *str = s - 1;
6080 return val;
a737bd4d
NC
6081}
6082
c19d1205
ZW
6083/* Parse an endian specifier ("BE" or "LE", case insensitive);
6084 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6085
6086static int
c19d1205 6087parse_endian_specifier (char **str)
a737bd4d 6088{
c19d1205
ZW
6089 int little_endian;
6090 char *s = *str;
a737bd4d 6091
c19d1205
ZW
6092 if (strncasecmp (s, "BE", 2))
6093 little_endian = 0;
6094 else if (strncasecmp (s, "LE", 2))
6095 little_endian = 1;
6096 else
a737bd4d 6097 {
c19d1205 6098 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6099 return FAIL;
6100 }
6101
c19d1205 6102 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6103 {
c19d1205 6104 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6105 return FAIL;
6106 }
6107
c19d1205
ZW
6108 *str = s + 2;
6109 return little_endian;
6110}
a737bd4d 6111
c19d1205
ZW
6112/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6113 value suitable for poking into the rotate field of an sxt or sxta
6114 instruction, or FAIL on error. */
6115
6116static int
6117parse_ror (char **str)
6118{
6119 int rot;
6120 char *s = *str;
6121
6122 if (strncasecmp (s, "ROR", 3) == 0)
6123 s += 3;
6124 else
a737bd4d 6125 {
c19d1205 6126 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6127 return FAIL;
6128 }
c19d1205
ZW
6129
6130 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6131 return FAIL;
6132
6133 switch (rot)
a737bd4d 6134 {
c19d1205
ZW
6135 case 0: *str = s; return 0x0;
6136 case 8: *str = s; return 0x1;
6137 case 16: *str = s; return 0x2;
6138 case 24: *str = s; return 0x3;
6139
6140 default:
6141 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6142 return FAIL;
6143 }
c19d1205 6144}
a737bd4d 6145
c19d1205
ZW
6146/* Parse a conditional code (from conds[] below). The value returned is in the
6147 range 0 .. 14, or FAIL. */
6148static int
6149parse_cond (char **str)
6150{
c462b453 6151 char *q;
c19d1205 6152 const struct asm_cond *c;
c462b453
PB
6153 int n;
6154 /* Condition codes are always 2 characters, so matching up to
6155 3 characters is sufficient. */
6156 char cond[3];
a737bd4d 6157
c462b453
PB
6158 q = *str;
6159 n = 0;
6160 while (ISALPHA (*q) && n < 3)
6161 {
e07e6e58 6162 cond[n] = TOLOWER (*q);
c462b453
PB
6163 q++;
6164 n++;
6165 }
a737bd4d 6166
21d799b5 6167 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6168 if (!c)
a737bd4d 6169 {
c19d1205 6170 inst.error = _("condition required");
a737bd4d
NC
6171 return FAIL;
6172 }
6173
c19d1205
ZW
6174 *str = q;
6175 return c->value;
6176}
6177
643afb90
MW
6178/* Record a use of the given feature. */
6179static void
6180record_feature_use (const arm_feature_set *feature)
6181{
6182 if (thumb_mode)
6183 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6184 else
6185 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6186}
6187
4d354d8b
TP
6188/* If the given feature is currently allowed, mark it as used and return TRUE.
6189 Return FALSE otherwise. */
e797f7e0
MGD
6190static bfd_boolean
6191mark_feature_used (const arm_feature_set *feature)
6192{
4d354d8b 6193 /* Ensure the option is currently allowed. */
e797f7e0
MGD
6194 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6195 return FALSE;
6196
4d354d8b 6197 /* Add the appropriate architecture feature for the barrier option used. */
643afb90 6198 record_feature_use (feature);
e797f7e0
MGD
6199
6200 return TRUE;
6201}
6202
62b3e311
PB
6203/* Parse an option for a barrier instruction. Returns the encoding for the
6204 option, or FAIL. */
6205static int
6206parse_barrier (char **str)
6207{
6208 char *p, *q;
6209 const struct asm_barrier_opt *o;
6210
6211 p = q = *str;
6212 while (ISALPHA (*q))
6213 q++;
6214
21d799b5 6215 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6216 q - p);
62b3e311
PB
6217 if (!o)
6218 return FAIL;
6219
e797f7e0
MGD
6220 if (!mark_feature_used (&o->arch))
6221 return FAIL;
6222
62b3e311
PB
6223 *str = q;
6224 return o->value;
6225}
6226
92e90b6e
PB
6227/* Parse the operands of a table branch instruction. Similar to a memory
6228 operand. */
6229static int
6230parse_tb (char **str)
6231{
6232 char * p = *str;
6233 int reg;
6234
6235 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6236 {
6237 inst.error = _("'[' expected");
6238 return FAIL;
6239 }
92e90b6e 6240
dcbf9037 6241 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6242 {
6243 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6244 return FAIL;
6245 }
6246 inst.operands[0].reg = reg;
6247
6248 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6249 {
6250 inst.error = _("',' expected");
6251 return FAIL;
6252 }
5f4273c7 6253
dcbf9037 6254 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6255 {
6256 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6257 return FAIL;
6258 }
6259 inst.operands[0].imm = reg;
6260
6261 if (skip_past_comma (&p) == SUCCESS)
6262 {
6263 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6264 return FAIL;
e2b0ab59 6265 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6266 {
6267 inst.error = _("invalid shift");
6268 return FAIL;
6269 }
6270 inst.operands[0].shifted = 1;
6271 }
6272
6273 if (skip_past_char (&p, ']') == FAIL)
6274 {
6275 inst.error = _("']' expected");
6276 return FAIL;
6277 }
6278 *str = p;
6279 return SUCCESS;
6280}
6281
5287ad62
JB
6282/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6283 information on the types the operands can take and how they are encoded.
037e8744
JB
6284 Up to four operands may be read; this function handles setting the
6285 ".present" field for each read operand itself.
5287ad62
JB
6286 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6287 else returns FAIL. */
6288
6289static int
6290parse_neon_mov (char **str, int *which_operand)
6291{
6292 int i = *which_operand, val;
6293 enum arm_reg_type rtype;
6294 char *ptr = *str;
dcbf9037 6295 struct neon_type_el optype;
5f4273c7 6296
dcbf9037 6297 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6298 {
6299 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6300 inst.operands[i].reg = val;
6301 inst.operands[i].isscalar = 1;
dcbf9037 6302 inst.operands[i].vectype = optype;
5287ad62
JB
6303 inst.operands[i++].present = 1;
6304
6305 if (skip_past_comma (&ptr) == FAIL)
477330fc 6306 goto wanted_comma;
5f4273c7 6307
dcbf9037 6308 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6309 goto wanted_arm;
5f4273c7 6310
5287ad62
JB
6311 inst.operands[i].reg = val;
6312 inst.operands[i].isreg = 1;
6313 inst.operands[i].present = 1;
6314 }
037e8744 6315 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
477330fc 6316 != FAIL)
5287ad62
JB
6317 {
6318 /* Cases 0, 1, 2, 3, 5 (D only). */
6319 if (skip_past_comma (&ptr) == FAIL)
477330fc 6320 goto wanted_comma;
5f4273c7 6321
5287ad62
JB
6322 inst.operands[i].reg = val;
6323 inst.operands[i].isreg = 1;
6324 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6325 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6326 inst.operands[i].isvec = 1;
dcbf9037 6327 inst.operands[i].vectype = optype;
5287ad62
JB
6328 inst.operands[i++].present = 1;
6329
dcbf9037 6330 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6331 {
6332 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6333 Case 13: VMOV <Sd>, <Rm> */
6334 inst.operands[i].reg = val;
6335 inst.operands[i].isreg = 1;
6336 inst.operands[i].present = 1;
6337
6338 if (rtype == REG_TYPE_NQ)
6339 {
6340 first_error (_("can't use Neon quad register here"));
6341 return FAIL;
6342 }
6343 else if (rtype != REG_TYPE_VFS)
6344 {
6345 i++;
6346 if (skip_past_comma (&ptr) == FAIL)
6347 goto wanted_comma;
6348 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6349 goto wanted_arm;
6350 inst.operands[i].reg = val;
6351 inst.operands[i].isreg = 1;
6352 inst.operands[i].present = 1;
6353 }
6354 }
037e8744 6355 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6356 &optype)) != FAIL)
6357 {
6358 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6359 Case 1: VMOV<c><q> <Dd>, <Dm>
6360 Case 8: VMOV.F32 <Sd>, <Sm>
6361 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6362
6363 inst.operands[i].reg = val;
6364 inst.operands[i].isreg = 1;
6365 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6366 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6367 inst.operands[i].isvec = 1;
6368 inst.operands[i].vectype = optype;
6369 inst.operands[i].present = 1;
6370
6371 if (skip_past_comma (&ptr) == SUCCESS)
6372 {
6373 /* Case 15. */
6374 i++;
6375
6376 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6377 goto wanted_arm;
6378
6379 inst.operands[i].reg = val;
6380 inst.operands[i].isreg = 1;
6381 inst.operands[i++].present = 1;
6382
6383 if (skip_past_comma (&ptr) == FAIL)
6384 goto wanted_comma;
6385
6386 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6387 goto wanted_arm;
6388
6389 inst.operands[i].reg = val;
6390 inst.operands[i].isreg = 1;
6391 inst.operands[i].present = 1;
6392 }
6393 }
4641781c 6394 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6395 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6396 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6397 Case 10: VMOV.F32 <Sd>, #<imm>
6398 Case 11: VMOV.F64 <Dd>, #<imm> */
6399 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6400 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6401 == SUCCESS)
477330fc
RM
6402 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6403 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6404 ;
5287ad62 6405 else
477330fc
RM
6406 {
6407 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6408 return FAIL;
6409 }
5287ad62 6410 }
dcbf9037 6411 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6412 {
6413 /* Cases 6, 7. */
6414 inst.operands[i].reg = val;
6415 inst.operands[i].isreg = 1;
6416 inst.operands[i++].present = 1;
5f4273c7 6417
5287ad62 6418 if (skip_past_comma (&ptr) == FAIL)
477330fc 6419 goto wanted_comma;
5f4273c7 6420
dcbf9037 6421 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
477330fc
RM
6422 {
6423 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6424 inst.operands[i].reg = val;
6425 inst.operands[i].isscalar = 1;
6426 inst.operands[i].present = 1;
6427 inst.operands[i].vectype = optype;
6428 }
dcbf9037 6429 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6430 {
6431 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6432 inst.operands[i].reg = val;
6433 inst.operands[i].isreg = 1;
6434 inst.operands[i++].present = 1;
6435
6436 if (skip_past_comma (&ptr) == FAIL)
6437 goto wanted_comma;
6438
6439 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6440 == FAIL)
6441 {
6442 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6443 return FAIL;
6444 }
6445
6446 inst.operands[i].reg = val;
6447 inst.operands[i].isreg = 1;
6448 inst.operands[i].isvec = 1;
6449 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6450 inst.operands[i].vectype = optype;
6451 inst.operands[i].present = 1;
6452
6453 if (rtype == REG_TYPE_VFS)
6454 {
6455 /* Case 14. */
6456 i++;
6457 if (skip_past_comma (&ptr) == FAIL)
6458 goto wanted_comma;
6459 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6460 &optype)) == FAIL)
6461 {
6462 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6463 return FAIL;
6464 }
6465 inst.operands[i].reg = val;
6466 inst.operands[i].isreg = 1;
6467 inst.operands[i].isvec = 1;
6468 inst.operands[i].issingle = 1;
6469 inst.operands[i].vectype = optype;
6470 inst.operands[i].present = 1;
6471 }
6472 }
037e8744 6473 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6474 != FAIL)
6475 {
6476 /* Case 13. */
6477 inst.operands[i].reg = val;
6478 inst.operands[i].isreg = 1;
6479 inst.operands[i].isvec = 1;
6480 inst.operands[i].issingle = 1;
6481 inst.operands[i].vectype = optype;
6482 inst.operands[i].present = 1;
6483 }
5287ad62
JB
6484 }
6485 else
6486 {
dcbf9037 6487 first_error (_("parse error"));
5287ad62
JB
6488 return FAIL;
6489 }
6490
6491 /* Successfully parsed the operands. Update args. */
6492 *which_operand = i;
6493 *str = ptr;
6494 return SUCCESS;
6495
5f4273c7 6496 wanted_comma:
dcbf9037 6497 first_error (_("expected comma"));
5287ad62 6498 return FAIL;
5f4273c7
NC
6499
6500 wanted_arm:
dcbf9037 6501 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6502 return FAIL;
5287ad62
JB
6503}
6504
5be8be5d
DG
6505/* Use this macro when the operand constraints are different
6506 for ARM and THUMB (e.g. ldrd). */
6507#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6508 ((arm_operand) | ((thumb_operand) << 16))
6509
c19d1205
ZW
6510/* Matcher codes for parse_operands. */
6511enum operand_parse_code
6512{
6513 OP_stop, /* end of line */
6514
6515 OP_RR, /* ARM register */
6516 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6517 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6518 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6519 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6520 optional trailing ! */
c19d1205
ZW
6521 OP_RRw, /* ARM register, not r15, optional trailing ! */
6522 OP_RCP, /* Coprocessor number */
6523 OP_RCN, /* Coprocessor register */
6524 OP_RF, /* FPA register */
6525 OP_RVS, /* VFP single precision register */
5287ad62
JB
6526 OP_RVD, /* VFP double precision register (0..15) */
6527 OP_RND, /* Neon double precision register (0..31) */
6528 OP_RNQ, /* Neon quad precision register */
037e8744 6529 OP_RVSD, /* VFP single or double precision register */
dec41383 6530 OP_RNSD, /* Neon single or double precision register */
5287ad62 6531 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6532 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6533 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6534 OP_RVC, /* VFP control register */
6535 OP_RMF, /* Maverick F register */
6536 OP_RMD, /* Maverick D register */
6537 OP_RMFX, /* Maverick FX register */
6538 OP_RMDX, /* Maverick DX register */
6539 OP_RMAX, /* Maverick AX register */
6540 OP_RMDS, /* Maverick DSPSC register */
6541 OP_RIWR, /* iWMMXt wR register */
6542 OP_RIWC, /* iWMMXt wC register */
6543 OP_RIWG, /* iWMMXt wCG register */
6544 OP_RXA, /* XScale accumulator register */
6545
6546 OP_REGLST, /* ARM register list */
6547 OP_VRSLST, /* VFP single-precision register list */
6548 OP_VRDLST, /* VFP double-precision register list */
037e8744 6549 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6550 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6551 OP_NSTRLST, /* Neon element/structure list */
6552
5287ad62 6553 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6554 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6555 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
5287ad62 6556 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6557 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6558 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6559 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6560 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6561 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6562 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6563 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6564 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6565
6566 OP_I0, /* immediate zero */
c19d1205
ZW
6567 OP_I7, /* immediate value 0 .. 7 */
6568 OP_I15, /* 0 .. 15 */
6569 OP_I16, /* 1 .. 16 */
5287ad62 6570 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6571 OP_I31, /* 0 .. 31 */
6572 OP_I31w, /* 0 .. 31, optional trailing ! */
6573 OP_I32, /* 1 .. 32 */
5287ad62
JB
6574 OP_I32z, /* 0 .. 32 */
6575 OP_I63, /* 0 .. 63 */
c19d1205 6576 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6577 OP_I64, /* 1 .. 64 */
6578 OP_I64z, /* 0 .. 64 */
c19d1205 6579 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6580
6581 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6582 OP_I7b, /* 0 .. 7 */
6583 OP_I15b, /* 0 .. 15 */
6584 OP_I31b, /* 0 .. 31 */
6585
6586 OP_SH, /* shifter operand */
4962c51a 6587 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6588 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6589 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6590 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6591 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6592 OP_EXP, /* arbitrary expression */
6593 OP_EXPi, /* same, with optional immediate prefix */
6594 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 6595 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 6596 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6597 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6598 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6599
6600 OP_CPSF, /* CPS flags */
6601 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6602 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6603 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6604 OP_COND, /* conditional code */
92e90b6e 6605 OP_TB, /* Table branch. */
c19d1205 6606
037e8744
JB
6607 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6608
c19d1205 6609 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 6610 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
6611 OP_RR_EXi, /* ARM register or expression with imm prefix */
6612 OP_RF_IF, /* FPA register or immediate */
6613 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6614 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6615
6616 /* Optional operands. */
6617 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6618 OP_oI31b, /* 0 .. 31 */
5287ad62 6619 OP_oI32b, /* 1 .. 32 */
5f1af56b 6620 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6621 OP_oIffffb, /* 0 .. 65535 */
6622 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6623
6624 OP_oRR, /* ARM register */
6625 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6626 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6627 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6628 OP_oRND, /* Optional Neon double precision register */
6629 OP_oRNQ, /* Optional Neon quad precision register */
6630 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6631 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6632 OP_oSHll, /* LSL immediate */
6633 OP_oSHar, /* ASR immediate */
6634 OP_oSHllar, /* LSL or ASR immediate */
6635 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6636 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6637
5be8be5d
DG
6638 /* Some pre-defined mixed (ARM/THUMB) operands. */
6639 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6640 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6641 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6642
c19d1205
ZW
6643 OP_FIRST_OPTIONAL = OP_oI7b
6644};
a737bd4d 6645
c19d1205
ZW
6646/* Generic instruction operand parser. This does no encoding and no
6647 semantic validation; it merely squirrels values away in the inst
6648 structure. Returns SUCCESS or FAIL depending on whether the
6649 specified grammar matched. */
6650static int
5be8be5d 6651parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6652{
5be8be5d 6653 unsigned const int *upat = pattern;
c19d1205
ZW
6654 char *backtrack_pos = 0;
6655 const char *backtrack_error = 0;
99aad254 6656 int i, val = 0, backtrack_index = 0;
5287ad62 6657 enum arm_reg_type rtype;
4962c51a 6658 parse_operand_result result;
5be8be5d 6659 unsigned int op_parse_code;
c19d1205 6660
e07e6e58
NC
6661#define po_char_or_fail(chr) \
6662 do \
6663 { \
6664 if (skip_past_char (&str, chr) == FAIL) \
477330fc 6665 goto bad_args; \
e07e6e58
NC
6666 } \
6667 while (0)
c19d1205 6668
e07e6e58
NC
6669#define po_reg_or_fail(regtype) \
6670 do \
dcbf9037 6671 { \
e07e6e58 6672 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 6673 & inst.operands[i].vectype); \
e07e6e58 6674 if (val == FAIL) \
477330fc
RM
6675 { \
6676 first_error (_(reg_expected_msgs[regtype])); \
6677 goto failure; \
6678 } \
e07e6e58
NC
6679 inst.operands[i].reg = val; \
6680 inst.operands[i].isreg = 1; \
6681 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6682 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6683 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
6684 || rtype == REG_TYPE_VFD \
6685 || rtype == REG_TYPE_NQ); \
dcbf9037 6686 } \
e07e6e58
NC
6687 while (0)
6688
6689#define po_reg_or_goto(regtype, label) \
6690 do \
6691 { \
6692 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6693 & inst.operands[i].vectype); \
6694 if (val == FAIL) \
6695 goto label; \
dcbf9037 6696 \
e07e6e58
NC
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isreg = 1; \
6699 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6700 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6701 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 6702 || rtype == REG_TYPE_VFD \
e07e6e58
NC
6703 || rtype == REG_TYPE_NQ); \
6704 } \
6705 while (0)
6706
6707#define po_imm_or_fail(min, max, popt) \
6708 do \
6709 { \
6710 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6711 goto failure; \
6712 inst.operands[i].imm = val; \
6713 } \
6714 while (0)
6715
6716#define po_scalar_or_goto(elsz, label) \
6717 do \
6718 { \
6719 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6720 if (val == FAIL) \
6721 goto label; \
6722 inst.operands[i].reg = val; \
6723 inst.operands[i].isscalar = 1; \
6724 } \
6725 while (0)
6726
6727#define po_misc_or_fail(expr) \
6728 do \
6729 { \
6730 if (expr) \
6731 goto failure; \
6732 } \
6733 while (0)
6734
6735#define po_misc_or_fail_no_backtrack(expr) \
6736 do \
6737 { \
6738 result = expr; \
6739 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6740 backtrack_pos = 0; \
6741 if (result != PARSE_OPERAND_SUCCESS) \
6742 goto failure; \
6743 } \
6744 while (0)
4962c51a 6745
52e7f43d
RE
6746#define po_barrier_or_imm(str) \
6747 do \
6748 { \
6749 val = parse_barrier (&str); \
ccb84d65
JB
6750 if (val == FAIL && ! ISALPHA (*str)) \
6751 goto immediate; \
6752 if (val == FAIL \
6753 /* ISB can only take SY as an option. */ \
6754 || ((inst.instruction & 0xf0) == 0x60 \
6755 && val != 0xf)) \
52e7f43d 6756 { \
ccb84d65
JB
6757 inst.error = _("invalid barrier type"); \
6758 backtrack_pos = 0; \
6759 goto failure; \
52e7f43d
RE
6760 } \
6761 } \
6762 while (0)
6763
c19d1205
ZW
6764 skip_whitespace (str);
6765
6766 for (i = 0; upat[i] != OP_stop; i++)
6767 {
5be8be5d
DG
6768 op_parse_code = upat[i];
6769 if (op_parse_code >= 1<<16)
6770 op_parse_code = thumb ? (op_parse_code >> 16)
6771 : (op_parse_code & ((1<<16)-1));
6772
6773 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6774 {
6775 /* Remember where we are in case we need to backtrack. */
9c2799c2 6776 gas_assert (!backtrack_pos);
c19d1205
ZW
6777 backtrack_pos = str;
6778 backtrack_error = inst.error;
6779 backtrack_index = i;
6780 }
6781
b6702015 6782 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6783 po_char_or_fail (',');
6784
5be8be5d 6785 switch (op_parse_code)
c19d1205
ZW
6786 {
6787 /* Registers */
6788 case OP_oRRnpc:
5be8be5d 6789 case OP_oRRnpcsp:
c19d1205 6790 case OP_RRnpc:
5be8be5d 6791 case OP_RRnpcsp:
c19d1205
ZW
6792 case OP_oRR:
6793 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6794 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6795 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6796 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6797 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6798 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 6799 case OP_oRND:
5287ad62 6800 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6801 case OP_RVC:
6802 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6803 break;
6804 /* Also accept generic coprocessor regs for unknown registers. */
6805 coproc_reg:
6806 po_reg_or_fail (REG_TYPE_CN);
6807 break;
c19d1205
ZW
6808 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6809 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6810 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6811 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6812 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6813 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6814 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6815 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6816 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6817 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 6818 case OP_oRNQ:
5287ad62 6819 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 6820 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
477330fc 6821 case OP_oRNDQ:
5287ad62 6822 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
477330fc
RM
6823 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6824 case OP_oRNSDQ:
6825 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6826
6827 /* Neon scalar. Using an element size of 8 means that some invalid
6828 scalars are accepted here, so deal with those in later code. */
6829 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6830
6831 case OP_RNDQ_I0:
6832 {
6833 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6834 break;
6835 try_imm0:
6836 po_imm_or_fail (0, 0, TRUE);
6837 }
6838 break;
6839
6840 case OP_RVSD_I0:
6841 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6842 break;
6843
aacf0b33
KT
6844 case OP_RSVD_FI0:
6845 {
6846 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6847 break;
6848 try_ifimm0:
6849 if (parse_ifimm_zero (&str))
6850 inst.operands[i].imm = 0;
6851 else
6852 {
6853 inst.error
6854 = _("only floating point zero is allowed as immediate value");
6855 goto failure;
6856 }
6857 }
6858 break;
6859
477330fc
RM
6860 case OP_RR_RNSC:
6861 {
6862 po_scalar_or_goto (8, try_rr);
6863 break;
6864 try_rr:
6865 po_reg_or_fail (REG_TYPE_RN);
6866 }
6867 break;
6868
6869 case OP_RNSDQ_RNSC:
6870 {
6871 po_scalar_or_goto (8, try_nsdq);
6872 break;
6873 try_nsdq:
6874 po_reg_or_fail (REG_TYPE_NSDQ);
6875 }
6876 break;
6877
dec41383
JW
6878 case OP_RNSD_RNSC:
6879 {
6880 po_scalar_or_goto (8, try_s_scalar);
6881 break;
6882 try_s_scalar:
6883 po_scalar_or_goto (4, try_nsd);
6884 break;
6885 try_nsd:
6886 po_reg_or_fail (REG_TYPE_NSD);
6887 }
6888 break;
6889
477330fc
RM
6890 case OP_RNDQ_RNSC:
6891 {
6892 po_scalar_or_goto (8, try_ndq);
6893 break;
6894 try_ndq:
6895 po_reg_or_fail (REG_TYPE_NDQ);
6896 }
6897 break;
6898
6899 case OP_RND_RNSC:
6900 {
6901 po_scalar_or_goto (8, try_vfd);
6902 break;
6903 try_vfd:
6904 po_reg_or_fail (REG_TYPE_VFD);
6905 }
6906 break;
6907
6908 case OP_VMOV:
6909 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6910 not careful then bad things might happen. */
6911 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6912 break;
6913
6914 case OP_RNDQ_Ibig:
6915 {
6916 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6917 break;
6918 try_immbig:
6919 /* There's a possibility of getting a 64-bit immediate here, so
6920 we need special handling. */
8335d6aa
JW
6921 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6922 == FAIL)
477330fc
RM
6923 {
6924 inst.error = _("immediate value is out of range");
6925 goto failure;
6926 }
6927 }
6928 break;
6929
6930 case OP_RNDQ_I63b:
6931 {
6932 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6933 break;
6934 try_shimm:
6935 po_imm_or_fail (0, 63, TRUE);
6936 }
6937 break;
c19d1205
ZW
6938
6939 case OP_RRnpcb:
6940 po_char_or_fail ('[');
6941 po_reg_or_fail (REG_TYPE_RN);
6942 po_char_or_fail (']');
6943 break;
a737bd4d 6944
55881a11 6945 case OP_RRnpctw:
c19d1205 6946 case OP_RRw:
b6702015 6947 case OP_oRRw:
c19d1205
ZW
6948 po_reg_or_fail (REG_TYPE_RN);
6949 if (skip_past_char (&str, '!') == SUCCESS)
6950 inst.operands[i].writeback = 1;
6951 break;
6952
6953 /* Immediates */
6954 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6955 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6956 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 6957 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6958 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6959 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 6960 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6961 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
6962 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6963 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6964 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6965 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6966
6967 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6968 case OP_oI7b:
6969 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6970 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6971 case OP_oI31b:
6972 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
6973 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6974 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6975 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6976
6977 /* Immediate variants */
6978 case OP_oI255c:
6979 po_char_or_fail ('{');
6980 po_imm_or_fail (0, 255, TRUE);
6981 po_char_or_fail ('}');
6982 break;
6983
6984 case OP_I31w:
6985 /* The expression parser chokes on a trailing !, so we have
6986 to find it first and zap it. */
6987 {
6988 char *s = str;
6989 while (*s && *s != ',')
6990 s++;
6991 if (s[-1] == '!')
6992 {
6993 s[-1] = '\0';
6994 inst.operands[i].writeback = 1;
6995 }
6996 po_imm_or_fail (0, 31, TRUE);
6997 if (str == s - 1)
6998 str = s;
6999 }
7000 break;
7001
7002 /* Expressions */
7003 case OP_EXPi: EXPi:
e2b0ab59 7004 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7005 GE_OPT_PREFIX));
7006 break;
7007
7008 case OP_EXP:
e2b0ab59 7009 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7010 GE_NO_PREFIX));
7011 break;
7012
7013 case OP_EXPr: EXPr:
e2b0ab59 7014 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7015 GE_NO_PREFIX));
e2b0ab59 7016 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7017 {
c19d1205
ZW
7018 val = parse_reloc (&str);
7019 if (val == -1)
7020 {
7021 inst.error = _("unrecognized relocation suffix");
7022 goto failure;
7023 }
7024 else if (val != BFD_RELOC_UNUSED)
7025 {
7026 inst.operands[i].imm = val;
7027 inst.operands[i].hasreloc = 1;
7028 }
a737bd4d 7029 }
c19d1205 7030 break;
a737bd4d 7031
e2b0ab59
AV
7032 case OP_EXPs:
7033 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7034 GE_NO_PREFIX));
7035 if (inst.relocs[i].exp.X_op == O_symbol)
7036 {
7037 inst.operands[i].hasreloc = 1;
7038 }
7039 else if (inst.relocs[i].exp.X_op == O_constant)
7040 {
7041 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7042 inst.operands[i].hasreloc = 0;
7043 }
7044 break;
7045
b6895b4f
PB
7046 /* Operand for MOVW or MOVT. */
7047 case OP_HALF:
7048 po_misc_or_fail (parse_half (&str));
7049 break;
7050
e07e6e58 7051 /* Register or expression. */
c19d1205
ZW
7052 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7053 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7054
e07e6e58 7055 /* Register or immediate. */
c19d1205
ZW
7056 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7057 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7058
c19d1205
ZW
7059 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7060 IF:
7061 if (!is_immediate_prefix (*str))
7062 goto bad_args;
7063 str++;
7064 val = parse_fpa_immediate (&str);
7065 if (val == FAIL)
7066 goto failure;
7067 /* FPA immediates are encoded as registers 8-15.
7068 parse_fpa_immediate has already applied the offset. */
7069 inst.operands[i].reg = val;
7070 inst.operands[i].isreg = 1;
7071 break;
09d92015 7072
2d447fca
JM
7073 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7074 I32z: po_imm_or_fail (0, 32, FALSE); break;
7075
e07e6e58 7076 /* Two kinds of register. */
c19d1205
ZW
7077 case OP_RIWR_RIWC:
7078 {
7079 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7080 if (!rege
7081 || (rege->type != REG_TYPE_MMXWR
7082 && rege->type != REG_TYPE_MMXWC
7083 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7084 {
7085 inst.error = _("iWMMXt data or control register expected");
7086 goto failure;
7087 }
7088 inst.operands[i].reg = rege->number;
7089 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7090 }
7091 break;
09d92015 7092
41adaa5c
JM
7093 case OP_RIWC_RIWG:
7094 {
7095 struct reg_entry *rege = arm_reg_parse_multi (&str);
7096 if (!rege
7097 || (rege->type != REG_TYPE_MMXWC
7098 && rege->type != REG_TYPE_MMXWCG))
7099 {
7100 inst.error = _("iWMMXt control register expected");
7101 goto failure;
7102 }
7103 inst.operands[i].reg = rege->number;
7104 inst.operands[i].isreg = 1;
7105 }
7106 break;
7107
c19d1205
ZW
7108 /* Misc */
7109 case OP_CPSF: val = parse_cps_flags (&str); break;
7110 case OP_ENDI: val = parse_endian_specifier (&str); break;
7111 case OP_oROR: val = parse_ror (&str); break;
c19d1205 7112 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7113 case OP_oBARRIER_I15:
7114 po_barrier_or_imm (str); break;
7115 immediate:
7116 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7117 goto failure;
52e7f43d 7118 break;
c19d1205 7119
fa94de6b 7120 case OP_wPSR:
d2cd1205 7121 case OP_rPSR:
90ec0d68
MGD
7122 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7123 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7124 {
7125 inst.error = _("Banked registers are not available with this "
7126 "architecture.");
7127 goto failure;
7128 }
7129 break;
d2cd1205
JB
7130 try_psr:
7131 val = parse_psr (&str, op_parse_code == OP_wPSR);
7132 break;
037e8744 7133
477330fc
RM
7134 case OP_APSR_RR:
7135 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7136 break;
7137 try_apsr:
7138 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7139 instruction). */
7140 if (strncasecmp (str, "APSR_", 5) == 0)
7141 {
7142 unsigned found = 0;
7143 str += 5;
7144 while (found < 15)
7145 switch (*str++)
7146 {
7147 case 'c': found = (found & 1) ? 16 : found | 1; break;
7148 case 'n': found = (found & 2) ? 16 : found | 2; break;
7149 case 'z': found = (found & 4) ? 16 : found | 4; break;
7150 case 'v': found = (found & 8) ? 16 : found | 8; break;
7151 default: found = 16;
7152 }
7153 if (found != 15)
7154 goto failure;
7155 inst.operands[i].isvec = 1;
f7c21dc7
NC
7156 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7157 inst.operands[i].reg = REG_PC;
477330fc
RM
7158 }
7159 else
7160 goto failure;
7161 break;
037e8744 7162
92e90b6e
PB
7163 case OP_TB:
7164 po_misc_or_fail (parse_tb (&str));
7165 break;
7166
e07e6e58 7167 /* Register lists. */
c19d1205
ZW
7168 case OP_REGLST:
7169 val = parse_reg_list (&str);
7170 if (*str == '^')
7171 {
5e0d7f77 7172 inst.operands[i].writeback = 1;
c19d1205
ZW
7173 str++;
7174 }
7175 break;
09d92015 7176
c19d1205 7177 case OP_VRSLST:
5287ad62 7178 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 7179 break;
09d92015 7180
c19d1205 7181 case OP_VRDLST:
5287ad62 7182 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 7183 break;
a737bd4d 7184
477330fc
RM
7185 case OP_VRSDLST:
7186 /* Allow Q registers too. */
7187 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7188 REGLIST_NEON_D);
7189 if (val == FAIL)
7190 {
7191 inst.error = NULL;
7192 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7193 REGLIST_VFP_S);
7194 inst.operands[i].issingle = 1;
7195 }
7196 break;
7197
7198 case OP_NRDLST:
7199 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7200 REGLIST_NEON_D);
7201 break;
5287ad62
JB
7202
7203 case OP_NSTRLST:
477330fc
RM
7204 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7205 &inst.operands[i].vectype);
7206 break;
5287ad62 7207
c19d1205
ZW
7208 /* Addressing modes */
7209 case OP_ADDR:
7210 po_misc_or_fail (parse_address (&str, i));
7211 break;
09d92015 7212
4962c51a
MS
7213 case OP_ADDRGLDR:
7214 po_misc_or_fail_no_backtrack (
477330fc 7215 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7216 break;
7217
7218 case OP_ADDRGLDRS:
7219 po_misc_or_fail_no_backtrack (
477330fc 7220 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7221 break;
7222
7223 case OP_ADDRGLDC:
7224 po_misc_or_fail_no_backtrack (
477330fc 7225 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7226 break;
7227
c19d1205
ZW
7228 case OP_SH:
7229 po_misc_or_fail (parse_shifter_operand (&str, i));
7230 break;
09d92015 7231
4962c51a
MS
7232 case OP_SHG:
7233 po_misc_or_fail_no_backtrack (
477330fc 7234 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7235 break;
7236
c19d1205
ZW
7237 case OP_oSHll:
7238 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7239 break;
09d92015 7240
c19d1205
ZW
7241 case OP_oSHar:
7242 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7243 break;
09d92015 7244
c19d1205
ZW
7245 case OP_oSHllar:
7246 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7247 break;
09d92015 7248
c19d1205 7249 default:
5be8be5d 7250 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7251 }
09d92015 7252
c19d1205
ZW
7253 /* Various value-based sanity checks and shared operations. We
7254 do not signal immediate failures for the register constraints;
7255 this allows a syntax error to take precedence. */
5be8be5d 7256 switch (op_parse_code)
c19d1205
ZW
7257 {
7258 case OP_oRRnpc:
7259 case OP_RRnpc:
7260 case OP_RRnpcb:
7261 case OP_RRw:
b6702015 7262 case OP_oRRw:
c19d1205
ZW
7263 case OP_RRnpc_I0:
7264 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7265 inst.error = BAD_PC;
7266 break;
09d92015 7267
5be8be5d
DG
7268 case OP_oRRnpcsp:
7269 case OP_RRnpcsp:
7270 if (inst.operands[i].isreg)
7271 {
7272 if (inst.operands[i].reg == REG_PC)
7273 inst.error = BAD_PC;
5c8ed6a4
JW
7274 else if (inst.operands[i].reg == REG_SP
7275 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7276 relaxed since ARMv8-A. */
7277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7278 {
7279 gas_assert (thumb);
7280 inst.error = BAD_SP;
7281 }
5be8be5d
DG
7282 }
7283 break;
7284
55881a11 7285 case OP_RRnpctw:
fa94de6b
RM
7286 if (inst.operands[i].isreg
7287 && inst.operands[i].reg == REG_PC
55881a11
MGD
7288 && (inst.operands[i].writeback || thumb))
7289 inst.error = BAD_PC;
7290 break;
7291
c19d1205
ZW
7292 case OP_CPSF:
7293 case OP_ENDI:
7294 case OP_oROR:
d2cd1205
JB
7295 case OP_wPSR:
7296 case OP_rPSR:
c19d1205 7297 case OP_COND:
52e7f43d 7298 case OP_oBARRIER_I15:
c19d1205
ZW
7299 case OP_REGLST:
7300 case OP_VRSLST:
7301 case OP_VRDLST:
477330fc
RM
7302 case OP_VRSDLST:
7303 case OP_NRDLST:
7304 case OP_NSTRLST:
c19d1205
ZW
7305 if (val == FAIL)
7306 goto failure;
7307 inst.operands[i].imm = val;
7308 break;
a737bd4d 7309
c19d1205
ZW
7310 default:
7311 break;
7312 }
09d92015 7313
c19d1205
ZW
7314 /* If we get here, this operand was successfully parsed. */
7315 inst.operands[i].present = 1;
7316 continue;
09d92015 7317
c19d1205 7318 bad_args:
09d92015 7319 inst.error = BAD_ARGS;
c19d1205
ZW
7320
7321 failure:
7322 if (!backtrack_pos)
d252fdde
PB
7323 {
7324 /* The parse routine should already have set inst.error, but set a
5f4273c7 7325 default here just in case. */
d252fdde
PB
7326 if (!inst.error)
7327 inst.error = _("syntax error");
7328 return FAIL;
7329 }
c19d1205
ZW
7330
7331 /* Do not backtrack over a trailing optional argument that
7332 absorbed some text. We will only fail again, with the
7333 'garbage following instruction' error message, which is
7334 probably less helpful than the current one. */
7335 if (backtrack_index == i && backtrack_pos != str
7336 && upat[i+1] == OP_stop)
d252fdde
PB
7337 {
7338 if (!inst.error)
7339 inst.error = _("syntax error");
7340 return FAIL;
7341 }
c19d1205
ZW
7342
7343 /* Try again, skipping the optional argument at backtrack_pos. */
7344 str = backtrack_pos;
7345 inst.error = backtrack_error;
7346 inst.operands[backtrack_index].present = 0;
7347 i = backtrack_index;
7348 backtrack_pos = 0;
09d92015 7349 }
09d92015 7350
c19d1205
ZW
7351 /* Check that we have parsed all the arguments. */
7352 if (*str != '\0' && !inst.error)
7353 inst.error = _("garbage following instruction");
09d92015 7354
c19d1205 7355 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7356}
7357
c19d1205
ZW
7358#undef po_char_or_fail
7359#undef po_reg_or_fail
7360#undef po_reg_or_goto
7361#undef po_imm_or_fail
5287ad62 7362#undef po_scalar_or_fail
52e7f43d 7363#undef po_barrier_or_imm
e07e6e58 7364
c19d1205 7365/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7366#define constraint(expr, err) \
7367 do \
c19d1205 7368 { \
e07e6e58
NC
7369 if (expr) \
7370 { \
7371 inst.error = err; \
7372 return; \
7373 } \
c19d1205 7374 } \
e07e6e58 7375 while (0)
c19d1205 7376
fdfde340
JM
7377/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7378 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7379 is the BadReg predicate in ARM's Thumb-2 documentation.
7380
7381 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7382 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7383#define reject_bad_reg(reg) \
7384 do \
7385 if (reg == REG_PC) \
7386 { \
7387 inst.error = BAD_PC; \
7388 return; \
7389 } \
7390 else if (reg == REG_SP \
7391 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7392 { \
7393 inst.error = BAD_SP; \
7394 return; \
7395 } \
fdfde340
JM
7396 while (0)
7397
94206790
MM
7398/* If REG is R13 (the stack pointer), warn that its use is
7399 deprecated. */
7400#define warn_deprecated_sp(reg) \
7401 do \
7402 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7403 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7404 while (0)
7405
c19d1205
ZW
7406/* Functions for operand encoding. ARM, then Thumb. */
7407
d840c081 7408#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7409
9db2f6b4
RL
7410/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7411
7412 The only binary encoding difference is the Coprocessor number. Coprocessor
7413 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7414 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7415 exists for Single-Precision operation. */
7416
7417static void
7418do_scalar_fp16_v82_encode (void)
7419{
7420 if (inst.cond != COND_ALWAYS)
7421 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7422 " the behaviour is UNPREDICTABLE"));
7423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7424 _(BAD_FP16));
7425
7426 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7427 mark_feature_used (&arm_ext_fp16);
7428}
7429
c19d1205
ZW
7430/* If VAL can be encoded in the immediate field of an ARM instruction,
7431 return the encoded form. Otherwise, return FAIL. */
7432
7433static unsigned int
7434encode_arm_immediate (unsigned int val)
09d92015 7435{
c19d1205
ZW
7436 unsigned int a, i;
7437
4f1d6205
L
7438 if (val <= 0xff)
7439 return val;
7440
7441 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7442 if ((a = rotate_left (val, i)) <= 0xff)
7443 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7444
7445 return FAIL;
09d92015
MM
7446}
7447
c19d1205
ZW
7448/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7449 return the encoded form. Otherwise, return FAIL. */
7450static unsigned int
7451encode_thumb32_immediate (unsigned int val)
09d92015 7452{
c19d1205 7453 unsigned int a, i;
09d92015 7454
9c3c69f2 7455 if (val <= 0xff)
c19d1205 7456 return val;
a737bd4d 7457
9c3c69f2 7458 for (i = 1; i <= 24; i++)
09d92015 7459 {
9c3c69f2
PB
7460 a = val >> i;
7461 if ((val & ~(0xff << i)) == 0)
7462 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 7463 }
a737bd4d 7464
c19d1205
ZW
7465 a = val & 0xff;
7466 if (val == ((a << 16) | a))
7467 return 0x100 | a;
7468 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7469 return 0x300 | a;
09d92015 7470
c19d1205
ZW
7471 a = val & 0xff00;
7472 if (val == ((a << 16) | a))
7473 return 0x200 | (a >> 8);
a737bd4d 7474
c19d1205 7475 return FAIL;
09d92015 7476}
5287ad62 7477/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
7478
7479static void
5287ad62
JB
7480encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7481{
7482 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7483 && reg > 15)
7484 {
b1cc4aeb 7485 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
7486 {
7487 if (thumb_mode)
7488 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7489 fpu_vfp_ext_d32);
7490 else
7491 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7492 fpu_vfp_ext_d32);
7493 }
5287ad62 7494 else
477330fc
RM
7495 {
7496 first_error (_("D register out of range for selected VFP version"));
7497 return;
7498 }
5287ad62
JB
7499 }
7500
c19d1205 7501 switch (pos)
09d92015 7502 {
c19d1205
ZW
7503 case VFP_REG_Sd:
7504 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7505 break;
7506
7507 case VFP_REG_Sn:
7508 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7509 break;
7510
7511 case VFP_REG_Sm:
7512 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7513 break;
7514
5287ad62
JB
7515 case VFP_REG_Dd:
7516 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7517 break;
5f4273c7 7518
5287ad62
JB
7519 case VFP_REG_Dn:
7520 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7521 break;
5f4273c7 7522
5287ad62
JB
7523 case VFP_REG_Dm:
7524 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7525 break;
7526
c19d1205
ZW
7527 default:
7528 abort ();
09d92015 7529 }
09d92015
MM
7530}
7531
c19d1205 7532/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7533 if any, is handled by md_apply_fix. */
09d92015 7534static void
c19d1205 7535encode_arm_shift (int i)
09d92015 7536{
008a97ef
RL
7537 /* register-shifted register. */
7538 if (inst.operands[i].immisreg)
7539 {
bf355b69
MR
7540 int op_index;
7541 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 7542 {
5689c942
RL
7543 /* Check the operand only when it's presented. In pre-UAL syntax,
7544 if the destination register is the same as the first operand, two
7545 register form of the instruction can be used. */
bf355b69
MR
7546 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7547 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
7548 as_warn (UNPRED_REG ("r15"));
7549 }
7550
7551 if (inst.operands[i].imm == REG_PC)
7552 as_warn (UNPRED_REG ("r15"));
7553 }
7554
c19d1205
ZW
7555 if (inst.operands[i].shift_kind == SHIFT_RRX)
7556 inst.instruction |= SHIFT_ROR << 5;
7557 else
09d92015 7558 {
c19d1205
ZW
7559 inst.instruction |= inst.operands[i].shift_kind << 5;
7560 if (inst.operands[i].immisreg)
7561 {
7562 inst.instruction |= SHIFT_BY_REG;
7563 inst.instruction |= inst.operands[i].imm << 8;
7564 }
7565 else
e2b0ab59 7566 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7567 }
c19d1205 7568}
09d92015 7569
c19d1205
ZW
7570static void
7571encode_arm_shifter_operand (int i)
7572{
7573 if (inst.operands[i].isreg)
09d92015 7574 {
c19d1205
ZW
7575 inst.instruction |= inst.operands[i].reg;
7576 encode_arm_shift (i);
09d92015 7577 }
c19d1205 7578 else
a415b1cd
JB
7579 {
7580 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 7581 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
7582 inst.instruction |= inst.operands[i].imm;
7583 }
09d92015
MM
7584}
7585
c19d1205 7586/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7587static void
c19d1205 7588encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7589{
2b2f5df9
NC
7590 /* PR 14260:
7591 Generate an error if the operand is not a register. */
7592 constraint (!inst.operands[i].isreg,
7593 _("Instruction does not support =N addresses"));
7594
c19d1205 7595 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7596
c19d1205 7597 if (inst.operands[i].preind)
09d92015 7598 {
c19d1205
ZW
7599 if (is_t)
7600 {
7601 inst.error = _("instruction does not accept preindexed addressing");
7602 return;
7603 }
7604 inst.instruction |= PRE_INDEX;
7605 if (inst.operands[i].writeback)
7606 inst.instruction |= WRITE_BACK;
09d92015 7607
c19d1205
ZW
7608 }
7609 else if (inst.operands[i].postind)
7610 {
9c2799c2 7611 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7612 if (is_t)
7613 inst.instruction |= WRITE_BACK;
7614 }
7615 else /* unindexed - only for coprocessor */
09d92015 7616 {
c19d1205 7617 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7618 return;
7619 }
7620
c19d1205
ZW
7621 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7622 && (((inst.instruction & 0x000f0000) >> 16)
7623 == ((inst.instruction & 0x0000f000) >> 12)))
7624 as_warn ((inst.instruction & LOAD_BIT)
7625 ? _("destination register same as write-back base")
7626 : _("source register same as write-back base"));
09d92015
MM
7627}
7628
c19d1205
ZW
7629/* inst.operands[i] was set up by parse_address. Encode it into an
7630 ARM-format mode 2 load or store instruction. If is_t is true,
7631 reject forms that cannot be used with a T instruction (i.e. not
7632 post-indexed). */
a737bd4d 7633static void
c19d1205 7634encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7635{
5be8be5d
DG
7636 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7637
c19d1205 7638 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7639
c19d1205 7640 if (inst.operands[i].immisreg)
09d92015 7641 {
5be8be5d
DG
7642 constraint ((inst.operands[i].imm == REG_PC
7643 || (is_pc && inst.operands[i].writeback)),
7644 BAD_PC_ADDRESSING);
c19d1205
ZW
7645 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7646 inst.instruction |= inst.operands[i].imm;
7647 if (!inst.operands[i].negative)
7648 inst.instruction |= INDEX_UP;
7649 if (inst.operands[i].shifted)
7650 {
7651 if (inst.operands[i].shift_kind == SHIFT_RRX)
7652 inst.instruction |= SHIFT_ROR << 5;
7653 else
7654 {
7655 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 7656 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
7657 }
7658 }
09d92015 7659 }
e2b0ab59 7660 else /* immediate offset in inst.relocs[0] */
09d92015 7661 {
e2b0ab59 7662 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
7663 {
7664 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7665
7666 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7667 cannot use PC in addressing.
7668 PC cannot be used in writeback addressing, either. */
7669 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7670 BAD_PC_ADDRESSING);
23a10334 7671
dc5ec521 7672 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7673 if (warn_on_deprecated
7674 && !is_load
7675 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 7676 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7677 }
7678
e2b0ab59 7679 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
7680 {
7681 /* Prefer + for zero encoded value. */
7682 if (!inst.operands[i].negative)
7683 inst.instruction |= INDEX_UP;
e2b0ab59 7684 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 7685 }
09d92015 7686 }
09d92015
MM
7687}
7688
c19d1205
ZW
7689/* inst.operands[i] was set up by parse_address. Encode it into an
7690 ARM-format mode 3 load or store instruction. Reject forms that
7691 cannot be used with such instructions. If is_t is true, reject
7692 forms that cannot be used with a T instruction (i.e. not
7693 post-indexed). */
7694static void
7695encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7696{
c19d1205 7697 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7698 {
c19d1205
ZW
7699 inst.error = _("instruction does not accept scaled register index");
7700 return;
09d92015 7701 }
a737bd4d 7702
c19d1205 7703 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7704
c19d1205
ZW
7705 if (inst.operands[i].immisreg)
7706 {
5be8be5d 7707 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 7708 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 7709 BAD_PC_ADDRESSING);
eb9f3f00
JB
7710 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7711 BAD_PC_WRITEBACK);
c19d1205
ZW
7712 inst.instruction |= inst.operands[i].imm;
7713 if (!inst.operands[i].negative)
7714 inst.instruction |= INDEX_UP;
7715 }
e2b0ab59 7716 else /* immediate offset in inst.relocs[0] */
c19d1205 7717 {
e2b0ab59 7718 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
7719 && inst.operands[i].writeback),
7720 BAD_PC_WRITEBACK);
c19d1205 7721 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 7722 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
7723 {
7724 /* Prefer + for zero encoded value. */
7725 if (!inst.operands[i].negative)
7726 inst.instruction |= INDEX_UP;
7727
e2b0ab59 7728 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 7729 }
c19d1205 7730 }
a737bd4d
NC
7731}
7732
8335d6aa
JW
7733/* Write immediate bits [7:0] to the following locations:
7734
7735 |28/24|23 19|18 16|15 4|3 0|
7736 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7737
7738 This function is used by VMOV/VMVN/VORR/VBIC. */
7739
7740static void
7741neon_write_immbits (unsigned immbits)
7742{
7743 inst.instruction |= immbits & 0xf;
7744 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7745 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7746}
7747
7748/* Invert low-order SIZE bits of XHI:XLO. */
7749
7750static void
7751neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7752{
7753 unsigned immlo = xlo ? *xlo : 0;
7754 unsigned immhi = xhi ? *xhi : 0;
7755
7756 switch (size)
7757 {
7758 case 8:
7759 immlo = (~immlo) & 0xff;
7760 break;
7761
7762 case 16:
7763 immlo = (~immlo) & 0xffff;
7764 break;
7765
7766 case 64:
7767 immhi = (~immhi) & 0xffffffff;
7768 /* fall through. */
7769
7770 case 32:
7771 immlo = (~immlo) & 0xffffffff;
7772 break;
7773
7774 default:
7775 abort ();
7776 }
7777
7778 if (xlo)
7779 *xlo = immlo;
7780
7781 if (xhi)
7782 *xhi = immhi;
7783}
7784
7785/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7786 A, B, C, D. */
09d92015 7787
c19d1205 7788static int
8335d6aa 7789neon_bits_same_in_bytes (unsigned imm)
09d92015 7790{
8335d6aa
JW
7791 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7792 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7793 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7794 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7795}
a737bd4d 7796
8335d6aa 7797/* For immediate of above form, return 0bABCD. */
09d92015 7798
8335d6aa
JW
7799static unsigned
7800neon_squash_bits (unsigned imm)
7801{
7802 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7803 | ((imm & 0x01000000) >> 21);
7804}
7805
7806/* Compress quarter-float representation to 0b...000 abcdefgh. */
7807
7808static unsigned
7809neon_qfloat_bits (unsigned imm)
7810{
7811 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7812}
7813
7814/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7815 the instruction. *OP is passed as the initial value of the op field, and
7816 may be set to a different value depending on the constant (i.e.
7817 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7818 MVN). If the immediate looks like a repeated pattern then also
7819 try smaller element sizes. */
7820
7821static int
7822neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7823 unsigned *immbits, int *op, int size,
7824 enum neon_el_type type)
7825{
7826 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7827 float. */
7828 if (type == NT_float && !float_p)
7829 return FAIL;
7830
7831 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 7832 {
8335d6aa
JW
7833 if (size != 32 || *op == 1)
7834 return FAIL;
7835 *immbits = neon_qfloat_bits (immlo);
7836 return 0xf;
7837 }
7838
7839 if (size == 64)
7840 {
7841 if (neon_bits_same_in_bytes (immhi)
7842 && neon_bits_same_in_bytes (immlo))
c19d1205 7843 {
8335d6aa
JW
7844 if (*op == 1)
7845 return FAIL;
7846 *immbits = (neon_squash_bits (immhi) << 4)
7847 | neon_squash_bits (immlo);
7848 *op = 1;
7849 return 0xe;
c19d1205 7850 }
a737bd4d 7851
8335d6aa
JW
7852 if (immhi != immlo)
7853 return FAIL;
7854 }
a737bd4d 7855
8335d6aa 7856 if (size >= 32)
09d92015 7857 {
8335d6aa 7858 if (immlo == (immlo & 0x000000ff))
c19d1205 7859 {
8335d6aa
JW
7860 *immbits = immlo;
7861 return 0x0;
c19d1205 7862 }
8335d6aa 7863 else if (immlo == (immlo & 0x0000ff00))
c19d1205 7864 {
8335d6aa
JW
7865 *immbits = immlo >> 8;
7866 return 0x2;
c19d1205 7867 }
8335d6aa
JW
7868 else if (immlo == (immlo & 0x00ff0000))
7869 {
7870 *immbits = immlo >> 16;
7871 return 0x4;
7872 }
7873 else if (immlo == (immlo & 0xff000000))
7874 {
7875 *immbits = immlo >> 24;
7876 return 0x6;
7877 }
7878 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7879 {
7880 *immbits = (immlo >> 8) & 0xff;
7881 return 0xc;
7882 }
7883 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7884 {
7885 *immbits = (immlo >> 16) & 0xff;
7886 return 0xd;
7887 }
7888
7889 if ((immlo & 0xffff) != (immlo >> 16))
7890 return FAIL;
7891 immlo &= 0xffff;
09d92015 7892 }
a737bd4d 7893
8335d6aa 7894 if (size >= 16)
4962c51a 7895 {
8335d6aa
JW
7896 if (immlo == (immlo & 0x000000ff))
7897 {
7898 *immbits = immlo;
7899 return 0x8;
7900 }
7901 else if (immlo == (immlo & 0x0000ff00))
7902 {
7903 *immbits = immlo >> 8;
7904 return 0xa;
7905 }
7906
7907 if ((immlo & 0xff) != (immlo >> 8))
7908 return FAIL;
7909 immlo &= 0xff;
4962c51a
MS
7910 }
7911
8335d6aa
JW
7912 if (immlo == (immlo & 0x000000ff))
7913 {
7914 /* Don't allow MVN with 8-bit immediate. */
7915 if (*op == 1)
7916 return FAIL;
7917 *immbits = immlo;
7918 return 0xe;
7919 }
26d97720 7920
8335d6aa 7921 return FAIL;
c19d1205 7922}
a737bd4d 7923
5fc177c8 7924#if defined BFD_HOST_64_BIT
ba592044
AM
7925/* Returns TRUE if double precision value V may be cast
7926 to single precision without loss of accuracy. */
7927
7928static bfd_boolean
5fc177c8 7929is_double_a_single (bfd_int64_t v)
ba592044 7930{
5fc177c8 7931 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 7932 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7933
7934 return (exp == 0 || exp == 0x7FF
7935 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7936 && (mantissa & 0x1FFFFFFFl) == 0;
7937}
7938
3739860c 7939/* Returns a double precision value casted to single precision
ba592044
AM
7940 (ignoring the least significant bits in exponent and mantissa). */
7941
7942static int
5fc177c8 7943double_to_single (bfd_int64_t v)
ba592044
AM
7944{
7945 int sign = (int) ((v >> 63) & 1l);
5fc177c8 7946 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 7947 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7948
7949 if (exp == 0x7FF)
7950 exp = 0xFF;
7951 else
7952 {
7953 exp = exp - 1023 + 127;
7954 if (exp >= 0xFF)
7955 {
7956 /* Infinity. */
7957 exp = 0x7F;
7958 mantissa = 0;
7959 }
7960 else if (exp < 0)
7961 {
7962 /* No denormalized numbers. */
7963 exp = 0;
7964 mantissa = 0;
7965 }
7966 }
7967 mantissa >>= 29;
7968 return (sign << 31) | (exp << 23) | mantissa;
7969}
5fc177c8 7970#endif /* BFD_HOST_64_BIT */
ba592044 7971
8335d6aa
JW
7972enum lit_type
7973{
7974 CONST_THUMB,
7975 CONST_ARM,
7976 CONST_VEC
7977};
7978
ba592044
AM
7979static void do_vfp_nsyn_opcode (const char *);
7980
e2b0ab59 7981/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
7982 Determine whether it can be performed with a move instruction; if
7983 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7984 return TRUE; if it can't, convert inst.instruction to a literal-pool
7985 load and return FALSE. If this is not a valid thing to do in the
7986 current context, set inst.error and return TRUE.
a737bd4d 7987
c19d1205
ZW
7988 inst.operands[i] describes the destination register. */
7989
c921be7d 7990static bfd_boolean
8335d6aa 7991move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 7992{
53365c0d 7993 unsigned long tbit;
8335d6aa
JW
7994 bfd_boolean thumb_p = (t == CONST_THUMB);
7995 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
7996
7997 if (thumb_p)
7998 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7999 else
8000 tbit = LOAD_BIT;
8001
8002 if ((inst.instruction & tbit) == 0)
09d92015 8003 {
c19d1205 8004 inst.error = _("invalid pseudo operation");
c921be7d 8005 return TRUE;
09d92015 8006 }
ba592044 8007
e2b0ab59
AV
8008 if (inst.relocs[0].exp.X_op != O_constant
8009 && inst.relocs[0].exp.X_op != O_symbol
8010 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8011 {
8012 inst.error = _("constant expression expected");
c921be7d 8013 return TRUE;
09d92015 8014 }
ba592044 8015
e2b0ab59
AV
8016 if (inst.relocs[0].exp.X_op == O_constant
8017 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8018 {
5fc177c8
NC
8019#if defined BFD_HOST_64_BIT
8020 bfd_int64_t v;
8021#else
ba592044 8022 offsetT v;
5fc177c8 8023#endif
e2b0ab59 8024 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8025 {
ba592044
AM
8026 LITTLENUM_TYPE w[X_PRECISION];
8027 LITTLENUM_TYPE * l;
8028
e2b0ab59 8029 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8030 {
ba592044
AM
8031 gen_to_words (w, X_PRECISION, E_PRECISION);
8032 l = w;
8033 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8034 }
ba592044
AM
8035 else
8036 l = generic_bignum;
3739860c 8037
5fc177c8
NC
8038#if defined BFD_HOST_64_BIT
8039 v =
8040 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8041 << LITTLENUM_NUMBER_OF_BITS)
8042 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8043 << LITTLENUM_NUMBER_OF_BITS)
8044 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8045 << LITTLENUM_NUMBER_OF_BITS)
8046 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8047#else
ba592044
AM
8048 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8049 | (l[0] & LITTLENUM_MASK);
5fc177c8 8050#endif
8335d6aa 8051 }
ba592044 8052 else
e2b0ab59 8053 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8054
8055 if (!inst.operands[i].issingle)
8335d6aa 8056 {
12569877 8057 if (thumb_p)
8335d6aa 8058 {
53445554
TP
8059 /* LDR should not use lead in a flag-setting instruction being
8060 chosen so we do not check whether movs can be used. */
12569877 8061
53445554 8062 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8063 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8064 && inst.operands[i].reg != 13
8065 && inst.operands[i].reg != 15)
12569877 8066 {
fc289b0a
TP
8067 /* Check if on thumb2 it can be done with a mov.w, mvn or
8068 movw instruction. */
12569877
AM
8069 unsigned int newimm;
8070 bfd_boolean isNegated;
8071
8072 newimm = encode_thumb32_immediate (v);
8073 if (newimm != (unsigned int) FAIL)
8074 isNegated = FALSE;
8075 else
8076 {
582cfe03 8077 newimm = encode_thumb32_immediate (~v);
12569877
AM
8078 if (newimm != (unsigned int) FAIL)
8079 isNegated = TRUE;
8080 }
8081
fc289b0a
TP
8082 /* The number can be loaded with a mov.w or mvn
8083 instruction. */
ff8646ee
TP
8084 if (newimm != (unsigned int) FAIL
8085 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8086 {
fc289b0a 8087 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8088 | (inst.operands[i].reg << 8));
fc289b0a 8089 /* Change to MOVN. */
582cfe03 8090 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8091 inst.instruction |= (newimm & 0x800) << 15;
8092 inst.instruction |= (newimm & 0x700) << 4;
8093 inst.instruction |= (newimm & 0x0ff);
8094 return TRUE;
8095 }
fc289b0a 8096 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8097 else if ((v & ~0xFFFF) == 0
8098 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8099 {
582cfe03 8100 int imm = v & 0xFFFF;
12569877 8101
582cfe03 8102 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8103 inst.instruction |= (inst.operands[i].reg << 8);
8104 inst.instruction |= (imm & 0xf000) << 4;
8105 inst.instruction |= (imm & 0x0800) << 15;
8106 inst.instruction |= (imm & 0x0700) << 4;
8107 inst.instruction |= (imm & 0x00ff);
8108 return TRUE;
8109 }
8110 }
8335d6aa 8111 }
12569877 8112 else if (arm_p)
ba592044
AM
8113 {
8114 int value = encode_arm_immediate (v);
12569877 8115
ba592044
AM
8116 if (value != FAIL)
8117 {
8118 /* This can be done with a mov instruction. */
8119 inst.instruction &= LITERAL_MASK;
8120 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8121 inst.instruction |= value & 0xfff;
8122 return TRUE;
8123 }
8335d6aa 8124
ba592044
AM
8125 value = encode_arm_immediate (~ v);
8126 if (value != FAIL)
8127 {
8128 /* This can be done with a mvn instruction. */
8129 inst.instruction &= LITERAL_MASK;
8130 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8131 inst.instruction |= value & 0xfff;
8132 return TRUE;
8133 }
8134 }
934c2632 8135 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8136 {
ba592044
AM
8137 int op = 0;
8138 unsigned immbits = 0;
8139 unsigned immlo = inst.operands[1].imm;
8140 unsigned immhi = inst.operands[1].regisimm
8141 ? inst.operands[1].reg
e2b0ab59 8142 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8143 ? 0
8144 : ((bfd_int64_t)((int) immlo)) >> 32;
8145 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8146 &op, 64, NT_invtype);
8147
8148 if (cmode == FAIL)
8149 {
8150 neon_invert_size (&immlo, &immhi, 64);
8151 op = !op;
8152 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8153 &op, 64, NT_invtype);
8154 }
8155
8156 if (cmode != FAIL)
8157 {
8158 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8159 | (1 << 23)
8160 | (cmode << 8)
8161 | (op << 5)
8162 | (1 << 4);
8163
8164 /* Fill other bits in vmov encoding for both thumb and arm. */
8165 if (thumb_mode)
eff0bc54 8166 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8167 else
eff0bc54 8168 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8169 neon_write_immbits (immbits);
8170 return TRUE;
8171 }
8335d6aa
JW
8172 }
8173 }
8335d6aa 8174
ba592044
AM
8175 if (t == CONST_VEC)
8176 {
8177 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8178 if (inst.operands[i].issingle
8179 && is_quarter_float (inst.operands[1].imm)
8180 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8181 {
ba592044
AM
8182 inst.operands[1].imm =
8183 neon_qfloat_bits (v);
8184 do_vfp_nsyn_opcode ("fconsts");
8185 return TRUE;
8335d6aa 8186 }
5fc177c8
NC
8187
8188 /* If our host does not support a 64-bit type then we cannot perform
8189 the following optimization. This mean that there will be a
8190 discrepancy between the output produced by an assembler built for
8191 a 32-bit-only host and the output produced from a 64-bit host, but
8192 this cannot be helped. */
8193#if defined BFD_HOST_64_BIT
ba592044
AM
8194 else if (!inst.operands[1].issingle
8195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8196 {
ba592044
AM
8197 if (is_double_a_single (v)
8198 && is_quarter_float (double_to_single (v)))
8199 {
8200 inst.operands[1].imm =
8201 neon_qfloat_bits (double_to_single (v));
8202 do_vfp_nsyn_opcode ("fconstd");
8203 return TRUE;
8204 }
8335d6aa 8205 }
5fc177c8 8206#endif
8335d6aa
JW
8207 }
8208 }
8209
8210 if (add_to_lit_pool ((!inst.operands[i].isvec
8211 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8212 return TRUE;
8213
8214 inst.operands[1].reg = REG_PC;
8215 inst.operands[1].isreg = 1;
8216 inst.operands[1].preind = 1;
e2b0ab59
AV
8217 inst.relocs[0].pc_rel = 1;
8218 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8219 ? BFD_RELOC_ARM_THUMB_OFFSET
8220 : (mode_3
8221 ? BFD_RELOC_ARM_HWLITERAL
8222 : BFD_RELOC_ARM_LITERAL));
8223 return FALSE;
8224}
8225
8226/* inst.operands[i] was set up by parse_address. Encode it into an
8227 ARM-format instruction. Reject all forms which cannot be encoded
8228 into a coprocessor load/store instruction. If wb_ok is false,
8229 reject use of writeback; if unind_ok is false, reject use of
8230 unindexed addressing. If reloc_override is not 0, use it instead
8231 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8232 (in which case it is preserved). */
8233
8234static int
8235encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8236{
8237 if (!inst.operands[i].isreg)
8238 {
99b2a2dd
NC
8239 /* PR 18256 */
8240 if (! inst.operands[0].isvec)
8241 {
8242 inst.error = _("invalid co-processor operand");
8243 return FAIL;
8244 }
8335d6aa
JW
8245 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8246 return SUCCESS;
8247 }
8248
8249 inst.instruction |= inst.operands[i].reg << 16;
8250
8251 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8252
8253 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8254 {
8255 gas_assert (!inst.operands[i].writeback);
8256 if (!unind_ok)
8257 {
8258 inst.error = _("instruction does not support unindexed addressing");
8259 return FAIL;
8260 }
8261 inst.instruction |= inst.operands[i].imm;
8262 inst.instruction |= INDEX_UP;
8263 return SUCCESS;
8264 }
8265
8266 if (inst.operands[i].preind)
8267 inst.instruction |= PRE_INDEX;
8268
8269 if (inst.operands[i].writeback)
09d92015 8270 {
8335d6aa 8271 if (inst.operands[i].reg == REG_PC)
c19d1205 8272 {
8335d6aa
JW
8273 inst.error = _("pc may not be used with write-back");
8274 return FAIL;
c19d1205 8275 }
8335d6aa 8276 if (!wb_ok)
c19d1205 8277 {
8335d6aa
JW
8278 inst.error = _("instruction does not support writeback");
8279 return FAIL;
c19d1205 8280 }
8335d6aa 8281 inst.instruction |= WRITE_BACK;
09d92015
MM
8282 }
8283
8335d6aa 8284 if (reloc_override)
e2b0ab59
AV
8285 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8286 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8287 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8288 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8289 {
8335d6aa 8290 if (thumb_mode)
e2b0ab59 8291 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8292 else
e2b0ab59 8293 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8294 }
8335d6aa
JW
8295
8296 /* Prefer + for zero encoded value. */
8297 if (!inst.operands[i].negative)
8298 inst.instruction |= INDEX_UP;
8299
8300 return SUCCESS;
09d92015
MM
8301}
8302
5f4273c7 8303/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8304 First some generics; their names are taken from the conventional
8305 bit positions for register arguments in ARM format instructions. */
09d92015 8306
a737bd4d 8307static void
c19d1205 8308do_noargs (void)
09d92015 8309{
c19d1205 8310}
a737bd4d 8311
c19d1205
ZW
8312static void
8313do_rd (void)
8314{
8315 inst.instruction |= inst.operands[0].reg << 12;
8316}
a737bd4d 8317
16a1fa25
TP
8318static void
8319do_rn (void)
8320{
8321 inst.instruction |= inst.operands[0].reg << 16;
8322}
8323
c19d1205
ZW
8324static void
8325do_rd_rm (void)
8326{
8327 inst.instruction |= inst.operands[0].reg << 12;
8328 inst.instruction |= inst.operands[1].reg;
8329}
09d92015 8330
9eb6c0f1
MGD
8331static void
8332do_rm_rn (void)
8333{
8334 inst.instruction |= inst.operands[0].reg;
8335 inst.instruction |= inst.operands[1].reg << 16;
8336}
8337
c19d1205
ZW
8338static void
8339do_rd_rn (void)
8340{
8341 inst.instruction |= inst.operands[0].reg << 12;
8342 inst.instruction |= inst.operands[1].reg << 16;
8343}
a737bd4d 8344
c19d1205
ZW
8345static void
8346do_rn_rd (void)
8347{
8348 inst.instruction |= inst.operands[0].reg << 16;
8349 inst.instruction |= inst.operands[1].reg << 12;
8350}
09d92015 8351
4ed7ed8d
TP
8352static void
8353do_tt (void)
8354{
8355 inst.instruction |= inst.operands[0].reg << 8;
8356 inst.instruction |= inst.operands[1].reg << 16;
8357}
8358
59d09be6
MGD
8359static bfd_boolean
8360check_obsolete (const arm_feature_set *feature, const char *msg)
8361{
8362 if (ARM_CPU_IS_ANY (cpu_variant))
8363 {
5c3696f8 8364 as_tsktsk ("%s", msg);
59d09be6
MGD
8365 return TRUE;
8366 }
8367 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8368 {
8369 as_bad ("%s", msg);
8370 return TRUE;
8371 }
8372
8373 return FALSE;
8374}
8375
c19d1205
ZW
8376static void
8377do_rd_rm_rn (void)
8378{
9a64e435 8379 unsigned Rn = inst.operands[2].reg;
708587a4 8380 /* Enforce restrictions on SWP instruction. */
9a64e435 8381 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8382 {
8383 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8384 _("Rn must not overlap other operands"));
8385
59d09be6
MGD
8386 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8387 */
8388 if (!check_obsolete (&arm_ext_v8,
8389 _("swp{b} use is obsoleted for ARMv8 and later"))
8390 && warn_on_deprecated
8391 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8392 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8393 }
59d09be6 8394
c19d1205
ZW
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 inst.instruction |= inst.operands[1].reg;
9a64e435 8397 inst.instruction |= Rn << 16;
c19d1205 8398}
09d92015 8399
c19d1205
ZW
8400static void
8401do_rd_rn_rm (void)
8402{
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].reg;
8406}
a737bd4d 8407
c19d1205
ZW
8408static void
8409do_rm_rd_rn (void)
8410{
5be8be5d 8411 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
8412 constraint (((inst.relocs[0].exp.X_op != O_constant
8413 && inst.relocs[0].exp.X_op != O_illegal)
8414 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 8415 BAD_ADDR_MODE);
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg;
8417 inst.instruction |= inst.operands[1].reg << 12;
8418 inst.instruction |= inst.operands[2].reg << 16;
8419}
09d92015 8420
c19d1205
ZW
8421static void
8422do_imm0 (void)
8423{
8424 inst.instruction |= inst.operands[0].imm;
8425}
09d92015 8426
c19d1205
ZW
8427static void
8428do_rd_cpaddr (void)
8429{
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8432}
a737bd4d 8433
c19d1205
ZW
8434/* ARM instructions, in alphabetical order by function name (except
8435 that wrapper functions appear immediately after the function they
8436 wrap). */
09d92015 8437
c19d1205
ZW
8438/* This is a pseudo-op of the form "adr rd, label" to be converted
8439 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8440
8441static void
c19d1205 8442do_adr (void)
09d92015 8443{
c19d1205 8444 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8445
c19d1205
ZW
8446 /* Frag hacking will turn this into a sub instruction if the offset turns
8447 out to be negative. */
e2b0ab59
AV
8448 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8449 inst.relocs[0].pc_rel = 1;
8450 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8451
fc6141f0 8452 if (support_interwork
e2b0ab59
AV
8453 && inst.relocs[0].exp.X_op == O_symbol
8454 && inst.relocs[0].exp.X_add_symbol != NULL
8455 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8456 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8457 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 8458}
b99bd4ef 8459
c19d1205
ZW
8460/* This is a pseudo-op of the form "adrl rd, label" to be converted
8461 into a relative address of the form:
8462 add rd, pc, #low(label-.-8)"
8463 add rd, rd, #high(label-.-8)" */
b99bd4ef 8464
c19d1205
ZW
8465static void
8466do_adrl (void)
8467{
8468 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8469
c19d1205
ZW
8470 /* Frag hacking will turn this into a sub instruction if the offset turns
8471 out to be negative. */
e2b0ab59
AV
8472 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8473 inst.relocs[0].pc_rel = 1;
c19d1205 8474 inst.size = INSN_SIZE * 2;
e2b0ab59 8475 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 8476
fc6141f0 8477 if (support_interwork
e2b0ab59
AV
8478 && inst.relocs[0].exp.X_op == O_symbol
8479 && inst.relocs[0].exp.X_add_symbol != NULL
8480 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8481 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8482 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
8483}
8484
b99bd4ef 8485static void
c19d1205 8486do_arit (void)
b99bd4ef 8487{
e2b0ab59
AV
8488 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8489 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 8490 THUMB1_RELOC_ONLY);
c19d1205
ZW
8491 if (!inst.operands[1].present)
8492 inst.operands[1].reg = inst.operands[0].reg;
8493 inst.instruction |= inst.operands[0].reg << 12;
8494 inst.instruction |= inst.operands[1].reg << 16;
8495 encode_arm_shifter_operand (2);
8496}
b99bd4ef 8497
62b3e311
PB
8498static void
8499do_barrier (void)
8500{
8501 if (inst.operands[0].present)
ccb84d65 8502 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
8503 else
8504 inst.instruction |= 0xf;
8505}
8506
c19d1205
ZW
8507static void
8508do_bfc (void)
8509{
8510 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8511 constraint (msb > 32, _("bit-field extends past end of register"));
8512 /* The instruction encoding stores the LSB and MSB,
8513 not the LSB and width. */
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].imm << 7;
8516 inst.instruction |= (msb - 1) << 16;
8517}
b99bd4ef 8518
c19d1205
ZW
8519static void
8520do_bfi (void)
8521{
8522 unsigned int msb;
b99bd4ef 8523
c19d1205
ZW
8524 /* #0 in second position is alternative syntax for bfc, which is
8525 the same instruction but with REG_PC in the Rm field. */
8526 if (!inst.operands[1].isreg)
8527 inst.operands[1].reg = REG_PC;
b99bd4ef 8528
c19d1205
ZW
8529 msb = inst.operands[2].imm + inst.operands[3].imm;
8530 constraint (msb > 32, _("bit-field extends past end of register"));
8531 /* The instruction encoding stores the LSB and MSB,
8532 not the LSB and width. */
8533 inst.instruction |= inst.operands[0].reg << 12;
8534 inst.instruction |= inst.operands[1].reg;
8535 inst.instruction |= inst.operands[2].imm << 7;
8536 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
8537}
8538
b99bd4ef 8539static void
c19d1205 8540do_bfx (void)
b99bd4ef 8541{
c19d1205
ZW
8542 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8543 _("bit-field extends past end of register"));
8544 inst.instruction |= inst.operands[0].reg << 12;
8545 inst.instruction |= inst.operands[1].reg;
8546 inst.instruction |= inst.operands[2].imm << 7;
8547 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8548}
09d92015 8549
c19d1205
ZW
8550/* ARM V5 breakpoint instruction (argument parse)
8551 BKPT <16 bit unsigned immediate>
8552 Instruction is not conditional.
8553 The bit pattern given in insns[] has the COND_ALWAYS condition,
8554 and it is an error if the caller tried to override that. */
b99bd4ef 8555
c19d1205
ZW
8556static void
8557do_bkpt (void)
8558{
8559 /* Top 12 of 16 bits to bits 19:8. */
8560 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 8561
c19d1205
ZW
8562 /* Bottom 4 of 16 bits to bits 3:0. */
8563 inst.instruction |= inst.operands[0].imm & 0xf;
8564}
09d92015 8565
c19d1205
ZW
8566static void
8567encode_branch (int default_reloc)
8568{
8569 if (inst.operands[0].hasreloc)
8570 {
0855e32b
NS
8571 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8572 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8573 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 8574 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
8575 ? BFD_RELOC_ARM_PLT32
8576 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 8577 }
b99bd4ef 8578 else
e2b0ab59
AV
8579 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
8580 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
8581}
8582
b99bd4ef 8583static void
c19d1205 8584do_branch (void)
b99bd4ef 8585{
39b41c9c
PB
8586#ifdef OBJ_ELF
8587 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8588 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8589 else
8590#endif
8591 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8592}
8593
8594static void
8595do_bl (void)
8596{
8597#ifdef OBJ_ELF
8598 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8599 {
8600 if (inst.cond == COND_ALWAYS)
8601 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8602 else
8603 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8604 }
8605 else
8606#endif
8607 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 8608}
b99bd4ef 8609
c19d1205
ZW
8610/* ARM V5 branch-link-exchange instruction (argument parse)
8611 BLX <target_addr> ie BLX(1)
8612 BLX{<condition>} <Rm> ie BLX(2)
8613 Unfortunately, there are two different opcodes for this mnemonic.
8614 So, the insns[].value is not used, and the code here zaps values
8615 into inst.instruction.
8616 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 8617
c19d1205
ZW
8618static void
8619do_blx (void)
8620{
8621 if (inst.operands[0].isreg)
b99bd4ef 8622 {
c19d1205
ZW
8623 /* Arg is a register; the opcode provided by insns[] is correct.
8624 It is not illegal to do "blx pc", just useless. */
8625 if (inst.operands[0].reg == REG_PC)
8626 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 8627
c19d1205
ZW
8628 inst.instruction |= inst.operands[0].reg;
8629 }
8630 else
b99bd4ef 8631 {
c19d1205 8632 /* Arg is an address; this instruction cannot be executed
267bf995
RR
8633 conditionally, and the opcode must be adjusted.
8634 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8635 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 8636 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 8637 inst.instruction = 0xfa000000;
267bf995 8638 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 8639 }
c19d1205
ZW
8640}
8641
8642static void
8643do_bx (void)
8644{
845b51d6
PB
8645 bfd_boolean want_reloc;
8646
c19d1205
ZW
8647 if (inst.operands[0].reg == REG_PC)
8648 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 8649
c19d1205 8650 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
8651 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8652 it is for ARMv4t or earlier. */
8653 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
8654 if (!ARM_FEATURE_ZERO (selected_object_arch)
8655 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
8656 want_reloc = TRUE;
8657
5ad34203 8658#ifdef OBJ_ELF
845b51d6 8659 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 8660#endif
584206db 8661 want_reloc = FALSE;
845b51d6
PB
8662
8663 if (want_reloc)
e2b0ab59 8664 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
8665}
8666
c19d1205
ZW
8667
8668/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
8669
8670static void
c19d1205 8671do_bxj (void)
a737bd4d 8672{
c19d1205
ZW
8673 if (inst.operands[0].reg == REG_PC)
8674 as_tsktsk (_("use of r15 in bxj is not really useful"));
8675
8676 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
8677}
8678
c19d1205
ZW
8679/* Co-processor data operation:
8680 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8681 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8682static void
8683do_cdp (void)
8684{
8685 inst.instruction |= inst.operands[0].reg << 8;
8686 inst.instruction |= inst.operands[1].imm << 20;
8687 inst.instruction |= inst.operands[2].reg << 12;
8688 inst.instruction |= inst.operands[3].reg << 16;
8689 inst.instruction |= inst.operands[4].reg;
8690 inst.instruction |= inst.operands[5].imm << 5;
8691}
a737bd4d
NC
8692
8693static void
c19d1205 8694do_cmp (void)
a737bd4d 8695{
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 16;
8697 encode_arm_shifter_operand (1);
a737bd4d
NC
8698}
8699
c19d1205
ZW
8700/* Transfer between coprocessor and ARM registers.
8701 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8702 MRC2
8703 MCR{cond}
8704 MCR2
8705
8706 No special properties. */
09d92015 8707
dcbd0d71
MGD
8708struct deprecated_coproc_regs_s
8709{
8710 unsigned cp;
8711 int opc1;
8712 unsigned crn;
8713 unsigned crm;
8714 int opc2;
8715 arm_feature_set deprecated;
8716 arm_feature_set obsoleted;
8717 const char *dep_msg;
8718 const char *obs_msg;
8719};
8720
8721#define DEPR_ACCESS_V8 \
8722 N_("This coprocessor register access is deprecated in ARMv8")
8723
8724/* Table of all deprecated coprocessor registers. */
8725static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8726{
8727 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 8728 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8729 DEPR_ACCESS_V8, NULL},
8730 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 8731 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8732 DEPR_ACCESS_V8, NULL},
8733 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 8734 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8735 DEPR_ACCESS_V8, NULL},
8736 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 8737 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8738 DEPR_ACCESS_V8, NULL},
8739 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 8740 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8741 DEPR_ACCESS_V8, NULL},
8742};
8743
8744#undef DEPR_ACCESS_V8
8745
8746static const size_t deprecated_coproc_reg_count =
8747 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8748
09d92015 8749static void
c19d1205 8750do_co_reg (void)
09d92015 8751{
fdfde340 8752 unsigned Rd;
dcbd0d71 8753 size_t i;
fdfde340
JM
8754
8755 Rd = inst.operands[2].reg;
8756 if (thumb_mode)
8757 {
8758 if (inst.instruction == 0xee000010
8759 || inst.instruction == 0xfe000010)
8760 /* MCR, MCR2 */
8761 reject_bad_reg (Rd);
5c8ed6a4 8762 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
8763 /* MRC, MRC2 */
8764 constraint (Rd == REG_SP, BAD_SP);
8765 }
8766 else
8767 {
8768 /* MCR */
8769 if (inst.instruction == 0xe000010)
8770 constraint (Rd == REG_PC, BAD_PC);
8771 }
8772
dcbd0d71
MGD
8773 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8774 {
8775 const struct deprecated_coproc_regs_s *r =
8776 deprecated_coproc_regs + i;
8777
8778 if (inst.operands[0].reg == r->cp
8779 && inst.operands[1].imm == r->opc1
8780 && inst.operands[3].reg == r->crn
8781 && inst.operands[4].reg == r->crm
8782 && inst.operands[5].imm == r->opc2)
8783 {
b10bf8c5 8784 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 8785 && warn_on_deprecated
dcbd0d71 8786 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 8787 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
8788 }
8789 }
fdfde340 8790
c19d1205
ZW
8791 inst.instruction |= inst.operands[0].reg << 8;
8792 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 8793 inst.instruction |= Rd << 12;
c19d1205
ZW
8794 inst.instruction |= inst.operands[3].reg << 16;
8795 inst.instruction |= inst.operands[4].reg;
8796 inst.instruction |= inst.operands[5].imm << 5;
8797}
09d92015 8798
c19d1205
ZW
8799/* Transfer between coprocessor register and pair of ARM registers.
8800 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8801 MCRR2
8802 MRRC{cond}
8803 MRRC2
b99bd4ef 8804
c19d1205 8805 Two XScale instructions are special cases of these:
09d92015 8806
c19d1205
ZW
8807 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8808 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 8809
5f4273c7 8810 Result unpredictable if Rd or Rn is R15. */
a737bd4d 8811
c19d1205
ZW
8812static void
8813do_co_reg2c (void)
8814{
fdfde340
JM
8815 unsigned Rd, Rn;
8816
8817 Rd = inst.operands[2].reg;
8818 Rn = inst.operands[3].reg;
8819
8820 if (thumb_mode)
8821 {
8822 reject_bad_reg (Rd);
8823 reject_bad_reg (Rn);
8824 }
8825 else
8826 {
8827 constraint (Rd == REG_PC, BAD_PC);
8828 constraint (Rn == REG_PC, BAD_PC);
8829 }
8830
873f10f0
TC
8831 /* Only check the MRRC{2} variants. */
8832 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8833 {
8834 /* If Rd == Rn, error that the operation is
8835 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8836 constraint (Rd == Rn, BAD_OVERLAP);
8837 }
8838
c19d1205
ZW
8839 inst.instruction |= inst.operands[0].reg << 8;
8840 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
8841 inst.instruction |= Rd << 12;
8842 inst.instruction |= Rn << 16;
c19d1205 8843 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
8844}
8845
c19d1205
ZW
8846static void
8847do_cpsi (void)
8848{
8849 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
8850 if (inst.operands[1].present)
8851 {
8852 inst.instruction |= CPSI_MMOD;
8853 inst.instruction |= inst.operands[1].imm;
8854 }
c19d1205 8855}
b99bd4ef 8856
62b3e311
PB
8857static void
8858do_dbg (void)
8859{
8860 inst.instruction |= inst.operands[0].imm;
8861}
8862
eea54501
MGD
8863static void
8864do_div (void)
8865{
8866 unsigned Rd, Rn, Rm;
8867
8868 Rd = inst.operands[0].reg;
8869 Rn = (inst.operands[1].present
8870 ? inst.operands[1].reg : Rd);
8871 Rm = inst.operands[2].reg;
8872
8873 constraint ((Rd == REG_PC), BAD_PC);
8874 constraint ((Rn == REG_PC), BAD_PC);
8875 constraint ((Rm == REG_PC), BAD_PC);
8876
8877 inst.instruction |= Rd << 16;
8878 inst.instruction |= Rn << 0;
8879 inst.instruction |= Rm << 8;
8880}
8881
b99bd4ef 8882static void
c19d1205 8883do_it (void)
b99bd4ef 8884{
c19d1205 8885 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
8886 process it to do the validation as if in
8887 thumb mode, just in case the code gets
8888 assembled for thumb using the unified syntax. */
8889
c19d1205 8890 inst.size = 0;
e07e6e58
NC
8891 if (unified_syntax)
8892 {
8893 set_it_insn_type (IT_INSN);
8894 now_it.mask = (inst.instruction & 0xf) | 0x10;
8895 now_it.cc = inst.operands[0].imm;
8896 }
09d92015 8897}
b99bd4ef 8898
6530b175
NC
8899/* If there is only one register in the register list,
8900 then return its register number. Otherwise return -1. */
8901static int
8902only_one_reg_in_list (int range)
8903{
8904 int i = ffs (range) - 1;
8905 return (i > 15 || range != (1 << i)) ? -1 : i;
8906}
8907
09d92015 8908static void
6530b175 8909encode_ldmstm(int from_push_pop_mnem)
ea6ef066 8910{
c19d1205
ZW
8911 int base_reg = inst.operands[0].reg;
8912 int range = inst.operands[1].imm;
6530b175 8913 int one_reg;
ea6ef066 8914
c19d1205
ZW
8915 inst.instruction |= base_reg << 16;
8916 inst.instruction |= range;
ea6ef066 8917
c19d1205
ZW
8918 if (inst.operands[1].writeback)
8919 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 8920
c19d1205 8921 if (inst.operands[0].writeback)
ea6ef066 8922 {
c19d1205
ZW
8923 inst.instruction |= WRITE_BACK;
8924 /* Check for unpredictable uses of writeback. */
8925 if (inst.instruction & LOAD_BIT)
09d92015 8926 {
c19d1205
ZW
8927 /* Not allowed in LDM type 2. */
8928 if ((inst.instruction & LDM_TYPE_2_OR_3)
8929 && ((range & (1 << REG_PC)) == 0))
8930 as_warn (_("writeback of base register is UNPREDICTABLE"));
8931 /* Only allowed if base reg not in list for other types. */
8932 else if (range & (1 << base_reg))
8933 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8934 }
8935 else /* STM. */
8936 {
8937 /* Not allowed for type 2. */
8938 if (inst.instruction & LDM_TYPE_2_OR_3)
8939 as_warn (_("writeback of base register is UNPREDICTABLE"));
8940 /* Only allowed if base reg not in list, or first in list. */
8941 else if ((range & (1 << base_reg))
8942 && (range & ((1 << base_reg) - 1)))
8943 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 8944 }
ea6ef066 8945 }
6530b175
NC
8946
8947 /* If PUSH/POP has only one register, then use the A2 encoding. */
8948 one_reg = only_one_reg_in_list (range);
8949 if (from_push_pop_mnem && one_reg >= 0)
8950 {
8951 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8952
4f588891
NC
8953 if (is_push && one_reg == 13 /* SP */)
8954 /* PR 22483: The A2 encoding cannot be used when
8955 pushing the stack pointer as this is UNPREDICTABLE. */
8956 return;
8957
6530b175
NC
8958 inst.instruction &= A_COND_MASK;
8959 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8960 inst.instruction |= one_reg << 12;
8961 }
8962}
8963
8964static void
8965do_ldmstm (void)
8966{
8967 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
8968}
8969
c19d1205
ZW
8970/* ARMv5TE load-consecutive (argument parse)
8971 Mode is like LDRH.
8972
8973 LDRccD R, mode
8974 STRccD R, mode. */
8975
a737bd4d 8976static void
c19d1205 8977do_ldrd (void)
a737bd4d 8978{
c19d1205 8979 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8980 _("first transfer register must be even"));
c19d1205
ZW
8981 constraint (inst.operands[1].present
8982 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8983 _("can only transfer two consecutive registers"));
c19d1205
ZW
8984 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8985 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8986
c19d1205
ZW
8987 if (!inst.operands[1].present)
8988 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8989
c56791bb
RE
8990 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8991 register and the first register written; we have to diagnose
8992 overlap between the base and the second register written here. */
ea6ef066 8993
c56791bb
RE
8994 if (inst.operands[2].reg == inst.operands[1].reg
8995 && (inst.operands[2].writeback || inst.operands[2].postind))
8996 as_warn (_("base register written back, and overlaps "
8997 "second transfer register"));
b05fe5cf 8998
c56791bb
RE
8999 if (!(inst.instruction & V4_STR_BIT))
9000 {
c19d1205 9001 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9002 destination (even if not write-back). */
9003 if (inst.operands[2].immisreg
9004 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9005 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9006 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9007 }
c19d1205
ZW
9008 inst.instruction |= inst.operands[0].reg << 12;
9009 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9010}
9011
9012static void
c19d1205 9013do_ldrex (void)
b05fe5cf 9014{
c19d1205
ZW
9015 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9016 || inst.operands[1].postind || inst.operands[1].writeback
9017 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9018 || inst.operands[1].negative
9019 /* This can arise if the programmer has written
9020 strex rN, rM, foo
9021 or if they have mistakenly used a register name as the last
9022 operand, eg:
9023 strex rN, rM, rX
9024 It is very difficult to distinguish between these two cases
9025 because "rX" might actually be a label. ie the register
9026 name has been occluded by a symbol of the same name. So we
9027 just generate a general 'bad addressing mode' type error
9028 message and leave it up to the programmer to discover the
9029 true cause and fix their mistake. */
9030 || (inst.operands[1].reg == REG_PC),
9031 BAD_ADDR_MODE);
b05fe5cf 9032
e2b0ab59
AV
9033 constraint (inst.relocs[0].exp.X_op != O_constant
9034 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9035 _("offset must be zero in ARM encoding"));
b05fe5cf 9036
5be8be5d
DG
9037 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9038
c19d1205
ZW
9039 inst.instruction |= inst.operands[0].reg << 12;
9040 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9041 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9042}
9043
9044static void
c19d1205 9045do_ldrexd (void)
b05fe5cf 9046{
c19d1205
ZW
9047 constraint (inst.operands[0].reg % 2 != 0,
9048 _("even register required"));
9049 constraint (inst.operands[1].present
9050 && inst.operands[1].reg != inst.operands[0].reg + 1,
9051 _("can only load two consecutive registers"));
9052 /* If op 1 were present and equal to PC, this function wouldn't
9053 have been called in the first place. */
9054 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9055
c19d1205
ZW
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9058}
9059
1be5fd2e
NC
9060/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9061 which is not a multiple of four is UNPREDICTABLE. */
9062static void
9063check_ldr_r15_aligned (void)
9064{
9065 constraint (!(inst.operands[1].immisreg)
9066 && (inst.operands[0].reg == REG_PC
9067 && inst.operands[1].reg == REG_PC
e2b0ab59 9068 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9069 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9070}
9071
b05fe5cf 9072static void
c19d1205 9073do_ldst (void)
b05fe5cf 9074{
c19d1205
ZW
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 if (!inst.operands[1].isreg)
8335d6aa 9077 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9078 return;
c19d1205 9079 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9080 check_ldr_r15_aligned ();
b05fe5cf
ZW
9081}
9082
9083static void
c19d1205 9084do_ldstt (void)
b05fe5cf 9085{
c19d1205
ZW
9086 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9087 reject [Rn,...]. */
9088 if (inst.operands[1].preind)
b05fe5cf 9089 {
e2b0ab59
AV
9090 constraint (inst.relocs[0].exp.X_op != O_constant
9091 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9092 _("this instruction requires a post-indexed address"));
b05fe5cf 9093
c19d1205
ZW
9094 inst.operands[1].preind = 0;
9095 inst.operands[1].postind = 1;
9096 inst.operands[1].writeback = 1;
b05fe5cf 9097 }
c19d1205
ZW
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9100}
b05fe5cf 9101
c19d1205 9102/* Halfword and signed-byte load/store operations. */
b05fe5cf 9103
c19d1205
ZW
9104static void
9105do_ldstv4 (void)
9106{
ff4a8d2b 9107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 if (!inst.operands[1].isreg)
8335d6aa 9110 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9111 return;
c19d1205 9112 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9113}
9114
9115static void
c19d1205 9116do_ldsttv4 (void)
b05fe5cf 9117{
c19d1205
ZW
9118 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9119 reject [Rn,...]. */
9120 if (inst.operands[1].preind)
b05fe5cf 9121 {
e2b0ab59
AV
9122 constraint (inst.relocs[0].exp.X_op != O_constant
9123 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9124 _("this instruction requires a post-indexed address"));
b05fe5cf 9125
c19d1205
ZW
9126 inst.operands[1].preind = 0;
9127 inst.operands[1].postind = 1;
9128 inst.operands[1].writeback = 1;
b05fe5cf 9129 }
c19d1205
ZW
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9132}
b05fe5cf 9133
c19d1205
ZW
9134/* Co-processor register load/store.
9135 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9136static void
9137do_lstc (void)
9138{
9139 inst.instruction |= inst.operands[0].reg << 8;
9140 inst.instruction |= inst.operands[1].reg << 12;
9141 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9142}
9143
b05fe5cf 9144static void
c19d1205 9145do_mlas (void)
b05fe5cf 9146{
8fb9d7b9 9147 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9148 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9149 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9150 && !(inst.instruction & 0x00400000))
8fb9d7b9 9151 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9152
c19d1205
ZW
9153 inst.instruction |= inst.operands[0].reg << 16;
9154 inst.instruction |= inst.operands[1].reg;
9155 inst.instruction |= inst.operands[2].reg << 8;
9156 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9157}
b05fe5cf 9158
c19d1205
ZW
9159static void
9160do_mov (void)
9161{
e2b0ab59
AV
9162 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9163 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9164 THUMB1_RELOC_ONLY);
c19d1205
ZW
9165 inst.instruction |= inst.operands[0].reg << 12;
9166 encode_arm_shifter_operand (1);
9167}
b05fe5cf 9168
c19d1205
ZW
9169/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9170static void
9171do_mov16 (void)
9172{
b6895b4f
PB
9173 bfd_vma imm;
9174 bfd_boolean top;
9175
9176 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9177 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9178 _(":lower16: not allowed in this instruction"));
e2b0ab59 9179 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9180 _(":upper16: not allowed in this instruction"));
c19d1205 9181 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9182 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9183 {
e2b0ab59 9184 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9185 /* The value is in two pieces: 0:11, 16:19. */
9186 inst.instruction |= (imm & 0x00000fff);
9187 inst.instruction |= (imm & 0x0000f000) << 4;
9188 }
b05fe5cf 9189}
b99bd4ef 9190
037e8744
JB
9191static int
9192do_vfp_nsyn_mrs (void)
9193{
9194 if (inst.operands[0].isvec)
9195 {
9196 if (inst.operands[1].reg != 1)
477330fc 9197 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9198 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9199 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9200 do_vfp_nsyn_opcode ("fmstat");
9201 }
9202 else if (inst.operands[1].isvec)
9203 do_vfp_nsyn_opcode ("fmrx");
9204 else
9205 return FAIL;
5f4273c7 9206
037e8744
JB
9207 return SUCCESS;
9208}
9209
9210static int
9211do_vfp_nsyn_msr (void)
9212{
9213 if (inst.operands[0].isvec)
9214 do_vfp_nsyn_opcode ("fmxr");
9215 else
9216 return FAIL;
9217
9218 return SUCCESS;
9219}
9220
f7c21dc7
NC
9221static void
9222do_vmrs (void)
9223{
9224 unsigned Rt = inst.operands[0].reg;
fa94de6b 9225
16d02dc9 9226 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9227 {
9228 inst.error = BAD_SP;
9229 return;
9230 }
9231
40c7d507
RR
9232 /* MVFR2 is only valid at ARMv8-A. */
9233 if (inst.operands[1].reg == 5)
9234 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9235 _(BAD_FPU));
9236
f7c21dc7 9237 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9238 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9239 {
9240 inst.error = BAD_PC;
9241 return;
9242 }
9243
16d02dc9
JB
9244 /* If we get through parsing the register name, we just insert the number
9245 generated into the instruction without further validation. */
9246 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9247 inst.instruction |= (Rt << 12);
9248}
9249
9250static void
9251do_vmsr (void)
9252{
9253 unsigned Rt = inst.operands[1].reg;
fa94de6b 9254
f7c21dc7
NC
9255 if (thumb_mode)
9256 reject_bad_reg (Rt);
9257 else if (Rt == REG_PC)
9258 {
9259 inst.error = BAD_PC;
9260 return;
9261 }
9262
40c7d507
RR
9263 /* MVFR2 is only valid for ARMv8-A. */
9264 if (inst.operands[0].reg == 5)
9265 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9266 _(BAD_FPU));
9267
16d02dc9
JB
9268 /* If we get through parsing the register name, we just insert the number
9269 generated into the instruction without further validation. */
9270 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9271 inst.instruction |= (Rt << 12);
9272}
9273
b99bd4ef 9274static void
c19d1205 9275do_mrs (void)
b99bd4ef 9276{
90ec0d68
MGD
9277 unsigned br;
9278
037e8744
JB
9279 if (do_vfp_nsyn_mrs () == SUCCESS)
9280 return;
9281
ff4a8d2b 9282 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9283 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9284
9285 if (inst.operands[1].isreg)
9286 {
9287 br = inst.operands[1].reg;
806ab1c0 9288 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9289 as_bad (_("bad register for mrs"));
9290 }
9291 else
9292 {
9293 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9294 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9295 != (PSR_c|PSR_f),
d2cd1205 9296 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9297 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9298 }
9299
9300 inst.instruction |= br;
c19d1205 9301}
b99bd4ef 9302
c19d1205
ZW
9303/* Two possible forms:
9304 "{C|S}PSR_<field>, Rm",
9305 "{C|S}PSR_f, #expression". */
b99bd4ef 9306
c19d1205
ZW
9307static void
9308do_msr (void)
9309{
037e8744
JB
9310 if (do_vfp_nsyn_msr () == SUCCESS)
9311 return;
9312
c19d1205
ZW
9313 inst.instruction |= inst.operands[0].imm;
9314 if (inst.operands[1].isreg)
9315 inst.instruction |= inst.operands[1].reg;
9316 else
b99bd4ef 9317 {
c19d1205 9318 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9319 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9320 inst.relocs[0].pc_rel = 0;
b99bd4ef 9321 }
b99bd4ef
NC
9322}
9323
c19d1205
ZW
9324static void
9325do_mul (void)
a737bd4d 9326{
ff4a8d2b
NC
9327 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9328
c19d1205
ZW
9329 if (!inst.operands[2].present)
9330 inst.operands[2].reg = inst.operands[0].reg;
9331 inst.instruction |= inst.operands[0].reg << 16;
9332 inst.instruction |= inst.operands[1].reg;
9333 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9334
8fb9d7b9
MS
9335 if (inst.operands[0].reg == inst.operands[1].reg
9336 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9337 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9338}
9339
c19d1205
ZW
9340/* Long Multiply Parser
9341 UMULL RdLo, RdHi, Rm, Rs
9342 SMULL RdLo, RdHi, Rm, Rs
9343 UMLAL RdLo, RdHi, Rm, Rs
9344 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9345
9346static void
c19d1205 9347do_mull (void)
b99bd4ef 9348{
c19d1205
ZW
9349 inst.instruction |= inst.operands[0].reg << 12;
9350 inst.instruction |= inst.operands[1].reg << 16;
9351 inst.instruction |= inst.operands[2].reg;
9352 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9353
682b27ad
PB
9354 /* rdhi and rdlo must be different. */
9355 if (inst.operands[0].reg == inst.operands[1].reg)
9356 as_tsktsk (_("rdhi and rdlo must be different"));
9357
9358 /* rdhi, rdlo and rm must all be different before armv6. */
9359 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9360 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9361 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9362 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9363}
b99bd4ef 9364
c19d1205
ZW
9365static void
9366do_nop (void)
9367{
e7495e45
NS
9368 if (inst.operands[0].present
9369 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9370 {
9371 /* Architectural NOP hints are CPSR sets with no bits selected. */
9372 inst.instruction &= 0xf0000000;
e7495e45
NS
9373 inst.instruction |= 0x0320f000;
9374 if (inst.operands[0].present)
9375 inst.instruction |= inst.operands[0].imm;
c19d1205 9376 }
b99bd4ef
NC
9377}
9378
c19d1205
ZW
9379/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9380 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9381 Condition defaults to COND_ALWAYS.
9382 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9383
9384static void
c19d1205 9385do_pkhbt (void)
b99bd4ef 9386{
c19d1205
ZW
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 inst.instruction |= inst.operands[1].reg << 16;
9389 inst.instruction |= inst.operands[2].reg;
9390 if (inst.operands[3].present)
9391 encode_arm_shift (3);
9392}
b99bd4ef 9393
c19d1205 9394/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9395
c19d1205
ZW
9396static void
9397do_pkhtb (void)
9398{
9399 if (!inst.operands[3].present)
b99bd4ef 9400 {
c19d1205
ZW
9401 /* If the shift specifier is omitted, turn the instruction
9402 into pkhbt rd, rm, rn. */
9403 inst.instruction &= 0xfff00010;
9404 inst.instruction |= inst.operands[0].reg << 12;
9405 inst.instruction |= inst.operands[1].reg;
9406 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9407 }
9408 else
9409 {
c19d1205
ZW
9410 inst.instruction |= inst.operands[0].reg << 12;
9411 inst.instruction |= inst.operands[1].reg << 16;
9412 inst.instruction |= inst.operands[2].reg;
9413 encode_arm_shift (3);
b99bd4ef
NC
9414 }
9415}
9416
c19d1205 9417/* ARMv5TE: Preload-Cache
60e5ef9f 9418 MP Extensions: Preload for write
c19d1205 9419
60e5ef9f 9420 PLD(W) <addr_mode>
c19d1205
ZW
9421
9422 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9423
9424static void
c19d1205 9425do_pld (void)
b99bd4ef 9426{
c19d1205
ZW
9427 constraint (!inst.operands[0].isreg,
9428 _("'[' expected after PLD mnemonic"));
9429 constraint (inst.operands[0].postind,
9430 _("post-indexed expression used in preload instruction"));
9431 constraint (inst.operands[0].writeback,
9432 _("writeback used in preload instruction"));
9433 constraint (!inst.operands[0].preind,
9434 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9435 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9436}
b99bd4ef 9437
62b3e311
PB
9438/* ARMv7: PLI <addr_mode> */
9439static void
9440do_pli (void)
9441{
9442 constraint (!inst.operands[0].isreg,
9443 _("'[' expected after PLI mnemonic"));
9444 constraint (inst.operands[0].postind,
9445 _("post-indexed expression used in preload instruction"));
9446 constraint (inst.operands[0].writeback,
9447 _("writeback used in preload instruction"));
9448 constraint (!inst.operands[0].preind,
9449 _("unindexed addressing used in preload instruction"));
9450 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9451 inst.instruction &= ~PRE_INDEX;
9452}
9453
c19d1205
ZW
9454static void
9455do_push_pop (void)
9456{
5e0d7f77
MP
9457 constraint (inst.operands[0].writeback,
9458 _("push/pop do not support {reglist}^"));
c19d1205
ZW
9459 inst.operands[1] = inst.operands[0];
9460 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9461 inst.operands[0].isreg = 1;
9462 inst.operands[0].writeback = 1;
9463 inst.operands[0].reg = REG_SP;
6530b175 9464 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 9465}
b99bd4ef 9466
c19d1205
ZW
9467/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9468 word at the specified address and the following word
9469 respectively.
9470 Unconditionally executed.
9471 Error if Rn is R15. */
b99bd4ef 9472
c19d1205
ZW
9473static void
9474do_rfe (void)
9475{
9476 inst.instruction |= inst.operands[0].reg << 16;
9477 if (inst.operands[0].writeback)
9478 inst.instruction |= WRITE_BACK;
9479}
b99bd4ef 9480
c19d1205 9481/* ARM V6 ssat (argument parse). */
b99bd4ef 9482
c19d1205
ZW
9483static void
9484do_ssat (void)
9485{
9486 inst.instruction |= inst.operands[0].reg << 12;
9487 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9488 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9489
c19d1205
ZW
9490 if (inst.operands[3].present)
9491 encode_arm_shift (3);
b99bd4ef
NC
9492}
9493
c19d1205 9494/* ARM V6 usat (argument parse). */
b99bd4ef
NC
9495
9496static void
c19d1205 9497do_usat (void)
b99bd4ef 9498{
c19d1205
ZW
9499 inst.instruction |= inst.operands[0].reg << 12;
9500 inst.instruction |= inst.operands[1].imm << 16;
9501 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9502
c19d1205
ZW
9503 if (inst.operands[3].present)
9504 encode_arm_shift (3);
b99bd4ef
NC
9505}
9506
c19d1205 9507/* ARM V6 ssat16 (argument parse). */
09d92015
MM
9508
9509static void
c19d1205 9510do_ssat16 (void)
09d92015 9511{
c19d1205
ZW
9512 inst.instruction |= inst.operands[0].reg << 12;
9513 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9514 inst.instruction |= inst.operands[2].reg;
09d92015
MM
9515}
9516
c19d1205
ZW
9517static void
9518do_usat16 (void)
a737bd4d 9519{
c19d1205
ZW
9520 inst.instruction |= inst.operands[0].reg << 12;
9521 inst.instruction |= inst.operands[1].imm << 16;
9522 inst.instruction |= inst.operands[2].reg;
9523}
a737bd4d 9524
c19d1205
ZW
9525/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9526 preserving the other bits.
a737bd4d 9527
c19d1205
ZW
9528 setend <endian_specifier>, where <endian_specifier> is either
9529 BE or LE. */
a737bd4d 9530
c19d1205
ZW
9531static void
9532do_setend (void)
9533{
12e37cbc
MGD
9534 if (warn_on_deprecated
9535 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 9536 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 9537
c19d1205
ZW
9538 if (inst.operands[0].imm)
9539 inst.instruction |= 0x200;
a737bd4d
NC
9540}
9541
9542static void
c19d1205 9543do_shift (void)
a737bd4d 9544{
c19d1205
ZW
9545 unsigned int Rm = (inst.operands[1].present
9546 ? inst.operands[1].reg
9547 : inst.operands[0].reg);
a737bd4d 9548
c19d1205
ZW
9549 inst.instruction |= inst.operands[0].reg << 12;
9550 inst.instruction |= Rm;
9551 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 9552 {
c19d1205
ZW
9553 inst.instruction |= inst.operands[2].reg << 8;
9554 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
9555 /* PR 12854: Error on extraneous shifts. */
9556 constraint (inst.operands[2].shifted,
9557 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
9558 }
9559 else
e2b0ab59 9560 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
9561}
9562
09d92015 9563static void
3eb17e6b 9564do_smc (void)
09d92015 9565{
e2b0ab59
AV
9566 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
9567 inst.relocs[0].pc_rel = 0;
09d92015
MM
9568}
9569
90ec0d68
MGD
9570static void
9571do_hvc (void)
9572{
e2b0ab59
AV
9573 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
9574 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
9575}
9576
09d92015 9577static void
c19d1205 9578do_swi (void)
09d92015 9579{
e2b0ab59
AV
9580 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
9581 inst.relocs[0].pc_rel = 0;
09d92015
MM
9582}
9583
ddfded2f
MW
9584static void
9585do_setpan (void)
9586{
9587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9588 _("selected processor does not support SETPAN instruction"));
9589
9590 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9591}
9592
9593static void
9594do_t_setpan (void)
9595{
9596 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9597 _("selected processor does not support SETPAN instruction"));
9598
9599 inst.instruction |= (inst.operands[0].imm << 3);
9600}
9601
c19d1205
ZW
9602/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9603 SMLAxy{cond} Rd,Rm,Rs,Rn
9604 SMLAWy{cond} Rd,Rm,Rs,Rn
9605 Error if any register is R15. */
e16bb312 9606
c19d1205
ZW
9607static void
9608do_smla (void)
e16bb312 9609{
c19d1205
ZW
9610 inst.instruction |= inst.operands[0].reg << 16;
9611 inst.instruction |= inst.operands[1].reg;
9612 inst.instruction |= inst.operands[2].reg << 8;
9613 inst.instruction |= inst.operands[3].reg << 12;
9614}
a737bd4d 9615
c19d1205
ZW
9616/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9617 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9618 Error if any register is R15.
9619 Warning if Rdlo == Rdhi. */
a737bd4d 9620
c19d1205
ZW
9621static void
9622do_smlal (void)
9623{
9624 inst.instruction |= inst.operands[0].reg << 12;
9625 inst.instruction |= inst.operands[1].reg << 16;
9626 inst.instruction |= inst.operands[2].reg;
9627 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 9628
c19d1205
ZW
9629 if (inst.operands[0].reg == inst.operands[1].reg)
9630 as_tsktsk (_("rdhi and rdlo must be different"));
9631}
a737bd4d 9632
c19d1205
ZW
9633/* ARM V5E (El Segundo) signed-multiply (argument parse)
9634 SMULxy{cond} Rd,Rm,Rs
9635 Error if any register is R15. */
a737bd4d 9636
c19d1205
ZW
9637static void
9638do_smul (void)
9639{
9640 inst.instruction |= inst.operands[0].reg << 16;
9641 inst.instruction |= inst.operands[1].reg;
9642 inst.instruction |= inst.operands[2].reg << 8;
9643}
a737bd4d 9644
b6702015
PB
9645/* ARM V6 srs (argument parse). The variable fields in the encoding are
9646 the same for both ARM and Thumb-2. */
a737bd4d 9647
c19d1205
ZW
9648static void
9649do_srs (void)
9650{
b6702015
PB
9651 int reg;
9652
9653 if (inst.operands[0].present)
9654 {
9655 reg = inst.operands[0].reg;
fdfde340 9656 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
9657 }
9658 else
fdfde340 9659 reg = REG_SP;
b6702015
PB
9660
9661 inst.instruction |= reg << 16;
9662 inst.instruction |= inst.operands[1].imm;
9663 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
9664 inst.instruction |= WRITE_BACK;
9665}
a737bd4d 9666
c19d1205 9667/* ARM V6 strex (argument parse). */
a737bd4d 9668
c19d1205
ZW
9669static void
9670do_strex (void)
9671{
9672 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9673 || inst.operands[2].postind || inst.operands[2].writeback
9674 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
9675 || inst.operands[2].negative
9676 /* See comment in do_ldrex(). */
9677 || (inst.operands[2].reg == REG_PC),
9678 BAD_ADDR_MODE);
a737bd4d 9679
c19d1205
ZW
9680 constraint (inst.operands[0].reg == inst.operands[1].reg
9681 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 9682
e2b0ab59
AV
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9685 _("offset must be zero in ARM encoding"));
a737bd4d 9686
c19d1205
ZW
9687 inst.instruction |= inst.operands[0].reg << 12;
9688 inst.instruction |= inst.operands[1].reg;
9689 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 9690 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
9691}
9692
877807f8
NC
9693static void
9694do_t_strexbh (void)
9695{
9696 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9697 || inst.operands[2].postind || inst.operands[2].writeback
9698 || inst.operands[2].immisreg || inst.operands[2].shifted
9699 || inst.operands[2].negative,
9700 BAD_ADDR_MODE);
9701
9702 constraint (inst.operands[0].reg == inst.operands[1].reg
9703 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9704
9705 do_rm_rd_rn ();
9706}
9707
e16bb312 9708static void
c19d1205 9709do_strexd (void)
e16bb312 9710{
c19d1205
ZW
9711 constraint (inst.operands[1].reg % 2 != 0,
9712 _("even register required"));
9713 constraint (inst.operands[2].present
9714 && inst.operands[2].reg != inst.operands[1].reg + 1,
9715 _("can only store two consecutive registers"));
9716 /* If op 2 were present and equal to PC, this function wouldn't
9717 have been called in the first place. */
9718 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 9719
c19d1205
ZW
9720 constraint (inst.operands[0].reg == inst.operands[1].reg
9721 || inst.operands[0].reg == inst.operands[1].reg + 1
9722 || inst.operands[0].reg == inst.operands[3].reg,
9723 BAD_OVERLAP);
e16bb312 9724
c19d1205
ZW
9725 inst.instruction |= inst.operands[0].reg << 12;
9726 inst.instruction |= inst.operands[1].reg;
9727 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
9728}
9729
9eb6c0f1
MGD
9730/* ARM V8 STRL. */
9731static void
4b8c8c02 9732do_stlex (void)
9eb6c0f1
MGD
9733{
9734 constraint (inst.operands[0].reg == inst.operands[1].reg
9735 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9736
9737 do_rd_rm_rn ();
9738}
9739
9740static void
4b8c8c02 9741do_t_stlex (void)
9eb6c0f1
MGD
9742{
9743 constraint (inst.operands[0].reg == inst.operands[1].reg
9744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9745
9746 do_rm_rd_rn ();
9747}
9748
c19d1205
ZW
9749/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9750 extends it to 32-bits, and adds the result to a value in another
9751 register. You can specify a rotation by 0, 8, 16, or 24 bits
9752 before extracting the 16-bit value.
9753 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9754 Condition defaults to COND_ALWAYS.
9755 Error if any register uses R15. */
9756
e16bb312 9757static void
c19d1205 9758do_sxtah (void)
e16bb312 9759{
c19d1205
ZW
9760 inst.instruction |= inst.operands[0].reg << 12;
9761 inst.instruction |= inst.operands[1].reg << 16;
9762 inst.instruction |= inst.operands[2].reg;
9763 inst.instruction |= inst.operands[3].imm << 10;
9764}
e16bb312 9765
c19d1205 9766/* ARM V6 SXTH.
e16bb312 9767
c19d1205
ZW
9768 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9769 Condition defaults to COND_ALWAYS.
9770 Error if any register uses R15. */
e16bb312
NC
9771
9772static void
c19d1205 9773do_sxth (void)
e16bb312 9774{
c19d1205
ZW
9775 inst.instruction |= inst.operands[0].reg << 12;
9776 inst.instruction |= inst.operands[1].reg;
9777 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 9778}
c19d1205
ZW
9779\f
9780/* VFP instructions. In a logical order: SP variant first, monad
9781 before dyad, arithmetic then move then load/store. */
e16bb312
NC
9782
9783static void
c19d1205 9784do_vfp_sp_monadic (void)
e16bb312 9785{
5287ad62
JB
9786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9788}
9789
9790static void
c19d1205 9791do_vfp_sp_dyadic (void)
e16bb312 9792{
5287ad62
JB
9793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9794 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9795 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9796}
9797
9798static void
c19d1205 9799do_vfp_sp_compare_z (void)
e16bb312 9800{
5287ad62 9801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
9802}
9803
9804static void
c19d1205 9805do_vfp_dp_sp_cvt (void)
e16bb312 9806{
5287ad62
JB
9807 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9808 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9809}
9810
9811static void
c19d1205 9812do_vfp_sp_dp_cvt (void)
e16bb312 9813{
5287ad62
JB
9814 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9815 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
9816}
9817
9818static void
c19d1205 9819do_vfp_reg_from_sp (void)
e16bb312 9820{
c19d1205 9821 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 9822 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
9823}
9824
9825static void
c19d1205 9826do_vfp_reg2_from_sp2 (void)
e16bb312 9827{
c19d1205
ZW
9828 constraint (inst.operands[2].imm != 2,
9829 _("only two consecutive VFP SP registers allowed here"));
9830 inst.instruction |= inst.operands[0].reg << 12;
9831 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 9832 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9833}
9834
9835static void
c19d1205 9836do_vfp_sp_from_reg (void)
e16bb312 9837{
5287ad62 9838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 9839 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
9840}
9841
9842static void
c19d1205 9843do_vfp_sp2_from_reg2 (void)
e16bb312 9844{
c19d1205
ZW
9845 constraint (inst.operands[0].imm != 2,
9846 _("only two consecutive VFP SP registers allowed here"));
5287ad62 9847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
9848 inst.instruction |= inst.operands[1].reg << 12;
9849 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
9850}
9851
9852static void
c19d1205 9853do_vfp_sp_ldst (void)
e16bb312 9854{
5287ad62 9855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 9856 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9857}
9858
9859static void
c19d1205 9860do_vfp_dp_ldst (void)
e16bb312 9861{
5287ad62 9862 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 9863 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9864}
9865
c19d1205 9866
e16bb312 9867static void
c19d1205 9868vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9869{
c19d1205
ZW
9870 if (inst.operands[0].writeback)
9871 inst.instruction |= WRITE_BACK;
9872 else
9873 constraint (ldstm_type != VFP_LDSTMIA,
9874 _("this addressing mode requires base-register writeback"));
9875 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9876 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 9877 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
9878}
9879
9880static void
c19d1205 9881vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9882{
c19d1205 9883 int count;
e16bb312 9884
c19d1205
ZW
9885 if (inst.operands[0].writeback)
9886 inst.instruction |= WRITE_BACK;
9887 else
9888 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9889 _("this addressing mode requires base-register writeback"));
e16bb312 9890
c19d1205 9891 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9892 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 9893
c19d1205
ZW
9894 count = inst.operands[1].imm << 1;
9895 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9896 count += 1;
e16bb312 9897
c19d1205 9898 inst.instruction |= count;
e16bb312
NC
9899}
9900
9901static void
c19d1205 9902do_vfp_sp_ldstmia (void)
e16bb312 9903{
c19d1205 9904 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9905}
9906
9907static void
c19d1205 9908do_vfp_sp_ldstmdb (void)
e16bb312 9909{
c19d1205 9910 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9911}
9912
9913static void
c19d1205 9914do_vfp_dp_ldstmia (void)
e16bb312 9915{
c19d1205 9916 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9917}
9918
9919static void
c19d1205 9920do_vfp_dp_ldstmdb (void)
e16bb312 9921{
c19d1205 9922 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9923}
9924
9925static void
c19d1205 9926do_vfp_xp_ldstmia (void)
e16bb312 9927{
c19d1205
ZW
9928 vfp_dp_ldstm (VFP_LDSTMIAX);
9929}
e16bb312 9930
c19d1205
ZW
9931static void
9932do_vfp_xp_ldstmdb (void)
9933{
9934 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 9935}
5287ad62
JB
9936
9937static void
9938do_vfp_dp_rd_rm (void)
9939{
9940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9942}
9943
9944static void
9945do_vfp_dp_rn_rd (void)
9946{
9947 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9948 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9949}
9950
9951static void
9952do_vfp_dp_rd_rn (void)
9953{
9954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9956}
9957
9958static void
9959do_vfp_dp_rd_rn_rm (void)
9960{
9961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9962 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9963 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9964}
9965
9966static void
9967do_vfp_dp_rd (void)
9968{
9969 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9970}
9971
9972static void
9973do_vfp_dp_rm_rd_rn (void)
9974{
9975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9976 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9977 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9978}
9979
9980/* VFPv3 instructions. */
9981static void
9982do_vfp_sp_const (void)
9983{
9984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
9985 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9986 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9987}
9988
9989static void
9990do_vfp_dp_const (void)
9991{
9992 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9993 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9994 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9995}
9996
9997static void
9998vfp_conv (int srcsize)
9999{
5f1af56b
MGD
10000 int immbits = srcsize - inst.operands[1].imm;
10001
fa94de6b
RM
10002 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10003 {
5f1af56b 10004 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10005 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10006 inst.error = _("immediate value out of range, expected range [0, 16]");
10007 return;
10008 }
fa94de6b 10009 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10010 {
10011 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10012 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10013 inst.error = _("immediate value out of range, expected range [1, 32]");
10014 return;
10015 }
10016
5287ad62
JB
10017 inst.instruction |= (immbits & 1) << 5;
10018 inst.instruction |= (immbits >> 1);
10019}
10020
10021static void
10022do_vfp_sp_conv_16 (void)
10023{
10024 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10025 vfp_conv (16);
10026}
10027
10028static void
10029do_vfp_dp_conv_16 (void)
10030{
10031 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10032 vfp_conv (16);
10033}
10034
10035static void
10036do_vfp_sp_conv_32 (void)
10037{
10038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10039 vfp_conv (32);
10040}
10041
10042static void
10043do_vfp_dp_conv_32 (void)
10044{
10045 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10046 vfp_conv (32);
10047}
c19d1205
ZW
10048\f
10049/* FPA instructions. Also in a logical order. */
e16bb312 10050
c19d1205
ZW
10051static void
10052do_fpa_cmp (void)
10053{
10054 inst.instruction |= inst.operands[0].reg << 16;
10055 inst.instruction |= inst.operands[1].reg;
10056}
b99bd4ef
NC
10057
10058static void
c19d1205 10059do_fpa_ldmstm (void)
b99bd4ef 10060{
c19d1205
ZW
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 switch (inst.operands[1].imm)
10063 {
10064 case 1: inst.instruction |= CP_T_X; break;
10065 case 2: inst.instruction |= CP_T_Y; break;
10066 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10067 case 4: break;
10068 default: abort ();
10069 }
b99bd4ef 10070
c19d1205
ZW
10071 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10072 {
10073 /* The instruction specified "ea" or "fd", so we can only accept
10074 [Rn]{!}. The instruction does not really support stacking or
10075 unstacking, so we have to emulate these by setting appropriate
10076 bits and offsets. */
e2b0ab59
AV
10077 constraint (inst.relocs[0].exp.X_op != O_constant
10078 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10079 _("this instruction does not support indexing"));
b99bd4ef 10080
c19d1205 10081 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10082 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10083
c19d1205 10084 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10085 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10086
c19d1205
ZW
10087 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10088 {
10089 inst.operands[2].preind = 0;
10090 inst.operands[2].postind = 1;
10091 }
10092 }
b99bd4ef 10093
c19d1205 10094 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10095}
c19d1205
ZW
10096\f
10097/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10098
c19d1205
ZW
10099static void
10100do_iwmmxt_tandorc (void)
10101{
10102 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10103}
b99bd4ef 10104
c19d1205
ZW
10105static void
10106do_iwmmxt_textrc (void)
10107{
10108 inst.instruction |= inst.operands[0].reg << 12;
10109 inst.instruction |= inst.operands[1].imm;
10110}
b99bd4ef
NC
10111
10112static void
c19d1205 10113do_iwmmxt_textrm (void)
b99bd4ef 10114{
c19d1205
ZW
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 inst.instruction |= inst.operands[1].reg << 16;
10117 inst.instruction |= inst.operands[2].imm;
10118}
b99bd4ef 10119
c19d1205
ZW
10120static void
10121do_iwmmxt_tinsr (void)
10122{
10123 inst.instruction |= inst.operands[0].reg << 16;
10124 inst.instruction |= inst.operands[1].reg << 12;
10125 inst.instruction |= inst.operands[2].imm;
10126}
b99bd4ef 10127
c19d1205
ZW
10128static void
10129do_iwmmxt_tmia (void)
10130{
10131 inst.instruction |= inst.operands[0].reg << 5;
10132 inst.instruction |= inst.operands[1].reg;
10133 inst.instruction |= inst.operands[2].reg << 12;
10134}
b99bd4ef 10135
c19d1205
ZW
10136static void
10137do_iwmmxt_waligni (void)
10138{
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[1].reg << 16;
10141 inst.instruction |= inst.operands[2].reg;
10142 inst.instruction |= inst.operands[3].imm << 20;
10143}
b99bd4ef 10144
2d447fca
JM
10145static void
10146do_iwmmxt_wmerge (void)
10147{
10148 inst.instruction |= inst.operands[0].reg << 12;
10149 inst.instruction |= inst.operands[1].reg << 16;
10150 inst.instruction |= inst.operands[2].reg;
10151 inst.instruction |= inst.operands[3].imm << 21;
10152}
10153
c19d1205
ZW
10154static void
10155do_iwmmxt_wmov (void)
10156{
10157 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10158 inst.instruction |= inst.operands[0].reg << 12;
10159 inst.instruction |= inst.operands[1].reg << 16;
10160 inst.instruction |= inst.operands[1].reg;
10161}
b99bd4ef 10162
c19d1205
ZW
10163static void
10164do_iwmmxt_wldstbh (void)
10165{
8f06b2d8 10166 int reloc;
c19d1205 10167 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10168 if (thumb_mode)
10169 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10170 else
10171 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10172 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10173}
10174
c19d1205
ZW
10175static void
10176do_iwmmxt_wldstw (void)
10177{
10178 /* RIWR_RIWC clears .isreg for a control register. */
10179 if (!inst.operands[0].isreg)
10180 {
10181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10182 inst.instruction |= 0xf0000000;
10183 }
b99bd4ef 10184
c19d1205
ZW
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 encode_arm_cp_address (1, TRUE, TRUE, 0);
10187}
b99bd4ef
NC
10188
10189static void
c19d1205 10190do_iwmmxt_wldstd (void)
b99bd4ef 10191{
c19d1205 10192 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10193 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10194 && inst.operands[1].immisreg)
10195 {
10196 inst.instruction &= ~0x1a000ff;
eff0bc54 10197 inst.instruction |= (0xfU << 28);
2d447fca
JM
10198 if (inst.operands[1].preind)
10199 inst.instruction |= PRE_INDEX;
10200 if (!inst.operands[1].negative)
10201 inst.instruction |= INDEX_UP;
10202 if (inst.operands[1].writeback)
10203 inst.instruction |= WRITE_BACK;
10204 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10205 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10206 inst.instruction |= inst.operands[1].imm;
10207 }
10208 else
10209 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10210}
b99bd4ef 10211
c19d1205
ZW
10212static void
10213do_iwmmxt_wshufh (void)
10214{
10215 inst.instruction |= inst.operands[0].reg << 12;
10216 inst.instruction |= inst.operands[1].reg << 16;
10217 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10218 inst.instruction |= (inst.operands[2].imm & 0x0f);
10219}
b99bd4ef 10220
c19d1205
ZW
10221static void
10222do_iwmmxt_wzero (void)
10223{
10224 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10225 inst.instruction |= inst.operands[0].reg;
10226 inst.instruction |= inst.operands[0].reg << 12;
10227 inst.instruction |= inst.operands[0].reg << 16;
10228}
2d447fca
JM
10229
10230static void
10231do_iwmmxt_wrwrwr_or_imm5 (void)
10232{
10233 if (inst.operands[2].isreg)
10234 do_rd_rn_rm ();
10235 else {
10236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10237 _("immediate operand requires iWMMXt2"));
10238 do_rd_rn ();
10239 if (inst.operands[2].imm == 0)
10240 {
10241 switch ((inst.instruction >> 20) & 0xf)
10242 {
10243 case 4:
10244 case 5:
10245 case 6:
5f4273c7 10246 case 7:
2d447fca
JM
10247 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10248 inst.operands[2].imm = 16;
10249 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10250 break;
10251 case 8:
10252 case 9:
10253 case 10:
10254 case 11:
10255 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10256 inst.operands[2].imm = 32;
10257 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10258 break;
10259 case 12:
10260 case 13:
10261 case 14:
10262 case 15:
10263 {
10264 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10265 unsigned long wrn;
10266 wrn = (inst.instruction >> 16) & 0xf;
10267 inst.instruction &= 0xff0fff0f;
10268 inst.instruction |= wrn;
10269 /* Bail out here; the instruction is now assembled. */
10270 return;
10271 }
10272 }
10273 }
10274 /* Map 32 -> 0, etc. */
10275 inst.operands[2].imm &= 0x1f;
eff0bc54 10276 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10277 }
10278}
c19d1205
ZW
10279\f
10280/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10281 operations first, then control, shift, and load/store. */
b99bd4ef 10282
c19d1205 10283/* Insns like "foo X,Y,Z". */
b99bd4ef 10284
c19d1205
ZW
10285static void
10286do_mav_triple (void)
10287{
10288 inst.instruction |= inst.operands[0].reg << 16;
10289 inst.instruction |= inst.operands[1].reg;
10290 inst.instruction |= inst.operands[2].reg << 12;
10291}
b99bd4ef 10292
c19d1205
ZW
10293/* Insns like "foo W,X,Y,Z".
10294 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10295
c19d1205
ZW
10296static void
10297do_mav_quad (void)
10298{
10299 inst.instruction |= inst.operands[0].reg << 5;
10300 inst.instruction |= inst.operands[1].reg << 12;
10301 inst.instruction |= inst.operands[2].reg << 16;
10302 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10303}
10304
c19d1205
ZW
10305/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10306static void
10307do_mav_dspsc (void)
a737bd4d 10308{
c19d1205
ZW
10309 inst.instruction |= inst.operands[1].reg << 12;
10310}
a737bd4d 10311
c19d1205
ZW
10312/* Maverick shift immediate instructions.
10313 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10314 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10315
c19d1205
ZW
10316static void
10317do_mav_shift (void)
10318{
10319 int imm = inst.operands[2].imm;
a737bd4d 10320
c19d1205
ZW
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10323
c19d1205
ZW
10324 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10325 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10326 Bit 4 should be 0. */
10327 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10328
c19d1205
ZW
10329 inst.instruction |= imm;
10330}
10331\f
10332/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10333
c19d1205
ZW
10334/* Xscale multiply-accumulate (argument parse)
10335 MIAcc acc0,Rm,Rs
10336 MIAPHcc acc0,Rm,Rs
10337 MIAxycc acc0,Rm,Rs. */
a737bd4d 10338
c19d1205
ZW
10339static void
10340do_xsc_mia (void)
10341{
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].reg << 12;
10344}
a737bd4d 10345
c19d1205 10346/* Xscale move-accumulator-register (argument parse)
a737bd4d 10347
c19d1205 10348 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10349
c19d1205
ZW
10350static void
10351do_xsc_mar (void)
10352{
10353 inst.instruction |= inst.operands[1].reg << 12;
10354 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10355}
10356
c19d1205 10357/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10358
c19d1205 10359 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10360
10361static void
c19d1205 10362do_xsc_mra (void)
b99bd4ef 10363{
c19d1205
ZW
10364 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= inst.operands[1].reg << 16;
10367}
10368\f
10369/* Encoding functions relevant only to Thumb. */
b99bd4ef 10370
c19d1205
ZW
10371/* inst.operands[i] is a shifted-register operand; encode
10372 it into inst.instruction in the format used by Thumb32. */
10373
10374static void
10375encode_thumb32_shifted_operand (int i)
10376{
e2b0ab59 10377 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10378 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10379
9c3c69f2
PB
10380 constraint (inst.operands[i].immisreg,
10381 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10382 inst.instruction |= inst.operands[i].reg;
10383 if (shift == SHIFT_RRX)
10384 inst.instruction |= SHIFT_ROR << 4;
10385 else
b99bd4ef 10386 {
e2b0ab59 10387 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
10388 _("expression too complex"));
10389
10390 constraint (value > 32
10391 || (value == 32 && (shift == SHIFT_LSL
10392 || shift == SHIFT_ROR)),
10393 _("shift expression is too large"));
10394
10395 if (value == 0)
10396 shift = SHIFT_LSL;
10397 else if (value == 32)
10398 value = 0;
10399
10400 inst.instruction |= shift << 4;
10401 inst.instruction |= (value & 0x1c) << 10;
10402 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10403 }
c19d1205 10404}
b99bd4ef 10405
b99bd4ef 10406
c19d1205
ZW
10407/* inst.operands[i] was set up by parse_address. Encode it into a
10408 Thumb32 format load or store instruction. Reject forms that cannot
10409 be used with such instructions. If is_t is true, reject forms that
10410 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10411 that cannot be used with a D instruction. If it is a store insn,
10412 reject PC in Rn. */
b99bd4ef 10413
c19d1205
ZW
10414static void
10415encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10416{
5be8be5d 10417 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10418
10419 constraint (!inst.operands[i].isreg,
53365c0d 10420 _("Instruction does not support =N addresses"));
b99bd4ef 10421
c19d1205
ZW
10422 inst.instruction |= inst.operands[i].reg << 16;
10423 if (inst.operands[i].immisreg)
b99bd4ef 10424 {
5be8be5d 10425 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10426 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10427 constraint (inst.operands[i].negative,
10428 _("Thumb does not support negative register indexing"));
10429 constraint (inst.operands[i].postind,
10430 _("Thumb does not support register post-indexing"));
10431 constraint (inst.operands[i].writeback,
10432 _("Thumb does not support register indexing with writeback"));
10433 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10434 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 10435
f40d1643 10436 inst.instruction |= inst.operands[i].imm;
c19d1205 10437 if (inst.operands[i].shifted)
b99bd4ef 10438 {
e2b0ab59 10439 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 10440 _("expression too complex"));
e2b0ab59
AV
10441 constraint (inst.relocs[0].exp.X_add_number < 0
10442 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 10443 _("shift out of range"));
e2b0ab59 10444 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 10445 }
e2b0ab59 10446 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
10447 }
10448 else if (inst.operands[i].preind)
10449 {
5be8be5d 10450 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 10451 constraint (is_t && inst.operands[i].writeback,
c19d1205 10452 _("cannot use writeback with this instruction"));
4755303e
WN
10453 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10454 BAD_PC_ADDRESSING);
c19d1205
ZW
10455
10456 if (is_d)
10457 {
10458 inst.instruction |= 0x01000000;
10459 if (inst.operands[i].writeback)
10460 inst.instruction |= 0x00200000;
b99bd4ef 10461 }
c19d1205 10462 else
b99bd4ef 10463 {
c19d1205
ZW
10464 inst.instruction |= 0x00000c00;
10465 if (inst.operands[i].writeback)
10466 inst.instruction |= 0x00000100;
b99bd4ef 10467 }
e2b0ab59 10468 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 10469 }
c19d1205 10470 else if (inst.operands[i].postind)
b99bd4ef 10471 {
9c2799c2 10472 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
10473 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10474 constraint (is_t, _("cannot use post-indexing with this instruction"));
10475
10476 if (is_d)
10477 inst.instruction |= 0x00200000;
10478 else
10479 inst.instruction |= 0x00000900;
e2b0ab59 10480 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
10481 }
10482 else /* unindexed - only for coprocessor */
10483 inst.error = _("instruction does not accept unindexed addressing");
10484}
10485
10486/* Table of Thumb instructions which exist in both 16- and 32-bit
10487 encodings (the latter only in post-V6T2 cores). The index is the
10488 value used in the insns table below. When there is more than one
10489 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
10490 holds variant (1).
10491 Also contains several pseudo-instructions used during relaxation. */
c19d1205 10492#define T16_32_TAB \
21d799b5
NC
10493 X(_adc, 4140, eb400000), \
10494 X(_adcs, 4140, eb500000), \
10495 X(_add, 1c00, eb000000), \
10496 X(_adds, 1c00, eb100000), \
10497 X(_addi, 0000, f1000000), \
10498 X(_addis, 0000, f1100000), \
10499 X(_add_pc,000f, f20f0000), \
10500 X(_add_sp,000d, f10d0000), \
10501 X(_adr, 000f, f20f0000), \
10502 X(_and, 4000, ea000000), \
10503 X(_ands, 4000, ea100000), \
10504 X(_asr, 1000, fa40f000), \
10505 X(_asrs, 1000, fa50f000), \
10506 X(_b, e000, f000b000), \
10507 X(_bcond, d000, f0008000), \
10508 X(_bic, 4380, ea200000), \
10509 X(_bics, 4380, ea300000), \
10510 X(_cmn, 42c0, eb100f00), \
10511 X(_cmp, 2800, ebb00f00), \
10512 X(_cpsie, b660, f3af8400), \
10513 X(_cpsid, b670, f3af8600), \
10514 X(_cpy, 4600, ea4f0000), \
10515 X(_dec_sp,80dd, f1ad0d00), \
10516 X(_eor, 4040, ea800000), \
10517 X(_eors, 4040, ea900000), \
10518 X(_inc_sp,00dd, f10d0d00), \
10519 X(_ldmia, c800, e8900000), \
10520 X(_ldr, 6800, f8500000), \
10521 X(_ldrb, 7800, f8100000), \
10522 X(_ldrh, 8800, f8300000), \
10523 X(_ldrsb, 5600, f9100000), \
10524 X(_ldrsh, 5e00, f9300000), \
10525 X(_ldr_pc,4800, f85f0000), \
10526 X(_ldr_pc2,4800, f85f0000), \
10527 X(_ldr_sp,9800, f85d0000), \
10528 X(_lsl, 0000, fa00f000), \
10529 X(_lsls, 0000, fa10f000), \
10530 X(_lsr, 0800, fa20f000), \
10531 X(_lsrs, 0800, fa30f000), \
10532 X(_mov, 2000, ea4f0000), \
10533 X(_movs, 2000, ea5f0000), \
10534 X(_mul, 4340, fb00f000), \
10535 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10536 X(_mvn, 43c0, ea6f0000), \
10537 X(_mvns, 43c0, ea7f0000), \
10538 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10539 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10540 X(_orr, 4300, ea400000), \
10541 X(_orrs, 4300, ea500000), \
10542 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10543 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10544 X(_rev, ba00, fa90f080), \
10545 X(_rev16, ba40, fa90f090), \
10546 X(_revsh, bac0, fa90f0b0), \
10547 X(_ror, 41c0, fa60f000), \
10548 X(_rors, 41c0, fa70f000), \
10549 X(_sbc, 4180, eb600000), \
10550 X(_sbcs, 4180, eb700000), \
10551 X(_stmia, c000, e8800000), \
10552 X(_str, 6000, f8400000), \
10553 X(_strb, 7000, f8000000), \
10554 X(_strh, 8000, f8200000), \
10555 X(_str_sp,9000, f84d0000), \
10556 X(_sub, 1e00, eba00000), \
10557 X(_subs, 1e00, ebb00000), \
10558 X(_subi, 8000, f1a00000), \
10559 X(_subis, 8000, f1b00000), \
10560 X(_sxtb, b240, fa4ff080), \
10561 X(_sxth, b200, fa0ff080), \
10562 X(_tst, 4200, ea100f00), \
10563 X(_uxtb, b2c0, fa5ff080), \
10564 X(_uxth, b280, fa1ff080), \
10565 X(_nop, bf00, f3af8000), \
10566 X(_yield, bf10, f3af8001), \
10567 X(_wfe, bf20, f3af8002), \
10568 X(_wfi, bf30, f3af8003), \
53c4b28b 10569 X(_sev, bf40, f3af8004), \
74db7efb
NC
10570 X(_sevl, bf50, f3af8005), \
10571 X(_udf, de00, f7f0a000)
c19d1205
ZW
10572
10573/* To catch errors in encoding functions, the codes are all offset by
10574 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10575 as 16-bit instructions. */
21d799b5 10576#define X(a,b,c) T_MNEM##a
c19d1205
ZW
10577enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10578#undef X
10579
10580#define X(a,b,c) 0x##b
10581static const unsigned short thumb_op16[] = { T16_32_TAB };
10582#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10583#undef X
10584
10585#define X(a,b,c) 0x##c
10586static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
10587#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10588#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
10589#undef X
10590#undef T16_32_TAB
10591
10592/* Thumb instruction encoders, in alphabetical order. */
10593
92e90b6e 10594/* ADDW or SUBW. */
c921be7d 10595
92e90b6e
PB
10596static void
10597do_t_add_sub_w (void)
10598{
10599 int Rd, Rn;
10600
10601 Rd = inst.operands[0].reg;
10602 Rn = inst.operands[1].reg;
10603
539d4391
NC
10604 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10605 is the SP-{plus,minus}-immediate form of the instruction. */
10606 if (Rn == REG_SP)
10607 constraint (Rd == REG_PC, BAD_PC);
10608 else
10609 reject_bad_reg (Rd);
fdfde340 10610
92e90b6e 10611 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 10612 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
10613}
10614
c19d1205 10615/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 10616 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
10617
10618static void
10619do_t_add_sub (void)
10620{
10621 int Rd, Rs, Rn;
10622
10623 Rd = inst.operands[0].reg;
10624 Rs = (inst.operands[1].present
10625 ? inst.operands[1].reg /* Rd, Rs, foo */
10626 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10627
e07e6e58
NC
10628 if (Rd == REG_PC)
10629 set_it_insn_type_last ();
10630
c19d1205
ZW
10631 if (unified_syntax)
10632 {
0110f2b8
PB
10633 bfd_boolean flags;
10634 bfd_boolean narrow;
10635 int opcode;
10636
10637 flags = (inst.instruction == T_MNEM_adds
10638 || inst.instruction == T_MNEM_subs);
10639 if (flags)
e07e6e58 10640 narrow = !in_it_block ();
0110f2b8 10641 else
e07e6e58 10642 narrow = in_it_block ();
c19d1205 10643 if (!inst.operands[2].isreg)
b99bd4ef 10644 {
16805f35
PB
10645 int add;
10646
5c8ed6a4
JW
10647 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10648 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 10649
16805f35
PB
10650 add = (inst.instruction == T_MNEM_add
10651 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
10652 opcode = 0;
10653 if (inst.size_req != 4)
10654 {
0110f2b8 10655 /* Attempt to use a narrow opcode, with relaxation if
477330fc 10656 appropriate. */
0110f2b8
PB
10657 if (Rd == REG_SP && Rs == REG_SP && !flags)
10658 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10659 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10660 opcode = T_MNEM_add_sp;
10661 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10662 opcode = T_MNEM_add_pc;
10663 else if (Rd <= 7 && Rs <= 7 && narrow)
10664 {
10665 if (flags)
10666 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10667 else
10668 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10669 }
10670 if (opcode)
10671 {
10672 inst.instruction = THUMB_OP16(opcode);
10673 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
10674 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10675 || (inst.relocs[0].type
10676 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
10677 {
10678 if (inst.size_req == 2)
e2b0ab59 10679 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
10680 else
10681 inst.relax = opcode;
10682 }
0110f2b8
PB
10683 }
10684 else
10685 constraint (inst.size_req == 2, BAD_HIREG);
10686 }
10687 if (inst.size_req == 4
10688 || (inst.size_req != 2 && !opcode))
10689 {
e2b0ab59
AV
10690 constraint ((inst.relocs[0].type
10691 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
10692 && (inst.relocs[0].type
10693 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 10694 THUMB1_RELOC_ONLY);
efd81785
PB
10695 if (Rd == REG_PC)
10696 {
fdfde340 10697 constraint (add, BAD_PC);
efd81785
PB
10698 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10699 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 10700 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 10701 _("expression too complex"));
e2b0ab59
AV
10702 constraint (inst.relocs[0].exp.X_add_number < 0
10703 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
10704 _("immediate value out of range"));
10705 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
10706 | inst.relocs[0].exp.X_add_number;
10707 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
10708 return;
10709 }
10710 else if (Rs == REG_PC)
16805f35
PB
10711 {
10712 /* Always use addw/subw. */
10713 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 10714 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
10715 }
10716 else
10717 {
10718 inst.instruction = THUMB_OP32 (inst.instruction);
10719 inst.instruction = (inst.instruction & 0xe1ffffff)
10720 | 0x10000000;
10721 if (flags)
e2b0ab59 10722 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 10723 else
e2b0ab59 10724 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 10725 }
dc4503c6
PB
10726 inst.instruction |= Rd << 8;
10727 inst.instruction |= Rs << 16;
0110f2b8 10728 }
b99bd4ef 10729 }
c19d1205
ZW
10730 else
10731 {
e2b0ab59 10732 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
10733 unsigned int shift = inst.operands[2].shift_kind;
10734
c19d1205
ZW
10735 Rn = inst.operands[2].reg;
10736 /* See if we can do this with a 16-bit instruction. */
10737 if (!inst.operands[2].shifted && inst.size_req != 4)
10738 {
e27ec89e
PB
10739 if (Rd > 7 || Rs > 7 || Rn > 7)
10740 narrow = FALSE;
10741
10742 if (narrow)
c19d1205 10743 {
e27ec89e
PB
10744 inst.instruction = ((inst.instruction == T_MNEM_adds
10745 || inst.instruction == T_MNEM_add)
c19d1205
ZW
10746 ? T_OPCODE_ADD_R3
10747 : T_OPCODE_SUB_R3);
10748 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10749 return;
10750 }
b99bd4ef 10751
7e806470 10752 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 10753 {
7e806470
PB
10754 /* Thumb-1 cores (except v6-M) require at least one high
10755 register in a narrow non flag setting add. */
10756 if (Rd > 7 || Rn > 7
10757 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10758 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 10759 {
7e806470
PB
10760 if (Rd == Rn)
10761 {
10762 Rn = Rs;
10763 Rs = Rd;
10764 }
c19d1205
ZW
10765 inst.instruction = T_OPCODE_ADD_HI;
10766 inst.instruction |= (Rd & 8) << 4;
10767 inst.instruction |= (Rd & 7);
10768 inst.instruction |= Rn << 3;
10769 return;
10770 }
c19d1205
ZW
10771 }
10772 }
c921be7d 10773
fdfde340 10774 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
10775 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10776 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
10777 constraint (Rs == REG_PC, BAD_PC);
10778 reject_bad_reg (Rn);
10779
c19d1205
ZW
10780 /* If we get here, it can't be done in 16 bits. */
10781 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10782 _("shift must be constant"));
10783 inst.instruction = THUMB_OP32 (inst.instruction);
10784 inst.instruction |= Rd << 8;
10785 inst.instruction |= Rs << 16;
5f4cb198
NC
10786 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10787 _("shift value over 3 not allowed in thumb mode"));
10788 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10789 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
10790 encode_thumb32_shifted_operand (2);
10791 }
10792 }
10793 else
10794 {
10795 constraint (inst.instruction == T_MNEM_adds
10796 || inst.instruction == T_MNEM_subs,
10797 BAD_THUMB32);
b99bd4ef 10798
c19d1205 10799 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 10800 {
c19d1205
ZW
10801 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10802 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10803 BAD_HIREG);
10804
10805 inst.instruction = (inst.instruction == T_MNEM_add
10806 ? 0x0000 : 0x8000);
10807 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 10808 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
10809 return;
10810 }
10811
c19d1205
ZW
10812 Rn = inst.operands[2].reg;
10813 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 10814
c19d1205
ZW
10815 /* We now have Rd, Rs, and Rn set to registers. */
10816 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 10817 {
c19d1205
ZW
10818 /* Can't do this for SUB. */
10819 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10820 inst.instruction = T_OPCODE_ADD_HI;
10821 inst.instruction |= (Rd & 8) << 4;
10822 inst.instruction |= (Rd & 7);
10823 if (Rs == Rd)
10824 inst.instruction |= Rn << 3;
10825 else if (Rn == Rd)
10826 inst.instruction |= Rs << 3;
10827 else
10828 constraint (1, _("dest must overlap one source register"));
10829 }
10830 else
10831 {
10832 inst.instruction = (inst.instruction == T_MNEM_add
10833 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10834 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 10835 }
b99bd4ef 10836 }
b99bd4ef
NC
10837}
10838
c19d1205
ZW
10839static void
10840do_t_adr (void)
10841{
fdfde340
JM
10842 unsigned Rd;
10843
10844 Rd = inst.operands[0].reg;
10845 reject_bad_reg (Rd);
10846
10847 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
10848 {
10849 /* Defer to section relaxation. */
10850 inst.relax = inst.instruction;
10851 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10852 inst.instruction |= Rd << 4;
0110f2b8
PB
10853 }
10854 else if (unified_syntax && inst.size_req != 2)
e9f89963 10855 {
0110f2b8 10856 /* Generate a 32-bit opcode. */
e9f89963 10857 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10858 inst.instruction |= Rd << 8;
e2b0ab59
AV
10859 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
10860 inst.relocs[0].pc_rel = 1;
e9f89963
PB
10861 }
10862 else
10863 {
0110f2b8 10864 /* Generate a 16-bit opcode. */
e9f89963 10865 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
10866 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10867 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
10868 inst.relocs[0].pc_rel = 1;
fdfde340 10869 inst.instruction |= Rd << 4;
e9f89963 10870 }
52a86f84 10871
e2b0ab59
AV
10872 if (inst.relocs[0].exp.X_op == O_symbol
10873 && inst.relocs[0].exp.X_add_symbol != NULL
10874 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
10875 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
10876 inst.relocs[0].exp.X_add_number += 1;
c19d1205 10877}
b99bd4ef 10878
c19d1205
ZW
10879/* Arithmetic instructions for which there is just one 16-bit
10880 instruction encoding, and it allows only two low registers.
10881 For maximal compatibility with ARM syntax, we allow three register
10882 operands even when Thumb-32 instructions are not available, as long
10883 as the first two are identical. For instance, both "sbc r0,r1" and
10884 "sbc r0,r0,r1" are allowed. */
b99bd4ef 10885static void
c19d1205 10886do_t_arit3 (void)
b99bd4ef 10887{
c19d1205 10888 int Rd, Rs, Rn;
b99bd4ef 10889
c19d1205
ZW
10890 Rd = inst.operands[0].reg;
10891 Rs = (inst.operands[1].present
10892 ? inst.operands[1].reg /* Rd, Rs, foo */
10893 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10894 Rn = inst.operands[2].reg;
b99bd4ef 10895
fdfde340
JM
10896 reject_bad_reg (Rd);
10897 reject_bad_reg (Rs);
10898 if (inst.operands[2].isreg)
10899 reject_bad_reg (Rn);
10900
c19d1205 10901 if (unified_syntax)
b99bd4ef 10902 {
c19d1205
ZW
10903 if (!inst.operands[2].isreg)
10904 {
10905 /* For an immediate, we always generate a 32-bit opcode;
10906 section relaxation will shrink it later if possible. */
10907 inst.instruction = THUMB_OP32 (inst.instruction);
10908 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10909 inst.instruction |= Rd << 8;
10910 inst.instruction |= Rs << 16;
e2b0ab59 10911 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
10912 }
10913 else
10914 {
e27ec89e
PB
10915 bfd_boolean narrow;
10916
c19d1205 10917 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10918 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10919 narrow = !in_it_block ();
e27ec89e 10920 else
e07e6e58 10921 narrow = in_it_block ();
e27ec89e
PB
10922
10923 if (Rd > 7 || Rn > 7 || Rs > 7)
10924 narrow = FALSE;
10925 if (inst.operands[2].shifted)
10926 narrow = FALSE;
10927 if (inst.size_req == 4)
10928 narrow = FALSE;
10929
10930 if (narrow
c19d1205
ZW
10931 && Rd == Rs)
10932 {
10933 inst.instruction = THUMB_OP16 (inst.instruction);
10934 inst.instruction |= Rd;
10935 inst.instruction |= Rn << 3;
10936 return;
10937 }
b99bd4ef 10938
c19d1205
ZW
10939 /* If we get here, it can't be done in 16 bits. */
10940 constraint (inst.operands[2].shifted
10941 && inst.operands[2].immisreg,
10942 _("shift must be constant"));
10943 inst.instruction = THUMB_OP32 (inst.instruction);
10944 inst.instruction |= Rd << 8;
10945 inst.instruction |= Rs << 16;
10946 encode_thumb32_shifted_operand (2);
10947 }
a737bd4d 10948 }
c19d1205 10949 else
b99bd4ef 10950 {
c19d1205
ZW
10951 /* On its face this is a lie - the instruction does set the
10952 flags. However, the only supported mnemonic in this mode
10953 says it doesn't. */
10954 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10955
c19d1205
ZW
10956 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10957 _("unshifted register required"));
10958 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10959 constraint (Rd != Rs,
10960 _("dest and source1 must be the same register"));
a737bd4d 10961
c19d1205
ZW
10962 inst.instruction = THUMB_OP16 (inst.instruction);
10963 inst.instruction |= Rd;
10964 inst.instruction |= Rn << 3;
b99bd4ef 10965 }
a737bd4d 10966}
b99bd4ef 10967
c19d1205
ZW
10968/* Similarly, but for instructions where the arithmetic operation is
10969 commutative, so we can allow either of them to be different from
10970 the destination operand in a 16-bit instruction. For instance, all
10971 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10972 accepted. */
10973static void
10974do_t_arit3c (void)
a737bd4d 10975{
c19d1205 10976 int Rd, Rs, Rn;
b99bd4ef 10977
c19d1205
ZW
10978 Rd = inst.operands[0].reg;
10979 Rs = (inst.operands[1].present
10980 ? inst.operands[1].reg /* Rd, Rs, foo */
10981 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10982 Rn = inst.operands[2].reg;
c921be7d 10983
fdfde340
JM
10984 reject_bad_reg (Rd);
10985 reject_bad_reg (Rs);
10986 if (inst.operands[2].isreg)
10987 reject_bad_reg (Rn);
a737bd4d 10988
c19d1205 10989 if (unified_syntax)
a737bd4d 10990 {
c19d1205 10991 if (!inst.operands[2].isreg)
b99bd4ef 10992 {
c19d1205
ZW
10993 /* For an immediate, we always generate a 32-bit opcode;
10994 section relaxation will shrink it later if possible. */
10995 inst.instruction = THUMB_OP32 (inst.instruction);
10996 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10997 inst.instruction |= Rd << 8;
10998 inst.instruction |= Rs << 16;
e2b0ab59 10999 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11000 }
c19d1205 11001 else
a737bd4d 11002 {
e27ec89e
PB
11003 bfd_boolean narrow;
11004
c19d1205 11005 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11006 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11007 narrow = !in_it_block ();
e27ec89e 11008 else
e07e6e58 11009 narrow = in_it_block ();
e27ec89e
PB
11010
11011 if (Rd > 7 || Rn > 7 || Rs > 7)
11012 narrow = FALSE;
11013 if (inst.operands[2].shifted)
11014 narrow = FALSE;
11015 if (inst.size_req == 4)
11016 narrow = FALSE;
11017
11018 if (narrow)
a737bd4d 11019 {
c19d1205 11020 if (Rd == Rs)
a737bd4d 11021 {
c19d1205
ZW
11022 inst.instruction = THUMB_OP16 (inst.instruction);
11023 inst.instruction |= Rd;
11024 inst.instruction |= Rn << 3;
11025 return;
a737bd4d 11026 }
c19d1205 11027 if (Rd == Rn)
a737bd4d 11028 {
c19d1205
ZW
11029 inst.instruction = THUMB_OP16 (inst.instruction);
11030 inst.instruction |= Rd;
11031 inst.instruction |= Rs << 3;
11032 return;
a737bd4d
NC
11033 }
11034 }
c19d1205
ZW
11035
11036 /* If we get here, it can't be done in 16 bits. */
11037 constraint (inst.operands[2].shifted
11038 && inst.operands[2].immisreg,
11039 _("shift must be constant"));
11040 inst.instruction = THUMB_OP32 (inst.instruction);
11041 inst.instruction |= Rd << 8;
11042 inst.instruction |= Rs << 16;
11043 encode_thumb32_shifted_operand (2);
a737bd4d 11044 }
b99bd4ef 11045 }
c19d1205
ZW
11046 else
11047 {
11048 /* On its face this is a lie - the instruction does set the
11049 flags. However, the only supported mnemonic in this mode
11050 says it doesn't. */
11051 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11052
c19d1205
ZW
11053 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11054 _("unshifted register required"));
11055 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11056
11057 inst.instruction = THUMB_OP16 (inst.instruction);
11058 inst.instruction |= Rd;
11059
11060 if (Rd == Rs)
11061 inst.instruction |= Rn << 3;
11062 else if (Rd == Rn)
11063 inst.instruction |= Rs << 3;
11064 else
11065 constraint (1, _("dest must overlap one source register"));
11066 }
a737bd4d
NC
11067}
11068
c19d1205
ZW
11069static void
11070do_t_bfc (void)
a737bd4d 11071{
fdfde340 11072 unsigned Rd;
c19d1205
ZW
11073 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11074 constraint (msb > 32, _("bit-field extends past end of register"));
11075 /* The instruction encoding stores the LSB and MSB,
11076 not the LSB and width. */
fdfde340
JM
11077 Rd = inst.operands[0].reg;
11078 reject_bad_reg (Rd);
11079 inst.instruction |= Rd << 8;
c19d1205
ZW
11080 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11081 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11082 inst.instruction |= msb - 1;
b99bd4ef
NC
11083}
11084
c19d1205
ZW
11085static void
11086do_t_bfi (void)
b99bd4ef 11087{
fdfde340 11088 int Rd, Rn;
c19d1205 11089 unsigned int msb;
b99bd4ef 11090
fdfde340
JM
11091 Rd = inst.operands[0].reg;
11092 reject_bad_reg (Rd);
11093
c19d1205
ZW
11094 /* #0 in second position is alternative syntax for bfc, which is
11095 the same instruction but with REG_PC in the Rm field. */
11096 if (!inst.operands[1].isreg)
fdfde340
JM
11097 Rn = REG_PC;
11098 else
11099 {
11100 Rn = inst.operands[1].reg;
11101 reject_bad_reg (Rn);
11102 }
b99bd4ef 11103
c19d1205
ZW
11104 msb = inst.operands[2].imm + inst.operands[3].imm;
11105 constraint (msb > 32, _("bit-field extends past end of register"));
11106 /* The instruction encoding stores the LSB and MSB,
11107 not the LSB and width. */
fdfde340
JM
11108 inst.instruction |= Rd << 8;
11109 inst.instruction |= Rn << 16;
c19d1205
ZW
11110 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11111 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11112 inst.instruction |= msb - 1;
b99bd4ef
NC
11113}
11114
c19d1205
ZW
11115static void
11116do_t_bfx (void)
b99bd4ef 11117{
fdfde340
JM
11118 unsigned Rd, Rn;
11119
11120 Rd = inst.operands[0].reg;
11121 Rn = inst.operands[1].reg;
11122
11123 reject_bad_reg (Rd);
11124 reject_bad_reg (Rn);
11125
c19d1205
ZW
11126 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11127 _("bit-field extends past end of register"));
fdfde340
JM
11128 inst.instruction |= Rd << 8;
11129 inst.instruction |= Rn << 16;
c19d1205
ZW
11130 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11131 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11132 inst.instruction |= inst.operands[3].imm - 1;
11133}
b99bd4ef 11134
c19d1205
ZW
11135/* ARM V5 Thumb BLX (argument parse)
11136 BLX <target_addr> which is BLX(1)
11137 BLX <Rm> which is BLX(2)
11138 Unfortunately, there are two different opcodes for this mnemonic.
11139 So, the insns[].value is not used, and the code here zaps values
11140 into inst.instruction.
b99bd4ef 11141
c19d1205
ZW
11142 ??? How to take advantage of the additional two bits of displacement
11143 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11144
c19d1205
ZW
11145static void
11146do_t_blx (void)
11147{
e07e6e58
NC
11148 set_it_insn_type_last ();
11149
c19d1205 11150 if (inst.operands[0].isreg)
fdfde340
JM
11151 {
11152 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11153 /* We have a register, so this is BLX(2). */
11154 inst.instruction |= inst.operands[0].reg << 3;
11155 }
b99bd4ef
NC
11156 else
11157 {
c19d1205 11158 /* No register. This must be BLX(1). */
2fc8bdac 11159 inst.instruction = 0xf000e800;
0855e32b 11160 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11161 }
11162}
11163
c19d1205
ZW
11164static void
11165do_t_branch (void)
b99bd4ef 11166{
0110f2b8 11167 int opcode;
dfa9f0d5 11168 int cond;
2fe88214 11169 bfd_reloc_code_real_type reloc;
dfa9f0d5 11170
e07e6e58
NC
11171 cond = inst.cond;
11172 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11173
11174 if (in_it_block ())
dfa9f0d5
PB
11175 {
11176 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11177 branches. */
dfa9f0d5 11178 cond = COND_ALWAYS;
dfa9f0d5
PB
11179 }
11180 else
11181 cond = inst.cond;
11182
11183 if (cond != COND_ALWAYS)
0110f2b8
PB
11184 opcode = T_MNEM_bcond;
11185 else
11186 opcode = inst.instruction;
11187
12d6b0b7
RS
11188 if (unified_syntax
11189 && (inst.size_req == 4
10960bfb
PB
11190 || (inst.size_req != 2
11191 && (inst.operands[0].hasreloc
e2b0ab59 11192 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11193 {
0110f2b8 11194 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11195 if (cond == COND_ALWAYS)
9ae92b05 11196 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11197 else
11198 {
ff8646ee
TP
11199 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11200 _("selected architecture does not support "
11201 "wide conditional branch instruction"));
11202
9c2799c2 11203 gas_assert (cond != 0xF);
dfa9f0d5 11204 inst.instruction |= cond << 22;
9ae92b05 11205 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11206 }
11207 }
b99bd4ef
NC
11208 else
11209 {
0110f2b8 11210 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11211 if (cond == COND_ALWAYS)
9ae92b05 11212 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11213 else
b99bd4ef 11214 {
dfa9f0d5 11215 inst.instruction |= cond << 8;
9ae92b05 11216 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11217 }
0110f2b8
PB
11218 /* Allow section relaxation. */
11219 if (unified_syntax && inst.size_req != 2)
11220 inst.relax = opcode;
b99bd4ef 11221 }
e2b0ab59
AV
11222 inst.relocs[0].type = reloc;
11223 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11224}
11225
8884b720 11226/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11227 between the two is the maximum immediate allowed - which is passed in
8884b720 11228 RANGE. */
b99bd4ef 11229static void
8884b720 11230do_t_bkpt_hlt1 (int range)
b99bd4ef 11231{
dfa9f0d5
PB
11232 constraint (inst.cond != COND_ALWAYS,
11233 _("instruction is always unconditional"));
c19d1205 11234 if (inst.operands[0].present)
b99bd4ef 11235 {
8884b720 11236 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11237 _("immediate value out of range"));
11238 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11239 }
8884b720
MGD
11240
11241 set_it_insn_type (NEUTRAL_IT_INSN);
11242}
11243
11244static void
11245do_t_hlt (void)
11246{
11247 do_t_bkpt_hlt1 (63);
11248}
11249
11250static void
11251do_t_bkpt (void)
11252{
11253 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11254}
11255
11256static void
c19d1205 11257do_t_branch23 (void)
b99bd4ef 11258{
e07e6e58 11259 set_it_insn_type_last ();
0855e32b 11260 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11261
0855e32b
NS
11262 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11263 this file. We used to simply ignore the PLT reloc type here --
11264 the branch encoding is now needed to deal with TLSCALL relocs.
11265 So if we see a PLT reloc now, put it back to how it used to be to
11266 keep the preexisting behaviour. */
e2b0ab59
AV
11267 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11268 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11269
4343666d 11270#if defined(OBJ_COFF)
c19d1205
ZW
11271 /* If the destination of the branch is a defined symbol which does not have
11272 the THUMB_FUNC attribute, then we must be calling a function which has
11273 the (interfacearm) attribute. We look for the Thumb entry point to that
11274 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11275 if ( inst.relocs[0].exp.X_op == O_symbol
11276 && inst.relocs[0].exp.X_add_symbol != NULL
11277 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11278 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11279 inst.relocs[0].exp.X_add_symbol
11280 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11281#endif
90e4755a
RE
11282}
11283
11284static void
c19d1205 11285do_t_bx (void)
90e4755a 11286{
e07e6e58 11287 set_it_insn_type_last ();
c19d1205
ZW
11288 inst.instruction |= inst.operands[0].reg << 3;
11289 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11290 should cause the alignment to be checked once it is known. This is
11291 because BX PC only works if the instruction is word aligned. */
11292}
90e4755a 11293
c19d1205
ZW
11294static void
11295do_t_bxj (void)
11296{
fdfde340 11297 int Rm;
90e4755a 11298
e07e6e58 11299 set_it_insn_type_last ();
fdfde340
JM
11300 Rm = inst.operands[0].reg;
11301 reject_bad_reg (Rm);
11302 inst.instruction |= Rm << 16;
90e4755a
RE
11303}
11304
11305static void
c19d1205 11306do_t_clz (void)
90e4755a 11307{
fdfde340
JM
11308 unsigned Rd;
11309 unsigned Rm;
11310
11311 Rd = inst.operands[0].reg;
11312 Rm = inst.operands[1].reg;
11313
11314 reject_bad_reg (Rd);
11315 reject_bad_reg (Rm);
11316
11317 inst.instruction |= Rd << 8;
11318 inst.instruction |= Rm << 16;
11319 inst.instruction |= Rm;
c19d1205 11320}
90e4755a 11321
91d8b670
JG
11322static void
11323do_t_csdb (void)
11324{
11325 set_it_insn_type (OUTSIDE_IT_INSN);
11326}
11327
dfa9f0d5
PB
11328static void
11329do_t_cps (void)
11330{
e07e6e58 11331 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
11332 inst.instruction |= inst.operands[0].imm;
11333}
11334
c19d1205
ZW
11335static void
11336do_t_cpsi (void)
11337{
e07e6e58 11338 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 11339 if (unified_syntax
62b3e311
PB
11340 && (inst.operands[1].present || inst.size_req == 4)
11341 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11342 {
c19d1205
ZW
11343 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11344 inst.instruction = 0xf3af8000;
11345 inst.instruction |= imod << 9;
11346 inst.instruction |= inst.operands[0].imm << 5;
11347 if (inst.operands[1].present)
11348 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11349 }
c19d1205 11350 else
90e4755a 11351 {
62b3e311
PB
11352 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11353 && (inst.operands[0].imm & 4),
11354 _("selected processor does not support 'A' form "
11355 "of this instruction"));
11356 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11357 _("Thumb does not support the 2-argument "
11358 "form of this instruction"));
11359 inst.instruction |= inst.operands[0].imm;
90e4755a 11360 }
90e4755a
RE
11361}
11362
c19d1205
ZW
11363/* THUMB CPY instruction (argument parse). */
11364
90e4755a 11365static void
c19d1205 11366do_t_cpy (void)
90e4755a 11367{
c19d1205 11368 if (inst.size_req == 4)
90e4755a 11369 {
c19d1205
ZW
11370 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11371 inst.instruction |= inst.operands[0].reg << 8;
11372 inst.instruction |= inst.operands[1].reg;
90e4755a 11373 }
c19d1205 11374 else
90e4755a 11375 {
c19d1205
ZW
11376 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11377 inst.instruction |= (inst.operands[0].reg & 0x7);
11378 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11379 }
90e4755a
RE
11380}
11381
90e4755a 11382static void
25fe350b 11383do_t_cbz (void)
90e4755a 11384{
e07e6e58 11385 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11386 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11387 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
11388 inst.relocs[0].pc_rel = 1;
11389 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 11390}
90e4755a 11391
62b3e311
PB
11392static void
11393do_t_dbg (void)
11394{
11395 inst.instruction |= inst.operands[0].imm;
11396}
11397
11398static void
11399do_t_div (void)
11400{
fdfde340
JM
11401 unsigned Rd, Rn, Rm;
11402
11403 Rd = inst.operands[0].reg;
11404 Rn = (inst.operands[1].present
11405 ? inst.operands[1].reg : Rd);
11406 Rm = inst.operands[2].reg;
11407
11408 reject_bad_reg (Rd);
11409 reject_bad_reg (Rn);
11410 reject_bad_reg (Rm);
11411
11412 inst.instruction |= Rd << 8;
11413 inst.instruction |= Rn << 16;
11414 inst.instruction |= Rm;
62b3e311
PB
11415}
11416
c19d1205
ZW
11417static void
11418do_t_hint (void)
11419{
11420 if (unified_syntax && inst.size_req == 4)
11421 inst.instruction = THUMB_OP32 (inst.instruction);
11422 else
11423 inst.instruction = THUMB_OP16 (inst.instruction);
11424}
90e4755a 11425
c19d1205
ZW
11426static void
11427do_t_it (void)
11428{
11429 unsigned int cond = inst.operands[0].imm;
e27ec89e 11430
e07e6e58
NC
11431 set_it_insn_type (IT_INSN);
11432 now_it.mask = (inst.instruction & 0xf) | 0x10;
11433 now_it.cc = cond;
5a01bb1d 11434 now_it.warn_deprecated = FALSE;
e27ec89e
PB
11435
11436 /* If the condition is a negative condition, invert the mask. */
c19d1205 11437 if ((cond & 0x1) == 0x0)
90e4755a 11438 {
c19d1205 11439 unsigned int mask = inst.instruction & 0x000f;
90e4755a 11440
c19d1205 11441 if ((mask & 0x7) == 0)
5a01bb1d
MGD
11442 {
11443 /* No conversion needed. */
11444 now_it.block_length = 1;
11445 }
c19d1205 11446 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
11447 {
11448 mask ^= 0x8;
11449 now_it.block_length = 2;
11450 }
e27ec89e 11451 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
11452 {
11453 mask ^= 0xC;
11454 now_it.block_length = 3;
11455 }
c19d1205 11456 else
5a01bb1d
MGD
11457 {
11458 mask ^= 0xE;
11459 now_it.block_length = 4;
11460 }
90e4755a 11461
e27ec89e
PB
11462 inst.instruction &= 0xfff0;
11463 inst.instruction |= mask;
c19d1205 11464 }
90e4755a 11465
c19d1205
ZW
11466 inst.instruction |= cond << 4;
11467}
90e4755a 11468
3c707909
PB
11469/* Helper function used for both push/pop and ldm/stm. */
11470static void
11471encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11472{
11473 bfd_boolean load;
11474
11475 load = (inst.instruction & (1 << 20)) != 0;
11476
11477 if (mask & (1 << 13))
11478 inst.error = _("SP not allowed in register list");
1e5b0379
NC
11479
11480 if ((mask & (1 << base)) != 0
11481 && writeback)
11482 inst.error = _("having the base register in the register list when "
11483 "using write back is UNPREDICTABLE");
11484
3c707909
PB
11485 if (load)
11486 {
e07e6e58 11487 if (mask & (1 << 15))
477330fc
RM
11488 {
11489 if (mask & (1 << 14))
11490 inst.error = _("LR and PC should not both be in register list");
11491 else
11492 set_it_insn_type_last ();
11493 }
3c707909
PB
11494 }
11495 else
11496 {
11497 if (mask & (1 << 15))
11498 inst.error = _("PC not allowed in register list");
3c707909
PB
11499 }
11500
11501 if ((mask & (mask - 1)) == 0)
11502 {
11503 /* Single register transfers implemented as str/ldr. */
11504 if (writeback)
11505 {
11506 if (inst.instruction & (1 << 23))
11507 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11508 else
11509 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11510 }
11511 else
11512 {
11513 if (inst.instruction & (1 << 23))
11514 inst.instruction = 0x00800000; /* ia -> [base] */
11515 else
11516 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11517 }
11518
11519 inst.instruction |= 0xf8400000;
11520 if (load)
11521 inst.instruction |= 0x00100000;
11522
5f4273c7 11523 mask = ffs (mask) - 1;
3c707909
PB
11524 mask <<= 12;
11525 }
11526 else if (writeback)
11527 inst.instruction |= WRITE_BACK;
11528
11529 inst.instruction |= mask;
11530 inst.instruction |= base << 16;
11531}
11532
c19d1205
ZW
11533static void
11534do_t_ldmstm (void)
11535{
11536 /* This really doesn't seem worth it. */
e2b0ab59 11537 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
11538 _("expression too complex"));
11539 constraint (inst.operands[1].writeback,
11540 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 11541
c19d1205
ZW
11542 if (unified_syntax)
11543 {
3c707909
PB
11544 bfd_boolean narrow;
11545 unsigned mask;
11546
11547 narrow = FALSE;
c19d1205
ZW
11548 /* See if we can use a 16-bit instruction. */
11549 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11550 && inst.size_req != 4
3c707909 11551 && !(inst.operands[1].imm & ~0xff))
90e4755a 11552 {
3c707909 11553 mask = 1 << inst.operands[0].reg;
90e4755a 11554
eab4f823 11555 if (inst.operands[0].reg <= 7)
90e4755a 11556 {
3c707909 11557 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
11558 ? inst.operands[0].writeback
11559 : (inst.operands[0].writeback
11560 == !(inst.operands[1].imm & mask)))
477330fc 11561 {
eab4f823
MGD
11562 if (inst.instruction == T_MNEM_stmia
11563 && (inst.operands[1].imm & mask)
11564 && (inst.operands[1].imm & (mask - 1)))
11565 as_warn (_("value stored for r%d is UNKNOWN"),
11566 inst.operands[0].reg);
3c707909 11567
eab4f823
MGD
11568 inst.instruction = THUMB_OP16 (inst.instruction);
11569 inst.instruction |= inst.operands[0].reg << 8;
11570 inst.instruction |= inst.operands[1].imm;
11571 narrow = TRUE;
11572 }
11573 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11574 {
11575 /* This means 1 register in reg list one of 3 situations:
11576 1. Instruction is stmia, but without writeback.
11577 2. lmdia without writeback, but with Rn not in
477330fc 11578 reglist.
eab4f823
MGD
11579 3. ldmia with writeback, but with Rn in reglist.
11580 Case 3 is UNPREDICTABLE behaviour, so we handle
11581 case 1 and 2 which can be converted into a 16-bit
11582 str or ldr. The SP cases are handled below. */
11583 unsigned long opcode;
11584 /* First, record an error for Case 3. */
11585 if (inst.operands[1].imm & mask
11586 && inst.operands[0].writeback)
fa94de6b 11587 inst.error =
eab4f823
MGD
11588 _("having the base register in the register list when "
11589 "using write back is UNPREDICTABLE");
fa94de6b
RM
11590
11591 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
11592 : T_MNEM_ldr);
11593 inst.instruction = THUMB_OP16 (opcode);
11594 inst.instruction |= inst.operands[0].reg << 3;
11595 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11596 narrow = TRUE;
11597 }
90e4755a 11598 }
eab4f823 11599 else if (inst.operands[0] .reg == REG_SP)
90e4755a 11600 {
eab4f823
MGD
11601 if (inst.operands[0].writeback)
11602 {
fa94de6b 11603 inst.instruction =
eab4f823 11604 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11605 ? T_MNEM_push : T_MNEM_pop);
eab4f823 11606 inst.instruction |= inst.operands[1].imm;
477330fc 11607 narrow = TRUE;
eab4f823
MGD
11608 }
11609 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11610 {
fa94de6b 11611 inst.instruction =
eab4f823 11612 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11613 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 11614 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 11615 narrow = TRUE;
eab4f823 11616 }
90e4755a 11617 }
3c707909
PB
11618 }
11619
11620 if (!narrow)
11621 {
c19d1205
ZW
11622 if (inst.instruction < 0xffff)
11623 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 11624
5f4273c7
NC
11625 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11626 inst.operands[0].writeback);
90e4755a
RE
11627 }
11628 }
c19d1205 11629 else
90e4755a 11630 {
c19d1205
ZW
11631 constraint (inst.operands[0].reg > 7
11632 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
11633 constraint (inst.instruction != T_MNEM_ldmia
11634 && inst.instruction != T_MNEM_stmia,
11635 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 11636 if (inst.instruction == T_MNEM_stmia)
f03698e6 11637 {
c19d1205
ZW
11638 if (!inst.operands[0].writeback)
11639 as_warn (_("this instruction will write back the base register"));
11640 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11641 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 11642 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 11643 inst.operands[0].reg);
f03698e6 11644 }
c19d1205 11645 else
90e4755a 11646 {
c19d1205
ZW
11647 if (!inst.operands[0].writeback
11648 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11649 as_warn (_("this instruction will write back the base register"));
11650 else if (inst.operands[0].writeback
11651 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11652 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
11653 }
11654
c19d1205
ZW
11655 inst.instruction = THUMB_OP16 (inst.instruction);
11656 inst.instruction |= inst.operands[0].reg << 8;
11657 inst.instruction |= inst.operands[1].imm;
11658 }
11659}
e28cd48c 11660
c19d1205
ZW
11661static void
11662do_t_ldrex (void)
11663{
11664 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11665 || inst.operands[1].postind || inst.operands[1].writeback
11666 || inst.operands[1].immisreg || inst.operands[1].shifted
11667 || inst.operands[1].negative,
01cfc07f 11668 BAD_ADDR_MODE);
e28cd48c 11669
5be8be5d
DG
11670 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11671
c19d1205
ZW
11672 inst.instruction |= inst.operands[0].reg << 12;
11673 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 11674 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 11675}
e28cd48c 11676
c19d1205
ZW
11677static void
11678do_t_ldrexd (void)
11679{
11680 if (!inst.operands[1].present)
1cac9012 11681 {
c19d1205
ZW
11682 constraint (inst.operands[0].reg == REG_LR,
11683 _("r14 not allowed as first register "
11684 "when second register is omitted"));
11685 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 11686 }
c19d1205
ZW
11687 constraint (inst.operands[0].reg == inst.operands[1].reg,
11688 BAD_OVERLAP);
b99bd4ef 11689
c19d1205
ZW
11690 inst.instruction |= inst.operands[0].reg << 12;
11691 inst.instruction |= inst.operands[1].reg << 8;
11692 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11693}
11694
11695static void
c19d1205 11696do_t_ldst (void)
b99bd4ef 11697{
0110f2b8
PB
11698 unsigned long opcode;
11699 int Rn;
11700
e07e6e58
NC
11701 if (inst.operands[0].isreg
11702 && !inst.operands[0].preind
11703 && inst.operands[0].reg == REG_PC)
11704 set_it_insn_type_last ();
11705
0110f2b8 11706 opcode = inst.instruction;
c19d1205 11707 if (unified_syntax)
b99bd4ef 11708 {
53365c0d
PB
11709 if (!inst.operands[1].isreg)
11710 {
11711 if (opcode <= 0xffff)
11712 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 11713 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
11714 return;
11715 }
0110f2b8
PB
11716 if (inst.operands[1].isreg
11717 && !inst.operands[1].writeback
c19d1205
ZW
11718 && !inst.operands[1].shifted && !inst.operands[1].postind
11719 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
11720 && opcode <= 0xffff
11721 && inst.size_req != 4)
c19d1205 11722 {
0110f2b8
PB
11723 /* Insn may have a 16-bit form. */
11724 Rn = inst.operands[1].reg;
11725 if (inst.operands[1].immisreg)
11726 {
11727 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 11728 /* [Rn, Rik] */
0110f2b8
PB
11729 if (Rn <= 7 && inst.operands[1].imm <= 7)
11730 goto op16;
5be8be5d
DG
11731 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11732 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
11733 }
11734 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11735 && opcode != T_MNEM_ldrsb)
11736 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11737 || (Rn == REG_SP && opcode == T_MNEM_str))
11738 {
11739 /* [Rn, #const] */
11740 if (Rn > 7)
11741 {
11742 if (Rn == REG_PC)
11743 {
e2b0ab59 11744 if (inst.relocs[0].pc_rel)
0110f2b8
PB
11745 opcode = T_MNEM_ldr_pc2;
11746 else
11747 opcode = T_MNEM_ldr_pc;
11748 }
11749 else
11750 {
11751 if (opcode == T_MNEM_ldr)
11752 opcode = T_MNEM_ldr_sp;
11753 else
11754 opcode = T_MNEM_str_sp;
11755 }
11756 inst.instruction = inst.operands[0].reg << 8;
11757 }
11758 else
11759 {
11760 inst.instruction = inst.operands[0].reg;
11761 inst.instruction |= inst.operands[1].reg << 3;
11762 }
11763 inst.instruction |= THUMB_OP16 (opcode);
11764 if (inst.size_req == 2)
e2b0ab59 11765 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
11766 else
11767 inst.relax = opcode;
11768 return;
11769 }
c19d1205 11770 }
0110f2b8 11771 /* Definitely a 32-bit variant. */
5be8be5d 11772
8d67f500
NC
11773 /* Warning for Erratum 752419. */
11774 if (opcode == T_MNEM_ldr
11775 && inst.operands[0].reg == REG_SP
11776 && inst.operands[1].writeback == 1
11777 && !inst.operands[1].immisreg)
11778 {
11779 if (no_cpu_selected ()
11780 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
11781 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11782 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
11783 as_warn (_("This instruction may be unpredictable "
11784 "if executed on M-profile cores "
11785 "with interrupts enabled."));
11786 }
11787
5be8be5d 11788 /* Do some validations regarding addressing modes. */
1be5fd2e 11789 if (inst.operands[1].immisreg)
5be8be5d
DG
11790 reject_bad_reg (inst.operands[1].imm);
11791
1be5fd2e
NC
11792 constraint (inst.operands[1].writeback == 1
11793 && inst.operands[0].reg == inst.operands[1].reg,
11794 BAD_OVERLAP);
11795
0110f2b8 11796 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
11797 inst.instruction |= inst.operands[0].reg << 12;
11798 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 11799 check_ldr_r15_aligned ();
b99bd4ef
NC
11800 return;
11801 }
11802
c19d1205
ZW
11803 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11804
11805 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 11806 {
c19d1205
ZW
11807 /* Only [Rn,Rm] is acceptable. */
11808 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11809 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11810 || inst.operands[1].postind || inst.operands[1].shifted
11811 || inst.operands[1].negative,
11812 _("Thumb does not support this addressing mode"));
11813 inst.instruction = THUMB_OP16 (inst.instruction);
11814 goto op16;
b99bd4ef 11815 }
5f4273c7 11816
c19d1205
ZW
11817 inst.instruction = THUMB_OP16 (inst.instruction);
11818 if (!inst.operands[1].isreg)
8335d6aa 11819 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 11820 return;
b99bd4ef 11821
c19d1205
ZW
11822 constraint (!inst.operands[1].preind
11823 || inst.operands[1].shifted
11824 || inst.operands[1].writeback,
11825 _("Thumb does not support this addressing mode"));
11826 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 11827 {
c19d1205
ZW
11828 constraint (inst.instruction & 0x0600,
11829 _("byte or halfword not valid for base register"));
11830 constraint (inst.operands[1].reg == REG_PC
11831 && !(inst.instruction & THUMB_LOAD_BIT),
11832 _("r15 based store not allowed"));
11833 constraint (inst.operands[1].immisreg,
11834 _("invalid base register for register offset"));
b99bd4ef 11835
c19d1205
ZW
11836 if (inst.operands[1].reg == REG_PC)
11837 inst.instruction = T_OPCODE_LDR_PC;
11838 else if (inst.instruction & THUMB_LOAD_BIT)
11839 inst.instruction = T_OPCODE_LDR_SP;
11840 else
11841 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 11842
c19d1205 11843 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 11844 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
11845 return;
11846 }
90e4755a 11847
c19d1205
ZW
11848 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11849 if (!inst.operands[1].immisreg)
11850 {
11851 /* Immediate offset. */
11852 inst.instruction |= inst.operands[0].reg;
11853 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 11854 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
11855 return;
11856 }
90e4755a 11857
c19d1205
ZW
11858 /* Register offset. */
11859 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11860 constraint (inst.operands[1].negative,
11861 _("Thumb does not support this addressing mode"));
90e4755a 11862
c19d1205
ZW
11863 op16:
11864 switch (inst.instruction)
11865 {
11866 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11867 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11868 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11869 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11870 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11871 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11872 case 0x5600 /* ldrsb */:
11873 case 0x5e00 /* ldrsh */: break;
11874 default: abort ();
11875 }
90e4755a 11876
c19d1205
ZW
11877 inst.instruction |= inst.operands[0].reg;
11878 inst.instruction |= inst.operands[1].reg << 3;
11879 inst.instruction |= inst.operands[1].imm << 6;
11880}
90e4755a 11881
c19d1205
ZW
11882static void
11883do_t_ldstd (void)
11884{
11885 if (!inst.operands[1].present)
b99bd4ef 11886 {
c19d1205
ZW
11887 inst.operands[1].reg = inst.operands[0].reg + 1;
11888 constraint (inst.operands[0].reg == REG_LR,
11889 _("r14 not allowed here"));
bd340a04 11890 constraint (inst.operands[0].reg == REG_R12,
477330fc 11891 _("r12 not allowed here"));
b99bd4ef 11892 }
bd340a04
MGD
11893
11894 if (inst.operands[2].writeback
11895 && (inst.operands[0].reg == inst.operands[2].reg
11896 || inst.operands[1].reg == inst.operands[2].reg))
11897 as_warn (_("base register written back, and overlaps "
477330fc 11898 "one of transfer registers"));
bd340a04 11899
c19d1205
ZW
11900 inst.instruction |= inst.operands[0].reg << 12;
11901 inst.instruction |= inst.operands[1].reg << 8;
11902 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
11903}
11904
c19d1205
ZW
11905static void
11906do_t_ldstt (void)
11907{
11908 inst.instruction |= inst.operands[0].reg << 12;
11909 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11910}
a737bd4d 11911
b99bd4ef 11912static void
c19d1205 11913do_t_mla (void)
b99bd4ef 11914{
fdfde340 11915 unsigned Rd, Rn, Rm, Ra;
c921be7d 11916
fdfde340
JM
11917 Rd = inst.operands[0].reg;
11918 Rn = inst.operands[1].reg;
11919 Rm = inst.operands[2].reg;
11920 Ra = inst.operands[3].reg;
11921
11922 reject_bad_reg (Rd);
11923 reject_bad_reg (Rn);
11924 reject_bad_reg (Rm);
11925 reject_bad_reg (Ra);
11926
11927 inst.instruction |= Rd << 8;
11928 inst.instruction |= Rn << 16;
11929 inst.instruction |= Rm;
11930 inst.instruction |= Ra << 12;
c19d1205 11931}
b99bd4ef 11932
c19d1205
ZW
11933static void
11934do_t_mlal (void)
11935{
fdfde340
JM
11936 unsigned RdLo, RdHi, Rn, Rm;
11937
11938 RdLo = inst.operands[0].reg;
11939 RdHi = inst.operands[1].reg;
11940 Rn = inst.operands[2].reg;
11941 Rm = inst.operands[3].reg;
11942
11943 reject_bad_reg (RdLo);
11944 reject_bad_reg (RdHi);
11945 reject_bad_reg (Rn);
11946 reject_bad_reg (Rm);
11947
11948 inst.instruction |= RdLo << 12;
11949 inst.instruction |= RdHi << 8;
11950 inst.instruction |= Rn << 16;
11951 inst.instruction |= Rm;
c19d1205 11952}
b99bd4ef 11953
c19d1205
ZW
11954static void
11955do_t_mov_cmp (void)
11956{
fdfde340
JM
11957 unsigned Rn, Rm;
11958
11959 Rn = inst.operands[0].reg;
11960 Rm = inst.operands[1].reg;
11961
e07e6e58
NC
11962 if (Rn == REG_PC)
11963 set_it_insn_type_last ();
11964
c19d1205 11965 if (unified_syntax)
b99bd4ef 11966 {
c19d1205
ZW
11967 int r0off = (inst.instruction == T_MNEM_mov
11968 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 11969 unsigned long opcode;
3d388997
PB
11970 bfd_boolean narrow;
11971 bfd_boolean low_regs;
11972
fdfde340 11973 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 11974 opcode = inst.instruction;
e07e6e58 11975 if (in_it_block ())
0110f2b8 11976 narrow = opcode != T_MNEM_movs;
3d388997 11977 else
0110f2b8 11978 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
11979 if (inst.size_req == 4
11980 || inst.operands[1].shifted)
11981 narrow = FALSE;
11982
efd81785
PB
11983 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11984 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11985 && !inst.operands[1].shifted
fdfde340
JM
11986 && Rn == REG_PC
11987 && Rm == REG_LR)
efd81785
PB
11988 {
11989 inst.instruction = T2_SUBS_PC_LR;
11990 return;
11991 }
11992
fdfde340
JM
11993 if (opcode == T_MNEM_cmp)
11994 {
11995 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
11996 if (narrow)
11997 {
11998 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11999 but valid. */
12000 warn_deprecated_sp (Rm);
12001 /* R15 was documented as a valid choice for Rm in ARMv6,
12002 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12003 tools reject R15, so we do too. */
12004 constraint (Rm == REG_PC, BAD_PC);
12005 }
12006 else
12007 reject_bad_reg (Rm);
fdfde340
JM
12008 }
12009 else if (opcode == T_MNEM_mov
12010 || opcode == T_MNEM_movs)
12011 {
12012 if (inst.operands[1].isreg)
12013 {
12014 if (opcode == T_MNEM_movs)
12015 {
12016 reject_bad_reg (Rn);
12017 reject_bad_reg (Rm);
12018 }
76fa04a4
MGD
12019 else if (narrow)
12020 {
12021 /* This is mov.n. */
12022 if ((Rn == REG_SP || Rn == REG_PC)
12023 && (Rm == REG_SP || Rm == REG_PC))
12024 {
5c3696f8 12025 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12026 "deprecated when r%u is the destination "
12027 "register."), Rm, Rn);
12028 }
12029 }
12030 else
12031 {
12032 /* This is mov.w. */
12033 constraint (Rn == REG_PC, BAD_PC);
12034 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12035 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12036 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12037 }
fdfde340
JM
12038 }
12039 else
12040 reject_bad_reg (Rn);
12041 }
12042
c19d1205
ZW
12043 if (!inst.operands[1].isreg)
12044 {
0110f2b8 12045 /* Immediate operand. */
e07e6e58 12046 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12047 narrow = 0;
12048 if (low_regs && narrow)
12049 {
12050 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12051 inst.instruction |= Rn << 8;
e2b0ab59
AV
12052 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12053 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12054 {
a9f02af8 12055 if (inst.size_req == 2)
e2b0ab59 12056 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12057 else
12058 inst.relax = opcode;
72d98d16 12059 }
0110f2b8
PB
12060 }
12061 else
12062 {
e2b0ab59
AV
12063 constraint ((inst.relocs[0].type
12064 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12065 && (inst.relocs[0].type
12066 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12067 THUMB1_RELOC_ONLY);
12068
0110f2b8
PB
12069 inst.instruction = THUMB_OP32 (inst.instruction);
12070 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12071 inst.instruction |= Rn << r0off;
e2b0ab59 12072 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12073 }
c19d1205 12074 }
728ca7c9
PB
12075 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12076 && (inst.instruction == T_MNEM_mov
12077 || inst.instruction == T_MNEM_movs))
12078 {
12079 /* Register shifts are encoded as separate shift instructions. */
12080 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12081
e07e6e58 12082 if (in_it_block ())
728ca7c9
PB
12083 narrow = !flags;
12084 else
12085 narrow = flags;
12086
12087 if (inst.size_req == 4)
12088 narrow = FALSE;
12089
12090 if (!low_regs || inst.operands[1].imm > 7)
12091 narrow = FALSE;
12092
fdfde340 12093 if (Rn != Rm)
728ca7c9
PB
12094 narrow = FALSE;
12095
12096 switch (inst.operands[1].shift_kind)
12097 {
12098 case SHIFT_LSL:
12099 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12100 break;
12101 case SHIFT_ASR:
12102 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12103 break;
12104 case SHIFT_LSR:
12105 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12106 break;
12107 case SHIFT_ROR:
12108 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12109 break;
12110 default:
5f4273c7 12111 abort ();
728ca7c9
PB
12112 }
12113
12114 inst.instruction = opcode;
12115 if (narrow)
12116 {
fdfde340 12117 inst.instruction |= Rn;
728ca7c9
PB
12118 inst.instruction |= inst.operands[1].imm << 3;
12119 }
12120 else
12121 {
12122 if (flags)
12123 inst.instruction |= CONDS_BIT;
12124
fdfde340
JM
12125 inst.instruction |= Rn << 8;
12126 inst.instruction |= Rm << 16;
728ca7c9
PB
12127 inst.instruction |= inst.operands[1].imm;
12128 }
12129 }
3d388997 12130 else if (!narrow)
c19d1205 12131 {
728ca7c9
PB
12132 /* Some mov with immediate shift have narrow variants.
12133 Register shifts are handled above. */
12134 if (low_regs && inst.operands[1].shifted
12135 && (inst.instruction == T_MNEM_mov
12136 || inst.instruction == T_MNEM_movs))
12137 {
e07e6e58 12138 if (in_it_block ())
728ca7c9
PB
12139 narrow = (inst.instruction == T_MNEM_mov);
12140 else
12141 narrow = (inst.instruction == T_MNEM_movs);
12142 }
12143
12144 if (narrow)
12145 {
12146 switch (inst.operands[1].shift_kind)
12147 {
12148 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12149 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12150 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12151 default: narrow = FALSE; break;
12152 }
12153 }
12154
12155 if (narrow)
12156 {
fdfde340
JM
12157 inst.instruction |= Rn;
12158 inst.instruction |= Rm << 3;
e2b0ab59 12159 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12160 }
12161 else
12162 {
12163 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12164 inst.instruction |= Rn << r0off;
728ca7c9
PB
12165 encode_thumb32_shifted_operand (1);
12166 }
c19d1205
ZW
12167 }
12168 else
12169 switch (inst.instruction)
12170 {
12171 case T_MNEM_mov:
837b3435 12172 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12173 results. Don't allow this. */
12174 if (low_regs)
12175 {
12176 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12177 "MOV Rd, Rs with two low registers is not "
12178 "permitted on this architecture");
fa94de6b 12179 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12180 arm_ext_v6);
12181 }
12182
c19d1205 12183 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12184 inst.instruction |= (Rn & 0x8) << 4;
12185 inst.instruction |= (Rn & 0x7);
12186 inst.instruction |= Rm << 3;
c19d1205 12187 break;
b99bd4ef 12188
c19d1205
ZW
12189 case T_MNEM_movs:
12190 /* We know we have low registers at this point.
941a8a52
MGD
12191 Generate LSLS Rd, Rs, #0. */
12192 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12193 inst.instruction |= Rn;
12194 inst.instruction |= Rm << 3;
c19d1205
ZW
12195 break;
12196
12197 case T_MNEM_cmp:
3d388997 12198 if (low_regs)
c19d1205
ZW
12199 {
12200 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12201 inst.instruction |= Rn;
12202 inst.instruction |= Rm << 3;
c19d1205
ZW
12203 }
12204 else
12205 {
12206 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12207 inst.instruction |= (Rn & 0x8) << 4;
12208 inst.instruction |= (Rn & 0x7);
12209 inst.instruction |= Rm << 3;
c19d1205
ZW
12210 }
12211 break;
12212 }
b99bd4ef
NC
12213 return;
12214 }
12215
c19d1205 12216 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12217
12218 /* PR 10443: Do not silently ignore shifted operands. */
12219 constraint (inst.operands[1].shifted,
12220 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12221
c19d1205 12222 if (inst.operands[1].isreg)
b99bd4ef 12223 {
fdfde340 12224 if (Rn < 8 && Rm < 8)
b99bd4ef 12225 {
c19d1205
ZW
12226 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12227 since a MOV instruction produces unpredictable results. */
12228 if (inst.instruction == T_OPCODE_MOV_I8)
12229 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12230 else
c19d1205 12231 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12232
fdfde340
JM
12233 inst.instruction |= Rn;
12234 inst.instruction |= Rm << 3;
b99bd4ef
NC
12235 }
12236 else
12237 {
c19d1205
ZW
12238 if (inst.instruction == T_OPCODE_MOV_I8)
12239 inst.instruction = T_OPCODE_MOV_HR;
12240 else
12241 inst.instruction = T_OPCODE_CMP_HR;
12242 do_t_cpy ();
b99bd4ef
NC
12243 }
12244 }
c19d1205 12245 else
b99bd4ef 12246 {
fdfde340 12247 constraint (Rn > 7,
c19d1205 12248 _("only lo regs allowed with immediate"));
fdfde340 12249 inst.instruction |= Rn << 8;
e2b0ab59 12250 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12251 }
12252}
b99bd4ef 12253
c19d1205
ZW
12254static void
12255do_t_mov16 (void)
12256{
fdfde340 12257 unsigned Rd;
b6895b4f
PB
12258 bfd_vma imm;
12259 bfd_boolean top;
12260
12261 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12262 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12263 {
33eaf5de 12264 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12265 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12266 }
e2b0ab59 12267 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12268 {
33eaf5de 12269 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12270 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12271 }
12272
fdfde340
JM
12273 Rd = inst.operands[0].reg;
12274 reject_bad_reg (Rd);
12275
12276 inst.instruction |= Rd << 8;
e2b0ab59 12277 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12278 {
e2b0ab59 12279 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12280 inst.instruction |= (imm & 0xf000) << 4;
12281 inst.instruction |= (imm & 0x0800) << 15;
12282 inst.instruction |= (imm & 0x0700) << 4;
12283 inst.instruction |= (imm & 0x00ff);
12284 }
c19d1205 12285}
b99bd4ef 12286
c19d1205
ZW
12287static void
12288do_t_mvn_tst (void)
12289{
fdfde340 12290 unsigned Rn, Rm;
c921be7d 12291
fdfde340
JM
12292 Rn = inst.operands[0].reg;
12293 Rm = inst.operands[1].reg;
12294
12295 if (inst.instruction == T_MNEM_cmp
12296 || inst.instruction == T_MNEM_cmn)
12297 constraint (Rn == REG_PC, BAD_PC);
12298 else
12299 reject_bad_reg (Rn);
12300 reject_bad_reg (Rm);
12301
c19d1205
ZW
12302 if (unified_syntax)
12303 {
12304 int r0off = (inst.instruction == T_MNEM_mvn
12305 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12306 bfd_boolean narrow;
12307
12308 if (inst.size_req == 4
12309 || inst.instruction > 0xffff
12310 || inst.operands[1].shifted
fdfde340 12311 || Rn > 7 || Rm > 7)
3d388997 12312 narrow = FALSE;
fe8b4cc3
KT
12313 else if (inst.instruction == T_MNEM_cmn
12314 || inst.instruction == T_MNEM_tst)
3d388997
PB
12315 narrow = TRUE;
12316 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12317 narrow = !in_it_block ();
3d388997 12318 else
e07e6e58 12319 narrow = in_it_block ();
3d388997 12320
c19d1205 12321 if (!inst.operands[1].isreg)
b99bd4ef 12322 {
c19d1205
ZW
12323 /* For an immediate, we always generate a 32-bit opcode;
12324 section relaxation will shrink it later if possible. */
12325 if (inst.instruction < 0xffff)
12326 inst.instruction = THUMB_OP32 (inst.instruction);
12327 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12328 inst.instruction |= Rn << r0off;
e2b0ab59 12329 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12330 }
c19d1205 12331 else
b99bd4ef 12332 {
c19d1205 12333 /* See if we can do this with a 16-bit instruction. */
3d388997 12334 if (narrow)
b99bd4ef 12335 {
c19d1205 12336 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12337 inst.instruction |= Rn;
12338 inst.instruction |= Rm << 3;
b99bd4ef 12339 }
c19d1205 12340 else
b99bd4ef 12341 {
c19d1205
ZW
12342 constraint (inst.operands[1].shifted
12343 && inst.operands[1].immisreg,
12344 _("shift must be constant"));
12345 if (inst.instruction < 0xffff)
12346 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12347 inst.instruction |= Rn << r0off;
c19d1205 12348 encode_thumb32_shifted_operand (1);
b99bd4ef 12349 }
b99bd4ef
NC
12350 }
12351 }
12352 else
12353 {
c19d1205
ZW
12354 constraint (inst.instruction > 0xffff
12355 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12356 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12357 _("unshifted register required"));
fdfde340 12358 constraint (Rn > 7 || Rm > 7,
c19d1205 12359 BAD_HIREG);
b99bd4ef 12360
c19d1205 12361 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12362 inst.instruction |= Rn;
12363 inst.instruction |= Rm << 3;
b99bd4ef 12364 }
b99bd4ef
NC
12365}
12366
b05fe5cf 12367static void
c19d1205 12368do_t_mrs (void)
b05fe5cf 12369{
fdfde340 12370 unsigned Rd;
037e8744
JB
12371
12372 if (do_vfp_nsyn_mrs () == SUCCESS)
12373 return;
12374
90ec0d68
MGD
12375 Rd = inst.operands[0].reg;
12376 reject_bad_reg (Rd);
12377 inst.instruction |= Rd << 8;
12378
12379 if (inst.operands[1].isreg)
62b3e311 12380 {
90ec0d68
MGD
12381 unsigned br = inst.operands[1].reg;
12382 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12383 as_bad (_("bad register for mrs"));
12384
12385 inst.instruction |= br & (0xf << 16);
12386 inst.instruction |= (br & 0x300) >> 4;
12387 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12388 }
12389 else
12390 {
90ec0d68 12391 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12392
d2cd1205 12393 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12394 {
12395 /* PR gas/12698: The constraint is only applied for m_profile.
12396 If the user has specified -march=all, we want to ignore it as
12397 we are building for any CPU type, including non-m variants. */
823d2571
TG
12398 bfd_boolean m_profile =
12399 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12400 constraint ((flags != 0) && m_profile, _("selected processor does "
12401 "not support requested special purpose register"));
12402 }
90ec0d68 12403 else
d2cd1205
JB
12404 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12405 devices). */
12406 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12407 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12408
90ec0d68
MGD
12409 inst.instruction |= (flags & SPSR_BIT) >> 2;
12410 inst.instruction |= inst.operands[1].imm & 0xff;
12411 inst.instruction |= 0xf0000;
12412 }
c19d1205 12413}
b05fe5cf 12414
c19d1205
ZW
12415static void
12416do_t_msr (void)
12417{
62b3e311 12418 int flags;
fdfde340 12419 unsigned Rn;
62b3e311 12420
037e8744
JB
12421 if (do_vfp_nsyn_msr () == SUCCESS)
12422 return;
12423
c19d1205
ZW
12424 constraint (!inst.operands[1].isreg,
12425 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
12426
12427 if (inst.operands[0].isreg)
12428 flags = (int)(inst.operands[0].reg);
12429 else
12430 flags = inst.operands[0].imm;
12431
d2cd1205 12432 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 12433 {
d2cd1205
JB
12434 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12435
1a43faaf 12436 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
12437 If the user has specified -march=all, we want to ignore it as
12438 we are building for any CPU type, including non-m variants. */
823d2571
TG
12439 bfd_boolean m_profile =
12440 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 12441 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
12442 && (bits & ~(PSR_s | PSR_f)) != 0)
12443 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12444 && bits != PSR_f)) && m_profile,
12445 _("selected processor does not support requested special "
12446 "purpose register"));
62b3e311
PB
12447 }
12448 else
d2cd1205
JB
12449 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12450 "requested special purpose register"));
c921be7d 12451
fdfde340
JM
12452 Rn = inst.operands[1].reg;
12453 reject_bad_reg (Rn);
12454
62b3e311 12455 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
12456 inst.instruction |= (flags & 0xf0000) >> 8;
12457 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 12458 inst.instruction |= (flags & 0xff);
fdfde340 12459 inst.instruction |= Rn << 16;
c19d1205 12460}
b05fe5cf 12461
c19d1205
ZW
12462static void
12463do_t_mul (void)
12464{
17828f45 12465 bfd_boolean narrow;
fdfde340 12466 unsigned Rd, Rn, Rm;
17828f45 12467
c19d1205
ZW
12468 if (!inst.operands[2].present)
12469 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 12470
fdfde340
JM
12471 Rd = inst.operands[0].reg;
12472 Rn = inst.operands[1].reg;
12473 Rm = inst.operands[2].reg;
12474
17828f45 12475 if (unified_syntax)
b05fe5cf 12476 {
17828f45 12477 if (inst.size_req == 4
fdfde340
JM
12478 || (Rd != Rn
12479 && Rd != Rm)
12480 || Rn > 7
12481 || Rm > 7)
17828f45
JM
12482 narrow = FALSE;
12483 else if (inst.instruction == T_MNEM_muls)
e07e6e58 12484 narrow = !in_it_block ();
17828f45 12485 else
e07e6e58 12486 narrow = in_it_block ();
b05fe5cf 12487 }
c19d1205 12488 else
b05fe5cf 12489 {
17828f45 12490 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 12491 constraint (Rn > 7 || Rm > 7,
c19d1205 12492 BAD_HIREG);
17828f45
JM
12493 narrow = TRUE;
12494 }
b05fe5cf 12495
17828f45
JM
12496 if (narrow)
12497 {
12498 /* 16-bit MULS/Conditional MUL. */
c19d1205 12499 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 12500 inst.instruction |= Rd;
b05fe5cf 12501
fdfde340
JM
12502 if (Rd == Rn)
12503 inst.instruction |= Rm << 3;
12504 else if (Rd == Rm)
12505 inst.instruction |= Rn << 3;
c19d1205
ZW
12506 else
12507 constraint (1, _("dest must overlap one source register"));
12508 }
17828f45
JM
12509 else
12510 {
e07e6e58
NC
12511 constraint (inst.instruction != T_MNEM_mul,
12512 _("Thumb-2 MUL must not set flags"));
17828f45
JM
12513 /* 32-bit MUL. */
12514 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12515 inst.instruction |= Rd << 8;
12516 inst.instruction |= Rn << 16;
12517 inst.instruction |= Rm << 0;
12518
12519 reject_bad_reg (Rd);
12520 reject_bad_reg (Rn);
12521 reject_bad_reg (Rm);
17828f45 12522 }
c19d1205 12523}
b05fe5cf 12524
c19d1205
ZW
12525static void
12526do_t_mull (void)
12527{
fdfde340 12528 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 12529
fdfde340
JM
12530 RdLo = inst.operands[0].reg;
12531 RdHi = inst.operands[1].reg;
12532 Rn = inst.operands[2].reg;
12533 Rm = inst.operands[3].reg;
12534
12535 reject_bad_reg (RdLo);
12536 reject_bad_reg (RdHi);
12537 reject_bad_reg (Rn);
12538 reject_bad_reg (Rm);
12539
12540 inst.instruction |= RdLo << 12;
12541 inst.instruction |= RdHi << 8;
12542 inst.instruction |= Rn << 16;
12543 inst.instruction |= Rm;
12544
12545 if (RdLo == RdHi)
c19d1205
ZW
12546 as_tsktsk (_("rdhi and rdlo must be different"));
12547}
b05fe5cf 12548
c19d1205
ZW
12549static void
12550do_t_nop (void)
12551{
e07e6e58
NC
12552 set_it_insn_type (NEUTRAL_IT_INSN);
12553
c19d1205
ZW
12554 if (unified_syntax)
12555 {
12556 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 12557 {
c19d1205
ZW
12558 inst.instruction = THUMB_OP32 (inst.instruction);
12559 inst.instruction |= inst.operands[0].imm;
12560 }
12561 else
12562 {
bc2d1808
NC
12563 /* PR9722: Check for Thumb2 availability before
12564 generating a thumb2 nop instruction. */
afa62d5e 12565 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
12566 {
12567 inst.instruction = THUMB_OP16 (inst.instruction);
12568 inst.instruction |= inst.operands[0].imm << 4;
12569 }
12570 else
12571 inst.instruction = 0x46c0;
c19d1205
ZW
12572 }
12573 }
12574 else
12575 {
12576 constraint (inst.operands[0].present,
12577 _("Thumb does not support NOP with hints"));
12578 inst.instruction = 0x46c0;
12579 }
12580}
b05fe5cf 12581
c19d1205
ZW
12582static void
12583do_t_neg (void)
12584{
12585 if (unified_syntax)
12586 {
3d388997
PB
12587 bfd_boolean narrow;
12588
12589 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12590 narrow = !in_it_block ();
3d388997 12591 else
e07e6e58 12592 narrow = in_it_block ();
3d388997
PB
12593 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12594 narrow = FALSE;
12595 if (inst.size_req == 4)
12596 narrow = FALSE;
12597
12598 if (!narrow)
c19d1205
ZW
12599 {
12600 inst.instruction = THUMB_OP32 (inst.instruction);
12601 inst.instruction |= inst.operands[0].reg << 8;
12602 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
12603 }
12604 else
12605 {
c19d1205
ZW
12606 inst.instruction = THUMB_OP16 (inst.instruction);
12607 inst.instruction |= inst.operands[0].reg;
12608 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
12609 }
12610 }
12611 else
12612 {
c19d1205
ZW
12613 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12614 BAD_HIREG);
12615 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12616
12617 inst.instruction = THUMB_OP16 (inst.instruction);
12618 inst.instruction |= inst.operands[0].reg;
12619 inst.instruction |= inst.operands[1].reg << 3;
12620 }
12621}
12622
1c444d06
JM
12623static void
12624do_t_orn (void)
12625{
12626 unsigned Rd, Rn;
12627
12628 Rd = inst.operands[0].reg;
12629 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12630
fdfde340
JM
12631 reject_bad_reg (Rd);
12632 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12633 reject_bad_reg (Rn);
12634
1c444d06
JM
12635 inst.instruction |= Rd << 8;
12636 inst.instruction |= Rn << 16;
12637
12638 if (!inst.operands[2].isreg)
12639 {
12640 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 12641 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
12642 }
12643 else
12644 {
12645 unsigned Rm;
12646
12647 Rm = inst.operands[2].reg;
fdfde340 12648 reject_bad_reg (Rm);
1c444d06
JM
12649
12650 constraint (inst.operands[2].shifted
12651 && inst.operands[2].immisreg,
12652 _("shift must be constant"));
12653 encode_thumb32_shifted_operand (2);
12654 }
12655}
12656
c19d1205
ZW
12657static void
12658do_t_pkhbt (void)
12659{
fdfde340
JM
12660 unsigned Rd, Rn, Rm;
12661
12662 Rd = inst.operands[0].reg;
12663 Rn = inst.operands[1].reg;
12664 Rm = inst.operands[2].reg;
12665
12666 reject_bad_reg (Rd);
12667 reject_bad_reg (Rn);
12668 reject_bad_reg (Rm);
12669
12670 inst.instruction |= Rd << 8;
12671 inst.instruction |= Rn << 16;
12672 inst.instruction |= Rm;
c19d1205
ZW
12673 if (inst.operands[3].present)
12674 {
e2b0ab59
AV
12675 unsigned int val = inst.relocs[0].exp.X_add_number;
12676 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
12677 _("expression too complex"));
12678 inst.instruction |= (val & 0x1c) << 10;
12679 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 12680 }
c19d1205 12681}
b05fe5cf 12682
c19d1205
ZW
12683static void
12684do_t_pkhtb (void)
12685{
12686 if (!inst.operands[3].present)
1ef52f49
NC
12687 {
12688 unsigned Rtmp;
12689
12690 inst.instruction &= ~0x00000020;
12691
12692 /* PR 10168. Swap the Rm and Rn registers. */
12693 Rtmp = inst.operands[1].reg;
12694 inst.operands[1].reg = inst.operands[2].reg;
12695 inst.operands[2].reg = Rtmp;
12696 }
c19d1205 12697 do_t_pkhbt ();
b05fe5cf
ZW
12698}
12699
c19d1205
ZW
12700static void
12701do_t_pld (void)
12702{
fdfde340
JM
12703 if (inst.operands[0].immisreg)
12704 reject_bad_reg (inst.operands[0].imm);
12705
c19d1205
ZW
12706 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12707}
b05fe5cf 12708
c19d1205
ZW
12709static void
12710do_t_push_pop (void)
b99bd4ef 12711{
e9f89963 12712 unsigned mask;
5f4273c7 12713
c19d1205
ZW
12714 constraint (inst.operands[0].writeback,
12715 _("push/pop do not support {reglist}^"));
e2b0ab59 12716 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 12717 _("expression too complex"));
b99bd4ef 12718
e9f89963 12719 mask = inst.operands[0].imm;
d3bfe16e 12720 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 12721 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 12722 else if (inst.size_req != 4
c6025a80 12723 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 12724 ? REG_LR : REG_PC)))
b99bd4ef 12725 {
c19d1205
ZW
12726 inst.instruction = THUMB_OP16 (inst.instruction);
12727 inst.instruction |= THUMB_PP_PC_LR;
3c707909 12728 inst.instruction |= mask & 0xff;
c19d1205
ZW
12729 }
12730 else if (unified_syntax)
12731 {
3c707909 12732 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 12733 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
12734 }
12735 else
12736 {
12737 inst.error = _("invalid register list to push/pop instruction");
12738 return;
12739 }
c19d1205 12740}
b99bd4ef 12741
c19d1205
ZW
12742static void
12743do_t_rbit (void)
12744{
fdfde340
JM
12745 unsigned Rd, Rm;
12746
12747 Rd = inst.operands[0].reg;
12748 Rm = inst.operands[1].reg;
12749
12750 reject_bad_reg (Rd);
12751 reject_bad_reg (Rm);
12752
12753 inst.instruction |= Rd << 8;
12754 inst.instruction |= Rm << 16;
12755 inst.instruction |= Rm;
c19d1205 12756}
b99bd4ef 12757
c19d1205
ZW
12758static void
12759do_t_rev (void)
12760{
fdfde340
JM
12761 unsigned Rd, Rm;
12762
12763 Rd = inst.operands[0].reg;
12764 Rm = inst.operands[1].reg;
12765
12766 reject_bad_reg (Rd);
12767 reject_bad_reg (Rm);
12768
12769 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
12770 && inst.size_req != 4)
12771 {
12772 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12773 inst.instruction |= Rd;
12774 inst.instruction |= Rm << 3;
c19d1205
ZW
12775 }
12776 else if (unified_syntax)
12777 {
12778 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12779 inst.instruction |= Rd << 8;
12780 inst.instruction |= Rm << 16;
12781 inst.instruction |= Rm;
c19d1205
ZW
12782 }
12783 else
12784 inst.error = BAD_HIREG;
12785}
b99bd4ef 12786
1c444d06
JM
12787static void
12788do_t_rrx (void)
12789{
12790 unsigned Rd, Rm;
12791
12792 Rd = inst.operands[0].reg;
12793 Rm = inst.operands[1].reg;
12794
fdfde340
JM
12795 reject_bad_reg (Rd);
12796 reject_bad_reg (Rm);
c921be7d 12797
1c444d06
JM
12798 inst.instruction |= Rd << 8;
12799 inst.instruction |= Rm;
12800}
12801
c19d1205
ZW
12802static void
12803do_t_rsb (void)
12804{
fdfde340 12805 unsigned Rd, Rs;
b99bd4ef 12806
c19d1205
ZW
12807 Rd = inst.operands[0].reg;
12808 Rs = (inst.operands[1].present
12809 ? inst.operands[1].reg /* Rd, Rs, foo */
12810 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 12811
fdfde340
JM
12812 reject_bad_reg (Rd);
12813 reject_bad_reg (Rs);
12814 if (inst.operands[2].isreg)
12815 reject_bad_reg (inst.operands[2].reg);
12816
c19d1205
ZW
12817 inst.instruction |= Rd << 8;
12818 inst.instruction |= Rs << 16;
12819 if (!inst.operands[2].isreg)
12820 {
026d3abb
PB
12821 bfd_boolean narrow;
12822
12823 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 12824 narrow = !in_it_block ();
026d3abb 12825 else
e07e6e58 12826 narrow = in_it_block ();
026d3abb
PB
12827
12828 if (Rd > 7 || Rs > 7)
12829 narrow = FALSE;
12830
12831 if (inst.size_req == 4 || !unified_syntax)
12832 narrow = FALSE;
12833
e2b0ab59
AV
12834 if (inst.relocs[0].exp.X_op != O_constant
12835 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
12836 narrow = FALSE;
12837
12838 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 12839 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
12840 if (narrow)
12841 {
e2b0ab59 12842 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
12843 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12844 inst.instruction |= Rs << 3;
12845 inst.instruction |= Rd;
12846 }
12847 else
12848 {
12849 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 12850 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 12851 }
c19d1205
ZW
12852 }
12853 else
12854 encode_thumb32_shifted_operand (2);
12855}
b99bd4ef 12856
c19d1205
ZW
12857static void
12858do_t_setend (void)
12859{
12e37cbc
MGD
12860 if (warn_on_deprecated
12861 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 12862 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 12863
e07e6e58 12864 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
12865 if (inst.operands[0].imm)
12866 inst.instruction |= 0x8;
12867}
b99bd4ef 12868
c19d1205
ZW
12869static void
12870do_t_shift (void)
12871{
12872 if (!inst.operands[1].present)
12873 inst.operands[1].reg = inst.operands[0].reg;
12874
12875 if (unified_syntax)
12876 {
3d388997
PB
12877 bfd_boolean narrow;
12878 int shift_kind;
12879
12880 switch (inst.instruction)
12881 {
12882 case T_MNEM_asr:
12883 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12884 case T_MNEM_lsl:
12885 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12886 case T_MNEM_lsr:
12887 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12888 case T_MNEM_ror:
12889 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12890 default: abort ();
12891 }
12892
12893 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12894 narrow = !in_it_block ();
3d388997 12895 else
e07e6e58 12896 narrow = in_it_block ();
3d388997
PB
12897 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12898 narrow = FALSE;
12899 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12900 narrow = FALSE;
12901 if (inst.operands[2].isreg
12902 && (inst.operands[1].reg != inst.operands[0].reg
12903 || inst.operands[2].reg > 7))
12904 narrow = FALSE;
12905 if (inst.size_req == 4)
12906 narrow = FALSE;
12907
fdfde340
JM
12908 reject_bad_reg (inst.operands[0].reg);
12909 reject_bad_reg (inst.operands[1].reg);
c921be7d 12910
3d388997 12911 if (!narrow)
c19d1205
ZW
12912 {
12913 if (inst.operands[2].isreg)
b99bd4ef 12914 {
fdfde340 12915 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
12916 inst.instruction = THUMB_OP32 (inst.instruction);
12917 inst.instruction |= inst.operands[0].reg << 8;
12918 inst.instruction |= inst.operands[1].reg << 16;
12919 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
12920
12921 /* PR 12854: Error on extraneous shifts. */
12922 constraint (inst.operands[2].shifted,
12923 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12924 }
12925 else
12926 {
12927 inst.operands[1].shifted = 1;
3d388997 12928 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
12929 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12930 ? T_MNEM_movs : T_MNEM_mov);
12931 inst.instruction |= inst.operands[0].reg << 8;
12932 encode_thumb32_shifted_operand (1);
12933 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 12934 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
12935 }
12936 }
12937 else
12938 {
c19d1205 12939 if (inst.operands[2].isreg)
b99bd4ef 12940 {
3d388997 12941 switch (shift_kind)
b99bd4ef 12942 {
3d388997
PB
12943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12946 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 12947 default: abort ();
b99bd4ef 12948 }
5f4273c7 12949
c19d1205
ZW
12950 inst.instruction |= inst.operands[0].reg;
12951 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12952
12953 /* PR 12854: Error on extraneous shifts. */
12954 constraint (inst.operands[2].shifted,
12955 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
12956 }
12957 else
12958 {
3d388997 12959 switch (shift_kind)
b99bd4ef 12960 {
3d388997
PB
12961 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12962 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12963 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 12964 default: abort ();
b99bd4ef 12965 }
e2b0ab59 12966 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
12967 inst.instruction |= inst.operands[0].reg;
12968 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12969 }
12970 }
c19d1205
ZW
12971 }
12972 else
12973 {
12974 constraint (inst.operands[0].reg > 7
12975 || inst.operands[1].reg > 7, BAD_HIREG);
12976 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 12977
c19d1205
ZW
12978 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12979 {
12980 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12981 constraint (inst.operands[0].reg != inst.operands[1].reg,
12982 _("source1 and dest must be same register"));
b99bd4ef 12983
c19d1205
ZW
12984 switch (inst.instruction)
12985 {
12986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12989 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12990 default: abort ();
12991 }
5f4273c7 12992
c19d1205
ZW
12993 inst.instruction |= inst.operands[0].reg;
12994 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12995
12996 /* PR 12854: Error on extraneous shifts. */
12997 constraint (inst.operands[2].shifted,
12998 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12999 }
13000 else
b99bd4ef 13001 {
c19d1205
ZW
13002 switch (inst.instruction)
13003 {
13004 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13005 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13006 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13007 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13008 default: abort ();
13009 }
e2b0ab59 13010 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13011 inst.instruction |= inst.operands[0].reg;
13012 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13013 }
13014 }
b99bd4ef
NC
13015}
13016
13017static void
c19d1205 13018do_t_simd (void)
b99bd4ef 13019{
fdfde340
JM
13020 unsigned Rd, Rn, Rm;
13021
13022 Rd = inst.operands[0].reg;
13023 Rn = inst.operands[1].reg;
13024 Rm = inst.operands[2].reg;
13025
13026 reject_bad_reg (Rd);
13027 reject_bad_reg (Rn);
13028 reject_bad_reg (Rm);
13029
13030 inst.instruction |= Rd << 8;
13031 inst.instruction |= Rn << 16;
13032 inst.instruction |= Rm;
c19d1205 13033}
b99bd4ef 13034
03ee1b7f
NC
13035static void
13036do_t_simd2 (void)
13037{
13038 unsigned Rd, Rn, Rm;
13039
13040 Rd = inst.operands[0].reg;
13041 Rm = inst.operands[1].reg;
13042 Rn = inst.operands[2].reg;
13043
13044 reject_bad_reg (Rd);
13045 reject_bad_reg (Rn);
13046 reject_bad_reg (Rm);
13047
13048 inst.instruction |= Rd << 8;
13049 inst.instruction |= Rn << 16;
13050 inst.instruction |= Rm;
13051}
13052
c19d1205 13053static void
3eb17e6b 13054do_t_smc (void)
c19d1205 13055{
e2b0ab59 13056 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13057 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13058 _("SMC is not permitted on this architecture"));
e2b0ab59 13059 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13060 _("expression too complex"));
e2b0ab59 13061 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13062 inst.instruction |= (value & 0xf000) >> 12;
13063 inst.instruction |= (value & 0x0ff0);
13064 inst.instruction |= (value & 0x000f) << 16;
24382199
NC
13065 /* PR gas/15623: SMC instructions must be last in an IT block. */
13066 set_it_insn_type_last ();
c19d1205 13067}
b99bd4ef 13068
90ec0d68
MGD
13069static void
13070do_t_hvc (void)
13071{
e2b0ab59 13072 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13073
e2b0ab59 13074 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13075 inst.instruction |= (value & 0x0fff);
13076 inst.instruction |= (value & 0xf000) << 4;
13077}
13078
c19d1205 13079static void
3a21c15a 13080do_t_ssat_usat (int bias)
c19d1205 13081{
fdfde340
JM
13082 unsigned Rd, Rn;
13083
13084 Rd = inst.operands[0].reg;
13085 Rn = inst.operands[2].reg;
13086
13087 reject_bad_reg (Rd);
13088 reject_bad_reg (Rn);
13089
13090 inst.instruction |= Rd << 8;
3a21c15a 13091 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13092 inst.instruction |= Rn << 16;
b99bd4ef 13093
c19d1205 13094 if (inst.operands[3].present)
b99bd4ef 13095 {
e2b0ab59 13096 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13097
e2b0ab59 13098 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13099
e2b0ab59 13100 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13101 _("expression too complex"));
b99bd4ef 13102
3a21c15a 13103 if (shift_amount != 0)
6189168b 13104 {
3a21c15a
NC
13105 constraint (shift_amount > 31,
13106 _("shift expression is too large"));
13107
c19d1205 13108 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13109 inst.instruction |= 0x00200000; /* sh bit. */
13110
13111 inst.instruction |= (shift_amount & 0x1c) << 10;
13112 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13113 }
13114 }
b99bd4ef 13115}
c921be7d 13116
3a21c15a
NC
13117static void
13118do_t_ssat (void)
13119{
13120 do_t_ssat_usat (1);
13121}
b99bd4ef 13122
0dd132b6 13123static void
c19d1205 13124do_t_ssat16 (void)
0dd132b6 13125{
fdfde340
JM
13126 unsigned Rd, Rn;
13127
13128 Rd = inst.operands[0].reg;
13129 Rn = inst.operands[2].reg;
13130
13131 reject_bad_reg (Rd);
13132 reject_bad_reg (Rn);
13133
13134 inst.instruction |= Rd << 8;
c19d1205 13135 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13136 inst.instruction |= Rn << 16;
c19d1205 13137}
0dd132b6 13138
c19d1205
ZW
13139static void
13140do_t_strex (void)
13141{
13142 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13143 || inst.operands[2].postind || inst.operands[2].writeback
13144 || inst.operands[2].immisreg || inst.operands[2].shifted
13145 || inst.operands[2].negative,
01cfc07f 13146 BAD_ADDR_MODE);
0dd132b6 13147
5be8be5d
DG
13148 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13149
c19d1205
ZW
13150 inst.instruction |= inst.operands[0].reg << 8;
13151 inst.instruction |= inst.operands[1].reg << 12;
13152 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13153 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13154}
13155
b99bd4ef 13156static void
c19d1205 13157do_t_strexd (void)
b99bd4ef 13158{
c19d1205
ZW
13159 if (!inst.operands[2].present)
13160 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13161
c19d1205
ZW
13162 constraint (inst.operands[0].reg == inst.operands[1].reg
13163 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13164 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13165 BAD_OVERLAP);
b99bd4ef 13166
c19d1205
ZW
13167 inst.instruction |= inst.operands[0].reg;
13168 inst.instruction |= inst.operands[1].reg << 12;
13169 inst.instruction |= inst.operands[2].reg << 8;
13170 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13171}
13172
13173static void
c19d1205 13174do_t_sxtah (void)
b99bd4ef 13175{
fdfde340
JM
13176 unsigned Rd, Rn, Rm;
13177
13178 Rd = inst.operands[0].reg;
13179 Rn = inst.operands[1].reg;
13180 Rm = inst.operands[2].reg;
13181
13182 reject_bad_reg (Rd);
13183 reject_bad_reg (Rn);
13184 reject_bad_reg (Rm);
13185
13186 inst.instruction |= Rd << 8;
13187 inst.instruction |= Rn << 16;
13188 inst.instruction |= Rm;
c19d1205
ZW
13189 inst.instruction |= inst.operands[3].imm << 4;
13190}
b99bd4ef 13191
c19d1205
ZW
13192static void
13193do_t_sxth (void)
13194{
fdfde340
JM
13195 unsigned Rd, Rm;
13196
13197 Rd = inst.operands[0].reg;
13198 Rm = inst.operands[1].reg;
13199
13200 reject_bad_reg (Rd);
13201 reject_bad_reg (Rm);
c921be7d
NC
13202
13203 if (inst.instruction <= 0xffff
13204 && inst.size_req != 4
fdfde340 13205 && Rd <= 7 && Rm <= 7
c19d1205 13206 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13207 {
c19d1205 13208 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13209 inst.instruction |= Rd;
13210 inst.instruction |= Rm << 3;
b99bd4ef 13211 }
c19d1205 13212 else if (unified_syntax)
b99bd4ef 13213 {
c19d1205
ZW
13214 if (inst.instruction <= 0xffff)
13215 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13216 inst.instruction |= Rd << 8;
13217 inst.instruction |= Rm;
c19d1205 13218 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13219 }
c19d1205 13220 else
b99bd4ef 13221 {
c19d1205
ZW
13222 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13223 _("Thumb encoding does not support rotation"));
13224 constraint (1, BAD_HIREG);
b99bd4ef 13225 }
c19d1205 13226}
b99bd4ef 13227
c19d1205
ZW
13228static void
13229do_t_swi (void)
13230{
e2b0ab59 13231 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13232}
b99bd4ef 13233
92e90b6e
PB
13234static void
13235do_t_tb (void)
13236{
fdfde340 13237 unsigned Rn, Rm;
92e90b6e
PB
13238 int half;
13239
13240 half = (inst.instruction & 0x10) != 0;
e07e6e58 13241 set_it_insn_type_last ();
dfa9f0d5
PB
13242 constraint (inst.operands[0].immisreg,
13243 _("instruction requires register index"));
fdfde340
JM
13244
13245 Rn = inst.operands[0].reg;
13246 Rm = inst.operands[0].imm;
c921be7d 13247
5c8ed6a4
JW
13248 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13249 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13250 reject_bad_reg (Rm);
13251
92e90b6e
PB
13252 constraint (!half && inst.operands[0].shifted,
13253 _("instruction does not allow shifted index"));
fdfde340 13254 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13255}
13256
74db7efb
NC
13257static void
13258do_t_udf (void)
13259{
13260 if (!inst.operands[0].present)
13261 inst.operands[0].imm = 0;
13262
13263 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13264 {
13265 constraint (inst.size_req == 2,
13266 _("immediate value out of range"));
13267 inst.instruction = THUMB_OP32 (inst.instruction);
13268 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13269 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13270 }
13271 else
13272 {
13273 inst.instruction = THUMB_OP16 (inst.instruction);
13274 inst.instruction |= inst.operands[0].imm;
13275 }
13276
13277 set_it_insn_type (NEUTRAL_IT_INSN);
13278}
13279
13280
c19d1205
ZW
13281static void
13282do_t_usat (void)
13283{
3a21c15a 13284 do_t_ssat_usat (0);
b99bd4ef
NC
13285}
13286
13287static void
c19d1205 13288do_t_usat16 (void)
b99bd4ef 13289{
fdfde340
JM
13290 unsigned Rd, Rn;
13291
13292 Rd = inst.operands[0].reg;
13293 Rn = inst.operands[2].reg;
13294
13295 reject_bad_reg (Rd);
13296 reject_bad_reg (Rn);
13297
13298 inst.instruction |= Rd << 8;
c19d1205 13299 inst.instruction |= inst.operands[1].imm;
fdfde340 13300 inst.instruction |= Rn << 16;
b99bd4ef 13301}
c19d1205 13302
e12437dc
AV
13303/* Checking the range of the branch offset (VAL) with NBITS bits
13304 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13305static int
13306v8_1_branch_value_check (int val, int nbits, int is_signed)
13307{
13308 gas_assert (nbits > 0 && nbits <= 32);
13309 if (is_signed)
13310 {
13311 int cmp = (1 << (nbits - 1));
13312 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13313 return FAIL;
13314 }
13315 else
13316 {
13317 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13318 return FAIL;
13319 }
13320 return SUCCESS;
13321}
13322
5287ad62 13323/* Neon instruction encoder helpers. */
5f4273c7 13324
5287ad62 13325/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 13326
5287ad62
JB
13327/* An "invalid" code for the following tables. */
13328#define N_INV -1u
13329
13330struct neon_tab_entry
b99bd4ef 13331{
5287ad62
JB
13332 unsigned integer;
13333 unsigned float_or_poly;
13334 unsigned scalar_or_imm;
13335};
5f4273c7 13336
5287ad62
JB
13337/* Map overloaded Neon opcodes to their respective encodings. */
13338#define NEON_ENC_TAB \
13339 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13340 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13341 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13342 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13343 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13344 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13345 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13346 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13347 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13348 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13349 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13350 /* Register variants of the following two instructions are encoded as
e07e6e58 13351 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
13352 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13353 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
13354 X(vfma, N_INV, 0x0000c10, N_INV), \
13355 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
13356 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13357 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13358 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13359 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13360 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13361 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13362 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13363 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13364 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13365 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13366 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
13367 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13368 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
13369 X(vshl, 0x0000400, N_INV, 0x0800510), \
13370 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13371 X(vand, 0x0000110, N_INV, 0x0800030), \
13372 X(vbic, 0x0100110, N_INV, 0x0800030), \
13373 X(veor, 0x1000110, N_INV, N_INV), \
13374 X(vorn, 0x0300110, N_INV, 0x0800010), \
13375 X(vorr, 0x0200110, N_INV, 0x0800010), \
13376 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13377 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13378 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13379 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13380 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13381 X(vst1, 0x0000000, 0x0800000, N_INV), \
13382 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13383 X(vst2, 0x0000100, 0x0800100, N_INV), \
13384 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13385 X(vst3, 0x0000200, 0x0800200, N_INV), \
13386 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13387 X(vst4, 0x0000300, 0x0800300, N_INV), \
13388 X(vmovn, 0x1b20200, N_INV, N_INV), \
13389 X(vtrn, 0x1b20080, N_INV, N_INV), \
13390 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
13391 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13392 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
13393 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13394 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
13395 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13396 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
13397 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13398 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13399 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
13400 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13401 X(vseleq, 0xe000a00, N_INV, N_INV), \
13402 X(vselvs, 0xe100a00, N_INV, N_INV), \
13403 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
13404 X(vselgt, 0xe300a00, N_INV, N_INV), \
13405 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 13406 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
13407 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13408 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 13409 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 13410 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
13411 X(sha3op, 0x2000c00, N_INV, N_INV), \
13412 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13413 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
13414
13415enum neon_opc
13416{
13417#define X(OPC,I,F,S) N_MNEM_##OPC
13418NEON_ENC_TAB
13419#undef X
13420};
b99bd4ef 13421
5287ad62
JB
13422static const struct neon_tab_entry neon_enc_tab[] =
13423{
13424#define X(OPC,I,F,S) { (I), (F), (S) }
13425NEON_ENC_TAB
13426#undef X
13427};
b99bd4ef 13428
88714cb8
DG
13429/* Do not use these macros; instead, use NEON_ENCODE defined below. */
13430#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13431#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13432#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13433#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13434#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13435#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13436#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13437#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13438#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13439#define NEON_ENC_SINGLE_(X) \
037e8744 13440 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 13441#define NEON_ENC_DOUBLE_(X) \
037e8744 13442 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
13443#define NEON_ENC_FPV8_(X) \
13444 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 13445
88714cb8
DG
13446#define NEON_ENCODE(type, inst) \
13447 do \
13448 { \
13449 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13450 inst.is_neon = 1; \
13451 } \
13452 while (0)
13453
13454#define check_neon_suffixes \
13455 do \
13456 { \
13457 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13458 { \
13459 as_bad (_("invalid neon suffix for non neon instruction")); \
13460 return; \
13461 } \
13462 } \
13463 while (0)
13464
037e8744
JB
13465/* Define shapes for instruction operands. The following mnemonic characters
13466 are used in this table:
5287ad62 13467
037e8744 13468 F - VFP S<n> register
5287ad62
JB
13469 D - Neon D<n> register
13470 Q - Neon Q<n> register
13471 I - Immediate
13472 S - Scalar
13473 R - ARM register
13474 L - D<n> register list
5f4273c7 13475
037e8744
JB
13476 This table is used to generate various data:
13477 - enumerations of the form NS_DDR to be used as arguments to
13478 neon_select_shape.
13479 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 13480 - a table used to drive neon_select_shape. */
b99bd4ef 13481
037e8744
JB
13482#define NEON_SHAPE_DEF \
13483 X(3, (D, D, D), DOUBLE), \
13484 X(3, (Q, Q, Q), QUAD), \
13485 X(3, (D, D, I), DOUBLE), \
13486 X(3, (Q, Q, I), QUAD), \
13487 X(3, (D, D, S), DOUBLE), \
13488 X(3, (Q, Q, S), QUAD), \
13489 X(2, (D, D), DOUBLE), \
13490 X(2, (Q, Q), QUAD), \
13491 X(2, (D, S), DOUBLE), \
13492 X(2, (Q, S), QUAD), \
13493 X(2, (D, R), DOUBLE), \
13494 X(2, (Q, R), QUAD), \
13495 X(2, (D, I), DOUBLE), \
13496 X(2, (Q, I), QUAD), \
13497 X(3, (D, L, D), DOUBLE), \
13498 X(2, (D, Q), MIXED), \
13499 X(2, (Q, D), MIXED), \
13500 X(3, (D, Q, I), MIXED), \
13501 X(3, (Q, D, I), MIXED), \
13502 X(3, (Q, D, D), MIXED), \
13503 X(3, (D, Q, Q), MIXED), \
13504 X(3, (Q, Q, D), MIXED), \
13505 X(3, (Q, D, S), MIXED), \
13506 X(3, (D, Q, S), MIXED), \
13507 X(4, (D, D, D, I), DOUBLE), \
13508 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
13509 X(4, (D, D, S, I), DOUBLE), \
13510 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
13511 X(2, (F, F), SINGLE), \
13512 X(3, (F, F, F), SINGLE), \
13513 X(2, (F, I), SINGLE), \
13514 X(2, (F, D), MIXED), \
13515 X(2, (D, F), MIXED), \
13516 X(3, (F, F, I), MIXED), \
13517 X(4, (R, R, F, F), SINGLE), \
13518 X(4, (F, F, R, R), SINGLE), \
13519 X(3, (D, R, R), DOUBLE), \
13520 X(3, (R, R, D), DOUBLE), \
13521 X(2, (S, R), SINGLE), \
13522 X(2, (R, S), SINGLE), \
13523 X(2, (F, R), SINGLE), \
d54af2d0
RL
13524 X(2, (R, F), SINGLE), \
13525/* Half float shape supported so far. */\
13526 X (2, (H, D), MIXED), \
13527 X (2, (D, H), MIXED), \
13528 X (2, (H, F), MIXED), \
13529 X (2, (F, H), MIXED), \
13530 X (2, (H, H), HALF), \
13531 X (2, (H, R), HALF), \
13532 X (2, (R, H), HALF), \
13533 X (2, (H, I), HALF), \
13534 X (3, (H, H, H), HALF), \
13535 X (3, (H, F, I), MIXED), \
dec41383
JW
13536 X (3, (F, H, I), MIXED), \
13537 X (3, (D, H, H), MIXED), \
13538 X (3, (D, H, S), MIXED)
037e8744
JB
13539
13540#define S2(A,B) NS_##A##B
13541#define S3(A,B,C) NS_##A##B##C
13542#define S4(A,B,C,D) NS_##A##B##C##D
13543
13544#define X(N, L, C) S##N L
13545
5287ad62
JB
13546enum neon_shape
13547{
037e8744
JB
13548 NEON_SHAPE_DEF,
13549 NS_NULL
5287ad62 13550};
b99bd4ef 13551
037e8744
JB
13552#undef X
13553#undef S2
13554#undef S3
13555#undef S4
13556
13557enum neon_shape_class
13558{
d54af2d0 13559 SC_HALF,
037e8744
JB
13560 SC_SINGLE,
13561 SC_DOUBLE,
13562 SC_QUAD,
13563 SC_MIXED
13564};
13565
13566#define X(N, L, C) SC_##C
13567
13568static enum neon_shape_class neon_shape_class[] =
13569{
13570 NEON_SHAPE_DEF
13571};
13572
13573#undef X
13574
13575enum neon_shape_el
13576{
d54af2d0 13577 SE_H,
037e8744
JB
13578 SE_F,
13579 SE_D,
13580 SE_Q,
13581 SE_I,
13582 SE_S,
13583 SE_R,
13584 SE_L
13585};
13586
13587/* Register widths of above. */
13588static unsigned neon_shape_el_size[] =
13589{
d54af2d0 13590 16,
037e8744
JB
13591 32,
13592 64,
13593 128,
13594 0,
13595 32,
13596 32,
13597 0
13598};
13599
13600struct neon_shape_info
13601{
13602 unsigned els;
13603 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13604};
13605
13606#define S2(A,B) { SE_##A, SE_##B }
13607#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13608#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13609
13610#define X(N, L, C) { N, S##N L }
13611
13612static struct neon_shape_info neon_shape_tab[] =
13613{
13614 NEON_SHAPE_DEF
13615};
13616
13617#undef X
13618#undef S2
13619#undef S3
13620#undef S4
13621
5287ad62
JB
13622/* Bit masks used in type checking given instructions.
13623 'N_EQK' means the type must be the same as (or based on in some way) the key
13624 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13625 set, various other bits can be set as well in order to modify the meaning of
13626 the type constraint. */
13627
13628enum neon_type_mask
13629{
8e79c3df
CM
13630 N_S8 = 0x0000001,
13631 N_S16 = 0x0000002,
13632 N_S32 = 0x0000004,
13633 N_S64 = 0x0000008,
13634 N_U8 = 0x0000010,
13635 N_U16 = 0x0000020,
13636 N_U32 = 0x0000040,
13637 N_U64 = 0x0000080,
13638 N_I8 = 0x0000100,
13639 N_I16 = 0x0000200,
13640 N_I32 = 0x0000400,
13641 N_I64 = 0x0000800,
13642 N_8 = 0x0001000,
13643 N_16 = 0x0002000,
13644 N_32 = 0x0004000,
13645 N_64 = 0x0008000,
13646 N_P8 = 0x0010000,
13647 N_P16 = 0x0020000,
13648 N_F16 = 0x0040000,
13649 N_F32 = 0x0080000,
13650 N_F64 = 0x0100000,
4f51b4bd 13651 N_P64 = 0x0200000,
c921be7d
NC
13652 N_KEY = 0x1000000, /* Key element (main type specifier). */
13653 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 13654 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 13655 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
13656 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13657 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13658 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13659 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13660 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13661 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13662 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 13663 N_UTYP = 0,
4f51b4bd 13664 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
13665};
13666
dcbf9037
JB
13667#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13668
5287ad62
JB
13669#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13670#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13671#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
13672#define N_S_32 (N_S8 | N_S16 | N_S32)
13673#define N_F_16_32 (N_F16 | N_F32)
13674#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 13675#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 13676#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 13677#define N_F_ALL (N_F16 | N_F32 | N_F64)
5287ad62
JB
13678
13679/* Pass this as the first type argument to neon_check_type to ignore types
13680 altogether. */
13681#define N_IGNORE_TYPE (N_KEY | N_EQK)
13682
037e8744
JB
13683/* Select a "shape" for the current instruction (describing register types or
13684 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13685 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13686 function of operand parsing, so this function doesn't need to be called.
13687 Shapes should be listed in order of decreasing length. */
5287ad62
JB
13688
13689static enum neon_shape
037e8744 13690neon_select_shape (enum neon_shape shape, ...)
5287ad62 13691{
037e8744
JB
13692 va_list ap;
13693 enum neon_shape first_shape = shape;
5287ad62
JB
13694
13695 /* Fix missing optional operands. FIXME: we don't know at this point how
13696 many arguments we should have, so this makes the assumption that we have
13697 > 1. This is true of all current Neon opcodes, I think, but may not be
13698 true in the future. */
13699 if (!inst.operands[1].present)
13700 inst.operands[1] = inst.operands[0];
13701
037e8744 13702 va_start (ap, shape);
5f4273c7 13703
21d799b5 13704 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
13705 {
13706 unsigned j;
13707 int matches = 1;
13708
13709 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
13710 {
13711 if (!inst.operands[j].present)
13712 {
13713 matches = 0;
13714 break;
13715 }
13716
13717 switch (neon_shape_tab[shape].el[j])
13718 {
d54af2d0
RL
13719 /* If a .f16, .16, .u16, .s16 type specifier is given over
13720 a VFP single precision register operand, it's essentially
13721 means only half of the register is used.
13722
13723 If the type specifier is given after the mnemonics, the
13724 information is stored in inst.vectype. If the type specifier
13725 is given after register operand, the information is stored
13726 in inst.operands[].vectype.
13727
13728 When there is only one type specifier, and all the register
13729 operands are the same type of hardware register, the type
13730 specifier applies to all register operands.
13731
13732 If no type specifier is given, the shape is inferred from
13733 operand information.
13734
13735 for example:
13736 vadd.f16 s0, s1, s2: NS_HHH
13737 vabs.f16 s0, s1: NS_HH
13738 vmov.f16 s0, r1: NS_HR
13739 vmov.f16 r0, s1: NS_RH
13740 vcvt.f16 r0, s1: NS_RH
13741 vcvt.f16.s32 s2, s2, #29: NS_HFI
13742 vcvt.f16.s32 s2, s2: NS_HF
13743 */
13744 case SE_H:
13745 if (!(inst.operands[j].isreg
13746 && inst.operands[j].isvec
13747 && inst.operands[j].issingle
13748 && !inst.operands[j].isquad
13749 && ((inst.vectype.elems == 1
13750 && inst.vectype.el[0].size == 16)
13751 || (inst.vectype.elems > 1
13752 && inst.vectype.el[j].size == 16)
13753 || (inst.vectype.elems == 0
13754 && inst.operands[j].vectype.type != NT_invtype
13755 && inst.operands[j].vectype.size == 16))))
13756 matches = 0;
13757 break;
13758
477330fc
RM
13759 case SE_F:
13760 if (!(inst.operands[j].isreg
13761 && inst.operands[j].isvec
13762 && inst.operands[j].issingle
d54af2d0
RL
13763 && !inst.operands[j].isquad
13764 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13765 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13766 || (inst.vectype.elems == 0
13767 && (inst.operands[j].vectype.size == 32
13768 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
13769 matches = 0;
13770 break;
13771
13772 case SE_D:
13773 if (!(inst.operands[j].isreg
13774 && inst.operands[j].isvec
13775 && !inst.operands[j].isquad
13776 && !inst.operands[j].issingle))
13777 matches = 0;
13778 break;
13779
13780 case SE_R:
13781 if (!(inst.operands[j].isreg
13782 && !inst.operands[j].isvec))
13783 matches = 0;
13784 break;
13785
13786 case SE_Q:
13787 if (!(inst.operands[j].isreg
13788 && inst.operands[j].isvec
13789 && inst.operands[j].isquad
13790 && !inst.operands[j].issingle))
13791 matches = 0;
13792 break;
13793
13794 case SE_I:
13795 if (!(!inst.operands[j].isreg
13796 && !inst.operands[j].isscalar))
13797 matches = 0;
13798 break;
13799
13800 case SE_S:
13801 if (!(!inst.operands[j].isreg
13802 && inst.operands[j].isscalar))
13803 matches = 0;
13804 break;
13805
13806 case SE_L:
13807 break;
13808 }
3fde54a2
JZ
13809 if (!matches)
13810 break;
477330fc 13811 }
ad6cec43
MGD
13812 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13813 /* We've matched all the entries in the shape table, and we don't
13814 have any left over operands which have not been matched. */
477330fc 13815 break;
037e8744 13816 }
5f4273c7 13817
037e8744 13818 va_end (ap);
5287ad62 13819
037e8744
JB
13820 if (shape == NS_NULL && first_shape != NS_NULL)
13821 first_error (_("invalid instruction shape"));
5287ad62 13822
037e8744
JB
13823 return shape;
13824}
5287ad62 13825
037e8744
JB
13826/* True if SHAPE is predominantly a quadword operation (most of the time, this
13827 means the Q bit should be set). */
13828
13829static int
13830neon_quad (enum neon_shape shape)
13831{
13832 return neon_shape_class[shape] == SC_QUAD;
5287ad62 13833}
037e8744 13834
5287ad62
JB
13835static void
13836neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 13837 unsigned *g_size)
5287ad62
JB
13838{
13839 /* Allow modification to be made to types which are constrained to be
13840 based on the key element, based on bits set alongside N_EQK. */
13841 if ((typebits & N_EQK) != 0)
13842 {
13843 if ((typebits & N_HLF) != 0)
13844 *g_size /= 2;
13845 else if ((typebits & N_DBL) != 0)
13846 *g_size *= 2;
13847 if ((typebits & N_SGN) != 0)
13848 *g_type = NT_signed;
13849 else if ((typebits & N_UNS) != 0)
477330fc 13850 *g_type = NT_unsigned;
5287ad62 13851 else if ((typebits & N_INT) != 0)
477330fc 13852 *g_type = NT_integer;
5287ad62 13853 else if ((typebits & N_FLT) != 0)
477330fc 13854 *g_type = NT_float;
dcbf9037 13855 else if ((typebits & N_SIZ) != 0)
477330fc 13856 *g_type = NT_untyped;
5287ad62
JB
13857 }
13858}
5f4273c7 13859
5287ad62
JB
13860/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13861 operand type, i.e. the single type specified in a Neon instruction when it
13862 is the only one given. */
13863
13864static struct neon_type_el
13865neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13866{
13867 struct neon_type_el dest = *key;
5f4273c7 13868
9c2799c2 13869 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 13870
5287ad62
JB
13871 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13872
13873 return dest;
13874}
13875
13876/* Convert Neon type and size into compact bitmask representation. */
13877
13878static enum neon_type_mask
13879type_chk_of_el_type (enum neon_el_type type, unsigned size)
13880{
13881 switch (type)
13882 {
13883 case NT_untyped:
13884 switch (size)
477330fc
RM
13885 {
13886 case 8: return N_8;
13887 case 16: return N_16;
13888 case 32: return N_32;
13889 case 64: return N_64;
13890 default: ;
13891 }
5287ad62
JB
13892 break;
13893
13894 case NT_integer:
13895 switch (size)
477330fc
RM
13896 {
13897 case 8: return N_I8;
13898 case 16: return N_I16;
13899 case 32: return N_I32;
13900 case 64: return N_I64;
13901 default: ;
13902 }
5287ad62
JB
13903 break;
13904
13905 case NT_float:
037e8744 13906 switch (size)
477330fc 13907 {
8e79c3df 13908 case 16: return N_F16;
477330fc
RM
13909 case 32: return N_F32;
13910 case 64: return N_F64;
13911 default: ;
13912 }
5287ad62
JB
13913 break;
13914
13915 case NT_poly:
13916 switch (size)
477330fc
RM
13917 {
13918 case 8: return N_P8;
13919 case 16: return N_P16;
4f51b4bd 13920 case 64: return N_P64;
477330fc
RM
13921 default: ;
13922 }
5287ad62
JB
13923 break;
13924
13925 case NT_signed:
13926 switch (size)
477330fc
RM
13927 {
13928 case 8: return N_S8;
13929 case 16: return N_S16;
13930 case 32: return N_S32;
13931 case 64: return N_S64;
13932 default: ;
13933 }
5287ad62
JB
13934 break;
13935
13936 case NT_unsigned:
13937 switch (size)
477330fc
RM
13938 {
13939 case 8: return N_U8;
13940 case 16: return N_U16;
13941 case 32: return N_U32;
13942 case 64: return N_U64;
13943 default: ;
13944 }
5287ad62
JB
13945 break;
13946
13947 default: ;
13948 }
5f4273c7 13949
5287ad62
JB
13950 return N_UTYP;
13951}
13952
13953/* Convert compact Neon bitmask type representation to a type and size. Only
13954 handles the case where a single bit is set in the mask. */
13955
dcbf9037 13956static int
5287ad62 13957el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 13958 enum neon_type_mask mask)
5287ad62 13959{
dcbf9037
JB
13960 if ((mask & N_EQK) != 0)
13961 return FAIL;
13962
5287ad62
JB
13963 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13964 *size = 8;
c70a8987 13965 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 13966 *size = 16;
dcbf9037 13967 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 13968 *size = 32;
4f51b4bd 13969 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 13970 *size = 64;
dcbf9037
JB
13971 else
13972 return FAIL;
13973
5287ad62
JB
13974 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13975 *type = NT_signed;
dcbf9037 13976 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 13977 *type = NT_unsigned;
dcbf9037 13978 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 13979 *type = NT_integer;
dcbf9037 13980 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 13981 *type = NT_untyped;
4f51b4bd 13982 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 13983 *type = NT_poly;
d54af2d0 13984 else if ((mask & (N_F_ALL)) != 0)
5287ad62 13985 *type = NT_float;
dcbf9037
JB
13986 else
13987 return FAIL;
5f4273c7 13988
dcbf9037 13989 return SUCCESS;
5287ad62
JB
13990}
13991
13992/* Modify a bitmask of allowed types. This is only needed for type
13993 relaxation. */
13994
13995static unsigned
13996modify_types_allowed (unsigned allowed, unsigned mods)
13997{
13998 unsigned size;
13999 enum neon_el_type type;
14000 unsigned destmask;
14001 int i;
5f4273c7 14002
5287ad62 14003 destmask = 0;
5f4273c7 14004
5287ad62
JB
14005 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14006 {
21d799b5 14007 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14008 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14009 {
14010 neon_modify_type_size (mods, &type, &size);
14011 destmask |= type_chk_of_el_type (type, size);
14012 }
5287ad62 14013 }
5f4273c7 14014
5287ad62
JB
14015 return destmask;
14016}
14017
14018/* Check type and return type classification.
14019 The manual states (paraphrase): If one datatype is given, it indicates the
14020 type given in:
14021 - the second operand, if there is one
14022 - the operand, if there is no second operand
14023 - the result, if there are no operands.
14024 This isn't quite good enough though, so we use a concept of a "key" datatype
14025 which is set on a per-instruction basis, which is the one which matters when
14026 only one data type is written.
14027 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14028 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14029
14030static struct neon_type_el
14031neon_check_type (unsigned els, enum neon_shape ns, ...)
14032{
14033 va_list ap;
14034 unsigned i, pass, key_el = 0;
14035 unsigned types[NEON_MAX_TYPE_ELS];
14036 enum neon_el_type k_type = NT_invtype;
14037 unsigned k_size = -1u;
14038 struct neon_type_el badtype = {NT_invtype, -1};
14039 unsigned key_allowed = 0;
14040
14041 /* Optional registers in Neon instructions are always (not) in operand 1.
14042 Fill in the missing operand here, if it was omitted. */
14043 if (els > 1 && !inst.operands[1].present)
14044 inst.operands[1] = inst.operands[0];
14045
14046 /* Suck up all the varargs. */
14047 va_start (ap, ns);
14048 for (i = 0; i < els; i++)
14049 {
14050 unsigned thisarg = va_arg (ap, unsigned);
14051 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14052 {
14053 va_end (ap);
14054 return badtype;
14055 }
5287ad62
JB
14056 types[i] = thisarg;
14057 if ((thisarg & N_KEY) != 0)
477330fc 14058 key_el = i;
5287ad62
JB
14059 }
14060 va_end (ap);
14061
dcbf9037
JB
14062 if (inst.vectype.elems > 0)
14063 for (i = 0; i < els; i++)
14064 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14065 {
14066 first_error (_("types specified in both the mnemonic and operands"));
14067 return badtype;
14068 }
dcbf9037 14069
5287ad62
JB
14070 /* Duplicate inst.vectype elements here as necessary.
14071 FIXME: No idea if this is exactly the same as the ARM assembler,
14072 particularly when an insn takes one register and one non-register
14073 operand. */
14074 if (inst.vectype.elems == 1 && els > 1)
14075 {
14076 unsigned j;
14077 inst.vectype.elems = els;
14078 inst.vectype.el[key_el] = inst.vectype.el[0];
14079 for (j = 0; j < els; j++)
477330fc
RM
14080 if (j != key_el)
14081 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14082 types[j]);
dcbf9037
JB
14083 }
14084 else if (inst.vectype.elems == 0 && els > 0)
14085 {
14086 unsigned j;
14087 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14088 after each operand. We allow some flexibility here; as long as the
14089 "key" operand has a type, we can infer the others. */
dcbf9037 14090 for (j = 0; j < els; j++)
477330fc
RM
14091 if (inst.operands[j].vectype.type != NT_invtype)
14092 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14093
14094 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14095 {
14096 for (j = 0; j < els; j++)
14097 if (inst.operands[j].vectype.type == NT_invtype)
14098 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14099 types[j]);
14100 }
dcbf9037 14101 else
477330fc
RM
14102 {
14103 first_error (_("operand types can't be inferred"));
14104 return badtype;
14105 }
5287ad62
JB
14106 }
14107 else if (inst.vectype.elems != els)
14108 {
dcbf9037 14109 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14110 return badtype;
14111 }
14112
14113 for (pass = 0; pass < 2; pass++)
14114 {
14115 for (i = 0; i < els; i++)
477330fc
RM
14116 {
14117 unsigned thisarg = types[i];
14118 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14119 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14120 enum neon_el_type g_type = inst.vectype.el[i].type;
14121 unsigned g_size = inst.vectype.el[i].size;
14122
14123 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14124 integer types if sign-specific variants are unavailable. */
477330fc 14125 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14126 && (types_allowed & N_SU_ALL) == 0)
14127 g_type = NT_integer;
14128
477330fc 14129 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14130 them. Some instructions only care about signs for some element
14131 sizes, so handle that properly. */
477330fc 14132 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14133 && ((g_size == 8 && (types_allowed & N_8) != 0)
14134 || (g_size == 16 && (types_allowed & N_16) != 0)
14135 || (g_size == 32 && (types_allowed & N_32) != 0)
14136 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14137 g_type = NT_untyped;
14138
477330fc
RM
14139 if (pass == 0)
14140 {
14141 if ((thisarg & N_KEY) != 0)
14142 {
14143 k_type = g_type;
14144 k_size = g_size;
14145 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14146
14147 /* Check architecture constraint on FP16 extension. */
14148 if (k_size == 16
14149 && k_type == NT_float
14150 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14151 {
14152 inst.error = _(BAD_FP16);
14153 return badtype;
14154 }
477330fc
RM
14155 }
14156 }
14157 else
14158 {
14159 if ((thisarg & N_VFP) != 0)
14160 {
14161 enum neon_shape_el regshape;
14162 unsigned regwidth, match;
99b253c5
NC
14163
14164 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14165 if (ns == NS_NULL)
14166 {
14167 first_error (_("invalid instruction shape"));
14168 return badtype;
14169 }
477330fc
RM
14170 regshape = neon_shape_tab[ns].el[i];
14171 regwidth = neon_shape_el_size[regshape];
14172
14173 /* In VFP mode, operands must match register widths. If we
14174 have a key operand, use its width, else use the width of
14175 the current operand. */
14176 if (k_size != -1u)
14177 match = k_size;
14178 else
14179 match = g_size;
14180
9db2f6b4
RL
14181 /* FP16 will use a single precision register. */
14182 if (regwidth == 32 && match == 16)
14183 {
14184 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14185 match = regwidth;
14186 else
14187 {
14188 inst.error = _(BAD_FP16);
14189 return badtype;
14190 }
14191 }
14192
477330fc
RM
14193 if (regwidth != match)
14194 {
14195 first_error (_("operand size must match register width"));
14196 return badtype;
14197 }
14198 }
14199
14200 if ((thisarg & N_EQK) == 0)
14201 {
14202 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14203
14204 if ((given_type & types_allowed) == 0)
14205 {
14206 first_error (_("bad type in Neon instruction"));
14207 return badtype;
14208 }
14209 }
14210 else
14211 {
14212 enum neon_el_type mod_k_type = k_type;
14213 unsigned mod_k_size = k_size;
14214 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14215 if (g_type != mod_k_type || g_size != mod_k_size)
14216 {
14217 first_error (_("inconsistent types in Neon instruction"));
14218 return badtype;
14219 }
14220 }
14221 }
14222 }
5287ad62
JB
14223 }
14224
14225 return inst.vectype.el[key_el];
14226}
14227
037e8744 14228/* Neon-style VFP instruction forwarding. */
5287ad62 14229
037e8744
JB
14230/* Thumb VFP instructions have 0xE in the condition field. */
14231
14232static void
14233do_vfp_cond_or_thumb (void)
5287ad62 14234{
88714cb8
DG
14235 inst.is_neon = 1;
14236
5287ad62 14237 if (thumb_mode)
037e8744 14238 inst.instruction |= 0xe0000000;
5287ad62 14239 else
037e8744 14240 inst.instruction |= inst.cond << 28;
5287ad62
JB
14241}
14242
037e8744
JB
14243/* Look up and encode a simple mnemonic, for use as a helper function for the
14244 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14245 etc. It is assumed that operand parsing has already been done, and that the
14246 operands are in the form expected by the given opcode (this isn't necessarily
14247 the same as the form in which they were parsed, hence some massaging must
14248 take place before this function is called).
14249 Checks current arch version against that in the looked-up opcode. */
5287ad62 14250
037e8744
JB
14251static void
14252do_vfp_nsyn_opcode (const char *opname)
5287ad62 14253{
037e8744 14254 const struct asm_opcode *opcode;
5f4273c7 14255
21d799b5 14256 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 14257
037e8744
JB
14258 if (!opcode)
14259 abort ();
5287ad62 14260
037e8744 14261 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
14262 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14263 _(BAD_FPU));
5287ad62 14264
88714cb8
DG
14265 inst.is_neon = 1;
14266
037e8744
JB
14267 if (thumb_mode)
14268 {
14269 inst.instruction = opcode->tvalue;
14270 opcode->tencode ();
14271 }
14272 else
14273 {
14274 inst.instruction = (inst.cond << 28) | opcode->avalue;
14275 opcode->aencode ();
14276 }
14277}
5287ad62
JB
14278
14279static void
037e8744 14280do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 14281{
037e8744
JB
14282 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14283
9db2f6b4 14284 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14285 {
14286 if (is_add)
477330fc 14287 do_vfp_nsyn_opcode ("fadds");
037e8744 14288 else
477330fc 14289 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
14290
14291 /* ARMv8.2 fp16 instruction. */
14292 if (rs == NS_HHH)
14293 do_scalar_fp16_v82_encode ();
037e8744
JB
14294 }
14295 else
14296 {
14297 if (is_add)
477330fc 14298 do_vfp_nsyn_opcode ("faddd");
037e8744 14299 else
477330fc 14300 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
14301 }
14302}
14303
14304/* Check operand types to see if this is a VFP instruction, and if so call
14305 PFN (). */
14306
14307static int
14308try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14309{
14310 enum neon_shape rs;
14311 struct neon_type_el et;
14312
14313 switch (args)
14314 {
14315 case 2:
9db2f6b4
RL
14316 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14317 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 14318 break;
5f4273c7 14319
037e8744 14320 case 3:
9db2f6b4
RL
14321 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14322 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14323 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
14324 break;
14325
14326 default:
14327 abort ();
14328 }
14329
14330 if (et.type != NT_invtype)
14331 {
14332 pfn (rs);
14333 return SUCCESS;
14334 }
037e8744 14335
99b253c5 14336 inst.error = NULL;
037e8744
JB
14337 return FAIL;
14338}
14339
14340static void
14341do_vfp_nsyn_mla_mls (enum neon_shape rs)
14342{
14343 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 14344
9db2f6b4 14345 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14346 {
14347 if (is_mla)
477330fc 14348 do_vfp_nsyn_opcode ("fmacs");
037e8744 14349 else
477330fc 14350 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
14351
14352 /* ARMv8.2 fp16 instruction. */
14353 if (rs == NS_HHH)
14354 do_scalar_fp16_v82_encode ();
037e8744
JB
14355 }
14356 else
14357 {
14358 if (is_mla)
477330fc 14359 do_vfp_nsyn_opcode ("fmacd");
037e8744 14360 else
477330fc 14361 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
14362 }
14363}
14364
62f3b8c8
PB
14365static void
14366do_vfp_nsyn_fma_fms (enum neon_shape rs)
14367{
14368 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14369
9db2f6b4 14370 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
14371 {
14372 if (is_fma)
477330fc 14373 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 14374 else
477330fc 14375 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
14376
14377 /* ARMv8.2 fp16 instruction. */
14378 if (rs == NS_HHH)
14379 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
14380 }
14381 else
14382 {
14383 if (is_fma)
477330fc 14384 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 14385 else
477330fc 14386 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
14387 }
14388}
14389
037e8744
JB
14390static void
14391do_vfp_nsyn_mul (enum neon_shape rs)
14392{
9db2f6b4
RL
14393 if (rs == NS_FFF || rs == NS_HHH)
14394 {
14395 do_vfp_nsyn_opcode ("fmuls");
14396
14397 /* ARMv8.2 fp16 instruction. */
14398 if (rs == NS_HHH)
14399 do_scalar_fp16_v82_encode ();
14400 }
037e8744
JB
14401 else
14402 do_vfp_nsyn_opcode ("fmuld");
14403}
14404
14405static void
14406do_vfp_nsyn_abs_neg (enum neon_shape rs)
14407{
14408 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 14409 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 14410
9db2f6b4 14411 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
14412 {
14413 if (is_neg)
477330fc 14414 do_vfp_nsyn_opcode ("fnegs");
037e8744 14415 else
477330fc 14416 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
14417
14418 /* ARMv8.2 fp16 instruction. */
14419 if (rs == NS_HH)
14420 do_scalar_fp16_v82_encode ();
037e8744
JB
14421 }
14422 else
14423 {
14424 if (is_neg)
477330fc 14425 do_vfp_nsyn_opcode ("fnegd");
037e8744 14426 else
477330fc 14427 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
14428 }
14429}
14430
14431/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14432 insns belong to Neon, and are handled elsewhere. */
14433
14434static void
14435do_vfp_nsyn_ldm_stm (int is_dbmode)
14436{
14437 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14438 if (is_ldm)
14439 {
14440 if (is_dbmode)
477330fc 14441 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 14442 else
477330fc 14443 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
14444 }
14445 else
14446 {
14447 if (is_dbmode)
477330fc 14448 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 14449 else
477330fc 14450 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
14451 }
14452}
14453
037e8744
JB
14454static void
14455do_vfp_nsyn_sqrt (void)
14456{
9db2f6b4
RL
14457 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14458 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14459
9db2f6b4
RL
14460 if (rs == NS_FF || rs == NS_HH)
14461 {
14462 do_vfp_nsyn_opcode ("fsqrts");
14463
14464 /* ARMv8.2 fp16 instruction. */
14465 if (rs == NS_HH)
14466 do_scalar_fp16_v82_encode ();
14467 }
037e8744
JB
14468 else
14469 do_vfp_nsyn_opcode ("fsqrtd");
14470}
14471
14472static void
14473do_vfp_nsyn_div (void)
14474{
9db2f6b4 14475 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14476 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14477 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14478
9db2f6b4
RL
14479 if (rs == NS_FFF || rs == NS_HHH)
14480 {
14481 do_vfp_nsyn_opcode ("fdivs");
14482
14483 /* ARMv8.2 fp16 instruction. */
14484 if (rs == NS_HHH)
14485 do_scalar_fp16_v82_encode ();
14486 }
037e8744
JB
14487 else
14488 do_vfp_nsyn_opcode ("fdivd");
14489}
14490
14491static void
14492do_vfp_nsyn_nmul (void)
14493{
9db2f6b4 14494 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14495 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14496 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14497
9db2f6b4 14498 if (rs == NS_FFF || rs == NS_HHH)
037e8744 14499 {
88714cb8 14500 NEON_ENCODE (SINGLE, inst);
037e8744 14501 do_vfp_sp_dyadic ();
9db2f6b4
RL
14502
14503 /* ARMv8.2 fp16 instruction. */
14504 if (rs == NS_HHH)
14505 do_scalar_fp16_v82_encode ();
037e8744
JB
14506 }
14507 else
14508 {
88714cb8 14509 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
14510 do_vfp_dp_rd_rn_rm ();
14511 }
14512 do_vfp_cond_or_thumb ();
9db2f6b4 14513
037e8744
JB
14514}
14515
14516static void
14517do_vfp_nsyn_cmp (void)
14518{
9db2f6b4 14519 enum neon_shape rs;
037e8744
JB
14520 if (inst.operands[1].isreg)
14521 {
9db2f6b4
RL
14522 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14523 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14524
9db2f6b4 14525 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
14526 {
14527 NEON_ENCODE (SINGLE, inst);
14528 do_vfp_sp_monadic ();
14529 }
037e8744 14530 else
477330fc
RM
14531 {
14532 NEON_ENCODE (DOUBLE, inst);
14533 do_vfp_dp_rd_rm ();
14534 }
037e8744
JB
14535 }
14536 else
14537 {
9db2f6b4
RL
14538 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14539 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
14540
14541 switch (inst.instruction & 0x0fffffff)
477330fc
RM
14542 {
14543 case N_MNEM_vcmp:
14544 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14545 break;
14546 case N_MNEM_vcmpe:
14547 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14548 break;
14549 default:
14550 abort ();
14551 }
5f4273c7 14552
9db2f6b4 14553 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
14554 {
14555 NEON_ENCODE (SINGLE, inst);
14556 do_vfp_sp_compare_z ();
14557 }
037e8744 14558 else
477330fc
RM
14559 {
14560 NEON_ENCODE (DOUBLE, inst);
14561 do_vfp_dp_rd ();
14562 }
037e8744
JB
14563 }
14564 do_vfp_cond_or_thumb ();
9db2f6b4
RL
14565
14566 /* ARMv8.2 fp16 instruction. */
14567 if (rs == NS_HI || rs == NS_HH)
14568 do_scalar_fp16_v82_encode ();
037e8744
JB
14569}
14570
14571static void
14572nsyn_insert_sp (void)
14573{
14574 inst.operands[1] = inst.operands[0];
14575 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 14576 inst.operands[0].reg = REG_SP;
037e8744
JB
14577 inst.operands[0].isreg = 1;
14578 inst.operands[0].writeback = 1;
14579 inst.operands[0].present = 1;
14580}
14581
14582static void
14583do_vfp_nsyn_push (void)
14584{
14585 nsyn_insert_sp ();
b126985e
NC
14586
14587 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14588 _("register list must contain at least 1 and at most 16 "
14589 "registers"));
14590
037e8744
JB
14591 if (inst.operands[1].issingle)
14592 do_vfp_nsyn_opcode ("fstmdbs");
14593 else
14594 do_vfp_nsyn_opcode ("fstmdbd");
14595}
14596
14597static void
14598do_vfp_nsyn_pop (void)
14599{
14600 nsyn_insert_sp ();
b126985e
NC
14601
14602 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14603 _("register list must contain at least 1 and at most 16 "
14604 "registers"));
14605
037e8744 14606 if (inst.operands[1].issingle)
22b5b651 14607 do_vfp_nsyn_opcode ("fldmias");
037e8744 14608 else
22b5b651 14609 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
14610}
14611
14612/* Fix up Neon data-processing instructions, ORing in the correct bits for
14613 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14614
88714cb8
DG
14615static void
14616neon_dp_fixup (struct arm_it* insn)
037e8744 14617{
88714cb8
DG
14618 unsigned int i = insn->instruction;
14619 insn->is_neon = 1;
14620
037e8744
JB
14621 if (thumb_mode)
14622 {
14623 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14624 if (i & (1 << 24))
477330fc 14625 i |= 1 << 28;
5f4273c7 14626
037e8744 14627 i &= ~(1 << 24);
5f4273c7 14628
037e8744
JB
14629 i |= 0xef000000;
14630 }
14631 else
14632 i |= 0xf2000000;
5f4273c7 14633
88714cb8 14634 insn->instruction = i;
037e8744
JB
14635}
14636
14637/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14638 (0, 1, 2, 3). */
14639
14640static unsigned
14641neon_logbits (unsigned x)
14642{
14643 return ffs (x) - 4;
14644}
14645
14646#define LOW4(R) ((R) & 0xf)
14647#define HI1(R) (((R) >> 4) & 1)
14648
14649/* Encode insns with bit pattern:
14650
14651 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14652 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 14653
037e8744
JB
14654 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14655 different meaning for some instruction. */
14656
14657static void
14658neon_three_same (int isquad, int ubit, int size)
14659{
14660 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14661 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14662 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14663 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14664 inst.instruction |= LOW4 (inst.operands[2].reg);
14665 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14666 inst.instruction |= (isquad != 0) << 6;
14667 inst.instruction |= (ubit != 0) << 24;
14668 if (size != -1)
14669 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14670
88714cb8 14671 neon_dp_fixup (&inst);
037e8744
JB
14672}
14673
14674/* Encode instructions of the form:
14675
14676 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14677 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
14678
14679 Don't write size if SIZE == -1. */
14680
14681static void
14682neon_two_same (int qbit, int ubit, int size)
14683{
14684 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14685 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14686 inst.instruction |= LOW4 (inst.operands[1].reg);
14687 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14688 inst.instruction |= (qbit != 0) << 6;
14689 inst.instruction |= (ubit != 0) << 24;
14690
14691 if (size != -1)
14692 inst.instruction |= neon_logbits (size) << 18;
14693
88714cb8 14694 neon_dp_fixup (&inst);
5287ad62
JB
14695}
14696
14697/* Neon instruction encoders, in approximate order of appearance. */
14698
14699static void
14700do_neon_dyadic_i_su (void)
14701{
037e8744 14702 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14703 struct neon_type_el et = neon_check_type (3, rs,
14704 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 14705 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14706}
14707
14708static void
14709do_neon_dyadic_i64_su (void)
14710{
037e8744 14711 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14712 struct neon_type_el et = neon_check_type (3, rs,
14713 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 14714 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14715}
14716
14717static void
14718neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 14719 unsigned immbits)
5287ad62
JB
14720{
14721 unsigned size = et.size >> 3;
14722 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14723 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14724 inst.instruction |= LOW4 (inst.operands[1].reg);
14725 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14726 inst.instruction |= (isquad != 0) << 6;
14727 inst.instruction |= immbits << 16;
14728 inst.instruction |= (size >> 3) << 7;
14729 inst.instruction |= (size & 0x7) << 19;
14730 if (write_ubit)
14731 inst.instruction |= (uval != 0) << 24;
14732
88714cb8 14733 neon_dp_fixup (&inst);
5287ad62
JB
14734}
14735
14736static void
14737do_neon_shl_imm (void)
14738{
14739 if (!inst.operands[2].isreg)
14740 {
037e8744 14741 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14742 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
14743 int imm = inst.operands[2].imm;
14744
14745 constraint (imm < 0 || (unsigned)imm >= et.size,
14746 _("immediate out of range for shift"));
88714cb8 14747 NEON_ENCODE (IMMED, inst);
cb3b1e65 14748 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14749 }
14750 else
14751 {
037e8744 14752 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14753 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14754 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14755 unsigned int tmp;
14756
14757 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
14758 vshl.xx Dd, Dm, Dn
14759 whereas other 3-register operations encoded by neon_three_same have
14760 syntax like:
14761 vadd.xx Dd, Dn, Dm
14762 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14763 here. */
627907b7
JB
14764 tmp = inst.operands[2].reg;
14765 inst.operands[2].reg = inst.operands[1].reg;
14766 inst.operands[1].reg = tmp;
88714cb8 14767 NEON_ENCODE (INTEGER, inst);
037e8744 14768 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14769 }
14770}
14771
14772static void
14773do_neon_qshl_imm (void)
14774{
14775 if (!inst.operands[2].isreg)
14776 {
037e8744 14777 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14778 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 14779 int imm = inst.operands[2].imm;
627907b7 14780
cb3b1e65
JB
14781 constraint (imm < 0 || (unsigned)imm >= et.size,
14782 _("immediate out of range for shift"));
88714cb8 14783 NEON_ENCODE (IMMED, inst);
cb3b1e65 14784 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
14785 }
14786 else
14787 {
037e8744 14788 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14789 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14790 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14791 unsigned int tmp;
14792
14793 /* See note in do_neon_shl_imm. */
14794 tmp = inst.operands[2].reg;
14795 inst.operands[2].reg = inst.operands[1].reg;
14796 inst.operands[1].reg = tmp;
88714cb8 14797 NEON_ENCODE (INTEGER, inst);
037e8744 14798 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14799 }
14800}
14801
627907b7
JB
14802static void
14803do_neon_rshl (void)
14804{
14805 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14806 struct neon_type_el et = neon_check_type (3, rs,
14807 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14808 unsigned int tmp;
14809
14810 tmp = inst.operands[2].reg;
14811 inst.operands[2].reg = inst.operands[1].reg;
14812 inst.operands[1].reg = tmp;
14813 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14814}
14815
5287ad62
JB
14816static int
14817neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14818{
036dc3f7
PB
14819 /* Handle .I8 pseudo-instructions. */
14820 if (size == 8)
5287ad62 14821 {
5287ad62 14822 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
14823 FIXME is this the intended semantics? There doesn't seem much point in
14824 accepting .I8 if so. */
5287ad62
JB
14825 immediate |= immediate << 8;
14826 size = 16;
036dc3f7
PB
14827 }
14828
14829 if (size >= 32)
14830 {
14831 if (immediate == (immediate & 0x000000ff))
14832 {
14833 *immbits = immediate;
14834 return 0x1;
14835 }
14836 else if (immediate == (immediate & 0x0000ff00))
14837 {
14838 *immbits = immediate >> 8;
14839 return 0x3;
14840 }
14841 else if (immediate == (immediate & 0x00ff0000))
14842 {
14843 *immbits = immediate >> 16;
14844 return 0x5;
14845 }
14846 else if (immediate == (immediate & 0xff000000))
14847 {
14848 *immbits = immediate >> 24;
14849 return 0x7;
14850 }
14851 if ((immediate & 0xffff) != (immediate >> 16))
14852 goto bad_immediate;
14853 immediate &= 0xffff;
5287ad62
JB
14854 }
14855
14856 if (immediate == (immediate & 0x000000ff))
14857 {
14858 *immbits = immediate;
036dc3f7 14859 return 0x9;
5287ad62
JB
14860 }
14861 else if (immediate == (immediate & 0x0000ff00))
14862 {
14863 *immbits = immediate >> 8;
036dc3f7 14864 return 0xb;
5287ad62
JB
14865 }
14866
14867 bad_immediate:
dcbf9037 14868 first_error (_("immediate value out of range"));
5287ad62
JB
14869 return FAIL;
14870}
14871
5287ad62
JB
14872static void
14873do_neon_logic (void)
14874{
14875 if (inst.operands[2].present && inst.operands[2].isreg)
14876 {
037e8744 14877 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14878 neon_check_type (3, rs, N_IGNORE_TYPE);
14879 /* U bit and size field were set as part of the bitmask. */
88714cb8 14880 NEON_ENCODE (INTEGER, inst);
037e8744 14881 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14882 }
14883 else
14884 {
4316f0d2
DG
14885 const int three_ops_form = (inst.operands[2].present
14886 && !inst.operands[2].isreg);
14887 const int immoperand = (three_ops_form ? 2 : 1);
14888 enum neon_shape rs = (three_ops_form
14889 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14890 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 14891 struct neon_type_el et = neon_check_type (2, rs,
477330fc 14892 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 14893 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
14894 unsigned immbits;
14895 int cmode;
5f4273c7 14896
5287ad62 14897 if (et.type == NT_invtype)
477330fc 14898 return;
5f4273c7 14899
4316f0d2
DG
14900 if (three_ops_form)
14901 constraint (inst.operands[0].reg != inst.operands[1].reg,
14902 _("first and second operands shall be the same register"));
14903
88714cb8 14904 NEON_ENCODE (IMMED, inst);
5287ad62 14905
4316f0d2 14906 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
14907 if (et.size == 64)
14908 {
14909 /* .i64 is a pseudo-op, so the immediate must be a repeating
14910 pattern. */
4316f0d2
DG
14911 if (immbits != (inst.operands[immoperand].regisimm ?
14912 inst.operands[immoperand].reg : 0))
036dc3f7
PB
14913 {
14914 /* Set immbits to an invalid constant. */
14915 immbits = 0xdeadbeef;
14916 }
14917 }
14918
5287ad62 14919 switch (opcode)
477330fc
RM
14920 {
14921 case N_MNEM_vbic:
14922 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14923 break;
14924
14925 case N_MNEM_vorr:
14926 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14927 break;
14928
14929 case N_MNEM_vand:
14930 /* Pseudo-instruction for VBIC. */
14931 neon_invert_size (&immbits, 0, et.size);
14932 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14933 break;
14934
14935 case N_MNEM_vorn:
14936 /* Pseudo-instruction for VORR. */
14937 neon_invert_size (&immbits, 0, et.size);
14938 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14939 break;
14940
14941 default:
14942 abort ();
14943 }
5287ad62
JB
14944
14945 if (cmode == FAIL)
477330fc 14946 return;
5287ad62 14947
037e8744 14948 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14949 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14950 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14951 inst.instruction |= cmode << 8;
14952 neon_write_immbits (immbits);
5f4273c7 14953
88714cb8 14954 neon_dp_fixup (&inst);
5287ad62
JB
14955 }
14956}
14957
14958static void
14959do_neon_bitfield (void)
14960{
037e8744 14961 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14962 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 14963 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14964}
14965
14966static void
dcbf9037 14967neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 14968 unsigned destbits)
5287ad62 14969{
037e8744 14970 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14971 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 14972 types | N_KEY);
5287ad62
JB
14973 if (et.type == NT_float)
14974 {
88714cb8 14975 NEON_ENCODE (FLOAT, inst);
cc933301 14976 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
14977 }
14978 else
14979 {
88714cb8 14980 NEON_ENCODE (INTEGER, inst);
037e8744 14981 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
14982 }
14983}
14984
14985static void
14986do_neon_dyadic_if_su (void)
14987{
dcbf9037 14988 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14989}
14990
14991static void
14992do_neon_dyadic_if_su_d (void)
14993{
14994 /* This version only allow D registers, but that constraint is enforced during
14995 operand parsing so we don't need to do anything extra here. */
dcbf9037 14996 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14997}
14998
5287ad62
JB
14999static void
15000do_neon_dyadic_if_i_d (void)
15001{
428e3f1f
PB
15002 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15003 affected if we specify unsigned args. */
15004 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
15005}
15006
037e8744
JB
15007enum vfp_or_neon_is_neon_bits
15008{
15009 NEON_CHECK_CC = 1,
73924fbc
MGD
15010 NEON_CHECK_ARCH = 2,
15011 NEON_CHECK_ARCH8 = 4
037e8744
JB
15012};
15013
15014/* Call this function if an instruction which may have belonged to the VFP or
15015 Neon instruction sets, but turned out to be a Neon instruction (due to the
15016 operand types involved, etc.). We have to check and/or fix-up a couple of
15017 things:
15018
15019 - Make sure the user hasn't attempted to make a Neon instruction
15020 conditional.
15021 - Alter the value in the condition code field if necessary.
15022 - Make sure that the arch supports Neon instructions.
15023
15024 Which of these operations take place depends on bits from enum
15025 vfp_or_neon_is_neon_bits.
15026
15027 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15028 current instruction's condition is COND_ALWAYS, the condition field is
15029 changed to inst.uncond_value. This is necessary because instructions shared
15030 between VFP and Neon may be conditional for the VFP variants only, and the
15031 unconditional Neon version must have, e.g., 0xF in the condition field. */
15032
15033static int
15034vfp_or_neon_is_neon (unsigned check)
15035{
15036 /* Conditions are always legal in Thumb mode (IT blocks). */
15037 if (!thumb_mode && (check & NEON_CHECK_CC))
15038 {
15039 if (inst.cond != COND_ALWAYS)
477330fc
RM
15040 {
15041 first_error (_(BAD_COND));
15042 return FAIL;
15043 }
037e8744 15044 if (inst.uncond_value != -1)
477330fc 15045 inst.instruction |= inst.uncond_value << 28;
037e8744 15046 }
5f4273c7 15047
037e8744 15048 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
15049 && !mark_feature_used (&fpu_neon_ext_v1))
15050 {
15051 first_error (_(BAD_FPU));
15052 return FAIL;
15053 }
15054
15055 if ((check & NEON_CHECK_ARCH8)
15056 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
15057 {
15058 first_error (_(BAD_FPU));
15059 return FAIL;
15060 }
5f4273c7 15061
037e8744
JB
15062 return SUCCESS;
15063}
15064
5287ad62
JB
15065static void
15066do_neon_addsub_if_i (void)
15067{
037e8744
JB
15068 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15069 return;
15070
15071 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15072 return;
15073
5287ad62
JB
15074 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15075 affected if we specify unsigned args. */
dcbf9037 15076 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
15077}
15078
15079/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15080 result to be:
15081 V<op> A,B (A is operand 0, B is operand 2)
15082 to mean:
15083 V<op> A,B,A
15084 not:
15085 V<op> A,B,B
15086 so handle that case specially. */
15087
15088static void
15089neon_exchange_operands (void)
15090{
5287ad62
JB
15091 if (inst.operands[1].present)
15092 {
e1fa0163
NC
15093 void *scratch = xmalloc (sizeof (inst.operands[0]));
15094
5287ad62
JB
15095 /* Swap operands[1] and operands[2]. */
15096 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15097 inst.operands[1] = inst.operands[2];
15098 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 15099 free (scratch);
5287ad62
JB
15100 }
15101 else
15102 {
15103 inst.operands[1] = inst.operands[2];
15104 inst.operands[2] = inst.operands[0];
15105 }
15106}
15107
15108static void
15109neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15110{
15111 if (inst.operands[2].isreg)
15112 {
15113 if (invert)
477330fc 15114 neon_exchange_operands ();
dcbf9037 15115 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
15116 }
15117 else
15118 {
037e8744 15119 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 15120 struct neon_type_el et = neon_check_type (2, rs,
477330fc 15121 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 15122
88714cb8 15123 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15124 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15125 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15126 inst.instruction |= LOW4 (inst.operands[1].reg);
15127 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15128 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15129 inst.instruction |= (et.type == NT_float) << 10;
15130 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15131
88714cb8 15132 neon_dp_fixup (&inst);
5287ad62
JB
15133 }
15134}
15135
15136static void
15137do_neon_cmp (void)
15138{
cc933301 15139 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
15140}
15141
15142static void
15143do_neon_cmp_inv (void)
15144{
cc933301 15145 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
15146}
15147
15148static void
15149do_neon_ceq (void)
15150{
15151 neon_compare (N_IF_32, N_IF_32, FALSE);
15152}
15153
15154/* For multiply instructions, we have the possibility of 16-bit or 32-bit
15155 scalars, which are encoded in 5 bits, M : Rm.
15156 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15157 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
15158 index in M.
15159
15160 Dot Product instructions are similar to multiply instructions except elsize
15161 should always be 32.
15162
15163 This function translates SCALAR, which is GAS's internal encoding of indexed
15164 scalar register, to raw encoding. There is also register and index range
15165 check based on ELSIZE. */
5287ad62
JB
15166
15167static unsigned
15168neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15169{
dcbf9037
JB
15170 unsigned regno = NEON_SCALAR_REG (scalar);
15171 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
15172
15173 switch (elsize)
15174 {
15175 case 16:
15176 if (regno > 7 || elno > 3)
477330fc 15177 goto bad_scalar;
5287ad62 15178 return regno | (elno << 3);
5f4273c7 15179
5287ad62
JB
15180 case 32:
15181 if (regno > 15 || elno > 1)
477330fc 15182 goto bad_scalar;
5287ad62
JB
15183 return regno | (elno << 4);
15184
15185 default:
15186 bad_scalar:
dcbf9037 15187 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
15188 }
15189
15190 return 0;
15191}
15192
15193/* Encode multiply / multiply-accumulate scalar instructions. */
15194
15195static void
15196neon_mul_mac (struct neon_type_el et, int ubit)
15197{
dcbf9037
JB
15198 unsigned scalar;
15199
15200 /* Give a more helpful error message if we have an invalid type. */
15201 if (et.type == NT_invtype)
15202 return;
5f4273c7 15203
dcbf9037 15204 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
15205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15207 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15208 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15209 inst.instruction |= LOW4 (scalar);
15210 inst.instruction |= HI1 (scalar) << 5;
15211 inst.instruction |= (et.type == NT_float) << 8;
15212 inst.instruction |= neon_logbits (et.size) << 20;
15213 inst.instruction |= (ubit != 0) << 24;
15214
88714cb8 15215 neon_dp_fixup (&inst);
5287ad62
JB
15216}
15217
15218static void
15219do_neon_mac_maybe_scalar (void)
15220{
037e8744
JB
15221 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15222 return;
15223
15224 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15225 return;
15226
5287ad62
JB
15227 if (inst.operands[2].isscalar)
15228 {
037e8744 15229 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15230 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 15231 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 15232 NEON_ENCODE (SCALAR, inst);
037e8744 15233 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15234 }
15235 else
428e3f1f
PB
15236 {
15237 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15238 affected if we specify unsigned args. */
15239 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15240 }
5287ad62
JB
15241}
15242
62f3b8c8
PB
15243static void
15244do_neon_fmac (void)
15245{
15246 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15247 return;
15248
15249 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15250 return;
15251
15252 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15253}
15254
5287ad62
JB
15255static void
15256do_neon_tst (void)
15257{
037e8744 15258 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15259 struct neon_type_el et = neon_check_type (3, rs,
15260 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 15261 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15262}
15263
15264/* VMUL with 3 registers allows the P8 type. The scalar version supports the
15265 same types as the MAC equivalents. The polynomial type for this instruction
15266 is encoded the same as the integer type. */
15267
15268static void
15269do_neon_mul (void)
15270{
037e8744
JB
15271 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15272 return;
15273
15274 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15275 return;
15276
5287ad62
JB
15277 if (inst.operands[2].isscalar)
15278 do_neon_mac_maybe_scalar ();
15279 else
cc933301 15280 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
15281}
15282
15283static void
15284do_neon_qdmulh (void)
15285{
15286 if (inst.operands[2].isscalar)
15287 {
037e8744 15288 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15289 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15290 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15291 NEON_ENCODE (SCALAR, inst);
037e8744 15292 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15293 }
15294 else
15295 {
037e8744 15296 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15297 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15298 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15299 NEON_ENCODE (INTEGER, inst);
5287ad62 15300 /* The U bit (rounding) comes from bit mask. */
037e8744 15301 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15302 }
15303}
15304
643afb90
MW
15305static void
15306do_neon_qrdmlah (void)
15307{
15308 /* Check we're on the correct architecture. */
15309 if (!mark_feature_used (&fpu_neon_ext_armv8))
15310 inst.error =
15311 _("instruction form not available on this architecture.");
15312 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15313 {
15314 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15315 record_feature_use (&fpu_neon_ext_v8_1);
15316 }
15317
15318 if (inst.operands[2].isscalar)
15319 {
15320 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15321 struct neon_type_el et = neon_check_type (3, rs,
15322 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15323 NEON_ENCODE (SCALAR, inst);
15324 neon_mul_mac (et, neon_quad (rs));
15325 }
15326 else
15327 {
15328 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15329 struct neon_type_el et = neon_check_type (3, rs,
15330 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15331 NEON_ENCODE (INTEGER, inst);
15332 /* The U bit (rounding) comes from bit mask. */
15333 neon_three_same (neon_quad (rs), 0, et.size);
15334 }
15335}
15336
5287ad62
JB
15337static void
15338do_neon_fcmp_absolute (void)
15339{
037e8744 15340 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15341 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15342 N_F_16_32 | N_KEY);
5287ad62 15343 /* Size field comes from bit mask. */
cc933301 15344 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15345}
15346
15347static void
15348do_neon_fcmp_absolute_inv (void)
15349{
15350 neon_exchange_operands ();
15351 do_neon_fcmp_absolute ();
15352}
15353
15354static void
15355do_neon_step (void)
15356{
037e8744 15357 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15358 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15359 N_F_16_32 | N_KEY);
15360 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15361}
15362
15363static void
15364do_neon_abs_neg (void)
15365{
037e8744
JB
15366 enum neon_shape rs;
15367 struct neon_type_el et;
5f4273c7 15368
037e8744
JB
15369 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15370 return;
15371
15372 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15373 return;
15374
15375 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 15376 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 15377
5287ad62
JB
15378 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15379 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15380 inst.instruction |= LOW4 (inst.operands[1].reg);
15381 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15382 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15383 inst.instruction |= (et.type == NT_float) << 10;
15384 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15385
88714cb8 15386 neon_dp_fixup (&inst);
5287ad62
JB
15387}
15388
15389static void
15390do_neon_sli (void)
15391{
037e8744 15392 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15393 struct neon_type_el et = neon_check_type (2, rs,
15394 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15395 int imm = inst.operands[2].imm;
15396 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15397 _("immediate out of range for insert"));
037e8744 15398 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15399}
15400
15401static void
15402do_neon_sri (void)
15403{
037e8744 15404 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15405 struct neon_type_el et = neon_check_type (2, rs,
15406 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15407 int imm = inst.operands[2].imm;
15408 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15409 _("immediate out of range for insert"));
037e8744 15410 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
15411}
15412
15413static void
15414do_neon_qshlu_imm (void)
15415{
037e8744 15416 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15417 struct neon_type_el et = neon_check_type (2, rs,
15418 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15419 int imm = inst.operands[2].imm;
15420 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15421 _("immediate out of range for shift"));
5287ad62
JB
15422 /* Only encodes the 'U present' variant of the instruction.
15423 In this case, signed types have OP (bit 8) set to 0.
15424 Unsigned types have OP set to 1. */
15425 inst.instruction |= (et.type == NT_unsigned) << 8;
15426 /* The rest of the bits are the same as other immediate shifts. */
037e8744 15427 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15428}
15429
15430static void
15431do_neon_qmovn (void)
15432{
15433 struct neon_type_el et = neon_check_type (2, NS_DQ,
15434 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15435 /* Saturating move where operands can be signed or unsigned, and the
15436 destination has the same signedness. */
88714cb8 15437 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15438 if (et.type == NT_unsigned)
15439 inst.instruction |= 0xc0;
15440 else
15441 inst.instruction |= 0x80;
15442 neon_two_same (0, 1, et.size / 2);
15443}
15444
15445static void
15446do_neon_qmovun (void)
15447{
15448 struct neon_type_el et = neon_check_type (2, NS_DQ,
15449 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15450 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 15451 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15452 neon_two_same (0, 1, et.size / 2);
15453}
15454
15455static void
15456do_neon_rshift_sat_narrow (void)
15457{
15458 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15459 or unsigned. If operands are unsigned, results must also be unsigned. */
15460 struct neon_type_el et = neon_check_type (2, NS_DQI,
15461 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15462 int imm = inst.operands[2].imm;
15463 /* This gets the bounds check, size encoding and immediate bits calculation
15464 right. */
15465 et.size /= 2;
5f4273c7 15466
5287ad62
JB
15467 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15468 VQMOVN.I<size> <Dd>, <Qm>. */
15469 if (imm == 0)
15470 {
15471 inst.operands[2].present = 0;
15472 inst.instruction = N_MNEM_vqmovn;
15473 do_neon_qmovn ();
15474 return;
15475 }
5f4273c7 15476
5287ad62 15477 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15478 _("immediate out of range"));
5287ad62
JB
15479 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15480}
15481
15482static void
15483do_neon_rshift_sat_narrow_u (void)
15484{
15485 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15486 or unsigned. If operands are unsigned, results must also be unsigned. */
15487 struct neon_type_el et = neon_check_type (2, NS_DQI,
15488 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15489 int imm = inst.operands[2].imm;
15490 /* This gets the bounds check, size encoding and immediate bits calculation
15491 right. */
15492 et.size /= 2;
15493
15494 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15495 VQMOVUN.I<size> <Dd>, <Qm>. */
15496 if (imm == 0)
15497 {
15498 inst.operands[2].present = 0;
15499 inst.instruction = N_MNEM_vqmovun;
15500 do_neon_qmovun ();
15501 return;
15502 }
15503
15504 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15505 _("immediate out of range"));
5287ad62
JB
15506 /* FIXME: The manual is kind of unclear about what value U should have in
15507 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15508 must be 1. */
15509 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15510}
15511
15512static void
15513do_neon_movn (void)
15514{
15515 struct neon_type_el et = neon_check_type (2, NS_DQ,
15516 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 15517 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15518 neon_two_same (0, 1, et.size / 2);
15519}
15520
15521static void
15522do_neon_rshift_narrow (void)
15523{
15524 struct neon_type_el et = neon_check_type (2, NS_DQI,
15525 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15526 int imm = inst.operands[2].imm;
15527 /* This gets the bounds check, size encoding and immediate bits calculation
15528 right. */
15529 et.size /= 2;
5f4273c7 15530
5287ad62
JB
15531 /* If immediate is zero then we are a pseudo-instruction for
15532 VMOVN.I<size> <Dd>, <Qm> */
15533 if (imm == 0)
15534 {
15535 inst.operands[2].present = 0;
15536 inst.instruction = N_MNEM_vmovn;
15537 do_neon_movn ();
15538 return;
15539 }
5f4273c7 15540
5287ad62 15541 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15542 _("immediate out of range for narrowing operation"));
5287ad62
JB
15543 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15544}
15545
15546static void
15547do_neon_shll (void)
15548{
15549 /* FIXME: Type checking when lengthening. */
15550 struct neon_type_el et = neon_check_type (2, NS_QDI,
15551 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15552 unsigned imm = inst.operands[2].imm;
15553
15554 if (imm == et.size)
15555 {
15556 /* Maximum shift variant. */
88714cb8 15557 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15558 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15559 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15560 inst.instruction |= LOW4 (inst.operands[1].reg);
15561 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15562 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15563
88714cb8 15564 neon_dp_fixup (&inst);
5287ad62
JB
15565 }
15566 else
15567 {
15568 /* A more-specific type check for non-max versions. */
15569 et = neon_check_type (2, NS_QDI,
477330fc 15570 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 15571 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15572 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15573 }
15574}
15575
037e8744 15576/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
15577 the current instruction is. */
15578
6b9a8b67
MGD
15579#define CVT_FLAVOUR_VAR \
15580 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15581 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15582 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15583 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15584 /* Half-precision conversions. */ \
cc933301
JW
15585 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15586 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15587 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15588 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
15589 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15590 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
15591 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15592 Compared with single/double precision variants, only the co-processor \
15593 field is different, so the encoding flow is reused here. */ \
15594 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15595 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15596 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15597 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
15598 /* VFP instructions. */ \
15599 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15600 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15601 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15602 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15603 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15604 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15605 /* VFP instructions with bitshift. */ \
15606 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15607 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15608 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15609 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15610 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15611 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15612 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15613 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15614
15615#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15616 neon_cvt_flavour_##C,
15617
15618/* The different types of conversions we can do. */
15619enum neon_cvt_flavour
15620{
15621 CVT_FLAVOUR_VAR
15622 neon_cvt_flavour_invalid,
15623 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15624};
15625
15626#undef CVT_VAR
15627
15628static enum neon_cvt_flavour
15629get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 15630{
6b9a8b67
MGD
15631#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15632 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15633 if (et.type != NT_invtype) \
15634 { \
15635 inst.error = NULL; \
15636 return (neon_cvt_flavour_##C); \
5287ad62 15637 }
6b9a8b67 15638
5287ad62 15639 struct neon_type_el et;
037e8744 15640 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 15641 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
15642 /* The instruction versions which take an immediate take one register
15643 argument, which is extended to the width of the full register. Thus the
15644 "source" and "destination" registers must have the same width. Hack that
15645 here by making the size equal to the key (wider, in this case) operand. */
15646 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 15647
6b9a8b67
MGD
15648 CVT_FLAVOUR_VAR;
15649
15650 return neon_cvt_flavour_invalid;
5287ad62
JB
15651#undef CVT_VAR
15652}
15653
7e8e6784
MGD
15654enum neon_cvt_mode
15655{
15656 neon_cvt_mode_a,
15657 neon_cvt_mode_n,
15658 neon_cvt_mode_p,
15659 neon_cvt_mode_m,
15660 neon_cvt_mode_z,
30bdf752
MGD
15661 neon_cvt_mode_x,
15662 neon_cvt_mode_r
7e8e6784
MGD
15663};
15664
037e8744
JB
15665/* Neon-syntax VFP conversions. */
15666
5287ad62 15667static void
6b9a8b67 15668do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 15669{
037e8744 15670 const char *opname = 0;
5f4273c7 15671
d54af2d0
RL
15672 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15673 || rs == NS_FHI || rs == NS_HFI)
5287ad62 15674 {
037e8744
JB
15675 /* Conversions with immediate bitshift. */
15676 const char *enc[] =
477330fc 15677 {
6b9a8b67
MGD
15678#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15679 CVT_FLAVOUR_VAR
15680 NULL
15681#undef CVT_VAR
477330fc 15682 };
037e8744 15683
6b9a8b67 15684 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
15685 {
15686 opname = enc[flavour];
15687 constraint (inst.operands[0].reg != inst.operands[1].reg,
15688 _("operands 0 and 1 must be the same register"));
15689 inst.operands[1] = inst.operands[2];
15690 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15691 }
5287ad62
JB
15692 }
15693 else
15694 {
037e8744
JB
15695 /* Conversions without bitshift. */
15696 const char *enc[] =
477330fc 15697 {
6b9a8b67
MGD
15698#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15699 CVT_FLAVOUR_VAR
15700 NULL
15701#undef CVT_VAR
477330fc 15702 };
037e8744 15703
6b9a8b67 15704 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 15705 opname = enc[flavour];
037e8744
JB
15706 }
15707
15708 if (opname)
15709 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
15710
15711 /* ARMv8.2 fp16 VCVT instruction. */
15712 if (flavour == neon_cvt_flavour_s32_f16
15713 || flavour == neon_cvt_flavour_u32_f16
15714 || flavour == neon_cvt_flavour_f16_u32
15715 || flavour == neon_cvt_flavour_f16_s32)
15716 do_scalar_fp16_v82_encode ();
037e8744
JB
15717}
15718
15719static void
15720do_vfp_nsyn_cvtz (void)
15721{
d54af2d0 15722 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 15723 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
15724 const char *enc[] =
15725 {
6b9a8b67
MGD
15726#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15727 CVT_FLAVOUR_VAR
15728 NULL
15729#undef CVT_VAR
037e8744
JB
15730 };
15731
6b9a8b67 15732 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
15733 do_vfp_nsyn_opcode (enc[flavour]);
15734}
f31fef98 15735
037e8744 15736static void
bacebabc 15737do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
15738 enum neon_cvt_mode mode)
15739{
15740 int sz, op;
15741 int rm;
15742
a715796b
TG
15743 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15744 D register operands. */
15745 if (flavour == neon_cvt_flavour_s32_f64
15746 || flavour == neon_cvt_flavour_u32_f64)
15747 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15748 _(BAD_FPU));
15749
9db2f6b4
RL
15750 if (flavour == neon_cvt_flavour_s32_f16
15751 || flavour == neon_cvt_flavour_u32_f16)
15752 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15753 _(BAD_FP16));
15754
7e8e6784
MGD
15755 set_it_insn_type (OUTSIDE_IT_INSN);
15756
15757 switch (flavour)
15758 {
15759 case neon_cvt_flavour_s32_f64:
15760 sz = 1;
827f64ff 15761 op = 1;
7e8e6784
MGD
15762 break;
15763 case neon_cvt_flavour_s32_f32:
15764 sz = 0;
15765 op = 1;
15766 break;
9db2f6b4
RL
15767 case neon_cvt_flavour_s32_f16:
15768 sz = 0;
15769 op = 1;
15770 break;
7e8e6784
MGD
15771 case neon_cvt_flavour_u32_f64:
15772 sz = 1;
15773 op = 0;
15774 break;
15775 case neon_cvt_flavour_u32_f32:
15776 sz = 0;
15777 op = 0;
15778 break;
9db2f6b4
RL
15779 case neon_cvt_flavour_u32_f16:
15780 sz = 0;
15781 op = 0;
15782 break;
7e8e6784
MGD
15783 default:
15784 first_error (_("invalid instruction shape"));
15785 return;
15786 }
15787
15788 switch (mode)
15789 {
15790 case neon_cvt_mode_a: rm = 0; break;
15791 case neon_cvt_mode_n: rm = 1; break;
15792 case neon_cvt_mode_p: rm = 2; break;
15793 case neon_cvt_mode_m: rm = 3; break;
15794 default: first_error (_("invalid rounding mode")); return;
15795 }
15796
15797 NEON_ENCODE (FPV8, inst);
15798 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15799 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15800 inst.instruction |= sz << 8;
9db2f6b4
RL
15801
15802 /* ARMv8.2 fp16 VCVT instruction. */
15803 if (flavour == neon_cvt_flavour_s32_f16
15804 ||flavour == neon_cvt_flavour_u32_f16)
15805 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
15806 inst.instruction |= op << 7;
15807 inst.instruction |= rm << 16;
15808 inst.instruction |= 0xf0000000;
15809 inst.is_neon = TRUE;
15810}
15811
15812static void
15813do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
15814{
15815 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
15816 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15817 NS_FH, NS_HF, NS_FHI, NS_HFI,
15818 NS_NULL);
6b9a8b67 15819 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 15820
cc933301
JW
15821 if (flavour == neon_cvt_flavour_invalid)
15822 return;
15823
e3e535bc 15824 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 15825 if (mode == neon_cvt_mode_z
e3e535bc 15826 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
15827 && (flavour == neon_cvt_flavour_s16_f16
15828 || flavour == neon_cvt_flavour_u16_f16
15829 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
15830 || flavour == neon_cvt_flavour_u32_f32
15831 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 15832 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
15833 && (rs == NS_FD || rs == NS_FF))
15834 {
15835 do_vfp_nsyn_cvtz ();
15836 return;
15837 }
15838
9db2f6b4
RL
15839 /* ARMv8.2 fp16 VCVT conversions. */
15840 if (mode == neon_cvt_mode_z
15841 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15842 && (flavour == neon_cvt_flavour_s32_f16
15843 || flavour == neon_cvt_flavour_u32_f16)
15844 && (rs == NS_FH))
15845 {
15846 do_vfp_nsyn_cvtz ();
15847 do_scalar_fp16_v82_encode ();
15848 return;
15849 }
15850
037e8744 15851 /* VFP rather than Neon conversions. */
6b9a8b67 15852 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 15853 {
7e8e6784
MGD
15854 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15855 do_vfp_nsyn_cvt (rs, flavour);
15856 else
15857 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15858
037e8744
JB
15859 return;
15860 }
15861
15862 switch (rs)
15863 {
15864 case NS_DDI:
15865 case NS_QQI:
15866 {
477330fc 15867 unsigned immbits;
cc933301
JW
15868 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15869 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 15870
477330fc
RM
15871 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15872 return;
037e8744 15873
477330fc
RM
15874 /* Fixed-point conversion with #0 immediate is encoded as an
15875 integer conversion. */
15876 if (inst.operands[2].present && inst.operands[2].imm == 0)
15877 goto int_encode;
477330fc
RM
15878 NEON_ENCODE (IMMED, inst);
15879 if (flavour != neon_cvt_flavour_invalid)
15880 inst.instruction |= enctab[flavour];
15881 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15882 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15883 inst.instruction |= LOW4 (inst.operands[1].reg);
15884 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15885 inst.instruction |= neon_quad (rs) << 6;
15886 inst.instruction |= 1 << 21;
cc933301
JW
15887 if (flavour < neon_cvt_flavour_s16_f16)
15888 {
15889 inst.instruction |= 1 << 21;
15890 immbits = 32 - inst.operands[2].imm;
15891 inst.instruction |= immbits << 16;
15892 }
15893 else
15894 {
15895 inst.instruction |= 3 << 20;
15896 immbits = 16 - inst.operands[2].imm;
15897 inst.instruction |= immbits << 16;
15898 inst.instruction &= ~(1 << 9);
15899 }
477330fc
RM
15900
15901 neon_dp_fixup (&inst);
037e8744
JB
15902 }
15903 break;
15904
15905 case NS_DD:
15906 case NS_QQ:
7e8e6784
MGD
15907 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15908 {
15909 NEON_ENCODE (FLOAT, inst);
15910 set_it_insn_type (OUTSIDE_IT_INSN);
15911
15912 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15913 return;
15914
15915 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15916 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15917 inst.instruction |= LOW4 (inst.operands[1].reg);
15918 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15919 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15920 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15921 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 15922 inst.instruction |= mode << 8;
cc933301
JW
15923 if (flavour == neon_cvt_flavour_u16_f16
15924 || flavour == neon_cvt_flavour_s16_f16)
15925 /* Mask off the original size bits and reencode them. */
15926 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15927
7e8e6784
MGD
15928 if (thumb_mode)
15929 inst.instruction |= 0xfc000000;
15930 else
15931 inst.instruction |= 0xf0000000;
15932 }
15933 else
15934 {
037e8744 15935 int_encode:
7e8e6784 15936 {
cc933301
JW
15937 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15938 0x100, 0x180, 0x0, 0x080};
037e8744 15939
7e8e6784 15940 NEON_ENCODE (INTEGER, inst);
037e8744 15941
7e8e6784
MGD
15942 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15943 return;
037e8744 15944
7e8e6784
MGD
15945 if (flavour != neon_cvt_flavour_invalid)
15946 inst.instruction |= enctab[flavour];
037e8744 15947
7e8e6784
MGD
15948 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15949 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15950 inst.instruction |= LOW4 (inst.operands[1].reg);
15951 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15952 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15953 if (flavour >= neon_cvt_flavour_s16_f16
15954 && flavour <= neon_cvt_flavour_f16_u16)
15955 /* Half precision. */
15956 inst.instruction |= 1 << 18;
15957 else
15958 inst.instruction |= 2 << 18;
037e8744 15959
7e8e6784
MGD
15960 neon_dp_fixup (&inst);
15961 }
15962 }
15963 break;
037e8744 15964
8e79c3df
CM
15965 /* Half-precision conversions for Advanced SIMD -- neon. */
15966 case NS_QD:
15967 case NS_DQ:
bc52d49c
MM
15968 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15969 return;
8e79c3df
CM
15970
15971 if ((rs == NS_DQ)
15972 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15973 {
15974 as_bad (_("operand size must match register width"));
15975 break;
15976 }
15977
15978 if ((rs == NS_QD)
15979 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15980 {
15981 as_bad (_("operand size must match register width"));
15982 break;
15983 }
15984
15985 if (rs == NS_DQ)
477330fc 15986 inst.instruction = 0x3b60600;
8e79c3df
CM
15987 else
15988 inst.instruction = 0x3b60700;
15989
15990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15992 inst.instruction |= LOW4 (inst.operands[1].reg);
15993 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 15994 neon_dp_fixup (&inst);
8e79c3df
CM
15995 break;
15996
037e8744
JB
15997 default:
15998 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
15999 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
16000 do_vfp_nsyn_cvt (rs, flavour);
16001 else
16002 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 16003 }
5287ad62
JB
16004}
16005
e3e535bc
NC
16006static void
16007do_neon_cvtr (void)
16008{
7e8e6784 16009 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
16010}
16011
16012static void
16013do_neon_cvt (void)
16014{
7e8e6784
MGD
16015 do_neon_cvt_1 (neon_cvt_mode_z);
16016}
16017
16018static void
16019do_neon_cvta (void)
16020{
16021 do_neon_cvt_1 (neon_cvt_mode_a);
16022}
16023
16024static void
16025do_neon_cvtn (void)
16026{
16027 do_neon_cvt_1 (neon_cvt_mode_n);
16028}
16029
16030static void
16031do_neon_cvtp (void)
16032{
16033 do_neon_cvt_1 (neon_cvt_mode_p);
16034}
16035
16036static void
16037do_neon_cvtm (void)
16038{
16039 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
16040}
16041
8e79c3df 16042static void
c70a8987 16043do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 16044{
c70a8987
MGD
16045 if (is_double)
16046 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 16047
c70a8987
MGD
16048 encode_arm_vfp_reg (inst.operands[0].reg,
16049 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
16050 encode_arm_vfp_reg (inst.operands[1].reg,
16051 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
16052 inst.instruction |= to ? 0x10000 : 0;
16053 inst.instruction |= t ? 0x80 : 0;
16054 inst.instruction |= is_double ? 0x100 : 0;
16055 do_vfp_cond_or_thumb ();
16056}
8e79c3df 16057
c70a8987
MGD
16058static void
16059do_neon_cvttb_1 (bfd_boolean t)
16060{
d54af2d0
RL
16061 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16062 NS_DF, NS_DH, NS_NULL);
8e79c3df 16063
c70a8987
MGD
16064 if (rs == NS_NULL)
16065 return;
16066 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16067 {
16068 inst.error = NULL;
16069 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16070 }
16071 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16072 {
16073 inst.error = NULL;
16074 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16075 }
16076 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16077 {
a715796b
TG
16078 /* The VCVTB and VCVTT instructions with D-register operands
16079 don't work for SP only targets. */
16080 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16081 _(BAD_FPU));
16082
c70a8987
MGD
16083 inst.error = NULL;
16084 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16085 }
16086 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16087 {
a715796b
TG
16088 /* The VCVTB and VCVTT instructions with D-register operands
16089 don't work for SP only targets. */
16090 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16091 _(BAD_FPU));
16092
c70a8987
MGD
16093 inst.error = NULL;
16094 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16095 }
16096 else
16097 return;
16098}
16099
16100static void
16101do_neon_cvtb (void)
16102{
16103 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
16104}
16105
16106
16107static void
16108do_neon_cvtt (void)
16109{
c70a8987 16110 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
16111}
16112
5287ad62
JB
16113static void
16114neon_move_immediate (void)
16115{
037e8744
JB
16116 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16117 struct neon_type_el et = neon_check_type (2, rs,
16118 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 16119 unsigned immlo, immhi = 0, immbits;
c96612cc 16120 int op, cmode, float_p;
5287ad62 16121
037e8744 16122 constraint (et.type == NT_invtype,
477330fc 16123 _("operand size must be specified for immediate VMOV"));
037e8744 16124
5287ad62
JB
16125 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16126 op = (inst.instruction & (1 << 5)) != 0;
16127
16128 immlo = inst.operands[1].imm;
16129 if (inst.operands[1].regisimm)
16130 immhi = inst.operands[1].reg;
16131
16132 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 16133 _("immediate has bits set outside the operand size"));
5287ad62 16134
c96612cc
JB
16135 float_p = inst.operands[1].immisfloat;
16136
16137 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 16138 et.size, et.type)) == FAIL)
5287ad62
JB
16139 {
16140 /* Invert relevant bits only. */
16141 neon_invert_size (&immlo, &immhi, et.size);
16142 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
16143 with one or the other; those cases are caught by
16144 neon_cmode_for_move_imm. */
5287ad62 16145 op = !op;
c96612cc
JB
16146 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16147 &op, et.size, et.type)) == FAIL)
477330fc
RM
16148 {
16149 first_error (_("immediate out of range"));
16150 return;
16151 }
5287ad62
JB
16152 }
16153
16154 inst.instruction &= ~(1 << 5);
16155 inst.instruction |= op << 5;
16156
16157 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16158 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 16159 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16160 inst.instruction |= cmode << 8;
16161
16162 neon_write_immbits (immbits);
16163}
16164
16165static void
16166do_neon_mvn (void)
16167{
16168 if (inst.operands[1].isreg)
16169 {
037e8744 16170 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 16171
88714cb8 16172 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16173 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16174 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16175 inst.instruction |= LOW4 (inst.operands[1].reg);
16176 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16177 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16178 }
16179 else
16180 {
88714cb8 16181 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16182 neon_move_immediate ();
16183 }
16184
88714cb8 16185 neon_dp_fixup (&inst);
5287ad62
JB
16186}
16187
16188/* Encode instructions of form:
16189
16190 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 16191 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
16192
16193static void
16194neon_mixed_length (struct neon_type_el et, unsigned size)
16195{
16196 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16197 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16198 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16199 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16200 inst.instruction |= LOW4 (inst.operands[2].reg);
16201 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16202 inst.instruction |= (et.type == NT_unsigned) << 24;
16203 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16204
88714cb8 16205 neon_dp_fixup (&inst);
5287ad62
JB
16206}
16207
16208static void
16209do_neon_dyadic_long (void)
16210{
16211 /* FIXME: Type checking for lengthening op. */
16212 struct neon_type_el et = neon_check_type (3, NS_QDD,
16213 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16214 neon_mixed_length (et, et.size);
16215}
16216
16217static void
16218do_neon_abal (void)
16219{
16220 struct neon_type_el et = neon_check_type (3, NS_QDD,
16221 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16222 neon_mixed_length (et, et.size);
16223}
16224
16225static void
16226neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16227{
16228 if (inst.operands[2].isscalar)
16229 {
dcbf9037 16230 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 16231 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 16232 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16233 neon_mul_mac (et, et.type == NT_unsigned);
16234 }
16235 else
16236 {
16237 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16238 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 16239 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16240 neon_mixed_length (et, et.size);
16241 }
16242}
16243
16244static void
16245do_neon_mac_maybe_scalar_long (void)
16246{
16247 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16248}
16249
dec41383
JW
16250/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16251 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16252
16253static unsigned
16254neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16255{
16256 unsigned regno = NEON_SCALAR_REG (scalar);
16257 unsigned elno = NEON_SCALAR_INDEX (scalar);
16258
16259 if (quad_p)
16260 {
16261 if (regno > 7 || elno > 3)
16262 goto bad_scalar;
16263
16264 return ((regno & 0x7)
16265 | ((elno & 0x1) << 3)
16266 | (((elno >> 1) & 0x1) << 5));
16267 }
16268 else
16269 {
16270 if (regno > 15 || elno > 1)
16271 goto bad_scalar;
16272
16273 return (((regno & 0x1) << 5)
16274 | ((regno >> 1) & 0x7)
16275 | ((elno & 0x1) << 3));
16276 }
16277
16278bad_scalar:
16279 first_error (_("scalar out of range for multiply instruction"));
16280 return 0;
16281}
16282
16283static void
16284do_neon_fmac_maybe_scalar_long (int subtype)
16285{
16286 enum neon_shape rs;
16287 int high8;
16288 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16289 field (bits[21:20]) has different meaning. For scalar index variant, it's
16290 used to differentiate add and subtract, otherwise it's with fixed value
16291 0x2. */
16292 int size = -1;
16293
16294 if (inst.cond != COND_ALWAYS)
16295 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16296 "behaviour is UNPREDICTABLE"));
16297
01f48020 16298 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
16299 _(BAD_FP16));
16300
16301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16302 _(BAD_FPU));
16303
16304 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16305 be a scalar index register. */
16306 if (inst.operands[2].isscalar)
16307 {
16308 high8 = 0xfe000000;
16309 if (subtype)
16310 size = 16;
16311 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16312 }
16313 else
16314 {
16315 high8 = 0xfc000000;
16316 size = 32;
16317 if (subtype)
16318 inst.instruction |= (0x1 << 23);
16319 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16320 }
16321
16322 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16323
16324 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16325 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16326 so we simply pass -1 as size. */
16327 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16328 neon_three_same (quad_p, 0, size);
16329
16330 /* Undo neon_dp_fixup. Redo the high eight bits. */
16331 inst.instruction &= 0x00ffffff;
16332 inst.instruction |= high8;
16333
16334#define LOW1(R) ((R) & 0x1)
16335#define HI4(R) (((R) >> 1) & 0xf)
16336 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16337 whether the instruction is in Q form and whether Vm is a scalar indexed
16338 operand. */
16339 if (inst.operands[2].isscalar)
16340 {
16341 unsigned rm
16342 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16343 inst.instruction &= 0xffffffd0;
16344 inst.instruction |= rm;
16345
16346 if (!quad_p)
16347 {
16348 /* Redo Rn as well. */
16349 inst.instruction &= 0xfff0ff7f;
16350 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16351 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16352 }
16353 }
16354 else if (!quad_p)
16355 {
16356 /* Redo Rn and Rm. */
16357 inst.instruction &= 0xfff0ff50;
16358 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16359 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16360 inst.instruction |= HI4 (inst.operands[2].reg);
16361 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16362 }
16363}
16364
16365static void
16366do_neon_vfmal (void)
16367{
16368 return do_neon_fmac_maybe_scalar_long (0);
16369}
16370
16371static void
16372do_neon_vfmsl (void)
16373{
16374 return do_neon_fmac_maybe_scalar_long (1);
16375}
16376
5287ad62
JB
16377static void
16378do_neon_dyadic_wide (void)
16379{
16380 struct neon_type_el et = neon_check_type (3, NS_QQD,
16381 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16382 neon_mixed_length (et, et.size);
16383}
16384
16385static void
16386do_neon_dyadic_narrow (void)
16387{
16388 struct neon_type_el et = neon_check_type (3, NS_QDD,
16389 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
16390 /* Operand sign is unimportant, and the U bit is part of the opcode,
16391 so force the operand type to integer. */
16392 et.type = NT_integer;
5287ad62
JB
16393 neon_mixed_length (et, et.size / 2);
16394}
16395
16396static void
16397do_neon_mul_sat_scalar_long (void)
16398{
16399 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16400}
16401
16402static void
16403do_neon_vmull (void)
16404{
16405 if (inst.operands[2].isscalar)
16406 do_neon_mac_maybe_scalar_long ();
16407 else
16408 {
16409 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16410 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 16411
5287ad62 16412 if (et.type == NT_poly)
477330fc 16413 NEON_ENCODE (POLY, inst);
5287ad62 16414 else
477330fc 16415 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
16416
16417 /* For polynomial encoding the U bit must be zero, and the size must
16418 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16419 obviously, as 0b10). */
16420 if (et.size == 64)
16421 {
16422 /* Check we're on the correct architecture. */
16423 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16424 inst.error =
16425 _("Instruction form not available on this architecture.");
16426
16427 et.size = 32;
16428 }
16429
5287ad62
JB
16430 neon_mixed_length (et, et.size);
16431 }
16432}
16433
16434static void
16435do_neon_ext (void)
16436{
037e8744 16437 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
16438 struct neon_type_el et = neon_check_type (3, rs,
16439 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16440 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
16441
16442 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16443 _("shift out of range"));
5287ad62
JB
16444 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16445 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16446 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16447 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16448 inst.instruction |= LOW4 (inst.operands[2].reg);
16449 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 16450 inst.instruction |= neon_quad (rs) << 6;
5287ad62 16451 inst.instruction |= imm << 8;
5f4273c7 16452
88714cb8 16453 neon_dp_fixup (&inst);
5287ad62
JB
16454}
16455
16456static void
16457do_neon_rev (void)
16458{
037e8744 16459 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16460 struct neon_type_el et = neon_check_type (2, rs,
16461 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16462 unsigned op = (inst.instruction >> 7) & 3;
16463 /* N (width of reversed regions) is encoded as part of the bitmask. We
16464 extract it here to check the elements to be reversed are smaller.
16465 Otherwise we'd get a reserved instruction. */
16466 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 16467 gas_assert (elsize != 0);
5287ad62 16468 constraint (et.size >= elsize,
477330fc 16469 _("elements must be smaller than reversal region"));
037e8744 16470 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16471}
16472
16473static void
16474do_neon_dup (void)
16475{
16476 if (inst.operands[1].isscalar)
16477 {
037e8744 16478 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 16479 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16480 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 16481 unsigned sizebits = et.size >> 3;
dcbf9037 16482 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 16483 int logsize = neon_logbits (et.size);
dcbf9037 16484 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
16485
16486 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 16487 return;
037e8744 16488
88714cb8 16489 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16490 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16491 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16492 inst.instruction |= LOW4 (dm);
16493 inst.instruction |= HI1 (dm) << 5;
037e8744 16494 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16495 inst.instruction |= x << 17;
16496 inst.instruction |= sizebits << 16;
5f4273c7 16497
88714cb8 16498 neon_dp_fixup (&inst);
5287ad62
JB
16499 }
16500 else
16501 {
037e8744
JB
16502 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16503 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16504 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 16505 /* Duplicate ARM register to lanes of vector. */
88714cb8 16506 NEON_ENCODE (ARMREG, inst);
5287ad62 16507 switch (et.size)
477330fc
RM
16508 {
16509 case 8: inst.instruction |= 0x400000; break;
16510 case 16: inst.instruction |= 0x000020; break;
16511 case 32: inst.instruction |= 0x000000; break;
16512 default: break;
16513 }
5287ad62
JB
16514 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16515 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16516 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 16517 inst.instruction |= neon_quad (rs) << 21;
5287ad62 16518 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 16519 variants, except for the condition field. */
037e8744 16520 do_vfp_cond_or_thumb ();
5287ad62
JB
16521 }
16522}
16523
16524/* VMOV has particularly many variations. It can be one of:
16525 0. VMOV<c><q> <Qd>, <Qm>
16526 1. VMOV<c><q> <Dd>, <Dm>
16527 (Register operations, which are VORR with Rm = Rn.)
16528 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16529 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16530 (Immediate loads.)
16531 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16532 (ARM register to scalar.)
16533 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16534 (Two ARM registers to vector.)
16535 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16536 (Scalar to ARM register.)
16537 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16538 (Vector to two ARM registers.)
037e8744
JB
16539 8. VMOV.F32 <Sd>, <Sm>
16540 9. VMOV.F64 <Dd>, <Dm>
16541 (VFP register moves.)
16542 10. VMOV.F32 <Sd>, #imm
16543 11. VMOV.F64 <Dd>, #imm
16544 (VFP float immediate load.)
16545 12. VMOV <Rd>, <Sm>
16546 (VFP single to ARM reg.)
16547 13. VMOV <Sd>, <Rm>
16548 (ARM reg to VFP single.)
16549 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16550 (Two ARM regs to two VFP singles.)
16551 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16552 (Two VFP singles to two ARM regs.)
5f4273c7 16553
037e8744
JB
16554 These cases can be disambiguated using neon_select_shape, except cases 1/9
16555 and 3/11 which depend on the operand type too.
5f4273c7 16556
5287ad62 16557 All the encoded bits are hardcoded by this function.
5f4273c7 16558
b7fc2769
JB
16559 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16560 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 16561
5287ad62 16562 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 16563 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
16564
16565static void
16566do_neon_mov (void)
16567{
037e8744 16568 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
9db2f6b4
RL
16569 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16570 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16571 NS_HR, NS_RH, NS_HI, NS_NULL);
037e8744
JB
16572 struct neon_type_el et;
16573 const char *ldconst = 0;
5287ad62 16574
037e8744 16575 switch (rs)
5287ad62 16576 {
037e8744
JB
16577 case NS_DD: /* case 1/9. */
16578 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16579 /* It is not an error here if no type is given. */
16580 inst.error = NULL;
16581 if (et.type == NT_float && et.size == 64)
477330fc
RM
16582 {
16583 do_vfp_nsyn_opcode ("fcpyd");
16584 break;
16585 }
037e8744 16586 /* fall through. */
5287ad62 16587
037e8744
JB
16588 case NS_QQ: /* case 0/1. */
16589 {
477330fc
RM
16590 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16591 return;
16592 /* The architecture manual I have doesn't explicitly state which
16593 value the U bit should have for register->register moves, but
16594 the equivalent VORR instruction has U = 0, so do that. */
16595 inst.instruction = 0x0200110;
16596 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16597 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16598 inst.instruction |= LOW4 (inst.operands[1].reg);
16599 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16600 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16601 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16602 inst.instruction |= neon_quad (rs) << 6;
16603
16604 neon_dp_fixup (&inst);
037e8744
JB
16605 }
16606 break;
5f4273c7 16607
037e8744
JB
16608 case NS_DI: /* case 3/11. */
16609 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16610 inst.error = NULL;
16611 if (et.type == NT_float && et.size == 64)
477330fc
RM
16612 {
16613 /* case 11 (fconstd). */
16614 ldconst = "fconstd";
16615 goto encode_fconstd;
16616 }
037e8744
JB
16617 /* fall through. */
16618
16619 case NS_QI: /* case 2/3. */
16620 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
477330fc 16621 return;
037e8744
JB
16622 inst.instruction = 0x0800010;
16623 neon_move_immediate ();
88714cb8 16624 neon_dp_fixup (&inst);
5287ad62 16625 break;
5f4273c7 16626
037e8744
JB
16627 case NS_SR: /* case 4. */
16628 {
477330fc
RM
16629 unsigned bcdebits = 0;
16630 int logsize;
16631 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16632 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 16633
05ac0ffb
JB
16634 /* .<size> is optional here, defaulting to .32. */
16635 if (inst.vectype.elems == 0
16636 && inst.operands[0].vectype.type == NT_invtype
16637 && inst.operands[1].vectype.type == NT_invtype)
16638 {
16639 inst.vectype.el[0].type = NT_untyped;
16640 inst.vectype.el[0].size = 32;
16641 inst.vectype.elems = 1;
16642 }
16643
477330fc
RM
16644 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16645 logsize = neon_logbits (et.size);
16646
16647 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16648 _(BAD_FPU));
16649 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16650 && et.size != 32, _(BAD_FPU));
16651 constraint (et.type == NT_invtype, _("bad type for scalar"));
16652 constraint (x >= 64 / et.size, _("scalar index out of range"));
16653
16654 switch (et.size)
16655 {
16656 case 8: bcdebits = 0x8; break;
16657 case 16: bcdebits = 0x1; break;
16658 case 32: bcdebits = 0x0; break;
16659 default: ;
16660 }
16661
16662 bcdebits |= x << logsize;
16663
16664 inst.instruction = 0xe000b10;
16665 do_vfp_cond_or_thumb ();
16666 inst.instruction |= LOW4 (dn) << 16;
16667 inst.instruction |= HI1 (dn) << 7;
16668 inst.instruction |= inst.operands[1].reg << 12;
16669 inst.instruction |= (bcdebits & 3) << 5;
16670 inst.instruction |= (bcdebits >> 2) << 21;
037e8744
JB
16671 }
16672 break;
5f4273c7 16673
037e8744 16674 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 16675 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16676 _(BAD_FPU));
b7fc2769 16677
037e8744
JB
16678 inst.instruction = 0xc400b10;
16679 do_vfp_cond_or_thumb ();
16680 inst.instruction |= LOW4 (inst.operands[0].reg);
16681 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16682 inst.instruction |= inst.operands[1].reg << 12;
16683 inst.instruction |= inst.operands[2].reg << 16;
16684 break;
5f4273c7 16685
037e8744
JB
16686 case NS_RS: /* case 6. */
16687 {
477330fc
RM
16688 unsigned logsize;
16689 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16690 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16691 unsigned abcdebits = 0;
037e8744 16692
05ac0ffb
JB
16693 /* .<dt> is optional here, defaulting to .32. */
16694 if (inst.vectype.elems == 0
16695 && inst.operands[0].vectype.type == NT_invtype
16696 && inst.operands[1].vectype.type == NT_invtype)
16697 {
16698 inst.vectype.el[0].type = NT_untyped;
16699 inst.vectype.el[0].size = 32;
16700 inst.vectype.elems = 1;
16701 }
16702
91d6fa6a
NC
16703 et = neon_check_type (2, NS_NULL,
16704 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
16705 logsize = neon_logbits (et.size);
16706
16707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16708 _(BAD_FPU));
16709 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16710 && et.size != 32, _(BAD_FPU));
16711 constraint (et.type == NT_invtype, _("bad type for scalar"));
16712 constraint (x >= 64 / et.size, _("scalar index out of range"));
16713
16714 switch (et.size)
16715 {
16716 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16717 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16718 case 32: abcdebits = 0x00; break;
16719 default: ;
16720 }
16721
16722 abcdebits |= x << logsize;
16723 inst.instruction = 0xe100b10;
16724 do_vfp_cond_or_thumb ();
16725 inst.instruction |= LOW4 (dn) << 16;
16726 inst.instruction |= HI1 (dn) << 7;
16727 inst.instruction |= inst.operands[0].reg << 12;
16728 inst.instruction |= (abcdebits & 3) << 5;
16729 inst.instruction |= (abcdebits >> 2) << 21;
037e8744
JB
16730 }
16731 break;
5f4273c7 16732
037e8744
JB
16733 case NS_RRD: /* case 7 (fmrrd). */
16734 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16735 _(BAD_FPU));
037e8744
JB
16736
16737 inst.instruction = 0xc500b10;
16738 do_vfp_cond_or_thumb ();
16739 inst.instruction |= inst.operands[0].reg << 12;
16740 inst.instruction |= inst.operands[1].reg << 16;
16741 inst.instruction |= LOW4 (inst.operands[2].reg);
16742 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16743 break;
5f4273c7 16744
037e8744
JB
16745 case NS_FF: /* case 8 (fcpys). */
16746 do_vfp_nsyn_opcode ("fcpys");
16747 break;
5f4273c7 16748
9db2f6b4 16749 case NS_HI:
037e8744
JB
16750 case NS_FI: /* case 10 (fconsts). */
16751 ldconst = "fconsts";
4ef4710f 16752 encode_fconstd:
58ed5c38
TC
16753 if (!inst.operands[1].immisfloat)
16754 {
4ef4710f 16755 unsigned new_imm;
58ed5c38 16756 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
16757 float imm = (float) inst.operands[1].imm;
16758 memcpy (&new_imm, &imm, sizeof (float));
16759 /* But the assembly may have been written to provide an integer
16760 bit pattern that equates to a float, so check that the
16761 conversion has worked. */
16762 if (is_quarter_float (new_imm))
16763 {
16764 if (is_quarter_float (inst.operands[1].imm))
16765 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
16766
16767 inst.operands[1].imm = new_imm;
16768 inst.operands[1].immisfloat = 1;
16769 }
58ed5c38
TC
16770 }
16771
037e8744 16772 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
16773 {
16774 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16775 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
16776
16777 /* ARMv8.2 fp16 vmov.f16 instruction. */
16778 if (rs == NS_HI)
16779 do_scalar_fp16_v82_encode ();
477330fc 16780 }
5287ad62 16781 else
477330fc 16782 first_error (_("immediate out of range"));
037e8744 16783 break;
5f4273c7 16784
9db2f6b4 16785 case NS_RH:
037e8744
JB
16786 case NS_RF: /* case 12 (fmrs). */
16787 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
16788 /* ARMv8.2 fp16 vmov.f16 instruction. */
16789 if (rs == NS_RH)
16790 do_scalar_fp16_v82_encode ();
037e8744 16791 break;
5f4273c7 16792
9db2f6b4 16793 case NS_HR:
037e8744
JB
16794 case NS_FR: /* case 13 (fmsr). */
16795 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
16796 /* ARMv8.2 fp16 vmov.f16 instruction. */
16797 if (rs == NS_HR)
16798 do_scalar_fp16_v82_encode ();
037e8744 16799 break;
5f4273c7 16800
037e8744
JB
16801 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16802 (one of which is a list), but we have parsed four. Do some fiddling to
16803 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16804 expect. */
16805 case NS_RRFF: /* case 14 (fmrrs). */
16806 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 16807 _("VFP registers must be adjacent"));
037e8744
JB
16808 inst.operands[2].imm = 2;
16809 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16810 do_vfp_nsyn_opcode ("fmrrs");
16811 break;
5f4273c7 16812
037e8744
JB
16813 case NS_FFRR: /* case 15 (fmsrr). */
16814 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 16815 _("VFP registers must be adjacent"));
037e8744
JB
16816 inst.operands[1] = inst.operands[2];
16817 inst.operands[2] = inst.operands[3];
16818 inst.operands[0].imm = 2;
16819 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16820 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 16821 break;
5f4273c7 16822
4c261dff
NC
16823 case NS_NULL:
16824 /* neon_select_shape has determined that the instruction
16825 shape is wrong and has already set the error message. */
16826 break;
16827
5287ad62
JB
16828 default:
16829 abort ();
16830 }
16831}
16832
16833static void
16834do_neon_rshift_round_imm (void)
16835{
037e8744 16836 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
16837 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16838 int imm = inst.operands[2].imm;
16839
16840 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16841 if (imm == 0)
16842 {
16843 inst.operands[2].present = 0;
16844 do_neon_mov ();
16845 return;
16846 }
16847
16848 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 16849 _("immediate out of range for shift"));
037e8744 16850 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 16851 et.size - imm);
5287ad62
JB
16852}
16853
9db2f6b4
RL
16854static void
16855do_neon_movhf (void)
16856{
16857 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16858 constraint (rs != NS_HH, _("invalid suffix"));
16859
7bdf778b
ASDV
16860 if (inst.cond != COND_ALWAYS)
16861 {
16862 if (thumb_mode)
16863 {
16864 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16865 " the behaviour is UNPREDICTABLE"));
16866 }
16867 else
16868 {
16869 inst.error = BAD_COND;
16870 return;
16871 }
16872 }
16873
9db2f6b4
RL
16874 do_vfp_sp_monadic ();
16875
16876 inst.is_neon = 1;
16877 inst.instruction |= 0xf0000000;
16878}
16879
5287ad62
JB
16880static void
16881do_neon_movl (void)
16882{
16883 struct neon_type_el et = neon_check_type (2, NS_QD,
16884 N_EQK | N_DBL, N_SU_32 | N_KEY);
16885 unsigned sizebits = et.size >> 3;
16886 inst.instruction |= sizebits << 19;
16887 neon_two_same (0, et.type == NT_unsigned, -1);
16888}
16889
16890static void
16891do_neon_trn (void)
16892{
037e8744 16893 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16894 struct neon_type_el et = neon_check_type (2, rs,
16895 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 16896 NEON_ENCODE (INTEGER, inst);
037e8744 16897 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16898}
16899
16900static void
16901do_neon_zip_uzp (void)
16902{
037e8744 16903 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16904 struct neon_type_el et = neon_check_type (2, rs,
16905 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16906 if (rs == NS_DD && et.size == 32)
16907 {
16908 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16909 inst.instruction = N_MNEM_vtrn;
16910 do_neon_trn ();
16911 return;
16912 }
037e8744 16913 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16914}
16915
16916static void
16917do_neon_sat_abs_neg (void)
16918{
037e8744 16919 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16920 struct neon_type_el et = neon_check_type (2, rs,
16921 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16922 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16923}
16924
16925static void
16926do_neon_pair_long (void)
16927{
037e8744 16928 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16929 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16930 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16931 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 16932 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16933}
16934
16935static void
16936do_neon_recip_est (void)
16937{
037e8744 16938 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 16939 struct neon_type_el et = neon_check_type (2, rs,
cc933301 16940 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 16941 inst.instruction |= (et.type == NT_float) << 8;
037e8744 16942 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16943}
16944
16945static void
16946do_neon_cls (void)
16947{
037e8744 16948 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16949 struct neon_type_el et = neon_check_type (2, rs,
16950 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16951 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16952}
16953
16954static void
16955do_neon_clz (void)
16956{
037e8744 16957 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16958 struct neon_type_el et = neon_check_type (2, rs,
16959 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 16960 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16961}
16962
16963static void
16964do_neon_cnt (void)
16965{
037e8744 16966 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16967 struct neon_type_el et = neon_check_type (2, rs,
16968 N_EQK | N_INT, N_8 | N_KEY);
037e8744 16969 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16970}
16971
16972static void
16973do_neon_swp (void)
16974{
037e8744
JB
16975 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16976 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
16977}
16978
16979static void
16980do_neon_tbl_tbx (void)
16981{
16982 unsigned listlenbits;
dcbf9037 16983 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 16984
5287ad62
JB
16985 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16986 {
dcbf9037 16987 first_error (_("bad list length for table lookup"));
5287ad62
JB
16988 return;
16989 }
5f4273c7 16990
5287ad62
JB
16991 listlenbits = inst.operands[1].imm - 1;
16992 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16993 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16994 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16995 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16996 inst.instruction |= LOW4 (inst.operands[2].reg);
16997 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16998 inst.instruction |= listlenbits << 8;
5f4273c7 16999
88714cb8 17000 neon_dp_fixup (&inst);
5287ad62
JB
17001}
17002
17003static void
17004do_neon_ldm_stm (void)
17005{
17006 /* P, U and L bits are part of bitmask. */
17007 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
17008 unsigned offsetbits = inst.operands[1].imm * 2;
17009
037e8744
JB
17010 if (inst.operands[1].issingle)
17011 {
17012 do_vfp_nsyn_ldm_stm (is_dbmode);
17013 return;
17014 }
17015
5287ad62 17016 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 17017 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
17018
17019 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
17020 _("register list must contain at least 1 and at most 16 "
17021 "registers"));
5287ad62
JB
17022
17023 inst.instruction |= inst.operands[0].reg << 16;
17024 inst.instruction |= inst.operands[0].writeback << 21;
17025 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
17026 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
17027
17028 inst.instruction |= offsetbits;
5f4273c7 17029
037e8744 17030 do_vfp_cond_or_thumb ();
5287ad62
JB
17031}
17032
17033static void
17034do_neon_ldr_str (void)
17035{
5287ad62 17036 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 17037
6844b2c2
MGD
17038 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
17039 And is UNPREDICTABLE in thumb mode. */
fa94de6b 17040 if (!is_ldr
6844b2c2 17041 && inst.operands[1].reg == REG_PC
ba86b375 17042 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 17043 {
94dcf8bf 17044 if (thumb_mode)
6844b2c2 17045 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 17046 else if (warn_on_deprecated)
5c3696f8 17047 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
17048 }
17049
037e8744
JB
17050 if (inst.operands[0].issingle)
17051 {
cd2f129f 17052 if (is_ldr)
477330fc 17053 do_vfp_nsyn_opcode ("flds");
cd2f129f 17054 else
477330fc 17055 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
17056
17057 /* ARMv8.2 vldr.16/vstr.16 instruction. */
17058 if (inst.vectype.el[0].size == 16)
17059 do_scalar_fp16_v82_encode ();
5287ad62
JB
17060 }
17061 else
5287ad62 17062 {
cd2f129f 17063 if (is_ldr)
477330fc 17064 do_vfp_nsyn_opcode ("fldd");
5287ad62 17065 else
477330fc 17066 do_vfp_nsyn_opcode ("fstd");
5287ad62 17067 }
5287ad62
JB
17068}
17069
17070/* "interleave" version also handles non-interleaving register VLD1/VST1
17071 instructions. */
17072
17073static void
17074do_neon_ld_st_interleave (void)
17075{
037e8744 17076 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 17077 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
17078 unsigned alignbits = 0;
17079 unsigned idx;
17080 /* The bits in this table go:
17081 0: register stride of one (0) or two (1)
17082 1,2: register list length, minus one (1, 2, 3, 4).
17083 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17084 We use -1 for invalid entries. */
17085 const int typetable[] =
17086 {
17087 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17088 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17089 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17090 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17091 };
17092 int typebits;
17093
dcbf9037
JB
17094 if (et.type == NT_invtype)
17095 return;
17096
5287ad62
JB
17097 if (inst.operands[1].immisalign)
17098 switch (inst.operands[1].imm >> 8)
17099 {
17100 case 64: alignbits = 1; break;
17101 case 128:
477330fc 17102 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 17103 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
17104 goto bad_alignment;
17105 alignbits = 2;
17106 break;
5287ad62 17107 case 256:
477330fc
RM
17108 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17109 goto bad_alignment;
17110 alignbits = 3;
17111 break;
5287ad62
JB
17112 default:
17113 bad_alignment:
477330fc
RM
17114 first_error (_("bad alignment"));
17115 return;
5287ad62
JB
17116 }
17117
17118 inst.instruction |= alignbits << 4;
17119 inst.instruction |= neon_logbits (et.size) << 6;
17120
17121 /* Bits [4:6] of the immediate in a list specifier encode register stride
17122 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17123 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17124 up the right value for "type" in a table based on this value and the given
17125 list style, then stick it back. */
17126 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 17127 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
17128
17129 typebits = typetable[idx];
5f4273c7 17130
5287ad62 17131 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c
WN
17132 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17133 _("bad element type for instruction"));
5287ad62
JB
17134
17135 inst.instruction &= ~0xf00;
17136 inst.instruction |= typebits << 8;
17137}
17138
17139/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17140 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17141 otherwise. The variable arguments are a list of pairs of legal (size, align)
17142 values, terminated with -1. */
17143
17144static int
aa8a0863 17145neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
17146{
17147 va_list ap;
17148 int result = FAIL, thissize, thisalign;
5f4273c7 17149
5287ad62
JB
17150 if (!inst.operands[1].immisalign)
17151 {
aa8a0863 17152 *do_alignment = 0;
5287ad62
JB
17153 return SUCCESS;
17154 }
5f4273c7 17155
aa8a0863 17156 va_start (ap, do_alignment);
5287ad62
JB
17157
17158 do
17159 {
17160 thissize = va_arg (ap, int);
17161 if (thissize == -1)
477330fc 17162 break;
5287ad62
JB
17163 thisalign = va_arg (ap, int);
17164
17165 if (size == thissize && align == thisalign)
477330fc 17166 result = SUCCESS;
5287ad62
JB
17167 }
17168 while (result != SUCCESS);
17169
17170 va_end (ap);
17171
17172 if (result == SUCCESS)
aa8a0863 17173 *do_alignment = 1;
5287ad62 17174 else
dcbf9037 17175 first_error (_("unsupported alignment for instruction"));
5f4273c7 17176
5287ad62
JB
17177 return result;
17178}
17179
17180static void
17181do_neon_ld_st_lane (void)
17182{
037e8744 17183 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17184 int align_good, do_alignment = 0;
5287ad62
JB
17185 int logsize = neon_logbits (et.size);
17186 int align = inst.operands[1].imm >> 8;
17187 int n = (inst.instruction >> 8) & 3;
17188 int max_el = 64 / et.size;
5f4273c7 17189
dcbf9037
JB
17190 if (et.type == NT_invtype)
17191 return;
5f4273c7 17192
5287ad62 17193 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 17194 _("bad list length"));
5287ad62 17195 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 17196 _("scalar index out of range"));
5287ad62 17197 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
17198 && et.size == 8,
17199 _("stride of 2 unavailable when element size is 8"));
5f4273c7 17200
5287ad62
JB
17201 switch (n)
17202 {
17203 case 0: /* VLD1 / VST1. */
aa8a0863 17204 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 17205 32, 32, -1);
5287ad62 17206 if (align_good == FAIL)
477330fc 17207 return;
aa8a0863 17208 if (do_alignment)
477330fc
RM
17209 {
17210 unsigned alignbits = 0;
17211 switch (et.size)
17212 {
17213 case 16: alignbits = 0x1; break;
17214 case 32: alignbits = 0x3; break;
17215 default: ;
17216 }
17217 inst.instruction |= alignbits << 4;
17218 }
5287ad62
JB
17219 break;
17220
17221 case 1: /* VLD2 / VST2. */
aa8a0863
TS
17222 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17223 16, 32, 32, 64, -1);
5287ad62 17224 if (align_good == FAIL)
477330fc 17225 return;
aa8a0863 17226 if (do_alignment)
477330fc 17227 inst.instruction |= 1 << 4;
5287ad62
JB
17228 break;
17229
17230 case 2: /* VLD3 / VST3. */
17231 constraint (inst.operands[1].immisalign,
477330fc 17232 _("can't use alignment with this instruction"));
5287ad62
JB
17233 break;
17234
17235 case 3: /* VLD4 / VST4. */
aa8a0863 17236 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 17237 16, 64, 32, 64, 32, 128, -1);
5287ad62 17238 if (align_good == FAIL)
477330fc 17239 return;
aa8a0863 17240 if (do_alignment)
477330fc
RM
17241 {
17242 unsigned alignbits = 0;
17243 switch (et.size)
17244 {
17245 case 8: alignbits = 0x1; break;
17246 case 16: alignbits = 0x1; break;
17247 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17248 default: ;
17249 }
17250 inst.instruction |= alignbits << 4;
17251 }
5287ad62
JB
17252 break;
17253
17254 default: ;
17255 }
17256
17257 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17258 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17259 inst.instruction |= 1 << (4 + logsize);
5f4273c7 17260
5287ad62
JB
17261 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17262 inst.instruction |= logsize << 10;
17263}
17264
17265/* Encode single n-element structure to all lanes VLD<n> instructions. */
17266
17267static void
17268do_neon_ld_dup (void)
17269{
037e8744 17270 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17271 int align_good, do_alignment = 0;
5287ad62 17272
dcbf9037
JB
17273 if (et.type == NT_invtype)
17274 return;
17275
5287ad62
JB
17276 switch ((inst.instruction >> 8) & 3)
17277 {
17278 case 0: /* VLD1. */
9c2799c2 17279 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 17280 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 17281 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 17282 if (align_good == FAIL)
477330fc 17283 return;
5287ad62 17284 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
17285 {
17286 case 1: break;
17287 case 2: inst.instruction |= 1 << 5; break;
17288 default: first_error (_("bad list length")); return;
17289 }
5287ad62
JB
17290 inst.instruction |= neon_logbits (et.size) << 6;
17291 break;
17292
17293 case 1: /* VLD2. */
17294 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
17295 &do_alignment, 8, 16, 16, 32, 32, 64,
17296 -1);
5287ad62 17297 if (align_good == FAIL)
477330fc 17298 return;
5287ad62 17299 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 17300 _("bad list length"));
5287ad62 17301 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17302 inst.instruction |= 1 << 5;
5287ad62
JB
17303 inst.instruction |= neon_logbits (et.size) << 6;
17304 break;
17305
17306 case 2: /* VLD3. */
17307 constraint (inst.operands[1].immisalign,
477330fc 17308 _("can't use alignment with this instruction"));
5287ad62 17309 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 17310 _("bad list length"));
5287ad62 17311 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17312 inst.instruction |= 1 << 5;
5287ad62
JB
17313 inst.instruction |= neon_logbits (et.size) << 6;
17314 break;
17315
17316 case 3: /* VLD4. */
17317 {
477330fc 17318 int align = inst.operands[1].imm >> 8;
aa8a0863 17319 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
17320 16, 64, 32, 64, 32, 128, -1);
17321 if (align_good == FAIL)
17322 return;
17323 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17324 _("bad list length"));
17325 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17326 inst.instruction |= 1 << 5;
17327 if (et.size == 32 && align == 128)
17328 inst.instruction |= 0x3 << 6;
17329 else
17330 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
17331 }
17332 break;
17333
17334 default: ;
17335 }
17336
aa8a0863 17337 inst.instruction |= do_alignment << 4;
5287ad62
JB
17338}
17339
17340/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17341 apart from bits [11:4]. */
17342
17343static void
17344do_neon_ldx_stx (void)
17345{
b1a769ed
DG
17346 if (inst.operands[1].isreg)
17347 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17348
5287ad62
JB
17349 switch (NEON_LANE (inst.operands[0].imm))
17350 {
17351 case NEON_INTERLEAVE_LANES:
88714cb8 17352 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
17353 do_neon_ld_st_interleave ();
17354 break;
5f4273c7 17355
5287ad62 17356 case NEON_ALL_LANES:
88714cb8 17357 NEON_ENCODE (DUP, inst);
2d51fb74
JB
17358 if (inst.instruction == N_INV)
17359 {
17360 first_error ("only loads support such operands");
17361 break;
17362 }
5287ad62
JB
17363 do_neon_ld_dup ();
17364 break;
5f4273c7 17365
5287ad62 17366 default:
88714cb8 17367 NEON_ENCODE (LANE, inst);
5287ad62
JB
17368 do_neon_ld_st_lane ();
17369 }
17370
17371 /* L bit comes from bit mask. */
17372 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17373 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17374 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 17375
5287ad62
JB
17376 if (inst.operands[1].postind)
17377 {
17378 int postreg = inst.operands[1].imm & 0xf;
17379 constraint (!inst.operands[1].immisreg,
477330fc 17380 _("post-index must be a register"));
5287ad62 17381 constraint (postreg == 0xd || postreg == 0xf,
477330fc 17382 _("bad register for post-index"));
5287ad62
JB
17383 inst.instruction |= postreg;
17384 }
4f2374c7 17385 else
5287ad62 17386 {
4f2374c7 17387 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
17388 constraint (inst.relocs[0].exp.X_op != O_constant
17389 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
17390 BAD_ADDR_MODE);
17391
17392 if (inst.operands[1].writeback)
17393 {
17394 inst.instruction |= 0xd;
17395 }
17396 else
17397 inst.instruction |= 0xf;
5287ad62 17398 }
5f4273c7 17399
5287ad62
JB
17400 if (thumb_mode)
17401 inst.instruction |= 0xf9000000;
17402 else
17403 inst.instruction |= 0xf4000000;
17404}
33399f07
MGD
17405
17406/* FP v8. */
17407static void
17408do_vfp_nsyn_fpv8 (enum neon_shape rs)
17409{
a715796b
TG
17410 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17411 D register operands. */
17412 if (neon_shape_class[rs] == SC_DOUBLE)
17413 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17414 _(BAD_FPU));
17415
33399f07
MGD
17416 NEON_ENCODE (FPV8, inst);
17417
9db2f6b4
RL
17418 if (rs == NS_FFF || rs == NS_HHH)
17419 {
17420 do_vfp_sp_dyadic ();
17421
17422 /* ARMv8.2 fp16 instruction. */
17423 if (rs == NS_HHH)
17424 do_scalar_fp16_v82_encode ();
17425 }
33399f07
MGD
17426 else
17427 do_vfp_dp_rd_rn_rm ();
17428
17429 if (rs == NS_DDD)
17430 inst.instruction |= 0x100;
17431
17432 inst.instruction |= 0xf0000000;
17433}
17434
17435static void
17436do_vsel (void)
17437{
17438 set_it_insn_type (OUTSIDE_IT_INSN);
17439
17440 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17441 first_error (_("invalid instruction shape"));
17442}
17443
73924fbc
MGD
17444static void
17445do_vmaxnm (void)
17446{
17447 set_it_insn_type (OUTSIDE_IT_INSN);
17448
17449 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17450 return;
17451
17452 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17453 return;
17454
cc933301 17455 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
17456}
17457
30bdf752
MGD
17458static void
17459do_vrint_1 (enum neon_cvt_mode mode)
17460{
9db2f6b4 17461 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
17462 struct neon_type_el et;
17463
17464 if (rs == NS_NULL)
17465 return;
17466
a715796b
TG
17467 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17468 D register operands. */
17469 if (neon_shape_class[rs] == SC_DOUBLE)
17470 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17471 _(BAD_FPU));
17472
9db2f6b4
RL
17473 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17474 | N_VFP);
30bdf752
MGD
17475 if (et.type != NT_invtype)
17476 {
17477 /* VFP encodings. */
17478 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17479 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17480 set_it_insn_type (OUTSIDE_IT_INSN);
17481
17482 NEON_ENCODE (FPV8, inst);
9db2f6b4 17483 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
17484 do_vfp_sp_monadic ();
17485 else
17486 do_vfp_dp_rd_rm ();
17487
17488 switch (mode)
17489 {
17490 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17491 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17492 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17493 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17494 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17495 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17496 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17497 default: abort ();
17498 }
17499
17500 inst.instruction |= (rs == NS_DD) << 8;
17501 do_vfp_cond_or_thumb ();
9db2f6b4
RL
17502
17503 /* ARMv8.2 fp16 vrint instruction. */
17504 if (rs == NS_HH)
17505 do_scalar_fp16_v82_encode ();
30bdf752
MGD
17506 }
17507 else
17508 {
17509 /* Neon encodings (or something broken...). */
17510 inst.error = NULL;
cc933301 17511 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
17512
17513 if (et.type == NT_invtype)
17514 return;
17515
17516 set_it_insn_type (OUTSIDE_IT_INSN);
17517 NEON_ENCODE (FLOAT, inst);
17518
17519 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17520 return;
17521
17522 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17524 inst.instruction |= LOW4 (inst.operands[1].reg);
17525 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17526 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17527 /* Mask off the original size bits and reencode them. */
17528 inst.instruction = ((inst.instruction & 0xfff3ffff)
17529 | neon_logbits (et.size) << 18);
17530
30bdf752
MGD
17531 switch (mode)
17532 {
17533 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17534 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17535 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17536 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17537 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17538 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17539 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17540 default: abort ();
17541 }
17542
17543 if (thumb_mode)
17544 inst.instruction |= 0xfc000000;
17545 else
17546 inst.instruction |= 0xf0000000;
17547 }
17548}
17549
17550static void
17551do_vrintx (void)
17552{
17553 do_vrint_1 (neon_cvt_mode_x);
17554}
17555
17556static void
17557do_vrintz (void)
17558{
17559 do_vrint_1 (neon_cvt_mode_z);
17560}
17561
17562static void
17563do_vrintr (void)
17564{
17565 do_vrint_1 (neon_cvt_mode_r);
17566}
17567
17568static void
17569do_vrinta (void)
17570{
17571 do_vrint_1 (neon_cvt_mode_a);
17572}
17573
17574static void
17575do_vrintn (void)
17576{
17577 do_vrint_1 (neon_cvt_mode_n);
17578}
17579
17580static void
17581do_vrintp (void)
17582{
17583 do_vrint_1 (neon_cvt_mode_p);
17584}
17585
17586static void
17587do_vrintm (void)
17588{
17589 do_vrint_1 (neon_cvt_mode_m);
17590}
17591
c28eeff2
SN
17592static unsigned
17593neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17594{
17595 unsigned regno = NEON_SCALAR_REG (opnd);
17596 unsigned elno = NEON_SCALAR_INDEX (opnd);
17597
17598 if (elsize == 16 && elno < 2 && regno < 16)
17599 return regno | (elno << 4);
17600 else if (elsize == 32 && elno == 0)
17601 return regno;
17602
17603 first_error (_("scalar out of range"));
17604 return 0;
17605}
17606
17607static void
17608do_vcmla (void)
17609{
17610 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17611 _(BAD_FPU));
e2b0ab59
AV
17612 constraint (inst.relocs[0].exp.X_op != O_constant,
17613 _("expression too complex"));
17614 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
17615 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17616 _("immediate out of range"));
17617 rot /= 90;
17618 if (inst.operands[2].isscalar)
17619 {
17620 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17621 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17622 N_KEY | N_F16 | N_F32).size;
17623 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17624 inst.is_neon = 1;
17625 inst.instruction = 0xfe000800;
17626 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17627 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17628 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17629 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17630 inst.instruction |= LOW4 (m);
17631 inst.instruction |= HI1 (m) << 5;
17632 inst.instruction |= neon_quad (rs) << 6;
17633 inst.instruction |= rot << 20;
17634 inst.instruction |= (size == 32) << 23;
17635 }
17636 else
17637 {
17638 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17639 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17640 N_KEY | N_F16 | N_F32).size;
17641 neon_three_same (neon_quad (rs), 0, -1);
17642 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17643 inst.instruction |= 0xfc200800;
17644 inst.instruction |= rot << 23;
17645 inst.instruction |= (size == 32) << 20;
17646 }
17647}
17648
17649static void
17650do_vcadd (void)
17651{
17652 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17653 _(BAD_FPU));
e2b0ab59
AV
17654 constraint (inst.relocs[0].exp.X_op != O_constant,
17655 _("expression too complex"));
17656 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
17657 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17658 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17659 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17660 N_KEY | N_F16 | N_F32).size;
17661 neon_three_same (neon_quad (rs), 0, -1);
17662 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17663 inst.instruction |= 0xfc800800;
17664 inst.instruction |= (rot == 270) << 24;
17665 inst.instruction |= (size == 32) << 20;
17666}
17667
c604a79a
JW
17668/* Dot Product instructions encoding support. */
17669
17670static void
17671do_neon_dotproduct (int unsigned_p)
17672{
17673 enum neon_shape rs;
17674 unsigned scalar_oprd2 = 0;
17675 int high8;
17676
17677 if (inst.cond != COND_ALWAYS)
17678 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17679 "is UNPREDICTABLE"));
17680
17681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17682 _(BAD_FPU));
17683
17684 /* Dot Product instructions are in three-same D/Q register format or the third
17685 operand can be a scalar index register. */
17686 if (inst.operands[2].isscalar)
17687 {
17688 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17689 high8 = 0xfe000000;
17690 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17691 }
17692 else
17693 {
17694 high8 = 0xfc000000;
17695 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17696 }
17697
17698 if (unsigned_p)
17699 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17700 else
17701 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17702
17703 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17704 Product instruction, so we pass 0 as the "ubit" parameter. And the
17705 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17706 neon_three_same (neon_quad (rs), 0, 32);
17707
17708 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17709 different NEON three-same encoding. */
17710 inst.instruction &= 0x00ffffff;
17711 inst.instruction |= high8;
17712 /* Encode 'U' bit which indicates signedness. */
17713 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17714 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17715 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17716 the instruction encoding. */
17717 if (inst.operands[2].isscalar)
17718 {
17719 inst.instruction &= 0xffffffd0;
17720 inst.instruction |= LOW4 (scalar_oprd2);
17721 inst.instruction |= HI1 (scalar_oprd2) << 5;
17722 }
17723}
17724
17725/* Dot Product instructions for signed integer. */
17726
17727static void
17728do_neon_dotproduct_s (void)
17729{
17730 return do_neon_dotproduct (0);
17731}
17732
17733/* Dot Product instructions for unsigned integer. */
17734
17735static void
17736do_neon_dotproduct_u (void)
17737{
17738 return do_neon_dotproduct (1);
17739}
17740
91ff7894
MGD
17741/* Crypto v1 instructions. */
17742static void
17743do_crypto_2op_1 (unsigned elttype, int op)
17744{
17745 set_it_insn_type (OUTSIDE_IT_INSN);
17746
17747 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17748 == NT_invtype)
17749 return;
17750
17751 inst.error = NULL;
17752
17753 NEON_ENCODE (INTEGER, inst);
17754 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17755 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17756 inst.instruction |= LOW4 (inst.operands[1].reg);
17757 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17758 if (op != -1)
17759 inst.instruction |= op << 6;
17760
17761 if (thumb_mode)
17762 inst.instruction |= 0xfc000000;
17763 else
17764 inst.instruction |= 0xf0000000;
17765}
17766
48adcd8e
MGD
17767static void
17768do_crypto_3op_1 (int u, int op)
17769{
17770 set_it_insn_type (OUTSIDE_IT_INSN);
17771
17772 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17773 N_32 | N_UNT | N_KEY).type == NT_invtype)
17774 return;
17775
17776 inst.error = NULL;
17777
17778 NEON_ENCODE (INTEGER, inst);
17779 neon_three_same (1, u, 8 << op);
17780}
17781
91ff7894
MGD
17782static void
17783do_aese (void)
17784{
17785 do_crypto_2op_1 (N_8, 0);
17786}
17787
17788static void
17789do_aesd (void)
17790{
17791 do_crypto_2op_1 (N_8, 1);
17792}
17793
17794static void
17795do_aesmc (void)
17796{
17797 do_crypto_2op_1 (N_8, 2);
17798}
17799
17800static void
17801do_aesimc (void)
17802{
17803 do_crypto_2op_1 (N_8, 3);
17804}
17805
48adcd8e
MGD
17806static void
17807do_sha1c (void)
17808{
17809 do_crypto_3op_1 (0, 0);
17810}
17811
17812static void
17813do_sha1p (void)
17814{
17815 do_crypto_3op_1 (0, 1);
17816}
17817
17818static void
17819do_sha1m (void)
17820{
17821 do_crypto_3op_1 (0, 2);
17822}
17823
17824static void
17825do_sha1su0 (void)
17826{
17827 do_crypto_3op_1 (0, 3);
17828}
91ff7894 17829
48adcd8e
MGD
17830static void
17831do_sha256h (void)
17832{
17833 do_crypto_3op_1 (1, 0);
17834}
17835
17836static void
17837do_sha256h2 (void)
17838{
17839 do_crypto_3op_1 (1, 1);
17840}
17841
17842static void
17843do_sha256su1 (void)
17844{
17845 do_crypto_3op_1 (1, 2);
17846}
3c9017d2
MGD
17847
17848static void
17849do_sha1h (void)
17850{
17851 do_crypto_2op_1 (N_32, -1);
17852}
17853
17854static void
17855do_sha1su1 (void)
17856{
17857 do_crypto_2op_1 (N_32, 0);
17858}
17859
17860static void
17861do_sha256su0 (void)
17862{
17863 do_crypto_2op_1 (N_32, 1);
17864}
dd5181d5
KT
17865
17866static void
17867do_crc32_1 (unsigned int poly, unsigned int sz)
17868{
17869 unsigned int Rd = inst.operands[0].reg;
17870 unsigned int Rn = inst.operands[1].reg;
17871 unsigned int Rm = inst.operands[2].reg;
17872
17873 set_it_insn_type (OUTSIDE_IT_INSN);
17874 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17875 inst.instruction |= LOW4 (Rn) << 16;
17876 inst.instruction |= LOW4 (Rm);
17877 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17878 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17879
17880 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17881 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
17882}
17883
17884static void
17885do_crc32b (void)
17886{
17887 do_crc32_1 (0, 0);
17888}
17889
17890static void
17891do_crc32h (void)
17892{
17893 do_crc32_1 (0, 1);
17894}
17895
17896static void
17897do_crc32w (void)
17898{
17899 do_crc32_1 (0, 2);
17900}
17901
17902static void
17903do_crc32cb (void)
17904{
17905 do_crc32_1 (1, 0);
17906}
17907
17908static void
17909do_crc32ch (void)
17910{
17911 do_crc32_1 (1, 1);
17912}
17913
17914static void
17915do_crc32cw (void)
17916{
17917 do_crc32_1 (1, 2);
17918}
17919
49e8a725
SN
17920static void
17921do_vjcvt (void)
17922{
17923 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17924 _(BAD_FPU));
17925 neon_check_type (2, NS_FD, N_S32, N_F64);
17926 do_vfp_sp_dp_cvt ();
17927 do_vfp_cond_or_thumb ();
17928}
17929
5287ad62
JB
17930\f
17931/* Overall per-instruction processing. */
17932
17933/* We need to be able to fix up arbitrary expressions in some statements.
17934 This is so that we can handle symbols that are an arbitrary distance from
17935 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17936 which returns part of an address in a form which will be valid for
17937 a data instruction. We do this by pushing the expression into a symbol
17938 in the expr_section, and creating a fix for that. */
17939
17940static void
17941fix_new_arm (fragS * frag,
17942 int where,
17943 short int size,
17944 expressionS * exp,
17945 int pc_rel,
17946 int reloc)
17947{
17948 fixS * new_fix;
17949
17950 switch (exp->X_op)
17951 {
17952 case O_constant:
6e7ce2cd
PB
17953 if (pc_rel)
17954 {
17955 /* Create an absolute valued symbol, so we have something to
477330fc
RM
17956 refer to in the object file. Unfortunately for us, gas's
17957 generic expression parsing will already have folded out
17958 any use of .set foo/.type foo %function that may have
17959 been used to set type information of the target location,
17960 that's being specified symbolically. We have to presume
17961 the user knows what they are doing. */
6e7ce2cd
PB
17962 char name[16 + 8];
17963 symbolS *symbol;
17964
17965 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17966
17967 symbol = symbol_find_or_make (name);
17968 S_SET_SEGMENT (symbol, absolute_section);
17969 symbol_set_frag (symbol, &zero_address_frag);
17970 S_SET_VALUE (symbol, exp->X_add_number);
17971 exp->X_op = O_symbol;
17972 exp->X_add_symbol = symbol;
17973 exp->X_add_number = 0;
17974 }
17975 /* FALLTHROUGH */
5287ad62
JB
17976 case O_symbol:
17977 case O_add:
17978 case O_subtract:
21d799b5 17979 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 17980 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17981 break;
17982
17983 default:
21d799b5 17984 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 17985 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17986 break;
17987 }
17988
17989 /* Mark whether the fix is to a THUMB instruction, or an ARM
17990 instruction. */
17991 new_fix->tc_fix_data = thumb_mode;
17992}
17993
17994/* Create a frg for an instruction requiring relaxation. */
17995static void
17996output_relax_insn (void)
17997{
17998 char * to;
17999 symbolS *sym;
0110f2b8
PB
18000 int offset;
18001
6e1cb1a6
PB
18002 /* The size of the instruction is unknown, so tie the debug info to the
18003 start of the instruction. */
18004 dwarf2_emit_insn (0);
6e1cb1a6 18005
e2b0ab59 18006 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
18007 {
18008 case O_symbol:
e2b0ab59
AV
18009 sym = inst.relocs[0].exp.X_add_symbol;
18010 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
18011 break;
18012 case O_constant:
18013 sym = NULL;
e2b0ab59 18014 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
18015 break;
18016 default:
e2b0ab59 18017 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
18018 offset = 0;
18019 break;
18020 }
18021 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
18022 inst.relax, sym, offset, NULL/*offset, opcode*/);
18023 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
18024}
18025
18026/* Write a 32-bit thumb instruction to buf. */
18027static void
18028put_thumb32_insn (char * buf, unsigned long insn)
18029{
18030 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
18031 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
18032}
18033
b99bd4ef 18034static void
c19d1205 18035output_inst (const char * str)
b99bd4ef 18036{
c19d1205 18037 char * to = NULL;
b99bd4ef 18038
c19d1205 18039 if (inst.error)
b99bd4ef 18040 {
c19d1205 18041 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
18042 return;
18043 }
5f4273c7
NC
18044 if (inst.relax)
18045 {
18046 output_relax_insn ();
0110f2b8 18047 return;
5f4273c7 18048 }
c19d1205
ZW
18049 if (inst.size == 0)
18050 return;
b99bd4ef 18051
c19d1205 18052 to = frag_more (inst.size);
8dc2430f
NC
18053 /* PR 9814: Record the thumb mode into the current frag so that we know
18054 what type of NOP padding to use, if necessary. We override any previous
18055 setting so that if the mode has changed then the NOPS that we use will
18056 match the encoding of the last instruction in the frag. */
cd000bff 18057 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
18058
18059 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 18060 {
9c2799c2 18061 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 18062 put_thumb32_insn (to, inst.instruction);
b99bd4ef 18063 }
c19d1205 18064 else if (inst.size > INSN_SIZE)
b99bd4ef 18065 {
9c2799c2 18066 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
18067 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18068 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 18069 }
c19d1205
ZW
18070 else
18071 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 18072
e2b0ab59
AV
18073 int r;
18074 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18075 {
18076 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
18077 fix_new_arm (frag_now, to - frag_now->fr_literal,
18078 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
18079 inst.relocs[r].type);
18080 }
b99bd4ef 18081
c19d1205 18082 dwarf2_emit_insn (inst.size);
c19d1205 18083}
b99bd4ef 18084
e07e6e58
NC
18085static char *
18086output_it_inst (int cond, int mask, char * to)
18087{
18088 unsigned long instruction = 0xbf00;
18089
18090 mask &= 0xf;
18091 instruction |= mask;
18092 instruction |= cond << 4;
18093
18094 if (to == NULL)
18095 {
18096 to = frag_more (2);
18097#ifdef OBJ_ELF
18098 dwarf2_emit_insn (2);
18099#endif
18100 }
18101
18102 md_number_to_chars (to, instruction, 2);
18103
18104 return to;
18105}
18106
c19d1205
ZW
18107/* Tag values used in struct asm_opcode's tag field. */
18108enum opcode_tag
18109{
18110 OT_unconditional, /* Instruction cannot be conditionalized.
18111 The ARM condition field is still 0xE. */
18112 OT_unconditionalF, /* Instruction cannot be conditionalized
18113 and carries 0xF in its ARM condition field. */
18114 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744 18115 OT_csuffixF, /* Some forms of the instruction take a conditional
477330fc
RM
18116 suffix, others place 0xF where the condition field
18117 would be. */
c19d1205
ZW
18118 OT_cinfix3, /* Instruction takes a conditional infix,
18119 beginning at character index 3. (In
18120 unified mode, it becomes a suffix.) */
088fa78e
KH
18121 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18122 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
18123 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18124 character index 3, even in unified mode. Used for
18125 legacy instructions where suffix and infix forms
18126 may be ambiguous. */
c19d1205 18127 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 18128 suffix or an infix at character index 3. */
c19d1205
ZW
18129 OT_odd_infix_unc, /* This is the unconditional variant of an
18130 instruction that takes a conditional infix
18131 at an unusual position. In unified mode,
18132 this variant will accept a suffix. */
18133 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18134 are the conditional variants of instructions that
18135 take conditional infixes in unusual positions.
18136 The infix appears at character index
18137 (tag - OT_odd_infix_0). These are not accepted
18138 in unified mode. */
18139};
b99bd4ef 18140
c19d1205
ZW
18141/* Subroutine of md_assemble, responsible for looking up the primary
18142 opcode from the mnemonic the user wrote. STR points to the
18143 beginning of the mnemonic.
18144
18145 This is not simply a hash table lookup, because of conditional
18146 variants. Most instructions have conditional variants, which are
18147 expressed with a _conditional affix_ to the mnemonic. If we were
18148 to encode each conditional variant as a literal string in the opcode
18149 table, it would have approximately 20,000 entries.
18150
18151 Most mnemonics take this affix as a suffix, and in unified syntax,
18152 'most' is upgraded to 'all'. However, in the divided syntax, some
18153 instructions take the affix as an infix, notably the s-variants of
18154 the arithmetic instructions. Of those instructions, all but six
18155 have the infix appear after the third character of the mnemonic.
18156
18157 Accordingly, the algorithm for looking up primary opcodes given
18158 an identifier is:
18159
18160 1. Look up the identifier in the opcode table.
18161 If we find a match, go to step U.
18162
18163 2. Look up the last two characters of the identifier in the
18164 conditions table. If we find a match, look up the first N-2
18165 characters of the identifier in the opcode table. If we
18166 find a match, go to step CE.
18167
18168 3. Look up the fourth and fifth characters of the identifier in
18169 the conditions table. If we find a match, extract those
18170 characters from the identifier, and look up the remaining
18171 characters in the opcode table. If we find a match, go
18172 to step CM.
18173
18174 4. Fail.
18175
18176 U. Examine the tag field of the opcode structure, in case this is
18177 one of the six instructions with its conditional infix in an
18178 unusual place. If it is, the tag tells us where to find the
18179 infix; look it up in the conditions table and set inst.cond
18180 accordingly. Otherwise, this is an unconditional instruction.
18181 Again set inst.cond accordingly. Return the opcode structure.
18182
18183 CE. Examine the tag field to make sure this is an instruction that
18184 should receive a conditional suffix. If it is not, fail.
18185 Otherwise, set inst.cond from the suffix we already looked up,
18186 and return the opcode structure.
18187
18188 CM. Examine the tag field to make sure this is an instruction that
18189 should receive a conditional infix after the third character.
18190 If it is not, fail. Otherwise, undo the edits to the current
18191 line of input and proceed as for case CE. */
18192
18193static const struct asm_opcode *
18194opcode_lookup (char **str)
18195{
18196 char *end, *base;
18197 char *affix;
18198 const struct asm_opcode *opcode;
18199 const struct asm_cond *cond;
e3cb604e 18200 char save[2];
c19d1205
ZW
18201
18202 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 18203 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 18204 for (base = end = *str; *end != '\0'; end++)
721a8186 18205 if (*end == ' ' || *end == '.')
c19d1205 18206 break;
b99bd4ef 18207
c19d1205 18208 if (end == base)
c921be7d 18209 return NULL;
b99bd4ef 18210
5287ad62 18211 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 18212 if (end[0] == '.')
b99bd4ef 18213 {
5287ad62 18214 int offset = 2;
5f4273c7 18215
267d2029 18216 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 18217 use. */
267d2029 18218 if (unified_syntax && end[1] == 'w')
c19d1205 18219 inst.size_req = 4;
267d2029 18220 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
18221 inst.size_req = 2;
18222 else
477330fc 18223 offset = 0;
5287ad62
JB
18224
18225 inst.vectype.elems = 0;
18226
18227 *str = end + offset;
b99bd4ef 18228
5f4273c7 18229 if (end[offset] == '.')
5287ad62 18230 {
267d2029 18231 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
18232 non-unified ARM syntax mode). */
18233 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 18234 return NULL;
477330fc 18235 }
5287ad62 18236 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 18237 return NULL;
b99bd4ef 18238 }
c19d1205
ZW
18239 else
18240 *str = end;
b99bd4ef 18241
c19d1205 18242 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 18243 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18244 end - base);
c19d1205 18245 if (opcode)
b99bd4ef 18246 {
c19d1205
ZW
18247 /* step U */
18248 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 18249 {
c19d1205
ZW
18250 inst.cond = COND_ALWAYS;
18251 return opcode;
b99bd4ef 18252 }
b99bd4ef 18253
278df34e 18254 if (warn_on_deprecated && unified_syntax)
5c3696f8 18255 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 18256 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 18257 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 18258 gas_assert (cond);
b99bd4ef 18259
c19d1205
ZW
18260 inst.cond = cond->value;
18261 return opcode;
18262 }
b99bd4ef 18263
c19d1205
ZW
18264 /* Cannot have a conditional suffix on a mnemonic of less than two
18265 characters. */
18266 if (end - base < 3)
c921be7d 18267 return NULL;
b99bd4ef 18268
c19d1205
ZW
18269 /* Look for suffixed mnemonic. */
18270 affix = end - 2;
21d799b5
NC
18271 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18272 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18273 affix - base);
c19d1205
ZW
18274 if (opcode && cond)
18275 {
18276 /* step CE */
18277 switch (opcode->tag)
18278 {
e3cb604e
PB
18279 case OT_cinfix3_legacy:
18280 /* Ignore conditional suffixes matched on infix only mnemonics. */
18281 break;
18282
c19d1205 18283 case OT_cinfix3:
088fa78e 18284 case OT_cinfix3_deprecated:
c19d1205
ZW
18285 case OT_odd_infix_unc:
18286 if (!unified_syntax)
0198d5e6 18287 return NULL;
1a0670f3 18288 /* Fall through. */
c19d1205
ZW
18289
18290 case OT_csuffix:
477330fc 18291 case OT_csuffixF:
c19d1205
ZW
18292 case OT_csuf_or_in3:
18293 inst.cond = cond->value;
18294 return opcode;
18295
18296 case OT_unconditional:
18297 case OT_unconditionalF:
dfa9f0d5 18298 if (thumb_mode)
c921be7d 18299 inst.cond = cond->value;
dfa9f0d5
PB
18300 else
18301 {
c921be7d 18302 /* Delayed diagnostic. */
dfa9f0d5
PB
18303 inst.error = BAD_COND;
18304 inst.cond = COND_ALWAYS;
18305 }
c19d1205 18306 return opcode;
b99bd4ef 18307
c19d1205 18308 default:
c921be7d 18309 return NULL;
c19d1205
ZW
18310 }
18311 }
b99bd4ef 18312
c19d1205
ZW
18313 /* Cannot have a usual-position infix on a mnemonic of less than
18314 six characters (five would be a suffix). */
18315 if (end - base < 6)
c921be7d 18316 return NULL;
b99bd4ef 18317
c19d1205
ZW
18318 /* Look for infixed mnemonic in the usual position. */
18319 affix = base + 3;
21d799b5 18320 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 18321 if (!cond)
c921be7d 18322 return NULL;
e3cb604e
PB
18323
18324 memcpy (save, affix, 2);
18325 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 18326 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18327 (end - base) - 2);
e3cb604e
PB
18328 memmove (affix + 2, affix, (end - affix) - 2);
18329 memcpy (affix, save, 2);
18330
088fa78e
KH
18331 if (opcode
18332 && (opcode->tag == OT_cinfix3
18333 || opcode->tag == OT_cinfix3_deprecated
18334 || opcode->tag == OT_csuf_or_in3
18335 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 18336 {
c921be7d 18337 /* Step CM. */
278df34e 18338 if (warn_on_deprecated && unified_syntax
088fa78e
KH
18339 && (opcode->tag == OT_cinfix3
18340 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 18341 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
18342
18343 inst.cond = cond->value;
18344 return opcode;
b99bd4ef
NC
18345 }
18346
c921be7d 18347 return NULL;
b99bd4ef
NC
18348}
18349
e07e6e58
NC
18350/* This function generates an initial IT instruction, leaving its block
18351 virtually open for the new instructions. Eventually,
18352 the mask will be updated by now_it_add_mask () each time
18353 a new instruction needs to be included in the IT block.
18354 Finally, the block is closed with close_automatic_it_block ().
18355 The block closure can be requested either from md_assemble (),
18356 a tencode (), or due to a label hook. */
18357
18358static void
18359new_automatic_it_block (int cond)
18360{
18361 now_it.state = AUTOMATIC_IT_BLOCK;
18362 now_it.mask = 0x18;
18363 now_it.cc = cond;
18364 now_it.block_length = 1;
cd000bff 18365 mapping_state (MAP_THUMB);
e07e6e58 18366 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
18367 now_it.warn_deprecated = FALSE;
18368 now_it.insn_cond = TRUE;
e07e6e58
NC
18369}
18370
18371/* Close an automatic IT block.
18372 See comments in new_automatic_it_block (). */
18373
18374static void
18375close_automatic_it_block (void)
18376{
18377 now_it.mask = 0x10;
18378 now_it.block_length = 0;
18379}
18380
18381/* Update the mask of the current automatically-generated IT
18382 instruction. See comments in new_automatic_it_block (). */
18383
18384static void
18385now_it_add_mask (int cond)
18386{
18387#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18388#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 18389 | ((bitvalue) << (nbit)))
e07e6e58 18390 const int resulting_bit = (cond & 1);
c921be7d 18391
e07e6e58
NC
18392 now_it.mask &= 0xf;
18393 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18394 resulting_bit,
18395 (5 - now_it.block_length));
e07e6e58 18396 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18397 1,
18398 ((5 - now_it.block_length) - 1) );
e07e6e58
NC
18399 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18400
18401#undef CLEAR_BIT
18402#undef SET_BIT_VALUE
e07e6e58
NC
18403}
18404
18405/* The IT blocks handling machinery is accessed through the these functions:
18406 it_fsm_pre_encode () from md_assemble ()
18407 set_it_insn_type () optional, from the tencode functions
18408 set_it_insn_type_last () ditto
18409 in_it_block () ditto
18410 it_fsm_post_encode () from md_assemble ()
33eaf5de 18411 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
18412
18413 Rationale:
18414 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
18415 initializing the IT insn type with a generic initial value depending
18416 on the inst.condition.
e07e6e58 18417 2) During the tencode function, two things may happen:
477330fc
RM
18418 a) The tencode function overrides the IT insn type by
18419 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18420 b) The tencode function queries the IT block state by
18421 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18422
18423 Both set_it_insn_type and in_it_block run the internal FSM state
18424 handling function (handle_it_state), because: a) setting the IT insn
18425 type may incur in an invalid state (exiting the function),
18426 and b) querying the state requires the FSM to be updated.
18427 Specifically we want to avoid creating an IT block for conditional
18428 branches, so it_fsm_pre_encode is actually a guess and we can't
18429 determine whether an IT block is required until the tencode () routine
18430 has decided what type of instruction this actually it.
18431 Because of this, if set_it_insn_type and in_it_block have to be used,
18432 set_it_insn_type has to be called first.
18433
18434 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18435 determines the insn IT type depending on the inst.cond code.
18436 When a tencode () routine encodes an instruction that can be
18437 either outside an IT block, or, in the case of being inside, has to be
18438 the last one, set_it_insn_type_last () will determine the proper
18439 IT instruction type based on the inst.cond code. Otherwise,
18440 set_it_insn_type can be called for overriding that logic or
18441 for covering other cases.
18442
18443 Calling handle_it_state () may not transition the IT block state to
2b0f3761 18444 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
477330fc
RM
18445 still queried. Instead, if the FSM determines that the state should
18446 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18447 after the tencode () function: that's what it_fsm_post_encode () does.
18448
18449 Since in_it_block () calls the state handling function to get an
18450 updated state, an error may occur (due to invalid insns combination).
18451 In that case, inst.error is set.
18452 Therefore, inst.error has to be checked after the execution of
18453 the tencode () routine.
e07e6e58
NC
18454
18455 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc
RM
18456 any pending state change (if any) that didn't take place in
18457 handle_it_state () as explained above. */
e07e6e58
NC
18458
18459static void
18460it_fsm_pre_encode (void)
18461{
18462 if (inst.cond != COND_ALWAYS)
18463 inst.it_insn_type = INSIDE_IT_INSN;
18464 else
18465 inst.it_insn_type = OUTSIDE_IT_INSN;
18466
18467 now_it.state_handled = 0;
18468}
18469
18470/* IT state FSM handling function. */
18471
18472static int
18473handle_it_state (void)
18474{
18475 now_it.state_handled = 1;
5a01bb1d 18476 now_it.insn_cond = FALSE;
e07e6e58
NC
18477
18478 switch (now_it.state)
18479 {
18480 case OUTSIDE_IT_BLOCK:
18481 switch (inst.it_insn_type)
18482 {
18483 case OUTSIDE_IT_INSN:
18484 break;
18485
18486 case INSIDE_IT_INSN:
18487 case INSIDE_IT_LAST_INSN:
18488 if (thumb_mode == 0)
18489 {
c921be7d 18490 if (unified_syntax
e07e6e58
NC
18491 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18492 as_tsktsk (_("Warning: conditional outside an IT block"\
18493 " for Thumb."));
18494 }
18495 else
18496 {
18497 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
fc289b0a 18498 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
e07e6e58
NC
18499 {
18500 /* Automatically generate the IT instruction. */
18501 new_automatic_it_block (inst.cond);
18502 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18503 close_automatic_it_block ();
18504 }
18505 else
18506 {
18507 inst.error = BAD_OUT_IT;
18508 return FAIL;
18509 }
18510 }
18511 break;
18512
18513 case IF_INSIDE_IT_LAST_INSN:
18514 case NEUTRAL_IT_INSN:
18515 break;
18516
18517 case IT_INSN:
18518 now_it.state = MANUAL_IT_BLOCK;
18519 now_it.block_length = 0;
18520 break;
18521 }
18522 break;
18523
18524 case AUTOMATIC_IT_BLOCK:
18525 /* Three things may happen now:
18526 a) We should increment current it block size;
18527 b) We should close current it block (closing insn or 4 insns);
18528 c) We should close current it block and start a new one (due
18529 to incompatible conditions or
18530 4 insns-length block reached). */
18531
18532 switch (inst.it_insn_type)
18533 {
18534 case OUTSIDE_IT_INSN:
2b0f3761 18535 /* The closure of the block shall happen immediately,
e07e6e58
NC
18536 so any in_it_block () call reports the block as closed. */
18537 force_automatic_it_block_close ();
18538 break;
18539
18540 case INSIDE_IT_INSN:
18541 case INSIDE_IT_LAST_INSN:
18542 case IF_INSIDE_IT_LAST_INSN:
18543 now_it.block_length++;
18544
18545 if (now_it.block_length > 4
18546 || !now_it_compatible (inst.cond))
18547 {
18548 force_automatic_it_block_close ();
18549 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18550 new_automatic_it_block (inst.cond);
18551 }
18552 else
18553 {
5a01bb1d 18554 now_it.insn_cond = TRUE;
e07e6e58
NC
18555 now_it_add_mask (inst.cond);
18556 }
18557
18558 if (now_it.state == AUTOMATIC_IT_BLOCK
18559 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18560 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18561 close_automatic_it_block ();
18562 break;
18563
18564 case NEUTRAL_IT_INSN:
18565 now_it.block_length++;
5a01bb1d 18566 now_it.insn_cond = TRUE;
e07e6e58
NC
18567
18568 if (now_it.block_length > 4)
18569 force_automatic_it_block_close ();
18570 else
18571 now_it_add_mask (now_it.cc & 1);
18572 break;
18573
18574 case IT_INSN:
18575 close_automatic_it_block ();
18576 now_it.state = MANUAL_IT_BLOCK;
18577 break;
18578 }
18579 break;
18580
18581 case MANUAL_IT_BLOCK:
18582 {
18583 /* Check conditional suffixes. */
18584 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18585 int is_last;
18586 now_it.mask <<= 1;
18587 now_it.mask &= 0x1f;
18588 is_last = (now_it.mask == 0x10);
5a01bb1d 18589 now_it.insn_cond = TRUE;
e07e6e58
NC
18590
18591 switch (inst.it_insn_type)
18592 {
18593 case OUTSIDE_IT_INSN:
18594 inst.error = BAD_NOT_IT;
18595 return FAIL;
18596
18597 case INSIDE_IT_INSN:
18598 if (cond != inst.cond)
18599 {
18600 inst.error = BAD_IT_COND;
18601 return FAIL;
18602 }
18603 break;
18604
18605 case INSIDE_IT_LAST_INSN:
18606 case IF_INSIDE_IT_LAST_INSN:
18607 if (cond != inst.cond)
18608 {
18609 inst.error = BAD_IT_COND;
18610 return FAIL;
18611 }
18612 if (!is_last)
18613 {
18614 inst.error = BAD_BRANCH;
18615 return FAIL;
18616 }
18617 break;
18618
18619 case NEUTRAL_IT_INSN:
18620 /* The BKPT instruction is unconditional even in an IT block. */
18621 break;
18622
18623 case IT_INSN:
18624 inst.error = BAD_IT_IT;
18625 return FAIL;
18626 }
18627 }
18628 break;
18629 }
18630
18631 return SUCCESS;
18632}
18633
5a01bb1d
MGD
18634struct depr_insn_mask
18635{
18636 unsigned long pattern;
18637 unsigned long mask;
18638 const char* description;
18639};
18640
18641/* List of 16-bit instruction patterns deprecated in an IT block in
18642 ARMv8. */
18643static const struct depr_insn_mask depr_it_insns[] = {
18644 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18645 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18646 { 0xa000, 0xb800, N_("ADR") },
18647 { 0x4800, 0xf800, N_("Literal loads") },
18648 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18649 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
18650 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18651 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18652 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
18653 { 0, 0, NULL }
18654};
18655
e07e6e58
NC
18656static void
18657it_fsm_post_encode (void)
18658{
18659 int is_last;
18660
18661 if (!now_it.state_handled)
18662 handle_it_state ();
18663
5a01bb1d
MGD
18664 if (now_it.insn_cond
18665 && !now_it.warn_deprecated
18666 && warn_on_deprecated
df9909b8
TP
18667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18668 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
18669 {
18670 if (inst.instruction >= 0x10000)
18671 {
5c3696f8 18672 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 18673 "performance deprecated in ARMv8-A and ARMv8-R"));
5a01bb1d
MGD
18674 now_it.warn_deprecated = TRUE;
18675 }
18676 else
18677 {
18678 const struct depr_insn_mask *p = depr_it_insns;
18679
18680 while (p->mask != 0)
18681 {
18682 if ((inst.instruction & p->mask) == p->pattern)
18683 {
df9909b8
TP
18684 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18685 "instructions of the following class are "
18686 "performance deprecated in ARMv8-A and "
18687 "ARMv8-R: %s"), p->description);
5a01bb1d
MGD
18688 now_it.warn_deprecated = TRUE;
18689 break;
18690 }
18691
18692 ++p;
18693 }
18694 }
18695
18696 if (now_it.block_length > 1)
18697 {
5c3696f8 18698 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
18699 "instruction are performance deprecated in ARMv8-A and "
18700 "ARMv8-R"));
5a01bb1d
MGD
18701 now_it.warn_deprecated = TRUE;
18702 }
18703 }
18704
e07e6e58
NC
18705 is_last = (now_it.mask == 0x10);
18706 if (is_last)
18707 {
18708 now_it.state = OUTSIDE_IT_BLOCK;
18709 now_it.mask = 0;
18710 }
18711}
18712
18713static void
18714force_automatic_it_block_close (void)
18715{
18716 if (now_it.state == AUTOMATIC_IT_BLOCK)
18717 {
18718 close_automatic_it_block ();
18719 now_it.state = OUTSIDE_IT_BLOCK;
18720 now_it.mask = 0;
18721 }
18722}
18723
18724static int
18725in_it_block (void)
18726{
18727 if (!now_it.state_handled)
18728 handle_it_state ();
18729
18730 return now_it.state != OUTSIDE_IT_BLOCK;
18731}
18732
ff8646ee
TP
18733/* Whether OPCODE only has T32 encoding. Since this function is only used by
18734 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18735 here, hence the "known" in the function name. */
fc289b0a
TP
18736
18737static bfd_boolean
ff8646ee 18738known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
18739{
18740 /* Original Thumb-1 wide instruction. */
18741 if (opcode->tencode == do_t_blx
18742 || opcode->tencode == do_t_branch23
18743 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18744 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18745 return TRUE;
18746
16a1fa25
TP
18747 /* Wide-only instruction added to ARMv8-M Baseline. */
18748 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
18749 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18750 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18751 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18752 return TRUE;
18753
18754 return FALSE;
18755}
18756
18757/* Whether wide instruction variant can be used if available for a valid OPCODE
18758 in ARCH. */
18759
18760static bfd_boolean
18761t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18762{
18763 if (known_t32_only_insn (opcode))
18764 return TRUE;
18765
18766 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18767 of variant T3 of B.W is checked in do_t_branch. */
18768 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18769 && opcode->tencode == do_t_branch)
18770 return TRUE;
18771
bada4342
JW
18772 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18773 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18774 && opcode->tencode == do_t_mov_cmp
18775 /* Make sure CMP instruction is not affected. */
18776 && opcode->aencode == do_mov)
18777 return TRUE;
18778
ff8646ee
TP
18779 /* Wide instruction variants of all instructions with narrow *and* wide
18780 variants become available with ARMv6t2. Other opcodes are either
18781 narrow-only or wide-only and are thus available if OPCODE is valid. */
18782 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18783 return TRUE;
18784
18785 /* OPCODE with narrow only instruction variant or wide variant not
18786 available. */
fc289b0a
TP
18787 return FALSE;
18788}
18789
c19d1205
ZW
18790void
18791md_assemble (char *str)
b99bd4ef 18792{
c19d1205
ZW
18793 char *p = str;
18794 const struct asm_opcode * opcode;
b99bd4ef 18795
c19d1205
ZW
18796 /* Align the previous label if needed. */
18797 if (last_label_seen != NULL)
b99bd4ef 18798 {
c19d1205
ZW
18799 symbol_set_frag (last_label_seen, frag_now);
18800 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18801 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
18802 }
18803
c19d1205 18804 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
18805 int r;
18806 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18807 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 18808
c19d1205
ZW
18809 opcode = opcode_lookup (&p);
18810 if (!opcode)
b99bd4ef 18811 {
c19d1205 18812 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 18813 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 18814 if (! create_register_alias (str, p)
477330fc 18815 && ! create_neon_reg_alias (str, p))
c19d1205 18816 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 18817
b99bd4ef
NC
18818 return;
18819 }
18820
278df34e 18821 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 18822 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 18823
037e8744
JB
18824 /* The value which unconditional instructions should have in place of the
18825 condition field. */
18826 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18827
c19d1205 18828 if (thumb_mode)
b99bd4ef 18829 {
e74cfd16 18830 arm_feature_set variant;
8f06b2d8
PB
18831
18832 variant = cpu_variant;
18833 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
18834 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18835 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 18836 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
18837 if (!opcode->tvariant
18838 || (thumb_mode == 1
18839 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 18840 {
173205ca
TP
18841 if (opcode->tencode == do_t_swi)
18842 as_bad (_("SVC is not permitted on this architecture"));
18843 else
18844 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
18845 return;
18846 }
c19d1205
ZW
18847 if (inst.cond != COND_ALWAYS && !unified_syntax
18848 && opcode->tencode != do_t_branch)
b99bd4ef 18849 {
c19d1205 18850 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
18851 return;
18852 }
18853
fc289b0a
TP
18854 /* Two things are addressed here:
18855 1) Implicit require narrow instructions on Thumb-1.
18856 This avoids relaxation accidentally introducing Thumb-2
18857 instructions.
18858 2) Reject wide instructions in non Thumb-2 cores.
18859
18860 Only instructions with narrow and wide variants need to be handled
18861 but selecting all non wide-only instructions is easier. */
18862 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 18863 && !t32_insn_ok (variant, opcode))
076d447c 18864 {
fc289b0a
TP
18865 if (inst.size_req == 0)
18866 inst.size_req = 2;
18867 else if (inst.size_req == 4)
752d5da4 18868 {
ff8646ee
TP
18869 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18870 as_bad (_("selected processor does not support 32bit wide "
18871 "variant of instruction `%s'"), str);
18872 else
18873 as_bad (_("selected processor does not support `%s' in "
18874 "Thumb-2 mode"), str);
fc289b0a 18875 return;
752d5da4 18876 }
076d447c
PB
18877 }
18878
c19d1205
ZW
18879 inst.instruction = opcode->tvalue;
18880
5be8be5d 18881 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc
RM
18882 {
18883 /* Prepare the it_insn_type for those encodings that don't set
18884 it. */
18885 it_fsm_pre_encode ();
c19d1205 18886
477330fc 18887 opcode->tencode ();
e07e6e58 18888
477330fc
RM
18889 it_fsm_post_encode ();
18890 }
e27ec89e 18891
0110f2b8 18892 if (!(inst.error || inst.relax))
b99bd4ef 18893 {
9c2799c2 18894 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
18895 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18896 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 18897 {
c19d1205 18898 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
18899 return;
18900 }
18901 }
076d447c
PB
18902
18903 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 18904 instruction. */
9c2799c2 18905 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 18906
e74cfd16
PB
18907 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18908 *opcode->tvariant);
ee065d83 18909 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
18910 set those bits when Thumb-2 32-bit instructions are seen. The impact
18911 of relaxable instructions will be considered later after we finish all
18912 relaxation. */
ff8646ee
TP
18913 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18914 variant = arm_arch_none;
18915 else
18916 variant = cpu_variant;
18917 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
18918 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18919 arm_ext_v6t2);
cd000bff 18920
88714cb8
DG
18921 check_neon_suffixes;
18922
cd000bff 18923 if (!inst.error)
c877a2f2
NC
18924 {
18925 mapping_state (MAP_THUMB);
18926 }
c19d1205 18927 }
3e9e4fcf 18928 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 18929 {
845b51d6
PB
18930 bfd_boolean is_bx;
18931
18932 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18933 is_bx = (opcode->aencode == do_bx);
18934
c19d1205 18935 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
18936 if (!(is_bx && fix_v4bx)
18937 && !(opcode->avariant &&
18938 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 18939 {
84b52b66 18940 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 18941 return;
b99bd4ef 18942 }
c19d1205 18943 if (inst.size_req)
b99bd4ef 18944 {
c19d1205
ZW
18945 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18946 return;
b99bd4ef
NC
18947 }
18948
c19d1205
ZW
18949 inst.instruction = opcode->avalue;
18950 if (opcode->tag == OT_unconditionalF)
eff0bc54 18951 inst.instruction |= 0xFU << 28;
c19d1205
ZW
18952 else
18953 inst.instruction |= inst.cond << 28;
18954 inst.size = INSN_SIZE;
5be8be5d 18955 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
18956 {
18957 it_fsm_pre_encode ();
18958 opcode->aencode ();
18959 it_fsm_post_encode ();
18960 }
ee065d83 18961 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 18962 on a hypothetical non-thumb v5 core. */
845b51d6 18963 if (is_bx)
e74cfd16 18964 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 18965 else
e74cfd16
PB
18966 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18967 *opcode->avariant);
88714cb8
DG
18968
18969 check_neon_suffixes;
18970
cd000bff 18971 if (!inst.error)
c877a2f2
NC
18972 {
18973 mapping_state (MAP_ARM);
18974 }
b99bd4ef 18975 }
3e9e4fcf
JB
18976 else
18977 {
18978 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18979 "-- `%s'"), str);
18980 return;
18981 }
c19d1205
ZW
18982 output_inst (str);
18983}
b99bd4ef 18984
e07e6e58
NC
18985static void
18986check_it_blocks_finished (void)
18987{
18988#ifdef OBJ_ELF
18989 asection *sect;
18990
18991 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18992 if (seg_info (sect)->tc_segment_info_data.current_it.state
18993 == MANUAL_IT_BLOCK)
18994 {
18995 as_warn (_("section '%s' finished with an open IT block."),
18996 sect->name);
18997 }
18998#else
18999 if (now_it.state == MANUAL_IT_BLOCK)
19000 as_warn (_("file finished with an open IT block."));
19001#endif
19002}
19003
c19d1205
ZW
19004/* Various frobbings of labels and their addresses. */
19005
19006void
19007arm_start_line_hook (void)
19008{
19009 last_label_seen = NULL;
b99bd4ef
NC
19010}
19011
c19d1205
ZW
19012void
19013arm_frob_label (symbolS * sym)
b99bd4ef 19014{
c19d1205 19015 last_label_seen = sym;
b99bd4ef 19016
c19d1205 19017 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 19018
c19d1205
ZW
19019#if defined OBJ_COFF || defined OBJ_ELF
19020 ARM_SET_INTERWORK (sym, support_interwork);
19021#endif
b99bd4ef 19022
e07e6e58
NC
19023 force_automatic_it_block_close ();
19024
5f4273c7 19025 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
19026 as Thumb functions. This is because these labels, whilst
19027 they exist inside Thumb code, are not the entry points for
19028 possible ARM->Thumb calls. Also, these labels can be used
19029 as part of a computed goto or switch statement. eg gcc
19030 can generate code that looks like this:
b99bd4ef 19031
c19d1205
ZW
19032 ldr r2, [pc, .Laaa]
19033 lsl r3, r3, #2
19034 ldr r2, [r3, r2]
19035 mov pc, r2
b99bd4ef 19036
c19d1205
ZW
19037 .Lbbb: .word .Lxxx
19038 .Lccc: .word .Lyyy
19039 ..etc...
19040 .Laaa: .word Lbbb
b99bd4ef 19041
c19d1205
ZW
19042 The first instruction loads the address of the jump table.
19043 The second instruction converts a table index into a byte offset.
19044 The third instruction gets the jump address out of the table.
19045 The fourth instruction performs the jump.
b99bd4ef 19046
c19d1205
ZW
19047 If the address stored at .Laaa is that of a symbol which has the
19048 Thumb_Func bit set, then the linker will arrange for this address
19049 to have the bottom bit set, which in turn would mean that the
19050 address computation performed by the third instruction would end
19051 up with the bottom bit set. Since the ARM is capable of unaligned
19052 word loads, the instruction would then load the incorrect address
19053 out of the jump table, and chaos would ensue. */
19054 if (label_is_thumb_function_name
19055 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
19056 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 19057 {
c19d1205
ZW
19058 /* When the address of a Thumb function is taken the bottom
19059 bit of that address should be set. This will allow
19060 interworking between Arm and Thumb functions to work
19061 correctly. */
b99bd4ef 19062
c19d1205 19063 THUMB_SET_FUNC (sym, 1);
b99bd4ef 19064
c19d1205 19065 label_is_thumb_function_name = FALSE;
b99bd4ef 19066 }
07a53e5c 19067
07a53e5c 19068 dwarf2_emit_label (sym);
b99bd4ef
NC
19069}
19070
c921be7d 19071bfd_boolean
c19d1205 19072arm_data_in_code (void)
b99bd4ef 19073{
c19d1205 19074 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 19075 {
c19d1205
ZW
19076 *input_line_pointer = '/';
19077 input_line_pointer += 5;
19078 *input_line_pointer = 0;
c921be7d 19079 return TRUE;
b99bd4ef
NC
19080 }
19081
c921be7d 19082 return FALSE;
b99bd4ef
NC
19083}
19084
c19d1205
ZW
19085char *
19086arm_canonicalize_symbol_name (char * name)
b99bd4ef 19087{
c19d1205 19088 int len;
b99bd4ef 19089
c19d1205
ZW
19090 if (thumb_mode && (len = strlen (name)) > 5
19091 && streq (name + len - 5, "/data"))
19092 *(name + len - 5) = 0;
b99bd4ef 19093
c19d1205 19094 return name;
b99bd4ef 19095}
c19d1205
ZW
19096\f
19097/* Table of all register names defined by default. The user can
19098 define additional names with .req. Note that all register names
19099 should appear in both upper and lowercase variants. Some registers
19100 also have mixed-case names. */
b99bd4ef 19101
dcbf9037 19102#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 19103#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 19104#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
19105#define REGSET(p,t) \
19106 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19107 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19108 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19109 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
19110#define REGSETH(p,t) \
19111 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19112 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19113 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19114 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19115#define REGSET2(p,t) \
19116 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19117 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19118 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19119 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
19120#define SPLRBANK(base,bank,t) \
19121 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19122 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19123 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19124 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19125 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19126 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 19127
c19d1205 19128static const struct reg_entry reg_names[] =
7ed4c4c5 19129{
c19d1205
ZW
19130 /* ARM integer registers. */
19131 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 19132
c19d1205
ZW
19133 /* ATPCS synonyms. */
19134 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19135 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19136 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 19137
c19d1205
ZW
19138 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19139 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19140 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 19141
c19d1205
ZW
19142 /* Well-known aliases. */
19143 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19144 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19145
19146 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19147 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19148
19149 /* Coprocessor numbers. */
19150 REGSET(p, CP), REGSET(P, CP),
19151
19152 /* Coprocessor register numbers. The "cr" variants are for backward
19153 compatibility. */
19154 REGSET(c, CN), REGSET(C, CN),
19155 REGSET(cr, CN), REGSET(CR, CN),
19156
90ec0d68
MGD
19157 /* ARM banked registers. */
19158 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19159 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19160 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19161 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19162 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19163 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19164 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19165
19166 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19167 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19168 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19169 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19170 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 19171 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
19172 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19173 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19174
19175 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19176 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19177 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19178 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19179 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19180 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19181 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 19182 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
19183 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19184
c19d1205
ZW
19185 /* FPA registers. */
19186 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19187 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19188
19189 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19190 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19191
19192 /* VFP SP registers. */
5287ad62
JB
19193 REGSET(s,VFS), REGSET(S,VFS),
19194 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
19195
19196 /* VFP DP Registers. */
5287ad62
JB
19197 REGSET(d,VFD), REGSET(D,VFD),
19198 /* Extra Neon DP registers. */
19199 REGSETH(d,VFD), REGSETH(D,VFD),
19200
19201 /* Neon QP registers. */
19202 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
19203
19204 /* VFP control registers. */
19205 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19206 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
19207 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19208 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19209 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19210 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 19211 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
19212
19213 /* Maverick DSP coprocessor registers. */
19214 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19215 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19216
19217 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19218 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19219 REGDEF(dspsc,0,DSPSC),
19220
19221 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19222 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19223 REGDEF(DSPSC,0,DSPSC),
19224
19225 /* iWMMXt data registers - p0, c0-15. */
19226 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19227
19228 /* iWMMXt control registers - p1, c0-3. */
19229 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19230 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19231 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19232 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19233
19234 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19235 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19236 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19237 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19238 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19239
19240 /* XScale accumulator registers. */
19241 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19242};
19243#undef REGDEF
19244#undef REGNUM
19245#undef REGSET
7ed4c4c5 19246
c19d1205
ZW
19247/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19248 within psr_required_here. */
19249static const struct asm_psr psrs[] =
19250{
19251 /* Backward compatibility notation. Note that "all" is no longer
19252 truly all possible PSR bits. */
19253 {"all", PSR_c | PSR_f},
19254 {"flg", PSR_f},
19255 {"ctl", PSR_c},
19256
19257 /* Individual flags. */
19258 {"f", PSR_f},
19259 {"c", PSR_c},
19260 {"x", PSR_x},
19261 {"s", PSR_s},
59b42a0d 19262
c19d1205
ZW
19263 /* Combinations of flags. */
19264 {"fs", PSR_f | PSR_s},
19265 {"fx", PSR_f | PSR_x},
19266 {"fc", PSR_f | PSR_c},
19267 {"sf", PSR_s | PSR_f},
19268 {"sx", PSR_s | PSR_x},
19269 {"sc", PSR_s | PSR_c},
19270 {"xf", PSR_x | PSR_f},
19271 {"xs", PSR_x | PSR_s},
19272 {"xc", PSR_x | PSR_c},
19273 {"cf", PSR_c | PSR_f},
19274 {"cs", PSR_c | PSR_s},
19275 {"cx", PSR_c | PSR_x},
19276 {"fsx", PSR_f | PSR_s | PSR_x},
19277 {"fsc", PSR_f | PSR_s | PSR_c},
19278 {"fxs", PSR_f | PSR_x | PSR_s},
19279 {"fxc", PSR_f | PSR_x | PSR_c},
19280 {"fcs", PSR_f | PSR_c | PSR_s},
19281 {"fcx", PSR_f | PSR_c | PSR_x},
19282 {"sfx", PSR_s | PSR_f | PSR_x},
19283 {"sfc", PSR_s | PSR_f | PSR_c},
19284 {"sxf", PSR_s | PSR_x | PSR_f},
19285 {"sxc", PSR_s | PSR_x | PSR_c},
19286 {"scf", PSR_s | PSR_c | PSR_f},
19287 {"scx", PSR_s | PSR_c | PSR_x},
19288 {"xfs", PSR_x | PSR_f | PSR_s},
19289 {"xfc", PSR_x | PSR_f | PSR_c},
19290 {"xsf", PSR_x | PSR_s | PSR_f},
19291 {"xsc", PSR_x | PSR_s | PSR_c},
19292 {"xcf", PSR_x | PSR_c | PSR_f},
19293 {"xcs", PSR_x | PSR_c | PSR_s},
19294 {"cfs", PSR_c | PSR_f | PSR_s},
19295 {"cfx", PSR_c | PSR_f | PSR_x},
19296 {"csf", PSR_c | PSR_s | PSR_f},
19297 {"csx", PSR_c | PSR_s | PSR_x},
19298 {"cxf", PSR_c | PSR_x | PSR_f},
19299 {"cxs", PSR_c | PSR_x | PSR_s},
19300 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19301 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19302 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19303 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19304 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19305 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19306 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19307 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19308 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19309 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19310 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19311 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19312 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19313 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19314 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19315 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19316 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19317 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19318 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19319 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19320 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19321 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19322 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19323 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19324};
19325
62b3e311
PB
19326/* Table of V7M psr names. */
19327static const struct asm_psr v7m_psrs[] =
19328{
1a336194
TP
19329 {"apsr", 0x0 }, {"APSR", 0x0 },
19330 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19331 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19332 {"psr", 0x3 }, {"PSR", 0x3 },
19333 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19334 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19335 {"epsr", 0x6 }, {"EPSR", 0x6 },
19336 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19337 {"msp", 0x8 }, {"MSP", 0x8 },
19338 {"psp", 0x9 }, {"PSP", 0x9 },
19339 {"msplim", 0xa }, {"MSPLIM", 0xa },
19340 {"psplim", 0xb }, {"PSPLIM", 0xb },
19341 {"primask", 0x10}, {"PRIMASK", 0x10},
19342 {"basepri", 0x11}, {"BASEPRI", 0x11},
19343 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
19344 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19345 {"control", 0x14}, {"CONTROL", 0x14},
19346 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19347 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19348 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19349 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19350 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19351 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19352 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19353 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19354 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
19355};
19356
c19d1205
ZW
19357/* Table of all shift-in-operand names. */
19358static const struct asm_shift_name shift_names [] =
b99bd4ef 19359{
c19d1205
ZW
19360 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19361 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19362 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19363 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19364 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19365 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19366};
b99bd4ef 19367
c19d1205
ZW
19368/* Table of all explicit relocation names. */
19369#ifdef OBJ_ELF
19370static struct reloc_entry reloc_names[] =
19371{
19372 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19373 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19374 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19375 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19376 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19377 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19378 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19379 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19380 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19381 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 19382 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
19383 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19384 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 19385 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 19386 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 19387 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 19388 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
19389 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19390 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19391 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19392 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19393 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19394 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
19395 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19396 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19397 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19398 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
19399};
19400#endif
b99bd4ef 19401
c19d1205
ZW
19402/* Table of all conditional affixes. 0xF is not defined as a condition code. */
19403static const struct asm_cond conds[] =
19404{
19405 {"eq", 0x0},
19406 {"ne", 0x1},
19407 {"cs", 0x2}, {"hs", 0x2},
19408 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19409 {"mi", 0x4},
19410 {"pl", 0x5},
19411 {"vs", 0x6},
19412 {"vc", 0x7},
19413 {"hi", 0x8},
19414 {"ls", 0x9},
19415 {"ge", 0xa},
19416 {"lt", 0xb},
19417 {"gt", 0xc},
19418 {"le", 0xd},
19419 {"al", 0xe}
19420};
bfae80f2 19421
e797f7e0 19422#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
19423 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19424 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 19425
62b3e311
PB
19426static struct asm_barrier_opt barrier_opt_names[] =
19427{
e797f7e0
MGD
19428 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19429 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19430 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19431 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19432 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19433 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19434 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19435 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19436 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19437 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19438 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19439 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19440 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19441 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19442 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19443 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
19444};
19445
e797f7e0
MGD
19446#undef UL_BARRIER
19447
c19d1205
ZW
19448/* Table of ARM-format instructions. */
19449
19450/* Macros for gluing together operand strings. N.B. In all cases
19451 other than OPS0, the trailing OP_stop comes from default
19452 zero-initialization of the unspecified elements of the array. */
19453#define OPS0() { OP_stop, }
19454#define OPS1(a) { OP_##a, }
19455#define OPS2(a,b) { OP_##a,OP_##b, }
19456#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19457#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19458#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19459#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19460
5be8be5d
DG
19461/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19462 This is useful when mixing operands for ARM and THUMB, i.e. using the
19463 MIX_ARM_THUMB_OPERANDS macro.
19464 In order to use these macros, prefix the number of operands with _
19465 e.g. _3. */
19466#define OPS_1(a) { a, }
19467#define OPS_2(a,b) { a,b, }
19468#define OPS_3(a,b,c) { a,b,c, }
19469#define OPS_4(a,b,c,d) { a,b,c,d, }
19470#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19471#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19472
c19d1205
ZW
19473/* These macros abstract out the exact format of the mnemonic table and
19474 save some repeated characters. */
19475
19476/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19477#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19478 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 19479 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19480
19481/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19482 a T_MNEM_xyz enumerator. */
19483#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19484 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19485#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19486 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
19487
19488/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19489 infix after the third character. */
19490#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 19491 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 19492 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 19493#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 19494 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 19495 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19496#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19497 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 19498#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19499 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19500#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19501 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 19502#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19503 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 19504
c19d1205 19505/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
19506 field is still 0xE. Many of the Thumb variants can be executed
19507 conditionally, so this is checked separately. */
c19d1205 19508#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19509 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19510 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19511
dd5181d5
KT
19512/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19513 Used by mnemonics that have very minimal differences in the encoding for
19514 ARM and Thumb variants and can be handled in a common function. */
19515#define TUEc(mnem, op, top, nops, ops, en) \
19516 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19517 THUMB_VARIANT, do_##en, do_##en }
19518
c19d1205
ZW
19519/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19520 condition code field. */
19521#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 19522 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19523 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19524
19525/* ARM-only variants of all the above. */
6a86118a 19526#define CE(mnem, op, nops, ops, ae) \
21d799b5 19527 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
19528
19529#define C3(mnem, op, nops, ops, ae) \
19530 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19531
cf3cf39d
TP
19532/* Thumb-only variants of TCE and TUE. */
19533#define ToC(mnem, top, nops, ops, te) \
19534 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19535 do_##te }
cf3cf39d
TP
19536
19537#define ToU(mnem, top, nops, ops, te) \
19538 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19539 NULL, do_##te }
cf3cf39d 19540
e3cb604e
PB
19541/* Legacy mnemonics that always have conditional infix after the third
19542 character. */
19543#define CL(mnem, op, nops, ops, ae) \
21d799b5 19544 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19545 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19546
8f06b2d8
PB
19547/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19548#define cCE(mnem, op, nops, ops, ae) \
21d799b5 19549 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19550
e3cb604e
PB
19551/* Legacy coprocessor instructions where conditional infix and conditional
19552 suffix are ambiguous. For consistency this includes all FPA instructions,
19553 not just the potentially ambiguous ones. */
19554#define cCL(mnem, op, nops, ops, ae) \
21d799b5 19555 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19556 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19557
19558/* Coprocessor, takes either a suffix or a position-3 infix
19559 (for an FPA corner case). */
19560#define C3E(mnem, op, nops, ops, ae) \
21d799b5 19561 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 19562 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19563
6a86118a 19564#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
19565 { m1 #m2 m3, OPS##nops ops, \
19566 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
19567 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19568
19569#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
19570 xCM_ (m1, , m2, op, nops, ops, ae), \
19571 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19572 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19573 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19574 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19575 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19576 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19577 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19578 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19579 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19580 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19581 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19582 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19583 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19584 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19585 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19586 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19587 xCM_ (m1, le, m2, op, nops, ops, ae), \
19588 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
19589
19590#define UE(mnem, op, nops, ops, ae) \
19591 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19592
19593#define UF(mnem, op, nops, ops, ae) \
19594 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19595
5287ad62
JB
19596/* Neon data-processing. ARM versions are unconditional with cond=0xf.
19597 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19598 use the same encoding function for each. */
19599#define NUF(mnem, op, nops, ops, enc) \
19600 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19601 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19602
19603/* Neon data processing, version which indirects through neon_enc_tab for
19604 the various overloaded versions of opcodes. */
19605#define nUF(mnem, op, nops, ops, enc) \
21d799b5 19606 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19607 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19608
19609/* Neon insn with conditional suffix for the ARM version, non-overloaded
19610 version. */
037e8744
JB
19611#define NCE_tag(mnem, op, nops, ops, enc, tag) \
19612 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
19613 THUMB_VARIANT, do_##enc, do_##enc }
19614
037e8744 19615#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 19616 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19617
19618#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 19619 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19620
5287ad62 19621/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 19622#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 19623 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19624 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19625
037e8744 19626#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 19627 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19628
19629#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 19630 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19631
c19d1205
ZW
19632#define do_0 0
19633
c19d1205 19634static const struct asm_opcode insns[] =
bfae80f2 19635{
74db7efb
NC
19636#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19637#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
19638 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19639 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19640 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19641 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19642 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19643 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19644 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19645 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19646 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19647 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19648 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19649 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19650 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19651 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19652 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19653 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
19654
19655 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19656 for setting PSR flag bits. They are obsolete in V6 and do not
19657 have Thumb equivalents. */
21d799b5
NC
19658 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19659 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19660 CL("tstp", 110f000, 2, (RR, SH), cmp),
19661 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19662 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19663 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19664 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19665 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19666 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19667
19668 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 19669 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
19670 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19671 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19672
19673 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
19674 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19675 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19676 OP_RRnpc),
19677 OP_ADDRGLDR),ldst, t_ldst),
19678 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
19679
19680 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19681 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19682 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19683 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19684 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19685 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19686
21d799b5
NC
19687 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19688 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 19689
c19d1205 19690 /* Pseudo ops. */
21d799b5 19691 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 19692 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 19693 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 19694 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
19695
19696 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
19697 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19698 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19699 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19700 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19701 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19702 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19703 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19704 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19705 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19706 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19707 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19708 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 19709
16a4cf17 19710 /* These may simplify to neg. */
21d799b5
NC
19711 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19712 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 19713
173205ca
TP
19714#undef THUMB_VARIANT
19715#define THUMB_VARIANT & arm_ext_os
19716
19717 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19718 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19719
c921be7d
NC
19720#undef THUMB_VARIANT
19721#define THUMB_VARIANT & arm_ext_v6
19722
21d799b5 19723 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
19724
19725 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
19726#undef THUMB_VARIANT
19727#define THUMB_VARIANT & arm_ext_v6t2
19728
21d799b5
NC
19729 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19730 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19731 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 19732
5be8be5d
DG
19733 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19734 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19735 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19736 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 19737
21d799b5
NC
19738 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19739 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 19740
21d799b5
NC
19741 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19742 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
19743
19744 /* V1 instructions with no Thumb analogue at all. */
21d799b5 19745 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
19746 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19747
19748 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19749 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19750 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19751 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19752 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19753 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19754 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19755 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19756
c921be7d
NC
19757#undef ARM_VARIANT
19758#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19759#undef THUMB_VARIANT
19760#define THUMB_VARIANT & arm_ext_v4t
19761
21d799b5
NC
19762 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19763 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 19764
c921be7d
NC
19765#undef THUMB_VARIANT
19766#define THUMB_VARIANT & arm_ext_v6t2
19767
21d799b5 19768 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
19769 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19770
19771 /* Generic coprocessor instructions. */
21d799b5
NC
19772 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19773 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19774 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19775 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19776 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19777 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 19778 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19779
c921be7d
NC
19780#undef ARM_VARIANT
19781#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19782
21d799b5 19783 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
19784 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19785
c921be7d
NC
19786#undef ARM_VARIANT
19787#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19788#undef THUMB_VARIANT
19789#define THUMB_VARIANT & arm_ext_msr
19790
d2cd1205
JB
19791 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19792 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 19793
c921be7d
NC
19794#undef ARM_VARIANT
19795#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19796#undef THUMB_VARIANT
19797#define THUMB_VARIANT & arm_ext_v6t2
19798
21d799b5
NC
19799 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19800 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19801 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19802 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19803 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19804 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19805 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19806 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 19807
c921be7d
NC
19808#undef ARM_VARIANT
19809#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19810#undef THUMB_VARIANT
19811#define THUMB_VARIANT & arm_ext_v4t
19812
5be8be5d
DG
19813 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19814 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19815 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19816 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
19817 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19818 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 19819
c921be7d
NC
19820#undef ARM_VARIANT
19821#define ARM_VARIANT & arm_ext_v4t_5
19822
c19d1205
ZW
19823 /* ARM Architecture 4T. */
19824 /* Note: bx (and blx) are required on V5, even if the processor does
19825 not support Thumb. */
21d799b5 19826 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 19827
c921be7d
NC
19828#undef ARM_VARIANT
19829#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19830#undef THUMB_VARIANT
19831#define THUMB_VARIANT & arm_ext_v5t
19832
c19d1205
ZW
19833 /* Note: blx has 2 variants; the .value coded here is for
19834 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
19835 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19836 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 19837
c921be7d
NC
19838#undef THUMB_VARIANT
19839#define THUMB_VARIANT & arm_ext_v6t2
19840
21d799b5
NC
19841 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19842 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19843 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19844 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19845 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19846 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19847 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19848 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19849
c921be7d 19850#undef ARM_VARIANT
74db7efb
NC
19851#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19852#undef THUMB_VARIANT
19853#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 19854
21d799b5
NC
19855 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19856 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19857 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19858 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19859
21d799b5
NC
19860 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19861 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19862
21d799b5
NC
19863 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19864 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19865 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19866 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 19867
21d799b5
NC
19868 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19869 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19870 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19871 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19872
21d799b5
NC
19873 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19874 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19875
03ee1b7f
NC
19876 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19877 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19878 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19879 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 19880
c921be7d 19881#undef ARM_VARIANT
74db7efb
NC
19882#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19883#undef THUMB_VARIANT
19884#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19885
21d799b5 19886 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
19887 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19888 ldrd, t_ldstd),
19889 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19890 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 19891
21d799b5
NC
19892 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19893 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 19894
c921be7d
NC
19895#undef ARM_VARIANT
19896#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19897
21d799b5 19898 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 19899
c921be7d
NC
19900#undef ARM_VARIANT
19901#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19902#undef THUMB_VARIANT
19903#define THUMB_VARIANT & arm_ext_v6
19904
21d799b5
NC
19905 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19906 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19907 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19908 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19909 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19910 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19911 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19912 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19913 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19914 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 19915
c921be7d 19916#undef THUMB_VARIANT
ff8646ee 19917#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 19918
5be8be5d
DG
19919 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19920 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19921 strex, t_strex),
ff8646ee
TP
19922#undef THUMB_VARIANT
19923#define THUMB_VARIANT & arm_ext_v6t2
19924
21d799b5
NC
19925 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19926 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 19927
21d799b5
NC
19928 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19929 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 19930
9e3c6df6 19931/* ARM V6 not included in V7M. */
c921be7d
NC
19932#undef THUMB_VARIANT
19933#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 19934 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 19935 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
19936 UF(rfeib, 9900a00, 1, (RRw), rfe),
19937 UF(rfeda, 8100a00, 1, (RRw), rfe),
19938 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19939 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
19940 UF(rfefa, 8100a00, 1, (RRw), rfe),
19941 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19942 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 19943 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
19944 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19945 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 19946 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 19947 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 19948 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 19949 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 19950 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 19951 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 19952 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 19953
9e3c6df6
PB
19954/* ARM V6 not included in V7M (eg. integer SIMD). */
19955#undef THUMB_VARIANT
19956#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
19957 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19958 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19959 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19960 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19961 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19962 /* Old name for QASX. */
74db7efb 19963 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19964 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19965 /* Old name for QSAX. */
74db7efb 19966 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19967 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19968 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19969 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19970 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19971 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19972 /* Old name for SASX. */
74db7efb 19973 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19974 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19975 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19976 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19977 /* Old name for SHASX. */
21d799b5 19978 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19979 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19980 /* Old name for SHSAX. */
21d799b5
NC
19981 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19982 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19983 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19984 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19985 /* Old name for SSAX. */
74db7efb 19986 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19987 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19988 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19989 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19990 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19991 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19992 /* Old name for UASX. */
74db7efb 19993 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19994 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19995 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19996 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19997 /* Old name for UHASX. */
21d799b5
NC
19998 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19999 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20000 /* Old name for UHSAX. */
21d799b5
NC
20001 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20002 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20003 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20004 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20005 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 20006 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20007 /* Old name for UQASX. */
21d799b5
NC
20008 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20009 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20010 /* Old name for UQSAX. */
21d799b5
NC
20011 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20012 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20013 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20014 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20015 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 20016 /* Old name for USAX. */
74db7efb 20017 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 20018 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
20019 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20020 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20021 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20022 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20023 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20024 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20025 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20026 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20027 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20028 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20029 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20030 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20031 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20032 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20033 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20034 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20035 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20036 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20037 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20038 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20039 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20040 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20041 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20042 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20043 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20044 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20045 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
20046 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
20047 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
20048 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20049 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20050 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 20051
c921be7d 20052#undef ARM_VARIANT
55e8aae7 20053#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 20054#undef THUMB_VARIANT
55e8aae7 20055#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 20056
21d799b5
NC
20057 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
20058 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
20059 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
20060 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 20061
c921be7d
NC
20062#undef THUMB_VARIANT
20063#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
20064 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
20065 ldrexd, t_ldrexd),
20066 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
20067 RRnpcb), strexd, t_strexd),
ebdca51a 20068
c921be7d 20069#undef THUMB_VARIANT
ff8646ee 20070#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
20071 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
20072 rd_rn, rd_rn),
20073 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20074 rd_rn, rd_rn),
20075 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20076 strex, t_strexbh),
5be8be5d 20077 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 20078 strex, t_strexbh),
21d799b5 20079 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 20080
c921be7d 20081#undef ARM_VARIANT
f4c65163 20082#define ARM_VARIANT & arm_ext_sec
74db7efb 20083#undef THUMB_VARIANT
f4c65163 20084#define THUMB_VARIANT & arm_ext_sec
c921be7d 20085
21d799b5 20086 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 20087
90ec0d68
MGD
20088#undef ARM_VARIANT
20089#define ARM_VARIANT & arm_ext_virt
20090#undef THUMB_VARIANT
20091#define THUMB_VARIANT & arm_ext_virt
20092
20093 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20094 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20095
ddfded2f
MW
20096#undef ARM_VARIANT
20097#define ARM_VARIANT & arm_ext_pan
20098#undef THUMB_VARIANT
20099#define THUMB_VARIANT & arm_ext_pan
20100
20101 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20102
c921be7d 20103#undef ARM_VARIANT
74db7efb 20104#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
20105#undef THUMB_VARIANT
20106#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20107
21d799b5
NC
20108 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20109 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20110 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20111 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 20112
21d799b5 20113 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 20114 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 20115
5be8be5d
DG
20116 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20117 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20118 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20119 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 20120
91d8b670
JG
20121#undef ARM_VARIANT
20122#define ARM_VARIANT & arm_ext_v3
20123#undef THUMB_VARIANT
20124#define THUMB_VARIANT & arm_ext_v6t2
20125
20126 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
20127 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20128 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
20129
20130#undef ARM_VARIANT
20131#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
20132#undef THUMB_VARIANT
20133#define THUMB_VARIANT & arm_ext_v6t2_v8m
20134 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20135 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20136
bf3eeda7 20137 /* Thumb-only instructions. */
74db7efb 20138#undef ARM_VARIANT
bf3eeda7
NS
20139#define ARM_VARIANT NULL
20140 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20141 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
20142
20143 /* ARM does not really have an IT instruction, so always allow it.
20144 The opcode is copied from Thumb in order to allow warnings in
20145 -mimplicit-it=[never | arm] modes. */
20146#undef ARM_VARIANT
20147#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
20148#undef THUMB_VARIANT
20149#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20150
21d799b5
NC
20151 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20152 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20153 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20154 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20155 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20156 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20157 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20158 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20159 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20160 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20161 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20162 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20163 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20164 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20165 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 20166 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
20167 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20168 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 20169
92e90b6e 20170 /* Thumb2 only instructions. */
c921be7d
NC
20171#undef ARM_VARIANT
20172#define ARM_VARIANT NULL
92e90b6e 20173
21d799b5
NC
20174 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20175 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20176 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20177 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20178 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20179 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 20180
eea54501
MGD
20181 /* Hardware division instructions. */
20182#undef ARM_VARIANT
20183#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
20184#undef THUMB_VARIANT
20185#define THUMB_VARIANT & arm_ext_div
20186
eea54501
MGD
20187 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20188 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 20189
7e806470 20190 /* ARM V6M/V7 instructions. */
c921be7d
NC
20191#undef ARM_VARIANT
20192#define ARM_VARIANT & arm_ext_barrier
20193#undef THUMB_VARIANT
20194#define THUMB_VARIANT & arm_ext_barrier
20195
ccb84d65
JB
20196 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20197 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20198 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 20199
62b3e311 20200 /* ARM V7 instructions. */
c921be7d
NC
20201#undef ARM_VARIANT
20202#define ARM_VARIANT & arm_ext_v7
20203#undef THUMB_VARIANT
20204#define THUMB_VARIANT & arm_ext_v7
20205
21d799b5
NC
20206 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20207 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 20208
74db7efb 20209#undef ARM_VARIANT
60e5ef9f 20210#define ARM_VARIANT & arm_ext_mp
74db7efb 20211#undef THUMB_VARIANT
60e5ef9f
MGD
20212#define THUMB_VARIANT & arm_ext_mp
20213
20214 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20215
53c4b28b
MGD
20216 /* AArchv8 instructions. */
20217#undef ARM_VARIANT
20218#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
20219
20220/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 20221#undef THUMB_VARIANT
4ed7ed8d 20222#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 20223
4ed7ed8d
TP
20224 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20225 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20226 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20227 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20228 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20229 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 20230 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
20231 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20232 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20233 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20234 stlex, t_stlex),
4b8c8c02
RE
20235 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20236 stlex, t_stlex),
20237 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20238 stlex, t_stlex),
4ed7ed8d
TP
20239#undef THUMB_VARIANT
20240#define THUMB_VARIANT & arm_ext_v8
53c4b28b 20241
4ed7ed8d 20242 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
20243 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20244 ldrexd, t_ldrexd),
20245 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20246 strexd, t_strexd),
f7dd2fb2
TC
20247
20248/* Defined in V8 but is in undefined encoding space for earlier
20249 architectures. However earlier architectures are required to treat
20250 this instuction as a semihosting trap as well. Hence while not explicitly
20251 defined as such, it is in fact correct to define the instruction for all
20252 architectures. */
20253#undef THUMB_VARIANT
20254#define THUMB_VARIANT & arm_ext_v1
20255#undef ARM_VARIANT
20256#define ARM_VARIANT & arm_ext_v1
20257 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20258
8884b720 20259 /* ARMv8 T32 only. */
74db7efb 20260#undef ARM_VARIANT
b79f7053
MGD
20261#define ARM_VARIANT NULL
20262 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20263 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20264 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20265
33399f07
MGD
20266 /* FP for ARMv8. */
20267#undef ARM_VARIANT
a715796b 20268#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 20269#undef THUMB_VARIANT
a715796b 20270#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
20271
20272 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20273 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20274 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20275 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
20276 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20277 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
20278 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20279 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20280 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20281 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
20282 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20283 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20284 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20285 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20286 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20287 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20288 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 20289
91ff7894
MGD
20290 /* Crypto v1 extensions. */
20291#undef ARM_VARIANT
20292#define ARM_VARIANT & fpu_crypto_ext_armv8
20293#undef THUMB_VARIANT
20294#define THUMB_VARIANT & fpu_crypto_ext_armv8
20295
20296 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20297 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20298 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20299 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
20300 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20301 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20302 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20303 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20304 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20305 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20306 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
20307 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20308 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20309 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 20310
dd5181d5 20311#undef ARM_VARIANT
74db7efb 20312#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
20313#undef THUMB_VARIANT
20314#define THUMB_VARIANT & crc_ext_armv8
20315 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20316 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20317 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20318 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20319 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20320 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20321
105bde57
MW
20322 /* ARMv8.2 RAS extension. */
20323#undef ARM_VARIANT
4d1464f2 20324#define ARM_VARIANT & arm_ext_ras
105bde57 20325#undef THUMB_VARIANT
4d1464f2 20326#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
20327 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20328
49e8a725
SN
20329#undef ARM_VARIANT
20330#define ARM_VARIANT & arm_ext_v8_3
20331#undef THUMB_VARIANT
20332#define THUMB_VARIANT & arm_ext_v8_3
20333 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
20334 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20335 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 20336
c604a79a
JW
20337#undef ARM_VARIANT
20338#define ARM_VARIANT & fpu_neon_ext_dotprod
20339#undef THUMB_VARIANT
20340#define THUMB_VARIANT & fpu_neon_ext_dotprod
20341 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20342 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20343
c921be7d
NC
20344#undef ARM_VARIANT
20345#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
20346#undef THUMB_VARIANT
20347#define THUMB_VARIANT NULL
c921be7d 20348
21d799b5
NC
20349 cCE("wfs", e200110, 1, (RR), rd),
20350 cCE("rfs", e300110, 1, (RR), rd),
20351 cCE("wfc", e400110, 1, (RR), rd),
20352 cCE("rfc", e500110, 1, (RR), rd),
20353
20354 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20355 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20356 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20357 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20358
20359 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20360 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20361 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20362 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20363
20364 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20365 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20366 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20367 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20368 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20369 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20370 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20371 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20372 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20373 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20374 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20375 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20376
20377 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20378 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20379 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20380 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20381 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20382 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20383 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20384 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20385 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20386 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20387 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20388 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20389
20390 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20391 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20392 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20393 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20394 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20395 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20396 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20397 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20398 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20399 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20400 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20401 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20402
20403 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20404 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20405 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20406 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20407 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20408 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20409 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20410 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20411 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20412 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20413 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20414 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20415
20416 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20417 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20418 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20419 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20420 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20421 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20422 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20423 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20424 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20425 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20426 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20427 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20428
20429 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20430 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20431 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20432 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20433 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20434 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20435 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20436 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20437 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20438 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20439 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20440 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20441
20442 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20443 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20444 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20445 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20446 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20447 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20448 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20449 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20450 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20451 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20452 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20453 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20454
20455 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20456 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20457 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20458 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20459 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20460 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20461 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20462 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20463 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20464 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20465 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20466 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20467
20468 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20469 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20470 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20471 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20472 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20473 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20474 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20475 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20476 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20477 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20478 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20479 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20480
20481 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20482 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20483 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20484 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20485 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20486 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20487 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20488 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20489 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20490 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20491 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20492 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20493
20494 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20495 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20496 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20497 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20498 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20499 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20500 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20501 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20502 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20503 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20504 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20505 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20506
20507 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20508 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20509 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20510 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20511 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20512 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20513 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20514 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20515 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20516 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20517 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20518 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20519
20520 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20521 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20522 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20523 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20524 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20525 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20526 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20527 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20528 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20529 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20530 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20531 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20532
20533 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20534 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20535 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20536 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20537 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20538 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20539 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20540 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20541 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20542 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20543 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20544 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20545
20546 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20547 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20548 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20549 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20550 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20551 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20552 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20553 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20554 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20555 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20556 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20557 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20558
20559 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20560 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20561 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20562 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20563 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20564 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20565 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20566 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20567 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20568 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20569 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20570 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20571
20572 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20573 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20574 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20575 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20576 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20577 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20578 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20579 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20580 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20581 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20582 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20583 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20584
20585 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20586 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20587 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20588 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20589 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20590 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20591 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20592 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20593 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20594 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20595 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20596 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20597
20598 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20599 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20600 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20601 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20602 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20603 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20604 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20605 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20606 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20607 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20608 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20609 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20610
20611 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20612 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20613 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20614 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20615 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20616 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20617 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20618 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20619 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20620 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20621 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20622 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20623
20624 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20625 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20626 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20627 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20628 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20629 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20630 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20631 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20632 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20633 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20634 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20635 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20636
20637 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20638 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20639 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20640 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20641 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20642 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20643 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20644 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20645 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20646 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20647 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20648 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20649
20650 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20651 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20652 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20653 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20654 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20655 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20656 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20657 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20658 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20659 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20660 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20661 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20662
20663 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20664 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20665 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20666 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20667 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20668 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20669 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20670 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20671 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20672 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20673 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20674 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20675
20676 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20677 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20678 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20679 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20680 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20681 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20682 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20683 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20684 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20685 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20686 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20687 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20688
20689 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20690 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20691 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20692 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20693 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20694 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20695 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20696 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20697 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20698 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20699 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20700 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20701
20702 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20703 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20704 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20705 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20706 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20707 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20708 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20709 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20710 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20711 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20712 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20713 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20714
20715 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20716 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20717 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20718 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20719 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20720 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20721 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20722 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20723 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20724 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20725 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20726 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20727
20728 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20729 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20730 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20731 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20732 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20733 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20734 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20735 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20736 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20737 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20738 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20739 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20740
20741 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20742 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20743 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20744 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20745
20746 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20747 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20748 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20749 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20750 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20751 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20752 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20753 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20754 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20755 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20756 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20757 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 20758
c19d1205
ZW
20759 /* The implementation of the FIX instruction is broken on some
20760 assemblers, in that it accepts a precision specifier as well as a
20761 rounding specifier, despite the fact that this is meaningless.
20762 To be more compatible, we accept it as well, though of course it
20763 does not set any bits. */
21d799b5
NC
20764 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20765 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20766 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20767 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20768 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20769 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20770 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20771 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20772 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20773 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20774 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20775 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20776 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 20777
c19d1205 20778 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
20779#undef ARM_VARIANT
20780#define ARM_VARIANT & fpu_fpa_ext_v2
20781
21d799b5
NC
20782 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20783 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20784 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20785 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20786 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20787 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 20788
c921be7d
NC
20789#undef ARM_VARIANT
20790#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20791
c19d1205 20792 /* Moves and type conversions. */
21d799b5
NC
20793 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20794 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20795 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20796 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
20797 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20798 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
20799 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20800 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20801 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20802 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20803 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20804 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20805 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20806 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
20807
20808 /* Memory operations. */
21d799b5
NC
20809 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20810 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
20811 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20812 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20813 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20814 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20815 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20816 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20817 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20818 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20819 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20820 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20821 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20822 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20823 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20824 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20825 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20826 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 20827
c19d1205 20828 /* Monadic operations. */
21d799b5
NC
20829 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20830 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20831 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
20832
20833 /* Dyadic operations. */
21d799b5
NC
20834 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20835 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20836 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20837 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20838 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20839 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20840 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20841 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20842 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 20843
c19d1205 20844 /* Comparisons. */
21d799b5
NC
20845 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20846 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20847 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20848 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 20849
62f3b8c8
PB
20850 /* Double precision load/store are still present on single precision
20851 implementations. */
20852 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20853 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
20854 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20855 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20856 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20857 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20858 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20859 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20860 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20861 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 20862
c921be7d
NC
20863#undef ARM_VARIANT
20864#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20865
c19d1205 20866 /* Moves and type conversions. */
21d799b5
NC
20867 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20868 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20869 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20870 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20871 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20872 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20873 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20874 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20875 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20876 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20877 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20878 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20879 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 20880
c19d1205 20881 /* Monadic operations. */
21d799b5
NC
20882 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20883 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20884 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
20885
20886 /* Dyadic operations. */
21d799b5
NC
20887 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20888 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20889 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20890 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20891 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20892 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20893 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20894 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20895 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 20896
c19d1205 20897 /* Comparisons. */
21d799b5
NC
20898 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20899 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20900 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20901 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 20902
c921be7d
NC
20903#undef ARM_VARIANT
20904#define ARM_VARIANT & fpu_vfp_ext_v2
20905
21d799b5
NC
20906 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20907 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20908 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20909 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 20910
037e8744
JB
20911/* Instructions which may belong to either the Neon or VFP instruction sets.
20912 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
20913#undef ARM_VARIANT
20914#define ARM_VARIANT & fpu_vfp_ext_v1xd
20915#undef THUMB_VARIANT
20916#define THUMB_VARIANT & fpu_vfp_ext_v1xd
20917
037e8744
JB
20918 /* These mnemonics are unique to VFP. */
20919 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20920 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
20921 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20922 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20923 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
aacf0b33
KT
20924 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20925 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
037e8744
JB
20926 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20927 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20928 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20929
20930 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
20931 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20932 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20933 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 20934
21d799b5
NC
20935 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20936 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
20937
20938 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20939 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20940
55881a11
MGD
20941 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20942 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20943 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20944 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20945 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20946 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
20947 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20948 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 20949
5f1af56b 20950 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 20951 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
20952 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20953 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 20954
037e8744
JB
20955
20956 /* NOTE: All VMOV encoding is special-cased! */
20957 NCE(vmov, 0, 1, (VMOV), neon_mov),
20958 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20959
9db2f6b4
RL
20960#undef ARM_VARIANT
20961#define ARM_VARIANT & arm_ext_fp16
20962#undef THUMB_VARIANT
20963#define THUMB_VARIANT & arm_ext_fp16
20964 /* New instructions added from v8.2, allowing the extraction and insertion of
20965 the upper 16 bits of a 32-bit vector register. */
20966 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20967 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20968
dec41383
JW
20969 /* New backported fma/fms instructions optional in v8.2. */
20970 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
20971 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
20972
c921be7d
NC
20973#undef THUMB_VARIANT
20974#define THUMB_VARIANT & fpu_neon_ext_v1
20975#undef ARM_VARIANT
20976#define ARM_VARIANT & fpu_neon_ext_v1
20977
5287ad62
JB
20978 /* Data processing with three registers of the same length. */
20979 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20980 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20981 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20982 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20983 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20984 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20985 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20986 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20987 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20988 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20989 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20990 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20991 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20992 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
20993 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20994 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20995 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20996 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
20997 /* If not immediate, fall back to neon_dyadic_i64_su.
20998 shl_imm should accept I8 I16 I32 I64,
20999 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
21000 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
21001 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
21002 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
21003 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 21004 /* Logic ops, types optional & ignored. */
4316f0d2
DG
21005 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21006 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21007 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21008 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21009 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21010 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21011 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21012 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21013 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
21014 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
21015 /* Bitfield ops, untyped. */
21016 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21017 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21018 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21019 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21020 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21021 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 21022 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
21023 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21024 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21025 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21026 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21027 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21028 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
21029 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
21030 back to neon_dyadic_if_su. */
21d799b5
NC
21031 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21032 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21033 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21034 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21035 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21036 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21037 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21038 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 21039 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
21040 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
21041 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 21042 /* As above, D registers only. */
21d799b5
NC
21043 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21044 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 21045 /* Int and float variants, signedness unimportant. */
21d799b5
NC
21046 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21047 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21048 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 21049 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
21050 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21051 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
21052 /* vtst takes sizes 8, 16, 32. */
21053 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
21054 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
21055 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 21056 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 21057 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
21058 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21059 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21060 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21061 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
21062 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21063 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21064 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21065 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
21066 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21067 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21068 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21069 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
21070 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21071 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21072 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21073 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 21074 /* ARM v8.1 extension. */
643afb90
MW
21075 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21076 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21077 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21078 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
21079
21080 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 21081 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
21082 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
21083
21084 /* Data processing with two registers and a shift amount. */
21085 /* Right shifts, and variants with rounding.
21086 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21087 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21088 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21089 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21090 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21091 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21092 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21093 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21094 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21095 /* Shift and insert. Sizes accepted 8 16 32 64. */
21096 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21097 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21098 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21099 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21100 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21101 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21102 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21103 /* Right shift immediate, saturating & narrowing, with rounding variants.
21104 Types accepted S16 S32 S64 U16 U32 U64. */
21105 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21106 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21107 /* As above, unsigned. Types accepted S16 S32 S64. */
21108 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21109 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21110 /* Right shift narrowing. Types accepted I16 I32 I64. */
21111 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21112 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21113 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 21114 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 21115 /* CVT with optional immediate for fixed-point variant. */
21d799b5 21116 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 21117
4316f0d2
DG
21118 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21119 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
21120
21121 /* Data processing, three registers of different lengths. */
21122 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21123 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21124 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21125 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21126 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21127 /* If not scalar, fall back to neon_dyadic_long.
21128 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
21129 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21130 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
21131 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21132 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21133 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21134 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21135 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21136 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21137 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21138 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21139 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
21140 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21141 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21142 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
21143 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21144 S16 S32 U16 U32. */
21d799b5 21145 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
21146
21147 /* Extract. Size 8. */
3b8d421e
PB
21148 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21149 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
21150
21151 /* Two registers, miscellaneous. */
21152 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21153 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21154 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21155 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21156 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21157 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21158 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21159 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
21160 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21161 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
21162 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21163 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21164 /* VMOVN. Types I16 I32 I64. */
21d799b5 21165 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 21166 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 21167 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 21168 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 21169 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
21170 /* VZIP / VUZP. Sizes 8 16 32. */
21171 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21172 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21173 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21174 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21175 /* VQABS / VQNEG. Types S8 S16 S32. */
21176 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21177 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21178 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21179 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21180 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21181 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21182 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21183 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21184 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 21185 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
21186 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21187 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21188 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21189 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21190 /* VCLS. Types S8 S16 S32. */
21191 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21192 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21193 /* VCLZ. Types I8 I16 I32. */
21194 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21195 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21196 /* VCNT. Size 8. */
21197 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21198 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21199 /* Two address, untyped. */
21200 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21201 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21202 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
21203 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21204 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
21205
21206 /* Table lookup. Size 8. */
21207 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21208 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21209
c921be7d
NC
21210#undef THUMB_VARIANT
21211#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21212#undef ARM_VARIANT
21213#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21214
5287ad62 21215 /* Neon element/structure load/store. */
21d799b5
NC
21216 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21217 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21218 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21219 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21220 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21221 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21222 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21223 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 21224
c921be7d 21225#undef THUMB_VARIANT
74db7efb
NC
21226#define THUMB_VARIANT & fpu_vfp_ext_v3xd
21227#undef ARM_VARIANT
21228#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
21229 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21230 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21231 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21232 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21233 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21234 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21235 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21236 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21237 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21238
74db7efb 21239#undef THUMB_VARIANT
c921be7d
NC
21240#define THUMB_VARIANT & fpu_vfp_ext_v3
21241#undef ARM_VARIANT
21242#define ARM_VARIANT & fpu_vfp_ext_v3
21243
21d799b5 21244 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 21245 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21246 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21247 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21248 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21249 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21250 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21251 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21252 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 21253
74db7efb
NC
21254#undef ARM_VARIANT
21255#define ARM_VARIANT & fpu_vfp_ext_fma
21256#undef THUMB_VARIANT
21257#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
21258 /* Mnemonics shared by Neon and VFP. These are included in the
21259 VFP FMA variant; NEON and VFP FMA always includes the NEON
21260 FMA instructions. */
21261 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21262 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21263 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21264 the v form should always be used. */
21265 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21266 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21267 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21268 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21269 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21270 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21271
5287ad62 21272#undef THUMB_VARIANT
c921be7d
NC
21273#undef ARM_VARIANT
21274#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21275
21d799b5
NC
21276 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21277 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21278 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21279 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21280 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21281 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21282 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21283 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 21284
c921be7d
NC
21285#undef ARM_VARIANT
21286#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21287
21d799b5
NC
21288 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21289 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21290 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21291 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21292 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21293 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21294 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21295 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21296 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
21297 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21298 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21299 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21300 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21301 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21302 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
21303 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21304 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21305 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21306 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21307 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21308 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21309 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21310 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21311 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21312 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21313 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
21314 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21315 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21316 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
21317 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21318 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21319 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21320 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21321 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21322 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21323 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21324 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21325 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21326 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21327 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21328 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21329 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21330 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21331 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21332 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21333 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21334 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
21335 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21336 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21337 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21338 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21339 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21340 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21341 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21342 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21343 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21344 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21345 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21346 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21347 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21348 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21349 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21350 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21351 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21352 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21353 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21354 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21355 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21356 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21357 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21358 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21359 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21360 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21361 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21362 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21363 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21364 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21365 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21366 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21367 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21368 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21369 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21370 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21371 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21372 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21373 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21374 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21375 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21376 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21377 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21378 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21379 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21380 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21381 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21382 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21383 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21384 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21385 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21386 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21387 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21388 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21389 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21390 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21391 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21392 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21393 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21394 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21395 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21396 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21397 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21398 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21399 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21400 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21401 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21402 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21403 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21404 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21405 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21406 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21407 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21408 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21409 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21410 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21411 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21412 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21413 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21414 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21415 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21416 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21417 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21418 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21419 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21420 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21421 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21422 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21423 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21424 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21425 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21426 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21427 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21428 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21429 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21430 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21431 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21432 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21433 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21434 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21435 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21436 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21437 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21438 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21439 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21440 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21441 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21442 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21443 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21444 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21445 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21446 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21447 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21448 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21449 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 21450
c921be7d
NC
21451#undef ARM_VARIANT
21452#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21453
21d799b5
NC
21454 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21455 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21456 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21457 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21458 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21459 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21460 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21461 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21462 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21463 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21464 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21465 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21466 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21467 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21468 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21469 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21470 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21471 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21472 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21473 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21474 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21475 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21476 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21477 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21478 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21479 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21480 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21481 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21482 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21483 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21484 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21485 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21486 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21487 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21488 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21489 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21490 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21491 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21492 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21493 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21494 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21495 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21496 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21497 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21498 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21499 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21500 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21501 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21502 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21503 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21504 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21505 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21506 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21507 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21508 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21509 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21510 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 21511
c921be7d
NC
21512#undef ARM_VARIANT
21513#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21514
21d799b5
NC
21515 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21516 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21517 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21518 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21519 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21520 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21521 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21522 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21523 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21524 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21525 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21526 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21527 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21528 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
21529 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21530 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21531 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21532 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21533 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21534 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21535 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21536 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21537 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21538 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
21539 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21540 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21541 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21542 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
21543 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21544 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
21545 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21546 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21547 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21548 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
21549 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21550 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21551 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21552 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21553 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21554 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
21555 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21556 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
21557 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21558 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
21559 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21560 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21561 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21562 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21563 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21564 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21565 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21566 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21567 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21568 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21569 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21570 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21571 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21572 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21573 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21574 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21575 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21576 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21577 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21578 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21579 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21580 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21581 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21582 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21583 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21584 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21585 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21586 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
21587 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21588 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
21589 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21590 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 21591
7fadb25d
SD
21592 /* ARMv8.5-A instructions. */
21593#undef ARM_VARIANT
21594#define ARM_VARIANT & arm_ext_sb
21595#undef THUMB_VARIANT
21596#define THUMB_VARIANT & arm_ext_sb
21597 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
21598
dad0c3bf
SD
21599#undef ARM_VARIANT
21600#define ARM_VARIANT & arm_ext_predres
21601#undef THUMB_VARIANT
21602#define THUMB_VARIANT & arm_ext_predres
21603 CE("cfprctx", e070f93, 1, (RRnpc), rd),
21604 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
21605 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
21606
16a1fa25 21607 /* ARMv8-M instructions. */
4ed7ed8d
TP
21608#undef ARM_VARIANT
21609#define ARM_VARIANT NULL
21610#undef THUMB_VARIANT
21611#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
21612 ToU("sg", e97fe97f, 0, (), noargs),
21613 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21614 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21615 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21616 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21617 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21618 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
21619
21620 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21621 instructions behave as nop if no VFP is present. */
21622#undef THUMB_VARIANT
21623#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
21624 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21625 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
c19d1205
ZW
21626};
21627#undef ARM_VARIANT
21628#undef THUMB_VARIANT
21629#undef TCE
c19d1205
ZW
21630#undef TUE
21631#undef TUF
21632#undef TCC
8f06b2d8 21633#undef cCE
e3cb604e
PB
21634#undef cCL
21635#undef C3E
c19d1205
ZW
21636#undef CE
21637#undef CM
21638#undef UE
21639#undef UF
21640#undef UT
5287ad62
JB
21641#undef NUF
21642#undef nUF
21643#undef NCE
21644#undef nCE
c19d1205
ZW
21645#undef OPS0
21646#undef OPS1
21647#undef OPS2
21648#undef OPS3
21649#undef OPS4
21650#undef OPS5
21651#undef OPS6
21652#undef do_0
21653\f
21654/* MD interface: bits in the object file. */
bfae80f2 21655
c19d1205
ZW
21656/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21657 for use in the a.out file, and stores them in the array pointed to by buf.
21658 This knows about the endian-ness of the target machine and does
21659 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21660 2 (short) and 4 (long) Floating numbers are put out as a series of
21661 LITTLENUMS (shorts, here at least). */
b99bd4ef 21662
c19d1205
ZW
21663void
21664md_number_to_chars (char * buf, valueT val, int n)
21665{
21666 if (target_big_endian)
21667 number_to_chars_bigendian (buf, val, n);
21668 else
21669 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
21670}
21671
c19d1205
ZW
21672static valueT
21673md_chars_to_number (char * buf, int n)
bfae80f2 21674{
c19d1205
ZW
21675 valueT result = 0;
21676 unsigned char * where = (unsigned char *) buf;
bfae80f2 21677
c19d1205 21678 if (target_big_endian)
b99bd4ef 21679 {
c19d1205
ZW
21680 while (n--)
21681 {
21682 result <<= 8;
21683 result |= (*where++ & 255);
21684 }
b99bd4ef 21685 }
c19d1205 21686 else
b99bd4ef 21687 {
c19d1205
ZW
21688 while (n--)
21689 {
21690 result <<= 8;
21691 result |= (where[n] & 255);
21692 }
bfae80f2 21693 }
b99bd4ef 21694
c19d1205 21695 return result;
bfae80f2 21696}
b99bd4ef 21697
c19d1205 21698/* MD interface: Sections. */
b99bd4ef 21699
fa94de6b
RM
21700/* Calculate the maximum variable size (i.e., excluding fr_fix)
21701 that an rs_machine_dependent frag may reach. */
21702
21703unsigned int
21704arm_frag_max_var (fragS *fragp)
21705{
21706 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21707 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21708
21709 Note that we generate relaxable instructions even for cases that don't
21710 really need it, like an immediate that's a trivial constant. So we're
21711 overestimating the instruction size for some of those cases. Rather
21712 than putting more intelligence here, it would probably be better to
21713 avoid generating a relaxation frag in the first place when it can be
21714 determined up front that a short instruction will suffice. */
21715
21716 gas_assert (fragp->fr_type == rs_machine_dependent);
21717 return INSN_SIZE;
21718}
21719
0110f2b8
PB
21720/* Estimate the size of a frag before relaxing. Assume everything fits in
21721 2 bytes. */
21722
c19d1205 21723int
0110f2b8 21724md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
21725 segT segtype ATTRIBUTE_UNUSED)
21726{
0110f2b8
PB
21727 fragp->fr_var = 2;
21728 return 2;
21729}
21730
21731/* Convert a machine dependent frag. */
21732
21733void
21734md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21735{
21736 unsigned long insn;
21737 unsigned long old_op;
21738 char *buf;
21739 expressionS exp;
21740 fixS *fixp;
21741 int reloc_type;
21742 int pc_rel;
21743 int opcode;
21744
21745 buf = fragp->fr_literal + fragp->fr_fix;
21746
21747 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
21748 if (fragp->fr_symbol)
21749 {
0110f2b8
PB
21750 exp.X_op = O_symbol;
21751 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
21752 }
21753 else
21754 {
0110f2b8 21755 exp.X_op = O_constant;
5f4273c7 21756 }
0110f2b8
PB
21757 exp.X_add_number = fragp->fr_offset;
21758 opcode = fragp->fr_subtype;
21759 switch (opcode)
21760 {
21761 case T_MNEM_ldr_pc:
21762 case T_MNEM_ldr_pc2:
21763 case T_MNEM_ldr_sp:
21764 case T_MNEM_str_sp:
21765 case T_MNEM_ldr:
21766 case T_MNEM_ldrb:
21767 case T_MNEM_ldrh:
21768 case T_MNEM_str:
21769 case T_MNEM_strb:
21770 case T_MNEM_strh:
21771 if (fragp->fr_var == 4)
21772 {
5f4273c7 21773 insn = THUMB_OP32 (opcode);
0110f2b8
PB
21774 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21775 {
21776 insn |= (old_op & 0x700) << 4;
21777 }
21778 else
21779 {
21780 insn |= (old_op & 7) << 12;
21781 insn |= (old_op & 0x38) << 13;
21782 }
21783 insn |= 0x00000c00;
21784 put_thumb32_insn (buf, insn);
21785 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21786 }
21787 else
21788 {
21789 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21790 }
21791 pc_rel = (opcode == T_MNEM_ldr_pc2);
21792 break;
21793 case T_MNEM_adr:
21794 if (fragp->fr_var == 4)
21795 {
21796 insn = THUMB_OP32 (opcode);
21797 insn |= (old_op & 0xf0) << 4;
21798 put_thumb32_insn (buf, insn);
21799 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21800 }
21801 else
21802 {
21803 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21804 exp.X_add_number -= 4;
21805 }
21806 pc_rel = 1;
21807 break;
21808 case T_MNEM_mov:
21809 case T_MNEM_movs:
21810 case T_MNEM_cmp:
21811 case T_MNEM_cmn:
21812 if (fragp->fr_var == 4)
21813 {
21814 int r0off = (opcode == T_MNEM_mov
21815 || opcode == T_MNEM_movs) ? 0 : 8;
21816 insn = THUMB_OP32 (opcode);
21817 insn = (insn & 0xe1ffffff) | 0x10000000;
21818 insn |= (old_op & 0x700) << r0off;
21819 put_thumb32_insn (buf, insn);
21820 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21821 }
21822 else
21823 {
21824 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21825 }
21826 pc_rel = 0;
21827 break;
21828 case T_MNEM_b:
21829 if (fragp->fr_var == 4)
21830 {
21831 insn = THUMB_OP32(opcode);
21832 put_thumb32_insn (buf, insn);
21833 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21834 }
21835 else
21836 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21837 pc_rel = 1;
21838 break;
21839 case T_MNEM_bcond:
21840 if (fragp->fr_var == 4)
21841 {
21842 insn = THUMB_OP32(opcode);
21843 insn |= (old_op & 0xf00) << 14;
21844 put_thumb32_insn (buf, insn);
21845 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21846 }
21847 else
21848 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21849 pc_rel = 1;
21850 break;
21851 case T_MNEM_add_sp:
21852 case T_MNEM_add_pc:
21853 case T_MNEM_inc_sp:
21854 case T_MNEM_dec_sp:
21855 if (fragp->fr_var == 4)
21856 {
21857 /* ??? Choose between add and addw. */
21858 insn = THUMB_OP32 (opcode);
21859 insn |= (old_op & 0xf0) << 4;
21860 put_thumb32_insn (buf, insn);
16805f35
PB
21861 if (opcode == T_MNEM_add_pc)
21862 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21863 else
21864 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
21865 }
21866 else
21867 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21868 pc_rel = 0;
21869 break;
21870
21871 case T_MNEM_addi:
21872 case T_MNEM_addis:
21873 case T_MNEM_subi:
21874 case T_MNEM_subis:
21875 if (fragp->fr_var == 4)
21876 {
21877 insn = THUMB_OP32 (opcode);
21878 insn |= (old_op & 0xf0) << 4;
21879 insn |= (old_op & 0xf) << 16;
21880 put_thumb32_insn (buf, insn);
16805f35
PB
21881 if (insn & (1 << 20))
21882 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21883 else
21884 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
21885 }
21886 else
21887 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21888 pc_rel = 0;
21889 break;
21890 default:
5f4273c7 21891 abort ();
0110f2b8
PB
21892 }
21893 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 21894 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
21895 fixp->fx_file = fragp->fr_file;
21896 fixp->fx_line = fragp->fr_line;
21897 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
21898
21899 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21900 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21901 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21902 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
21903}
21904
21905/* Return the size of a relaxable immediate operand instruction.
21906 SHIFT and SIZE specify the form of the allowable immediate. */
21907static int
21908relax_immediate (fragS *fragp, int size, int shift)
21909{
21910 offsetT offset;
21911 offsetT mask;
21912 offsetT low;
21913
21914 /* ??? Should be able to do better than this. */
21915 if (fragp->fr_symbol)
21916 return 4;
21917
21918 low = (1 << shift) - 1;
21919 mask = (1 << (shift + size)) - (1 << shift);
21920 offset = fragp->fr_offset;
21921 /* Force misaligned offsets to 32-bit variant. */
21922 if (offset & low)
5e77afaa 21923 return 4;
0110f2b8
PB
21924 if (offset & ~mask)
21925 return 4;
21926 return 2;
21927}
21928
5e77afaa
PB
21929/* Get the address of a symbol during relaxation. */
21930static addressT
5f4273c7 21931relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
21932{
21933 fragS *sym_frag;
21934 addressT addr;
21935 symbolS *sym;
21936
21937 sym = fragp->fr_symbol;
21938 sym_frag = symbol_get_frag (sym);
21939 know (S_GET_SEGMENT (sym) != absolute_section
21940 || sym_frag == &zero_address_frag);
21941 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21942
21943 /* If frag has yet to be reached on this pass, assume it will
21944 move by STRETCH just as we did. If this is not so, it will
21945 be because some frag between grows, and that will force
21946 another pass. */
21947
21948 if (stretch != 0
21949 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
21950 {
21951 fragS *f;
21952
21953 /* Adjust stretch for any alignment frag. Note that if have
21954 been expanding the earlier code, the symbol may be
21955 defined in what appears to be an earlier frag. FIXME:
21956 This doesn't handle the fr_subtype field, which specifies
21957 a maximum number of bytes to skip when doing an
21958 alignment. */
21959 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21960 {
21961 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21962 {
21963 if (stretch < 0)
21964 stretch = - ((- stretch)
21965 & ~ ((1 << (int) f->fr_offset) - 1));
21966 else
21967 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21968 if (stretch == 0)
21969 break;
21970 }
21971 }
21972 if (f != NULL)
21973 addr += stretch;
21974 }
5e77afaa
PB
21975
21976 return addr;
21977}
21978
0110f2b8
PB
21979/* Return the size of a relaxable adr pseudo-instruction or PC-relative
21980 load. */
21981static int
5e77afaa 21982relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
21983{
21984 addressT addr;
21985 offsetT val;
21986
21987 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
21988 if (fragp->fr_symbol == NULL
21989 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21990 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21991 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21992 return 4;
21993
5f4273c7 21994 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
21995 addr = fragp->fr_address + fragp->fr_fix;
21996 addr = (addr + 4) & ~3;
5e77afaa 21997 /* Force misaligned targets to 32-bit variant. */
0110f2b8 21998 if (val & 3)
5e77afaa 21999 return 4;
0110f2b8
PB
22000 val -= addr;
22001 if (val < 0 || val > 1020)
22002 return 4;
22003 return 2;
22004}
22005
22006/* Return the size of a relaxable add/sub immediate instruction. */
22007static int
22008relax_addsub (fragS *fragp, asection *sec)
22009{
22010 char *buf;
22011 int op;
22012
22013 buf = fragp->fr_literal + fragp->fr_fix;
22014 op = bfd_get_16(sec->owner, buf);
22015 if ((op & 0xf) == ((op >> 4) & 0xf))
22016 return relax_immediate (fragp, 8, 0);
22017 else
22018 return relax_immediate (fragp, 3, 0);
22019}
22020
e83a675f
RE
22021/* Return TRUE iff the definition of symbol S could be pre-empted
22022 (overridden) at link or load time. */
22023static bfd_boolean
22024symbol_preemptible (symbolS *s)
22025{
22026 /* Weak symbols can always be pre-empted. */
22027 if (S_IS_WEAK (s))
22028 return TRUE;
22029
22030 /* Non-global symbols cannot be pre-empted. */
22031 if (! S_IS_EXTERNAL (s))
22032 return FALSE;
22033
22034#ifdef OBJ_ELF
22035 /* In ELF, a global symbol can be marked protected, or private. In that
22036 case it can't be pre-empted (other definitions in the same link unit
22037 would violate the ODR). */
22038 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
22039 return FALSE;
22040#endif
22041
22042 /* Other global symbols might be pre-empted. */
22043 return TRUE;
22044}
0110f2b8
PB
22045
22046/* Return the size of a relaxable branch instruction. BITS is the
22047 size of the offset field in the narrow instruction. */
22048
22049static int
5e77afaa 22050relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
22051{
22052 addressT addr;
22053 offsetT val;
22054 offsetT limit;
22055
22056 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 22057 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
22058 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22059 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
22060 return 4;
22061
267bf995 22062#ifdef OBJ_ELF
e83a675f 22063 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
22064 if (S_IS_DEFINED (fragp->fr_symbol)
22065 && ARM_IS_FUNC (fragp->fr_symbol))
22066 return 4;
e83a675f 22067#endif
0d9b4b55 22068
e83a675f 22069 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 22070 return 4;
267bf995 22071
5f4273c7 22072 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
22073 addr = fragp->fr_address + fragp->fr_fix + 4;
22074 val -= addr;
22075
22076 /* Offset is a signed value *2 */
22077 limit = 1 << bits;
22078 if (val >= limit || val < -limit)
22079 return 4;
22080 return 2;
22081}
22082
22083
22084/* Relax a machine dependent frag. This returns the amount by which
22085 the current size of the frag should change. */
22086
22087int
5e77afaa 22088arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
22089{
22090 int oldsize;
22091 int newsize;
22092
22093 oldsize = fragp->fr_var;
22094 switch (fragp->fr_subtype)
22095 {
22096 case T_MNEM_ldr_pc2:
5f4273c7 22097 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22098 break;
22099 case T_MNEM_ldr_pc:
22100 case T_MNEM_ldr_sp:
22101 case T_MNEM_str_sp:
5f4273c7 22102 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
22103 break;
22104 case T_MNEM_ldr:
22105 case T_MNEM_str:
5f4273c7 22106 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
22107 break;
22108 case T_MNEM_ldrh:
22109 case T_MNEM_strh:
5f4273c7 22110 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
22111 break;
22112 case T_MNEM_ldrb:
22113 case T_MNEM_strb:
5f4273c7 22114 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
22115 break;
22116 case T_MNEM_adr:
5f4273c7 22117 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
22118 break;
22119 case T_MNEM_mov:
22120 case T_MNEM_movs:
22121 case T_MNEM_cmp:
22122 case T_MNEM_cmn:
5f4273c7 22123 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
22124 break;
22125 case T_MNEM_b:
5f4273c7 22126 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
22127 break;
22128 case T_MNEM_bcond:
5f4273c7 22129 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
22130 break;
22131 case T_MNEM_add_sp:
22132 case T_MNEM_add_pc:
22133 newsize = relax_immediate (fragp, 8, 2);
22134 break;
22135 case T_MNEM_inc_sp:
22136 case T_MNEM_dec_sp:
22137 newsize = relax_immediate (fragp, 7, 2);
22138 break;
22139 case T_MNEM_addi:
22140 case T_MNEM_addis:
22141 case T_MNEM_subi:
22142 case T_MNEM_subis:
22143 newsize = relax_addsub (fragp, sec);
22144 break;
22145 default:
5f4273c7 22146 abort ();
0110f2b8 22147 }
5e77afaa
PB
22148
22149 fragp->fr_var = newsize;
22150 /* Freeze wide instructions that are at or before the same location as
22151 in the previous pass. This avoids infinite loops.
5f4273c7
NC
22152 Don't freeze them unconditionally because targets may be artificially
22153 misaligned by the expansion of preceding frags. */
5e77afaa 22154 if (stretch <= 0 && newsize > 2)
0110f2b8 22155 {
0110f2b8 22156 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 22157 frag_wane (fragp);
0110f2b8 22158 }
5e77afaa 22159
0110f2b8 22160 return newsize - oldsize;
c19d1205 22161}
b99bd4ef 22162
c19d1205 22163/* Round up a section size to the appropriate boundary. */
b99bd4ef 22164
c19d1205
ZW
22165valueT
22166md_section_align (segT segment ATTRIBUTE_UNUSED,
22167 valueT size)
22168{
6844c0cc 22169 return size;
bfae80f2 22170}
b99bd4ef 22171
c19d1205
ZW
22172/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22173 of an rs_align_code fragment. */
22174
22175void
22176arm_handle_align (fragS * fragP)
bfae80f2 22177{
d9235011 22178 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
22179 {
22180 { /* ARMv1 */
22181 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22182 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22183 },
22184 { /* ARMv6k */
22185 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22186 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22187 },
22188 };
d9235011 22189 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
22190 {
22191 { /* Thumb-1 */
22192 {0xc0, 0x46}, /* LE */
22193 {0x46, 0xc0}, /* BE */
22194 },
22195 { /* Thumb-2 */
22196 {0x00, 0xbf}, /* LE */
22197 {0xbf, 0x00} /* BE */
22198 }
22199 };
d9235011 22200 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
22201 { /* Wide Thumb-2 */
22202 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22203 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22204 };
c921be7d 22205
e7495e45 22206 unsigned bytes, fix, noop_size;
c19d1205 22207 char * p;
d9235011
TS
22208 const unsigned char * noop;
22209 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
22210#ifdef OBJ_ELF
22211 enum mstate state;
22212#endif
bfae80f2 22213
c19d1205 22214 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
22215 return;
22216
c19d1205
ZW
22217 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22218 p = fragP->fr_literal + fragP->fr_fix;
22219 fix = 0;
bfae80f2 22220
c19d1205
ZW
22221 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22222 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 22223
cd000bff 22224 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 22225
cd000bff 22226 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 22227 {
7f78eb34
JW
22228 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22229 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
22230 {
22231 narrow_noop = thumb_noop[1][target_big_endian];
22232 noop = wide_thumb_noop[target_big_endian];
22233 }
c19d1205 22234 else
e7495e45
NS
22235 noop = thumb_noop[0][target_big_endian];
22236 noop_size = 2;
cd000bff
DJ
22237#ifdef OBJ_ELF
22238 state = MAP_THUMB;
22239#endif
7ed4c4c5
NC
22240 }
22241 else
22242 {
7f78eb34
JW
22243 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22244 ? selected_cpu : arm_arch_none,
22245 arm_ext_v6k) != 0]
e7495e45
NS
22246 [target_big_endian];
22247 noop_size = 4;
cd000bff
DJ
22248#ifdef OBJ_ELF
22249 state = MAP_ARM;
22250#endif
7ed4c4c5 22251 }
c921be7d 22252
e7495e45 22253 fragP->fr_var = noop_size;
c921be7d 22254
c19d1205 22255 if (bytes & (noop_size - 1))
7ed4c4c5 22256 {
c19d1205 22257 fix = bytes & (noop_size - 1);
cd000bff
DJ
22258#ifdef OBJ_ELF
22259 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22260#endif
c19d1205
ZW
22261 memset (p, 0, fix);
22262 p += fix;
22263 bytes -= fix;
a737bd4d 22264 }
a737bd4d 22265
e7495e45
NS
22266 if (narrow_noop)
22267 {
22268 if (bytes & noop_size)
22269 {
22270 /* Insert a narrow noop. */
22271 memcpy (p, narrow_noop, noop_size);
22272 p += noop_size;
22273 bytes -= noop_size;
22274 fix += noop_size;
22275 }
22276
22277 /* Use wide noops for the remainder */
22278 noop_size = 4;
22279 }
22280
c19d1205 22281 while (bytes >= noop_size)
a737bd4d 22282 {
c19d1205
ZW
22283 memcpy (p, noop, noop_size);
22284 p += noop_size;
22285 bytes -= noop_size;
22286 fix += noop_size;
a737bd4d
NC
22287 }
22288
c19d1205 22289 fragP->fr_fix += fix;
a737bd4d
NC
22290}
22291
c19d1205
ZW
22292/* Called from md_do_align. Used to create an alignment
22293 frag in a code section. */
22294
22295void
22296arm_frag_align_code (int n, int max)
bfae80f2 22297{
c19d1205 22298 char * p;
7ed4c4c5 22299
c19d1205 22300 /* We assume that there will never be a requirement
6ec8e702 22301 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 22302 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
22303 {
22304 char err_msg[128];
22305
fa94de6b 22306 sprintf (err_msg,
477330fc
RM
22307 _("alignments greater than %d bytes not supported in .text sections."),
22308 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 22309 as_fatal ("%s", err_msg);
6ec8e702 22310 }
bfae80f2 22311
c19d1205
ZW
22312 p = frag_var (rs_align_code,
22313 MAX_MEM_FOR_RS_ALIGN_CODE,
22314 1,
22315 (relax_substateT) max,
22316 (symbolS *) NULL,
22317 (offsetT) n,
22318 (char *) NULL);
22319 *p = 0;
22320}
bfae80f2 22321
8dc2430f
NC
22322/* Perform target specific initialisation of a frag.
22323 Note - despite the name this initialisation is not done when the frag
22324 is created, but only when its type is assigned. A frag can be created
22325 and used a long time before its type is set, so beware of assuming that
33eaf5de 22326 this initialisation is performed first. */
bfae80f2 22327
cd000bff
DJ
22328#ifndef OBJ_ELF
22329void
22330arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22331{
22332 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 22333 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
22334}
22335
22336#else /* OBJ_ELF is defined. */
c19d1205 22337void
cd000bff 22338arm_init_frag (fragS * fragP, int max_chars)
c19d1205 22339{
e8d84ca1 22340 bfd_boolean frag_thumb_mode;
b968d18a 22341
8dc2430f
NC
22342 /* If the current ARM vs THUMB mode has not already
22343 been recorded into this frag then do so now. */
cd000bff 22344 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
22345 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22346
e8d84ca1
NC
22347 /* PR 21809: Do not set a mapping state for debug sections
22348 - it just confuses other tools. */
22349 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22350 return;
22351
b968d18a 22352 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 22353
f9c1b181
RL
22354 /* Record a mapping symbol for alignment frags. We will delete this
22355 later if the alignment ends up empty. */
22356 switch (fragP->fr_type)
22357 {
22358 case rs_align:
22359 case rs_align_test:
22360 case rs_fill:
22361 mapping_state_2 (MAP_DATA, max_chars);
22362 break;
22363 case rs_align_code:
b968d18a 22364 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
22365 break;
22366 default:
22367 break;
cd000bff 22368 }
bfae80f2
RE
22369}
22370
c19d1205
ZW
22371/* When we change sections we need to issue a new mapping symbol. */
22372
22373void
22374arm_elf_change_section (void)
bfae80f2 22375{
c19d1205
ZW
22376 /* Link an unlinked unwind index table section to the .text section. */
22377 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22378 && elf_linked_to_section (now_seg) == NULL)
22379 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
22380}
22381
c19d1205
ZW
22382int
22383arm_elf_section_type (const char * str, size_t len)
e45d0630 22384{
c19d1205
ZW
22385 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22386 return SHT_ARM_EXIDX;
e45d0630 22387
c19d1205
ZW
22388 return -1;
22389}
22390\f
22391/* Code to deal with unwinding tables. */
e45d0630 22392
c19d1205 22393static void add_unwind_adjustsp (offsetT);
e45d0630 22394
5f4273c7 22395/* Generate any deferred unwind frame offset. */
e45d0630 22396
bfae80f2 22397static void
c19d1205 22398flush_pending_unwind (void)
bfae80f2 22399{
c19d1205 22400 offsetT offset;
bfae80f2 22401
c19d1205
ZW
22402 offset = unwind.pending_offset;
22403 unwind.pending_offset = 0;
22404 if (offset != 0)
22405 add_unwind_adjustsp (offset);
bfae80f2
RE
22406}
22407
c19d1205
ZW
22408/* Add an opcode to this list for this function. Two-byte opcodes should
22409 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22410 order. */
22411
bfae80f2 22412static void
c19d1205 22413add_unwind_opcode (valueT op, int length)
bfae80f2 22414{
c19d1205
ZW
22415 /* Add any deferred stack adjustment. */
22416 if (unwind.pending_offset)
22417 flush_pending_unwind ();
bfae80f2 22418
c19d1205 22419 unwind.sp_restored = 0;
bfae80f2 22420
c19d1205 22421 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 22422 {
c19d1205
ZW
22423 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22424 if (unwind.opcodes)
325801bd
TS
22425 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22426 unwind.opcode_alloc);
c19d1205 22427 else
325801bd 22428 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 22429 }
c19d1205 22430 while (length > 0)
bfae80f2 22431 {
c19d1205
ZW
22432 length--;
22433 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22434 op >>= 8;
22435 unwind.opcode_count++;
bfae80f2 22436 }
bfae80f2
RE
22437}
22438
c19d1205
ZW
22439/* Add unwind opcodes to adjust the stack pointer. */
22440
bfae80f2 22441static void
c19d1205 22442add_unwind_adjustsp (offsetT offset)
bfae80f2 22443{
c19d1205 22444 valueT op;
bfae80f2 22445
c19d1205 22446 if (offset > 0x200)
bfae80f2 22447 {
c19d1205
ZW
22448 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22449 char bytes[5];
22450 int n;
22451 valueT o;
bfae80f2 22452
c19d1205
ZW
22453 /* Long form: 0xb2, uleb128. */
22454 /* This might not fit in a word so add the individual bytes,
22455 remembering the list is built in reverse order. */
22456 o = (valueT) ((offset - 0x204) >> 2);
22457 if (o == 0)
22458 add_unwind_opcode (0, 1);
bfae80f2 22459
c19d1205
ZW
22460 /* Calculate the uleb128 encoding of the offset. */
22461 n = 0;
22462 while (o)
22463 {
22464 bytes[n] = o & 0x7f;
22465 o >>= 7;
22466 if (o)
22467 bytes[n] |= 0x80;
22468 n++;
22469 }
22470 /* Add the insn. */
22471 for (; n; n--)
22472 add_unwind_opcode (bytes[n - 1], 1);
22473 add_unwind_opcode (0xb2, 1);
22474 }
22475 else if (offset > 0x100)
bfae80f2 22476 {
c19d1205
ZW
22477 /* Two short opcodes. */
22478 add_unwind_opcode (0x3f, 1);
22479 op = (offset - 0x104) >> 2;
22480 add_unwind_opcode (op, 1);
bfae80f2 22481 }
c19d1205
ZW
22482 else if (offset > 0)
22483 {
22484 /* Short opcode. */
22485 op = (offset - 4) >> 2;
22486 add_unwind_opcode (op, 1);
22487 }
22488 else if (offset < 0)
bfae80f2 22489 {
c19d1205
ZW
22490 offset = -offset;
22491 while (offset > 0x100)
bfae80f2 22492 {
c19d1205
ZW
22493 add_unwind_opcode (0x7f, 1);
22494 offset -= 0x100;
bfae80f2 22495 }
c19d1205
ZW
22496 op = ((offset - 4) >> 2) | 0x40;
22497 add_unwind_opcode (op, 1);
bfae80f2 22498 }
bfae80f2
RE
22499}
22500
c19d1205 22501/* Finish the list of unwind opcodes for this function. */
0198d5e6 22502
c19d1205
ZW
22503static void
22504finish_unwind_opcodes (void)
bfae80f2 22505{
c19d1205 22506 valueT op;
bfae80f2 22507
c19d1205 22508 if (unwind.fp_used)
bfae80f2 22509 {
708587a4 22510 /* Adjust sp as necessary. */
c19d1205
ZW
22511 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22512 flush_pending_unwind ();
bfae80f2 22513
c19d1205
ZW
22514 /* After restoring sp from the frame pointer. */
22515 op = 0x90 | unwind.fp_reg;
22516 add_unwind_opcode (op, 1);
22517 }
22518 else
22519 flush_pending_unwind ();
bfae80f2
RE
22520}
22521
bfae80f2 22522
c19d1205
ZW
22523/* Start an exception table entry. If idx is nonzero this is an index table
22524 entry. */
bfae80f2
RE
22525
22526static void
c19d1205 22527start_unwind_section (const segT text_seg, int idx)
bfae80f2 22528{
c19d1205
ZW
22529 const char * text_name;
22530 const char * prefix;
22531 const char * prefix_once;
22532 const char * group_name;
c19d1205 22533 char * sec_name;
c19d1205
ZW
22534 int type;
22535 int flags;
22536 int linkonce;
bfae80f2 22537
c19d1205 22538 if (idx)
bfae80f2 22539 {
c19d1205
ZW
22540 prefix = ELF_STRING_ARM_unwind;
22541 prefix_once = ELF_STRING_ARM_unwind_once;
22542 type = SHT_ARM_EXIDX;
bfae80f2 22543 }
c19d1205 22544 else
bfae80f2 22545 {
c19d1205
ZW
22546 prefix = ELF_STRING_ARM_unwind_info;
22547 prefix_once = ELF_STRING_ARM_unwind_info_once;
22548 type = SHT_PROGBITS;
bfae80f2
RE
22549 }
22550
c19d1205
ZW
22551 text_name = segment_name (text_seg);
22552 if (streq (text_name, ".text"))
22553 text_name = "";
22554
22555 if (strncmp (text_name, ".gnu.linkonce.t.",
22556 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 22557 {
c19d1205
ZW
22558 prefix = prefix_once;
22559 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
22560 }
22561
29a2809e 22562 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 22563
c19d1205
ZW
22564 flags = SHF_ALLOC;
22565 linkonce = 0;
22566 group_name = 0;
bfae80f2 22567
c19d1205
ZW
22568 /* Handle COMDAT group. */
22569 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 22570 {
c19d1205
ZW
22571 group_name = elf_group_name (text_seg);
22572 if (group_name == NULL)
22573 {
bd3ba5d1 22574 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
22575 segment_name (text_seg));
22576 ignore_rest_of_line ();
22577 return;
22578 }
22579 flags |= SHF_GROUP;
22580 linkonce = 1;
bfae80f2
RE
22581 }
22582
a91e1603
L
22583 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22584 linkonce, 0);
bfae80f2 22585
5f4273c7 22586 /* Set the section link for index tables. */
c19d1205
ZW
22587 if (idx)
22588 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
22589}
22590
bfae80f2 22591
c19d1205
ZW
22592/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22593 personality routine data. Returns zero, or the index table value for
cad0da33 22594 an inline entry. */
c19d1205
ZW
22595
22596static valueT
22597create_unwind_entry (int have_data)
bfae80f2 22598{
c19d1205
ZW
22599 int size;
22600 addressT where;
22601 char *ptr;
22602 /* The current word of data. */
22603 valueT data;
22604 /* The number of bytes left in this word. */
22605 int n;
bfae80f2 22606
c19d1205 22607 finish_unwind_opcodes ();
bfae80f2 22608
c19d1205
ZW
22609 /* Remember the current text section. */
22610 unwind.saved_seg = now_seg;
22611 unwind.saved_subseg = now_subseg;
bfae80f2 22612
c19d1205 22613 start_unwind_section (now_seg, 0);
bfae80f2 22614
c19d1205 22615 if (unwind.personality_routine == NULL)
bfae80f2 22616 {
c19d1205
ZW
22617 if (unwind.personality_index == -2)
22618 {
22619 if (have_data)
5f4273c7 22620 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
22621 return 1; /* EXIDX_CANTUNWIND. */
22622 }
bfae80f2 22623
c19d1205
ZW
22624 /* Use a default personality routine if none is specified. */
22625 if (unwind.personality_index == -1)
22626 {
22627 if (unwind.opcode_count > 3)
22628 unwind.personality_index = 1;
22629 else
22630 unwind.personality_index = 0;
22631 }
bfae80f2 22632
c19d1205
ZW
22633 /* Space for the personality routine entry. */
22634 if (unwind.personality_index == 0)
22635 {
22636 if (unwind.opcode_count > 3)
22637 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 22638
c19d1205
ZW
22639 if (!have_data)
22640 {
22641 /* All the data is inline in the index table. */
22642 data = 0x80;
22643 n = 3;
22644 while (unwind.opcode_count > 0)
22645 {
22646 unwind.opcode_count--;
22647 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22648 n--;
22649 }
bfae80f2 22650
c19d1205
ZW
22651 /* Pad with "finish" opcodes. */
22652 while (n--)
22653 data = (data << 8) | 0xb0;
bfae80f2 22654
c19d1205
ZW
22655 return data;
22656 }
22657 size = 0;
22658 }
22659 else
22660 /* We get two opcodes "free" in the first word. */
22661 size = unwind.opcode_count - 2;
22662 }
22663 else
5011093d 22664 {
cad0da33
NC
22665 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22666 if (unwind.personality_index != -1)
22667 {
22668 as_bad (_("attempt to recreate an unwind entry"));
22669 return 1;
22670 }
5011093d
NC
22671
22672 /* An extra byte is required for the opcode count. */
22673 size = unwind.opcode_count + 1;
22674 }
bfae80f2 22675
c19d1205
ZW
22676 size = (size + 3) >> 2;
22677 if (size > 0xff)
22678 as_bad (_("too many unwind opcodes"));
bfae80f2 22679
c19d1205
ZW
22680 frag_align (2, 0, 0);
22681 record_alignment (now_seg, 2);
22682 unwind.table_entry = expr_build_dot ();
22683
22684 /* Allocate the table entry. */
22685 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
22686 /* PR 13449: Zero the table entries in case some of them are not used. */
22687 memset (ptr, 0, (size << 2) + 4);
c19d1205 22688 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 22689
c19d1205 22690 switch (unwind.personality_index)
bfae80f2 22691 {
c19d1205
ZW
22692 case -1:
22693 /* ??? Should this be a PLT generating relocation? */
22694 /* Custom personality routine. */
22695 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22696 BFD_RELOC_ARM_PREL31);
bfae80f2 22697
c19d1205
ZW
22698 where += 4;
22699 ptr += 4;
bfae80f2 22700
c19d1205 22701 /* Set the first byte to the number of additional words. */
5011093d 22702 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
22703 n = 3;
22704 break;
bfae80f2 22705
c19d1205
ZW
22706 /* ABI defined personality routines. */
22707 case 0:
22708 /* Three opcodes bytes are packed into the first word. */
22709 data = 0x80;
22710 n = 3;
22711 break;
bfae80f2 22712
c19d1205
ZW
22713 case 1:
22714 case 2:
22715 /* The size and first two opcode bytes go in the first word. */
22716 data = ((0x80 + unwind.personality_index) << 8) | size;
22717 n = 2;
22718 break;
bfae80f2 22719
c19d1205
ZW
22720 default:
22721 /* Should never happen. */
22722 abort ();
22723 }
bfae80f2 22724
c19d1205
ZW
22725 /* Pack the opcodes into words (MSB first), reversing the list at the same
22726 time. */
22727 while (unwind.opcode_count > 0)
22728 {
22729 if (n == 0)
22730 {
22731 md_number_to_chars (ptr, data, 4);
22732 ptr += 4;
22733 n = 4;
22734 data = 0;
22735 }
22736 unwind.opcode_count--;
22737 n--;
22738 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22739 }
22740
22741 /* Finish off the last word. */
22742 if (n < 4)
22743 {
22744 /* Pad with "finish" opcodes. */
22745 while (n--)
22746 data = (data << 8) | 0xb0;
22747
22748 md_number_to_chars (ptr, data, 4);
22749 }
22750
22751 if (!have_data)
22752 {
22753 /* Add an empty descriptor if there is no user-specified data. */
22754 ptr = frag_more (4);
22755 md_number_to_chars (ptr, 0, 4);
22756 }
22757
22758 return 0;
bfae80f2
RE
22759}
22760
f0927246
NC
22761
22762/* Initialize the DWARF-2 unwind information for this procedure. */
22763
22764void
22765tc_arm_frame_initial_instructions (void)
22766{
22767 cfi_add_CFA_def_cfa (REG_SP, 0);
22768}
22769#endif /* OBJ_ELF */
22770
c19d1205
ZW
22771/* Convert REGNAME to a DWARF-2 register number. */
22772
22773int
1df69f4f 22774tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 22775{
1df69f4f 22776 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
22777 if (reg != FAIL)
22778 return reg;
c19d1205 22779
1f5afe1c
NC
22780 /* PR 16694: Allow VFP registers as well. */
22781 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22782 if (reg != FAIL)
22783 return 64 + reg;
c19d1205 22784
1f5afe1c
NC
22785 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22786 if (reg != FAIL)
22787 return reg + 256;
22788
0198d5e6 22789 return FAIL;
bfae80f2
RE
22790}
22791
f0927246 22792#ifdef TE_PE
c19d1205 22793void
f0927246 22794tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 22795{
91d6fa6a 22796 expressionS exp;
bfae80f2 22797
91d6fa6a
NC
22798 exp.X_op = O_secrel;
22799 exp.X_add_symbol = symbol;
22800 exp.X_add_number = 0;
22801 emit_expr (&exp, size);
f0927246
NC
22802}
22803#endif
bfae80f2 22804
c19d1205 22805/* MD interface: Symbol and relocation handling. */
bfae80f2 22806
2fc8bdac
ZW
22807/* Return the address within the segment that a PC-relative fixup is
22808 relative to. For ARM, PC-relative fixups applied to instructions
22809 are generally relative to the location of the fixup plus 8 bytes.
22810 Thumb branches are offset by 4, and Thumb loads relative to PC
22811 require special handling. */
bfae80f2 22812
c19d1205 22813long
2fc8bdac 22814md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 22815{
2fc8bdac
ZW
22816 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22817
22818 /* If this is pc-relative and we are going to emit a relocation
22819 then we just want to put out any pipeline compensation that the linker
53baae48
NC
22820 will need. Otherwise we want to use the calculated base.
22821 For WinCE we skip the bias for externals as well, since this
22822 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 22823 if (fixP->fx_pcrel
2fc8bdac 22824 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
22825 || (arm_force_relocation (fixP)
22826#ifdef TE_WINCE
22827 && !S_IS_EXTERNAL (fixP->fx_addsy)
22828#endif
22829 )))
2fc8bdac 22830 base = 0;
bfae80f2 22831
267bf995 22832
c19d1205 22833 switch (fixP->fx_r_type)
bfae80f2 22834 {
2fc8bdac
ZW
22835 /* PC relative addressing on the Thumb is slightly odd as the
22836 bottom two bits of the PC are forced to zero for the
22837 calculation. This happens *after* application of the
22838 pipeline offset. However, Thumb adrl already adjusts for
22839 this, so we need not do it again. */
c19d1205 22840 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 22841 return base & ~3;
c19d1205
ZW
22842
22843 case BFD_RELOC_ARM_THUMB_OFFSET:
22844 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 22845 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 22846 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 22847 return (base + 4) & ~3;
c19d1205 22848
2fc8bdac 22849 /* Thumb branches are simply offset by +4. */
e12437dc 22850 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
22851 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22852 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22853 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22854 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 22855 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 22856 return base + 4;
bfae80f2 22857
267bf995 22858 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
22859 if (fixP->fx_addsy
22860 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22861 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 22862 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
22863 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22864 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
22865 return base + 4;
22866
00adf2d4
JB
22867 /* BLX is like branches above, but forces the low two bits of PC to
22868 zero. */
486499d0
CL
22869 case BFD_RELOC_THUMB_PCREL_BLX:
22870 if (fixP->fx_addsy
22871 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22872 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22873 && THUMB_IS_FUNC (fixP->fx_addsy)
22874 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22875 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
22876 return (base + 4) & ~3;
22877
2fc8bdac
ZW
22878 /* ARM mode branches are offset by +8. However, the Windows CE
22879 loader expects the relocation not to take this into account. */
267bf995 22880 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
22881 if (fixP->fx_addsy
22882 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22883 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22884 && ARM_IS_FUNC (fixP->fx_addsy)
22885 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22886 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22887 return base + 8;
267bf995 22888
486499d0
CL
22889 case BFD_RELOC_ARM_PCREL_CALL:
22890 if (fixP->fx_addsy
22891 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22892 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22893 && THUMB_IS_FUNC (fixP->fx_addsy)
22894 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22895 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22896 return base + 8;
267bf995 22897
2fc8bdac 22898 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 22899 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 22900 case BFD_RELOC_ARM_PLT32:
c19d1205 22901#ifdef TE_WINCE
5f4273c7 22902 /* When handling fixups immediately, because we have already
477330fc 22903 discovered the value of a symbol, or the address of the frag involved
53baae48 22904 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
22905 see fixup_segment() in write.c
22906 The S_IS_EXTERNAL test handles the case of global symbols.
22907 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
22908 if (fixP->fx_pcrel
22909 && fixP->fx_addsy != NULL
22910 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22911 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22912 return base + 8;
2fc8bdac 22913 return base;
c19d1205 22914#else
2fc8bdac 22915 return base + 8;
c19d1205 22916#endif
2fc8bdac 22917
267bf995 22918
2fc8bdac
ZW
22919 /* ARM mode loads relative to PC are also offset by +8. Unlike
22920 branches, the Windows CE loader *does* expect the relocation
22921 to take this into account. */
22922 case BFD_RELOC_ARM_OFFSET_IMM:
22923 case BFD_RELOC_ARM_OFFSET_IMM8:
22924 case BFD_RELOC_ARM_HWLITERAL:
22925 case BFD_RELOC_ARM_LITERAL:
22926 case BFD_RELOC_ARM_CP_OFF_IMM:
22927 return base + 8;
22928
22929
22930 /* Other PC-relative relocations are un-offset. */
22931 default:
22932 return base;
22933 }
bfae80f2
RE
22934}
22935
8b2d793c
NC
22936static bfd_boolean flag_warn_syms = TRUE;
22937
ae8714c2
NC
22938bfd_boolean
22939arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 22940{
8b2d793c
NC
22941 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22942 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22943 does mean that the resulting code might be very confusing to the reader.
22944 Also this warning can be triggered if the user omits an operand before
22945 an immediate address, eg:
22946
22947 LDR =foo
22948
22949 GAS treats this as an assignment of the value of the symbol foo to a
22950 symbol LDR, and so (without this code) it will not issue any kind of
22951 warning or error message.
22952
22953 Note - ARM instructions are case-insensitive but the strings in the hash
22954 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
22955 lower case too. */
22956 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
22957 {
22958 char * nbuf = strdup (name);
22959 char * p;
22960
22961 for (p = nbuf; *p; p++)
22962 *p = TOLOWER (*p);
22963 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22964 {
22965 static struct hash_control * already_warned = NULL;
22966
22967 if (already_warned == NULL)
22968 already_warned = hash_new ();
22969 /* Only warn about the symbol once. To keep the code
22970 simple we let hash_insert do the lookup for us. */
22971 if (hash_insert (already_warned, name, NULL) == NULL)
ae8714c2 22972 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
22973 }
22974 else
22975 free (nbuf);
22976 }
3739860c 22977
ae8714c2
NC
22978 return FALSE;
22979}
22980
22981/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22982 Otherwise we have no need to default values of symbols. */
22983
22984symbolS *
22985md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22986{
22987#ifdef OBJ_ELF
22988 if (name[0] == '_' && name[1] == 'G'
22989 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22990 {
22991 if (!GOT_symbol)
22992 {
22993 if (symbol_find (name))
22994 as_bad (_("GOT already in the symbol table"));
22995
22996 GOT_symbol = symbol_new (name, undefined_section,
22997 (valueT) 0, & zero_address_frag);
22998 }
22999
23000 return GOT_symbol;
23001 }
23002#endif
23003
c921be7d 23004 return NULL;
bfae80f2
RE
23005}
23006
55cf6793 23007/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
23008 computed as two separate immediate values, added together. We
23009 already know that this value cannot be computed by just one ARM
23010 instruction. */
23011
23012static unsigned int
23013validate_immediate_twopart (unsigned int val,
23014 unsigned int * highpart)
bfae80f2 23015{
c19d1205
ZW
23016 unsigned int a;
23017 unsigned int i;
bfae80f2 23018
c19d1205
ZW
23019 for (i = 0; i < 32; i += 2)
23020 if (((a = rotate_left (val, i)) & 0xff) != 0)
23021 {
23022 if (a & 0xff00)
23023 {
23024 if (a & ~ 0xffff)
23025 continue;
23026 * highpart = (a >> 8) | ((i + 24) << 7);
23027 }
23028 else if (a & 0xff0000)
23029 {
23030 if (a & 0xff000000)
23031 continue;
23032 * highpart = (a >> 16) | ((i + 16) << 7);
23033 }
23034 else
23035 {
9c2799c2 23036 gas_assert (a & 0xff000000);
c19d1205
ZW
23037 * highpart = (a >> 24) | ((i + 8) << 7);
23038 }
bfae80f2 23039
c19d1205
ZW
23040 return (a & 0xff) | (i << 7);
23041 }
bfae80f2 23042
c19d1205 23043 return FAIL;
bfae80f2
RE
23044}
23045
c19d1205
ZW
23046static int
23047validate_offset_imm (unsigned int val, int hwse)
23048{
23049 if ((hwse && val > 255) || val > 4095)
23050 return FAIL;
23051 return val;
23052}
bfae80f2 23053
55cf6793 23054/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
23055 negative immediate constant by altering the instruction. A bit of
23056 a hack really.
23057 MOV <-> MVN
23058 AND <-> BIC
23059 ADC <-> SBC
23060 by inverting the second operand, and
23061 ADD <-> SUB
23062 CMP <-> CMN
23063 by negating the second operand. */
bfae80f2 23064
c19d1205
ZW
23065static int
23066negate_data_op (unsigned long * instruction,
23067 unsigned long value)
bfae80f2 23068{
c19d1205
ZW
23069 int op, new_inst;
23070 unsigned long negated, inverted;
bfae80f2 23071
c19d1205
ZW
23072 negated = encode_arm_immediate (-value);
23073 inverted = encode_arm_immediate (~value);
bfae80f2 23074
c19d1205
ZW
23075 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
23076 switch (op)
bfae80f2 23077 {
c19d1205
ZW
23078 /* First negates. */
23079 case OPCODE_SUB: /* ADD <-> SUB */
23080 new_inst = OPCODE_ADD;
23081 value = negated;
23082 break;
bfae80f2 23083
c19d1205
ZW
23084 case OPCODE_ADD:
23085 new_inst = OPCODE_SUB;
23086 value = negated;
23087 break;
bfae80f2 23088
c19d1205
ZW
23089 case OPCODE_CMP: /* CMP <-> CMN */
23090 new_inst = OPCODE_CMN;
23091 value = negated;
23092 break;
bfae80f2 23093
c19d1205
ZW
23094 case OPCODE_CMN:
23095 new_inst = OPCODE_CMP;
23096 value = negated;
23097 break;
bfae80f2 23098
c19d1205
ZW
23099 /* Now Inverted ops. */
23100 case OPCODE_MOV: /* MOV <-> MVN */
23101 new_inst = OPCODE_MVN;
23102 value = inverted;
23103 break;
bfae80f2 23104
c19d1205
ZW
23105 case OPCODE_MVN:
23106 new_inst = OPCODE_MOV;
23107 value = inverted;
23108 break;
bfae80f2 23109
c19d1205
ZW
23110 case OPCODE_AND: /* AND <-> BIC */
23111 new_inst = OPCODE_BIC;
23112 value = inverted;
23113 break;
bfae80f2 23114
c19d1205
ZW
23115 case OPCODE_BIC:
23116 new_inst = OPCODE_AND;
23117 value = inverted;
23118 break;
bfae80f2 23119
c19d1205
ZW
23120 case OPCODE_ADC: /* ADC <-> SBC */
23121 new_inst = OPCODE_SBC;
23122 value = inverted;
23123 break;
bfae80f2 23124
c19d1205
ZW
23125 case OPCODE_SBC:
23126 new_inst = OPCODE_ADC;
23127 value = inverted;
23128 break;
bfae80f2 23129
c19d1205
ZW
23130 /* We cannot do anything. */
23131 default:
23132 return FAIL;
b99bd4ef
NC
23133 }
23134
c19d1205
ZW
23135 if (value == (unsigned) FAIL)
23136 return FAIL;
23137
23138 *instruction &= OPCODE_MASK;
23139 *instruction |= new_inst << DATA_OP_SHIFT;
23140 return value;
b99bd4ef
NC
23141}
23142
ef8d22e6
PB
23143/* Like negate_data_op, but for Thumb-2. */
23144
23145static unsigned int
16dd5e42 23146thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
23147{
23148 int op, new_inst;
23149 int rd;
16dd5e42 23150 unsigned int negated, inverted;
ef8d22e6
PB
23151
23152 negated = encode_thumb32_immediate (-value);
23153 inverted = encode_thumb32_immediate (~value);
23154
23155 rd = (*instruction >> 8) & 0xf;
23156 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23157 switch (op)
23158 {
23159 /* ADD <-> SUB. Includes CMP <-> CMN. */
23160 case T2_OPCODE_SUB:
23161 new_inst = T2_OPCODE_ADD;
23162 value = negated;
23163 break;
23164
23165 case T2_OPCODE_ADD:
23166 new_inst = T2_OPCODE_SUB;
23167 value = negated;
23168 break;
23169
23170 /* ORR <-> ORN. Includes MOV <-> MVN. */
23171 case T2_OPCODE_ORR:
23172 new_inst = T2_OPCODE_ORN;
23173 value = inverted;
23174 break;
23175
23176 case T2_OPCODE_ORN:
23177 new_inst = T2_OPCODE_ORR;
23178 value = inverted;
23179 break;
23180
23181 /* AND <-> BIC. TST has no inverted equivalent. */
23182 case T2_OPCODE_AND:
23183 new_inst = T2_OPCODE_BIC;
23184 if (rd == 15)
23185 value = FAIL;
23186 else
23187 value = inverted;
23188 break;
23189
23190 case T2_OPCODE_BIC:
23191 new_inst = T2_OPCODE_AND;
23192 value = inverted;
23193 break;
23194
23195 /* ADC <-> SBC */
23196 case T2_OPCODE_ADC:
23197 new_inst = T2_OPCODE_SBC;
23198 value = inverted;
23199 break;
23200
23201 case T2_OPCODE_SBC:
23202 new_inst = T2_OPCODE_ADC;
23203 value = inverted;
23204 break;
23205
23206 /* We cannot do anything. */
23207 default:
23208 return FAIL;
23209 }
23210
16dd5e42 23211 if (value == (unsigned int)FAIL)
ef8d22e6
PB
23212 return FAIL;
23213
23214 *instruction &= T2_OPCODE_MASK;
23215 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23216 return value;
23217}
23218
8f06b2d8 23219/* Read a 32-bit thumb instruction from buf. */
0198d5e6 23220
8f06b2d8
PB
23221static unsigned long
23222get_thumb32_insn (char * buf)
23223{
23224 unsigned long insn;
23225 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23226 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23227
23228 return insn;
23229}
23230
a8bc6c78
PB
23231/* We usually want to set the low bit on the address of thumb function
23232 symbols. In particular .word foo - . should have the low bit set.
23233 Generic code tries to fold the difference of two symbols to
23234 a constant. Prevent this and force a relocation when the first symbols
23235 is a thumb function. */
c921be7d
NC
23236
23237bfd_boolean
a8bc6c78
PB
23238arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23239{
23240 if (op == O_subtract
23241 && l->X_op == O_symbol
23242 && r->X_op == O_symbol
23243 && THUMB_IS_FUNC (l->X_add_symbol))
23244 {
23245 l->X_op = O_subtract;
23246 l->X_op_symbol = r->X_add_symbol;
23247 l->X_add_number -= r->X_add_number;
c921be7d 23248 return TRUE;
a8bc6c78 23249 }
c921be7d 23250
a8bc6c78 23251 /* Process as normal. */
c921be7d 23252 return FALSE;
a8bc6c78
PB
23253}
23254
4a42ebbc
RR
23255/* Encode Thumb2 unconditional branches and calls. The encoding
23256 for the 2 are identical for the immediate values. */
23257
23258static void
23259encode_thumb2_b_bl_offset (char * buf, offsetT value)
23260{
23261#define T2I1I2MASK ((1 << 13) | (1 << 11))
23262 offsetT newval;
23263 offsetT newval2;
23264 addressT S, I1, I2, lo, hi;
23265
23266 S = (value >> 24) & 0x01;
23267 I1 = (value >> 23) & 0x01;
23268 I2 = (value >> 22) & 0x01;
23269 hi = (value >> 12) & 0x3ff;
fa94de6b 23270 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
23271 newval = md_chars_to_number (buf, THUMB_SIZE);
23272 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23273 newval |= (S << 10) | hi;
23274 newval2 &= ~T2I1I2MASK;
23275 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23276 md_number_to_chars (buf, newval, THUMB_SIZE);
23277 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23278}
23279
c19d1205 23280void
55cf6793 23281md_apply_fix (fixS * fixP,
c19d1205
ZW
23282 valueT * valP,
23283 segT seg)
23284{
23285 offsetT value = * valP;
23286 offsetT newval;
23287 unsigned int newimm;
23288 unsigned long temp;
23289 int sign;
23290 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 23291
9c2799c2 23292 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 23293
c19d1205 23294 /* Note whether this will delete the relocation. */
4962c51a 23295
c19d1205
ZW
23296 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23297 fixP->fx_done = 1;
b99bd4ef 23298
adbaf948 23299 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 23300 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
23301 for emit_reloc. */
23302 value &= 0xffffffff;
23303 value ^= 0x80000000;
5f4273c7 23304 value -= 0x80000000;
adbaf948
ZW
23305
23306 *valP = value;
c19d1205 23307 fixP->fx_addnumber = value;
b99bd4ef 23308
adbaf948
ZW
23309 /* Same treatment for fixP->fx_offset. */
23310 fixP->fx_offset &= 0xffffffff;
23311 fixP->fx_offset ^= 0x80000000;
23312 fixP->fx_offset -= 0x80000000;
23313
c19d1205 23314 switch (fixP->fx_r_type)
b99bd4ef 23315 {
c19d1205
ZW
23316 case BFD_RELOC_NONE:
23317 /* This will need to go in the object file. */
23318 fixP->fx_done = 0;
23319 break;
b99bd4ef 23320
c19d1205
ZW
23321 case BFD_RELOC_ARM_IMMEDIATE:
23322 /* We claim that this fixup has been processed here,
23323 even if in fact we generate an error because we do
23324 not have a reloc for it, so tc_gen_reloc will reject it. */
23325 fixP->fx_done = 1;
b99bd4ef 23326
77db8e2e 23327 if (fixP->fx_addsy)
b99bd4ef 23328 {
77db8e2e 23329 const char *msg = 0;
b99bd4ef 23330
77db8e2e
NC
23331 if (! S_IS_DEFINED (fixP->fx_addsy))
23332 msg = _("undefined symbol %s used as an immediate value");
23333 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23334 msg = _("symbol %s is in a different section");
23335 else if (S_IS_WEAK (fixP->fx_addsy))
23336 msg = _("symbol %s is weak and may be overridden later");
23337
23338 if (msg)
23339 {
23340 as_bad_where (fixP->fx_file, fixP->fx_line,
23341 msg, S_GET_NAME (fixP->fx_addsy));
23342 break;
23343 }
42e5fcbf
AS
23344 }
23345
c19d1205
ZW
23346 temp = md_chars_to_number (buf, INSN_SIZE);
23347
5e73442d
SL
23348 /* If the offset is negative, we should use encoding A2 for ADR. */
23349 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23350 newimm = negate_data_op (&temp, value);
23351 else
23352 {
23353 newimm = encode_arm_immediate (value);
23354
23355 /* If the instruction will fail, see if we can fix things up by
23356 changing the opcode. */
23357 if (newimm == (unsigned int) FAIL)
23358 newimm = negate_data_op (&temp, value);
bada4342
JW
23359 /* MOV accepts both ARM modified immediate (A1 encoding) and
23360 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23361 When disassembling, MOV is preferred when there is no encoding
23362 overlap. */
23363 if (newimm == (unsigned int) FAIL
23364 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23365 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23366 && !((temp >> SBIT_SHIFT) & 0x1)
23367 && value >= 0 && value <= 0xffff)
23368 {
23369 /* Clear bits[23:20] to change encoding from A1 to A2. */
23370 temp &= 0xff0fffff;
23371 /* Encoding high 4bits imm. Code below will encode the remaining
23372 low 12bits. */
23373 temp |= (value & 0x0000f000) << 4;
23374 newimm = value & 0x00000fff;
23375 }
5e73442d
SL
23376 }
23377
23378 if (newimm == (unsigned int) FAIL)
b99bd4ef 23379 {
c19d1205
ZW
23380 as_bad_where (fixP->fx_file, fixP->fx_line,
23381 _("invalid constant (%lx) after fixup"),
23382 (unsigned long) value);
23383 break;
b99bd4ef 23384 }
b99bd4ef 23385
c19d1205
ZW
23386 newimm |= (temp & 0xfffff000);
23387 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23388 break;
b99bd4ef 23389
c19d1205
ZW
23390 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23391 {
23392 unsigned int highpart = 0;
23393 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 23394
77db8e2e 23395 if (fixP->fx_addsy)
42e5fcbf 23396 {
77db8e2e 23397 const char *msg = 0;
42e5fcbf 23398
77db8e2e
NC
23399 if (! S_IS_DEFINED (fixP->fx_addsy))
23400 msg = _("undefined symbol %s used as an immediate value");
23401 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23402 msg = _("symbol %s is in a different section");
23403 else if (S_IS_WEAK (fixP->fx_addsy))
23404 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 23405
77db8e2e
NC
23406 if (msg)
23407 {
23408 as_bad_where (fixP->fx_file, fixP->fx_line,
23409 msg, S_GET_NAME (fixP->fx_addsy));
23410 break;
23411 }
23412 }
fa94de6b 23413
c19d1205
ZW
23414 newimm = encode_arm_immediate (value);
23415 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 23416
c19d1205
ZW
23417 /* If the instruction will fail, see if we can fix things up by
23418 changing the opcode. */
23419 if (newimm == (unsigned int) FAIL
23420 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23421 {
23422 /* No ? OK - try using two ADD instructions to generate
23423 the value. */
23424 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 23425
c19d1205
ZW
23426 /* Yes - then make sure that the second instruction is
23427 also an add. */
23428 if (newimm != (unsigned int) FAIL)
23429 newinsn = temp;
23430 /* Still No ? Try using a negated value. */
23431 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23432 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23433 /* Otherwise - give up. */
23434 else
23435 {
23436 as_bad_where (fixP->fx_file, fixP->fx_line,
23437 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23438 (long) value);
23439 break;
23440 }
b99bd4ef 23441
c19d1205
ZW
23442 /* Replace the first operand in the 2nd instruction (which
23443 is the PC) with the destination register. We have
23444 already added in the PC in the first instruction and we
23445 do not want to do it again. */
23446 newinsn &= ~ 0xf0000;
23447 newinsn |= ((newinsn & 0x0f000) << 4);
23448 }
b99bd4ef 23449
c19d1205
ZW
23450 newimm |= (temp & 0xfffff000);
23451 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 23452
c19d1205
ZW
23453 highpart |= (newinsn & 0xfffff000);
23454 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23455 }
23456 break;
b99bd4ef 23457
c19d1205 23458 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
23459 if (!fixP->fx_done && seg->use_rela_p)
23460 value = 0;
1a0670f3 23461 /* Fall through. */
00a97672 23462
c19d1205 23463 case BFD_RELOC_ARM_LITERAL:
26d97720 23464 sign = value > 0;
b99bd4ef 23465
c19d1205
ZW
23466 if (value < 0)
23467 value = - value;
b99bd4ef 23468
c19d1205 23469 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 23470 {
c19d1205
ZW
23471 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23472 as_bad_where (fixP->fx_file, fixP->fx_line,
23473 _("invalid literal constant: pool needs to be closer"));
23474 else
23475 as_bad_where (fixP->fx_file, fixP->fx_line,
23476 _("bad immediate value for offset (%ld)"),
23477 (long) value);
23478 break;
f03698e6
RE
23479 }
23480
c19d1205 23481 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23482 if (value == 0)
23483 newval &= 0xfffff000;
23484 else
23485 {
23486 newval &= 0xff7ff000;
23487 newval |= value | (sign ? INDEX_UP : 0);
23488 }
c19d1205
ZW
23489 md_number_to_chars (buf, newval, INSN_SIZE);
23490 break;
b99bd4ef 23491
c19d1205
ZW
23492 case BFD_RELOC_ARM_OFFSET_IMM8:
23493 case BFD_RELOC_ARM_HWLITERAL:
26d97720 23494 sign = value > 0;
b99bd4ef 23495
c19d1205
ZW
23496 if (value < 0)
23497 value = - value;
b99bd4ef 23498
c19d1205 23499 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 23500 {
c19d1205
ZW
23501 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23502 as_bad_where (fixP->fx_file, fixP->fx_line,
23503 _("invalid literal constant: pool needs to be closer"));
23504 else
427d0db6
RM
23505 as_bad_where (fixP->fx_file, fixP->fx_line,
23506 _("bad immediate value for 8-bit offset (%ld)"),
23507 (long) value);
c19d1205 23508 break;
b99bd4ef
NC
23509 }
23510
c19d1205 23511 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23512 if (value == 0)
23513 newval &= 0xfffff0f0;
23514 else
23515 {
23516 newval &= 0xff7ff0f0;
23517 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23518 }
c19d1205
ZW
23519 md_number_to_chars (buf, newval, INSN_SIZE);
23520 break;
b99bd4ef 23521
c19d1205
ZW
23522 case BFD_RELOC_ARM_T32_OFFSET_U8:
23523 if (value < 0 || value > 1020 || value % 4 != 0)
23524 as_bad_where (fixP->fx_file, fixP->fx_line,
23525 _("bad immediate value for offset (%ld)"), (long) value);
23526 value /= 4;
b99bd4ef 23527
c19d1205 23528 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
23529 newval |= value;
23530 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23531 break;
b99bd4ef 23532
c19d1205
ZW
23533 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23534 /* This is a complicated relocation used for all varieties of Thumb32
23535 load/store instruction with immediate offset:
23536
23537 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 23538 *4, optional writeback(W)
c19d1205
ZW
23539 (doubleword load/store)
23540
23541 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23542 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23543 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23544 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23545 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23546
23547 Uppercase letters indicate bits that are already encoded at
23548 this point. Lowercase letters are our problem. For the
23549 second block of instructions, the secondary opcode nybble
23550 (bits 8..11) is present, and bit 23 is zero, even if this is
23551 a PC-relative operation. */
23552 newval = md_chars_to_number (buf, THUMB_SIZE);
23553 newval <<= 16;
23554 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 23555
c19d1205 23556 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 23557 {
c19d1205
ZW
23558 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23559 if (value >= 0)
23560 newval |= (1 << 23);
23561 else
23562 value = -value;
23563 if (value % 4 != 0)
23564 {
23565 as_bad_where (fixP->fx_file, fixP->fx_line,
23566 _("offset not a multiple of 4"));
23567 break;
23568 }
23569 value /= 4;
216d22bc 23570 if (value > 0xff)
c19d1205
ZW
23571 {
23572 as_bad_where (fixP->fx_file, fixP->fx_line,
23573 _("offset out of range"));
23574 break;
23575 }
23576 newval &= ~0xff;
b99bd4ef 23577 }
c19d1205 23578 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 23579 {
c19d1205
ZW
23580 /* PC-relative, 12-bit offset. */
23581 if (value >= 0)
23582 newval |= (1 << 23);
23583 else
23584 value = -value;
216d22bc 23585 if (value > 0xfff)
c19d1205
ZW
23586 {
23587 as_bad_where (fixP->fx_file, fixP->fx_line,
23588 _("offset out of range"));
23589 break;
23590 }
23591 newval &= ~0xfff;
b99bd4ef 23592 }
c19d1205 23593 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 23594 {
c19d1205
ZW
23595 /* Writeback: 8-bit, +/- offset. */
23596 if (value >= 0)
23597 newval |= (1 << 9);
23598 else
23599 value = -value;
216d22bc 23600 if (value > 0xff)
c19d1205
ZW
23601 {
23602 as_bad_where (fixP->fx_file, fixP->fx_line,
23603 _("offset out of range"));
23604 break;
23605 }
23606 newval &= ~0xff;
b99bd4ef 23607 }
c19d1205 23608 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 23609 {
c19d1205 23610 /* T-instruction: positive 8-bit offset. */
216d22bc 23611 if (value < 0 || value > 0xff)
b99bd4ef 23612 {
c19d1205
ZW
23613 as_bad_where (fixP->fx_file, fixP->fx_line,
23614 _("offset out of range"));
23615 break;
b99bd4ef 23616 }
c19d1205
ZW
23617 newval &= ~0xff;
23618 newval |= value;
b99bd4ef
NC
23619 }
23620 else
b99bd4ef 23621 {
c19d1205
ZW
23622 /* Positive 12-bit or negative 8-bit offset. */
23623 int limit;
23624 if (value >= 0)
b99bd4ef 23625 {
c19d1205
ZW
23626 newval |= (1 << 23);
23627 limit = 0xfff;
23628 }
23629 else
23630 {
23631 value = -value;
23632 limit = 0xff;
23633 }
23634 if (value > limit)
23635 {
23636 as_bad_where (fixP->fx_file, fixP->fx_line,
23637 _("offset out of range"));
23638 break;
b99bd4ef 23639 }
c19d1205 23640 newval &= ~limit;
b99bd4ef 23641 }
b99bd4ef 23642
c19d1205
ZW
23643 newval |= value;
23644 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23645 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23646 break;
404ff6b5 23647
c19d1205
ZW
23648 case BFD_RELOC_ARM_SHIFT_IMM:
23649 newval = md_chars_to_number (buf, INSN_SIZE);
23650 if (((unsigned long) value) > 32
23651 || (value == 32
23652 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23653 {
23654 as_bad_where (fixP->fx_file, fixP->fx_line,
23655 _("shift expression is too large"));
23656 break;
23657 }
404ff6b5 23658
c19d1205
ZW
23659 if (value == 0)
23660 /* Shifts of zero must be done as lsl. */
23661 newval &= ~0x60;
23662 else if (value == 32)
23663 value = 0;
23664 newval &= 0xfffff07f;
23665 newval |= (value & 0x1f) << 7;
23666 md_number_to_chars (buf, newval, INSN_SIZE);
23667 break;
404ff6b5 23668
c19d1205 23669 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 23670 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 23671 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 23672 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
23673 /* We claim that this fixup has been processed here,
23674 even if in fact we generate an error because we do
23675 not have a reloc for it, so tc_gen_reloc will reject it. */
23676 fixP->fx_done = 1;
404ff6b5 23677
c19d1205
ZW
23678 if (fixP->fx_addsy
23679 && ! S_IS_DEFINED (fixP->fx_addsy))
23680 {
23681 as_bad_where (fixP->fx_file, fixP->fx_line,
23682 _("undefined symbol %s used as an immediate value"),
23683 S_GET_NAME (fixP->fx_addsy));
23684 break;
23685 }
404ff6b5 23686
c19d1205
ZW
23687 newval = md_chars_to_number (buf, THUMB_SIZE);
23688 newval <<= 16;
23689 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 23690
16805f35 23691 newimm = FAIL;
bada4342
JW
23692 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23693 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23694 Thumb2 modified immediate encoding (T2). */
23695 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 23696 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
23697 {
23698 newimm = encode_thumb32_immediate (value);
23699 if (newimm == (unsigned int) FAIL)
23700 newimm = thumb32_negate_data_op (&newval, value);
23701 }
bada4342 23702 if (newimm == (unsigned int) FAIL)
92e90b6e 23703 {
bada4342 23704 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 23705 {
bada4342
JW
23706 /* Turn add/sum into addw/subw. */
23707 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23708 newval = (newval & 0xfeffffff) | 0x02000000;
23709 /* No flat 12-bit imm encoding for addsw/subsw. */
23710 if ((newval & 0x00100000) == 0)
40f246e3 23711 {
bada4342
JW
23712 /* 12 bit immediate for addw/subw. */
23713 if (value < 0)
23714 {
23715 value = -value;
23716 newval ^= 0x00a00000;
23717 }
23718 if (value > 0xfff)
23719 newimm = (unsigned int) FAIL;
23720 else
23721 newimm = value;
23722 }
23723 }
23724 else
23725 {
23726 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23727 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23728 disassembling, MOV is preferred when there is no encoding
db7bf105 23729 overlap. */
bada4342 23730 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
23731 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23732 but with the Rn field [19:16] set to 1111. */
23733 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
23734 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23735 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 23736 && value >= 0 && value <= 0xffff)
bada4342
JW
23737 {
23738 /* Toggle bit[25] to change encoding from T2 to T3. */
23739 newval ^= 1 << 25;
23740 /* Clear bits[19:16]. */
23741 newval &= 0xfff0ffff;
23742 /* Encoding high 4bits imm. Code below will encode the
23743 remaining low 12bits. */
23744 newval |= (value & 0x0000f000) << 4;
23745 newimm = value & 0x00000fff;
40f246e3 23746 }
e9f89963 23747 }
92e90b6e 23748 }
cc8a6dd0 23749
c19d1205 23750 if (newimm == (unsigned int)FAIL)
3631a3c8 23751 {
c19d1205
ZW
23752 as_bad_where (fixP->fx_file, fixP->fx_line,
23753 _("invalid constant (%lx) after fixup"),
23754 (unsigned long) value);
23755 break;
3631a3c8
NC
23756 }
23757
c19d1205
ZW
23758 newval |= (newimm & 0x800) << 15;
23759 newval |= (newimm & 0x700) << 4;
23760 newval |= (newimm & 0x0ff);
cc8a6dd0 23761
c19d1205
ZW
23762 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23763 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23764 break;
a737bd4d 23765
3eb17e6b 23766 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
23767 if (((unsigned long) value) > 0xffff)
23768 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 23769 _("invalid smc expression"));
2fc8bdac 23770 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23771 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23772 md_number_to_chars (buf, newval, INSN_SIZE);
23773 break;
a737bd4d 23774
90ec0d68
MGD
23775 case BFD_RELOC_ARM_HVC:
23776 if (((unsigned long) value) > 0xffff)
23777 as_bad_where (fixP->fx_file, fixP->fx_line,
23778 _("invalid hvc expression"));
23779 newval = md_chars_to_number (buf, INSN_SIZE);
23780 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23781 md_number_to_chars (buf, newval, INSN_SIZE);
23782 break;
23783
c19d1205 23784 case BFD_RELOC_ARM_SWI:
adbaf948 23785 if (fixP->tc_fix_data != 0)
c19d1205
ZW
23786 {
23787 if (((unsigned long) value) > 0xff)
23788 as_bad_where (fixP->fx_file, fixP->fx_line,
23789 _("invalid swi expression"));
2fc8bdac 23790 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
23791 newval |= value;
23792 md_number_to_chars (buf, newval, THUMB_SIZE);
23793 }
23794 else
23795 {
23796 if (((unsigned long) value) > 0x00ffffff)
23797 as_bad_where (fixP->fx_file, fixP->fx_line,
23798 _("invalid swi expression"));
2fc8bdac 23799 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23800 newval |= value;
23801 md_number_to_chars (buf, newval, INSN_SIZE);
23802 }
23803 break;
a737bd4d 23804
c19d1205
ZW
23805 case BFD_RELOC_ARM_MULTI:
23806 if (((unsigned long) value) > 0xffff)
23807 as_bad_where (fixP->fx_file, fixP->fx_line,
23808 _("invalid expression in load/store multiple"));
23809 newval = value | md_chars_to_number (buf, INSN_SIZE);
23810 md_number_to_chars (buf, newval, INSN_SIZE);
23811 break;
a737bd4d 23812
c19d1205 23813#ifdef OBJ_ELF
39b41c9c 23814 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
23815
23816 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23817 && fixP->fx_addsy
34e77a92 23818 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23819 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23820 && THUMB_IS_FUNC (fixP->fx_addsy))
23821 /* Flip the bl to blx. This is a simple flip
23822 bit here because we generate PCREL_CALL for
23823 unconditional bls. */
23824 {
23825 newval = md_chars_to_number (buf, INSN_SIZE);
23826 newval = newval | 0x10000000;
23827 md_number_to_chars (buf, newval, INSN_SIZE);
23828 temp = 1;
23829 fixP->fx_done = 1;
23830 }
39b41c9c
PB
23831 else
23832 temp = 3;
23833 goto arm_branch_common;
23834
23835 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
23836 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23837 && fixP->fx_addsy
34e77a92 23838 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23839 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23840 && THUMB_IS_FUNC (fixP->fx_addsy))
23841 {
23842 /* This would map to a bl<cond>, b<cond>,
23843 b<always> to a Thumb function. We
23844 need to force a relocation for this particular
23845 case. */
23846 newval = md_chars_to_number (buf, INSN_SIZE);
23847 fixP->fx_done = 0;
23848 }
1a0670f3 23849 /* Fall through. */
267bf995 23850
2fc8bdac 23851 case BFD_RELOC_ARM_PLT32:
c19d1205 23852#endif
39b41c9c
PB
23853 case BFD_RELOC_ARM_PCREL_BRANCH:
23854 temp = 3;
23855 goto arm_branch_common;
a737bd4d 23856
39b41c9c 23857 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 23858
39b41c9c 23859 temp = 1;
267bf995
RR
23860 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23861 && fixP->fx_addsy
34e77a92 23862 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23863 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23864 && ARM_IS_FUNC (fixP->fx_addsy))
23865 {
23866 /* Flip the blx to a bl and warn. */
23867 const char *name = S_GET_NAME (fixP->fx_addsy);
23868 newval = 0xeb000000;
23869 as_warn_where (fixP->fx_file, fixP->fx_line,
23870 _("blx to '%s' an ARM ISA state function changed to bl"),
23871 name);
23872 md_number_to_chars (buf, newval, INSN_SIZE);
23873 temp = 3;
23874 fixP->fx_done = 1;
23875 }
23876
23877#ifdef OBJ_ELF
23878 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 23879 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
23880#endif
23881
39b41c9c 23882 arm_branch_common:
c19d1205 23883 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
23884 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23885 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 23886 also be clear. */
39b41c9c 23887 if (value & temp)
c19d1205 23888 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
23889 _("misaligned branch destination"));
23890 if ((value & (offsetT)0xfe000000) != (offsetT)0
23891 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 23892 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23893
2fc8bdac 23894 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23895 {
2fc8bdac
ZW
23896 newval = md_chars_to_number (buf, INSN_SIZE);
23897 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
23898 /* Set the H bit on BLX instructions. */
23899 if (temp == 1)
23900 {
23901 if (value & 2)
23902 newval |= 0x01000000;
23903 else
23904 newval &= ~0x01000000;
23905 }
2fc8bdac 23906 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 23907 }
c19d1205 23908 break;
a737bd4d 23909
25fe350b
MS
23910 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23911 /* CBZ can only branch forward. */
a737bd4d 23912
738755b0 23913 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
23914 (which, strictly speaking, are prohibited) will be turned into
23915 no-ops.
738755b0
MS
23916
23917 FIXME: It may be better to remove the instruction completely and
23918 perform relaxation. */
23919 if (value == -2)
2fc8bdac
ZW
23920 {
23921 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 23922 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
23923 md_number_to_chars (buf, newval, THUMB_SIZE);
23924 }
738755b0
MS
23925 else
23926 {
23927 if (value & ~0x7e)
08f10d51 23928 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 23929
477330fc 23930 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
23931 {
23932 newval = md_chars_to_number (buf, THUMB_SIZE);
23933 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23934 md_number_to_chars (buf, newval, THUMB_SIZE);
23935 }
23936 }
c19d1205 23937 break;
a737bd4d 23938
c19d1205 23939 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 23940 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 23941 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23942
2fc8bdac
ZW
23943 if (fixP->fx_done || !seg->use_rela_p)
23944 {
23945 newval = md_chars_to_number (buf, THUMB_SIZE);
23946 newval |= (value & 0x1ff) >> 1;
23947 md_number_to_chars (buf, newval, THUMB_SIZE);
23948 }
c19d1205 23949 break;
a737bd4d 23950
c19d1205 23951 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 23952 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 23953 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23954
2fc8bdac
ZW
23955 if (fixP->fx_done || !seg->use_rela_p)
23956 {
23957 newval = md_chars_to_number (buf, THUMB_SIZE);
23958 newval |= (value & 0xfff) >> 1;
23959 md_number_to_chars (buf, newval, THUMB_SIZE);
23960 }
c19d1205 23961 break;
a737bd4d 23962
c19d1205 23963 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
23964 if (fixP->fx_addsy
23965 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23966 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23967 && ARM_IS_FUNC (fixP->fx_addsy)
23968 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23969 {
23970 /* Force a relocation for a branch 20 bits wide. */
23971 fixP->fx_done = 0;
23972 }
08f10d51 23973 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
23974 as_bad_where (fixP->fx_file, fixP->fx_line,
23975 _("conditional branch out of range"));
404ff6b5 23976
2fc8bdac
ZW
23977 if (fixP->fx_done || !seg->use_rela_p)
23978 {
23979 offsetT newval2;
23980 addressT S, J1, J2, lo, hi;
404ff6b5 23981
2fc8bdac
ZW
23982 S = (value & 0x00100000) >> 20;
23983 J2 = (value & 0x00080000) >> 19;
23984 J1 = (value & 0x00040000) >> 18;
23985 hi = (value & 0x0003f000) >> 12;
23986 lo = (value & 0x00000ffe) >> 1;
6c43fab6 23987
2fc8bdac
ZW
23988 newval = md_chars_to_number (buf, THUMB_SIZE);
23989 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23990 newval |= (S << 10) | hi;
23991 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23992 md_number_to_chars (buf, newval, THUMB_SIZE);
23993 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23994 }
c19d1205 23995 break;
6c43fab6 23996
c19d1205 23997 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
23998 /* If there is a blx from a thumb state function to
23999 another thumb function flip this to a bl and warn
24000 about it. */
24001
24002 if (fixP->fx_addsy
34e77a92 24003 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24004 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24005 && THUMB_IS_FUNC (fixP->fx_addsy))
24006 {
24007 const char *name = S_GET_NAME (fixP->fx_addsy);
24008 as_warn_where (fixP->fx_file, fixP->fx_line,
24009 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
24010 name);
24011 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24012 newval = newval | 0x1000;
24013 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24014 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24015 fixP->fx_done = 1;
24016 }
24017
24018
24019 goto thumb_bl_common;
24020
c19d1205 24021 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
24022 /* A bl from Thumb state ISA to an internal ARM state function
24023 is converted to a blx. */
24024 if (fixP->fx_addsy
24025 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 24026 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
24027 && ARM_IS_FUNC (fixP->fx_addsy)
24028 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24029 {
24030 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24031 newval = newval & ~0x1000;
24032 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24033 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
24034 fixP->fx_done = 1;
24035 }
24036
24037 thumb_bl_common:
24038
2fc8bdac
ZW
24039 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24040 /* For a BLX instruction, make sure that the relocation is rounded up
24041 to a word boundary. This follows the semantics of the instruction
24042 which specifies that bit 1 of the target address will come from bit
24043 1 of the base address. */
d406f3e4
JB
24044 value = (value + 3) & ~ 3;
24045
24046#ifdef OBJ_ELF
24047 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
24048 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24049 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24050#endif
404ff6b5 24051
2b2f5df9
NC
24052 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
24053 {
fc289b0a 24054 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
24055 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24056 else if ((value & ~0x1ffffff)
24057 && ((value & ~0x1ffffff) != ~0x1ffffff))
24058 as_bad_where (fixP->fx_file, fixP->fx_line,
24059 _("Thumb2 branch out of range"));
24060 }
4a42ebbc
RR
24061
24062 if (fixP->fx_done || !seg->use_rela_p)
24063 encode_thumb2_b_bl_offset (buf, value);
24064
c19d1205 24065 break;
404ff6b5 24066
c19d1205 24067 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
24068 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
24069 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 24070
2fc8bdac 24071 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 24072 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 24073
2fc8bdac 24074 break;
a737bd4d 24075
2fc8bdac
ZW
24076 case BFD_RELOC_8:
24077 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 24078 *buf = value;
c19d1205 24079 break;
a737bd4d 24080
c19d1205 24081 case BFD_RELOC_16:
2fc8bdac 24082 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 24083 md_number_to_chars (buf, value, 2);
c19d1205 24084 break;
a737bd4d 24085
c19d1205 24086#ifdef OBJ_ELF
0855e32b
NS
24087 case BFD_RELOC_ARM_TLS_CALL:
24088 case BFD_RELOC_ARM_THM_TLS_CALL:
24089 case BFD_RELOC_ARM_TLS_DESCSEQ:
24090 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 24091 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
24092 case BFD_RELOC_ARM_TLS_GD32:
24093 case BFD_RELOC_ARM_TLS_LE32:
24094 case BFD_RELOC_ARM_TLS_IE32:
24095 case BFD_RELOC_ARM_TLS_LDM32:
24096 case BFD_RELOC_ARM_TLS_LDO32:
24097 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 24098 break;
6c43fab6 24099
5c5a4843
CL
24100 /* Same handling as above, but with the arm_fdpic guard. */
24101 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24102 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24103 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24104 if (arm_fdpic)
24105 {
24106 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24107 }
24108 else
24109 {
24110 as_bad_where (fixP->fx_file, fixP->fx_line,
24111 _("Relocation supported only in FDPIC mode"));
24112 }
24113 break;
24114
c19d1205
ZW
24115 case BFD_RELOC_ARM_GOT32:
24116 case BFD_RELOC_ARM_GOTOFF:
c19d1205 24117 break;
b43420e6
NC
24118
24119 case BFD_RELOC_ARM_GOT_PREL:
24120 if (fixP->fx_done || !seg->use_rela_p)
477330fc 24121 md_number_to_chars (buf, value, 4);
b43420e6
NC
24122 break;
24123
9a6f4e97
NS
24124 case BFD_RELOC_ARM_TARGET2:
24125 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
24126 addend here for REL targets, because it won't be written out
24127 during reloc processing later. */
9a6f4e97
NS
24128 if (fixP->fx_done || !seg->use_rela_p)
24129 md_number_to_chars (buf, fixP->fx_offset, 4);
24130 break;
188fd7ae
CL
24131
24132 /* Relocations for FDPIC. */
24133 case BFD_RELOC_ARM_GOTFUNCDESC:
24134 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24135 case BFD_RELOC_ARM_FUNCDESC:
24136 if (arm_fdpic)
24137 {
24138 if (fixP->fx_done || !seg->use_rela_p)
24139 md_number_to_chars (buf, 0, 4);
24140 }
24141 else
24142 {
24143 as_bad_where (fixP->fx_file, fixP->fx_line,
24144 _("Relocation supported only in FDPIC mode"));
24145 }
24146 break;
c19d1205 24147#endif
6c43fab6 24148
c19d1205
ZW
24149 case BFD_RELOC_RVA:
24150 case BFD_RELOC_32:
24151 case BFD_RELOC_ARM_TARGET1:
24152 case BFD_RELOC_ARM_ROSEGREL32:
24153 case BFD_RELOC_ARM_SBREL32:
24154 case BFD_RELOC_32_PCREL:
f0927246
NC
24155#ifdef TE_PE
24156 case BFD_RELOC_32_SECREL:
24157#endif
2fc8bdac 24158 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
24159#ifdef TE_WINCE
24160 /* For WinCE we only do this for pcrel fixups. */
24161 if (fixP->fx_done || fixP->fx_pcrel)
24162#endif
24163 md_number_to_chars (buf, value, 4);
c19d1205 24164 break;
6c43fab6 24165
c19d1205
ZW
24166#ifdef OBJ_ELF
24167 case BFD_RELOC_ARM_PREL31:
2fc8bdac 24168 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
24169 {
24170 newval = md_chars_to_number (buf, 4) & 0x80000000;
24171 if ((value ^ (value >> 1)) & 0x40000000)
24172 {
24173 as_bad_where (fixP->fx_file, fixP->fx_line,
24174 _("rel31 relocation overflow"));
24175 }
24176 newval |= value & 0x7fffffff;
24177 md_number_to_chars (buf, newval, 4);
24178 }
24179 break;
c19d1205 24180#endif
a737bd4d 24181
c19d1205 24182 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 24183 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
9db2f6b4
RL
24184 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24185 newval = md_chars_to_number (buf, INSN_SIZE);
24186 else
24187 newval = get_thumb32_insn (buf);
24188 if ((newval & 0x0f200f00) == 0x0d000900)
24189 {
24190 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24191 has permitted values that are multiples of 2, in the range 0
24192 to 510. */
24193 if (value < -510 || value > 510 || (value & 1))
24194 as_bad_where (fixP->fx_file, fixP->fx_line,
24195 _("co-processor offset out of range"));
24196 }
24197 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
24198 as_bad_where (fixP->fx_file, fixP->fx_line,
24199 _("co-processor offset out of range"));
24200 cp_off_common:
26d97720 24201 sign = value > 0;
c19d1205
ZW
24202 if (value < 0)
24203 value = -value;
8f06b2d8
PB
24204 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24205 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24206 newval = md_chars_to_number (buf, INSN_SIZE);
24207 else
24208 newval = get_thumb32_insn (buf);
26d97720
NS
24209 if (value == 0)
24210 newval &= 0xffffff00;
24211 else
24212 {
24213 newval &= 0xff7fff00;
9db2f6b4
RL
24214 if ((newval & 0x0f200f00) == 0x0d000900)
24215 {
24216 /* This is a fp16 vstr/vldr.
24217
24218 It requires the immediate offset in the instruction is shifted
24219 left by 1 to be a half-word offset.
24220
24221 Here, left shift by 1 first, and later right shift by 2
24222 should get the right offset. */
24223 value <<= 1;
24224 }
26d97720
NS
24225 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24226 }
8f06b2d8
PB
24227 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24228 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24229 md_number_to_chars (buf, newval, INSN_SIZE);
24230 else
24231 put_thumb32_insn (buf, newval);
c19d1205 24232 break;
a737bd4d 24233
c19d1205 24234 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 24235 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
24236 if (value < -255 || value > 255)
24237 as_bad_where (fixP->fx_file, fixP->fx_line,
24238 _("co-processor offset out of range"));
df7849c5 24239 value *= 4;
c19d1205 24240 goto cp_off_common;
6c43fab6 24241
c19d1205
ZW
24242 case BFD_RELOC_ARM_THUMB_OFFSET:
24243 newval = md_chars_to_number (buf, THUMB_SIZE);
24244 /* Exactly what ranges, and where the offset is inserted depends
24245 on the type of instruction, we can establish this from the
24246 top 4 bits. */
24247 switch (newval >> 12)
24248 {
24249 case 4: /* PC load. */
24250 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24251 forced to zero for these loads; md_pcrel_from has already
24252 compensated for this. */
24253 if (value & 3)
24254 as_bad_where (fixP->fx_file, fixP->fx_line,
24255 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
24256 (((unsigned long) fixP->fx_frag->fr_address
24257 + (unsigned long) fixP->fx_where) & ~3)
24258 + (unsigned long) value);
a737bd4d 24259
c19d1205
ZW
24260 if (value & ~0x3fc)
24261 as_bad_where (fixP->fx_file, fixP->fx_line,
24262 _("invalid offset, value too big (0x%08lX)"),
24263 (long) value);
a737bd4d 24264
c19d1205
ZW
24265 newval |= value >> 2;
24266 break;
a737bd4d 24267
c19d1205
ZW
24268 case 9: /* SP load/store. */
24269 if (value & ~0x3fc)
24270 as_bad_where (fixP->fx_file, fixP->fx_line,
24271 _("invalid offset, value too big (0x%08lX)"),
24272 (long) value);
24273 newval |= value >> 2;
24274 break;
6c43fab6 24275
c19d1205
ZW
24276 case 6: /* Word load/store. */
24277 if (value & ~0x7c)
24278 as_bad_where (fixP->fx_file, fixP->fx_line,
24279 _("invalid offset, value too big (0x%08lX)"),
24280 (long) value);
24281 newval |= value << 4; /* 6 - 2. */
24282 break;
a737bd4d 24283
c19d1205
ZW
24284 case 7: /* Byte load/store. */
24285 if (value & ~0x1f)
24286 as_bad_where (fixP->fx_file, fixP->fx_line,
24287 _("invalid offset, value too big (0x%08lX)"),
24288 (long) value);
24289 newval |= value << 6;
24290 break;
a737bd4d 24291
c19d1205
ZW
24292 case 8: /* Halfword load/store. */
24293 if (value & ~0x3e)
24294 as_bad_where (fixP->fx_file, fixP->fx_line,
24295 _("invalid offset, value too big (0x%08lX)"),
24296 (long) value);
24297 newval |= value << 5; /* 6 - 1. */
24298 break;
a737bd4d 24299
c19d1205
ZW
24300 default:
24301 as_bad_where (fixP->fx_file, fixP->fx_line,
24302 "Unable to process relocation for thumb opcode: %lx",
24303 (unsigned long) newval);
24304 break;
24305 }
24306 md_number_to_chars (buf, newval, THUMB_SIZE);
24307 break;
a737bd4d 24308
c19d1205
ZW
24309 case BFD_RELOC_ARM_THUMB_ADD:
24310 /* This is a complicated relocation, since we use it for all of
24311 the following immediate relocations:
a737bd4d 24312
c19d1205
ZW
24313 3bit ADD/SUB
24314 8bit ADD/SUB
24315 9bit ADD/SUB SP word-aligned
24316 10bit ADD PC/SP word-aligned
a737bd4d 24317
c19d1205
ZW
24318 The type of instruction being processed is encoded in the
24319 instruction field:
a737bd4d 24320
c19d1205
ZW
24321 0x8000 SUB
24322 0x00F0 Rd
24323 0x000F Rs
24324 */
24325 newval = md_chars_to_number (buf, THUMB_SIZE);
24326 {
24327 int rd = (newval >> 4) & 0xf;
24328 int rs = newval & 0xf;
24329 int subtract = !!(newval & 0x8000);
a737bd4d 24330
c19d1205
ZW
24331 /* Check for HI regs, only very restricted cases allowed:
24332 Adjusting SP, and using PC or SP to get an address. */
24333 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24334 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24335 as_bad_where (fixP->fx_file, fixP->fx_line,
24336 _("invalid Hi register with immediate"));
a737bd4d 24337
c19d1205
ZW
24338 /* If value is negative, choose the opposite instruction. */
24339 if (value < 0)
24340 {
24341 value = -value;
24342 subtract = !subtract;
24343 if (value < 0)
24344 as_bad_where (fixP->fx_file, fixP->fx_line,
24345 _("immediate value out of range"));
24346 }
a737bd4d 24347
c19d1205
ZW
24348 if (rd == REG_SP)
24349 {
75c11999 24350 if (value & ~0x1fc)
c19d1205
ZW
24351 as_bad_where (fixP->fx_file, fixP->fx_line,
24352 _("invalid immediate for stack address calculation"));
24353 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24354 newval |= value >> 2;
24355 }
24356 else if (rs == REG_PC || rs == REG_SP)
24357 {
c12d2c9d
NC
24358 /* PR gas/18541. If the addition is for a defined symbol
24359 within range of an ADR instruction then accept it. */
24360 if (subtract
24361 && value == 4
24362 && fixP->fx_addsy != NULL)
24363 {
24364 subtract = 0;
24365
24366 if (! S_IS_DEFINED (fixP->fx_addsy)
24367 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24368 || S_IS_WEAK (fixP->fx_addsy))
24369 {
24370 as_bad_where (fixP->fx_file, fixP->fx_line,
24371 _("address calculation needs a strongly defined nearby symbol"));
24372 }
24373 else
24374 {
24375 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24376
24377 /* Round up to the next 4-byte boundary. */
24378 if (v & 3)
24379 v = (v + 3) & ~ 3;
24380 else
24381 v += 4;
24382 v = S_GET_VALUE (fixP->fx_addsy) - v;
24383
24384 if (v & ~0x3fc)
24385 {
24386 as_bad_where (fixP->fx_file, fixP->fx_line,
24387 _("symbol too far away"));
24388 }
24389 else
24390 {
24391 fixP->fx_done = 1;
24392 value = v;
24393 }
24394 }
24395 }
24396
c19d1205
ZW
24397 if (subtract || value & ~0x3fc)
24398 as_bad_where (fixP->fx_file, fixP->fx_line,
24399 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 24400 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
24401 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24402 newval |= rd << 8;
24403 newval |= value >> 2;
24404 }
24405 else if (rs == rd)
24406 {
24407 if (value & ~0xff)
24408 as_bad_where (fixP->fx_file, fixP->fx_line,
24409 _("immediate value out of range"));
24410 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24411 newval |= (rd << 8) | value;
24412 }
24413 else
24414 {
24415 if (value & ~0x7)
24416 as_bad_where (fixP->fx_file, fixP->fx_line,
24417 _("immediate value out of range"));
24418 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24419 newval |= rd | (rs << 3) | (value << 6);
24420 }
24421 }
24422 md_number_to_chars (buf, newval, THUMB_SIZE);
24423 break;
a737bd4d 24424
c19d1205
ZW
24425 case BFD_RELOC_ARM_THUMB_IMM:
24426 newval = md_chars_to_number (buf, THUMB_SIZE);
24427 if (value < 0 || value > 255)
24428 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 24429 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
24430 (long) value);
24431 newval |= value;
24432 md_number_to_chars (buf, newval, THUMB_SIZE);
24433 break;
a737bd4d 24434
c19d1205
ZW
24435 case BFD_RELOC_ARM_THUMB_SHIFT:
24436 /* 5bit shift value (0..32). LSL cannot take 32. */
24437 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24438 temp = newval & 0xf800;
24439 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24440 as_bad_where (fixP->fx_file, fixP->fx_line,
24441 _("invalid shift value: %ld"), (long) value);
24442 /* Shifts of zero must be encoded as LSL. */
24443 if (value == 0)
24444 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24445 /* Shifts of 32 are encoded as zero. */
24446 else if (value == 32)
24447 value = 0;
24448 newval |= value << 6;
24449 md_number_to_chars (buf, newval, THUMB_SIZE);
24450 break;
a737bd4d 24451
c19d1205
ZW
24452 case BFD_RELOC_VTABLE_INHERIT:
24453 case BFD_RELOC_VTABLE_ENTRY:
24454 fixP->fx_done = 0;
24455 return;
6c43fab6 24456
b6895b4f
PB
24457 case BFD_RELOC_ARM_MOVW:
24458 case BFD_RELOC_ARM_MOVT:
24459 case BFD_RELOC_ARM_THUMB_MOVW:
24460 case BFD_RELOC_ARM_THUMB_MOVT:
24461 if (fixP->fx_done || !seg->use_rela_p)
24462 {
24463 /* REL format relocations are limited to a 16-bit addend. */
24464 if (!fixP->fx_done)
24465 {
39623e12 24466 if (value < -0x8000 || value > 0x7fff)
b6895b4f 24467 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 24468 _("offset out of range"));
b6895b4f
PB
24469 }
24470 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24471 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24472 {
24473 value >>= 16;
24474 }
24475
24476 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24477 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24478 {
24479 newval = get_thumb32_insn (buf);
24480 newval &= 0xfbf08f00;
24481 newval |= (value & 0xf000) << 4;
24482 newval |= (value & 0x0800) << 15;
24483 newval |= (value & 0x0700) << 4;
24484 newval |= (value & 0x00ff);
24485 put_thumb32_insn (buf, newval);
24486 }
24487 else
24488 {
24489 newval = md_chars_to_number (buf, 4);
24490 newval &= 0xfff0f000;
24491 newval |= value & 0x0fff;
24492 newval |= (value & 0xf000) << 4;
24493 md_number_to_chars (buf, newval, 4);
24494 }
24495 }
24496 return;
24497
72d98d16
MG
24498 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24499 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24500 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24501 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24502 gas_assert (!fixP->fx_done);
24503 {
24504 bfd_vma insn;
24505 bfd_boolean is_mov;
24506 bfd_vma encoded_addend = value;
24507
24508 /* Check that addend can be encoded in instruction. */
24509 if (!seg->use_rela_p && (value < 0 || value > 255))
24510 as_bad_where (fixP->fx_file, fixP->fx_line,
24511 _("the offset 0x%08lX is not representable"),
24512 (unsigned long) encoded_addend);
24513
24514 /* Extract the instruction. */
24515 insn = md_chars_to_number (buf, THUMB_SIZE);
24516 is_mov = (insn & 0xf800) == 0x2000;
24517
24518 /* Encode insn. */
24519 if (is_mov)
24520 {
24521 if (!seg->use_rela_p)
24522 insn |= encoded_addend;
24523 }
24524 else
24525 {
24526 int rd, rs;
24527
24528 /* Extract the instruction. */
24529 /* Encoding is the following
24530 0x8000 SUB
24531 0x00F0 Rd
24532 0x000F Rs
24533 */
24534 /* The following conditions must be true :
24535 - ADD
24536 - Rd == Rs
24537 - Rd <= 7
24538 */
24539 rd = (insn >> 4) & 0xf;
24540 rs = insn & 0xf;
24541 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24542 as_bad_where (fixP->fx_file, fixP->fx_line,
24543 _("Unable to process relocation for thumb opcode: %lx"),
24544 (unsigned long) insn);
24545
24546 /* Encode as ADD immediate8 thumb 1 code. */
24547 insn = 0x3000 | (rd << 8);
24548
24549 /* Place the encoded addend into the first 8 bits of the
24550 instruction. */
24551 if (!seg->use_rela_p)
24552 insn |= encoded_addend;
24553 }
24554
24555 /* Update the instruction. */
24556 md_number_to_chars (buf, insn, THUMB_SIZE);
24557 }
24558 break;
24559
4962c51a
MS
24560 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24561 case BFD_RELOC_ARM_ALU_PC_G0:
24562 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24563 case BFD_RELOC_ARM_ALU_PC_G1:
24564 case BFD_RELOC_ARM_ALU_PC_G2:
24565 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24566 case BFD_RELOC_ARM_ALU_SB_G0:
24567 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24568 case BFD_RELOC_ARM_ALU_SB_G1:
24569 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 24570 gas_assert (!fixP->fx_done);
4962c51a
MS
24571 if (!seg->use_rela_p)
24572 {
477330fc
RM
24573 bfd_vma insn;
24574 bfd_vma encoded_addend;
3ca4a8ec 24575 bfd_vma addend_abs = llabs (value);
477330fc
RM
24576
24577 /* Check that the absolute value of the addend can be
24578 expressed as an 8-bit constant plus a rotation. */
24579 encoded_addend = encode_arm_immediate (addend_abs);
24580 if (encoded_addend == (unsigned int) FAIL)
4962c51a 24581 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24582 _("the offset 0x%08lX is not representable"),
24583 (unsigned long) addend_abs);
24584
24585 /* Extract the instruction. */
24586 insn = md_chars_to_number (buf, INSN_SIZE);
24587
24588 /* If the addend is positive, use an ADD instruction.
24589 Otherwise use a SUB. Take care not to destroy the S bit. */
24590 insn &= 0xff1fffff;
24591 if (value < 0)
24592 insn |= 1 << 22;
24593 else
24594 insn |= 1 << 23;
24595
24596 /* Place the encoded addend into the first 12 bits of the
24597 instruction. */
24598 insn &= 0xfffff000;
24599 insn |= encoded_addend;
24600
24601 /* Update the instruction. */
24602 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
24603 }
24604 break;
24605
24606 case BFD_RELOC_ARM_LDR_PC_G0:
24607 case BFD_RELOC_ARM_LDR_PC_G1:
24608 case BFD_RELOC_ARM_LDR_PC_G2:
24609 case BFD_RELOC_ARM_LDR_SB_G0:
24610 case BFD_RELOC_ARM_LDR_SB_G1:
24611 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 24612 gas_assert (!fixP->fx_done);
4962c51a 24613 if (!seg->use_rela_p)
477330fc
RM
24614 {
24615 bfd_vma insn;
3ca4a8ec 24616 bfd_vma addend_abs = llabs (value);
4962c51a 24617
477330fc
RM
24618 /* Check that the absolute value of the addend can be
24619 encoded in 12 bits. */
24620 if (addend_abs >= 0x1000)
4962c51a 24621 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24622 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24623 (unsigned long) addend_abs);
24624
24625 /* Extract the instruction. */
24626 insn = md_chars_to_number (buf, INSN_SIZE);
24627
24628 /* If the addend is negative, clear bit 23 of the instruction.
24629 Otherwise set it. */
24630 if (value < 0)
24631 insn &= ~(1 << 23);
24632 else
24633 insn |= 1 << 23;
24634
24635 /* Place the absolute value of the addend into the first 12 bits
24636 of the instruction. */
24637 insn &= 0xfffff000;
24638 insn |= addend_abs;
24639
24640 /* Update the instruction. */
24641 md_number_to_chars (buf, insn, INSN_SIZE);
24642 }
4962c51a
MS
24643 break;
24644
24645 case BFD_RELOC_ARM_LDRS_PC_G0:
24646 case BFD_RELOC_ARM_LDRS_PC_G1:
24647 case BFD_RELOC_ARM_LDRS_PC_G2:
24648 case BFD_RELOC_ARM_LDRS_SB_G0:
24649 case BFD_RELOC_ARM_LDRS_SB_G1:
24650 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 24651 gas_assert (!fixP->fx_done);
4962c51a 24652 if (!seg->use_rela_p)
477330fc
RM
24653 {
24654 bfd_vma insn;
3ca4a8ec 24655 bfd_vma addend_abs = llabs (value);
4962c51a 24656
477330fc
RM
24657 /* Check that the absolute value of the addend can be
24658 encoded in 8 bits. */
24659 if (addend_abs >= 0x100)
4962c51a 24660 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24661 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24662 (unsigned long) addend_abs);
24663
24664 /* Extract the instruction. */
24665 insn = md_chars_to_number (buf, INSN_SIZE);
24666
24667 /* If the addend is negative, clear bit 23 of the instruction.
24668 Otherwise set it. */
24669 if (value < 0)
24670 insn &= ~(1 << 23);
24671 else
24672 insn |= 1 << 23;
24673
24674 /* Place the first four bits of the absolute value of the addend
24675 into the first 4 bits of the instruction, and the remaining
24676 four into bits 8 .. 11. */
24677 insn &= 0xfffff0f0;
24678 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24679
24680 /* Update the instruction. */
24681 md_number_to_chars (buf, insn, INSN_SIZE);
24682 }
4962c51a
MS
24683 break;
24684
24685 case BFD_RELOC_ARM_LDC_PC_G0:
24686 case BFD_RELOC_ARM_LDC_PC_G1:
24687 case BFD_RELOC_ARM_LDC_PC_G2:
24688 case BFD_RELOC_ARM_LDC_SB_G0:
24689 case BFD_RELOC_ARM_LDC_SB_G1:
24690 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 24691 gas_assert (!fixP->fx_done);
4962c51a 24692 if (!seg->use_rela_p)
477330fc
RM
24693 {
24694 bfd_vma insn;
3ca4a8ec 24695 bfd_vma addend_abs = llabs (value);
4962c51a 24696
477330fc
RM
24697 /* Check that the absolute value of the addend is a multiple of
24698 four and, when divided by four, fits in 8 bits. */
24699 if (addend_abs & 0x3)
4962c51a 24700 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24701 _("bad offset 0x%08lX (must be word-aligned)"),
24702 (unsigned long) addend_abs);
4962c51a 24703
477330fc 24704 if ((addend_abs >> 2) > 0xff)
4962c51a 24705 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24706 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24707 (unsigned long) addend_abs);
24708
24709 /* Extract the instruction. */
24710 insn = md_chars_to_number (buf, INSN_SIZE);
24711
24712 /* If the addend is negative, clear bit 23 of the instruction.
24713 Otherwise set it. */
24714 if (value < 0)
24715 insn &= ~(1 << 23);
24716 else
24717 insn |= 1 << 23;
24718
24719 /* Place the addend (divided by four) into the first eight
24720 bits of the instruction. */
24721 insn &= 0xfffffff0;
24722 insn |= addend_abs >> 2;
24723
24724 /* Update the instruction. */
24725 md_number_to_chars (buf, insn, INSN_SIZE);
24726 }
4962c51a
MS
24727 break;
24728
e12437dc
AV
24729 case BFD_RELOC_THUMB_PCREL_BRANCH5:
24730 if (fixP->fx_addsy
24731 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24732 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24733 && ARM_IS_FUNC (fixP->fx_addsy)
24734 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24735 {
24736 /* Force a relocation for a branch 5 bits wide. */
24737 fixP->fx_done = 0;
24738 }
24739 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
24740 as_bad_where (fixP->fx_file, fixP->fx_line,
24741 BAD_BRANCH_OFF);
24742
24743 if (fixP->fx_done || !seg->use_rela_p)
24744 {
24745 addressT boff = value >> 1;
24746
24747 newval = md_chars_to_number (buf, THUMB_SIZE);
24748 newval |= (boff << 7);
24749 md_number_to_chars (buf, newval, THUMB_SIZE);
24750 }
24751 break;
24752
845b51d6
PB
24753 case BFD_RELOC_ARM_V4BX:
24754 /* This will need to go in the object file. */
24755 fixP->fx_done = 0;
24756 break;
24757
c19d1205
ZW
24758 case BFD_RELOC_UNUSED:
24759 default:
24760 as_bad_where (fixP->fx_file, fixP->fx_line,
24761 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24762 }
6c43fab6
RE
24763}
24764
c19d1205
ZW
24765/* Translate internal representation of relocation info to BFD target
24766 format. */
a737bd4d 24767
c19d1205 24768arelent *
00a97672 24769tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 24770{
c19d1205
ZW
24771 arelent * reloc;
24772 bfd_reloc_code_real_type code;
a737bd4d 24773
325801bd 24774 reloc = XNEW (arelent);
a737bd4d 24775
325801bd 24776 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
24777 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24778 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 24779
2fc8bdac 24780 if (fixp->fx_pcrel)
00a97672
RS
24781 {
24782 if (section->use_rela_p)
24783 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24784 else
24785 fixp->fx_offset = reloc->address;
24786 }
c19d1205 24787 reloc->addend = fixp->fx_offset;
a737bd4d 24788
c19d1205 24789 switch (fixp->fx_r_type)
a737bd4d 24790 {
c19d1205
ZW
24791 case BFD_RELOC_8:
24792 if (fixp->fx_pcrel)
24793 {
24794 code = BFD_RELOC_8_PCREL;
24795 break;
24796 }
1a0670f3 24797 /* Fall through. */
a737bd4d 24798
c19d1205
ZW
24799 case BFD_RELOC_16:
24800 if (fixp->fx_pcrel)
24801 {
24802 code = BFD_RELOC_16_PCREL;
24803 break;
24804 }
1a0670f3 24805 /* Fall through. */
6c43fab6 24806
c19d1205
ZW
24807 case BFD_RELOC_32:
24808 if (fixp->fx_pcrel)
24809 {
24810 code = BFD_RELOC_32_PCREL;
24811 break;
24812 }
1a0670f3 24813 /* Fall through. */
a737bd4d 24814
b6895b4f
PB
24815 case BFD_RELOC_ARM_MOVW:
24816 if (fixp->fx_pcrel)
24817 {
24818 code = BFD_RELOC_ARM_MOVW_PCREL;
24819 break;
24820 }
1a0670f3 24821 /* Fall through. */
b6895b4f
PB
24822
24823 case BFD_RELOC_ARM_MOVT:
24824 if (fixp->fx_pcrel)
24825 {
24826 code = BFD_RELOC_ARM_MOVT_PCREL;
24827 break;
24828 }
1a0670f3 24829 /* Fall through. */
b6895b4f
PB
24830
24831 case BFD_RELOC_ARM_THUMB_MOVW:
24832 if (fixp->fx_pcrel)
24833 {
24834 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24835 break;
24836 }
1a0670f3 24837 /* Fall through. */
b6895b4f
PB
24838
24839 case BFD_RELOC_ARM_THUMB_MOVT:
24840 if (fixp->fx_pcrel)
24841 {
24842 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24843 break;
24844 }
1a0670f3 24845 /* Fall through. */
b6895b4f 24846
c19d1205
ZW
24847 case BFD_RELOC_NONE:
24848 case BFD_RELOC_ARM_PCREL_BRANCH:
24849 case BFD_RELOC_ARM_PCREL_BLX:
24850 case BFD_RELOC_RVA:
24851 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24852 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24853 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24854 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24855 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24856 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
24857 case BFD_RELOC_VTABLE_ENTRY:
24858 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
24859#ifdef TE_PE
24860 case BFD_RELOC_32_SECREL:
24861#endif
c19d1205
ZW
24862 code = fixp->fx_r_type;
24863 break;
a737bd4d 24864
00adf2d4
JB
24865 case BFD_RELOC_THUMB_PCREL_BLX:
24866#ifdef OBJ_ELF
24867 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24868 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24869 else
24870#endif
24871 code = BFD_RELOC_THUMB_PCREL_BLX;
24872 break;
24873
c19d1205
ZW
24874 case BFD_RELOC_ARM_LITERAL:
24875 case BFD_RELOC_ARM_HWLITERAL:
24876 /* If this is called then the a literal has
24877 been referenced across a section boundary. */
24878 as_bad_where (fixp->fx_file, fixp->fx_line,
24879 _("literal referenced across section boundary"));
24880 return NULL;
a737bd4d 24881
c19d1205 24882#ifdef OBJ_ELF
0855e32b
NS
24883 case BFD_RELOC_ARM_TLS_CALL:
24884 case BFD_RELOC_ARM_THM_TLS_CALL:
24885 case BFD_RELOC_ARM_TLS_DESCSEQ:
24886 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
24887 case BFD_RELOC_ARM_GOT32:
24888 case BFD_RELOC_ARM_GOTOFF:
b43420e6 24889 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
24890 case BFD_RELOC_ARM_PLT32:
24891 case BFD_RELOC_ARM_TARGET1:
24892 case BFD_RELOC_ARM_ROSEGREL32:
24893 case BFD_RELOC_ARM_SBREL32:
24894 case BFD_RELOC_ARM_PREL31:
24895 case BFD_RELOC_ARM_TARGET2:
c19d1205 24896 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
24897 case BFD_RELOC_ARM_PCREL_CALL:
24898 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
24899 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24900 case BFD_RELOC_ARM_ALU_PC_G0:
24901 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24902 case BFD_RELOC_ARM_ALU_PC_G1:
24903 case BFD_RELOC_ARM_ALU_PC_G2:
24904 case BFD_RELOC_ARM_LDR_PC_G0:
24905 case BFD_RELOC_ARM_LDR_PC_G1:
24906 case BFD_RELOC_ARM_LDR_PC_G2:
24907 case BFD_RELOC_ARM_LDRS_PC_G0:
24908 case BFD_RELOC_ARM_LDRS_PC_G1:
24909 case BFD_RELOC_ARM_LDRS_PC_G2:
24910 case BFD_RELOC_ARM_LDC_PC_G0:
24911 case BFD_RELOC_ARM_LDC_PC_G1:
24912 case BFD_RELOC_ARM_LDC_PC_G2:
24913 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24914 case BFD_RELOC_ARM_ALU_SB_G0:
24915 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24916 case BFD_RELOC_ARM_ALU_SB_G1:
24917 case BFD_RELOC_ARM_ALU_SB_G2:
24918 case BFD_RELOC_ARM_LDR_SB_G0:
24919 case BFD_RELOC_ARM_LDR_SB_G1:
24920 case BFD_RELOC_ARM_LDR_SB_G2:
24921 case BFD_RELOC_ARM_LDRS_SB_G0:
24922 case BFD_RELOC_ARM_LDRS_SB_G1:
24923 case BFD_RELOC_ARM_LDRS_SB_G2:
24924 case BFD_RELOC_ARM_LDC_SB_G0:
24925 case BFD_RELOC_ARM_LDC_SB_G1:
24926 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 24927 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
24928 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24929 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24930 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24931 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
24932 case BFD_RELOC_ARM_GOTFUNCDESC:
24933 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24934 case BFD_RELOC_ARM_FUNCDESC:
c19d1205
ZW
24935 code = fixp->fx_r_type;
24936 break;
a737bd4d 24937
0855e32b 24938 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 24939 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 24940 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 24941 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 24942 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 24943 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 24944 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 24945 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
24946 /* BFD will include the symbol's address in the addend.
24947 But we don't want that, so subtract it out again here. */
24948 if (!S_IS_COMMON (fixp->fx_addsy))
24949 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24950 code = fixp->fx_r_type;
24951 break;
24952#endif
a737bd4d 24953
c19d1205
ZW
24954 case BFD_RELOC_ARM_IMMEDIATE:
24955 as_bad_where (fixp->fx_file, fixp->fx_line,
24956 _("internal relocation (type: IMMEDIATE) not fixed up"));
24957 return NULL;
a737bd4d 24958
c19d1205
ZW
24959 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24960 as_bad_where (fixp->fx_file, fixp->fx_line,
24961 _("ADRL used for a symbol not defined in the same file"));
24962 return NULL;
a737bd4d 24963
e12437dc
AV
24964 case BFD_RELOC_THUMB_PCREL_BRANCH5:
24965 as_bad_where (fixp->fx_file, fixp->fx_line,
24966 _("%s used for a symbol not defined in the same file"),
24967 bfd_get_reloc_code_name (fixp->fx_r_type));
24968 return NULL;
24969
c19d1205 24970 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
24971 if (section->use_rela_p)
24972 {
24973 code = fixp->fx_r_type;
24974 break;
24975 }
24976
c19d1205
ZW
24977 if (fixp->fx_addsy != NULL
24978 && !S_IS_DEFINED (fixp->fx_addsy)
24979 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 24980 {
c19d1205
ZW
24981 as_bad_where (fixp->fx_file, fixp->fx_line,
24982 _("undefined local label `%s'"),
24983 S_GET_NAME (fixp->fx_addsy));
24984 return NULL;
a737bd4d
NC
24985 }
24986
c19d1205
ZW
24987 as_bad_where (fixp->fx_file, fixp->fx_line,
24988 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24989 return NULL;
a737bd4d 24990
c19d1205
ZW
24991 default:
24992 {
e0471c16 24993 const char * type;
6c43fab6 24994
c19d1205
ZW
24995 switch (fixp->fx_r_type)
24996 {
24997 case BFD_RELOC_NONE: type = "NONE"; break;
24998 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24999 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 25000 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
25001 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
25002 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
25003 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 25004 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 25005 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
25006 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
25007 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
25008 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
25009 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
25010 default: type = _("<unknown>"); break;
25011 }
25012 as_bad_where (fixp->fx_file, fixp->fx_line,
25013 _("cannot represent %s relocation in this object file format"),
25014 type);
25015 return NULL;
25016 }
a737bd4d 25017 }
6c43fab6 25018
c19d1205
ZW
25019#ifdef OBJ_ELF
25020 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
25021 && GOT_symbol
25022 && fixp->fx_addsy == GOT_symbol)
25023 {
25024 code = BFD_RELOC_ARM_GOTPC;
25025 reloc->addend = fixp->fx_offset = reloc->address;
25026 }
25027#endif
6c43fab6 25028
c19d1205 25029 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 25030
c19d1205
ZW
25031 if (reloc->howto == NULL)
25032 {
25033 as_bad_where (fixp->fx_file, fixp->fx_line,
25034 _("cannot represent %s relocation in this object file format"),
25035 bfd_get_reloc_code_name (code));
25036 return NULL;
25037 }
6c43fab6 25038
c19d1205
ZW
25039 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
25040 vtable entry to be used in the relocation's section offset. */
25041 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25042 reloc->address = fixp->fx_offset;
6c43fab6 25043
c19d1205 25044 return reloc;
6c43fab6
RE
25045}
25046
c19d1205 25047/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 25048
c19d1205
ZW
25049void
25050cons_fix_new_arm (fragS * frag,
25051 int where,
25052 int size,
62ebcb5c
AM
25053 expressionS * exp,
25054 bfd_reloc_code_real_type reloc)
6c43fab6 25055{
c19d1205 25056 int pcrel = 0;
6c43fab6 25057
c19d1205
ZW
25058 /* Pick a reloc.
25059 FIXME: @@ Should look at CPU word size. */
25060 switch (size)
25061 {
25062 case 1:
62ebcb5c 25063 reloc = BFD_RELOC_8;
c19d1205
ZW
25064 break;
25065 case 2:
62ebcb5c 25066 reloc = BFD_RELOC_16;
c19d1205
ZW
25067 break;
25068 case 4:
25069 default:
62ebcb5c 25070 reloc = BFD_RELOC_32;
c19d1205
ZW
25071 break;
25072 case 8:
62ebcb5c 25073 reloc = BFD_RELOC_64;
c19d1205
ZW
25074 break;
25075 }
6c43fab6 25076
f0927246
NC
25077#ifdef TE_PE
25078 if (exp->X_op == O_secrel)
25079 {
25080 exp->X_op = O_symbol;
62ebcb5c 25081 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
25082 }
25083#endif
25084
62ebcb5c 25085 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 25086}
6c43fab6 25087
4343666d 25088#if defined (OBJ_COFF)
c19d1205
ZW
25089void
25090arm_validate_fix (fixS * fixP)
6c43fab6 25091{
c19d1205
ZW
25092 /* If the destination of the branch is a defined symbol which does not have
25093 the THUMB_FUNC attribute, then we must be calling a function which has
25094 the (interfacearm) attribute. We look for the Thumb entry point to that
25095 function and change the branch to refer to that function instead. */
25096 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
25097 && fixP->fx_addsy != NULL
25098 && S_IS_DEFINED (fixP->fx_addsy)
25099 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 25100 {
c19d1205 25101 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 25102 }
c19d1205
ZW
25103}
25104#endif
6c43fab6 25105
267bf995 25106
c19d1205
ZW
25107int
25108arm_force_relocation (struct fix * fixp)
25109{
25110#if defined (OBJ_COFF) && defined (TE_PE)
25111 if (fixp->fx_r_type == BFD_RELOC_RVA)
25112 return 1;
25113#endif
6c43fab6 25114
267bf995
RR
25115 /* In case we have a call or a branch to a function in ARM ISA mode from
25116 a thumb function or vice-versa force the relocation. These relocations
25117 are cleared off for some cores that might have blx and simple transformations
25118 are possible. */
25119
25120#ifdef OBJ_ELF
25121 switch (fixp->fx_r_type)
25122 {
25123 case BFD_RELOC_ARM_PCREL_JUMP:
25124 case BFD_RELOC_ARM_PCREL_CALL:
25125 case BFD_RELOC_THUMB_PCREL_BLX:
25126 if (THUMB_IS_FUNC (fixp->fx_addsy))
25127 return 1;
25128 break;
25129
25130 case BFD_RELOC_ARM_PCREL_BLX:
25131 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25132 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25133 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25134 if (ARM_IS_FUNC (fixp->fx_addsy))
25135 return 1;
25136 break;
25137
25138 default:
25139 break;
25140 }
25141#endif
25142
b5884301
PB
25143 /* Resolve these relocations even if the symbol is extern or weak.
25144 Technically this is probably wrong due to symbol preemption.
25145 In practice these relocations do not have enough range to be useful
25146 at dynamic link time, and some code (e.g. in the Linux kernel)
25147 expects these references to be resolved. */
c19d1205
ZW
25148 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25149 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 25150 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 25151 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
25152 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25153 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25154 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 25155 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
25156 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25157 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
25158 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25159 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25160 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25161 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 25162 return 0;
a737bd4d 25163
4962c51a
MS
25164 /* Always leave these relocations for the linker. */
25165 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25166 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25167 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25168 return 1;
25169
f0291e4c
PB
25170 /* Always generate relocations against function symbols. */
25171 if (fixp->fx_r_type == BFD_RELOC_32
25172 && fixp->fx_addsy
25173 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25174 return 1;
25175
c19d1205 25176 return generic_force_reloc (fixp);
404ff6b5
AH
25177}
25178
0ffdc86c 25179#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
25180/* Relocations against function names must be left unadjusted,
25181 so that the linker can use this information to generate interworking
25182 stubs. The MIPS version of this function
c19d1205
ZW
25183 also prevents relocations that are mips-16 specific, but I do not
25184 know why it does this.
404ff6b5 25185
c19d1205
ZW
25186 FIXME:
25187 There is one other problem that ought to be addressed here, but
25188 which currently is not: Taking the address of a label (rather
25189 than a function) and then later jumping to that address. Such
25190 addresses also ought to have their bottom bit set (assuming that
25191 they reside in Thumb code), but at the moment they will not. */
404ff6b5 25192
c19d1205
ZW
25193bfd_boolean
25194arm_fix_adjustable (fixS * fixP)
404ff6b5 25195{
c19d1205
ZW
25196 if (fixP->fx_addsy == NULL)
25197 return 1;
404ff6b5 25198
e28387c3
PB
25199 /* Preserve relocations against symbols with function type. */
25200 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 25201 return FALSE;
e28387c3 25202
c19d1205
ZW
25203 if (THUMB_IS_FUNC (fixP->fx_addsy)
25204 && fixP->fx_subsy == NULL)
c921be7d 25205 return FALSE;
a737bd4d 25206
c19d1205
ZW
25207 /* We need the symbol name for the VTABLE entries. */
25208 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25209 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 25210 return FALSE;
404ff6b5 25211
c19d1205
ZW
25212 /* Don't allow symbols to be discarded on GOT related relocs. */
25213 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25214 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25215 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25216 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 25217 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
25218 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25219 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 25220 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 25221 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 25222 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 25223 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
25224 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25225 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25226 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25227 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25228 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 25229 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 25230 return FALSE;
a737bd4d 25231
4962c51a
MS
25232 /* Similarly for group relocations. */
25233 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25234 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25235 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 25236 return FALSE;
4962c51a 25237
79947c54
CD
25238 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25239 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25240 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25241 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25242 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25243 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25244 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25245 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25246 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 25247 return FALSE;
79947c54 25248
72d98d16
MG
25249 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25250 offsets, so keep these symbols. */
25251 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25252 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25253 return FALSE;
25254
c921be7d 25255 return TRUE;
a737bd4d 25256}
0ffdc86c
NC
25257#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25258
25259#ifdef OBJ_ELF
c19d1205
ZW
25260const char *
25261elf32_arm_target_format (void)
404ff6b5 25262{
c19d1205
ZW
25263#ifdef TE_SYMBIAN
25264 return (target_big_endian
25265 ? "elf32-bigarm-symbian"
25266 : "elf32-littlearm-symbian");
25267#elif defined (TE_VXWORKS)
25268 return (target_big_endian
25269 ? "elf32-bigarm-vxworks"
25270 : "elf32-littlearm-vxworks");
b38cadfb
NC
25271#elif defined (TE_NACL)
25272 return (target_big_endian
25273 ? "elf32-bigarm-nacl"
25274 : "elf32-littlearm-nacl");
c19d1205 25275#else
18a20338
CL
25276 if (arm_fdpic)
25277 {
25278 if (target_big_endian)
25279 return "elf32-bigarm-fdpic";
25280 else
25281 return "elf32-littlearm-fdpic";
25282 }
c19d1205 25283 else
18a20338
CL
25284 {
25285 if (target_big_endian)
25286 return "elf32-bigarm";
25287 else
25288 return "elf32-littlearm";
25289 }
c19d1205 25290#endif
404ff6b5
AH
25291}
25292
c19d1205
ZW
25293void
25294armelf_frob_symbol (symbolS * symp,
25295 int * puntp)
404ff6b5 25296{
c19d1205
ZW
25297 elf_frob_symbol (symp, puntp);
25298}
25299#endif
404ff6b5 25300
c19d1205 25301/* MD interface: Finalization. */
a737bd4d 25302
c19d1205
ZW
25303void
25304arm_cleanup (void)
25305{
25306 literal_pool * pool;
a737bd4d 25307
e07e6e58
NC
25308 /* Ensure that all the IT blocks are properly closed. */
25309 check_it_blocks_finished ();
25310
c19d1205
ZW
25311 for (pool = list_of_pools; pool; pool = pool->next)
25312 {
5f4273c7 25313 /* Put it at the end of the relevant section. */
c19d1205
ZW
25314 subseg_set (pool->section, pool->sub_section);
25315#ifdef OBJ_ELF
25316 arm_elf_change_section ();
25317#endif
25318 s_ltorg (0);
25319 }
404ff6b5
AH
25320}
25321
cd000bff
DJ
25322#ifdef OBJ_ELF
25323/* Remove any excess mapping symbols generated for alignment frags in
25324 SEC. We may have created a mapping symbol before a zero byte
25325 alignment; remove it if there's a mapping symbol after the
25326 alignment. */
25327static void
25328check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25329 void *dummy ATTRIBUTE_UNUSED)
25330{
25331 segment_info_type *seginfo = seg_info (sec);
25332 fragS *fragp;
25333
25334 if (seginfo == NULL || seginfo->frchainP == NULL)
25335 return;
25336
25337 for (fragp = seginfo->frchainP->frch_root;
25338 fragp != NULL;
25339 fragp = fragp->fr_next)
25340 {
25341 symbolS *sym = fragp->tc_frag_data.last_map;
25342 fragS *next = fragp->fr_next;
25343
25344 /* Variable-sized frags have been converted to fixed size by
25345 this point. But if this was variable-sized to start with,
25346 there will be a fixed-size frag after it. So don't handle
25347 next == NULL. */
25348 if (sym == NULL || next == NULL)
25349 continue;
25350
25351 if (S_GET_VALUE (sym) < next->fr_address)
25352 /* Not at the end of this frag. */
25353 continue;
25354 know (S_GET_VALUE (sym) == next->fr_address);
25355
25356 do
25357 {
25358 if (next->tc_frag_data.first_map != NULL)
25359 {
25360 /* Next frag starts with a mapping symbol. Discard this
25361 one. */
25362 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25363 break;
25364 }
25365
25366 if (next->fr_next == NULL)
25367 {
25368 /* This mapping symbol is at the end of the section. Discard
25369 it. */
25370 know (next->fr_fix == 0 && next->fr_var == 0);
25371 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25372 break;
25373 }
25374
25375 /* As long as we have empty frags without any mapping symbols,
25376 keep looking. */
25377 /* If the next frag is non-empty and does not start with a
25378 mapping symbol, then this mapping symbol is required. */
25379 if (next->fr_address != next->fr_next->fr_address)
25380 break;
25381
25382 next = next->fr_next;
25383 }
25384 while (next != NULL);
25385 }
25386}
25387#endif
25388
c19d1205
ZW
25389/* Adjust the symbol table. This marks Thumb symbols as distinct from
25390 ARM ones. */
404ff6b5 25391
c19d1205
ZW
25392void
25393arm_adjust_symtab (void)
404ff6b5 25394{
c19d1205
ZW
25395#ifdef OBJ_COFF
25396 symbolS * sym;
404ff6b5 25397
c19d1205
ZW
25398 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25399 {
25400 if (ARM_IS_THUMB (sym))
25401 {
25402 if (THUMB_IS_FUNC (sym))
25403 {
25404 /* Mark the symbol as a Thumb function. */
25405 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25406 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25407 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 25408
c19d1205
ZW
25409 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25410 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25411 else
25412 as_bad (_("%s: unexpected function type: %d"),
25413 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25414 }
25415 else switch (S_GET_STORAGE_CLASS (sym))
25416 {
25417 case C_EXT:
25418 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25419 break;
25420 case C_STAT:
25421 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25422 break;
25423 case C_LABEL:
25424 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25425 break;
25426 default:
25427 /* Do nothing. */
25428 break;
25429 }
25430 }
a737bd4d 25431
c19d1205
ZW
25432 if (ARM_IS_INTERWORK (sym))
25433 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 25434 }
c19d1205
ZW
25435#endif
25436#ifdef OBJ_ELF
25437 symbolS * sym;
25438 char bind;
404ff6b5 25439
c19d1205 25440 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 25441 {
c19d1205
ZW
25442 if (ARM_IS_THUMB (sym))
25443 {
25444 elf_symbol_type * elf_sym;
404ff6b5 25445
c19d1205
ZW
25446 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25447 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 25448
b0796911
PB
25449 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25450 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
25451 {
25452 /* If it's a .thumb_func, declare it as so,
25453 otherwise tag label as .code 16. */
25454 if (THUMB_IS_FUNC (sym))
39d911fc
TP
25455 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25456 ST_BRANCH_TO_THUMB);
3ba67470 25457 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
25458 elf_sym->internal_elf_sym.st_info =
25459 ELF_ST_INFO (bind, STT_ARM_16BIT);
25460 }
25461 }
25462 }
cd000bff
DJ
25463
25464 /* Remove any overlapping mapping symbols generated by alignment frags. */
25465 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
25466 /* Now do generic ELF adjustments. */
25467 elf_adjust_symtab ();
c19d1205 25468#endif
404ff6b5
AH
25469}
25470
c19d1205 25471/* MD interface: Initialization. */
404ff6b5 25472
a737bd4d 25473static void
c19d1205 25474set_constant_flonums (void)
a737bd4d 25475{
c19d1205 25476 int i;
404ff6b5 25477
c19d1205
ZW
25478 for (i = 0; i < NUM_FLOAT_VALS; i++)
25479 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25480 abort ();
a737bd4d 25481}
404ff6b5 25482
3e9e4fcf
JB
25483/* Auto-select Thumb mode if it's the only available instruction set for the
25484 given architecture. */
25485
25486static void
25487autoselect_thumb_from_cpu_variant (void)
25488{
25489 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25490 opcode_select (16);
25491}
25492
c19d1205
ZW
25493void
25494md_begin (void)
a737bd4d 25495{
c19d1205
ZW
25496 unsigned mach;
25497 unsigned int i;
404ff6b5 25498
c19d1205
ZW
25499 if ( (arm_ops_hsh = hash_new ()) == NULL
25500 || (arm_cond_hsh = hash_new ()) == NULL
25501 || (arm_shift_hsh = hash_new ()) == NULL
25502 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 25503 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 25504 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
25505 || (arm_reloc_hsh = hash_new ()) == NULL
25506 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
25507 as_fatal (_("virtual memory exhausted"));
25508
25509 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 25510 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 25511 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 25512 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 25513 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 25514 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 25515 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25516 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 25517 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25518 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 25519 (void *) (v7m_psrs + i));
c19d1205 25520 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 25521 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
25522 for (i = 0;
25523 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25524 i++)
d3ce72d0 25525 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 25526 (void *) (barrier_opt_names + i));
c19d1205 25527#ifdef OBJ_ELF
3da1d841
NC
25528 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25529 {
25530 struct reloc_entry * entry = reloc_names + i;
25531
25532 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25533 /* This makes encode_branch() use the EABI versions of this relocation. */
25534 entry->reloc = BFD_RELOC_UNUSED;
25535
25536 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25537 }
c19d1205
ZW
25538#endif
25539
25540 set_constant_flonums ();
404ff6b5 25541
c19d1205
ZW
25542 /* Set the cpu variant based on the command-line options. We prefer
25543 -mcpu= over -march= if both are set (as for GCC); and we prefer
25544 -mfpu= over any other way of setting the floating point unit.
25545 Use of legacy options with new options are faulted. */
e74cfd16 25546 if (legacy_cpu)
404ff6b5 25547 {
e74cfd16 25548 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
25549 as_bad (_("use of old and new-style options to set CPU type"));
25550
4d354d8b 25551 selected_arch = *legacy_cpu;
404ff6b5 25552 }
4d354d8b
TP
25553 else if (mcpu_cpu_opt)
25554 {
25555 selected_arch = *mcpu_cpu_opt;
25556 selected_ext = *mcpu_ext_opt;
25557 }
25558 else if (march_cpu_opt)
c168ce07 25559 {
4d354d8b
TP
25560 selected_arch = *march_cpu_opt;
25561 selected_ext = *march_ext_opt;
c168ce07 25562 }
4d354d8b 25563 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 25564
e74cfd16 25565 if (legacy_fpu)
c19d1205 25566 {
e74cfd16 25567 if (mfpu_opt)
c19d1205 25568 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 25569
4d354d8b 25570 selected_fpu = *legacy_fpu;
03b1477f 25571 }
4d354d8b
TP
25572 else if (mfpu_opt)
25573 selected_fpu = *mfpu_opt;
25574 else
03b1477f 25575 {
45eb4c1b
NS
25576#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25577 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
25578 /* Some environments specify a default FPU. If they don't, infer it
25579 from the processor. */
e74cfd16 25580 if (mcpu_fpu_opt)
4d354d8b 25581 selected_fpu = *mcpu_fpu_opt;
e7da50fa 25582 else if (march_fpu_opt)
4d354d8b 25583 selected_fpu = *march_fpu_opt;
39c2da32 25584#else
4d354d8b 25585 selected_fpu = fpu_default;
39c2da32 25586#endif
03b1477f
RE
25587 }
25588
4d354d8b 25589 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 25590 {
4d354d8b
TP
25591 if (!no_cpu_selected ())
25592 selected_fpu = fpu_default;
03b1477f 25593 else
4d354d8b 25594 selected_fpu = fpu_arch_fpa;
03b1477f
RE
25595 }
25596
ee065d83 25597#ifdef CPU_DEFAULT
4d354d8b 25598 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 25599 {
4d354d8b
TP
25600 selected_arch = cpu_default;
25601 selected_cpu = selected_arch;
ee065d83 25602 }
4d354d8b 25603 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 25604#else
4d354d8b
TP
25605 /* Autodection of feature mode: allow all features in cpu_variant but leave
25606 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25607 after all instruction have been processed and we can decide what CPU
25608 should be selected. */
25609 if (ARM_FEATURE_ZERO (selected_arch))
25610 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 25611 else
4d354d8b 25612 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 25613#endif
03b1477f 25614
3e9e4fcf
JB
25615 autoselect_thumb_from_cpu_variant ();
25616
e74cfd16 25617 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 25618
f17c130b 25619#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 25620 {
7cc69913
NC
25621 unsigned int flags = 0;
25622
25623#if defined OBJ_ELF
25624 flags = meabi_flags;
d507cf36
PB
25625
25626 switch (meabi_flags)
33a392fb 25627 {
d507cf36 25628 case EF_ARM_EABI_UNKNOWN:
7cc69913 25629#endif
d507cf36
PB
25630 /* Set the flags in the private structure. */
25631 if (uses_apcs_26) flags |= F_APCS26;
25632 if (support_interwork) flags |= F_INTERWORK;
25633 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 25634 if (pic_code) flags |= F_PIC;
e74cfd16 25635 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
25636 flags |= F_SOFT_FLOAT;
25637
d507cf36
PB
25638 switch (mfloat_abi_opt)
25639 {
25640 case ARM_FLOAT_ABI_SOFT:
25641 case ARM_FLOAT_ABI_SOFTFP:
25642 flags |= F_SOFT_FLOAT;
25643 break;
33a392fb 25644
d507cf36
PB
25645 case ARM_FLOAT_ABI_HARD:
25646 if (flags & F_SOFT_FLOAT)
25647 as_bad (_("hard-float conflicts with specified fpu"));
25648 break;
25649 }
03b1477f 25650
e74cfd16
PB
25651 /* Using pure-endian doubles (even if soft-float). */
25652 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 25653 flags |= F_VFP_FLOAT;
f17c130b 25654
fde78edd 25655#if defined OBJ_ELF
e74cfd16 25656 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 25657 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
25658 break;
25659
8cb51566 25660 case EF_ARM_EABI_VER4:
3a4a14e9 25661 case EF_ARM_EABI_VER5:
c19d1205 25662 /* No additional flags to set. */
d507cf36
PB
25663 break;
25664
25665 default:
25666 abort ();
25667 }
7cc69913 25668#endif
b99bd4ef
NC
25669 bfd_set_private_flags (stdoutput, flags);
25670
25671 /* We have run out flags in the COFF header to encode the
25672 status of ATPCS support, so instead we create a dummy,
c19d1205 25673 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
25674 if (atpcs)
25675 {
25676 asection * sec;
25677
25678 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25679
25680 if (sec != NULL)
25681 {
25682 bfd_set_section_flags
25683 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25684 bfd_set_section_size (stdoutput, sec, 0);
25685 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25686 }
25687 }
7cc69913 25688 }
f17c130b 25689#endif
b99bd4ef
NC
25690
25691 /* Record the CPU type as well. */
2d447fca
JM
25692 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25693 mach = bfd_mach_arm_iWMMXt2;
25694 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 25695 mach = bfd_mach_arm_iWMMXt;
e74cfd16 25696 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 25697 mach = bfd_mach_arm_XScale;
e74cfd16 25698 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 25699 mach = bfd_mach_arm_ep9312;
e74cfd16 25700 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 25701 mach = bfd_mach_arm_5TE;
e74cfd16 25702 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 25703 {
e74cfd16 25704 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25705 mach = bfd_mach_arm_5T;
25706 else
25707 mach = bfd_mach_arm_5;
25708 }
e74cfd16 25709 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 25710 {
e74cfd16 25711 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25712 mach = bfd_mach_arm_4T;
25713 else
25714 mach = bfd_mach_arm_4;
25715 }
e74cfd16 25716 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 25717 mach = bfd_mach_arm_3M;
e74cfd16
PB
25718 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25719 mach = bfd_mach_arm_3;
25720 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25721 mach = bfd_mach_arm_2a;
25722 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25723 mach = bfd_mach_arm_2;
25724 else
25725 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
25726
25727 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25728}
25729
c19d1205 25730/* Command line processing. */
b99bd4ef 25731
c19d1205
ZW
25732/* md_parse_option
25733 Invocation line includes a switch not recognized by the base assembler.
25734 See if it's a processor-specific option.
b99bd4ef 25735
c19d1205
ZW
25736 This routine is somewhat complicated by the need for backwards
25737 compatibility (since older releases of gcc can't be changed).
25738 The new options try to make the interface as compatible as
25739 possible with GCC.
b99bd4ef 25740
c19d1205 25741 New options (supported) are:
b99bd4ef 25742
c19d1205
ZW
25743 -mcpu=<cpu name> Assemble for selected processor
25744 -march=<architecture name> Assemble for selected architecture
25745 -mfpu=<fpu architecture> Assemble for selected FPU.
25746 -EB/-mbig-endian Big-endian
25747 -EL/-mlittle-endian Little-endian
25748 -k Generate PIC code
25749 -mthumb Start in Thumb mode
25750 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 25751
278df34e 25752 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 25753 -m[no-]warn-syms Warn when symbols match instructions
267bf995 25754
c19d1205 25755 For now we will also provide support for:
b99bd4ef 25756
c19d1205
ZW
25757 -mapcs-32 32-bit Program counter
25758 -mapcs-26 26-bit Program counter
25759 -macps-float Floats passed in FP registers
25760 -mapcs-reentrant Reentrant code
25761 -matpcs
25762 (sometime these will probably be replaced with -mapcs=<list of options>
25763 and -matpcs=<list of options>)
b99bd4ef 25764
c19d1205
ZW
25765 The remaining options are only supported for back-wards compatibility.
25766 Cpu variants, the arm part is optional:
25767 -m[arm]1 Currently not supported.
25768 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25769 -m[arm]3 Arm 3 processor
25770 -m[arm]6[xx], Arm 6 processors
25771 -m[arm]7[xx][t][[d]m] Arm 7 processors
25772 -m[arm]8[10] Arm 8 processors
25773 -m[arm]9[20][tdmi] Arm 9 processors
25774 -mstrongarm[110[0]] StrongARM processors
25775 -mxscale XScale processors
25776 -m[arm]v[2345[t[e]]] Arm architectures
25777 -mall All (except the ARM1)
25778 FP variants:
25779 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25780 -mfpe-old (No float load/store multiples)
25781 -mvfpxd VFP Single precision
25782 -mvfp All VFP
25783 -mno-fpu Disable all floating point instructions
b99bd4ef 25784
c19d1205
ZW
25785 The following CPU names are recognized:
25786 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25787 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25788 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25789 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25790 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25791 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25792 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 25793
c19d1205 25794 */
b99bd4ef 25795
c19d1205 25796const char * md_shortopts = "m:k";
b99bd4ef 25797
c19d1205
ZW
25798#ifdef ARM_BI_ENDIAN
25799#define OPTION_EB (OPTION_MD_BASE + 0)
25800#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 25801#else
c19d1205
ZW
25802#if TARGET_BYTES_BIG_ENDIAN
25803#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 25804#else
c19d1205
ZW
25805#define OPTION_EL (OPTION_MD_BASE + 1)
25806#endif
b99bd4ef 25807#endif
845b51d6 25808#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 25809#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 25810
c19d1205 25811struct option md_longopts[] =
b99bd4ef 25812{
c19d1205
ZW
25813#ifdef OPTION_EB
25814 {"EB", no_argument, NULL, OPTION_EB},
25815#endif
25816#ifdef OPTION_EL
25817 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 25818#endif
845b51d6 25819 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
25820#ifdef OBJ_ELF
25821 {"fdpic", no_argument, NULL, OPTION_FDPIC},
25822#endif
c19d1205
ZW
25823 {NULL, no_argument, NULL, 0}
25824};
b99bd4ef 25825
c19d1205 25826size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 25827
c19d1205 25828struct arm_option_table
b99bd4ef 25829{
0198d5e6
TC
25830 const char * option; /* Option name to match. */
25831 const char * help; /* Help information. */
25832 int * var; /* Variable to change. */
25833 int value; /* What to change it to. */
25834 const char * deprecated; /* If non-null, print this message. */
c19d1205 25835};
b99bd4ef 25836
c19d1205
ZW
25837struct arm_option_table arm_opts[] =
25838{
25839 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25840 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25841 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25842 &support_interwork, 1, NULL},
25843 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25844 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25845 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25846 1, NULL},
25847 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25848 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25849 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25850 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25851 NULL},
b99bd4ef 25852
c19d1205
ZW
25853 /* These are recognized by the assembler, but have no affect on code. */
25854 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25855 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
25856
25857 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25858 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25859 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
25860 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25861 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
25862 {NULL, NULL, NULL, 0, NULL}
25863};
25864
25865struct arm_legacy_option_table
25866{
0198d5e6
TC
25867 const char * option; /* Option name to match. */
25868 const arm_feature_set ** var; /* Variable to change. */
25869 const arm_feature_set value; /* What to change it to. */
25870 const char * deprecated; /* If non-null, print this message. */
e74cfd16 25871};
b99bd4ef 25872
e74cfd16
PB
25873const struct arm_legacy_option_table arm_legacy_opts[] =
25874{
c19d1205
ZW
25875 /* DON'T add any new processors to this list -- we want the whole list
25876 to go away... Add them to the processors table instead. */
e74cfd16
PB
25877 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25878 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25879 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25880 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25881 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25882 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25883 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25884 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25885 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25886 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25887 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25888 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25889 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25890 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25891 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25892 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25893 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25894 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25895 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25896 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25897 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25898 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25899 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25900 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25901 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25902 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25903 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25904 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25905 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25906 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25907 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25908 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25909 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25910 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25911 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25912 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25913 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25914 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25915 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25916 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25917 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25918 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25919 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25920 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25921 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25922 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25923 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25924 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25925 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25926 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25927 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25928 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25929 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25930 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25931 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25932 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25933 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25934 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25935 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25936 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25937 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25938 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25939 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25940 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25941 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25942 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25943 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25944 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25945 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25946 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25947 N_("use -mcpu=strongarm110")},
e74cfd16 25948 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25949 N_("use -mcpu=strongarm1100")},
e74cfd16 25950 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25951 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
25952 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25953 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25954 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 25955
c19d1205 25956 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
25957 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25958 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25959 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25960 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25961 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25962 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25963 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25964 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25965 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25966 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25967 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25968 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25969 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25970 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25971 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25972 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25973 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25974 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 25975
c19d1205 25976 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
25977 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25978 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25979 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25980 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 25981 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 25982
e74cfd16 25983 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 25984};
7ed4c4c5 25985
c19d1205 25986struct arm_cpu_option_table
7ed4c4c5 25987{
0198d5e6
TC
25988 const char * name;
25989 size_t name_len;
25990 const arm_feature_set value;
25991 const arm_feature_set ext;
c19d1205
ZW
25992 /* For some CPUs we assume an FPU unless the user explicitly sets
25993 -mfpu=... */
0198d5e6 25994 const arm_feature_set default_fpu;
ee065d83
PB
25995 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25996 case. */
0198d5e6 25997 const char * canonical_name;
c19d1205 25998};
7ed4c4c5 25999
c19d1205
ZW
26000/* This list should, at a minimum, contain all the cpu names
26001 recognized by GCC. */
996b5569 26002#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 26003
e74cfd16 26004static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 26005{
996b5569
TP
26006 ARM_CPU_OPT ("all", NULL, ARM_ANY,
26007 ARM_ARCH_NONE,
26008 FPU_ARCH_FPA),
26009 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
26010 ARM_ARCH_NONE,
26011 FPU_ARCH_FPA),
26012 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
26013 ARM_ARCH_NONE,
26014 FPU_ARCH_FPA),
26015 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
26016 ARM_ARCH_NONE,
26017 FPU_ARCH_FPA),
26018 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
26019 ARM_ARCH_NONE,
26020 FPU_ARCH_FPA),
26021 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
26022 ARM_ARCH_NONE,
26023 FPU_ARCH_FPA),
26024 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
26025 ARM_ARCH_NONE,
26026 FPU_ARCH_FPA),
26027 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
26028 ARM_ARCH_NONE,
26029 FPU_ARCH_FPA),
26030 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
26031 ARM_ARCH_NONE,
26032 FPU_ARCH_FPA),
26033 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
26034 ARM_ARCH_NONE,
26035 FPU_ARCH_FPA),
26036 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
26037 ARM_ARCH_NONE,
26038 FPU_ARCH_FPA),
26039 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
26040 ARM_ARCH_NONE,
26041 FPU_ARCH_FPA),
26042 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
26043 ARM_ARCH_NONE,
26044 FPU_ARCH_FPA),
26045 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
26046 ARM_ARCH_NONE,
26047 FPU_ARCH_FPA),
26048 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
26049 ARM_ARCH_NONE,
26050 FPU_ARCH_FPA),
26051 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
26052 ARM_ARCH_NONE,
26053 FPU_ARCH_FPA),
26054 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
26055 ARM_ARCH_NONE,
26056 FPU_ARCH_FPA),
26057 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
26058 ARM_ARCH_NONE,
26059 FPU_ARCH_FPA),
26060 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
26061 ARM_ARCH_NONE,
26062 FPU_ARCH_FPA),
26063 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
26064 ARM_ARCH_NONE,
26065 FPU_ARCH_FPA),
26066 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
26067 ARM_ARCH_NONE,
26068 FPU_ARCH_FPA),
26069 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
26070 ARM_ARCH_NONE,
26071 FPU_ARCH_FPA),
26072 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
26073 ARM_ARCH_NONE,
26074 FPU_ARCH_FPA),
26075 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
26076 ARM_ARCH_NONE,
26077 FPU_ARCH_FPA),
26078 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
26079 ARM_ARCH_NONE,
26080 FPU_ARCH_FPA),
26081 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
26082 ARM_ARCH_NONE,
26083 FPU_ARCH_FPA),
26084 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
26085 ARM_ARCH_NONE,
26086 FPU_ARCH_FPA),
26087 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
26088 ARM_ARCH_NONE,
26089 FPU_ARCH_FPA),
26090 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
26091 ARM_ARCH_NONE,
26092 FPU_ARCH_FPA),
26093 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
26094 ARM_ARCH_NONE,
26095 FPU_ARCH_FPA),
26096 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
26097 ARM_ARCH_NONE,
26098 FPU_ARCH_FPA),
26099 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
26100 ARM_ARCH_NONE,
26101 FPU_ARCH_FPA),
26102 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
26103 ARM_ARCH_NONE,
26104 FPU_ARCH_FPA),
26105 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
26106 ARM_ARCH_NONE,
26107 FPU_ARCH_FPA),
26108 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
26109 ARM_ARCH_NONE,
26110 FPU_ARCH_FPA),
26111 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
26112 ARM_ARCH_NONE,
26113 FPU_ARCH_FPA),
26114 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
26115 ARM_ARCH_NONE,
26116 FPU_ARCH_FPA),
26117 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
26118 ARM_ARCH_NONE,
26119 FPU_ARCH_FPA),
26120 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
26121 ARM_ARCH_NONE,
26122 FPU_ARCH_FPA),
26123 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
26124 ARM_ARCH_NONE,
26125 FPU_ARCH_FPA),
26126 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
26127 ARM_ARCH_NONE,
26128 FPU_ARCH_FPA),
26129 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26130 ARM_ARCH_NONE,
26131 FPU_ARCH_FPA),
26132 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26133 ARM_ARCH_NONE,
26134 FPU_ARCH_FPA),
26135 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26136 ARM_ARCH_NONE,
26137 FPU_ARCH_FPA),
26138 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26139 ARM_ARCH_NONE,
26140 FPU_ARCH_FPA),
26141 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26142 ARM_ARCH_NONE,
26143 FPU_ARCH_FPA),
26144
c19d1205
ZW
26145 /* For V5 or later processors we default to using VFP; but the user
26146 should really set the FPU type explicitly. */
996b5569
TP
26147 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26148 ARM_ARCH_NONE,
26149 FPU_ARCH_VFP_V2),
26150 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26151 ARM_ARCH_NONE,
26152 FPU_ARCH_VFP_V2),
26153 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26154 ARM_ARCH_NONE,
26155 FPU_ARCH_VFP_V2),
26156 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26157 ARM_ARCH_NONE,
26158 FPU_ARCH_VFP_V2),
26159 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26160 ARM_ARCH_NONE,
26161 FPU_ARCH_VFP_V2),
26162 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26163 ARM_ARCH_NONE,
26164 FPU_ARCH_VFP_V2),
26165 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26166 ARM_ARCH_NONE,
26167 FPU_ARCH_VFP_V2),
26168 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26169 ARM_ARCH_NONE,
26170 FPU_ARCH_VFP_V2),
26171 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26172 ARM_ARCH_NONE,
26173 FPU_ARCH_VFP_V2),
26174 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26175 ARM_ARCH_NONE,
26176 FPU_ARCH_VFP_V2),
26177 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26178 ARM_ARCH_NONE,
26179 FPU_ARCH_VFP_V2),
26180 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26181 ARM_ARCH_NONE,
26182 FPU_ARCH_VFP_V2),
26183 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26184 ARM_ARCH_NONE,
26185 FPU_ARCH_VFP_V1),
26186 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26187 ARM_ARCH_NONE,
26188 FPU_ARCH_VFP_V1),
26189 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26190 ARM_ARCH_NONE,
26191 FPU_ARCH_VFP_V2),
26192 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26193 ARM_ARCH_NONE,
26194 FPU_ARCH_VFP_V2),
26195 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26196 ARM_ARCH_NONE,
26197 FPU_ARCH_VFP_V1),
26198 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26199 ARM_ARCH_NONE,
26200 FPU_ARCH_VFP_V2),
26201 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26202 ARM_ARCH_NONE,
26203 FPU_ARCH_VFP_V2),
26204 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26205 ARM_ARCH_NONE,
26206 FPU_ARCH_VFP_V2),
26207 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26208 ARM_ARCH_NONE,
26209 FPU_ARCH_VFP_V2),
26210 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26211 ARM_ARCH_NONE,
26212 FPU_ARCH_VFP_V2),
26213 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26214 ARM_ARCH_NONE,
26215 FPU_ARCH_VFP_V2),
26216 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26217 ARM_ARCH_NONE,
26218 FPU_ARCH_VFP_V2),
26219 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26220 ARM_ARCH_NONE,
26221 FPU_ARCH_VFP_V2),
26222 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26223 ARM_ARCH_NONE,
26224 FPU_ARCH_VFP_V2),
26225 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26226 ARM_ARCH_NONE,
26227 FPU_NONE),
26228 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26229 ARM_ARCH_NONE,
26230 FPU_NONE),
26231 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26232 ARM_ARCH_NONE,
26233 FPU_ARCH_VFP_V2),
26234 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26235 ARM_ARCH_NONE,
26236 FPU_ARCH_VFP_V2),
26237 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26238 ARM_ARCH_NONE,
26239 FPU_ARCH_VFP_V2),
26240 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26241 ARM_ARCH_NONE,
26242 FPU_NONE),
26243 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26244 ARM_ARCH_NONE,
26245 FPU_NONE),
26246 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26247 ARM_ARCH_NONE,
26248 FPU_ARCH_VFP_V2),
26249 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26250 ARM_ARCH_NONE,
26251 FPU_NONE),
26252 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26253 ARM_ARCH_NONE,
26254 FPU_ARCH_VFP_V2),
26255 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26256 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26257 FPU_NONE),
26258 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26259 ARM_ARCH_NONE,
26260 FPU_ARCH_NEON_VFP_V4),
26261 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26262 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26263 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26264 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26265 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26266 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26267 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26268 ARM_ARCH_NONE,
26269 FPU_ARCH_NEON_VFP_V4),
26270 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26271 ARM_ARCH_NONE,
26272 FPU_ARCH_NEON_VFP_V4),
26273 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26274 ARM_ARCH_NONE,
26275 FPU_ARCH_NEON_VFP_V4),
26276 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26277 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26278 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26279 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26280 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26281 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26282 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26283 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26284 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26285 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26286 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26287 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26288 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26289 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26290 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26291 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26292 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26293 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26294 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26295 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26296 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26297 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26298 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26299 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 26300 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26301 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26302 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
26303 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
26304 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26305 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26306 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26307 ARM_ARCH_NONE,
26308 FPU_NONE),
26309 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26310 ARM_ARCH_NONE,
26311 FPU_ARCH_VFP_V3D16),
26312 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26313 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26314 FPU_NONE),
26315 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26316 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26317 FPU_ARCH_VFP_V3D16),
26318 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26319 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26320 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
26321 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26322 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26323 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
26324 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26325 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26326 FPU_NONE),
26327 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26328 ARM_ARCH_NONE,
26329 FPU_NONE),
26330 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26331 ARM_ARCH_NONE,
26332 FPU_NONE),
26333 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26334 ARM_ARCH_NONE,
26335 FPU_NONE),
26336 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26337 ARM_ARCH_NONE,
26338 FPU_NONE),
26339 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26340 ARM_ARCH_NONE,
26341 FPU_NONE),
26342 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26343 ARM_ARCH_NONE,
26344 FPU_NONE),
26345 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26346 ARM_ARCH_NONE,
26347 FPU_NONE),
26348 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26349 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26350 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
26351 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
26352 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26353 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 26354 /* ??? XSCALE is really an architecture. */
996b5569
TP
26355 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26356 ARM_ARCH_NONE,
26357 FPU_ARCH_VFP_V2),
26358
c19d1205 26359 /* ??? iwmmxt is not a processor. */
996b5569
TP
26360 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26361 ARM_ARCH_NONE,
26362 FPU_ARCH_VFP_V2),
26363 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26364 ARM_ARCH_NONE,
26365 FPU_ARCH_VFP_V2),
26366 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26367 ARM_ARCH_NONE,
26368 FPU_ARCH_VFP_V2),
26369
0198d5e6 26370 /* Maverick. */
996b5569
TP
26371 ARM_CPU_OPT ("ep9312", "ARM920T",
26372 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26373 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26374
da4339ed 26375 /* Marvell processors. */
996b5569
TP
26376 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26377 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26378 FPU_ARCH_VFP_V3D16),
26379 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26380 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26381 FPU_ARCH_NEON_VFP_V4),
da4339ed 26382
996b5569
TP
26383 /* APM X-Gene family. */
26384 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26385 ARM_ARCH_NONE,
26386 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26387 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26388 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26389 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26390
26391 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26392};
f3bad469 26393#undef ARM_CPU_OPT
7ed4c4c5 26394
34ef62f4
AV
26395struct arm_ext_table
26396{
26397 const char * name;
26398 size_t name_len;
26399 const arm_feature_set merge;
26400 const arm_feature_set clear;
26401};
26402
c19d1205 26403struct arm_arch_option_table
7ed4c4c5 26404{
34ef62f4
AV
26405 const char * name;
26406 size_t name_len;
26407 const arm_feature_set value;
26408 const arm_feature_set default_fpu;
26409 const struct arm_ext_table * ext_table;
26410};
26411
26412/* Used to add support for +E and +noE extension. */
26413#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
26414/* Used to add support for a +E extension. */
26415#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
26416/* Used to add support for a +noE extension. */
26417#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
26418
26419#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
26420 ~0 & ~FPU_ENDIAN_PURE)
26421
26422static const struct arm_ext_table armv5te_ext_table[] =
26423{
26424 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
26425 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26426};
26427
26428static const struct arm_ext_table armv7_ext_table[] =
26429{
26430 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26431 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26432};
26433
26434static const struct arm_ext_table armv7ve_ext_table[] =
26435{
26436 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
26437 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
26438 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26439 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26440 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26441 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
26442 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26443
26444 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
26445 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26446
26447 /* Aliases for +simd. */
26448 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26449
26450 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26451 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26452 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26453
26454 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26455};
26456
26457static const struct arm_ext_table armv7a_ext_table[] =
26458{
26459 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26460 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26461 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26462 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26463 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26464 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
26465 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26466
26467 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
26468 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26469
26470 /* Aliases for +simd. */
26471 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26472 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26473
26474 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26475 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26476
26477 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
26478 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
26479 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26480};
26481
26482static const struct arm_ext_table armv7r_ext_table[] =
26483{
26484 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
26485 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
26486 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26487 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26488 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
26489 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26490 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26491 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
26492 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26493};
26494
26495static const struct arm_ext_table armv7em_ext_table[] =
26496{
26497 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
26498 /* Alias for +fp, used to be known as fpv4-sp-d16. */
26499 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
26500 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
26501 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26502 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
26503 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26504};
26505
26506static const struct arm_ext_table armv8a_ext_table[] =
26507{
26508 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26509 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26510 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26511 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26512
26513 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26514 should use the +simd option to turn on FP. */
26515 ARM_REMOVE ("fp", ALL_FP),
26516 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26517 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26518 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26519};
26520
26521
26522static const struct arm_ext_table armv81a_ext_table[] =
26523{
26524 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26525 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26526 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26527
26528 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26529 should use the +simd option to turn on FP. */
26530 ARM_REMOVE ("fp", ALL_FP),
26531 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26532 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26533 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26534};
26535
26536static const struct arm_ext_table armv82a_ext_table[] =
26537{
26538 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26539 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
26540 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
26541 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26542 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26543 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26544
26545 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26546 should use the +simd option to turn on FP. */
26547 ARM_REMOVE ("fp", ALL_FP),
26548 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26549 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26550 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26551};
26552
26553static const struct arm_ext_table armv84a_ext_table[] =
26554{
26555 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26556 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26557 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26558 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26559
26560 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26561 should use the +simd option to turn on FP. */
26562 ARM_REMOVE ("fp", ALL_FP),
26563 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26564 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26565 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26566};
26567
26568static const struct arm_ext_table armv85a_ext_table[] =
26569{
26570 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26571 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26572 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26573 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26574
26575 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26576 should use the +simd option to turn on FP. */
26577 ARM_REMOVE ("fp", ALL_FP),
26578 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26579};
26580
26581static const struct arm_ext_table armv8m_main_ext_table[] =
26582{
26583 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26584 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26585 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
26586 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26587 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26588};
26589
e0991585
AV
26590static const struct arm_ext_table armv8_1m_main_ext_table[] =
26591{
26592 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26593 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26594 ARM_EXT ("fp",
26595 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26596 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
26597 ALL_FP),
26598 ARM_ADD ("fp.dp",
26599 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26600 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
26601 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26602};
26603
34ef62f4
AV
26604static const struct arm_ext_table armv8r_ext_table[] =
26605{
26606 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26607 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26608 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26609 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26610 ARM_REMOVE ("fp", ALL_FP),
26611 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
26612 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 26613};
7ed4c4c5 26614
c19d1205
ZW
26615/* This list should, at a minimum, contain all the architecture names
26616 recognized by GCC. */
34ef62f4
AV
26617#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
26618#define ARM_ARCH_OPT2(N, V, DF, ext) \
26619 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 26620
e74cfd16 26621static const struct arm_arch_option_table arm_archs[] =
c19d1205 26622{
497d849d
TP
26623 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26624 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26625 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26626 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26627 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26628 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26629 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26630 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26631 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26632 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26633 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26634 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26635 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26636 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
26637 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
26638 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
26639 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
26640 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26641 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26642 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
26643 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
26644 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26645 kept to preserve existing behaviour. */
34ef62f4
AV
26646 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26647 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26648 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
26649 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
26650 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
26651 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26652 kept to preserve existing behaviour. */
34ef62f4
AV
26653 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26654 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
26655 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26656 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 26657 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
26658 /* The official spelling of the ARMv7 profile variants is the dashed form.
26659 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
26660 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26661 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
26662 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 26663 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
26664 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26665 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 26666 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 26667 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 26668 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
26669 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
26670 armv8m_main),
e0991585
AV
26671 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
26672 armv8_1m_main),
34ef62f4
AV
26673 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
26674 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
26675 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
26676 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
26677 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
26678 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
26679 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
26680 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26681 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26682 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 26683 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26684};
f3bad469 26685#undef ARM_ARCH_OPT
7ed4c4c5 26686
69133863 26687/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 26688
69133863 26689struct arm_option_extension_value_table
c19d1205 26690{
0198d5e6
TC
26691 const char * name;
26692 size_t name_len;
26693 const arm_feature_set merge_value;
26694 const arm_feature_set clear_value;
d942732e
TP
26695 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26696 indicates that an extension is available for all architectures while
26697 ARM_ANY marks an empty entry. */
0198d5e6 26698 const arm_feature_set allowed_archs[2];
c19d1205 26699};
7ed4c4c5 26700
0198d5e6
TC
26701/* The following table must be in alphabetical order with a NULL last entry. */
26702
d942732e
TP
26703#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26704#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 26705
34ef62f4
AV
26706/* DEPRECATED: Refrain from using this table to add any new extensions, instead
26707 use the context sensitive approach using arm_ext_table's. */
69133863 26708static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 26709{
823d2571
TG
26710 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26711 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 26712 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
26713 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26714 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
26715 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26716 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26717 ARM_ARCH_V8_2A),
15afaa63
TP
26718 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26719 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26720 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
26721 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26722 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
26723 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26724 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26725 ARM_ARCH_V8_2A),
01f48020
TC
26726 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26727 | ARM_EXT2_FP16_FML),
26728 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26729 | ARM_EXT2_FP16_FML),
26730 ARM_ARCH_V8_2A),
d942732e 26731 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 26732 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
26733 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26734 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
26735 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26736 Thumb divide instruction. Due to this having the same name as the
26737 previous entry, this will be ignored when doing command-line parsing and
26738 only considered by build attribute selection code. */
26739 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26740 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26741 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 26742 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 26743 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 26744 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 26745 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 26746 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
26747 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26748 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 26749 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
26750 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26751 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
26752 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26753 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26754 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
26755 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26756 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 26757 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
26758 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26759 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26760 ARM_ARCH_V8A),
4d1464f2
MW
26761 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26762 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 26763 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
26764 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26765 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 26766 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
26767 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26768 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26769 ARM_ARCH_V8A),
d942732e 26770 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 26771 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
26772 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26773 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
26774 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26775 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26776 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
26777 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26778 | ARM_EXT_DIV),
26779 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26780 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26781 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
26782 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26783 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 26784};
f3bad469 26785#undef ARM_EXT_OPT
69133863
MGD
26786
26787/* ISA floating-point and Advanced SIMD extensions. */
26788struct arm_option_fpu_value_table
26789{
0198d5e6
TC
26790 const char * name;
26791 const arm_feature_set value;
c19d1205 26792};
7ed4c4c5 26793
c19d1205
ZW
26794/* This list should, at a minimum, contain all the fpu names
26795 recognized by GCC. */
69133863 26796static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
26797{
26798 {"softfpa", FPU_NONE},
26799 {"fpe", FPU_ARCH_FPE},
26800 {"fpe2", FPU_ARCH_FPE},
26801 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26802 {"fpa", FPU_ARCH_FPA},
26803 {"fpa10", FPU_ARCH_FPA},
26804 {"fpa11", FPU_ARCH_FPA},
26805 {"arm7500fe", FPU_ARCH_FPA},
26806 {"softvfp", FPU_ARCH_VFP},
26807 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26808 {"vfp", FPU_ARCH_VFP_V2},
26809 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 26810 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
26811 {"vfp10", FPU_ARCH_VFP_V2},
26812 {"vfp10-r0", FPU_ARCH_VFP_V1},
26813 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
26814 {"vfpv2", FPU_ARCH_VFP_V2},
26815 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 26816 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 26817 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
26818 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26819 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26820 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
26821 {"arm1020t", FPU_ARCH_VFP_V1},
26822 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 26823 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
26824 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26825 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 26826 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 26827 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 26828 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
26829 {"vfpv4", FPU_ARCH_VFP_V4},
26830 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 26831 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
26832 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26833 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 26834 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
26835 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26836 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26837 {"crypto-neon-fp-armv8",
26838 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 26839 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
26840 {"crypto-neon-fp-armv8.1",
26841 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
26842 {NULL, ARM_ARCH_NONE}
26843};
26844
26845struct arm_option_value_table
26846{
e0471c16 26847 const char *name;
e74cfd16 26848 long value;
c19d1205 26849};
7ed4c4c5 26850
e74cfd16 26851static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
26852{
26853 {"hard", ARM_FLOAT_ABI_HARD},
26854 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26855 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 26856 {NULL, 0}
c19d1205 26857};
7ed4c4c5 26858
c19d1205 26859#ifdef OBJ_ELF
3a4a14e9 26860/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 26861static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
26862{
26863 {"gnu", EF_ARM_EABI_UNKNOWN},
26864 {"4", EF_ARM_EABI_VER4},
3a4a14e9 26865 {"5", EF_ARM_EABI_VER5},
e74cfd16 26866 {NULL, 0}
c19d1205
ZW
26867};
26868#endif
7ed4c4c5 26869
c19d1205
ZW
26870struct arm_long_option_table
26871{
0198d5e6 26872 const char * option; /* Substring to match. */
e0471c16 26873 const char * help; /* Help information. */
17b9d67d 26874 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 26875 const char * deprecated; /* If non-null, print this message. */
c19d1205 26876};
7ed4c4c5 26877
c921be7d 26878static bfd_boolean
c168ce07 26879arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
26880 arm_feature_set *ext_set,
26881 const struct arm_ext_table *ext_table)
7ed4c4c5 26882{
69133863 26883 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
26884 extensions being added before being removed. We achieve this by having
26885 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 26886 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 26887 or removing it (0) and only allowing it to change in the order
69133863
MGD
26888 -1 -> 1 -> 0. */
26889 const struct arm_option_extension_value_table * opt = NULL;
d942732e 26890 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
26891 int adding_value = -1;
26892
c19d1205 26893 while (str != NULL && *str != 0)
7ed4c4c5 26894 {
82b8a785 26895 const char *ext;
f3bad469 26896 size_t len;
7ed4c4c5 26897
c19d1205
ZW
26898 if (*str != '+')
26899 {
26900 as_bad (_("invalid architectural extension"));
c921be7d 26901 return FALSE;
c19d1205 26902 }
7ed4c4c5 26903
c19d1205
ZW
26904 str++;
26905 ext = strchr (str, '+');
7ed4c4c5 26906
c19d1205 26907 if (ext != NULL)
f3bad469 26908 len = ext - str;
c19d1205 26909 else
f3bad469 26910 len = strlen (str);
7ed4c4c5 26911
f3bad469 26912 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
26913 {
26914 if (adding_value != 0)
26915 {
26916 adding_value = 0;
26917 opt = arm_extensions;
26918 }
26919
f3bad469 26920 len -= 2;
69133863
MGD
26921 str += 2;
26922 }
f3bad469 26923 else if (len > 0)
69133863
MGD
26924 {
26925 if (adding_value == -1)
26926 {
26927 adding_value = 1;
26928 opt = arm_extensions;
26929 }
26930 else if (adding_value != 1)
26931 {
26932 as_bad (_("must specify extensions to add before specifying "
26933 "those to remove"));
26934 return FALSE;
26935 }
26936 }
26937
f3bad469 26938 if (len == 0)
c19d1205
ZW
26939 {
26940 as_bad (_("missing architectural extension"));
c921be7d 26941 return FALSE;
c19d1205 26942 }
7ed4c4c5 26943
69133863
MGD
26944 gas_assert (adding_value != -1);
26945 gas_assert (opt != NULL);
26946
34ef62f4
AV
26947 if (ext_table != NULL)
26948 {
26949 const struct arm_ext_table * ext_opt = ext_table;
26950 bfd_boolean found = FALSE;
26951 for (; ext_opt->name != NULL; ext_opt++)
26952 if (ext_opt->name_len == len
26953 && strncmp (ext_opt->name, str, len) == 0)
26954 {
26955 if (adding_value)
26956 {
26957 if (ARM_FEATURE_ZERO (ext_opt->merge))
26958 /* TODO: Option not supported. When we remove the
26959 legacy table this case should error out. */
26960 continue;
26961
26962 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
26963 }
26964 else
26965 {
26966 if (ARM_FEATURE_ZERO (ext_opt->clear))
26967 /* TODO: Option not supported. When we remove the
26968 legacy table this case should error out. */
26969 continue;
26970 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
26971 }
26972 found = TRUE;
26973 break;
26974 }
26975 if (found)
26976 {
26977 str = ext;
26978 continue;
26979 }
26980 }
26981
69133863
MGD
26982 /* Scan over the options table trying to find an exact match. */
26983 for (; opt->name != NULL; opt++)
f3bad469 26984 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26985 {
d942732e
TP
26986 int i, nb_allowed_archs =
26987 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 26988 /* Check we can apply the extension to this architecture. */
d942732e
TP
26989 for (i = 0; i < nb_allowed_archs; i++)
26990 {
26991 /* Empty entry. */
26992 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26993 continue;
c168ce07 26994 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
26995 break;
26996 }
26997 if (i == nb_allowed_archs)
69133863
MGD
26998 {
26999 as_bad (_("extension does not apply to the base architecture"));
27000 return FALSE;
27001 }
27002
27003 /* Add or remove the extension. */
27004 if (adding_value)
4d354d8b 27005 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 27006 else
4d354d8b 27007 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 27008
3d030cdb
TP
27009 /* Allowing Thumb division instructions for ARMv7 in autodetection
27010 rely on this break so that duplicate extensions (extensions
27011 with the same name as a previous extension in the list) are not
27012 considered for command-line parsing. */
c19d1205
ZW
27013 break;
27014 }
7ed4c4c5 27015
c19d1205
ZW
27016 if (opt->name == NULL)
27017 {
69133863
MGD
27018 /* Did we fail to find an extension because it wasn't specified in
27019 alphabetical order, or because it does not exist? */
27020
27021 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 27022 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
27023 break;
27024
27025 if (opt->name == NULL)
27026 as_bad (_("unknown architectural extension `%s'"), str);
27027 else
27028 as_bad (_("architectural extensions must be specified in "
27029 "alphabetical order"));
27030
c921be7d 27031 return FALSE;
c19d1205 27032 }
69133863
MGD
27033 else
27034 {
27035 /* We should skip the extension we've just matched the next time
27036 round. */
27037 opt++;
27038 }
7ed4c4c5 27039
c19d1205
ZW
27040 str = ext;
27041 };
7ed4c4c5 27042
c921be7d 27043 return TRUE;
c19d1205 27044}
7ed4c4c5 27045
c921be7d 27046static bfd_boolean
17b9d67d 27047arm_parse_cpu (const char *str)
7ed4c4c5 27048{
f3bad469 27049 const struct arm_cpu_option_table *opt;
82b8a785 27050 const char *ext = strchr (str, '+');
f3bad469 27051 size_t len;
7ed4c4c5 27052
c19d1205 27053 if (ext != NULL)
f3bad469 27054 len = ext - str;
7ed4c4c5 27055 else
f3bad469 27056 len = strlen (str);
7ed4c4c5 27057
f3bad469 27058 if (len == 0)
7ed4c4c5 27059 {
c19d1205 27060 as_bad (_("missing cpu name `%s'"), str);
c921be7d 27061 return FALSE;
7ed4c4c5
NC
27062 }
27063
c19d1205 27064 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 27065 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27066 {
c168ce07 27067 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
27068 if (mcpu_ext_opt == NULL)
27069 mcpu_ext_opt = XNEW (arm_feature_set);
27070 *mcpu_ext_opt = opt->ext;
e74cfd16 27071 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 27072 if (opt->canonical_name)
ef8e6722
JW
27073 {
27074 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
27075 strcpy (selected_cpu_name, opt->canonical_name);
27076 }
ee065d83
PB
27077 else
27078 {
f3bad469 27079 size_t i;
c921be7d 27080
ef8e6722
JW
27081 if (len >= sizeof selected_cpu_name)
27082 len = (sizeof selected_cpu_name) - 1;
27083
f3bad469 27084 for (i = 0; i < len; i++)
ee065d83
PB
27085 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27086 selected_cpu_name[i] = 0;
27087 }
7ed4c4c5 27088
c19d1205 27089 if (ext != NULL)
34ef62f4 27090 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 27091
c921be7d 27092 return TRUE;
c19d1205 27093 }
7ed4c4c5 27094
c19d1205 27095 as_bad (_("unknown cpu `%s'"), str);
c921be7d 27096 return FALSE;
7ed4c4c5
NC
27097}
27098
c921be7d 27099static bfd_boolean
17b9d67d 27100arm_parse_arch (const char *str)
7ed4c4c5 27101{
e74cfd16 27102 const struct arm_arch_option_table *opt;
82b8a785 27103 const char *ext = strchr (str, '+');
f3bad469 27104 size_t len;
7ed4c4c5 27105
c19d1205 27106 if (ext != NULL)
f3bad469 27107 len = ext - str;
7ed4c4c5 27108 else
f3bad469 27109 len = strlen (str);
7ed4c4c5 27110
f3bad469 27111 if (len == 0)
7ed4c4c5 27112 {
c19d1205 27113 as_bad (_("missing architecture name `%s'"), str);
c921be7d 27114 return FALSE;
7ed4c4c5
NC
27115 }
27116
c19d1205 27117 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 27118 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 27119 {
e74cfd16 27120 march_cpu_opt = &opt->value;
4d354d8b
TP
27121 if (march_ext_opt == NULL)
27122 march_ext_opt = XNEW (arm_feature_set);
27123 *march_ext_opt = arm_arch_none;
e74cfd16 27124 march_fpu_opt = &opt->default_fpu;
5f4273c7 27125 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 27126
c19d1205 27127 if (ext != NULL)
34ef62f4
AV
27128 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
27129 opt->ext_table);
7ed4c4c5 27130
c921be7d 27131 return TRUE;
c19d1205
ZW
27132 }
27133
27134 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 27135 return FALSE;
7ed4c4c5 27136}
eb043451 27137
c921be7d 27138static bfd_boolean
17b9d67d 27139arm_parse_fpu (const char * str)
c19d1205 27140{
69133863 27141 const struct arm_option_fpu_value_table * opt;
b99bd4ef 27142
c19d1205
ZW
27143 for (opt = arm_fpus; opt->name != NULL; opt++)
27144 if (streq (opt->name, str))
27145 {
e74cfd16 27146 mfpu_opt = &opt->value;
c921be7d 27147 return TRUE;
c19d1205 27148 }
b99bd4ef 27149
c19d1205 27150 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 27151 return FALSE;
c19d1205
ZW
27152}
27153
c921be7d 27154static bfd_boolean
17b9d67d 27155arm_parse_float_abi (const char * str)
b99bd4ef 27156{
e74cfd16 27157 const struct arm_option_value_table * opt;
b99bd4ef 27158
c19d1205
ZW
27159 for (opt = arm_float_abis; opt->name != NULL; opt++)
27160 if (streq (opt->name, str))
27161 {
27162 mfloat_abi_opt = opt->value;
c921be7d 27163 return TRUE;
c19d1205 27164 }
cc8a6dd0 27165
c19d1205 27166 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 27167 return FALSE;
c19d1205 27168}
b99bd4ef 27169
c19d1205 27170#ifdef OBJ_ELF
c921be7d 27171static bfd_boolean
17b9d67d 27172arm_parse_eabi (const char * str)
c19d1205 27173{
e74cfd16 27174 const struct arm_option_value_table *opt;
cc8a6dd0 27175
c19d1205
ZW
27176 for (opt = arm_eabis; opt->name != NULL; opt++)
27177 if (streq (opt->name, str))
27178 {
27179 meabi_flags = opt->value;
c921be7d 27180 return TRUE;
c19d1205
ZW
27181 }
27182 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 27183 return FALSE;
c19d1205
ZW
27184}
27185#endif
cc8a6dd0 27186
c921be7d 27187static bfd_boolean
17b9d67d 27188arm_parse_it_mode (const char * str)
e07e6e58 27189{
c921be7d 27190 bfd_boolean ret = TRUE;
e07e6e58
NC
27191
27192 if (streq ("arm", str))
27193 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
27194 else if (streq ("thumb", str))
27195 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
27196 else if (streq ("always", str))
27197 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
27198 else if (streq ("never", str))
27199 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
27200 else
27201 {
27202 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 27203 "arm, thumb, always, or never."), str);
c921be7d 27204 ret = FALSE;
e07e6e58
NC
27205 }
27206
27207 return ret;
27208}
27209
2e6976a8 27210static bfd_boolean
17b9d67d 27211arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
27212{
27213 codecomposer_syntax = TRUE;
27214 arm_comment_chars[0] = ';';
27215 arm_line_separator_chars[0] = 0;
27216 return TRUE;
27217}
27218
c19d1205
ZW
27219struct arm_long_option_table arm_long_opts[] =
27220{
27221 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
27222 arm_parse_cpu, NULL},
27223 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
27224 arm_parse_arch, NULL},
27225 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
27226 arm_parse_fpu, NULL},
27227 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
27228 arm_parse_float_abi, NULL},
27229#ifdef OBJ_ELF
7fac0536 27230 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
27231 arm_parse_eabi, NULL},
27232#endif
e07e6e58
NC
27233 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
27234 arm_parse_it_mode, NULL},
2e6976a8
DG
27235 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
27236 arm_ccs_mode, NULL},
c19d1205
ZW
27237 {NULL, NULL, 0, NULL}
27238};
cc8a6dd0 27239
c19d1205 27240int
17b9d67d 27241md_parse_option (int c, const char * arg)
c19d1205
ZW
27242{
27243 struct arm_option_table *opt;
e74cfd16 27244 const struct arm_legacy_option_table *fopt;
c19d1205 27245 struct arm_long_option_table *lopt;
b99bd4ef 27246
c19d1205 27247 switch (c)
b99bd4ef 27248 {
c19d1205
ZW
27249#ifdef OPTION_EB
27250 case OPTION_EB:
27251 target_big_endian = 1;
27252 break;
27253#endif
cc8a6dd0 27254
c19d1205
ZW
27255#ifdef OPTION_EL
27256 case OPTION_EL:
27257 target_big_endian = 0;
27258 break;
27259#endif
b99bd4ef 27260
845b51d6
PB
27261 case OPTION_FIX_V4BX:
27262 fix_v4bx = TRUE;
27263 break;
27264
18a20338
CL
27265#ifdef OBJ_ELF
27266 case OPTION_FDPIC:
27267 arm_fdpic = TRUE;
27268 break;
27269#endif /* OBJ_ELF */
27270
c19d1205
ZW
27271 case 'a':
27272 /* Listing option. Just ignore these, we don't support additional
27273 ones. */
27274 return 0;
b99bd4ef 27275
c19d1205
ZW
27276 default:
27277 for (opt = arm_opts; opt->option != NULL; opt++)
27278 {
27279 if (c == opt->option[0]
27280 && ((arg == NULL && opt->option[1] == 0)
27281 || streq (arg, opt->option + 1)))
27282 {
c19d1205 27283 /* If the option is deprecated, tell the user. */
278df34e 27284 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
27285 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27286 arg ? arg : "", _(opt->deprecated));
b99bd4ef 27287
c19d1205
ZW
27288 if (opt->var != NULL)
27289 *opt->var = opt->value;
cc8a6dd0 27290
c19d1205
ZW
27291 return 1;
27292 }
27293 }
b99bd4ef 27294
e74cfd16
PB
27295 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
27296 {
27297 if (c == fopt->option[0]
27298 && ((arg == NULL && fopt->option[1] == 0)
27299 || streq (arg, fopt->option + 1)))
27300 {
e74cfd16 27301 /* If the option is deprecated, tell the user. */
278df34e 27302 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
27303 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27304 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
27305
27306 if (fopt->var != NULL)
27307 *fopt->var = &fopt->value;
27308
27309 return 1;
27310 }
27311 }
27312
c19d1205
ZW
27313 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27314 {
27315 /* These options are expected to have an argument. */
27316 if (c == lopt->option[0]
27317 && arg != NULL
27318 && strncmp (arg, lopt->option + 1,
27319 strlen (lopt->option + 1)) == 0)
27320 {
c19d1205 27321 /* If the option is deprecated, tell the user. */
278df34e 27322 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
27323 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
27324 _(lopt->deprecated));
b99bd4ef 27325
c19d1205
ZW
27326 /* Call the sup-option parser. */
27327 return lopt->func (arg + strlen (lopt->option) - 1);
27328 }
27329 }
a737bd4d 27330
c19d1205
ZW
27331 return 0;
27332 }
a394c00f 27333
c19d1205
ZW
27334 return 1;
27335}
a394c00f 27336
c19d1205
ZW
27337void
27338md_show_usage (FILE * fp)
a394c00f 27339{
c19d1205
ZW
27340 struct arm_option_table *opt;
27341 struct arm_long_option_table *lopt;
a394c00f 27342
c19d1205 27343 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 27344
c19d1205
ZW
27345 for (opt = arm_opts; opt->option != NULL; opt++)
27346 if (opt->help != NULL)
27347 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 27348
c19d1205
ZW
27349 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27350 if (lopt->help != NULL)
27351 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 27352
c19d1205
ZW
27353#ifdef OPTION_EB
27354 fprintf (fp, _("\
27355 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
27356#endif
27357
c19d1205
ZW
27358#ifdef OPTION_EL
27359 fprintf (fp, _("\
27360 -EL assemble code for a little-endian cpu\n"));
a737bd4d 27361#endif
845b51d6
PB
27362
27363 fprintf (fp, _("\
27364 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
27365
27366#ifdef OBJ_ELF
27367 fprintf (fp, _("\
27368 --fdpic generate an FDPIC object file\n"));
27369#endif /* OBJ_ELF */
c19d1205 27370}
ee065d83 27371
ee065d83 27372#ifdef OBJ_ELF
0198d5e6 27373
62b3e311
PB
27374typedef struct
27375{
27376 int val;
27377 arm_feature_set flags;
27378} cpu_arch_ver_table;
27379
2c6b98ea
TP
27380/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
27381 chronologically for architectures, with an exception for ARMv6-M and
27382 ARMv6S-M due to legacy reasons. No new architecture should have a
27383 special case. This allows for build attribute selection results to be
27384 stable when new architectures are added. */
62b3e311
PB
27385static const cpu_arch_ver_table cpu_arch_ver[] =
27386{
031254f2
AV
27387 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
27388 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
27389 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
27390 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
27391 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
27392 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
27393 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
27394 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
27395 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
27396 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
27397 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27398 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27399 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27400 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27401 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27402 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27403 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27404 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27405 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27406 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27407 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27408 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27409 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27410 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
27411
27412 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27413 always selected build attributes to match those of ARMv6-M
27414 (resp. ARMv6S-M). However, due to these architectures being a strict
27415 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27416 would be selected when fully respecting chronology of architectures.
27417 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27418 move them before ARMv7 architectures. */
031254f2
AV
27419 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27420 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27421
27422 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27423 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27424 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27425 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27426 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27427 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27428 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27429 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27430 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27431 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27432 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27433 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27434 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27435 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
27436 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
27437 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
27438 {-1, ARM_ARCH_NONE}
62b3e311
PB
27439};
27440
ee3c0378 27441/* Set an attribute if it has not already been set by the user. */
0198d5e6 27442
ee3c0378
AS
27443static void
27444aeabi_set_attribute_int (int tag, int value)
27445{
27446 if (tag < 1
27447 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27448 || !attributes_set_explicitly[tag])
27449 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27450}
27451
27452static void
27453aeabi_set_attribute_string (int tag, const char *value)
27454{
27455 if (tag < 1
27456 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27457 || !attributes_set_explicitly[tag])
27458 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27459}
27460
2c6b98ea
TP
27461/* Return whether features in the *NEEDED feature set are available via
27462 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 27463
2c6b98ea
TP
27464static bfd_boolean
27465have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27466 const arm_feature_set *needed)
27467{
27468 int i, nb_allowed_archs;
27469 arm_feature_set ext_fset;
27470 const struct arm_option_extension_value_table *opt;
27471
27472 ext_fset = arm_arch_none;
27473 for (opt = arm_extensions; opt->name != NULL; opt++)
27474 {
27475 /* Extension does not provide any feature we need. */
27476 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27477 continue;
27478
27479 nb_allowed_archs =
27480 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27481 for (i = 0; i < nb_allowed_archs; i++)
27482 {
27483 /* Empty entry. */
27484 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27485 break;
27486
27487 /* Extension is available, add it. */
27488 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27489 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27490 }
27491 }
27492
27493 /* Can we enable all features in *needed? */
27494 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27495}
27496
27497/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27498 a given architecture feature set *ARCH_EXT_FSET including extension feature
27499 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27500 - if true, check for an exact match of the architecture modulo extensions;
27501 - otherwise, select build attribute value of the first superset
27502 architecture released so that results remains stable when new architectures
27503 are added.
27504 For -march/-mcpu=all the build attribute value of the most featureful
27505 architecture is returned. Tag_CPU_arch_profile result is returned in
27506 PROFILE. */
0198d5e6 27507
2c6b98ea
TP
27508static int
27509get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27510 const arm_feature_set *ext_fset,
27511 char *profile, int exact_match)
27512{
27513 arm_feature_set arch_fset;
27514 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27515
27516 /* Select most featureful architecture with all its extensions if building
27517 for -march=all as the feature sets used to set build attributes. */
27518 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27519 {
27520 /* Force revisiting of decision for each new architecture. */
031254f2 27521 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
27522 *profile = 'A';
27523 return TAG_CPU_ARCH_V8;
27524 }
27525
27526 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27527
27528 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27529 {
27530 arm_feature_set known_arch_fset;
27531
27532 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27533 if (exact_match)
27534 {
27535 /* Base architecture match user-specified architecture and
27536 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27537 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27538 {
27539 p_ver_ret = p_ver;
27540 goto found;
27541 }
27542 /* Base architecture match user-specified architecture only
27543 (eg. ARMv6-M in the same case as above). Record it in case we
27544 find a match with above condition. */
27545 else if (p_ver_ret == NULL
27546 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27547 p_ver_ret = p_ver;
27548 }
27549 else
27550 {
27551
27552 /* Architecture has all features wanted. */
27553 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27554 {
27555 arm_feature_set added_fset;
27556
27557 /* Compute features added by this architecture over the one
27558 recorded in p_ver_ret. */
27559 if (p_ver_ret != NULL)
27560 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27561 p_ver_ret->flags);
27562 /* First architecture that match incl. with extensions, or the
27563 only difference in features over the recorded match is
27564 features that were optional and are now mandatory. */
27565 if (p_ver_ret == NULL
27566 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27567 {
27568 p_ver_ret = p_ver;
27569 goto found;
27570 }
27571 }
27572 else if (p_ver_ret == NULL)
27573 {
27574 arm_feature_set needed_ext_fset;
27575
27576 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27577
27578 /* Architecture has all features needed when using some
27579 extensions. Record it and continue searching in case there
27580 exist an architecture providing all needed features without
27581 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27582 OS extension). */
27583 if (have_ext_for_needed_feat_p (&known_arch_fset,
27584 &needed_ext_fset))
27585 p_ver_ret = p_ver;
27586 }
27587 }
27588 }
27589
27590 if (p_ver_ret == NULL)
27591 return -1;
27592
27593found:
27594 /* Tag_CPU_arch_profile. */
27595 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27596 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27597 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27598 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27599 *profile = 'A';
27600 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27601 *profile = 'R';
27602 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27603 *profile = 'M';
27604 else
27605 *profile = '\0';
27606 return p_ver_ret->val;
27607}
27608
ee065d83 27609/* Set the public EABI object attributes. */
0198d5e6 27610
c168ce07 27611static void
ee065d83
PB
27612aeabi_set_public_attributes (void)
27613{
b90d5ba0 27614 char profile = '\0';
2c6b98ea 27615 int arch = -1;
90ec0d68 27616 int virt_sec = 0;
bca38921 27617 int fp16_optional = 0;
2c6b98ea
TP
27618 int skip_exact_match = 0;
27619 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 27620
54bab281
TP
27621 /* Autodetection mode, choose the architecture based the instructions
27622 actually used. */
27623 if (no_cpu_selected ())
27624 {
27625 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 27626
54bab281
TP
27627 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27628 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 27629
54bab281
TP
27630 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27631 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 27632
54bab281 27633 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
27634 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27635 flags_ext = arm_arch_none;
27636 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27637 selected_ext = flags_ext;
54bab281
TP
27638 selected_cpu = flags;
27639 }
27640 /* Otherwise, choose the architecture based on the capabilities of the
27641 requested cpu. */
27642 else
4d354d8b
TP
27643 {
27644 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27645 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27646 flags_ext = selected_ext;
27647 flags = selected_cpu;
27648 }
27649 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 27650
ddd7f988 27651 /* Allow the user to override the reported architecture. */
4d354d8b 27652 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 27653 {
4d354d8b 27654 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 27655 flags_ext = arm_arch_none;
7a1d4c38 27656 }
2c6b98ea 27657 else
4d354d8b 27658 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
27659
27660 /* When this function is run again after relaxation has happened there is no
27661 way to determine whether an architecture or CPU was specified by the user:
27662 - selected_cpu is set above for relaxation to work;
27663 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27664 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27665 Therefore, if not in -march=all case we first try an exact match and fall
27666 back to autodetection. */
27667 if (!skip_exact_match)
27668 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27669 if (arch == -1)
27670 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27671 if (arch == -1)
27672 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 27673
ee065d83
PB
27674 /* Tag_CPU_name. */
27675 if (selected_cpu_name[0])
27676 {
91d6fa6a 27677 char *q;
ee065d83 27678
91d6fa6a
NC
27679 q = selected_cpu_name;
27680 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
27681 {
27682 int i;
5f4273c7 27683
91d6fa6a
NC
27684 q += 4;
27685 for (i = 0; q[i]; i++)
27686 q[i] = TOUPPER (q[i]);
ee065d83 27687 }
91d6fa6a 27688 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 27689 }
62f3b8c8 27690
ee065d83 27691 /* Tag_CPU_arch. */
ee3c0378 27692 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 27693
62b3e311 27694 /* Tag_CPU_arch_profile. */
69239280
MGD
27695 if (profile != '\0')
27696 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 27697
15afaa63 27698 /* Tag_DSP_extension. */
4d354d8b 27699 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 27700 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 27701
2c6b98ea 27702 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 27703 /* Tag_ARM_ISA_use. */
ee3c0378 27704 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 27705 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 27706 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 27707
ee065d83 27708 /* Tag_THUMB_ISA_use. */
ee3c0378 27709 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 27710 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
27711 {
27712 int thumb_isa_use;
27713
27714 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 27715 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
27716 thumb_isa_use = 3;
27717 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27718 thumb_isa_use = 2;
27719 else
27720 thumb_isa_use = 1;
27721 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27722 }
62f3b8c8 27723
ee065d83 27724 /* Tag_VFP_arch. */
a715796b
TG
27725 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27726 aeabi_set_attribute_int (Tag_VFP_arch,
27727 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27728 ? 7 : 8);
bca38921 27729 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
27730 aeabi_set_attribute_int (Tag_VFP_arch,
27731 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27732 ? 5 : 6);
27733 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
27734 {
27735 fp16_optional = 1;
27736 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27737 }
ada65aa3 27738 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
27739 {
27740 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27741 fp16_optional = 1;
27742 }
ee3c0378
AS
27743 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27744 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27745 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 27746 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 27747 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 27748
4547cb56
NC
27749 /* Tag_ABI_HardFP_use. */
27750 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27751 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27752 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27753
ee065d83 27754 /* Tag_WMMX_arch. */
ee3c0378
AS
27755 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27756 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27757 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27758 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 27759
ee3c0378 27760 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
27761 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27762 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27763 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
27764 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27765 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27766 {
27767 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27768 {
27769 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27770 }
27771 else
27772 {
27773 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27774 fp16_optional = 1;
27775 }
27776 }
fa94de6b 27777
ee3c0378 27778 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 27779 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 27780 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 27781
69239280
MGD
27782 /* Tag_DIV_use.
27783
27784 We set Tag_DIV_use to two when integer divide instructions have been used
27785 in ARM state, or when Thumb integer divide instructions have been used,
27786 but we have no architecture profile set, nor have we any ARM instructions.
27787
4ed7ed8d
TP
27788 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27789 by the base architecture.
bca38921 27790
69239280 27791 For new architectures we will have to check these tests. */
031254f2 27792 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
27793 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27794 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
27795 aeabi_set_attribute_int (Tag_DIV_use, 0);
27796 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27797 || (profile == '\0'
27798 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27799 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 27800 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
27801
27802 /* Tag_MP_extension_use. */
27803 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27804 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
27805
27806 /* Tag Virtualization_use. */
27807 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
27808 virt_sec |= 1;
27809 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27810 virt_sec |= 2;
27811 if (virt_sec != 0)
27812 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
27813}
27814
c168ce07
TP
27815/* Post relaxation hook. Recompute ARM attributes now that relaxation is
27816 finished and free extension feature bits which will not be used anymore. */
0198d5e6 27817
c168ce07
TP
27818void
27819arm_md_post_relax (void)
27820{
27821 aeabi_set_public_attributes ();
4d354d8b
TP
27822 XDELETE (mcpu_ext_opt);
27823 mcpu_ext_opt = NULL;
27824 XDELETE (march_ext_opt);
27825 march_ext_opt = NULL;
c168ce07
TP
27826}
27827
104d59d1 27828/* Add the default contents for the .ARM.attributes section. */
0198d5e6 27829
ee065d83
PB
27830void
27831arm_md_end (void)
27832{
ee065d83
PB
27833 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27834 return;
27835
27836 aeabi_set_public_attributes ();
ee065d83 27837}
8463be01 27838#endif /* OBJ_ELF */
ee065d83 27839
ee065d83
PB
27840/* Parse a .cpu directive. */
27841
27842static void
27843s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27844{
e74cfd16 27845 const struct arm_cpu_option_table *opt;
ee065d83
PB
27846 char *name;
27847 char saved_char;
27848
27849 name = input_line_pointer;
5f4273c7 27850 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27851 input_line_pointer++;
27852 saved_char = *input_line_pointer;
27853 *input_line_pointer = 0;
27854
27855 /* Skip the first "all" entry. */
27856 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27857 if (streq (opt->name, name))
27858 {
4d354d8b
TP
27859 selected_arch = opt->value;
27860 selected_ext = opt->ext;
27861 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 27862 if (opt->canonical_name)
5f4273c7 27863 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
27864 else
27865 {
27866 int i;
27867 for (i = 0; opt->name[i]; i++)
27868 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 27869
ee065d83
PB
27870 selected_cpu_name[i] = 0;
27871 }
4d354d8b
TP
27872 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27873
ee065d83
PB
27874 *input_line_pointer = saved_char;
27875 demand_empty_rest_of_line ();
27876 return;
27877 }
27878 as_bad (_("unknown cpu `%s'"), name);
27879 *input_line_pointer = saved_char;
27880 ignore_rest_of_line ();
27881}
27882
ee065d83
PB
27883/* Parse a .arch directive. */
27884
27885static void
27886s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27887{
e74cfd16 27888 const struct arm_arch_option_table *opt;
ee065d83
PB
27889 char saved_char;
27890 char *name;
27891
27892 name = input_line_pointer;
5f4273c7 27893 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27894 input_line_pointer++;
27895 saved_char = *input_line_pointer;
27896 *input_line_pointer = 0;
27897
27898 /* Skip the first "all" entry. */
27899 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27900 if (streq (opt->name, name))
27901 {
4d354d8b
TP
27902 selected_arch = opt->value;
27903 selected_ext = arm_arch_none;
27904 selected_cpu = selected_arch;
5f4273c7 27905 strcpy (selected_cpu_name, opt->name);
4d354d8b 27906 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
27907 *input_line_pointer = saved_char;
27908 demand_empty_rest_of_line ();
27909 return;
27910 }
27911
27912 as_bad (_("unknown architecture `%s'\n"), name);
27913 *input_line_pointer = saved_char;
27914 ignore_rest_of_line ();
27915}
27916
7a1d4c38
PB
27917/* Parse a .object_arch directive. */
27918
27919static void
27920s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27921{
27922 const struct arm_arch_option_table *opt;
27923 char saved_char;
27924 char *name;
27925
27926 name = input_line_pointer;
5f4273c7 27927 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
27928 input_line_pointer++;
27929 saved_char = *input_line_pointer;
27930 *input_line_pointer = 0;
27931
27932 /* Skip the first "all" entry. */
27933 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27934 if (streq (opt->name, name))
27935 {
4d354d8b 27936 selected_object_arch = opt->value;
7a1d4c38
PB
27937 *input_line_pointer = saved_char;
27938 demand_empty_rest_of_line ();
27939 return;
27940 }
27941
27942 as_bad (_("unknown architecture `%s'\n"), name);
27943 *input_line_pointer = saved_char;
27944 ignore_rest_of_line ();
27945}
27946
69133863
MGD
27947/* Parse a .arch_extension directive. */
27948
27949static void
27950s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27951{
27952 const struct arm_option_extension_value_table *opt;
27953 char saved_char;
27954 char *name;
27955 int adding_value = 1;
27956
27957 name = input_line_pointer;
27958 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27959 input_line_pointer++;
27960 saved_char = *input_line_pointer;
27961 *input_line_pointer = 0;
27962
27963 if (strlen (name) >= 2
27964 && strncmp (name, "no", 2) == 0)
27965 {
27966 adding_value = 0;
27967 name += 2;
27968 }
27969
27970 for (opt = arm_extensions; opt->name != NULL; opt++)
27971 if (streq (opt->name, name))
27972 {
d942732e
TP
27973 int i, nb_allowed_archs =
27974 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27975 for (i = 0; i < nb_allowed_archs; i++)
27976 {
27977 /* Empty entry. */
4d354d8b 27978 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 27979 continue;
4d354d8b 27980 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
27981 break;
27982 }
27983
27984 if (i == nb_allowed_archs)
69133863
MGD
27985 {
27986 as_bad (_("architectural extension `%s' is not allowed for the "
27987 "current base architecture"), name);
27988 break;
27989 }
27990
27991 if (adding_value)
4d354d8b 27992 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 27993 opt->merge_value);
69133863 27994 else
4d354d8b 27995 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 27996
4d354d8b
TP
27997 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
27998 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
27999 *input_line_pointer = saved_char;
28000 demand_empty_rest_of_line ();
3d030cdb
TP
28001 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
28002 on this return so that duplicate extensions (extensions with the
28003 same name as a previous extension in the list) are not considered
28004 for command-line parsing. */
69133863
MGD
28005 return;
28006 }
28007
28008 if (opt->name == NULL)
e673710a 28009 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
28010
28011 *input_line_pointer = saved_char;
28012 ignore_rest_of_line ();
28013}
28014
ee065d83
PB
28015/* Parse a .fpu directive. */
28016
28017static void
28018s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
28019{
69133863 28020 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
28021 char saved_char;
28022 char *name;
28023
28024 name = input_line_pointer;
5f4273c7 28025 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
28026 input_line_pointer++;
28027 saved_char = *input_line_pointer;
28028 *input_line_pointer = 0;
5f4273c7 28029
ee065d83
PB
28030 for (opt = arm_fpus; opt->name != NULL; opt++)
28031 if (streq (opt->name, name))
28032 {
4d354d8b
TP
28033 selected_fpu = opt->value;
28034#ifndef CPU_DEFAULT
28035 if (no_cpu_selected ())
28036 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28037 else
28038#endif
28039 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
28040 *input_line_pointer = saved_char;
28041 demand_empty_rest_of_line ();
28042 return;
28043 }
28044
28045 as_bad (_("unknown floating point format `%s'\n"), name);
28046 *input_line_pointer = saved_char;
28047 ignore_rest_of_line ();
28048}
ee065d83 28049
794ba86a 28050/* Copy symbol information. */
f31fef98 28051
794ba86a
DJ
28052void
28053arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
28054{
28055 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
28056}
e04befd0 28057
f31fef98 28058#ifdef OBJ_ELF
e04befd0
AS
28059/* Given a symbolic attribute NAME, return the proper integer value.
28060 Returns -1 if the attribute is not known. */
f31fef98 28061
e04befd0
AS
28062int
28063arm_convert_symbolic_attribute (const char *name)
28064{
f31fef98
NC
28065 static const struct
28066 {
28067 const char * name;
28068 const int tag;
28069 }
28070 attribute_table[] =
28071 {
28072 /* When you modify this table you should
28073 also modify the list in doc/c-arm.texi. */
e04befd0 28074#define T(tag) {#tag, tag}
f31fef98
NC
28075 T (Tag_CPU_raw_name),
28076 T (Tag_CPU_name),
28077 T (Tag_CPU_arch),
28078 T (Tag_CPU_arch_profile),
28079 T (Tag_ARM_ISA_use),
28080 T (Tag_THUMB_ISA_use),
75375b3e 28081 T (Tag_FP_arch),
f31fef98
NC
28082 T (Tag_VFP_arch),
28083 T (Tag_WMMX_arch),
28084 T (Tag_Advanced_SIMD_arch),
28085 T (Tag_PCS_config),
28086 T (Tag_ABI_PCS_R9_use),
28087 T (Tag_ABI_PCS_RW_data),
28088 T (Tag_ABI_PCS_RO_data),
28089 T (Tag_ABI_PCS_GOT_use),
28090 T (Tag_ABI_PCS_wchar_t),
28091 T (Tag_ABI_FP_rounding),
28092 T (Tag_ABI_FP_denormal),
28093 T (Tag_ABI_FP_exceptions),
28094 T (Tag_ABI_FP_user_exceptions),
28095 T (Tag_ABI_FP_number_model),
75375b3e 28096 T (Tag_ABI_align_needed),
f31fef98 28097 T (Tag_ABI_align8_needed),
75375b3e 28098 T (Tag_ABI_align_preserved),
f31fef98
NC
28099 T (Tag_ABI_align8_preserved),
28100 T (Tag_ABI_enum_size),
28101 T (Tag_ABI_HardFP_use),
28102 T (Tag_ABI_VFP_args),
28103 T (Tag_ABI_WMMX_args),
28104 T (Tag_ABI_optimization_goals),
28105 T (Tag_ABI_FP_optimization_goals),
28106 T (Tag_compatibility),
28107 T (Tag_CPU_unaligned_access),
75375b3e 28108 T (Tag_FP_HP_extension),
f31fef98
NC
28109 T (Tag_VFP_HP_extension),
28110 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
28111 T (Tag_MPextension_use),
28112 T (Tag_DIV_use),
f31fef98
NC
28113 T (Tag_nodefaults),
28114 T (Tag_also_compatible_with),
28115 T (Tag_conformance),
28116 T (Tag_T2EE_use),
28117 T (Tag_Virtualization_use),
15afaa63 28118 T (Tag_DSP_extension),
cd21e546 28119 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 28120#undef T
f31fef98 28121 };
e04befd0
AS
28122 unsigned int i;
28123
28124 if (name == NULL)
28125 return -1;
28126
f31fef98 28127 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 28128 if (streq (name, attribute_table[i].name))
e04befd0
AS
28129 return attribute_table[i].tag;
28130
28131 return -1;
28132}
267bf995 28133
93ef582d
NC
28134/* Apply sym value for relocations only in the case that they are for
28135 local symbols in the same segment as the fixup and you have the
28136 respective architectural feature for blx and simple switches. */
0198d5e6 28137
267bf995 28138int
93ef582d 28139arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
28140{
28141 if (fixP->fx_addsy
28142 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
28143 /* PR 17444: If the local symbol is in a different section then a reloc
28144 will always be generated for it, so applying the symbol value now
28145 will result in a double offset being stored in the relocation. */
28146 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 28147 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
28148 {
28149 switch (fixP->fx_r_type)
28150 {
28151 case BFD_RELOC_ARM_PCREL_BLX:
28152 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28153 if (ARM_IS_FUNC (fixP->fx_addsy))
28154 return 1;
28155 break;
28156
28157 case BFD_RELOC_ARM_PCREL_CALL:
28158 case BFD_RELOC_THUMB_PCREL_BLX:
28159 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 28160 return 1;
267bf995
RR
28161 break;
28162
28163 default:
28164 break;
28165 }
28166
28167 }
28168 return 0;
28169}
f31fef98 28170#endif /* OBJ_ELF */
This page took 4.151077 seconds and 4 git commands to generate.